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Abstract

A full scale offshore supply vessel with two bow tunnels and headboxes is simulated in

calm water to estimate the added resistance from these hull modifications. Holtrop’s

formula for bow thrusters with drag coefficients CDTH
of respectively 0.005 and 0.009 is

shown to approximate the added resistance from the foremost and aftmost tunnel well.

Least squares fitting with ITTC’s recommended formula for appendix resistance gives a

form factor k of 2.9 for the headboxes, but the expected Reynolds number dependence

of their resistance can not be shown. By consideration of all findings, there is a clear

argument that model scale simulations may instead be used for the prediction of tunnel

and headbox resistance.

Simulations apply the Reynolds-averaged Navier-Stokes equations. They are closed with

the k-ω SST turbulence model. The free surface is resolved with a Volume of Fluid

approach, and an equilibrium model is applied for ship motions. Near wall velocities are

approximated by wall functions.

While total resistance generally shows good grid convergence, convergence is not clear

for all investigated values. When compared to the Grid-convergence index method, a

least squares fitting approach gives more appropriately conservative estimates for the

discretization uncertainty. For five considered velocities, the mean numerical uncertainty

of resistance is estimated to seven percent.
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Samandrag

Eit fullskala forsyningsskip med to baugtunnelar og headboksar er simulert i stille vatn

for å estimera tilleggsmotstanden fr̊a desse modifikasjonane. Holtrop sin formel for baug-

tunnelar med koeffisientar CDTH
lik 0.005 og 0.009 for fremre og bakre tunnel svarar

godt til m̊alt motstand. Likninga ITTC føresl̊ar for appendiksmotstand passar head-

boksmålingane best med ein formfaktor k lik 2.9, men den venta samanhengen med

Reynoldstalet kan ikkje p̊avisast. Summen av gjorde funn tyder at ein like godt kan

simulera i modellskala for å sp̊a motstanden fr̊a tunnelar og headboksar.

Simuleringane løyser Reynoldsmidla Navier-Stokes-likningar (RANSE). Likningane er

lukka med turbulensmodellen k-ω SST. Fri overflate er modellert med vekta volumde-

lar (VOF). Skipsrørsler er funne med ein modell som nyttar l̊ast jamvekt. Logaritmisk

grensesjiktstilnærming er brukt for å finna væskefarten nær skrogoverflata.

Totalmotstand viser jamt god gridkonvergens, men konvergens er ikkje tydeleg for alle

undersøkte verdiar. Samanlikna med Gridkonvergensindeksmetoda (GCI), gjer kurvetil-

passing med minste kvadrat meir konservative og truverdige estimat for den numeriske

utryggleika. For fem vurderte snøggleikar er snittet av numerisk utryggleik for totalmot-

stand sju prosent.
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1 Introduction

To find the added resistance of transverse bow tunnels and headboxes, full scale CFD

simulations of a vessel with and without these modifications are conducted. Parameters

for analytical expressions for added resistance are suggested based on the results. A

similar study has been conducted by Christensen[9], who looked at added resistance from

bow tunnels in model scale CFD.

The quality of the approach is determined by consideration of modeling simplifications

in the CFD methodology, and thorough investigations of grid convergence in both model

and full scale. Grid convergence studies are conducted by application of both the Grid-

convergence index (GCI), and a least squares based method. Model scale simulations

are validated against towing tank results. Validation data is not available for full scale

simulations, so results are compared to scaled model test values. The added resistance

of the bow tunnels is compared to estimates by Stuntz[4], and Hollenbach[5]. For the

headboxes, no direct comparisons have been found.

To reach goals for reduced global greenhouse gas emissions, transport emissions must

be decoupled from economic growth[37]. One part of the solution is to lower energy

intensity by improving vessel performance. For ships, demands for improved energy

intensity are imposed by the International Maritime Organization through Marpol and

the Energy efficiency design index (EEDI). These emission regulations are key drivers for

advances in ship performance[11]. A prerequisite for improving performance is the ability

to accurately predict it.

Predicting the hydrodynamic performance of a vessel is paramount in all phases of design.
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While only the performance difference between designs is needed for optimization pur-

poses, accurate predictions of absolute performance are necessary for the determination

of project feasibility and for contractual purposes. Calm water resistance is a central as-

pect of vessel performance. The inclusion of appendices, transverse tunnels or headboxes

is determined early in the design process, but their exact proportions and placement may

not be given. Simultaneously, their contributions to a ship’s total resistance may be sig-

nificant. It is therefore desirable to make accurate analytical estimates for their added

resistance.

The added resistance of appendices and other hull modifications is difficult to determine

from model tests. To achieve the correct inflow on the modifications, and assess the

modifications’ effect on the flow over the hull, it is not feasible to test them in isolation.

They must be fitted on the actual hull. Unlike in full scale, the flow regime over the

modifications may not be fully turbulent in towing tank tests[21]. This is due to the low

Reynolds numbers. Resistance results will then not be fully scalable. Further, it is costly

and time consuming to build and test multiple models with small variations.

A much used alternative to experimental tests is numerical simulation with computa-

tional fluid dynamics (CFD). Preoptimization with potential flow CFD was shown to

reduce project duration already in the early 1990s[3]. While codes based on potential

theory predict wave resistance quite well[15], their neglect of viscous effects is limiting.

Viscosity is important only in the boundary layer, and the wake close to the ship, but

the viscous resistance is often dominating[15]. With the increasing availability of com-

putational resources, both researchers and industry have largely adopted viscous codes.

Their computational demands are much larger, but they are more accurate than those

based on potential flow. At the 2010 Gothenburg workshop for CFD, the mean error of

all model scale resistance submissions was only −0.1%D [23], where D is the measured

resistance. A downward trend for the standard deviation of errors was also shown, with

a decrease to 2.1%D from 4.7% in the 2005 workshop.

Model scale CFD is subject to the same scaling issues as towing tank tests. This can be

solved by simulating in full scale. Despite increased simulation complexity from higher
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Reynolds numbers[7], studies suggest comparable or better agreement with sea trials

for full scale CFD than scaled model tests[29, 31]. However, due to measurement un-

certainties it can not be conclusively confirmed. For direct comparison with sea trials,

self-propulsion simulations are used. These types of simulations are attractive for fi-

nal design validation, but they are overly time consuming for design phase predictions.

Predicting vessel performance by way of hull resistance is therefore still of interest. In

addition to the increased simplicity, accurate resistance results help ensure the quality of

power-predictions[10].

3



2 Theory

2.1 Computational fluid dynamics

Computational fluid dynamics are the application of numerical approximations for the

solution of fluid flow problems[13]. To numerically solve equations describing physical

phenomena, the solution domain must be divided into a finite number of solution points,

and the equations converted into a set of discrete algebraic equations. This is called

discretization. Fluid flow varies in both space and time, and the solution at each point

is dependent on neighboring solutions in both these domains.

In this study, a finite volume method is applied. This means that the points take the

form of subdomains called cells, and the flow of the fluid through these is modeled. The

terms grid and mesh are used interchangeably to describe the distribution of the cells.

Numerical results are always approximate. Approximations happen in

1. the mathematical modeling

2. the discretization

3. the application of iterative solution methods

Modeling errors

The modeling error is the difference between reality and the exact solution of the applied

mathematical model[13]. Fluid flow is described mathematically by the Navier-Stokes

equations. They are an equation set based on the continuity of mass, momentum and
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energy. See for example Ferziger, Peric̀ and Street[13] for their derivation and discretiza-

tion.

The Navier-Stokes equations are considered to describe fluid flow exactly. Given un-

limited computational resources, solutions of any desired accuracy can be achieved by

solving them directly. However, this is generally not feasible. The biggest difficulty in

numerically solving the equations is turbulence. It is computationally demanding, and

requires very fine discretization to capture accurately. Turbulence modeling is discussed

in Section 2.1.1.

Additional simplifications of importance are the free surface model, the use of wall func-

tions, and the way ship motions are resolved. They are discussed in Sections 2.1.2 to 2.1.4.

The use of boundary conditions to artificially make a finite volume infinite is also a poten-

tially large source of error, but it can to some degree be controlled for. See Section 3.2.3.

Further, the flow is assumed isothermal and incompressible, meaning that the fluid’s

temperature, density and viscosity are modeled as constant. Incompressibility is in reality

a property of a given fluid, but at the given velocities water may safely be assumed

incompressible. Temperature variations within the domain are also deemed negligible.

Minor inaccuracies may also stem from non-exact properties of the fluid.

The size of some modeling errors, such as the location of the far-field boundaries and the

turbulence quantities, can be evaluated by varying their input parameters[13]. How much

the solution varies from changes in these inputs then indicates the penalty of getting them

wrong.

Modeling errors can also be quantified by comparing numerical solutions to experimental

results. In the context of CFD, this is named validation[33]. As discussed in Chapter 1,

CFD in model scale has been shown to consistently predict the calm water resistance ac-

curately. Results from full scale self-propulsion studies also suggest that the approaches

scale well. However, even with data on the real flow, modeling errors can not be de-

termined exactly. They can only be estimated[13]. Modeling and numerical errors may

cancel each other, causing numerically imprecise solutions to fit the experimental data
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better. It is therefore only meaningful to validate a solution after the numerical er-

rors have been estimated and deemed small enough. The estimation of iteration and

discretization errors is named verification[33].

Discretization errors

The discretization error is the difference between the exact solution of the mathematical

model, and the exact solution of the system of algebraic equations that results from the

discretization[13]. For the finite volume method, surface, volume, and time integrals

are approximated through discretization. Solutions are found only on discrete points in

each cell. The number of discretization points affect not only where a solution is found,

but also the flow physics. With insufficient resolution, the solution at each point will

differ from reality. As the discretization size in space and time becomes smaller, the

solution becomes a more accurate approximation. However, the computational effort is

proportional to the number of points. Trade-offs must therefore be made between solution

accuracy and solving time.

At intermediate locations between cell centers, flow values are determined by interpo-

lation. This means that, if the changes in variables are small, only a few big cells are

needed for an accurate solution. However, if solution gradients are steep, the number of

cells must be high. This motivates the use of unstructured grids with local refinements. If

certain characteristics of the solution are known beforehand, cells may be packed densely

only in certain areas. Due to the complexity of a hull form, unstructured grids are also

much easier to adapt to the geometry. The downside of these grids is an irregularity in

the data structure, resulting in slower solutions than for structured grids[13]. Accuracy

is not necessarily affected.

The size of the discretization error is estimated by systematic variations in the cell sizes.

This is described in Section 2.1.5.
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Iteration errors

The iteration error is the difference between the exact and the iterative solutions of the

system of algebraic equations[13]. Discretization produces a set of non-linear equations.

These are linearized and then solved iteratively. An iterative solution is based on making

an initial guess for the solution, and then improving it systematically. If the solution

converges, it will approach the exact result. However, since the number of improvement

cycles must be finite, an error will always remain.

When to stop the iterations is determined by one or more convergence criteria. Tracking

residuals is common for steady problems. This roughly means to stop the simulation when

changes between solution steps are small. When steady solutions can not be achieved,

outer iteration residuals will not converge. Then parameters of the solution must be

considered to determine convergence.

Most interesting is the the relative size of the iteration error when compared to that of

the discretization. This means that a coarser mesh allows for a larger iteration error than

a finer one. Given convergence towards appropriate criteria, the iteration error is in any

case assumed small compared to the discretization error[12].

2.1.1 Turbulence modeling

Turbulence is the interaction of time-varying vortexes of different sizes within fluid flow.

To capture these vortexes when solving the Navier-Stokes equations numerically, a very

high discretization fidelity is necessary. By using a simplified model for the contribution of

the vortexes, and solving the equations directly only for the time-averaged fluid velocity,

a coarser grid can be applied. The result is then not an instantaneous turbulent solution,

but an averaged numerical one.

Mathematically, this is done by decomposing the velocity in Navier-Stokes into a time-

averaged and a time-varying part. The resulting equations are named the Reynolds

averaged Navier-Stokes equations (RANSE). This decomposition isolates the contribution

of the time-varying velocities within an extra term in the momentum equations. This

7



term is called the Reynolds stress tensor. To solve the equations, closure between the

stress tensor and the fluid velocity must be achieved. A widely used closure is the

Boussinesq hypothesis. It provides the Reynolds stress tensor from the gradient of the

mean velocity field[34]. An implicit assumption is then that the turbulent mixing length

is small compared to the scales of which mean flow quantities vary. The validity of the

Boussinesq hypothesis has been demonstrated, from both direct numerical simulation

(DNS) and experimental data, to be limited[34]. However, two-parameter turbulence

models based on it are currently dominating within computational ship hydrodynamics,

and shows consistently accurate results for model scale ship resistance[23].

The two-parameter models add two more transport equations which must be solved si-

multaneously with the continuity and momentum equations. They are largely divided

between two groups, k-ε and k-ω. Models of k-ε type have shown satisfactory accuracy

in most of the flow, but lacks accuracy in the viscous sub-layer of boundary layer flows

compared to k-ω[25]. The problem with regular k-ω is its large sensitivity to boundary

values. An alternate formulation is the k-ω SST model. It is designed for accurate pre-

diction of flows with strong adverse pressure gradients and separation[25]. This makes it

popular in marine hydrodynamics. It applies the k-ω model in the viscous sublayer, but

switches to k-ε based on wall distance.

These turbulence models are based on empirical approaches[24]. They are calibrated

with DNS and experimental data on simple flows, such as flat plate boundary layer,

shear layer, and isotropic decaying turbulence downstream of screens[41]. This increases

their qualitative accuracy for given flows, but they can not be assumed universal.

2.1.2 The free surface

The free surface is an interface between two immiscible phases, namely water and air.

Modeling the interaction between these fluids is necessary to accurately describe surface

flows. Multiphase flow is difficult to describe exactly, and free surface flows are deemed a

particularly difficult class due to the moving boundaries [13]. Resolving the free surface is

a key complication for application of CFD in the marine field[14]. Its position is not known

8



beforehand, so it must be found as part of the solution process. Due to nonlinearities

and stochastic behavior, this is no easy task.

There are two categories of methods for predicting the movement of an interface between

immiscible fluids. They are interface-tracking and interface-capturing. For the first, only

one phase is simulated. The grid moves and deforms with the free surface. This category

is generally limited to simple interfaces, as the methods struggle with changes in interface

topology[28]. With the second category, both phases must be modeled. A fixed grid is

used, meaning that near-interface cells can be partially filled with each of the two phases.

An additional equation must be added to the solver for determination of fluid distribution.

When the volume fraction of one fluid is determined at a location, the fluid properties can

be calculated. The most popular techniques for resolving the free surface are Volume of

Fluid (VOF) methods[23]. They are in the interface-capturing category. VOF methods

are computationally expensive, but have been proven robust in several cases[14].

A major disadvantage is that VOF methods are prone to numerical diffusion[28]. It is

caused by errors accumulating while solving for the volume fractions. The bounding

of the volume fraction between one and none is also a source of error, as most second-

order (and higher) schemes produce over- and undershoots. A third problem is that only

volume fractions within cells are solved for, not the exact free surface. This means that

the free surface profile isn’t sharply defined. It is smeared. Local grid refinement is

therefore important for accurate resolution. Ideally, the grid should be refined until all

cells contain only one phase[13]. In Star-CCM, an extra scheme named High-resolution

interface capturing (HRIC) is applied with VOF. It suppresses numerical diffusion and

helps predict sharp interfaces[22].

2.1.3 Ship motions

When a vessel moves through calm water, displacement forces will cause it to sink and

trim. Sinkage is vertical translation, while trim is rotation around the transverse axis.

Corresponding dynamic motions are heave and pitch.

Sink and trim motions are generally small, but they change the pressure field[22]. This
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affects the resistance, and they are therefore important to predict accurately. To resolve

them, Star-CCM implements a method named Dynamic fluid body interaction (DFBI).

When running calm water simulations in Star-CCM, the ship’s volume is not discretized.

Only its surfaces are modeled. This means that there is no vessel body that can sink

and trim. Instead the entire computational domain must be moved during simulations.

The vessel surfaces are included as boundaries of the fluid mesh. Forces and moments

are calculated at this coupled boundary, and the mesh is moved correspondingly. With

DFBI, the fluid mesh is moved rigidly[36]. This means that the relative distances between

internal points of the grid do not change.

Accurate CFD predictions for sinkage and trim have generally not been achieved. Both

show comparison errors and standard deviations larger than those for resistance[23]. It

is speculated that this is simply due to the difficulties in measuring the quantities at the

low velocities for which current test cases have been investigated, or due to the variables’

dependence on accurate free surface deformation[23].

2.1.4 Wall functions

In viscous fluids, such as water and air, fluid particles at a solid surface will have a zero

relative velocity. When a vessel advances in water, this means that the water particles

on the hull surface will have the same velocity as the vessel. Adjacent particles will then

experience shear forces from this innermost layer, but will resist deformation to some

degree. This results in a wall normal velocity profile that approaches the free stream

velocity with increasing distance from the surface. The affected region is called the

boundary layer.

In a full scale ship resistance simulation, accurately resolving the boundary layer requires

infeasibly small cells near the hull surface. Both experiments and direct numerical simu-

lation of Navier-Stokes have shown that, for a wide number of geometries, the tangential

fluid velocity near a surface can be accurately modeled analytically[13]. These analytical

models are named wall functions. They are based on the boundary layer approximation.

This means that they assume no reversed flow, no recirculation, and that the variation of
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the geometry is gradual[13]. This occurs in channels and pipes, and over mildly curved

solid walls such as a ship hulls. While a real turbulent boundary layer is unsteady,

with an instantaneous velocity profile that varies in time, the wall functions provide only

time-averaged values.

When discussing wall functions, the notation n+ (or y+) is used to describe the normalized

normal distance from the wall. Its definition is given in Equation (2.1),

n+ =
nuτ
ν
, (2.1)

where n is the normal distance from the wall, ν is the kinematic viscosity, and uτ is the

friction velocity defined in Equation (2.2).

uτ =
τwall
ρ
. (2.2)

τwall is the wall shear stress determined from Equation (2.3).

τwall =
1

2
ρU2Cf,x. (2.3)

Cf,x is the local skin friction coefficient.

Accurate analytical descriptions for the tangential fluid velocity exists for two regions of

the boundary layer. The first is the viscous sublayer, where the velocity profile varies

linearly[13]. It corresponds to n+ values lower than 5. The second is the logarithmic

region, which starts at an n+ of 30. Its upper limit is less clearly defined, but an n+ of

200 is often suggested. A formulation of the log-law is given in Equation (2.4),

1

κ
ln
(
n+
)

+B, (2.4)

where κ and B are empirically determined constants. It is not strictly valid for flow

over complicated wall shapes[13], but it has been shown to be applicable for nearly all

wall-bounded boundary layers[41].

Between the linear and logarithmic regions, different blending functions are in use. Their

accuracy is less certain, and the general recommendation is to avoid this range when

determining tangential fluid velocities analytically.
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2.1.5 Grid convergence studies

Discretization errors and uncertainties are determined by monitoring the change in so-

lution quantities during systematic grid size variations. Monitored quantities can be

either direct solution variables such as velocities and pressure, or integral quantities such

as body drag[13]. Convergence studies must be conducted for all quantities of interest,

since the order of convergence may vary between them.

The starting point for discretization error estimation is Richardson extrapolation. It

requires three grids of varying fidelity with a constant refinement ratio r. The grid

fidelity is measured by a characteristic grid size h. All three grids must be sufficiently

fine for the quantity to converge monotonically towards an extrapolated solution.

First, the convergence rate p is determined by Equation (2.5),

p =
log
(
φh2−φh1
φh3−φh2

)
log(r)

, (2.5)

where h1 < h2 < h3, and φhi is the quantity of interest at grid level hi. The discretization

error at grid hi can then be estimated by Equation (2.6).

εhi =
φhi − φhi+1

rp − 1
. (2.6)

For unstructured grids with uneven refinement, achieving a constant refinement ratio

is not straightforward. A method based on generalized Richardson extrapolation that

handles uneven refinement is the Grid-Convergence Index (GCI)[32]. It is recommended

by Journal of Fluids Engineering (JFE)[8], and is here presented by their definition.

The GCI definition of characteristic grid size is given in Equation (2.7),

h = (
1

N

N∑
i=1

(∆Vi))
1
3 , (2.7)

where N is the number of cells, and ∆Vi is the volume of cell i.

Due to the non-constant refinement ratios

r21 =
h2
h1
6= r32 =

h3
h2
,
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the apparent order p is found by iteration. Once the apparent order is found, the extrap-

olated solution is given by Equation (2.8).

φext =
rp21φh1 − φh2
rp21 − 1

. (2.8)

It is an estimate for what value the quantity will take at an infinitely fine grid.

The relative uncertainty GCI of the fine grid solution is given in Equation (2.9),

GCI = FS

∣∣∣∣ εh1φh1

∣∣∣∣, (2.9)

where FS = 1.25 is an empirically determined safety factor. This is not a statistically

well founded error estimate, but it is argued that it can be interpreted similarly as the

two-sigma limit[32]. This is understood to mean that the converged solution lies within

(1±GCI)× φh1 with a 95% confidence level.

With the three grid GCI method, only a single instance of p is given. This makes it highly

sensitive to small disturbances in monitored values. and thus unreliable for noisy data.

In grid convergence studies, noise can stem from lacking geometrical similarity between

grids of different refinement levels, flux limiters used in the discretization of convective

terms, damping functions, and switches in turbulence models[12]. To remedy this, the

use of least squares curve fitting with a minimum of four grids to approximate the order

of convergence has been suggested[12]. Least squares curve fitting means to find the

parameters for a function fφ(h) that minimizes Equation (2.10),

ng∑
i=1

wi(fφ(hi)− φhi)2, (2.10)

where ng is the number of grids, and wi is the weight of the solution at grid i.

The method assumes that the CFD code is theoretically second-order accurate. Variations

of Equation (2.11) are used for fφ.

fφ(h) = φext + αhp. (2.11)

First, the order of convergence p is found by least squares fitting Equation (2.11) to the

data with and without weights. The weights are determined from the characteristic grid
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size defined in Equation (2.7), meaning that results from finer grids are assumed more

accurate. For the unweighted fit, wi is set equal to 1. If only one fit shows an order of

convergence between 0.5 and 2, then this fit is used. If both do, the fit with smallest

standard deviation is chosen.

If neither of the two fits are within the desired range, they are discarded. Instead weighted

and unweighted fits based on first and second order convergence are made. p is then

respectively set to 1 and 2 in Equation (2.11), and values only for φext and α are found.

If p is less than 0.5 in both the discarded fits, additional weighted and unweighted mixed

first and second order fits are made. Of the four (or six) fits, the one with the smallest

standard deviation is chosen.

Once the best least squares fit has been selected, the discretization uncertainty at hi is

determined based on the spread in data ((φhi)max−(φhi)min), the estimated discretization

error at this point, the standard deviation of the least squares fit, and the difference

between φhi and fφ(hi).

2.2 Ship resistance

Ship resistance consists of two parts, pressure and friction[26]. They describe normal and

tangential forces on the hull, respectively. Friction stems purely from the viscosity of

the fluids that the ship advances through. Pressure resistance results mainly from wave

making. William Froude (1810 - 1879) showed that the inviscid wake making resistance

and viscous frictional effects can be largely separated, and that the inviscid drag can be

scaled by the Froude number. However, the pressure resistance also has a viscous part

which interacts with the wave making resistance. This is not accounted for when Froude

scaling, and is a widely recognized disadvantage of the method[31]. The friction and

viscous pressure components are Reynolds number dependent.

For ships, the total drag RT is non-dimensionalized by Equation (2.12),

CT =
RT

0.5ρV 2
S SS

(2.12)

where CT is the total drag coefficient, VS is the vessel velocity, and SS is the wetted
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surface of the hull. When considering the two resistance components separately, they can

be non-dimensionalized similarly. RT is simply replaced with the relevant component.

The viscous resistance can be estimated based on regression analyses. An often used

regression is the ITTC’57 correlation line, given in Equation (2.13),

CF =
0.075

(log10(Re)− 2)2
, (2.13)

where Re is the Reynolds number.

Equation (2.13) gives the friction resistance of a flat plate, and assumes a zero pressure

gradient along it[40]. For a hull form, this assumption does not hold. To find the friction

resistance of a ship, CF is multiplied by (1+k), where k is a shape dependent form factor.

The form factor is a measure of the increased frictional resistance caused by displacement

effects[39]. It is assumed constant for all velocities, though multiple studies show that it

is both Froude and Reynolds number dependent[29].

The drag resistance FD of an arbitrary object can be described by Equation (2.14),

FD = CDSρV
2, (2.14)

where CD is an assumed constant drag coefficient, S is the object’s wetted surface, ρ is

the fluid density, and V is the velocity of the fluid relative to the object.

For ship appendix, the drag coefficient is not assumed constant. Therefore, ITTC suggests

Equation (2.15) is used instead[18],

RApp = 0.5ρV 2CF (1 + k)SApp, (2.15)

where V is the relative velocity of the appendix compared to the water, CF is the friction

coefficient of the appendix, and k is its form factor.

The hull shape displaces water as it advances, meaning that an appendix may not experi-

ence the same fluid velocity as the hull. Particularly aft mounted appendices are affected

by this. The relative velocity of the appendix compared to the water is described by the

wake fraction w. It is a measure of the relative velocity of the water compared to the
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ship hull at an observation point. See Equation (2.16),

w =
VS − VObserved

VS
, (2.16)

where VS is the vessel velocity. The wake fraction is assumed constant for a given point

on a hull shape, meaning that VObserved can be determined at a given VS without new

measurements. In Equation (2.15), this means that V must be replaced by (1− w)VS.

Added resistance from lateral tunnels depends on the tunnels’ placement. Even though

yard experience suggests it is negligible for bow tunnels[35], several analytical expressions

for its determination exists. The cited source likely refers to large ships with small tunnels.

Tunnels contribute mainly to the pressure drag, and the assumption of a constant drag

coefficient is applied. The tunnels are a modification of the hull. They have no clearly

defined surface of their own, but expressions are based on their cross-sectional area.

Holtrop’s method [5] gives the total tunnel resistance RTH by Equation (2.17),

RTH = ρπV 2d2THCDTH
, (2.17)

where dTH is the tunnel diameter, and CDTH
is the tunnel drag coefficient. The method

suggests tunnel drag coefficients in the range 0.003 to 0.012, depending on tunnel place-

ment and hull curvature. The lower range is for tunnels placed on the bulb near the bow,

where the hull surface is near parallel to the flow.

In Hollenbach’s method[5], Equation (2.18) is used for estimation of the tunnel drag

coefficient,

CDTH
= 0.003 + 0.003(

10dTH
T

− 1), (2.18)

where T is the vessel draught.

Stuntz[4] proposes Equation (2.19) for predicting duct resistance,

RDUCT =
0.07ρ

2
AV 2

S , (2.19)

where A is the duct cross sectional area. Rewriting it to the form of Equation (2.17)

gives a corresponding tunnel drag coefficient CDTH
of 0.00875, which is near the middle

of Holtrop’s range. Christensen[9] suggests CDTH
= 0.00174592.

16



3 Method

3.1 Geometry

The investigated ship is an offshore supply vessel (OSV) with two sequential bow thrusters

and headboxes for the mounting of thrusters. The hull is visualized in Figures 3.2 and 5.2.

The vessel’s length is in the 50 to 100 meter range. At the tested draught, the block

coefficient CB is 0.621. The tunnels have identical diameters, and their openings have

chamfered edges. The headboxes have foil shaped cross sections. Due to confidentiality,

more detailed descriptions can not be given.

3.2 Computational setup

Simulations are performed in Star-CCM+ 2019.3, a commercial CFD software package

released by Siemens. The problem is modeled as transient, with a first order, implicit

unsteady time integration scheme. This makes the solution unconditionally stable. Trans-

port equations are handled by a segregated flow model, applying a second order upwind

scheme for convection. Details of the setup are described in the following subsections.

3.2.1 Flow discretization

As discussed in Section 2.1, necessary cell distribution depends on velocity and pressure

gradients. These gradients are expected to be large near the vessel surface, and in the

kelvin wake[13]. Grid refinements are therefore applied in these regions. As the free

surface is resolved with a Volume of Fluid approach, a fine mesh is also required across
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Figure 3.1: Domain mesh overview for coarsest grid (full scale, h=3.7).

the water/air boundary to accurately resolve the interaction of the fluids.

The domain mesh is a regular hexahedral cell mesh aligned with the flow direction. For

cell boundaries to intersect correctly, the minimum growth rate is doubling of the cell

side length in one or more directions. Three layers of mesh refinements are used for each

of the three critical regions defined above. As the wake refinements completely surround

the hull boxes, there are six levels of mesh refinements between the domain boundaries

and the near hull flow. A seventh level is applied around the bow, stern, tunnels and

headboxes. An overview of the discretized domain is shown in Figure 3.1.

Due to the complex geometry of the hull, an unstructured prism layer mesh is used near

the hull surface. This mesh is fitted within the domain mesh by trimming adjacent cells,

turning them polyhedral. Outer prism layer cells are of similar size as the innermost
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domain cells. The prism cells then decrease in thickness with a geometric progression

towards the hull surface. Their length is determined from the domain mesh, and is

constant through all layers. An impression of the prism cell distribution is given by

Figure 3.3.

Figure 3.2: Distribution of n+ values over the submerged hull.

In addition to mentioned geometry concerns, the prism layer mesh is necessary to capture

the steep gradient of the flow velocity in the boundary layer. As discussed in Section 2.1.4,

the near hull fluid velocity can be accurately determined with wall functions given in-

nermost computation points in the logarithmic region. The International Towing Tank

Conference (ITTC) recommends an n+ range of 30 to 100[19]. The upper bound appears

less important than the lower, with examples from the literature of n+ values of several

hundreds for full scale simulations[31, 20]. Target n+ is here set to 60. This gives a

distribution as shown in Figure 3.2.

The near wall prism layer thickness is set based on the one-seventh-power law[41]. It is

a simplified method, assuming Equation (3.1) to hold,

u

U
= (

n

δ
)
1
7 , (3.1)
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where u is the flow velocity parallel to the wall, U is the parallel free stream velocity, n

is the normal distance from the wall, and δ is the normal position of the boundary layer

edge.

Equation (3.1) gives a local skin friction coefficient Cf,x for a smooth plate as in Equa-

tion (3.2)[41].

Cf,x =
0.027

Re
1
7
x

. (3.2)

Cf,x is used to find the wall shear stress with Equation (2.3). With known wall shear

stress, the friction velocity can be found with Equation (2.2). Finally, the normal distance

from the wall at which n+ takes the desired value is determined by Equation (2.1).

Exact n+ values can only be found by performing simulations. With the mentioned

target n+ of 60, for all full scale simulation results, the largest mean n+ value over the

submerged hull is 66.6. The lowest is 59.8. In model scale the maximum and minimum

mean values are 65.8, and 55.9, respectively. The near wall cell heights are therefore not

adjusted from the one-seventh-power law estimate.

3.2.2 Time step

The time step is set by the convective time scale τ . It is defined in Equation (3.3),

τ =
L

V
, (3.3)

where L is the characteristic length of the simulated model, and V is the fluid velocity.

The length between perpendiculars has here been used for the characteristic length L.

When using two-equation turbulence models, ITTC recommends using time steps smaller

than 0.01τ [19].

3.2.3 Computational domain

The goal of each simulation is to find the resistance of a vessel in infinite, undisturbed

still water. In practice, this means that interaction between fluid and boundaries should

not affect the results. Star-CCM implements no non-reflective boundary options[36], and

damping is thus necessary for any reasonably sized domain.
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Discretization errors introduce some damping [13]. The occurrence of wave reflections is

therefore limited by the coarse mesh near the boundaries. However, this is insufficient,

and Star-CCM’s wave damping model is applied. This model’s damping zone is limited

to extend equally from all boundaries it is applied to. Siemens recommends that the

damping zone extends into the first mesh refinement, and that there are at least two

ship lengths between the hull and damping boundaries. A damping length of 2× Lpp is

therefore applied for the simulations, excepting the two lowest velocities. For them, the

damping length is increased by 5 and 10 percent, to improve solution stability. At lower

velocities, the extension of the wake from the hull is smaller, so this is not expected to

affect solution accuracy.

With necessary sizes of mesh refinement volumes already determined, the domain size is

largely given from the requirements for numerical wave damping. Domain dimensions of

(−4Lpp < x < 4Lpp, 0 < y < 3Lpp,−Lpp < z < Lpp) are used, with the origin on (aft

perpendicular, central axis, waterline), as shown in Figure 3.1. This domain is longer

and wider than those used for most comparable studies. It is more shallow than some

recommend[16], but the chosen depth is not without precedence[31, 20]. To ensure that

the damping is sufficiently effective, time histories of wave cuts at four distances from the

hull are stored and animated to look for any signs of wave reflections.

For the boundary conditions, velocity inlets are used at domain front, top and bottom.

At velocity inlets, velocity properties must be prescribed. The exact solution of the flow

must therefore be known at their location for the duration of the simulation. Symmetry

planes are placed both along the vessel’s central axis and the outer domain wall. Here

the normal velocity, and the gradient of all other variables are set to zero. There is zero

flux across this boundary and there is no tangential shear stress[36]. Downstream from

the ship, the boundary is specified as a pressure outlet. At the pressure outlet, velocity is

extrapolated from the domain interior. However, the static pressure of the environment

outside the simulation domain must be prescribed[36]. Vessel surfaces are also modeled as

domain boundaries. They are set to no-slip walls. On wall boundaries, the fluid velocity

is zero. This equals the velocity of the simulated vessel, as there is in actuality no vessel
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advancing through the domain. Instead the fluid flow passes through the domain in which

the vessel is held stationary.

3.2.4 Turbulence model

Turbulence is modeled with the k-ω SST turbulence model mentioned in Section 2.1.1,

due to its availability and popularity in the literature. It has been thoroughly tested[25],

and applied for both full and model scale ship simulations[7, 16, 20, 31].

k-ω SST is a two-parameter model, and so requires that two free stream turbulence

parameters are prescribed at the domain boundaries. These are the turbulent kinetic

energy k, and the specific rate of dissipation ω. In Star-CCM, these parameters can be

defined from their relation to the turbulence intensity, which is a measure of how much

turbulence is in the free stream, and the viscosity ratio, which is the ratio of turbulent

to laminar viscosity.

In calm water, the flow is undisturbed or weakly turbulized. By definition, the flow is

weakly turbulized if the turbulence intensity is smaller than 1% [27]. Thus, the Siemens

recommended value of 1%[36] is used on all inflow and outflow boundaries. The viscosity

ratio is set to the default value of 10 without further investigations.

Flow turbulence over a ship hull is affected by surface roughness. A real ship will never be

perfectly smooth, and the surface roughness will increase during its life span from erosion

and marine growth. The exact roughness is therefore hard to emulate geometrically. It

is also computationally demanding to simulate. For these reasons, hull roughness is not

considered.

3.2.5 Ship motions

The equilibrium version of the DFBI model mentioned in Section 2.1.3 is activated to

resolve ship trim and sinkage. It is a pseudo-steady approach, displacing the mesh by

increments to an actively updated equilibrium position estimate. Force monitors are

set to log only when forces are within the models equilibrium criteria. An equilibrium
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model is expected to give equivalent results as a free motion approach, but with faster

convergence[36]. The model is dependent on the vessel’s mass, center of gravity, and

moment of inertia around the transverse axis.

Both mass and center of gravity are determined from a high fidelity discretization of the

submerged hull. Discretized volume multiplied by water density gives the mass, while

the longitudinal center of buoyancy (L.O.B) is found as mean distance of the cells from

the aft perpendicular. As an even keel load condition is assumed, the center of gravity is

placed on the vessel’s central axis, with a longitudinal position equal to L.O.B.

An exact calculation of the moment of inertia requires precise knowledge of the vessel’s

mass distribution for a given load condition. However, given that the moment of inertia is

within reasonable limits, it will affect only how the vessel approaches its equilibrium trim

position, not the trim angle itself. A rough estimate is therefore deemed sufficient. The

longitudinal radius of gyration can be approximated by K = 0.25Lpp[2]. The moment of

inertia is then given in Equation (3.4),

Iyy = K2m, (3.4)

where m is the vessel mass.

3.3 Grid convergence study

Discretization errors are estimated by systematically refining the grid. This is not

straightforward for unstructured grids with local refinements. Consistent rules for grid

refinement must be defined. Here, three main grid sizes are used. The coarsest has maxi-

mum cell sizes of 0.5Lpp near the boundaries. The trimmed cell mesh size is then halved

between cases.

For the prism layer mesh, the thickness of the first prism layer must be kept constant.

k-ω SST predictions of viscous resistance have been shown sensitive to the near wall cell

height when using wall functions[30]. This is regarded as a modeling error. To isolate

grid uncertainties, keeping this error constant between refinements is desirable.

23



Further, to achieve geometrical similarity between grids, the total thickness of the prism

layer mesh is kept constant. Therefore, only the number of prism layers cells is adjusted.

The number of layers is determined from the transition between prism layer and trimmed

cell mesh. The goal is to keep this transition smooth. This is not a perfectly consistent

approach[10], but compliance with all requirements is not possible. The stretching ratio

and total thickness of prism layers have been shown to have only a slight influence on

results[30]. Refinement of the prism mesh between grids is shown in Figure 3.3.

(a) Full scale with h-values of 3.7, 2.1 and 1.1.

(b) Model scale with h-values of 0.34, 0.19 and 0.10

Figure 3.3: Refinement of the prism layer mesh

Grid refinement studies are conducted in both model and full scale at five velocities. The

velocities correspond to Froude numbers 0.148, 0.185, 0.222, 0.250 and 0.296. In model

scale, only the geometry with headboxes and bow tunnels is considered. In full scale, grid

convergence is investigated for both the naked hull, and the hull modeled with headboxes

and bow tunnels. This is to assess whether the less complex geometry of the naked hull

can be accurately simulated on coarser grids than the appended one.

Discretization uncertainty is determined in two different ways. Both are described in

Section 2.1.5, and implemented in Python. They are combined in a single convergence

calculator class. It applies GCI when only three solutions are provided, otherwise least

squares fitting. The implementation is provided with the thesis. An example use case

and unit tests are provided as well. With GCI, the JFE provided[8] test data is used for
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testing. For the least squares fitting method, code verification data is not provided with

the approach description[12]. It is therefore tested only for simple cases, namely perfect

linear, second, and half order convergence with zero noise. Least squares curve fitting is

done using the curve fit function of the Scipy module. It solves non-linear least squares

problems with the Levenberg-Marquardt algorithm as implemented in MINPACK (from

scipy.org).

When using the Grid-convergence Index method, only three grids are considered. To

comply with demands for the least squares fitting approach, solutions for two intermediate

grids are found when applying it. These grids have maximum cell sizes of 0.333Lpp, and

0.167Lpp, fitting in between the existing sizes of 0.5Lpp, 0.25Lpp and 0.125Lpp.

With an implicit solver such as here, a small time step is not necessary for convergence,

but it is adjusted with the trimmed cell mesh size to largely keep its relative size equal

between grids. In the bow and stern, where the flow is normal to the hull surface, this

equality will break. This is because the prism layer mesh does not follow the same rate

of refinement as the trimmed cell mesh. For the coarsest grid, the ITTC-recommended

maximum time step of 0.01τ is applied[19], with τ defined in Equation (3.3). The mass

and longitudinal center of gravity are kept constant for all levels of grid refinement.

3.4 Validation

Validation of model scale simulations is conducted by direct comparison to towing tank

results. Experimental tests were conducted by Marintek (now Sintef Ocean) in 2012 on

behalf of Havyard Design & Solutions.

Full scale simulations are compared to ITTC’78 scaled[18] experimental results. Marin-

tek’s formula for the form factor is used[29]. Since the simulated hull geometry is smooth,

the surface roughness correction is not added. The air resistance of the superstructure is

not included either, since the structure is not present on any of the geometries.
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3.5 Time step convergence study

To determine the sensitivity of results on the time step, a time step convergence study

is conducted. Calm water ship resistance calculations have been shown to not be par-

ticularly sensitive to the time step size[38], so a less rigorous approach than for grid

convergence is applied. For the study, a single velocity is considered for each of a full and

a model scale case. The chosen velocities correspond to Fn = 0.250 in both cases. Bow

tunnels and headboxes are fitted on the geometries. The finest grids from Section 3.3 are

applied, and the time step is varied from 0.04τ to 0.0025τ , halving it between each run.

3.6 Added resistance

Using the finest grids considered during grid convergence studies, the full scale hull is

simulated with each modification separately. The time step is set to 0.005τ based on

time step convergence results.

To find appropriate coefficients, analytical equations discussed in Section 2.2 are fitted

to the data with least squares. The fits are weighted based on inverse discretization

uncertainties. For the tunnel thrusters, results are compared to Stuntz’s and Hollenbach’s

suggested parameters.

Figure 3.4: Position of wake fraction

probes in the xz-plane. All probes are

placed along the headbox centerline.

When using Equation (2.15) for headbox resis-

tance, the wake fraction at headbox position

is needed. To find the wake fraction, velocity

probes are placed on the headbox position for

simulations without it. Velocities are found for

simulations with both tunnels and simulations

without any of them. Probes are placed ac-

cording to Figure 3.4, The water flow follows

the hull at this location, and the headbox is

angled towards the flow. Therefore, the mean

velocity magnitude is used to calculate the wake fraction.
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4 Results

4.1 Grid convergence

0.0 0.1 0.2 0.3
h

0.5

0.6

0.7

0.8

0.9

C T
 / 
lim

0.148
0.185
0.222
0.250
0.296

0.0 0.1 0.2 0.3
h

0.300

0.325

0.350

0.375
C F

 / 
lim

0.0 0.1 0.2 0.3
h

0.2

0.4

0.6

C P
 / 
lim

Figure 4.1: Mesh convergence of resistance for model scale vessel with headbox and

transverse tunnels. Line labels state the Froude number.

Fitted resistance convergence curves are plotted in Figures 4.1 and 4.2. Due to confiden-

tiality of absolute resistance values, they are scaled by an arbitrary limit. The limit is the

same in all grid convergence plots, meaning that the ratios between total, friction, and
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Figure 4.2: Mesh convergence of resistance for full scale vessel with headbox and trans-

verse tunnels. Line labels state the Froude number.

pressure resistance coefficients are correct. So is the ratio between full and model scale

results. Data points and discretization uncertainties are plotted only for select velocities

to avoid overcrowding the figures. These are considered representative. Convergence

curves for the resistance of the naked full scale vessel, and for vessel motions, can be

found in Appendices A.1 and A.2.

With GCI, an order of convergence above 2 is found for 18 of 75 convergence cases.

Among them total resistance convergence for 3 out of 5 velocities in model scale. 10

cases show an order of convergence below 0.5, none of them total resistance. The mean

uncertainty for model scale total resistance is 0.6%. In full scale, this number is 3.4%

with tunnels and headboxes and 2.0% without. Mean uncertainties for other parameters

are generally higher, but the uncertainty spread between velocities is large.
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With least squares fitting, mean relative uncertainty for model scale total resistance is

3.9%. For full scale, mean relative uncertainty of total resistance is 7.2% and 6% with

and without tunnels and headboxes. All three values are heavily affected by the large

uncertainty of the highest velocity. Without it, the three mean uncertainties are 3.0%,

5.5% and 4%, respectively.

All orders of convergence and discretization uncertainties are tabulated in Appendix A.3.

4.2 Time step convergence

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
dt / τ

−2

−1

0

ε R
T [
%
] Full scale

Model scale

Figure 4.3: Time step convergence of resistance at Fn = 0.250. Results for dt = 0.0025τ

are used as exact value.

Time step convergence results are plotted in Figure 4.3.

4.3 Validation

Model scale validation results are plotted in Figure 4.4. The mean errors over all Froude

numbers for the finest grids are 0.2%, -7.7% and 7.7% for total resistance, sinkage, and

trim, respectively. An underprediction for sinkage means that CFD predicts that the hull

sinks deeper into the water compared to the towing tank tests.

For extrapolated results, the mean error for total resistance is -0.3% for the GCI method,

and -1.1% for the least squares fittings. GCI overpredicts sinkage by 38%, and trim by

7.2%. Corresponding numbers for least squares fitting is -9.8% and 9.2%. The large
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(b) Least squares fitting
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Figure 4.4: Percentage deviation for fully appended model scale CFD simulations from

model test results with discretization uncertainties indicated as error bars. Fine grid

solutions follow the stippled lines. X marks extrapolated results.

average overprediction of sinkage for GCI is caused by a massive overprediction at Fn =

0.148, where apparent order of convergence is near zero, and the relative uncertainty is

326%.

Full scale CFD values are compared with scaled towing tank results in Figure 4.5. Fine

grid CFD predicts total resistance to lie on average 8.4% above the scaled model test.

For respectively GCI and least squares fitting, extrapolated total resistance results are

on average 5.7% and 4.7% above the scaled model test.
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(a) GCI
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(b) Least squares fitting
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Figure 4.5: Percentage deviation for fully appended full scale CFD simulations from

scaled model test results with discretization uncertainties indicated as error bars. Fine

grid solutions follow the stippled lines. X marks extrapolated results.

4.4 Added resistance

The added resistance coefficient for different hull modifications in full scale are shown in

Figure 4.6. For percentage added resistance instead, see Appendix A.4. In model scale,

only the sum added resistance of both tunnels and headboxes are found. This sum can

be seen as both added resistance coefficient and percentage change in Figure 4.7.

Using a weighted least squares fitting method on Equation (2.17), with weights deter-

mined from inverse discretization uncertainties, we find that CDTH
is 0.0055 for tunnel

31



0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
Fn

0.0

0.1

0.2

0.3
ΔC

T
×
10

3

HΔ
TT1
TT2
TT
HΔTT

0.15 0.20 0.25 0.30
Fn

−0.08

−0.06

−0.04

−0.02

0.00

ΔC
F
Δ
10

3

0.15 0.20 0.25 0.30
Fn

0.0

0.1

0.2

0.3

0.4

ΔC
P
Δ
10

3

Figure 4.6: Changes in resistance coefficients from adding headbox (HB) and transverse

bow tunnels. TT1 is only the foremost tunnel, TT2 only the second, and TT indicates

that both tunnels are included.

1, and 0.0086 for tunnel 2. These results are plotted with the data points in Figure 4.8.

The dotted black line is the Hollenbach estimate, while the stippled one corresponds to

Stuntz.

The wake fraction for two considered cases is tabulated in Table 4.1. It is very sensitive

to the measurement distance from the hull, but not longitudinal position. It has a mean

value of 0.251 over all velocities with both bow tunnels fitted (TT), and 0.241 without

them (naked). Least squares fitting Equation (2.15) to the data, using case specific wake

factors and grid uncertainties, a form factor of 2.9 is found. The fit is plotted with the

data points in Figure 4.9. Fitting is done with actual wake fractions, but the plot is made

with a velocity mean between naked and TT to achieve one continuous curve.

To cross check fitted parameters, the analytical estimates for both tunnels and headboxes
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Figure 4.7: Change in resistance from adding both headbox and transverse bow tunnels

in model scale. Indicated both as percentage and change in resistance coefficiencts.
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Figure 4.8: Comparisons of analytical estimates and meaured data for both bow tunnels.

Full drawn lines are least squares fittings weighted with inverse discretization uncertain-

ties. Dashed line is Stuntz’s estimate for a single thruster, and stippled is Hollenbach’s.

are added to the naked hull’s resistance. This is shown to approximate the fully modified

simulation’s resistance with a mean error of 0.7%.
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Fn 0.148 0.185 0.222 0.250 0.296 Mean

TT 0.232 0.235 0.249 0.262 0.275 0.251

Naked 0.227 0.231 0.246 0.236 0.266 0.241

Table 4.1: Wake fraction at headbox position for hull with and without bow tunnels
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Figure 4.9: Least squares fittings and datapoints for headbox added resistance. The fit

is weighted with inverse discretization uncertainties.
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5 Discussion

5.1 Verification and validation

(a) h=3.7 (b) h=2.1 (c) h=1.1

Figure 5.1: Characteristic changes in the free surface development between mesh re-

finements

Results from the grid convergence studies are promising. Precise determination of total

resistance is deemed most important, and this parameter generally shows good conver-

gence. With near surface velocities determined by wall functions, the finer grids are

likely most important for accurate wake resolution. Figure 5.1 shows how the wake at

simulation end changes with mesh refinement.

Uncertainties of the model test results are not given. Towing tests done by researchers

in the same towing tank suggests it is low[17, 16], with sum bias and precision errors

being around 1% or lower for resistance, sinkage and trim. For resistance, this means

that even with the smaller Grid-convergence index (GCI) uncertainties, there is overlap
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between experimental and numerical confidence intervals in model scale. In addition, for

the resistance, validation errors from GCI extrapolated results are much smaller than

those for the the least squares method. However, the larger than 2 order of convergence

for three of the velocities suggests underprediction of discretization uncertainties. For

many of the remaining parameters, the calculated uncertainty is also either unreasonably

low or high.

Full scale GCI uncertainty at Froude number 0.296 was found to be merely 0.6%, while

deviation from scaled model test result is near 15%. This shows the risk of not having

redundancy for the estimation of order of convergence when noise is present in the data.

Excepting the two cases with near zero order of convergence for GCI, the least squares

fitting approach gives consistently larger uncertainties. In all cases, its uncertainties

appear more appropriate. A problem with adding the intermediate grids is that while

they expose noise in the data, they may also introduce it. Between the three main grids,

the refinement rate is around 1.9. After increasing to five grids, the ratio is barely above

1.3. This can make the apparent order of convergence less clear.

Least squares curve fitting has been applied for determination of numerical uncertainty

for simulations of the test vessel KVLCC2 at Froude number 0.142[16]. The least squares

approach is not identical to the one used here, but the computational setup largely

is. For model scale total resistance, uncertainties of results are comparable. However,

the KVLCC2 uncertainty estimates for sinkage and trim are significantly lower. For

the current study, mean relative uncertainty for sinkage is 14.1%, but uncertainties are

heavily skewed between velocities. At Froude number 0.296 it is only 1.1%, while it is

43.3% at 0.148. As mentioned in Section 2.1.3, it is speculated that poor CFD predictions

of sinkage at low velocities is largely a precision problem. While the issues with numerical

precision at lower velocities here are clear, accuracy does not improve with precision at

higher velocities. This indicates a modeling error. As errors are largely consistent, it may

stem from DFBI inputs, not necessarily from errors in the mathematical model. Static

trim and sinkage has not been investigated. There is also the possibility of unaccounted

for bias errors in the validation data. Variations in towing tank rails above water has
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been pointed to as one such possibility[16].

In full scale, total resistance shows non-monotonic convergence for Froude number 0.296.

The resistance is lowest at medium grids. With least squares fittings this is captured as

a large uncertainty. It is speculated to stem from either the turbulence model, or the

free surface model. k-ω SST is an isotropic turbulence model. Isotropy is directional

independence, and here relates to rotational variance of the time-averaged turbulence

quantities. The effect of assuming isotropy on resistance is uncertain, but when compared

to the anisotropic EASM model, SST predicted aft segment resistance on KVLCC2 less

accurately[16]. k-ω SST has also been shown to under predict the full scale ship wake,

assumed caused by an inability to capture highly anisotropic turbulent flow[31].

Figure 5.2: Volume fraction of fluid for the full scale vessel with and without suppression

of numerical ventilation at Fn = 0.296

Another possible explanation of the poor high velocity results is issues with the volume

of fluid (VOF) model. At Froude number 0.296, the total resistance coefficient increases

dramatically. This is likely because it is above the effective range of the bulbous bow. The

bow wave becomes larger, and splashing increases. As the mesh is refined, significant hull

ventilation appears. This means that the volume of fluid model nonphysically predicts air

to flow downwards along the hull. A ventilation suppression approach based on planing

hulls is therefore implemented[1]. The basis of the approach is to simply replace any air

phase below the water line with water once the simulation has reached equilibrium, and

run for an additional time step with the new phase distribution. It is a highly pragmatic

approach, obviously nonphysical from its breaking of continuity, but it is deemed sufficient

for considering the fatality of the ventilation.
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The suggested condition is to switch all cells in the domain with less than 50% air to 100%

water. Due to the DFBI model, a single time step is not sufficient. The simulation must

run until DFBI converges. To account for this extra duration, two additional conditions

are added. They are that only cells below the waterline are considered, and that they must

be no more than 5 centimeters from the hull surface. Figure 5.2 shows the volume ratio

of water for the full scale hull at Froude number 0.296 with and without the adjustment.

Total resistance is negligibly affected by the suppression scheme, with a change in the

order of one tenth of a percent. Figure 5.2 shows that the stern wave is affected by the

approach, but the influence of this on resistance is uncertain.

Ideally, full scale CFD should be validated against full scale experimental results. How-

ever, measuring full scale towing resistance is impractical, and the use of ITTC’78 scaled

values for comparison has precedence in the literature[7]. Significant care should be taken

when comparing to scaled results as their accuracy is not certain. Describing such com-

parisons as validation is inaccurate. Full scale ship resistance determined from towing

tank experiments is affected by choice of extrapolation method. It has been shown that

resistance results vary as much as 19% depending on method[29]. For model test based

predictions, viscous forces can not be extrapolated. Instead, they are usually found by

assuming constant form factors and using empirical regression parameters. Studies have

shown that the form factor depends on both Froude and Reynolds number[29]. Viscous

contributions to the resistance can not be completely separated from inviscid ones, so

while a method may be accurate for typical hulls, it is not necessarily applicable for in-

novative hull forms. Accurate predictions require that the hull is comparable to the one

empirical functions are developed for. Additionally, turbulence stimulators are used in

model tests to achieve a full scale comparable flow regime, but the boundary layer is still

relatively much thicker[7]. It is not yet fully understood how this aspect of flow physics

transfers from model to full scale[15].
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5.2 Added resistance

Added resistance results for the tunnels show generally good consistency. The tunnels

appear relatively unaffected by each other, as seen from the small spreads in Figure 4.8.

It is illustrated even clearer in Figure 5.3. The larger spread for Froude number 0.296 is

consistent with the discretization uncertainty.
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Figure 5.3: Sum added resistance from hull modifications by simulation and superpo-

sition.

The found tunnel drag coefficients correspond reasonably with empirical suggestions.

Both are safely within Holtrop’s range. Stuntz’s estimate has near exact correspondence

for tunnel 2, while Hollenbach’s is overly conservative. The clear difference in added

resistance from the two tunnels suggest that using a single value independently of tunnel

placement is too simplistic. Holtrop’s range of 0.003 to 0.012, depending on tunnel

placement, appear to be the better solution. In this case, the longitudinal hull curvature

is near identical between tunnel placements. However, tunnel 2 is placed lower on the

hull, where the hull curves substantially towards the keel. The actual opening of tunnel

2 including edge chamfer is therefore 13% larger than for tunnel 1, despite equal tunnel

diameter. This discrepancy may explain some of the difference in resistance coefficients.

Christensen’s[9] estimate for the drag coefficient is not included in Figure 4.8, as it is

assessed to be faulty. An alternate definition of Holtrop’s formula for tunnel thruster
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resistance is found in the literature[6]. It is presented in Equation (5.1).

RTH = ρπV 2dTHCDTH
. (5.1)

The difference from the one given in Equation (2.17) is that the tunnel diameter is not

squared, and thus the equation is dimensionally erroneous. Christensen reports it this

way. Insufficient data is provided for cross checking, but the low value of his suggested

coefficient indicates that it in reality corresponds to dTHCDTH
= 0.00174592. Assum-

ing this to be the case, tunnel diameters dTH between 0.15 and 0.58 puts CDTH
within

Holtrop’s range. These are realistic dimensions for model scale transverse tunnels.

As seen in Figure 5.3, resistance results for the headboxes do not show the same con-

sistency as for the tunnels. Their added resistance is considerably larger when they are

fitted to a hull with tunnels than one without. This is counter intuitive. Table 4.1 shows

that the wake fraction is higher for the hull with tunnels, meaning that velocity on the

headboxes is lower. For Equation (2.15), the mean increase in wake fraction from adding

tunnels corresponds to a 2.4% reduction in appendix resistance. From the data, the re-

sistance is 69% higher instead. The added resistance of the headboxes is small, so for

total hull resistance this difference is not overly significant. It may simply be a precision

problem.

Another possibility is that the difference is caused by inaccuracies in applied mass or

longitudinal center of gravity in the DFBI model. The mean trim over all velocities

decreases by 9.8% when fitting headboxes to the naked hull, and 6.0% when fitting

them to a tunneled one. Mean sinkage increases by 2.5% for the initially naked hull,

and decreases by 0.4% for the initially tunneled one. To assess the significance of these

changes, fixed trim and sinkage simulations are necessary.

The implicit Reynolds number dependence of Equation (2.15) can not be shown for

the headboxes. With the correlation line in Equation (2.13), a larger Reynolds number

means a smaller friction resistance coefficient, and thus a smaller total resistance coef-

ficient with Equation (2.15). The contribution of the headboxes to the total resistance

coefficient should then be decreasing with velocity. Figure 4.9 instead shows a constant,

40



or slightly increasing, contribution. For both tunnels and headboxes, added resistance

is used for calculations, not forces acting on their actual surfaces. In the equations for

tunnel resistance, this is assumed. In the equation for appendix resistance used for the

headboxes, this is not the case. It is based on the assumption that appendix resistance

is dominated by viscous effects, and that it does not affect the total pressure field. How-

ever, like for the tunnels, Figure 4.6 shows headbox contributions to be largely pressure

dominated. This suggests that the changes the headboxes cause to the pressure field are

more significant than their own drag. In the simulations, headbox friction resistance is

increasing as expected by the square of the velocity, and it is largely unaffected by the

fitting of tunnels. However, its magnitude is only 12 to 21 percent of the added resis-

tance. The added resistance from headboxes should therefore be calculated similarly as

from tunnels.

In model scale, the vessel is tested only with either both tunnels and headboxes or

without any of them, so individual contributions may vary. However, the sum added

resistance in model scale is comparable to full scale. Average ∆CT × 103 is 0.30 in model

scale, and 0.31 in full scale. There is a slight difference in distribution, with an average

∆CF × 103 equal -0.10 in model scale, and -0.07 in full. The pressure resistance takes

up the difference. This decrease in friction resistance is as expected, stemming from the

increase in Reynolds number between scales. The pressure domination in both scales

suggests that added resistance coefficients can be safely investigated in model scale.

Added resistance simulations are run with a coarser time step than fine grid solutions

from grid convergence studies. Figure 4.3 shows results within 1% for the time steps, but

time step independence of resistance can not be convincingly argued from it. In the end,

time restraints motivated the use of a coarser time step.
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6 Conclusion

The added resistance of transverse bow tunnels and headboxes is determined by full

scale CFD simulations of a supply ship. Appropriate coefficients are found for use with

analytical expressions for added resistance. Tunnels are shown to be largely unaffected

by each other’s presence, suggesting that their combined resistance contribution may be

found by superposition. Headboxes appear to add more to the resistance when tunnels

are already in place. Since this is improbable, it is deemed to simply expose inaccuracies

of the CFD methodology.

Model scale simulations are shown to correspond well with towing tank results. In full

scale, total resistance is overestimated compared to scaled model test values. However,

CFD results appear to converge towards scaled values with increasing grid refinement.

The limitations of scaled value comparisons are discussed.

Mean numerical uncertainty is larger in full scale than model scale, partly due to large

uncertainties for the highest velocity. Possible explanations of these large uncertainties

are discussed. The addition of tunnels and headboxes on the geometry do not add

substantially to the uncertainty.

Total, non-dimensionalized added resistance in model scale is near identical to full scale

values. The modifications are only considered separately in full scale, but the fact that

their contributions are pressure dominated indicates that they may be accurately Froude

scaled. With lower both numerical and modeling uncertainties, there is a clear argument

for using model scale simulations for the prediction of added resistance from transverse

tunnels and headboxes.
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A Appendix

A.1 Grid convergence of resistance for naked full

scale vessel
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Figure A.1: Mesh convergence of resistance for full scale vessel without headbox and

transverse tunnels. Line labels state the Froude number.
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A.2 Grid convergence of ship motions

(a) Full scale with headbox and transverse tunnels
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(b) Full scale without headbox and transverse tunnels
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(c) Model scale with headbox and transverse tunnels
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Figure A.2: Mesh convergence of ship motions. Line labels are given in Figure A.1.
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A.3 Grid convergence tables

Fn [-] 0.148 0.185 0.222 0.250 0.296 0.148 0.185 0.222 0.250 0.296

Model scale with tunnels and headboxes

RT 1.9 1.8 2.9 7.4 2.4 1.4 1.1 2.0 M M

RF 0.0 1.1 0.3 2.7 0.6 0.9 2.0 0.6 M 1.0

RP 1.5 1.6 1.6 3.0 2.0 1.3 1.4 1.4 M M

Sinkage 0.0 0.5 1.9 0.3 1.1 2.0 M 0.9 0.9 1.5

Trim 1.8 1.7 1.2 0.9 0.7 2.0 2.0 0.7 M 3.8

Full scale with tunnels and headboxes

RT 1.2 1.6 1.1 1.3 2.8 1.2 1.5 1.0 1.6 2.0

RF 0.0 0.5 0.6 1.0 1.3 M M 0.9 M 1.1

RP 1.0 1.3 1.0 1.0 3.2 1.0 1.2 1.0 1.0 2.0

Sinkage 2.0 0.7 0.9 1.8 2.4 2.0 M M 1.6 2.0

Trim 1.7 4.1 1.6 0.6 0.2 M M M 2.0 M

Full scale without tunnels and headboxes

RT 1.8 1.4 3.0 0.9 2.1 1.7 1.1 2.0 1.2 2.0

RF 0.1 0.6 2.4 0.4 0.0 1.0 M M 1.0 M

RP 1.6 1.1 0.8 0.8 2.5 1.7 1.1 1.1 1.0 2.0

Sinkage 3.7 0.6 1.2 0.1 6.0 2.0 0.5 0.7 M 2.0

Trim 2.0 1.6 2.3 2.1 4.1 0.9 2.0 M M 2.0

Table A.1: Apparent order of convergence for all parameters. GCI on the left, least

squares fitting on the right. M signifies mixed first and second order convergence.
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Fn [-] 0.148 0.185 0.222 0.250 0.296 0.148 0.185 0.222 0.250 0.296

Model scale with tunnels and headboxes

RT 0.9 1.1 0.2 0.0 0.6 2.8 4.2 2.0 3.1 7.5

RF 74.4 1.4 14.1 0.5 4.6 1.8 1.4 4.5 9.5 5.2

RP 6.4 4.9 3.4 0.5 2.3 9.4 7.4 5.6 14.3 17.6

Sinkage 325.9 15.0 0.2 5.6 1.4 43.3 19.2 1.7 5.4 1.1

Trim 0.8 0.7 0.8 2.4 7.9 1.9 5.8 3.2 9.6 29.6

Full scale with tunnels and headboxes

RT 6.2 2.3 4.2 3.6 0.6 7.7 5.1 6.3 3.0 13.9

RF 101.3 8.2 7.0 4.2 1.4 11.3 10.6 3.7 13.4 2.2

RP 22.5 9.6 12.8 15.6 0.4 26.8 15.5 14.2 15.5 8.0

Sinkage 0.7 6.2 1.8 0.5 0.1 40.6 14.8 4.9 0.8 3.7

Trim 0.8 0.3 0.2 7.7 79.7 8.4 24.5 3.9 17.3 65.1

Full scale without tunnels and headboxes

RT 2.4 2.4 0.2 3.7 1.3 2.7 6.1 3.1 4.1 14.0

RF 16.8 3.3 1.0 5.8 96.6 1.8 5.8 19.8 1.9 5.2

RP 10.0 10.9 20.9 13.5 1.2 10.3 16.1 15.8 12.0 18.8

Sinkage 0.1 4.1 1.3 46.4 0.0 5.0 6.4 4.8 7.5 4.8

Trim 0.5 0.9 0.3 0.4 0.0 3.5 17.0 13.9 27.8 10.5

Table A.2: Relative grid convergence uncertainties in percent for all parameters. GCI

on the left, least squares fitting on the right.
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A.4 Percentage added resistance in full scale
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Figure A.3: Percentage change in resistance from adding headbox (HB) and transverse

bow tunnels. TT1 is only the foremost tunnel, TT2 only the second, and TT indicates

that both tunnels are included.
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