
D
. H

. Reed and L. H
. W

iig

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Daniel Hjohlman Reed
Lars Håkon Wiig

A Parametric Study of Tall Timber
Buildings

Master’s thesis in Civil and Environmental Engineering

Supervisor: Kjell Arne Malo

June 2020





Daniel Hjohlman Reed
Lars Håkon Wiig

A Parametric Study of Tall Timber
Buildings

Master’s thesis in Civil and Environmental Engineering
Supervisor: Kjell Arne Malo
June 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Structural Engineering





DeSaUWPeQW Rf SWUXcWXUaO EQgLQeeULQg                 
FDFXOW\ RI EQJLQHHULQJ 
NTNU � NRUZegLaQ UQLYeUVLW\ Rf ScLeQce aQd TechQRORg\ 
 
 
 
 

MASTER THESIS 2020 
 
 
SUBJECT AREA: 

TLPbeU SWUXcWXUeV 

DATE: 

JXQe 10, 2020 

NO. OF PAGES: 

125 (TheVLV) + 204 (ASSeQdL[) 
 
 
TITLE: 
 

A PaUaPeWULc SWXd\ Rf TaOO TLPbeU BXLOdLQgV   
 
 EQ SDUDPHWULVN VWXGLH DY K¡\H WUHKXV 

B<: 
 
 
DDQLHO HMRKOPDQ RHHG 
LDUV HnNRQ WLLJ  

 
 
RESPONSIBLE TEACHER: KMHOO AUQH MDOR 
 
SUPERVISOR(S): KMHOO AUQH MDOR 
 
CARRIED OUT AT: DHSDUWPHQW RI SWUXFWXUDO EQJLQHHULQJ, NTNU 

 

SUMMAR<: 
D\QDTTB LV D UHVHDUFK SURMHFW GHGLFDWHG WR WKH UHVSRQVH RI WDOO WLPEHU EXLOGLQJV XQGHU VHUYLFH ORDGV. OQH RI 
WKH REMHFWLYHV IRU WKH SURMHFW LV WR LGHQWLI\ WKH HIIHFWV RI GLIIHUHQW VWLIIQHVV, PDVV DQG GDPSLQJ SDUDPHWHUV RQ 
WKH G\QDPLF UHVSRQVH RI WKH VWUXFWXUH. TKH PDLQ SDUW RI WKLV WKHVLV KDV EHHQ GHGLFDWHG WRZDUGV WKH 
GHYHORSPHQW RI D SDUDPHWULF ILQLWH HOHPHQW PRGHO. TKH PRGHO LV SURJUDPPHG LQ P\WKRQ DQG LV LQWHQGHG IRU 
XVH ZLWK WKH ILQLWH HOHPHQW VRIWZDUH AEDTXV. TKH PRGHO RIIHUV D YDULHW\ RI GLIIHUHQW SDUDPHWHUV UHODWHG WR 
JHRPHWU\, PDVV, VWLIIQHVV DQG GDPSLQJ RI ERWK WKH IRXQGDWLRQ, VWUXFWXUDO PHPEHUV, FRQQHFWLRQV HWF. AOO RI 
ZKLFK DUH JDWKHUHG LQ D MLFURVRIW E[FHO ILOH WR PDNH WKH VHWXS XVHU-IULHQGO\. 
 
TKH SDUDPHWULF PRGHO LV WKHQ XVHG WR PRGHO MM¡VWnUQHW, ZKLFK DW 85.4 P LV WKH WDOOHVW WLPEHU EXLOGLQJ LQ WKH 
ZRUOG. A VHQVLWLYLW\ VWXG\ LV FRQGXFWHG ZKHUH WKH VHQVLWLYLW\ RI WKH WKUHH IXQGDPHQWDO IUHTXHQFLHV IRU FKDQJHV 
LQ D YDULHW\ RI GLIIHUHQW VWLIIQHVV SDUDPHWHUV LV PHDVXUHG. SRPH RI PRVW LPSRUWDQW SDUDPHWHUV DUH IRXQG WR EH 
WKH YHUWLFDO IRXQGDWLRQ VWLIIQHVV, D[LDO VWLIIQHVV RI FRQQHFWLRQV LQ WKH EUDFLQJ V\VWHP DQG WKH VWLIIQHVV RI WKH 
H[WHULRU ZDOO SDQHOV. OQ WKH RWKHU KDQG, WKH VWLIIQHVV RI WKH IORRUV DQG WKH URWDWLRQDO VWLIIQHVV RI WKH 
IRXQGDWLRQV DUH DPRQJ WKH SDUDPHWHUV IRXQG WR EH UHODWLYHO\ XQLPSRUWDQW.  
 
TKH SDUDPHWHUV IRXQG WR EH PRVW LPSRUWDQW LQ WKH VHQVLWLYLW\ VWXG\ DUH WKHQ LQFOXGHG LQ D VLPSOH PRGHO 
XSGDWLQJ URXWLQH ZKHUH WKH DLP LV WR ILQG WKH YDOXHV RI WKH SDUDPHWHUV WKDW \LHOGV WKH VDPH PRGHO RXWSXW DV 
PHDVXUHG LQ UHDO OLIH. TKUHH GLIIHUHQW UXQV DUH SUHVHQWHG DQG WKH UHVXOWV DUH GLVFXVVHG.  
 
FLQDOO\, WKH XSGDWHG PRGHO RI MM¡VWnUQHW LV XVHG WR GHPRQVWUDWH WKH FDSDELOLWLHV RI WKH VFULSW WR SHUIRUP ZLQG 
ORDG DQDO\VHV DIWHU WKH EXURFRGH. A SDUDPHWHU VWXG\ LV SHUIRUPHG ZKHUH GLIIHUHQW GDPSLQJ DQG ZLQG-UHODWHG 
SDUDPHWHUV DUH PRGLILHG DQG WKH DFFHOHUDWLRQ UHVSRQVH LV VWXGLHG. TKH UHVXOWV DUH FRPSDUHG ZLWK RQ-VLWH 
PHDVXUHPHQWV DQG UHFRPPHQGHG WKUHVKROG YDOXHV. 

ACCE66IBILI7<: 
OSen 
 





Preface

This thesis concludes our master studies in Civil and Environmental Engineering
at NTNU in Trondheim. The thesis is written for the Timber structures group at
the Department of Structural Engineering, and is a part of the research project
Dynamic Response of Tall Timber Buildings under Service Load (DynaTTB).

We have been fortunate enough to be given a masters project by our supervisor
prof. Kjell Arne Malo that has allowed us to work with several interesting topics.
We have been allowed to shape the thesis after our interest in timber structures,
structural dynamics and finite element modelling. In addition we have gained new
and valuable experience with development of scripts in Python.

We would like to express our sincere gratitude to our supervisor prof. Kjell Arne
Malo at the Department of Structural Engineering for providing valuable guidance
in the work with this thesis. We would also like to thank Sweco for providing access
to drawings and models of Mjøstårnet, and PhD-Candidate Saule Tulebekova for
giving us access to her work on the data from the on-site measurements. Finally,
we would like to express our gratefullness to the all the member of the Timber
structure group at NTNU for providing advise and support when needed.

Daniel Hjohlman Reed & Lars Håkon Wiig
Trondheim, June 2020

iii





Abstract

DynaTTB is a research project dedicated to the response of tall timber buildings
under service loads. One of the objectives for the project is to identify the effects of
different stiffness, mass and damping parameters on the dynamic response of the
structure. The main part of this thesis has been dedicated towards the develop-
ment of a parametric finite element model. The model is programmed in Python
and is intended for use with the finite element software Abaqus. The model offers
a variety of different parameters related to geometry, mass, stiffness and damp-
ing of both the foundation, structural members, connections etc. All of which are
gathered in a Microsoft Excel file to make the setup user-friendly.

The parametric model is then used to model Mjøstårnet, which at 85.4 m is the
tallest timber building in the world. A sensitivity study is conducted where the
sensitivity of the three fundamental frequencies for changes in a variety of dif-
ferent stiffness parameters is measured. Some of most important parameters are
found to be the vertical foundation stiffness, axial stiffness of connections in the
bracing system and the stiffness of the exterior wall panels. On the other hand,
the stiffness of the floors and the rotational stiffness of the foundations are among
the parameters found to be relatively unimportant.

The parameters found to be most important in the sensitivity study are then in-
cluded in a simple model updating routine where the aim is to find the values of
the parameters that yields the same model output as measured in real life. Three
different runs are presented and the results are discussed.

Finally, the updated model of Mjøstårnet is used to demonstrate the capabilities
of the script to perform wind load analyses after the Eurocode. A parameter study
is performed where different damping and wind-related parameters are modified
and the acceleration response is studied. The results are compared with on-site
measurements and recommended threshold values.

v





Sammendrag

DynaTTB er et forskningsprosjekt som fokuserer på den dynamiske responsen til
høye trehus påvirket av laster i bruksgrensetilstanden. Et av målene til prosjek-
tet er å identifisere effekten ulike stivhets-, masse- og dempningsparametere har
på den dynamiske responsen av bygget. Det meste av arbeidet med oppgaven
har vært dedikert til utvikling av en parametrisk elementmodell. Modellen er
programmert i Python og brukes med elementprogrammet Abaqus. Modellen er
definert av mange ulike parametere relatert til geometri, masse, stivhet og demp-
ing i både fundament, konstruksjonsdeler, knutepunkt osv. Alle disse parameterne
er samlet i en Microsoft Excel fil for å gjøre oppsettet av modellen brukervennlig.

Den parametriske modellen er deretter brukt for å modellere Mjøstårnet, som
med en høyde på 85.4 m er verdens høyeste trehus. En sensitivitetsstudie er gjen-
nomført der sensitiviteten til de tre fundamentale frekvensene for endringer i et
utvalg stivhetsparametere er målt. Noen av parameterne som viser seg å ha størst
påvirkning er den vertikale stivheten til fundamentene, den aksielle stivheten
til knutepunkt i de diagonale avstiverne og stivheten i de ytre veggelementene.
På den andre siden er stivheten til gulvdekkene og rotasjonsstivheten til funda-
mentene blant parameterne som viser seg å være relativt uviktige.

Parameterne som sensitivitetsstudien viser at er viktigst blir deretter inkludert i
en enkel modelloppdateringsprosedyre, der målet er å finne verdier av paramet-
erne som gir like resultater som målingene av det eksisterende bygget. Tre ulike
gjennomkjøringer er presentert og resultatene er diskutert.

Til slutt er den oppdaterte modellen av Mjøstårnet brukt til å demonstrere mu-
lighetene det parametriske scriptet har for å utføre vindlastanalyser i henhold
til Eurokoden. En parameterstudie er utført der ulike demping og vindrelaterte
parametere er modifisert. Videre er den resulterende akselerasjonen studert. Res-
ultatene er sammenlignet med målinger og anbefalte grenseverdier.

vii





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Timber as a Structural Material . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Environmental Benefits of Timber . . . . . . . . . . . . . . . . 5

2.1.2 Mechanical Properties of Timber . . . . . . . . . . . . . . . . . 6

2.1.3 Damping in Timber Structures . . . . . . . . . . . . . . . . . . 9

2.2 Structural Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Equation Of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ix



x D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

2.2.3 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Wind Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Buffeting Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Eurocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Finite Element Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Element Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Beam Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Mjøstårnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Structural System and Materials . . . . . . . . . . . . . . . . . 28

2.5.2 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Monitoring and Measurements . . . . . . . . . . . . . . . . . . 30

3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Choice of Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Model Overview and Limitations . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Columns and Beams . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Diagonals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Floors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Shafts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7.1 Connections of Beam-type Members . . . . . . . . . . . . . . . 44



Contents xi

3.7.2 Connections of Shell-type Members . . . . . . . . . . . . . . . 46

3.8 Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Loads and Non-Structural Mass . . . . . . . . . . . . . . . . . . . . . . 47

3.10 Wind Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.11 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.13 Analysis Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Case Study: Mjøstårnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Floors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Timber Floor Elements . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Concrete Floors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Shaft Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Exterior Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Live Loads and Additional Mass . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Finite Element Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Convergence Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Sensitivity Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Vertical Stiffness of Foundation . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Horizontal Stiffness of Foundation . . . . . . . . . . . . . . . . . . . . . 68

5.3 Rotational Stiffness of Foundation . . . . . . . . . . . . . . . . . . . . . 68

5.4 Axial Stiffness of Connections - Frame . . . . . . . . . . . . . . . . . . 69



xii D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

5.5 Rotational Stiffness of Connections - Frame . . . . . . . . . . . . . . . 70

5.6 Stiffness of Floor to Shaft Connections . . . . . . . . . . . . . . . . . . 71

5.7 Stiffness of Connections Between Floor Modules . . . . . . . . . . . . 73

5.8 Stiffness of Wall to Frame/Floors Connection . . . . . . . . . . . . . . 74

5.9 Material Stiffness - Frame . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.10 Material Stiffness - Timber Floors . . . . . . . . . . . . . . . . . . . . . 76

5.11 Material Stiffness - Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.12 Summary of the Sensitivity Study . . . . . . . . . . . . . . . . . . . . . 79

5.13 Material Stiffness - Concrete Floors . . . . . . . . . . . . . . . . . . . . 81

6 Model Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1 Run 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.2 Run 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.3 Run 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Run 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.2 Run 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.3 Run 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Wind Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1 Estimation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1.1 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1.2 Damping Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Contents xiii

7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Verification of Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3.1 Damping Measured in the Free Vibration Analysis Step . . . 95

7.3.2 Frequency Measured in the Free Vibration Analysis Step . . 95

7.4 Results - Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.4.1 Structural Vs. Aerodynamic Damping . . . . . . . . . . . . . . 96

7.4.2 Peak Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4.3 Standard Deviation of Acceleration . . . . . . . . . . . . . . . . 98

7.4.4 Acceleration at Different Levels . . . . . . . . . . . . . . . . . . 99

7.4.5 Acceleration at Different Return Periods . . . . . . . . . . . . . 101

7.4.6 Accelerations at Different Wind Speeds . . . . . . . . . . . . . 102

7.5 Comparison with ISO10137 Guidelines . . . . . . . . . . . . . . . . . . 103

7.6 Static Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2 Parametric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2.1 Modelling of Connections in Beam Elements . . . . . . . . . . 110

8.2.2 Modelling of Connections in Shell Elements . . . . . . . . . . 111

8.2.3 Using Excel for Parameter Input . . . . . . . . . . . . . . . . . 112

8.2.4 Isight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2.5 Damping Estimates and Wind Loads . . . . . . . . . . . . . . . 113

8.2.6 Mode Shape Comparison . . . . . . . . . . . . . . . . . . . . . . 114

8.2.7 Making the Model More General . . . . . . . . . . . . . . . . . 115



xiv D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

9 Conclusion and Recommendations for Further Work . . . . . . . . . . . 117

9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.2 Recommendations for Further Work . . . . . . . . . . . . . . . . . . . . 118

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A Parametric Model - User Guide . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.1.1 Installing OpenPyXl . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.1.2 Preparing the Scripts . . . . . . . . . . . . . . . . . . . . . . . . A-4

A.2 Setting Up the Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5

A.2.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5

A.2.2 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5

A.2.3 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . A-6

A.2.4 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6

A.2.5 Diagonals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7

A.2.6 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9

A.2.7 Add to/Remove From Frame . . . . . . . . . . . . . . . . . . . A-10

A.2.8 Shafts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-12

A.2.9 Column/Beam/Diagonal Cross Sections . . . . . . . . . . . . . A-13

A.2.10 Beam Connections . . . . . . . . . . . . . . . . . . . . . . . . . . A-14

A.2.11 Wall Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-14

A.2.12 Floor Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-15

A.2.13 Shell Connections . . . . . . . . . . . . . . . . . . . . . . . . . . A-16

A.2.14 Floor to Shaft Connections . . . . . . . . . . . . . . . . . . . . . A-17

A.2.15 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . A-18



Contents xv

A.2.16 Distributed/Point Mass . . . . . . . . . . . . . . . . . . . . . . . A-18

A.2.17 Wind (Eurocode) . . . . . . . . . . . . . . . . . . . . . . . . . . . A-19

A.2.18 Analysis Parameters . . . . . . . . . . . . . . . . . . . . . . . . . A-20

A.2.19 Step Level Damping . . . . . . . . . . . . . . . . . . . . . . . . . A-23

A.3 Running the Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-24

A.3.1 Running the Script from the GUI . . . . . . . . . . . . . . . . . A-25

A.3.2 Running the Script from the Command Line (CMD) . . . . . A-26

A.3.3 Result Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-27

A.4 Isight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-30

A.4.1 Adding the Application Components . . . . . . . . . . . . . . . A-30

A.4.2 Excel Component Setup . . . . . . . . . . . . . . . . . . . . . . A-31

A.4.3 Simcode Component Setup . . . . . . . . . . . . . . . . . . . . A-33

A.4.4 Adding a Process Component . . . . . . . . . . . . . . . . . . . A-38

A.4.5 Parameter Study (DOE) Configuration . . . . . . . . . . . . . . A-39

A.4.6 Target Solver Configuration . . . . . . . . . . . . . . . . . . . . A-41

B Digital Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1

C Python Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1

C.1 TTB_3D.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-3

C.2 TTB_3D_EC_wind.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-11

C.3 TTB_analysis.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-20

C.4 TTB_boundaries.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-28

C.5 TTB_excel.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-41

C.6 TTB_general.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-66



xvi D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

C.7 TTB_geometry.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-69

C.8 TTB_post_processing.py . . . . . . . . . . . . . . . . . . . . . . . . . . . C-104

C.9 TTB_properties.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-109

C.10 TTB_sets.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-121

C.11 TTB_Windload_EC.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-145



Nomenclature

Abbreviations

AER Annual Exceedance Probability

CAE Complete Abaqus Environment

CEN Comité Européen de Normalisation

CLT Cross Laminated Timber

DD-SSI Data-Driven Stochastic Subspace Identification

DOF Degree of Freedom

EC Eurocode

EOM Equation of Motion

FEA Finite Element Analysis

Glulam Glued Laminated timber

GUI Graphical User Interface

ISO International Organization for Standardization

LVL Laminated Veneer Lumber

MAC Modal Assurance Criterion

MDOF Multiple Degree of Freedom

RMS Root Mean Square

SDOF Single Degree of Freedom

SLS Serviceability Limit State

ULS Ultimate Limit State

xvii



xviii D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Symbols

C Damping Matrix

K Stiffness Matrix

M Mass Matrix

⌫ Poisson’s Ratio

⇣i Damping Ratio of the i th Mode

A Area

E0 Young’s Modulus Parallel to Grain

Ei Young’s Modulus in Local Material Axis i (i = 1,2, 3)

E90 Young’s Modulus Perpendicular to Grain

fi The i th Eigenfrequency

Gi j Shear Modulus in Plane i j (i, j = 1, 2,3, i 6= j)

I 2nd Moment of Area



Chapter 1

Introduction

1.1 Background and Motivation

Fighting climate change and finding solutions to the environmental issues is be-
coming increasingly more important in the time to come. Reducing the emissions
of greenhouse gasses is a priority for governments all over the world. As a con-
sequence the Norwegian Government is aiming to cut emissions with 50 percent
by 2030 [1]. Production and transportation of construction materials is a signi-
ficant contribution to the total greenhouse gas emissions, hence using materials
with lower carbon footprints is of high interest. Timber as a structural material is
widely regarded to be a better choice with respect to greenhouse gas emissions
than its more conventional counterparts steel and concrete. As a result, the use
of structural timber in larger construction projects has gained traction. However,
since the use of timber in larger structures have been limited until recent years,
its properties are not as well documented as for steel and concrete. A lot of re-
search is therefore required in order to fully substitute these materials with timber.
The Dynamic Response of Tall Timber Buildings under Service Load or DynaTTB for
short, is an international collaborative project focusing on the dynamic properties
of timber, which this thesis is a part of. The goal of the project is the following [2]:

"Its aim is to quantify the structural damping in as-built tall timber buildings
(TTB), identify and quantify the effects of connections and non-structural ele-
ments on the stiffness, damping and wind-induced dynamic response of TTBs,
develop a bottom-up numerical finite element model for estimating the dy-
namic response of multi-storey timber buildings, validate the predicted re-
sponse with in-situ measurements on TTBs and disseminate findings via a TTB
Design Guideline for design practitioners."

1



2 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure 1.1: DynaTTB, from [2]

1.2 Project Description

The work done in this master thesis can be divided into two parts. The first part
consists of the development of a parametric finite element model for tall timber
buildings utilizing a wood-frame as the main load bearing structure. The purpose
of the model is to be a tool that can be used to study how different properties in-
fluence the dynamic performance of this type of buildings. The parametric model
was created by using the finite element analysis program Abaqus combined with
scripting in Python. This allows the user to easily control all parameters that define
the model. The majority of the work done in the thesis has been dedicated towards
the development of the model.

In the second part, the parametric model is used as a tool for conducting numerical
analyses. In order to study a realistic structure, the worlds tallest timber building
"Mjøstårnet", with 18 stories and a total height of 81.4 m, is used as a case building.
Three studies were conducted:

• A sensitivity study that examines what parameters are most important for
the dynamic performance of the building.
• Based on the results from the sensitivity study and measurements of the

real structure, the parameters of the initial model was altered in order to
recreate the real structure as close as possible. This was done through model
updating.
• Finally, a parameter study was performed to examine how different struc-

tural and wind-related parameters influence the acceleration response of
a tall timber building. The results of a static wind load analysis after the
method given in Eurocode 1 is also presented.



Chapter 1: Introduction 3

1.3 Limitations

Listed below are the main limitations for work of this thesis:

• The focus of this thesis is the dynamic properties of tall timber buildings.
Evaluation of the ultimate limit state (ULS) is therefore not considered, and
the parametric script that is produced should not be used to extract stresses
and strains in the structure.
• The thesis only focuses on tall timber buildings using a frame as the main

load-bearing system. Buildings using CLT as the main load-bearing mem-
bers, can not be studied with the help of the scripts developed, in its current
state.
• The option of including various kinds of damping to the model, has been

a focus during the development of the parametric scripts. However, ana-
lyses conducted in this work mainly focus on how the mass and stiffness
properties of the members influence the dynamic behaviour.

1.4 Outline of Thesis

A short description of the different chapter of the thesis is given in the following
list:

• Background - This chapter presents the theory and background information
that will be utilized in this thesis.
• Modelling - This chapter presents the parametric model that has been es-

tablished for the thesis. Assumptions and simplifications made during the
modelling process are discussed.
• Case Study: Mjøstårnet - This chapter explain how a preliminary model of

Mjøstårnet is made using the parametric script. The model established will
be used as a base model for further studies.
• Sensitivity Study - In this chapter, a study of how different parameters in-

fluence the response of the model is carried out. The parameters studied
are explained, the reason for studying them are discussed and the results of
the studies presented. Finally, the influence of the different parameters are
compared.
• Model Updating - This chapter focuses on how the base model established

in the Case Study chapter can be altered, in order to get results as close to
measurements of the real building as possible.
• Wind Loads - This chapter is meant to be a demonstration of some of the



4 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

possibilities for doing wind-related analyses using the scripts that are de-
veloped in the thesis.
• Discussion - The discussion is split into two main parts. In the first part

the results from all the analyses previously presented in the thesis is dis-
cussed and compared. In the second part, the capabilities of the parametric
model that has been developed is discussed. Possible improvements are also
presented.
• Conclusion - Finally, the conclusion of the thesis is presented along with

suggestions for further work.
• Appendix A: User Guide - A description of how to set up a new parametric

model.
• Appendix B: Digital Appendix - Input files, Python scripts and analysis res-

ults. Delivered directly to professor Malo at the Department of Structural
Engineering at NTNU.
• Appendix C: Python Scripts - All python scripts developed for the parametric

model.



Chapter 2

Background

2.1 Timber as a Structural Material

Although timber is an ancient material that has been utilized in construction for
many centuries, the use of the material has historically been limited to small and
relatively simple structures. Data from Finland show that there is a big distinction
in the use of timber in small, private houses compared to multi-storey buildings
[3], and it is reasonable to assume that the situation in Norway is similar to this.
Timber has generally been restricted from use in buildings with more than two
stories up until the mid 1990s due to the combustibility of the material. In 1997,
new function-based fire regulations were introduced in Norway, allowing for a
greater use of wood in multi-storey buildings [4]. Till this day steel and concrete
have been the most widely used structural materials. However, due to the in-
creased focus on sustainability and environmental issues, timber is becoming a
more recognized material that in many cases can compete with both steel and
concrete, not only for small houses, but also for larger structures.

2.1.1 Environmental Benefits of Timber

One of the major benefits of timber compared to other structural materials is its
more environmentally friendly. In fact, it can be argued that this is the main reason
behind the increased popularity of timber in recent years. In 2007 Bernhard and
Jørgensen [5] estimated that the production of building materials is responsible
for 7% of the total greenhouse gas emissions in Norway, hence choosing materials
with low carbon footprint can reduce the total greenhouse gas emission signific-

5



6 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

antly.

Timber is, in regards to greenhouse gas emissions, a good choice due to two
main aspects: substitution and carbon storage. Selvig [6] show that if used cor-
rectly, timber as a substitute to other building materials will reduce the total CO2-
emission. However, some solutions using timber proved to be more emission heavy
than the materials it was substituting. This show that careful planning is required
in order to take advantage of the environmental benefits of timber. Timber is a
material that naturally bonds carbon. A timber structure will during its entire life-
time store carbon, and thus reduce the amount of CO2 in the atmosphere. The
benefit of carbon storage is increased if long lifetime of the timber products and
rapid regrowth after harvesting is pursued [7]. The effect of carbon storage was
not included in [6].

Timber have various other benefits, and some of them are listed below [7]:

• When the forestry is handled correctly, timber can be considered a renew-
able resource.
• Timber can be reused, both as a structural material and as an energy source.
• If designed correctly, timber structures can have a very long lifetime. The

oldest timber buildings in Norway is approximately 1000 years old.
• The use of timber can improve the indoor climate.

2.1.2 Mechanical Properties of Timber

To understand the mechanical properties of timber, it is necessary to study the ana-
tomy of wood. Wood is a natural and complex composite material with three main
elements: cellulose, hemicellulose and ligning. The cellulose, a long organic chain
molecule, is collected in crystalline strands, called microfibrills. These microfib-
rills are surrounded by the hemicellulose, a shorter chain molecule, and ligning,
a generic term for a group of three dimensional polymers. The microfibrills form
tube like cells, that enables water and nutrition to be transported within the tree.
The cells are mainly oriented along the stem, and bound together by lignin, which
act as a adhesive layer between the cells [8].

The structure of wood results in a highly anisotropic material. Three orthogonal
directions are defined in order to describe the anisotropy; the longitudinal direc-
tion, L is the same as the longitudinal direction of the tree. The cells are oriented
along this direction, and thus makes timber strongest and stiffest in this direction.
The radial direction, R, is the direction that is perpendicular to the annual rings,
while the tangential direction, T, is tangential to the annual rings. Timber can



Chapter 2: Background 7

be compared to a reinforced material, where the cells acts as reinforcement in a
matrix of lignin. The orientation of the directions are illustrated in Figure 2.1a.

(a) Material directions of wood (b) Stress components

Figure 2.1: Definitions

Due to the anisotropic nature of wood, a three-dimensional Hooke’s Law is re-
quired in order to relate stresses and strains in the material. A thorough derivation
of how this relation can be established is presented by Malo [9]. The general form
of Hooke’s law for linear elastic materials reads

� = C✏ and ✏= S� (2.1)

where C is the stiffness matrix and S is the compliance matrix. By assuming that
wood have three planes of symmetry, i.e. is orthotropic, the compliance relation
can be derived as:

2
666664

✏11
✏22
✏33
�23
�31
�12

3
777775
=

2
66666664

1
E1

�⌫12
E1

�⌫13
E1

0 0 0
1
E2

�⌫23
E2

0 0 0
1
E3

0 0 0
1

G23
0 0

s ym. 1
G31

0
1

G12

3
77777775

2
666664

�11
�22
�33
�23
�31
�12

3
777775

(2.2)

The stress components are defined in figure 2.1b. Note that in equation 2.2, the
naming of the axes defined in figure 2.1a are substituted with numbers, such that:

L = 1, R= 2, T = 3

As seen in equation 2.2, nine independent parameters must be defined in order
to model the elastic behavior of timber:

E1, E2, E3, ⌫21, ⌫31, ⌫32, G23, G31 G23



8 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

The parameters can be determined by testing.

In practical design the difference between material properties in R- and T-directions
are often neglected, as both are of similar magnitude. In addition, the designing
engineer have little knowledge of how the annual rings are oriented in the fin-
ished product. Thus, a simplified transversely isotropic material model is often
used. In this model, the material properties in any direction in the plane oriented
perpendicular to the L-axis are considered the same. The compliance relation can
then be reduced to only contain five independent parameters [9]:

2
666664

✏11
✏22
✏33
�23
�31
�12

3
777775
=

2
66666664

1
E1

�⌫12
E1

�⌫12
E1

0 0 0
1
E1

�⌫23
E2

0 0 0
1
E2

0 0 0
2(1+⌫23)

E2
0 0

s ym. 1
G12

0
1

G12

3
77777775

2
666664

�11
�22
�33
�23
�31
�12

3
777775

(2.3)

The stiffness moduli, E2 and G12, are related to deformations in the transverse
plane. They are often represented as averages of the associated stiffness moduli
in R- and T-direcion.

Timber Compared to Steel and Concrete

Compared to steel and concrete, timber have both low stiffness and strength. Tim-
ber is, however, a light material, which in turn results in low dead loads. It is
therefore interesting to compare the ratio of strength and stiffness to weight, to
get a better perception of how timber compares to steel and concrete. Specific
compression strength and specific stiffness are measures that are suitable for such
a comparison. They are defined as modulus of elasticity divided by density and
compression strength divided by density, respectively. For the comparison, S355
structural steel, C30 concrete and C24 structural timber has been chosen as they
are all widely used strength classes of the respective materials. The material prop-
erties are shown in Table 2.1, and are taken from [10], [11] and [12], respectively.
The material properties of timber are for the longitudinal direction.

As Table 2.2 show, the specific strength and stiffness of timber is greater than
that of concrete, and similar to that of steel. This demonstrates that timber is
a material that, in many cases, can substitute the more widely used materials
without sacrificing the structural performance. The low density does, however,
also introduce challenges to timber structures. As timber buildings are typically
lighter and more flexible compared to more conventional buildings, they tend



Chapter 2: Background 9

Table 2.1: Material Properties of Concrete, Steel and Timber

Material Density Compressive Strength Young’s Modulus
[kg/m3] [MPa] [MPa]

Concrete (C30) 2500 30 33 000
Steel (S355) 7800 355 210 000
Timber (C24) 420 21 11 000

Table 2.2: Specific strength and stiffness

Material Specific Strength Specific Stiffness
[Pam3/kg] [MPam3/kg]

Concrete (C30) 12.0 13.2
Steel (S355) 45.5 26.9
Timber (C24) 50.0 26.2

to be susceptible for vibrations induced by human activity and wind loads. Thus,
satisfying the serviceability limit state has proven to be one of main limiting factors
of using timber in tall buildings.

2.1.3 Damping in Timber Structures

Timber structures does in general have a higher damping compared to structures
made of steel and concrete [13]. Experimental studies show that the damping ra-
tio for complete wood-frame shear wall systems under low level deformations is
in the range of ⇣ = 0.02 - 0.1 [14]. For higher levels of deformation, the damp-
ing ratio can be increased to as much as ⇣ = 0.2. Typical sources for damping in
wood-frame shear wall structures are material damping, friction between connec-
ted components and plastic deformations in connections. The interaction between
a structure and the supporting soil is also causing energy dissipation. However,
the mechanisms causing damping in timber structures are not fully understood,
making it very challenging for designing engineers to predict the damping char-
acteristics of a structure. This often lead to damping being neglected or included
as a global damping ratio with unclear origins during design [13]. This was evid-
ent for the design of "Treet", a 14-storey residential building located in Bergen,
Norway. The design used a total equivalent damping ratio of ⇣ = 0.019, a value
that is solely an estimation [15]. Increased knowledge on the damping properties
of timber structures is important in order to be able to overcome the limitations
of tall timber buildings.



10 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

2.2 Structural Dynamics

A dynamic analysis takes into account the time-dependant properties of the load-
ing and response of a structure. The different types of time-dependant loads can
be classified as random-, periodic- or impulse-loading [16]. Examples of dynamic
loads are wind, people walking or running, earthquakes, waves and explosions.

The dynamic behaviour of a structure is of great importance when designing
slender structures like tall buildings and long bridges. Insufficient attention to
the dynamic properties of these types of structures may often lead to unwanted
effects such as large accelerations and deformations. Structural dynamics is most
often a serviceability issue, e.g. large accelerations causing discomfort for the res-
idents of a tall building. However, in some extreme cases entire structures have
collapsed due to dynamic loading, e.g. The Tacoma Narrows Bridge, which col-
lapsed less than five months after its opening in 1940 [17]. Repeated loading and
unloading due to dynamic loading may also cause fatigue issues.

2.2.1 Equation Of Motion

Figure 2.2a shows a simple one degree of freedom system excited by an external
time-dependant force P(t) consisting of a block with mass M, rolling frictionless
without air resistance on a horizontal plane. The block is connected to a spring
and a damper, both with negligible mass. Using D’Alembert principle of dynamic
equilibrium [18], the free body diagram becomes as shown in Figure 2.2b, and
gives the following equilibrium equation:

P(t)� FS(t)� FD(t)� FI (t) = 0 (2.4)

Assuming linear elastic behavior, the force in the spring is the spring stiffness K
multiplied with the displacement u. The force caused by a viscous damper are
equal to a coefficient C multiplied with the velocity u̇, while Newton’s second law
of motion says that the inertia force equals mass M times acceleration ü. Hence:

FS = K · u(t) (2.5a)

FD = C · u̇(t) (2.5b)

FI = M · ü(t) (2.5c)

The equilibrium equation (Equation 2.4) may be rewritten using Equation 2.5,



Chapter 2: Background 11

M

K

C
P(t)

(a) SDOF system

P(t)
Fs(t)

FD(t)
FI(t)

(b) Forces acting on SDOF system

Figure 2.2: Simple one degree of freedom system

resulting in the equation of motion (EOM):

Mü(t) + Cu̇(t) + Ku(t) = P(t) (2.6)

A useful modification of Equation 2.6 for free vibration (P(t) = 0) is to express
the EOM in terms of the natural frequency !n and the damping ratio ⇣ (similar
modifications may be done for harmonic and other types of loading):

ü+ 2!n⇣u̇+!2
nu= 0 (2.7)

where:

!n =
q

K
M

⇣ = C
Ccr
= C

2M!n

The derivation of the EOM of a single degree of freedom system are presented
above. However most structures are modeled using multiple degrees of freedom,
often hundreds or even thousands of DOFs are used. The equation of motion for
a system with n degrees of freedom and m time steps is written on matrix form:

Mü(t) + Cu̇(t) + Ku(t) = P(t) (2.8)

where:

M ,C , K = System mass, damping and stiffness matrices (n⇥ n)
P(t) = System load vector (n⇥m)
u(t) = Displacement vector (n⇥m)
u̇(t), ü(t) = First and second time-derivatives of the displacement (n⇥m)

2.2.2 Modal Analysis

In general the system of equations in Equation 2.8 is coupled and complicated
to solve. However it is possible to transform it such that it becomes a system of



12 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

n uncoupled equations, equivalent to n single degree of freedom systems. The
transformation is explained in detail by e.g. Chopra [18], and the main steps are
presented below.

Due to the relatively low damping in civil engineering structures, the damping is
usually disregarded when computing the mode shapes of vibration. When damp-
ing is disregarded the mode shapes and natural frequencies become real, due to
the symmetry and positive definiteness of K and M [18]. It can then be shown
that the equation of motion may be rewritten as a matrix eigenvalue problem:

[K �!2
nM]�n = 0 (2.9)

where:

!n = The nth natural frequency of the system (scalar)
�n = The nth mode shape vector (n⇥ 1)

An important property of the mode shapes is that they can be used to orthogon-
alize the system, such that: �T

i K� j = 0 and �T
i M� j = 0 for all i 6= j, i.e. the

stiffness and mass matrices become diagonal. Rewriting the equation system in
terms of generalized degrees of freedom q simplifies the solution, the relation-
ship between the physical DOFs u and q are as follows:

u(t) = �q(t) (2.10)

where:

� = A matrix where each column represent a mode shape

Substituting Equation 2.10 into the equation of motion (Equation 2.8) (still dis-
regarding damping):

M�q̈(t) + K�q(t) = P(t) (2.11)

Then pre-multiply with the transposed mode shape matrix to get the transformed
system:

M
⇤
q̈(t) + K

⇤
q(t) = P

⇤(t) (2.12)

where:

M
⇤ = �T

M� - A square and diagonal mass matrix
K
⇤ = �T

K� - A square and diagonal stiffness matrix
P
⇤ = �T

P - Load vector

Since the system is uncoupled it can be divided into many smaller SDOF-system
and solved one-by-one. The EOM for each SDOF system are:

M
⇤
i i

q̈i(t) + K
⇤
i i

qi(t) = P
⇤
i
(t) (2.13)



Chapter 2: Background 13

After each SDOF system are solved the generalized DOFs are transformed back
to the original DOFs using the relation given in Equation 2.10: u(t) = �q(t).
Because the response usually are dominated by the first few modes the engineer
often choose the exclude the higher modes to save calculation time, however this
should be done with care not to omit any important modes.

2.2.3 Damping

Even when damping is considered in a system it is common to use the mode shapes
from equation (2.9) to orthogonalize the mass and stiffness matrices. However,
by introducing a damping matrix the system in general becomes coupled again,
i.e. �T

i C� j 6= 0. A common solution to this problem is to construct a damping
matrix that are proportional to the stiffness and mass matrices. This damping
model are called Rayleigh damping, named after the British scientist Lord Rayleigh.
The Rayleigh damping model simply defines the damping matrix C as follows
[19]:

C = ↵M + �K (2.14)

Where ↵ and � are constants who are determined by measurements or experi-
ence from similar projects. The resulting damping ratio varies with frequency, as
shown in Figure 2.3 A damping matrix defined by using Rayleigh damping may be
orthogonalized just like the mass and stiffness matrices, i.e. �T

i C� j = 0 (i 6= j),
and the system can be solved as multiple SDOF systems.

M
⇤
i i

q̈i(t) + C
⇤
i i

q̇i(t) + K
⇤
i i

qi(t) = P
⇤
i
(t) (2.15)

An alternative to defining the system damping matrix C is to introduce modal
damping ratios, ⇣i , directly in to the rewritten EOM, ref. Equation 2.7, for each
relevant mode. As with Rayleigh damping the value of the damping parameter is
determined by experiments or engineering judgement.

One problem with methods like Rayleigh and modal damping is that they lack
physical meaning, they are just applied because they are convenient and makes the
system easy to solve. It doesn’t say anything about what is causing the damping,
and that makes it difficult to get an accurate estimate of parameters to be used
in the modelling of new structures. To be able to make more accurate dynamic
models of structures, more complicated damping models are needed.

The most important sources of damping in timber structures are [20]:

• Structural (Slip) Damping: The motion in connections between different
structural elements leads to energy dissipation due to friction, yielding of



14 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

0 1 2 3 4 5 6

Frequency -  [rad/s]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
a

m
p

in
g

 R
a

tio
 -

 

Mass Proportional (
0
 = 0.03)

Stiffness Proportional (
1
 = 0.02)

Mass and Stiffness Proportional

Figure 2.3: Mass and stiffness proportional damping (↵= 0.03,� = 0.02)

connectors and so on. Yeh et al. [20] found that the slip damping is up to
6-13 times greater than the internal damping, depending on the type of
connection. Structural damping is usually taken to be proportional to the
displacement or the force in the member, as opposed to viscous damping
who is proportional to the velocity.
• Material (Internal) Damping: Material damping is a result of internal ef-

fects in the material, mainly internal friction.
• Adhesive Damping: Certain adhesive layers in a glued construction provide

damping. According to [20] The adhesive damping is usually approx. 2
times greater than the material damping.

2.3 Wind Loads

Too large accelerations due to wind is a common cause of discomfort for occupants
in the upper floors of a tall and slender building. Minimizing wind induced motion
is therefore an important serviceability issue when designing tall buildings. The
aim of this section is to cover some of the basics behind the highly complicated
field of wind engineering.



Chapter 2: Background 15

2.3.1 Aerodynamics

Aerodynamics is the study of how air/gases interacts with objects (in this case
buildings). There are two types of aerodynamic forces, lift and drag. Drag is the
force acting in the wind direction, while lift acts perpendicular to the wind dir-
ection, i.e. vertically for a bridge or aircraft wing and horizontally for a building.
The total drag on a body is the sum of "pressure" drag and "friction/viscous" drag.
Pressure drag is caused by the drop in pressure behind a body, while friction drag
is caused by the fluid (air) sticking to the body.

(a) Flow around a streamlined body (b) Flow around a bluff body

Figure 2.4: Air flow around different objects

Figure 2.4 shows the flow of air around two different types of cross sections, a
"streamlined" body and a "bluff" body. It can be seen in Figure 2.4a that for a
streamlined body the flow follows along the cross sectional shape, and that separ-
ation only occurs at the trailing end of the profile. Due to this, the main portion of
the drag acting on a streamlined body is caused by friction, and less by pressure.
However, a bluff body (Figure 2.4b) causes the flow to separate at some point be-
fore the trailing edge, leading to a relatively large "wake" region behind the object.
The wake region causes the pressure behind the object to drop, as a consequence
a bluff body experiences much higher pressure drag, but less drag caused by fric-
tion than a streamlined body [21]. Since virtually all civil engineering structures,
including buildings and bridges are bluff bodies, the rest of this section will focus
primarily on the excitation of bluff objects.

2.3.2 Buffeting Theory

The response of a building in the direction of the wind (along-wind excitation)
is mainly caused by pressure drag. The response in the direction perpendicular
to the wind (cross-wind direction) on the other hand, is more complex and is



16 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

influenced by factors such as the building shape, turbulence and the shape and
size of the wake [21].

The part of the load caused by variations in the wind velocity is the buffeting load.
Buffeting load theory for bridges are presented by Strømmen [22], however the
theory for towers are similar apart from some small changes in notation and other
minor changes. The outline of the theory (for towers) are presented below.

�

�

�

_
r�+r�

qL qz

qD

qy

q�

_
r�

_
ry

_
rz

z

y

rz

ry

Vrel

         .V+u-ry

   .v-rz

D

B
Figure 2.5: Flow and displacements (Modified version of fig. 5.1 in [22])

First a Cartesian coordinate system is established, where the x is the height co-
ordinate, y is the coordinate in the along-wind direction and z is the cross-wind
coordinate. It is assumed that the total wind velocity U(x , t) is sampled over a
limited period of time such that it can be split into a constant part V (x) and a
fluctuating part with zero mean u(x , t) in the along-wind direction, in addition
to fluctuating parts v(x , t) and w(x , t) in the horizontal and vertical cross-wind
direction respectively. Figure 2.5 shows the cross section of a tower with dimen-
sions D ⇥ B, first the cross section is given a static displacement (r y , rz , r✓ ) by
the time-invariant (mean) part of the wind action, this is the initial position of the
vibrations caused by the fluctuating parts of the wind. The additional dynamic de-
formations caused by the fluctuating wind are denoted ry , rz and r✓ . In the axes
of the wind flow coordinate system the drag, lift and moment acting on the cross
section, in the deformed position, are given by the following matrix equation:

2
4

qD(x , t)
qL(x , t)
qM (x , t)

3
5 = 1

2
⇢V 2

rel ·

2
4

D · CD(↵)
B · CL(↵)

B2 · CM (↵)

3
5 (2.16)



Chapter 2: Background 17

From Figure 2.5 it can be seen that the forces given in Equation 2.16 can be
transformed to the global coordinate system using a transformation matrix who
is a function of the angle � :

� = arctan

✓
v � ṙz

V + u� ṙ y

◆
(2.17)

2
4

qy(x , t)
qz(x , t)
q✓ (x , t)

3
5 =

2
4

cos� � sin� 0
sin� cos� 0

0 0 1

3
5
2
4

qD(x , t)
qL(x , t)
qM (x , t)

3
5 (2.18)

An important assumption in buffeting load theory is that the fluctuating compon-
ents of the wind velocity are much smaller than the constant component, hence
� ⇡ v�ṙz

V , cos� ⇡ 1 and sin� ⇡ � . Then the wind actions in the global coordinate
system become:
2
4

qy
qz
q✓

3
5 =

2
4

1 �� 0
� 1 0
0 0 1

3
5
2
4

qD
qL
qM

3
5 =

2
4

qD � � · qL
� · qD + qL

qM

3
5 =

2
4

qD
qL
qM

3
5+ � ·

2
4
�qL
qD
0

3
5 (2.19)

The same assumption leads to:

V 2
rel = (V + u� ṙ y)2 + (v � ṙz)2 ⇡ V 2 + 2Vu� 2V ṙy (2.20)

and
↵= r✓ + r✓ +

v
V
� ṙz

V
(2.21)

It is also assumed that the force coefficients CD, CL and CM can be approximated
linearly:

CD(↵)⇡ CD(↵) +↵ f C 0D(↵ f ) = C D +↵ f C 0D (2.22a)

CL(↵)⇡ CL(↵) +↵ f C 0L(↵ f ) = C L +↵ f C 0L (2.22b)

CM (↵)⇡ CM (↵) +↵ f C 0M (↵ f ) = C M +↵ f C 0M (2.22c)

where:

↵ = The angle caused by the mean velocity
↵ f = The angle caused by the fluctuating velocity

Combining Equation 2.16, 2.19 and 2.22 gives the following expression:
2
4

qy
qz
q✓

3
5 = 1

2⇢V 2
rel

0
@
2
4

DC D
BC L

B2C M

3
5+↵ f

2
4

DC 0D
BC 0L

B2C 0M

3
5+ �

2
4
�BC L
DC D

0

3
5+↵ f �

2
4
�BC 0L
DC 0D

0

3
5
1
A (2.23)



18 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

As mentioned above both � and ↵ f are small, hence � · ↵ f ⇡ 0 i.e. the last term
of the previous equation are negligible. Inserting the expressions for Vrel and ↵:
2
4

qy
qz
q✓

3
5 = 1

2⇢(V
2 + 2Vu� 2V ṙy)

0
@
2
4

DC D
BC L

B2C M

3
5+ (r✓ + v

V �
ṙz
V )

2
4

DC 0D
BC 0L

B2C 0M

3
5+ v�ṙz

V

2
4
�BC L
DC D

0

3
5
1
A (2.24)

The wind action can be rewritten in terms of the mean wind load q , the dy-
namic load caused by turbulence Bq v and the aerodynamic damping and stiffness
matrices, Cae and Kae:

qt ot = q + Bq v + Cae ṙ + Kae r (2.25)

where:

qt ot =
⇥
qy qz q✓
⇤T

(2.26a)

q =
⇢V 2B

2

2
4

D
B C D
C L

BC M

3
5 (2.26b)

Bq v =
⇢V
2

2
4

2DC D DC 0D � BC L
2BC L BC 0L � DC D

2B2C M B2C 0M

3
5

u
v

�
(2.26c)

Cae ṙ =
�⇢V B

2

2
4

2 D
B C D

D
B C 0D � C L 0

2C L C 0L +
D
B C D 0

2BC M BC 0M 0

3
5
2
4

ṙ y
ṙz
ṙ✓

3
5 (2.26d)

Kae r =
⇢V 2B

2

2
4

0 0 D
B C 0D

0 0 C 0L
0 0 C 0M

3
5
2
4

ry
rz
r✓

3
5 (2.26e)

The aerodynamic damping and stiffness matrices can be generalized using the
mode shapes of the system, just like the structural matrices. If the load is determ-
inistic (i.e the exact time history of the wind is known), the solution can be ob-
tained in the time domain. However, in most cases the load is stochastic (i.e only
the statistical properties like the mean and variation are known) and the solution
is obtained in the frequency domain. The frequency response matrix which relates
the load to the response in the frequency domain is:

H(!) = [�!2
M̃ + i!(C̃ � C̃ae) + (K̃ � K̃ae)]�1 (2.27)

2.3.3 Eurocode

Eurocode 1 part 1-4 [23] provides rules for determining wind loads on civil en-
gineering structures including buildings lower than 200 m and bridges with spans



Chapter 2: Background 19

shorter than 200 m. The Eurocode uses a equivalent static load for determining
the deformation caused by wind, while the appendix gives the formulas necessary
to calculate the accelerations. As a consequence no dynamic analyzes, neither in
the time or frequency domain, are needed when using the Eurocode for calcu-
lating wind response on a normal structure. The rules and recommendations are
based on, among other things, the theory presented in the previous sections.

The first step in finding the static load is determining the basic wind velocity vb:

vb = cdir · cseason · cal t · cprob · vb,0 (2.28)

where:

cdir = Directional factor (usually = 1.0)
cseason = Seasonal factor (usually = 1.0)
cal t = Altitude factor (usually = 1.0)
cprob = Probability factor (discussed in section "Return Period")
vb,0 = Fundamental value of the basic wind velocity

The wind velocity and pressure consists of two parts, a mean value vm(z) and a
fluctuating part described by the turbulence intensity Iv(z).

vm = cr · c0 · vb (2.29)

Iv =
�v

vm
=

kl

c0 · ln(z/z0)
(2.30)

where:

cr(z) = Roughness coefficient (= kr · ln( z
z0
))

c0 = Orography factor (Usually = 1.0)
�v(z) = Standard deviation of the turbulence (= kr · vb · kl)
kl = Turbulence factor (usually = 1.0)
z0 = Roughness length

The next step is to calculate the peak velocity pressure. Note that the expression
given here is from the national annex, but when kp = 3.5 it becomes identical to
the expression from the main part of the Eurocode.

qp(z) =
1
2
·⇢ · v2

m(z) · [1+ 2kp Iv(z)] (2.31)

where:

⇢ = Air density (usually = 1.25)
kp = Peak factor (= 3.5)



20 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

The wind pressure acting on the external surfaces are obtained from Equation 2.32.
The internal pressure is often assumed to be of equal magnitude (see Figure 2.6)
and opposite direction, i.e. it does not need to be taken into account when study-
ing the building as a whole. The friction forces may be disregarded when the area
of surfaces parallel to the wind is less than or equal to 4 times the area of the
surfaces perpendicular to the wind direction. Hence for a global analysis of most
tower-like structures it is only necessary to consider the external wind pressure.

we = qp(ze) · cpe (2.32)

where:

ze = The reference height of the surface/part
cpe = External pressure coefficient

Figure 2.6: External (continuous arrows) and internal (dashed arrows) pressure

The total external wind force acting on the structure can then be found by sum-
mation of the product of the pressure from Equation 2.32 and the area of each
part:

Fw,e = cscd ·
X

sur f aces

(we · Are f ) (2.33)

Alternatively, if h/d > 5, cpe is not defined and the force is calculated directly
using a force coefficient, c f , given in the Eurocode:

Fw,e = cscd ·
X

elements

(c f · qp(ze) · Are f ) (2.34)

where:

cs = Size factor (discussed in section "Structural Factor")
cd = Dynamic factor (discussed in section "Structural Factor")
c f = Force coefficient of the structure
h = The height of the structure
d = The horizontal dimension of the structure in the wind direction
Are f = The reference area of the respective surface



Chapter 2: Background 21

Structural Factor

The structural factor, cscd is the product of a size factor, cs, and a dynamic factor,
cd . The size factor takes in to account that the peak pressure does not occur at the
same time at all points in space of a large surface, the size factor cause a reduction
in the load. The dynamic factor on the other hand, typically increases the load due
to the effect of vibrations due to turbulence in resonance with the structure. For
certain buildings with low slenderness cscd = 1.0 can be used, however for tall,
slender buildings cs and cd must be calculated using section 6.3.1 and annex B or
C in the Eurocode.

cs =
1+ 7 · Iv(zs) ·

p
B2

1+ 7 · Iv(zs)
(2.35)

cd =
1+ 2 · kp · Iv(zs) ·

p
B2 + R2

1+ 7 · Iv(zs) ·
p

B2
(2.36)

where:

Iv = Turbulence intensity
zs = Ref. height for structural factor (usually = 0.6h)
kp = Peak factor (Note: not the same as in (2.31))
B2 = Background factor
R2 = Resonance response factor

Two different methods for calculating kp, B2 and R2 are given in annex B and C,
this text is based on the method in annex B. Only a selection of the expressions
needed are presented below, the remaining expressions can be found in annex B
of Eurocode 1991 part 1-4 [23].

The background factor B2 takes in to account the lack of correlation of pressure
on the surface. B2 may be calculated using Equation 2.37, alternatively B2 = 1.0
may be used as a conservative approach.

B2 =
1

1+ 0.9 ·
Ä

b+h
L(zs)

ä0.63 (2.37)

where:

b = Structure width
h = Structure height
L(zs) = Turbulent length scale

The peak factor, kp, is the ratio between standard deviation and the peak value of



22 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

the fluctuating component of the wind velocity.

kp =max

✓∆
2 · ln(⌫ · T ) + 0.6p

2 · ln(⌫ · T )
; 0.6

◆
(2.38)

where:

⌫ = Upcrossing frequency
T = Averaging time for mean velocity (= 600s)

The upcrossing frequency is a function of the first natural frequency of the build-
ing, n1,x . The Eurocode provides a simple estimate n1,x = 46/h to this frequency.
However this estimate should be used with care, especially when dealing with tim-
ber structures, since the estimate is based on experiments performed on mainly
concrete and steel towers. Feldman et. al. [24] performed a series of tests on a
total of 12 timber structures (see Figure 2.7a) and found that n1,x = 53/h is a
better approximation, but it should be noted that most of the structures tested
were lower than what the Eurocode estimate originally is intended for. A way to
lower the uncertainty drastically is to perform a modal analysis in a finite element
program.

0 20 40 60 80 100

Height [m]

0

1

2

3

4

5

6

F
u
n
d
a
m

e
n
ta

l F
re

q
u
e
n
cy

 [
H

z]

Measured 46/h 53/h

(a) First natural frequency vs. height

0 0.5 1 1.5 2 2.5 3

Fundamental Frequency [Hz]

0.5

1

1.5

2

2.5

3

D
a

m
p

in
g
 r

a
tio

 [
%

]

Measured

(b) Damping ratio vs. first natural frequency

Figure 2.7: Results from Feldman et. al. [24]

The resonance factor R2 takes into account the possibility that the turbulence
might be in resonance with the structure, a phenomena that can lead to a consid-
erably higher load on the structure.

R2 =
⇡2

2 ·� · SL(zs, n1,x) · Rh(⌘h) · Rb(⌘b) (2.39)



Chapter 2: Background 23

where:

� = Logarithmic decrement (damping)
SL = Non-dimensional power spectral density function
Rh/Rb = Aerodynamic admittance functions

The Eurocode provides rough estimates of the logarithmic decrement, but again
the source data for tall timber buildings are limited. Therefore the value of the
logarithmic decrement are to a large extent based on the designer more or less
guessing. In the study by Feldman et. al. [24]metioned above, it was also conduc-
ted tests of the damping ratio. A weak trend of the damping ratio increasing with
the frequency can be seen in Figure 2.7b, however many outliers and a relatively
small sample size makes it impossible to draw conclusions. One of the goals of
this thesis is to find a way to be able to determine the damping more accurately.

Acceleration Response

The Eurocode also provides a simple method for estimating the acceleration re-
sponse of a structure due to wind.

First the standard deviation of the acceleration,�a,x(z), at height z is determined:

�a,x(z) =
c f ·⇢ · b · Iv(zs) · v2

m(zs)
m1,x

· R · Kx ·�1,x(z) (2.40)

where:

R = The square root of the resonant response R2

Kx = Non-dimensional coefficient
m1,x = The along wind fundamental equivalent mass
�1,x(z) = The fundamental along wind shape

The non-dimensional coefficient may be determined by Equation 2.41.

Kx =

R h
0 v2

m(z)�
2
1,x(z)dz

v2
m(z) ·
R h

0 �
2
1,x(z)dz

(2.41)

The along wind fundamental equivalent mass m1,x of a cantilevered structure can
be approximated as the average mass per unit length of the upper third of the
building.



24 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Finally the peak acceleration at height z can be determined by multiplying the
standard deviation (Equation 2.40) by the peak factor, kp, defined by Equation 2.38
using the fundamental frequency, n1,x , as the upcrossing frequency ⌫:

üpeak(z) = kp(⌫= n1,x) ·�a,x(z) (2.42)

Return Period

Usually the return period, R, of the wind velocity are set to 50 years, i.e. the
probability of exceeding that velocity in any given year, p, is 2%. However, it
is sometimes necessary to calculate the actions for a different return period, e.g.
when verifying the serviceability against the recommendations of ISO:10137 [25]
a return period of only 1 year are used. The wind velocity is adjusted according
to the return period using a probability factor, Cprob, in the equation for the basic
wind velocity (Equation 2.28). The value of the probability factor is 1.0 when the
return period are 50 years, and otherwise defined using the following formula:

Cprob =
Å

1� 0.2 · ln (� ln (1� p))
1� 0.2 · ln (� ln (0.98))

ã0.5

(2.43)

Where p is the annual exceedance probability. The usual method to calculate p
is using Equation 2.44a, however this equation makes Equation 2.43 for Cprob
undefined/invalid when the return period is short (R  1). This issue can be
solved by using Equation 2.44b to calculate p, as done by Talja and Fülüp [26]
among others.

p = 1/R (2.44a)

p = 1� e�1/R (2.44b)

In Figure 2.8 the value of Cprob is plotted using both expressions for p, for re-
turn periods ranging from 1 to 100 years. It is evident that the values are almost
identical, except that the exponential expression works better for short return
periods.



Chapter 2: Background 25

10 20 30 40 50 60 70 80 90 100

Return Period [Years]

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05
C

p
ro

b

Figure 2.8: Probability factor Cprob

2.4 Finite Element Analysis

Finite Element Analysis (FEA) a widely used numerical analysis method. It is used
for solving problems in many engineering disciplines, including structural engin-
eering. The basic idea of FEA is that a system of complex behaviour can be divided
into a finite number of non-overlapping subregions, also called elements. The be-
haviour of each of the elements can be described in a simple way. The elements
are connected at certain points, called nodes, by requiring kinematic compatib-
ility and static equilibrium at all nodes [27]. The result is a system where all
components have a known behaviour, and thus by specifying how the compon-
ents should interact with each other, the behaviour of the entire system can be
determined. The accuracy of a finite element analysis depends on how many ele-
ments are used and the polynomial order of the interpolation functions. Generally,
the higher the number of elements used is, the more accurate the solution will
be. However, a large number of elements increases the number of equations that
needs to be solved and therefore increases the computational time. A good finite
element model balances adequate accuracy, while still keeping the computational
time reasonably low.



26 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

2.4.1 Element Types

Numerous kinds of elements suitable for different types of problems have been
developed. It is important to review the choice of element to use in a finite element
analysis, as different elements have different capabilities, and not all are able to
produce the wanted results for certain problems. The choice of element type will
also greatly affect the computational time. The best approach is to choose the
an element type that is as little computational expensive as possible, while still
maintaining adequate accuracy of the model. This section will briefly explain the
key points of some of the most used element types. The elements described are
illustrated in Figure 2.9.

Figure 2.9: From left to right: Solid Element, Shell Element and Beam Element

Solid elements are the most general elements, and other elements, such as the
beam and shell elements can be considered special cases of the solid element.
The nodes of a solid element have all three translational degrees of freedom, and
can therefore deform in three dimensions. Although the solid element can be used
to model all kinds of structural components, it is also the element type that is the
most demanding in terms of computational time. It should therefore only be used
when it is required.

Shell elements can be used to model structures, where one of the dimensions is
significantly smaller than the other two [28]. The body is discretized by defining
the geometry only at a reference plane, thus reducing the number of nodes com-
pared to solid elements, and then again the computational cost. The shell elements
have both translational and rotational degrees of freedom.

Beam elements are one of the simplest kinds of elements, where both rotational
and translational degrees of freedom are included. Beam elements are the one-
dimensional approximation of a three-dimensional continuum [28]. The approx-
imation is applicable for slender structures, that is, structures where the cross
sectional dimensions are small compared to the length.



Chapter 2: Background 27

2.4.2 Beam Theory

Two main kinds of beam theory is used for structural engineering problems. The
most widely used and simplest approach is the Euler-Bernoulli beam theory. This
theory assumes that cross-sections that are plane and initially normal to the beam
axis, remain plane and normal to the beam axis after deformation [29]. In other
words, transverse shear deformations are not considered in this theory. The as-
sumption is adequate for slender beams. For beams of uniform material, the di-
mensions of the cross-section should be less than 1/15 of the axial dimension of
the beam, in order for for transverse shear flexibility to be negligible [28].

The other beam theory commonly used is the Timoshenko beam theory. Timoshenko
theory includes transverse shear deformations, and is therefore the best choice for
beams that are thicker and/or where the shear stiffness is low. In such beams the
transverse shear flexibility can no longer be neglected, as doing so would result
in a overly stiff beam. For a beam made of uniform material, Timoshenko beam
elements are suitable for beams where the cross-sectional dimensions are up to
1/8 of the axial dimension [28].

Figure 2.10: Euler-Bernoulli and Timoshenko beam theory

2.5 Mjøstårnet

Mjøstårnet is an 18-storey timber building with a height of 85.4 m completed in
March 2019 and located in Brummundal in Norway [30]. At the time of writing it
is the world’s tallest timber building. Mjøstårnet is a multi-purpose building, hous-
ing offices, apartments and a hotel, see Figure 2.11b. The building is owned by AB
Invest A/S, and the project was a collaboration between the contractor HENT, the
architects Voll Arkitekter, the consulting engineering firm Sweco and the timber
processing group Moelven. Several other companies have been involved with vari-
ous subtasks, among them Woodcon/Stora Enso, who supplied the CLT used in
staircases and balonies, and Ringsaker Vegg- og Takelement (RVT), who supplied
the facade elements.



28 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

(a) Mjøstårnet during construction [30]. (b) Section of Mjøstårnet [31]. Note
that the final elevations vary from what
is shown here.

Figure 2.11: Mjøstårnet

2.5.1 Structural System and Materials

This subsection gives an overview of the structural system of Mjøstårnet. More de-
tailed information can be found in [31]. The main load bearing system of Mjøstår-
net is a glulam frame. The frame consists of beams and diagonals, as well as large
scale glulam diagonals along the facades of the building. The beams and columns
carries the global vertical forces, while the diagonals carry the horizontal forces
applied to the building. Mjøstårnet has five shaft made of CLT panels: three elev-
ator shafts and two staircases. The CLT panels carry the load from the stairs and
elevators, but they are not designed to contribute to the horizontal stiffness of the
building.

The base of the building is approximately 17 x 37 m2. The foundation consists of
a large concrete slab, supported by piles that are driven to bedrock. The piles can
carry both compression and tensile forces.

There are to types of floors in Mjøstårnet. Floors 2 to 11 are consists of prefab-
ricated timber elements, produced by Moelven. These are based on their Trä8
building system, and explained more in detail in subsection 4.2.1. Floors 12 to 18
are concrete floors. These are a combination of a prefabricated bottom part that is
used as formwork for a cast in place upper part. The reason for using concrete in
the upper floors is that they result in an increased mass at the top of the building.
This is favorable as it results in larger inertia forces, and thus reduces the accel-



Chapter 2: Background 29

erations in the top floors. The concrete floors are also favorable for the acoustic
performance. All floors are designed to act as diaphragms, and are supported by
glulam beams in the frame.

A large pergola structure made of glulam is fixed to the roof, which will also be
used as a terrace. In addition to this an apartment is placed on top of the roof. On
the residential floors, floor 12 to 17, balconies are fixed to the side of the building.
The balcony decks are made of CLT. The different structural components can be
seen in Figure 2.12.

Figure 2.12: The structural components of Mjøstårnet [30]

The facade is made of prefabricated elements. The insulation, windows and ex-
ternal cladding are located within these elements. In the design process, the stiff-
ness of the wall elements are not considered to contribute to the global stiffness
of the building. By placing the wall elements outside the frame, climate class 1
can be used for all structural timber members except the pergola.

All of the glulam elements are connected by slotted-in steel plates and dowels.
Strenght classes GL30c and GL30h according to EN 14080:2013 [32] are used for
the glulam members in the building. The CLT used has a bending strength of fmk
= 24 MPa.

2.5.2 Numerical Model

During design, a numerical model of Mjøstårnet was developed by Sweco using
the structural analysis software Autodesk Robot Structural Analysis 2017. The
structural damping ratio used for the model was ⇣ = 1.9 %. A modal analysis
was conducted and Figure 2.13 shows the three first vibration modes. The corres-
ponding frequencies are shown in Table 2.3a. Mode 1 and 2 are bending in the
longitudinal and transverse directions respectively, while mode 3 is torsional.



30 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

(a) Mode 1: Longitudinal (b) Mode 2: Transversal (c) Mode 3: Torsional

Figure 2.13: Mode shapes from numerical modal analysis [33]

2.5.3 Monitoring and Measurements

Due to the relatively small amount of tall timber buildings in the world, the
amount of empirical data on this kind of structure is very limited. This lead to
the structural behaviour being unpredictable, as a lot of design decisions have to
be made based on assumptions and qualified guesses. In order to make timber
a more attractive structural material, it is important to utilize the buildings that
already are constructed in order to produce empirical data. The data can then
be used in order to verify and support numerical models, and thus improve the
predictions of how future structures will behave.

Monitoring equipment has been installed at Mjøstårnet in order to measure vibra-
tions. The measurements are done by three accelerometer pairs, all fixed to the
pergola (see Figure 2.14a). In addition to the sensors in the completed structure,
a temporary set of accelerometers were installed during construction. These were
placed on floor 7 at the positions shown in Figure 2.14b. In both cases, the sensors
are only placed at one level. It is therefore not possible to obtain the exact mode
shapes of the structures from these measurements [33].

Based on measurements of ambient vibrations due to wind loading, Tulebekova
et al. [33] identified 8 stable modes by using the data-driven stochastic subspace
identification technique (DD-SSI). Modes 1-3 are all below 1 Hz. This is within the
expected range for a structure of this size, and modes 1-3 are therefore considered
as whole structural modes. The frequencies of modes 1-3 are shown in table 2.3b.
Modes 4-8 are in the range 1.8-4.7 Hz, and considered to be local modes of the
pergola structure.



Chapter 2: Background 31

(a) After completion

(b) During construction

Figure 2.14: Setup of monitoring system [34]

Table 2.3: Fundamental frequencies of Mjøstårnet

(a) Numerical model by SWECO

Mode Frequency [Hz] Mode directionality
1 0.33 Longitudinal
2 0.37 Transverse
3 0.59 Torsional

(b) Measured (DD-SSI)

Mode Frequency [Hz] Mode directionality
1 0.50 Transverse
2 0.54 Longitudinal
3 0.82 Torsional

By comparing the results, it is clear that the numerical model produces frequencies
that are lower for all three modes. It can be seen that the frequencies of mode
1 and 2 are close for both cases. In addition, the directionality of the first two
modes are switched. Tulebekova et al. [33] suggests that the lower frequencies in
the numerical model are due to underestimated foundation stiffness in the model.
The change directionality might occure due to two factors: closely spaced modes
and incorrect foundation stiffness in the model.





Chapter 3

Modelling

A large portion of the time spent working with this thesis has been dedicated to
the development of a parametric model of a tall timber building. The parametric
model is programmed in Python 2.7 [35] and is designed to run in Simulia’s fi-
nite element analysis (FEA) software Abaqus [36]. The script has primarily been
developed and tested in Abaqus 2019, but is likely to work in other versions as
well. All of the user input is made in a Microsoft Excel workbook, hence little or
no prior knowledge of Python is necessary for basic use of the model. This chapter
describes modelling choices and assumptions made when creating the model. A
user manual for setting up the input workbook and running the script is provided
in Appendix A.

3.1 Choice of Software

Two deciding factors for choosing suitable software for this thesis was established
at an early stage. The first factor being that the program need to be as general as
possible and not put limitations on what parameters it is possible to study. The
second factor is the fact that the program needed to allow for a parametric ap-
proach, making it simple to run analyses where different parameters can be easily
adjusted. The FEA software Abaqus was deemed to be the best option, as it is a
powerful and well documented general-purpose FEA program capable of running
analyses of complex models and giving the user full control of the parameters of
the model. This comes at a price, as modelling with Abaqus can be a more te-
dious and demanding process compared to modelling in FEA programs that are
specialized on civil engineering structures. However, such programs is found to
be insufficient for this thesis as their modelling options is likely be too limited. In

33



34 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

addition to its modelling capabilities, Abaqus can be run through Python scripts,
making it suitable for performing parametric studies. Finally, Abaqus is compat-
ible with Simulia’s analysis tool Isight [37]. Isight allows the user to automate
simulations and by this greatly improves the efficiency of running a parametric
study.

3.2 Model Overview and Limitations

Before getting into the specifics of the model, this section will present the assump-
tions and limitations made before the development of the model started.

Type of Building

Due to the limited time available for the work of this thesis, creating a model
that is capable of representing all kinds of tall timber buildings is not achievable.
In addition, a completely generalized model would be just as easy to achieve by
modelling directly in Abaqus, as the user input needed for such a script would be
very comprehensive. One of the main benefits of a parametric model would then
have been lost.

The model is limited to only cover buildings using a post and beam system as the
main load carrying system. This system is characterised by a skeleton structure
consisting of columns and beams, typically made of glulam. The post and beam
system will hereafter be referred to as the frame. The reason for focusing on this
system, is that Mjøstårnet, the case building that will be studied in the thesis, is
built with this system. The entire script has been highly influenced by the struc-
tural system of Mjøstårnet in order to model the building as correctly as possible.

Horizontal stiffness can be added to the model by three different approaches: di-
agonal bracing, shear walls in the form of shafts and moment-stiff joints. The dif-
ferent kinds of bracing options are shown in Figure 3.1b. The script requires that
the building uses diagonal bracing, while the two other approaches are optional.

Coordinate System

The horizontal plane of the model is defined as the XZ-plane. The X-direction
is defining the direction that internal beams, used for supporting the floors, are



Chapter 3: Modelling 35

(a) The post and beam system is the main
load carrying system of Mjøstårnet.

(b) Approaches for adding horizontal stiff-
ness: 1) Diagonal bracing, 2) Shafts, 3)
Moment-stiff joints.

Figure 3.1: Structural system of the parametric model

allowed to span. These beams typically span along the short side of the building.
From this point the X-direction will be referred to as the transverse direction of the
building. The Z-direction is typically defined as the direction along the long side
of the building, and is hereafter referred to as the longitudinal direction. The Y-
direction is defining the vertical direction. The axis system is shown in Figure 3.1b.

Grid Reference System

The frame structure of Mjøstårnet is highly repetitive. A grid reference system
is therefore implemented for defining the geometry. In the horizontal plane, the
grid lines define the position of columns. Columns may only be placed at the grid
line intersections, as seen in Figure 3.2. The user also has to specify the vertical
coordinates indicating the positions of all levels of the building. This grid reference
system can be used in order to place most structural members in the building. The
system simplify the user input as the user only have to specify the location of the
grid lines and levels once.



36 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure 3.2: Grid lines and columns in the horizontal plane. Note that all columns
are placed at grid line intersections, but not all intersections hosts a column.

Parts

Modelling in Abaqus requires the user to first define parts. Each part is defined in
a local coordinate system and is independent of all other parts, before the parts
are assembled in a global coordinate system in the assembly module. In addition
to placing the parts relative to one another, the module is used to define how the
parts should interact, such as applying connections between them.

The most obvious approach would be to model each member as an individual
part, and then assemble the parts as a building in the assembly module with the
use of the built in connection tools of Abaqus. However, another way of modelling
the connections was chosen, this is explained in section 3.7. This approach does
not require the model to have individual parts for each member, as the connection
properties are assigned directly to the parts themselves. All members that overlap
in a part, will automatically be tied. This can be used as an advantage as it removes
the challenging process of defining interaction properties between many parts.

The chosen approach for modelling connections does in fact allow for the entire
model to be defined as one part. However, this would prove difficult, as it would
make assigning different properties to different members a challenging task. A
middle ground approach is therefore chosen. The model is split into four indi-
vidual parts. The first one being the frame part. This part host all beams, columns
and diagonals. The second one is the floor part, which host all the different floor
decks. The third part is the outer wall part, hereafter simply called the wall part.
Finally, we have the shaft part which is hosting all shafts. The different parts will
be discussed further on a later stage of this chapter. Each part consists of multiple
members, thus reducing the number of constraints that needs to be added in the



Chapter 3: Modelling 37

assembly module. At the same time the parts are small enough to make it possible
to access and alter the properties of each member. The different parts are shown
in figure 3.3.

(a) Frame Part (b) Floor Part (c) Wall Part (d) Shaft Part

Figure 3.3: The four different parts of the model

Finite Element Types

An important feature of a parametric model, is that it has to be relatively com-
putational inexpensive. This is necessary since many simulations are required in
order to conduct a parametric study. In order to keep the model as computational
inexpensive as possible, while still maintaining adequate accuracy, the choice of
elements is important. The entire frame part is therefore modeled using beam ele-
ments, while the floor, shaft and wall parts all are modelled using shell elements.
Shell element sections are defined by a thickness and a material. Many of the
components that will be modelled by shell elements are far more complex than
this, often consisting of multiple materials and complex section geometry. In these
cases, preliminary studies is required in order to find the shell section properties
that match the properties of the real cross-section. An example of how this can be
done is given in subsection 4.2.1.

3.3 Frame

As already stated, the script is able to model buildings which use a post and beam
structural system as the main load carrying system. This, together with the di-
agonal bracing, is what constitutes the frame part of the model. To see how the



38 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

connections within the frame are modeled, see section 3.7. All members of the
frame part are modelled using beam elements.

3.3.1 Columns and Beams

The frame part is based around the geometry of a generic frame which is defined
using the grid system. This generic geometry will hereafter be referred to as the
base frame. Columns are placed at user specified intersections of the grid lines,
and span from the first to the last level of the building. Beams are placed at every
level, except from the first. In the longitudinal direction (z-direction), beams are
only placed along the outer grid lines. However, in the transverse direction (x-
direction) beams are placed at every grid line. Thus, the internal beams only span
in the transverse direction. The placement of beams and columns in the horizontal
plane can be seen in Figure 3.5. The resulting base frame is shown in Figure 3.4.

Figure 3.4: Base frame defined by grid

It was decided to make some restrictions when it comes to the amount of different
cross-sections that can be used to the model. The simplification is done by defin-
ing sets or groups of the members, that are repeated across the entire height of
the structure and assigned the same properties. The columns are separated into
four groups: corner columns, long edge columns, short edge columns and inner
columns. The beams are separated into three groups: long edge beams, short edge
beams and inner beams. The different groups are shown in Figure 3.5. The reason
for implementing these restrictions was to simplify the user input. Having to in-
put the cross-section parameters of every member of the frame would be very
time consuming and make it hard to keep track of all the input. In a real build-



Chapter 3: Modelling 39

ing, column dimensions may be reduced towards the top, and the cross-section
of beams will vary in size depending on what type of floor they are supporting
and how long the spans are. However, it was deemed that using average dimen-
sions for the members within each group would be a satisfactory simplification
for determining the dynamic behaviour of the total system.

(a) Column groups. Red: Corner columns,
Blue: Long edge columns, Green: Short edge
columns, Yellow: Inner columns.

(b) Beam groups. Red: Long edge beams,
Green: Short edge beams, Yellow: Inner
beams.

Figure 3.5: Cross sectional groups for beams and columns, viewed in the hori-
zontal plane.

The user is given the option to alter the generic geometry of the base frame. This
can be done by removing any beam or column. It is possible to remove parts of
a column, such that the resulting column does not span the entire height of the
building. It is also possible to add single beams and columns to the frame. This
added members must span in either x-, y- or z-direction, but the placement is
not restricted to the grid, as the start and end points are defined by coordinates
and not indices of the grid. Each of the added members must be assigned a ma-
terial and cross-sectional properties. The user can decide if the members should
include connector segments as explained in section 3.7. If connector segments are
included, their properties must also be defined.

Diagonals are not affected when columns and beams are removed and added.
This includes the connector segments of the diagonals, which may result in a
few connector segments that are out of place. This has not been fixed due to
limited time, but it is also assumed to be insignificant for the performance of the
total system. The user is also able to remove the long edge beams from specified
levels. If a diagonal intersects with a long edge beam in one of these levels, the
beam in the span where the intersection takes place will not be removed. All the
options available for altering the base frame geometry, allows for great flexibility.
An example of how the base frame can be altered is shown in Figure 3.6.



40 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

(a) Base frame geometry (b) Altered frame geometry.

Figure 3.6: Example of how the base frame can be altered. Each color represent
an individually defined cross-section. Notice that the diagonal is not affected.

3.3.2 Diagonals

In addition to columns and beams, the frame part is hosting the diagonal bracing
members. Diagonals are required in order for the script to run, and need to be
placed in both the xy- and yz-plane. The diagonals are not required to be placed
in the outer walls of the building, but can be placed at the grid lines desired.
Diagonals are grouped based on if they are spanning in longitudinal or transverse
direction. For each diagonal group, the user can define the start and end level,
the start and end column, how many levels each diagonal should span across and
the vertical placement of the turning points of the diagonals. In addition, cross-
sectional parameters and material is defined for each group.

3.4 Floors

The floor part is hosting all floors, including the foundation slab. The floors are
modelled as shell elements, and the parameters of the floors are therefore the
shell thickness and material.

Timber buildings can have various types of floor. Different kinds of floor elements
made of timber is one option, but there are also examples of timber buildings
with concrete floors. Mjøstårnet utilizes both of these options. The concrete decks



Chapter 3: Modelling 41

are a combination of prefabricated elements and cast in place concrete. In order
to accommodate for various kinds of floors, an option for modelling the floors as
element based floors or as continuous decks is included into the script. Continuous
decks are simply modelled as large continuous shells without any variations in
properties.

The module based floors, on the other hand, include so called "connection-zones".
These zones are parts of the shell that can be given different properties in order
to simulate the softer behaviour of connections between the modules. This is ex-
plained further in subsection 3.7.2. Both thickness and material can be assigned
separately to the connection-zones. The difference between the two types of floors
can be seen in Figure 3.7. Preliminary tests showed that if the connection-zones
are assigned very low stiffness, local modes with frequencies interfering with the
global modes may occur.

(a) Continuous deck

(b) Module based floor. The yellow areas represent the connection-
zones, that is areas of the floors that can be assigned separate prop-
erties.

Figure 3.7: Floor types. Openings for the shafts are included in the floors. Note
that the small areas surrounding the openings have different section properties,
in order to simulate the connection between floor and shaft, see section 3.6.

The floors are connected to the transversal beams of the frame. From tests during
development of the model, it was found that the stiffness of the floors was of little
importance to the natural frequencies of the building. It was therefore decided not
to include connection-zones representing the floor-to-frame connections. In other



42 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

words, this means that the floors are tied to the frame without stiffness reduction.
One disadvantage of not representing the floor-to-frame connections, is that it
will not be possible to study the effect of adding damping in these connections
directly.

If shafts are included in the model, the script will create openings in the floor
around the shafts. If the shaft should be tied to the building a connection-zone is
also placed around the shaft openings, in order to simulate connection between
the floors and the shafts.

The floor placed at ground floor, the foundation slab, is of little importance to the
model. The approach chosen for modelling the foundations assign the foundation
stiffness directly to the columns, see section 3.8. The main purpose of the slab in
the model is to create a tie to the lower parts of the walls, and thus prevent local
modes to appear.

3.5 Walls

In a timber building with a frame as the main load carrying system, the outer
walls are rarely designed to be carrying any loads other than its self weight. This
was also the case when Mjøstårnet was designed. The numerical model made
by Sweco during design of the building does not include the stiffness contribu-
tion that the wall elements would provide. Nonetheless, it is obvious that non-
structural wall panels will affect the dynamic properties of a building. Although
wall panels usually are considered non-structural elements, they will add some
stiffness to the structure that they are fixed to. In addition, under dynamic re-
sponse, friction between the wall panels and other members are likely to occur,
thus adding structural damping. In order to study these effects, outer wall panels
are implemented into the model.

The walls are modelled using shell elements, and their properties are defined by
a shell thickness and material. The wall part is tied to the frame part, and the user
is able to decide if they only should be connected to the beams (floors for levels
without beams), or both to beams and columns.

As explained in subsection 2.5.1, the facade of Mjøstårnet consist of prefabricated
elements. It is likely that the connections between the wall elements, and between
the wall elements and the frame, are softer than the wall elements themselves.
In order to simulate this, connection-zones are created at the edges of each wall
panel. This is illustrated in 3.8. The walls are automatically partitioned based on
the grid lines and levels. Although this automated partitioning does not allow



Chapter 3: Modelling 43

for customization and fully accurate modelling of the walls, it was deemed to be
sufficiently accurate for this type of facade.

Figure 3.8: Partition of walls in order to simulate connections. The gray area is
assigned with original cross section parameters, while the dark blue areas are
assigned with connection properties.

3.6 Shafts

Every tall building have one or more shafts. The shafts are typically used for hous-
ing elevators or staircases. Technical installations such as ducts for the ventilation
system, electrical wiring and plumbing are also commonly placed in shafts. Some
structures utilize the shafts to provide lateral stiffness, however this is not the case
for Mjøstårnet [31] and Treet [15]. For tall timber buildings using shafts to provide
lateral stiffness, the shafts is often made in concrete, due to higher material stiff-
ness. Since the structural design of Mjøstårnet (and Treet) does not require the
higher stiffness of concrete, the shafts are built in cross laminated timber (CLT).

Including one or more shafts in the model is required in order for the script to run
correctly. To accommodate for the many different types of shafts, various options
are implemented in the model. The shafts are modeled using shell elements, and
can be assigned any material and section thickness. The location are set using
coordinates instead of axis numbers, so they can be placed anywhere inside the
building and are not bound to the grid. The user can choose not to connect the
shaft to the floors. In this case the the shaft itself will not be modelled, but there
will be made holes in the floors. The user also has the option to remove one of
the shaft walls.

The script only allows for a single material to be assigned to all shafts. For most



44 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

buildings, this is an accurate simplification. Also, if the shaft is made of a laminate
or composite such as CLT, the properties of the laminate needs to be modelled into
the material, since the script currently only supports homogeneous shell sections.
This can done by e.g defining a fictitious orthotropic material with parameters
that causes a similar behavior as the original laminate. For a study of the global
structural behavior this simplification is acceptable. It is also still possible to define
more accurate composite cross section manually in the Abaqus GUI after the model
is generated, if necessary.

3.7 Connections

3.7.1 Connections of Beam-type Members

In structural analysis it is common to idealize joints either as pinned or rigid,
meaning that no moment or all the moment are transferred from one member to
another trough the connection. In reality however, all joints are semi-rigid, i.e. no
connection is completely free to rotate nor completely stiff. The overall stiffness,
and therefore also the dynamic properties, of a structure depends heavily on the
stiffness of the connections, hence it is important to represent the connections as
accurate as possible when modelling and analyzing the structure.

In the parametric model made as a part of this thesis, the connections between
columns, beams and diagonals are originally modelled as rigid, but a with a short
segment at the end of diagonal and beam. To account for the reduced axial and
rotational stiffness in a connection the user can specify a fraction of the original
area and/or second moment of area to be assigned to the connector segment. The
connector segments are assigned a generalized cross section in Abaqus, meaning
that area, second moment of area about both axes and the torsional constant can
be defined independently of each other. Hence it is possible to create a connection
that is e.g. stiff when loaded axially, but almost free to rotate, or vice versa. The
mass density are adjusted automatically in the script such that the total mass is
unchanged.

In connections between a column, a diagonal and a beam, the column retains
its original cross section while the diagonal and beam gets a connector segment.
Similarly, only the beam gets connector segments when connected to a diagonal
or column (see Figure 3.9). The placement of the connector segments are selected
to represent the actual connections on Mjøstårnet (Figure 3.10) as realistically as
possible.



Chapter 3: Modelling 45

The columns are modelled as continuous along its entire length. This is because
butt joints are assumed to retain most of the stiffness of the column when loaded
in compression [38].

(a) Connection between a column, a beam
and two diagonals

(b) Connection between a diagonal and two
beams

Figure 3.9: Connections as modelled i Abaqus

(a) Connection between a column, a beam
and two diagonals

(b) Connection between a diagonal and two
beams

Figure 3.10: Connections as built, taken from IFC model provided by Sweco

Another approach to implement semi-rigid connection in the model is to cre-
ate separate parts for the columns, beams and diagonals and connect them us-
ing springs/connector elements in Abaqus. However this method would be more
complicated to implement, especially when dealing with 3D structures, and more
prone to severe errors, such as singularities, causing the analysis to fail. Therefore
the method of reducing the cross sections in parts of the member was deemed
the best for the purpose of this thesis, even though using springs/connector ele-
ments is more correct in theory. Another benefit of the method chosen is that it
is relatively easy to understand the input, who simply is fractions of the original
cross section properties. Utne [39] employed the same principle of modelling the
connections in her study of the dynamical properties of the tall timber building
"Treet" in Bergen.



46 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

3.7.2 Connections of Shell-type Members

Walls, floor and shaft are modelled with shell elements, and it is therefore required
have a solution for modelling connectors for shell-type members as well. The ap-
proach chosen is similar to what was chosen for the beam-type members. The shell
part is in it self modelled as one continuous part, but is partitioned with so called
connector-zones that can be assigned with separate properties. The placement of
the connector-zones is done differently, depending on the part it belongs to. This
is explained in the sections of the respective parts.

A few different options for altering the stiffness of the connection-zones have been
implemented in the script. First of all, the user have to specify the width of the
zone, which impact the rotational stiffness. Unfortunately, the method of using
generalized section as done for the beam-type connections is not possible to use for
shell-type sections. The two properties that define a shell section are the thickness
and the material, and both can be defined by the user for the connection-zones.
The thickness is specified as a fraction of the original thickness of the shell part.
Very low thicknesses should be used with caution, as it may lead to unwanted local
modes occurring in the connection-zones. Only being able to use the thickness
is more restrictive compared to the generalized sections used for the beam-type
connections. It is, for instance, not possible to alter the rotational and membrane
stiffness separately. It is also hard to relate the connection stiffness directly to
the stiffness of the original section. The option of choosing another material for
the connection-zone was therefore implemented, as it gives more freedom in the
modelling process.

Figure 3.11: An example of how shell-type connections are modelled using
connection-zones. The connection-zones are the light grey areas. Both the shell
thickness and the material can be altered in the connection-zones.

Another approach for choosing the connector stiffness of shell parts was also con-
sidered. This was to use the "General Shell Stiffness" approach for defining the
shell section that is available in Abaqus. The option gives full freedom, but it re-
quires the user to assemble the stiffness matrix of the section, and was therefore
considered to be overly intricate. In addition, the approach does not allow for
damping to be represented in the connection.



Chapter 3: Modelling 47

As opposed to the beam-type connections, the density of the shell connection-
zone material is not altered in order to compensate for the reduced thickness.
This is something the user needs to consider, as it will alter the mass matrix of
the structure. However, in most cases the change is likely to be negligible. Why
this was done can be explained by the additional option of assigning a separate
material to the connection zone. If the connection material have a density that is
not equal to the original material of the member, the scaling of the density would
be out of place.

3.8 Foundation

Even though a timber building is less heavy than its counterparts made of steel
or concrete there is still large forces that needs to be transferred to the ground
through the foundation, usually made of piles. The foundation stiffness are mod-
elled with six springs to ground at the bottom of each column and shaft corner.
Three springs are placed in the global x-, y- and z-direction respectively. In addi-
tion there are rotational springs about each axis. To be able to model damping,
each degree of freedom are also equipped with dashpot dampers. The user gets
the possibility to add a dashpot coefficient which relates the relative velocity to the
damping force, individually for each DOF. Both the springs and dashpots defined
for the foundation are linear, and the option in Abaqus to allow for e.g. temper-
ature dependency was not deemed necessary to implement in the code for the
parametric model.

3.9 Loads and Non-Structural Mass

Along with mass from the structural components that have been presented earlier
is the possibility to add non-structural mass. Both distributed mass and point mass
can be added to the structure. The distributed mass can be added to one or mul-
tiple floors, and is typically suitable for representing live loads. Point masses can
be added to any point of the grid. Point masses can be used to include the mass of
components that is expected to not add stiffness to the model, such as balconies.



48 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

3.10 Wind Load

There are two different ways of calculating and applying wind loads to the struc-
ture, either by using the method given in Eurocode 1 part 1-4 [23] or by specifying
a time history of the loading.

• The method given in the Eurocode is based on the calculation of equivalent
static load for determining the displacement due to the loads. The procedure
is explained in detail in subsection 2.3.3 and demonstrated through a series
of different tests in chapter 7. The wind forces calculated are converted to
line loads and applied to the columns of the frame structure.
• The second method is to specify a time history of the load. The source from

time history can either be on-site measurements or it can be generated from
a spectrum. A procedure for generating a time series from a spectrum is not
implemented in the code, but can be found in e.g. appendix A of Strømmen
[22]. The pressure load is then applied as a pressure load acting on the
surface of one of the exterior walls, as shown in Figure 3.12.

Figure 3.12: Application of pressure load

It should be noted that the method of applying wind load as a time series is only
implemented in a simple form, and some tweaking of the python scripts should be
expected to achieve the desired performance. For instance, the loading is currently
only applied in the transverse direction and the direction can not be changed in



Chapter 3: Modelling 49

the Excel input file, it has to be changed through editing the script. The magnitude
of the load (i.e. the factor who scales the amplitude) also has to be defined directly
in the code, or changed in the Abaqus GUI after the model is generated. It should
also be considered to apply the load as line loads directly on the frame structure to
avoid excessive local deformations of the wall panels (depending on the specified
stiffness/thickness of the connector zones and the wall panels it self).

3.11 Materials

The user is able to define as many materials as desirable. The material defined can
be either isotropic, transversely isotropic or orthotropic. The stiffness parameters
are defined by engineering constants, as explained in subsection 2.1.2. The stiff-
ness relations of the different material types are defined by two, five and nine
parameters, respectively. The material density is also user specified.

3.12 Damping

Damping can be added to the structure in different ways: as material damping,
as damping in connections, as damping in the foundations and as global damping
for the entire model. The approach for adding damping to the foundations is ex-
plained in section 3.8. Damping in the connections is in reality material damping
that is added to the material assigned in the connector-zones.

On the material and element level, damping can be added in three different ways:
as Rayleigh damping, as composite damping or as structural damping. The op-
tion to have different damping parameters for the main members and the con-
nection segments/zones assigned with the same material is made possible by the
script creating a duplicate of the material, for use in the connection segments. The
copy of the material is identical with the original material except for the damping
parameters. The copy is made automatically, without user action. The different
damping types are explained in short below, for further information the reader
is encouraged to read the Abaqus documentation [29], especially section 2.5.4
Damping options for modal dynamics.

• Rayleigh damping is defined by the two factors ↵ and � (or ↵0 and ↵1)
who relates the element damping matrix to the mass and stiffness matrices
respectively. The damping matrices for each element is then assembled to a
system damping matrix. The Rayleigh damping is viscous, i.e. the damping



50 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

force is proportional to the velocity. Rayleigh damping also discussed in
subsection 2.2.3.
• Composite damping is defined as a fraction of the critical damping for each

material. The values defined for each material is converted into mass weighted
values for the modes specified to include composite modal damping on the
global/modal level. The composite damping is also viscous, like the Rayleigh
damping.
• Structural damping differs from composite and Rayleigh damping in the

way that it is proportional to the forces in the structure instead of being
velocity proportional. Due to this, structural damping is probably the most
accurate way of modelling damping in timber structures, however Abaqus
has some restrictions to when structural damping can be used (assumes
velocity and displacements 90° out of phase) [29].

On the modal/global level direct modal, composite modal and Rayleigh damping
can be specified.

• The Rayleigh damping on a global is similar to the Rayleigh damping on a
local level. ↵ and � values are defined for selected modes and applied to
the entire structure.
• Direct modal damping allows for damping ratios to be applied directly to

one or more modes of vibration.
• The composite damping on the global/step level is strongly related to the

composite damping on the material level. The damping ratios that are defined
for each material are converted into damping ratios on the global level, us-
ing the following equation from section 2.5.4 in the Abaqus documentation
[29].

⇣↵ =
1

m↵
�M
↵ ⇣mM MN

m �N
↵ (3.1)

where:
⇣↵ = Damping ratio in mode ↵
⇣m = Damping ratio for material m
M MN

m =Mass matrix of material m
�M
↵ = Eigenvector corresponding to mode ↵

m↵ = Generalized mass associated with mode ↵

3.13 Analysis Steps

Before running an analysis in Abaqus, one or more analysis steps must be defined.
An analysis step is connected to a certain type of analysis procedure, such as a



Chapter 3: Modelling 51

static analysis, eigenvalue/vector extraction, dynamic time-domain analysis etc.
The following analysis steps are currently implemented in the scripts of the para-
metric model:

• The first step is a general static step where gravity is applied, more loads can
be added manually in Abaqus after generating the model or by modifying
the script. The step is implemented in the script as a linear step.
• The second step is a frequency step used to extract the natural frequencies

and mode shapes of the structure. The frequency step is also necessary for
the upcoming modal dynamics steps.
• The third step is called "Free Vibration" and is a modal dynamics step. The

purpose of this step is to determine the logarithmic decrement of the build-
ing, caused by the different damping methods applied to the model (ref.
section 3.12). An impulse load is applied at the top of the building in the
wind direction specified in the wind-load section of the input file. The build-
ing is then allowed to freely vibrate and the logarithmic decrement is cal-
culated later in the script based on the magnitude of the peaks. The free
vibration step is also used to determine the first natural frequency (in the
wind direction) for the wind calculations. This step is by default deactivated
when using the TTB_3D.py script for running the analysis, however it is a
important part of the procedure programmed in the TTB_3D_EC_Wind.py
script.
• The fourth step is also a modal dynamics step. In this step a dynamic pres-

sure load is applied to one of the walls, the load amplitude is defined in a
.txt file that can be changed by the user (ref. subsection A.2.18). This step
may be appropriate to use for analyzing the response of the structure to a
specific time-history of wind loading, either measured or generated from a
wind spectrum. In this thesis this step is not used for anything, however it
is implemented such that it may be put to use later.
• The final step is a static step used to calculate the response (deflection) of

the structure to wind load according to the method given in Eurocode 1 -
part 1.4 [23]. See subsection 2.3.3 and subsection A.2.17 for more informa-
tion on the wind calculations. As for the free vibration step this step is only
a part of the procedure in the TTB_3D_EC_Wind.py script.

Additional analysis steps can be added manually in GUI of Abaqus CAE, if needed.





Chapter 4

Case Study: Mjøstårnet

This chapter explains how the different input to the parametric model were set to
recreate "Mjøstårnet" [30][31]. A brief overview of the structural system can be
found in section 2.5. The modelling is based on Revit- and IFC-models provided
by Sweco, in addition to drawings of different components, provided from their
respective suppliers. Some of the information used in the modelling process is
confidential, and thus can not be presented in detail in this chapter. However, the
input file created Basemodel_input.xlsx is available in the digital appendix. The
input that is not discussed in this chapter is taken directly from one of the sources.
The "base-model" established in this chapter is later used for a sensitivity study
presented in chapter 5. The base-model and the results from the sensitivity study
are then used to pick a few important parameters which are further improved by
the use of a model updating technique (chapter 6), with the objective of making
the model behavior as close to the real life behavior of the tower as possible.

4.1 Frame

The material used for the frame of Mjøstårnet, including the diagonals, is glulam
with strength classes GL30c and GL30h [31]. Simplifications in the model, does
not allow for detailed material specification for single members, and since GL30c
is the strength class most prevalent in the building, it was decided to assign GL30c
to all frame members. The influence of using GL30h in certain members was con-
sidered to have negligible effect on the dynamic behavior of the building. The
material used for the model is defined as transversely isotropic, and the material
parameters are in accordance to NS-EN 14080:2013 [32].

53



54 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

As explained in section 3.3, predefined groups of cross-sections are defined in
the model. This puts some restrictions to the modelling of Mjøstårnet. In the real
structure, some of the columns are tapered towards the top. The cross-sections of
the internal beams also vary depending on the kind of floor they are supporting
as well as their span length. Neither of these variations are included in the base
model, where all members of a column group have the same cross-section along
their entire lengths, and only one cross-section is assigned for all internal beams.
Instead the cross-sectional groups are represented by a reference cross-section.

The frame is modelled using B32 elements, an element meant for three dimen-
sional models, that uses quadratic polynomials for interpolation of the displace-
ments [28]. The elements use Timoshenko theory, and therefore includes the ef-
fects of transverse shear deformation. This is especially required for connection
segments, as they can have a relatively high height to length ratio.

The most uncertain part of the frame, is the connections. Preliminary calcula-
tions of connection stiffness were not conducted. For the base model a fraction of
0.2 of the original cross section area/2nd moment of area was applied to all the
connections. The length of the connection zones is set to be equal to the largest
dimension of the original cross-section for the respective group. The limit for the
use of Timoshenko elements is when the cross-section dimension is approximately
1/8 of the element length. If the ratio is greater, the accuracy of the results are no
longer guaranteed [28].

Using a segment length equal to the largest dimension of the original cross-section,
allows for accurate results for a connector cross-section with a dimension that is
somewhere between 10-20% of the original cross-section. This raises the question
if the modelling approach for the connections is suitable for relatively stiff connec-
tions, as the segment length would have to be very large for these connections in
order to satisfy the limitations of the Timoshenko theory. This possible source of
error will not be studied further in the thesis, and it is assumed that the modelling
approach produces result with adequate accuracy.

4.2 Floors

"Mjøstårnet" uses a combination of 300 mm concrete floors in the upper levels
(levels 12-18) and prefabricated timber elements in the lower levels (levels 2-11).



Chapter 4: Case Study: Mjøstårnet 55

4.2.1 Timber Floor Elements

The timber floor elements are fabricated by Moelven and is a part of their "Trä8"
system. "Trä8" is Moelvens system of prefabricated structural elements including
columns, beams, floors and bracing, designed for relatively large buildings with
spans up to 8 meters. A typical floor element used in Mjøstårnet is 2.4 meters
wide and spans around 7 meters. The upper flange is a Kerto-Q LVL (laminated
veneer lumber) plate, and is covered by a acoustic panel and a thin layer of cast
in-situ concrete after installation. The bottom flanges consist of multiple pieces of
structural timber and is not continuous over the width of the elements. Between
the upper and lower flanges the web is of glued laminated timber (Glulam), with
some stiffening members of Kerto-S LVL placed perpendicular to the span direc-
tion. See Figure 4.1 for an illustration of a floor element.

Figure 4.1: Trä8 floor element, figure from [40]

Detailed modelling of every single floor element in the global finite element model
would probably be the most accurate approach, but also very complex, inefficient
and computationally demanding. The intended use of model is to study the overall
performance of the system, and thus a simpler approach to the modelling of floors
is deemed sufficient. Instead a detailed model of a single floor element was made
in Abaqus using a fine mesh of solid elements to achieve high accuracy. The model
is shown in Figure 4.2, different colors indicate different materials. The material
data used in the model are mean values (see Table 4.1), and are acquired from
Metsä Wood [41], CEN [11] [12] [32] and Nesheims script [42].

Loads were applied separately in all three directions and the resulting deforma-
tions were measured. Then the floor element was modelled using a simple shell
element, see Figure 4.3. Identical loads and boundary conditions equivalent to
those of the solid model were introduced. Then an optimization routine made in
Simulia Isight [37] were used to find the combination of the material parameters
E1, E2, E3 and the section height that gives deformations similar to the results



56 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Table 4.1: Material data used in Abaqus model. Density and stiffness are of units
kg/m3 and MPa respectively.

Material ⇢ E1 E2 E3 ⌫12 ⌫13 ⌫23 G12 G13 G23
Kerto-Q 510 10500 2200 130 0.11 0.81 0.7 820 430 22
Kerto-S 510 13800 450 130 0.61 0.74 0.6 600 600 11
C24 Timber 420 11000 370 370 0.39 0.49 0.64 690 690 30
GL32C 450 13700 460 460 0.39 0.49 0.64 850 850 30
Acustic Plate 250 162 162 162 0.3 0.3 0.3
B30 Concrete 240 26600 26600 26600 0.2 0.2 0.2

(a) With LVL flange, acoustic plate and concrete
layer

(b) Upper flange removed

Figure 4.2: Detailed Abaqus model of Trä8 floor

from the detailed model. To limit the number of unknown variables the Poisson
ratios where set to 0, and all shear moduli was given fixed values of 130 MPa. The
results from the optimisation are presented in table 4.2. It can be seen that the
error is relatively low, hence the shell element can be used as a relatively good
approximation to the floor. Using the simplified shell has numerous benefits, with
the most important being a significant reduction in computational time due to the
reduction in dofs. In addition to much simpler modelling (or faster model gener-
ation when using parametric modelling) and less sources of error when it comes
to e.g. boundary conditions.

Table 4.2: Isight results

Relative Error
Run t E1 E2 E3 Objective func. Lengthwise Transverse Out of plane
Initial 0.4 2600 1300 1300 7.5239 �5.2273 �0.0232 �2.5785
Best 0.238 59866 100 10352 0.0095 0.0304 �0.0444 �0.0304

The timber floors are modelled with connection-zones in order to simulate con-
nections between the element. In reality, the width of the elements varies, but
the script only allows for a single element width. An element width of 2.4 m was
deemed to be representative. The width of the connector zones were set to 250
mm, equal to the thickness of the original cross-section. The material used in the
zone is also similar to the material used for the timber floor elements. A thickness



Chapter 4: Case Study: Mjøstårnet 57

Figure 4.3: Trä8 floor modelled using shell elements

fraction of 0.1 was chosen as a starting point. This value is not based on any calcu-
lations, and is purely an initial guess. The connection-zones for the floor-to-shaft
connections are assigned with the same properties.

4.2.2 Concrete Floors

The concrete floors are assumed uncracked, and can therefore be modelled by an
isotropic material with the properties as shown in Table 4.3. The properties are
taken from Nesheim [42]. The thickness of the floors is 300 mm. The concrete
floors are modelled as continuous shells, as they are partly cast in place.

Table 4.3: Material properties used for the concrete floors

Parameter Density Young’s Modulus Poisson’s ratio
Value 2400 kg/m3 26600 MPa 0.2

For the floor-to-shaft connections of the concrete floors, the thickness ratio is set to
0.1. The width of the connection zone is set to 300 mm, the same as the thickness
of the original floor. The material used in the connection zone is the same as for
the concrete floors.



58 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

4.3 Walls

4.3.1 Shaft Walls

Since the shaft walls are loaded almost exclusively in-plane, lower accuracy of
the out of plane bending stiffness is accepted. This makes it possible to make the
following simplification (Equation 4.1), if we assume that only the layers oriented
in the direction of the load contributes to the stiffness:

Eeq,i = EC LT ·
Ai

ATot
(4.1)

where:

EC LT = The Young’s modulus of a CLT lamella/layer in its span direction
Eeq,i = The equivalent Young’s modulus in direction i
Ai = The total cross sectional area of layers with span direction i
ATot = The total cross sectional area of all layers

As a as a result of the aforementioned the CLT panels can be modeled using a
homogeneous shell section with thickness t, Eeq,1 and Eeq,2 as the Young’s moduli
in-plane and E3 out of plane. The material parameters are from Unterwieser and
Schickhofer [43], based on CLT with bending strength of 24 MPa [31]. Detailed
data about the thickness and number of layers of the CLT walls were not available,
but pictures from Abrahamsen [31], showed that cross-sections with both three
and five lamellae were used. As explained in section 3.6, it is only possible to
assign one section to all shafts of the model. It was decided to use a cross-section
of five lamellas in the model of Mjøstårnet. The parameters used are given in
Table 4.4.

Table 4.4: CLT - Modeling Parameters

Parameter NLa yers Thickness Density EC LT Eeq,1 Eeq,2 E3
Value 5 150mm 420kg/m3 11600 MPa 6960MPa 4650MPa 300 MPa

Note that it was decided to attach the shaft walls to the building, contrary to how
the building was designed. The reason for doing this is that it is believed that even
though it was not designed for it, some stresses will be transferred from the floors
to the shaft. The connection-zones around the shafts was intended to simulate the
real behaviour of the structure.



Chapter 4: Case Study: Mjøstårnet 59

4.3.2 Exterior Walls

The exterior wall panels is a more complex structure than the CLT to represent
using shell elements. Ideally a similar approach as for the prefabricated floor ele-
ments (subsection 4.2.1) could be taken, with detailed modeling of a single mod-
ule followed by tweaking the thickness and material parameters of a shell to re-
create the results of the detailed model. However, lack of detailed drawings, as
well as limited time, lead to the wall stiffness being determined by engineering
judgement combined with trial and error.

The stiffness-contribution from the wall panels was assumed to be very low due
to the way it is connected to the building (and the fact that they were left out of
the original FEA model by Sweco), but still high enough to avoid local modes with
low frequencies. With that in mind a thickness of 0.450 m and a isotropic material
with a Young’s modulus of 2⇥ 107 N/m2 were chosen for the exterior walls. The
density was set to 250 kg/m3. This is a rough estimate based on the density for a
timber framing exterior wall from Byggforskserien [44].

4.4 Live Loads and Additional Mass

The pergola placed on the roof of Mjøstårnet, is included only as a non-structural
mass in the model. This is done for sake of simplicity, as including the option for
adding architectural elements in the script would be difficult to generalize. How-
ever, it would be possible to include the pergola as part of the frame by adding
single members to the frame. Even so, the pergola was considered to have little
influence on the structure other than its mass contribution, and is therefore repres-
ented as a uniformly distributed load acting on the roof in the model. The weight
of the pergola was converted to an equivalent distributed load of 101.3 kg/m2.

The balconies of Mjøstårnet are also assumed to have no impact on the structural
performance, and are thus represented by non-structural point masses. The weight
of the balconies were roughly estimated to be 2500 kg, including live load.

Eurocode 1 part 1-1 [45] states values for the imposed loads on the structure. The
imposed loads are depending on the intended usage of the the respective area, and
includes things like people, furniture etc. For Mjøstårnet the usage categories and
characteristic loads listed in Table 4.5 were identified.

To account for the fact that the the areas are not loaded with the full magnitude
of the imposed loads at all times, the quasi-permanent load combination for Euro-



60 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Table 4.5: Imposed loads

Usage Category (1) Levels qk

(2)

Offices B 0� 6 3.0kN/m2

Hotel A 7� 10 2.0kN/m2

Apartments A 11� 16 2.0kN/m2

Rooftop Terrace A 17 4.0kN/m2

(1): Table NA 6.1 in [45] (Norwegian annex)
(2): Table NA 6.2 in [45] (Norwegian annex)

code 0 [46] were used and the resulting loads were converted into a equivalent
distributed mass by dividing the distributed load by the gravitational acceleration,
g = 9.81m/s2. The resulting masses are listed in Table 4.6:

Table 4.6: Distributed mass

Usage  2
(1) Dist. Mass

Offices 0.3 91.8 kg/m2

Hotel 0.3 61.2 kg/m2

Apartments 0.3 61.2 kg/m2

Rooftop Terrace 0.3 122.4 kg/m2

(1): Reduction factor - Table NA.A1.1 in [46]

4.5 Finite Element Types

The element types used in the different parts of the model are presented in Table 4.7.
The element types are chosen based on efficiency, while still retaining good ac-
curacy.

Table 4.7: Elements used in the finite element analysis of Mjøstårnet

Part Element Type Description
Frame B32 3-noded quadratic "Timoshenko" beam element
Floors S4R Quadrilateral 4-noded element with reduced integration
Exterior Walls S4R Quadrilateral 4-noded element with reduced integration
Shaft Walls S4R Quadrilateral 4-noded element with reduced integration

4.6 Convergence Study

Prior to the main part of the parameter study, the convergence of the FEA-model
(see section 2.4) was checked to ensure that the output parameters (eigenfrequen-



Chapter 4: Case Study: Mjøstårnet 61

cies) is of sufficient accuracy. The element size were changed in steps ranging from
⇡ 10m to ⇡ 0.1 m. The smallest mesh size is assumed to be the most accurate but
the number of elements and nodes becomes large and the calculation extremely
inefficient.

0246810

Element Size [m]

0.95

0.975

1

1.025

1.05

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
cy

(a) Frame

00.511.522.53

Element Size [m]

0.95

0.975

1

1.025

1.05

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
cy

(b) Walls

0246810

Element Size [m]

0.95

0.975

1

1.025

1.05

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
cy

(c) Floors

0246810

Element Size [m]

0.95

0.975

1

1.025

1.05

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
cy

(d) Shafts

Figure 4.4: Convergence of different parts. Frequencies are normalized w.r.t the
most accurate mesh.

The study (Figure 4.4) found that an element size of 1m ensures high accuracy
(less than 1% deviation from the most accurate mesh) while being significantly
faster than the finer mesh. Note that only the convergence of the two first eigen-
frequencies are studied, if e.g. higher vibration modes or stresses/strains were
to be studied the convergence is typically much slower. Note that the analysis
failed when the element size was set to >3 m in the walls Figure 4.4b. Also the
convergence of the shafts are somewhat doubtful in the way that it is clearly not
monotonic, however since the deviation in the results are relatively small it is still
deemed acceptable for the purpose of this study.



62 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

4.7 Simulation Results

The results from running a simulation using the input described in this chapter is
presented in Table 4.8 and Figure 4.5. The results only show the first three funda-
mental modes, as the higher-order modes are dominated by local modes. These
local modes may occur due to weaknesses in the model, and will therefore not be
found in the real structure. Mode 1 is bending in the transversal direction. Mode
2 is mainly bending in longitudinal direction. However, as seen in Figure 4.5e, the
mode also includes some torsional movement. Finally, mode 3 is purely a torsional
mode.

In Table 4.8 the results from the base model are compared to the measurements
based on ambient vibrations (subsection 2.5.3) and the frequencies produced by
the numerical model by Sweco (subsection 2.5.2). The base model produce fre-
quencies that are considerably lower than what is measured. A deviation from
the measurements was expected due to many of the input parameters in the base
model being highly uncertain. However, the mode shapes are similar in terms of
direction. It is at the time of writing not possible to study the exact mode shapes
of finished building, due to limitations in the monitoring equipment.

The numerical model developed by Sweco produces frequencies that are lower
compared to the base (parametric) model. The higher frequencies in the para-
metric model, is likely to be due to exterior walls being included and the shaft
being connected to the rest of the building. Neither of which are included in the
other numerical model. More importantly, the mode shapes produced by the two
models differ (see Figure 2.13). By visual verification, it can be seen that mode
1 and 2 are opposite in the two cases, while mode 3 is similar for both models.
Since the main difference between the two models is the inclusion of shafts and
exterior walls in the base model, it is likely that the change of modes is linked to
this.

Table 4.8: Fundamental frequencies of base model compared to measured fre-
quencies and results from numerical model used for design.

Frequency Nr. Base Model Measured Numerical Model by Sweco
f1 0.39 Hz 0.50Hz 0.33 Hz
f2 0.41 Hz 0.54Hz 0.37 Hz
f3 0.63 Hz 0.82Hz 0.59 Hz



Chapter 4: Case Study: Mjøstårnet 63

(a) Mode 1 in XY-plane (b) Mode 2 in YZ-plane (c) Mode 3

(d) Mode 1 in XZ-plane (e) Mode 2 in XZ-plane (f) Mode 3 in XZ-plane

Figure 4.5: The first three fundamental modes of the base model. The grey parts
show the undeformed geometry.





Chapter 5

Sensitivity Study

A sensitivity study is performed to determine the influence of a selection of the
input parameters on the model output. As a starting point the input of the para-
metric model described in chapter 3 was set to imitate Mjøstårnet (see chapter 4
for details on the base setup), the excel workbook containing the input used is
also provided in the digital appendix. Then the variables were changed (one by
one) in relatively small steps in intervals chosen independently for each variable.
Simiulia’s software Isigth including the DOE (Design of Experiment), Excel and
Simcode components was used to update the parameters and run the analyses
(see Figure 5.1), post processing was done in Matlab.

The frequencies of the three first vibration modes were chosen as the output vari-
ables in this study. The two first modes are bending modes in the x- and z-direction
respectively, and the third is a torsional mode rotating about the height (y-) axis
of the tower. The reason for limiting the sensitivity study to only three modes, is
that preliminary tests showed that only these three are consistent for a variety of
different parameters. Higher global modes will be swapped with local modes with
low frequency for certain parameter inputs, and can therefore not be studied. In-
put parameters studied includes variables such as axial and rotational stiffness of
connections, foundation stiffness, material parameters etc.

65



66 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure 5.1: Isight setup for a parameter study

5.1 Vertical Stiffness of Foundation

The model is equipped with springs at the end of each column to simulate the
stiffness of the foundation. The ground conditions at the site of Mjøstårnet were
challenging and there is a huge amount of uncertainty related to the stiffness. A
large span of spring stiffness values, ranging from 1⇥ 108 N/m to 2⇥ 109 N/m
per spring, were analysed in the sensitivity analysis due to the high level of un-
certainty.

The analysis showed that the vertical stiffness has great impact on all three fre-
quencies. The tower is basically a cantilever beam clamped to the ground. When
the stiffness is low, the tower will rotate at it’s base while the tower will act as
a rigid body. As the stiffness increases the base rotation will be reduced and the
mode will be gradually more depending on the tower bending. The first mode
of the tower are showed in Figure 5.3, with low and high foundation stiffness
respectively.

Another interesting observation that can be seen in Figure 5.2 is that the gap
between the first two frequencies, i.e. the bending modes, are decreasing as the
foundation stiffness is increasing. In fact, another analysis with even higher stiff-
ness confirmed that if the stiffness gets high enough the direction of the two first
modes will switch, i.e. what has previously been mode 1 will become mode 2 and
vice versa. The cause of this is most likely that the length of building in the direc-
tion of first mode the are less than half the length in the direction of the second.



Chapter 5: Sensitivity Study 67

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Spring Stiffness [N/m] 109

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

F
re

q
u
e
n
cy

 [
H

z]

Foundation - Vertical (Y) Stiffness

Figure 5.2: The three first eigenfrequencies as a function of vertical foundation
stiffness

(a) Soft foundation (b) Stiff foundation

Figure 5.3: The first mode shape of the tower with high and low foundation
stiffness. Notice the difference in base rotation and bending.



68 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

5.2 Horizontal Stiffness of Foundation

Similarly to the vertical direction (section 5.1) the model also has the possibil-
ity to independently change the spring stiffness in the two orthogonal horizontal
directions. Due to the mainly vertical orientation of the piles used as founda-
tion, it is assumed that the horizontal stiffness is considerably lower than the
vertical stiffness. The analysis is therefore ran in the interval from 5⇥ 107 N/m to
2⇥ 109 N/m, results in Figure 5.4).

0 0.5 1 1.5 2

Spring Stiffness [N/m] 109

0.3

0.4

0.5

0.6

0.7

F
re

q
u
e
n
cy

 [
H

z]

Foundation - Horizontal (X) Stiffness

(a) X-Direction

0 0.5 1 1.5 2

Spring Stiffness [N/m] 109

0.3

0.4

0.5

0.6

0.7

F
re

q
u
e
n
cy

 [
H

z]

Foundation - Horizontal (Z) Stiffness

(b) Z-Direction

Figure 5.4: The three first eigenfrequencies as a function of horizontal foundation
stiffness

The horizontal foundation stiffness has little influence on the frequencies, except
for when the stiffness is very low (Ø 108 N/m). As for the vertical springs (sec-
tion 5.1), low stiffness causes the modes to be dominated by rigid body motion.
Hence for the first and second mode who are translational modes, the building
will "slide" sideways at the base. While for the torsional mode, the building will
rotate at its base.

5.3 Rotational Stiffness of Foundation

The final test performed on the foundations is an analysis of the effects of the
rotational stiffness of the support of each individual column. The rotational stiff-
ness tested ranged from 0 N/rad to 1015 N/rad, meaning that its tested from com-
pletely free to rotate, up to a such a high stiffness that it is effectively rigid (mag-
nitudes stiffer than the column it self). To limit the amount of test, all three rota-
tional degrees of freedom were changed at the same time.



Chapter 5: Sensitivity Study 69

0 1 2 3 4 5 6 7 8 9 10

Spring Stiffness [N/rad] 1014

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

F
re

q
u

e
n

cy
 [

H
z]

Foundation - Rotational Stiffness

Figure 5.5: The three first eigenfrequencies as a function of the rotational stiff-
ness

Figure 5.5 shows that changing the rotational stiffness is of little significance for
the three lowest frequencies. A small change can be spotted at the lower end of
the interval, but it is tiny compared to the changes caused by e.g. changing the
vertical stiffness (section 5.1).

5.4 Axial Stiffness of Connections - Frame

To study the influence of axial stiffness in the connections on the eigenfrequencies,
the area of the beam/diagonals are reduced in a segment near each connection.
The modelling choices are discussed further in section 3.7. The area in the con-
nector zone is adjusted in a interval from AConnector

AOriginal
= 0.05 to AConnector

AOriginal
= 1.0, where

AOriginal and AConnector is the area of the main part of the beam/diagonal and the
area of the connector element respectively. The effect of reducing and increasing
the area of the connector were done separately for diagonals (Figure 5.6a) and
beams (Figure 5.6b)

Figure 5.6a shows that the eigenfrequencies are highly dependant on the axial
stiffness of the connections connecting the diagonals to the rest of the structure.



70 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

0 0.2 0.4 0.6 0.8 1

Fraction of Diagonal Area

0.3

0.4

0.5

0.6

0.7
F

re
q
u
e
n
cy

 [
H

z]

Diagonal Connector - A

(a) Diagonal

0 0.2 0.4 0.6 0.8 1

Fraction of Beam Area

0.3

0.4

0.5

0.6

0.7

F
re

q
u
e
n
cy

 [
H

z]

Beam Connector - A

(b) Beams

Figure 5.6: The three first eigenfrequencies as a function of connector cross sec-
tion area

This is due to the truss like structural system of Mjøstårnet, which relies heavily
on axially loaded diagonals for providing the horizontal stiffness of the building.
As a result of the large diagonals making up most of the horizontal stiffness of
the building, changing the stiffness of the beam connections affects the lowest
frequencies significantly less, as shown in Figure 5.6b.

5.5 Rotational Stiffness of Connections - Frame

The effects of altering the rotational stiffness of the connections are studied in a
similar way as the axial stiffness. In this case the second moment of area, I , are
changed instead of the area, while the Young’s moduli and segment lengths are
kept constant. The rotational stiffness about both the weak and the strong axis are
modified simultaneously, while the torsional stiffness are assigned a fixed value
and not considered any further in this thesis. The results of analyses with I11 and
I22 of the connector segment in the interval between 5% and 100% of the original
beam I11 and I22 are presented in Figure 5.7

From Figure 5.7a it is clear that the rotational stiffness of the diagonal connections
has hardly any impact on the lower modes of the building. Again this is because
the diagonals are almost exclusively subjected to pure axial loading. However,
changing the rotational stiffness of the beam connections has a significant effect,
especially on the first and third eigenfrequency, likely because there are more
beams spanning in the direction of the first mode.



Chapter 5: Sensitivity Study 71

0 0.2 0.4 0.6 0.8 1

Fraction of Diagonal 2nd Moment of Area

0.3

0.4

0.5

0.6

0.7
F

re
q
u
e
n
cy

 [
H

z]

Diagonal Connector - I

(a) Diagonal

0 0.2 0.4 0.6 0.8 1

Fraction of Beam 2nd Moment of Area

0.3

0.4

0.5

0.6

0.7

F
re

q
u
e
n
cy

 [
H

z]

Beam Connector - I

(b) Beams

Figure 5.7: The three first eigenfrequencies as a function of connector second
moment of area

The results of this analysis combined with the results from section 5.4 clearly
shows that the building relies both on axially loaded diagonals and some moment
resistance in the corners of the frames to make up the horizontal stiffness, with
the contribution from the diagonals being the most significant.

5.6 Stiffness of Floor to Shaft Connections

The stiffness reduction in connections between the floors and shafts are simu-
lated by a "connection-zone" in the floors, located at the boundary of the shafts
(see subsection 3.7.2). The shell thickness inside the zone is adjusted to reduce
or increase the stiffness. If the thickness, and as a consequence the stiffness, of
the zone become to low, local modes with low frequencies will arise and make
the results of the analysis invalid (see figure Figure 5.9). An example of a false
result caused by local/spurious modes can be seen in Figure 5.8, where one of the
measurements of the third frequency is clearly wrong.

The sensitivity study are run with connector thicknesses in the interval from 0.4%
to 100% of the original floor. Thinner than 0.4% all the frequencies would be local
modes, and any thicker than 100% would not represent a realistic connection.



72 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of Original Thickness

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

F
re

q
u
e
n
cy

 [
H

z]

Floor to Shaft Connection

Figure 5.8: The three first eigenfrequencies as a function of shaft to floor con-
nector thickness

Table 5.1: Comparison of analysis without ties and with low connector stiffness

Frequency Nr. Without Ties With Connector Zone(1)

f1 0.373Hz 0.393Hz
f2 0.381Hz 0.408Hz
f3 0.622Hz �(2)

(1): Connector zone thickness 0.4% of original floor thickness.
(2): Third frequency invalid due to local modes.

In addition to the results plotted in Figure 5.8, an analysis with the ties between
the floors and the shaft entirely removed were performed. The results of this
analysis compared to the results with low connector stiffness are presented in
Table 5.1.

Ideally there should be very little gap in the frequencies between the analysis
without ties and the analysis with very low connector zone stiffness. However, as
shown in Table 5.1 there is a larger difference in the frequencies than expected. A
possible explanation for this is that the frequencies are highly sensitive to changes
in stiffness when the stiffness of the connector are very low (i.e. lower than what
is possible to model using the approach with connector zones with reduced thick-
ness), but converges quickly as the stiffness increases.



Chapter 5: Sensitivity Study 73

Figure 5.9: Illustration of the local modes that arise in the floor-to-shaft
connection-zones when the connector thickness is set lower than 0.4%. Walls
and shafts are hidden in the figure.

5.7 Stiffness of Connections Between Floor Modules

The floors who are made with prefabricated Trä8 modules (see subsection 4.2.1)
are modelled with longitudinal connection zones every ⇡ 2.4 m to represent the
interface between the elements. The shell thickness of all the connection zones
was adjusted in the interval from 0.1% to 100% of the original floor thickness for
the sensitivity study. No local modes interfered with the frequencies of interest in
the interval chosen.

All the three lines in Figure 5.10 are flat, hence the connector stiffness between
the modules has no visible influence on neither of the first three modes of the
structure.



74 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of Original Thickness

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

F
re

q
u
e
n
cy

 [
H

z]

Timber Floor Connection

Figure 5.10: The three first eigenfrequencies as a function of floor module con-
nector thickness

5.8 Stiffness of Wall to Frame/Floors Connection

At the outline of each exterior wall panel there are connection zones. The connec-
tion zones makes it possible to regulate the stiffness of the connection between
the prefabricated wall modules and the frame structure and/or the floors. Due to
the issue with local/spurious modes the lowest shell thickness possible for sensit-
ivity study was found to be approximately 4% of the original wall thickness, while
the upper limit is set to 100% as for the other analyses.

The results presented in Figure 5.11 shows that the frequencies of the second and
third modes are influenced by the stiffness of the wall connections quite heav-
ily. The first mode on the other hand remains more or less unchanged over the
thickness interval tested. The same trend can be seen in the study of the material
stiffness in the exterior walls section 5.11, where the second and third frequency
increases with increasing material stiffness, while the first frequency seems relat-
ively unaffected.



Chapter 5: Sensitivity Study 75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of Original Thickness

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

F
re

q
u
e
n
cy

 [
H

z]

Wall Connection

Figure 5.11: The three first eigenfrequencies as a function of wall connector
thickness

5.9 Material Stiffness - Frame

The sensitivity of the fundamental eigenfrequencies to changes in the material
stiffness of the glulam frame structure is tested. Timber is a natural material where
the mechanical properties will vary. The Norwegian standard NS-EN 14080 [32]
gives values for both mean (i.e. 50%-fractile) and 5%-fractile stiffness. The mean
values are typically used for serviceability calculations, while the 5%-fractile is
more conservative and used for ultimate limit state calculations. In the sensitivity
analysis the mean stiffness of GL30c glulam is used as a starting point, and a total
of 15 values in the interval from 70% to 130% of the mean stiffness are analysed.
The interval chosen should cover all realistic values of the stiffness for the given
strength class. The parallel (E0) and the perpendicular to grain (E90) Young’s mod-
uli are assumed to be dependant on the same factors (e.g. growth rate, moisture
etc.), hence they are multiplied with the same coefficient and changed simultan-
eously for the purpose of this analysis.

In Figure 5.12 the resulting fundamental frequencies are plotted against the mul-
tiplication factor used to modify the parallel (E0) and the perpendicular to grain
(E90) Young’s moduli of the frame material. The graphs shows a clear, almost lin-
ear relationship between the stiffness and the frequencies. The material stiffness



76 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

0.7 0.8 0.9 1 1.1 1.2 1.3

Stiffness Multiplication Factor

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

F
re

q
u

e
n

cy
 [

H
z]

Frame Material Stiffness

Figure 5.12: The three first eigenfrequencies as a function of frame material stiff-
ness

of the frame is one of the most influential parameters for all of the frequencies
checked.

5.10 Material Stiffness - Timber Floors

Since the main focus of this thesis is timber structures, the sensitivity analysis
of the floors are limited to focus on the prefabricated timber floors described in
subsection 4.2.1, while the concrete floors are left unchanged. As described in
subsection 4.2.1 the composite floor elements are simplified by using shell ele-
ments with a fictitious orthotropic material with properties chosen by the use of
a optimization routine. As a consequence of using a single fictitious material to
represent the overall stiffness of the composite floor elements, variations in the
material stiffness not only represents natural variations in the timber stiffness due
to factors such as moisture content etc., but also variations in the stiffness of the
interfaces (glue, nails etc.) between the different parts.

The test procedure for the floor elements are similar to the procedure described
in section 5.9. However, since the material is orthotropic there are three Young’s



Chapter 5: Sensitivity Study 77

0.7 0.8 0.9 1 1.1 1.2 1.3

Stiffness Multiplication Factor

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

F
re

q
u

e
n

cy
 [

H
z]

Timber Floor Material Stiffness

Figure 5.13: The three first eigenfrequencies as a function of timber floor material
stiffness

moduli (E1, E2 and E3) instead of two (E0 and E90) that are changed throughout
the different steps. The results presented in Figure 5.13 shows that the stiffness of
the floors are of little significance to the fundamental frequencies of Mjøstårnet.

5.11 Material Stiffness - Walls

The study of material parameters are concluded with two tests performed on the
walls of the tower, one on the exterior walls and one on the shaft walls. The shafts
are made of cross laminated timber (CLT), while the wall panels used as exterior
walls are prefabricated light frame modules made of timber.

The intervals for the sensitivity study of the walls are chosen based on the un-
certainties related to the different types of walls. The variations in the material
stiffness of the CLT are mainly associated with the natural variations of timber as a
material. For the exterior wall however, the material used for the shell element is
only a fictitious material with parameters chosen to represent the entire structure
of a wall panel, including natural variation in the material, interaction between
the components etc. As a consequence a larger interval is chosen for sensitivity



78 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

study of the material in the exterior walls than for the other materials.

0.7 0.8 0.9 1 1.1 1.2 1.3

Stiffness Multiplication Factor

0.3

0.4

0.5

0.6

0.7

F
re

q
u
e
n
cy

 [
H

z]

CLT Material Stiffness

(a) CLT Shafts

0.5 1 1.5 2

Stiffness Multiplication Factor

0.3

0.4

0.5

0.6

0.7

F
re

q
u
e
n
cy

 [
H

z]

Wall Material Stiffness

(b) Exterior Walls

Figure 5.14: The three first eigenfrequencies as a function of material stiffness

Figure 5.14a shows low correlation between the stiffness of the shafts and the
eigenfrequencies of the system. This confirms the hypothesis that the shafts don’t
really contribute to the horizontal stiffness of the tower. The material in the ex-
terior walls have an interesting effect on especially the second and third mode,
while the frequency of the first mode remains more or less unchanged, similar
to the results seen in the study of wall connections (section 5.8). If the walls are
either given an even lower stiffness or left out of the model, the directions of the
first and second mode will change, the same effect that can be seen with high
vertical foundation stiffness (see section 5.1). Results from simulation without
exterior walls are presented in Table 5.2 and Figure 5.15.

Table 5.2: Fundamental frequencies for model without exterior walls

Frequency Nr. Frequency
f1 0.397Hz
f2 0.403Hz
f3 0.642Hz



Chapter 5: Sensitivity Study 79

(a) Mode 1 in YZ-plane (b) Mode 2 in XY-plane (c) Mode 3 in XZ-plane

Figure 5.15: Mode shapes of model without exterior walls

5.12 Summary of the Sensitivity Study

The parameter study option of Figure 5.16, 5.17 and 5.18 list all the parameters
studied in the sensitivity study sorted from most to least influence on the first,
second and third frequency respectively.

Effects on the First Eigenfrequency

0 5 10 15 20 25 30 35 40

Effect on Frequency [%]

Material Stiffness - Timber Floors

Horizontal (Z) Stiffness - Foundation

Material Stiffness - CLT Shafts

Thickness - Timber Floor Connectors

Horizontal (X) Stiffness - Foundation

Second Moment of Area - Diagonal Connectors

Thickness - Floor To Shaft Connection

Thickness - Wall Connectors

Material Stiffness - Walls

Rotational Stiffness - Foundation

Area - Beam Connectors

Second Moment of Area - Beam Connectors

Area - Diagonal Connectors

Material Stiffness - Frame

Vertical (Y) Stiffness - Foundation

Figure 5.16: Most important parameters for the first mode

For the first frequency (Figure 5.16) the vertical stiffness of the foundation is the
most important input parameter, followed by the material stiffness in the frame



80 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

and the area (i.e. the axial stiffness) of the connectors in the diagonals. The least
important parameters are the stiffness of the prefabricated Trä8 floor modules and
the horizontal stiffness of the foundations.

Effects on the Second Eigenfrequency

0 5 10 15 20 25 30 35 40

Effect on Frequency [%]

Horizontal (X) Stiffness - Foundation

Material Stiffness - Timber Floors

Thickness - Timber Floor Connectors

Horizontal (Z) Stiffness - Foundation

Second Moment of Area - Diagonal Connectors

Thickness - Floor To Shaft Connection

Material Stiffness - CLT Shafts

Area - Beam Connectors

Rotational Stiffness - Foundation

Second Moment of Area - Beam Connectors

Material Stiffness - Walls

Thickness - Wall Connectors

Vertical (Y) Stiffness - Foundation

Area - Diagonal Connectors

Material Stiffness - Frame

Figure 5.17: Most important parameters for the second mode

The second frequency (Figure 5.17) is highly dependant on many of the important
parameters for the first frequency, albeit in a different order. Here the material
stiffness in the frame are the most important, followed by the cross section area
of the connector segments in the diagonals. An interesting difference is that the
second frequency are more sensitive than the first to changes in the parameters
(material stiffness and connector stiffness) concerning the exterior walls. As for
the first frequency the parameters related to the timber floors and the horizontal
stiffness of the foundation seems almost irrelevant, at least within the intervals
studied.

For the third frequency (Figure 5.18), the three most influential parameters is
in fact exactly the same as for the first frequency: vertical foundation stiffness,
the stiffness of the frame material and the area of the connection segments of
the diagonals. The least important parameters are again the stiffness of the floor
modules, horizontal stiffness of the foundation, in addition to the CLT (shaft)
stiffness. Similarly as for the second frequency, the exterior walls seems to be
more important for the third than the first mode.



Chapter 5: Sensitivity Study 81

Effects on the Third Eigenfrequency

0 5 10 15 20 25 30 35 40

Effect on Frequency [%]

Material Stiffness - Timber Floors

Material Stiffness - CLT Shafts

Horizontal (Z) Stiffness - Foundation

Horizontal (X) Stiffness - Foundation

Thickness - Timber Floor Connectors

Second Moment of Area - Diagonal Connectors

Thickness - Floor To Shaft Connection

Rotational Stiffness - Foundation

Area - Beam Connectors

Second Moment of Area - Beam Connectors

Thickness - Wall Connectors

Material Stiffness - Walls

Area - Diagonal Connectors

Material Stiffness - Frame

Vertical (Y) Stiffness - Foundation

Figure 5.18: Most important parameters for the third mode

5.13 Material Stiffness - Concrete Floors

Since the effect of changing the material stiffness of the timber floors was negli-
gible, a separate test of the influence of the material stiffness in the concrete floors
was conducted. The purpose of doing this, is to see if the stiffer concrete floors are
governing the stiffness contribution from the floors. This study is done separately
from the other parameter studies, and is therefore not a part of the comparison in
section 5.12. As the concrete floors have been modelled as an isotropic material,
only one modulus of elasticity was altered during the tests. The material stiffness
is adjusted from 70% to 130% of the mean stiffness during the tests.

Figure 5.19 show the results from the study. It can be seen that the stiffness of
the concrete floors are of a higher importance compared to the stiffness of the
timber floors. A possible reason for this is that the higher stiffness in the concrete
floors dominates the contribution from the floors. It is likely that a building with
only timber floors, will be more influenced by stiffness variations in the floors.
Even though variations in the concrete floors have a bigger influence on the fun-
damental frequencies of Mjøstårnet compared to the timber floors, it is of little
importance compared to many of the other parameters that have been studied.



82 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

0.7 0.8 0.9 1 1.1 1.2 1.3

Stiffness Multiplication Factor

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

F
re

q
u

e
n

cy
 [

H
z]

Concrete Material Stiffness

Figure 5.19: The three first eigenfrequencies as a function of concrete floor ma-
terial stiffness



Chapter 6

Model Updating

A handful of the most significant parameters are selected based on the results
from the sensitivity study. The parameters are then updated iteratively to find the
values that makes the model able to recreate the behavior of the real life building
as accurately as possible. The model described in chapter 4 are used as the starting
point of the updating.

A simple model updating routine was programmed in Simulia Isight. The routine
makes use of the "Target Solver" block, in combination with the Excel and Simcode
components included in Isight. The setup is shown in Figure 6.1.

Figure 6.1: Isight setup for model updating

83



84 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

6.1 Input Parameters

A series of runs with slightly different parameters and intervals have been per-
formed, three of which are presented below.

6.1.1 Run 1

The parameters updated in the model updating process for the first run are listed
in Table 6.1. The parameters chosen are all related to the stiffness of the structure,
while the mass are assumed to accurately modelled. The mass is often considered
less uncertain than the stiffness of a structure. One change from the base-model
used for the sensitivity study is applied; the uniformly distributed mass (calcu-
lated from the imposed loads given in Eurocode 1 part 1-1 [45]) related to the
different categories of use (e.g. office, hotel, residential area) are reduced to 50%
of the quasi-permanent combination. This change was made because the quasi-
permanent load was considered unreasonably high.

Table 6.1: Parameters included in model updating - Run 1

Parameter Initial Value Range
Vertical Foundation Stiffness [N/m] 1⇥ 109 1⇥ 108 � 2⇥ 109

Material Stiffness - Frame(1) 1.0 0.8� 1.2
Material Stiffness - Walls(1) 1.0 0.5� 2.0
Diagonal Connector Segments - Area(2) 0.2 0.05� 0.9
Beam Connector Segments - 2nd Mom. of Area(2) 0.2 0.05� 0.9
Wall Connector Zones - Thickness(2) 0.1 0.075� 0.8
(1): Factor multiplied with the mean Young’s moduli of the material.
(2): Factor multiplied with the area/thickness/second moment of area of the original beam/shell.

Note that range of allowed values for some of the parameters are more restrictive
than the intervals used in the sensitivity study. The decision to restrict some para-
meters further is taken on the basis on what values are considered probable in
real life, for instance it is considered more or less impossible that the connections
retain 100% of the stiffness of the member it connects.

6.1.2 Run 2

The parameters picked for the second run (Table 6.2) are almost identical, apart
from that the first run only included stiffness parameters, while the second in-
cluded two mass parameters as well. Hence, the assumption that the mass is ac-



Chapter 6: Model Updating 85

curate do no longer apply. The material stiffness of the frame was also removed as
a parameter for the second run, this choice is reasoned with the fact that the large
glulam cross sections used in the frame of Mjøstårnet contains so many different
lamellae that the stiffness most likely is very close to the mean value.

Table 6.2: Parameters included in model updating - Run 2

Parameter Initial Value Range
Vertical Foundation Stiffness [N/m] 1⇥ 109 1⇥ 108 � 2⇥ 109

Material Stiffness - Walls(1) 1.0 0.5� 2.0
Diagonal Connector Segments - Area(2) 0.2 0.05� 1.0
Beam Connector Segments - 2nd Mom. of Area(2) 0.2 0.05� 1.0
Wall Connector Zones - Thickness(2) 0.1 0.075� 0.8
Non-structural Mass - Distributed(3) 0.5 0.25� 1.0
Material Density - Walls [kg/m3] 250 125� 375
(1): Factor multiplied with the mean Young’s moduli of the material.
(2): Factor multiplied with the area/thickness/second moment of area of the original beam/shell.
(3): Factor multiplied with the quasi-permanent mass equivalent to the imposed loads.

Note that for the target solver to be able to reach a solution within the specified
tolerance, it was necessary to increase the upper bounds for the cross sectional
area and the 2nd moment of area of the connector segments of the beams and
diagonals respectively.

6.1.3 Run 3

The model updating parameters chosen for the final model updating are identical
to that of the second. However, the upper limit of intervals for the area and 2nd

moment of area of the connections are reduced to 0.9 like in the first run, and
the lower limit of multiplication factor for the distributed mass are reduced from
0.25 to 0.20. The parameters along with the specified limits are listed in Table 6.3.
The main difference from the previous runs is that the tolerance of the output
parameters is increased from 0.001 to 0.0049 (ref. section 6.2).



86 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Table 6.3: Parameters included in model updating - Run 3

Parameter Initial Value Range
Vertical Foundation Stiffness [N/m] 1⇥ 109 1⇥ 108 � 2⇥ 109

Material Stiffness - Walls(1) 1.0 0.5� 2.0
Diagonal Connector Segments - Area(2) 0.2 0.05� 0.9
Beam Connector Segments - 2nd Mom. of Area(2) 0.2 0.05� 0.9
Wall Connector Zones - Thickness(2) 0.1 0.075� 0.8
Non-structural Mass - Distributed(3) 0.5 0.2� 1.0
Material Density - Walls [kg/m3] 250 125� 375
(1): Factor multiplied with the mean Young’s moduli of the material.
(2): Factor multiplied with the area/thickness/second moment of area of the original beam/shell.
(3): Factor multiplied with the quasi-permanent mass equivalent to the imposed loads.

6.2 Output Parameters

The frequencies of the three first modes are chosen as the output parameters.
The goal of the model updating is to minimize the difference between the model
output and the frequencies measured by Tulebekova et al. [33]. The same targets
are used for all three runs, while the tolerance is the same for the first two runs
and increased for the third.

Table 6.4: Initial output parameters

Parameter Initial Model Output Measured Output(1) Tolerance
f1 0.422 Hz 0.50Hz 0.001/0.0049
f2 0.440 Hz 0.54Hz 0.001/0.0049
f3 0.670 Hz 0.82Hz 0.001/0.0049

(1): From Tulebekova et al. [33]

An important consideration is that multiple combinations of the input variables
can cause the same desired output, especially when the amount of output variables
are as few as in this case. A extensive test of "Mjøstårnet" involving a "shaker" and
detailed instrumentation is planned as a part of the DynaTTB project [2]. The test
will provide measured frequencies for many more modes, as well as information
about mode shapes, damping properties etc. that can be added to the list of targets
for the model updating and improve the accuracy and certainty of the results
considerably. With more output/target variables the number of input variables
may also be increased. The model updating in this thesis is therefore intended to
be seen more as a demonstration of the method and an estimate rather than a
strict answer to the values of the input variables.



Chapter 6: Model Updating 87

6.3 Results

6.3.1 Run 1

A total of 35 iterations were needed for the target solver to find a solution within
the specified tolerance of 0.001. The value of the input parameters before and after
the first run of the updating are presented in Table 6.5, and the convergence of
the frequencies is plotted in Figure 6.2. It is clear from the results that the stiffness
of the initial model was underestimated, since the general trend is that the value
of the parameters related to stiffness are increased. Another possibility is that the
mass is overestimated in the initial model, however the mass of a structure is often
considered a more certain quantity than the stiffness.

Table 6.5: Initial and updated input parameters - Run 1

Parameter Initial Value Final Value
Vertical Foundation Stiffness [N/m] 1⇥ 109 1.238⇥ 109

Material Stiffness - Frame(1) 1.0 1.168
Material Stiffness - Walls(1) 1.0 1.0
Diagonal Connector Segments - Area(2) 0.2 0.9
Beam Connector Segments - 2 Mom. of Area(2) 0.2 0.9
Wall Connector Zones - Thickness(2) 0.1 0.583
(1): Factor multiplied with the mean Young’s moduli of the material.
(2): Factor multiplied with the area/thickness/second moment of area of the original beam/shell.

0 5 10 15 20 25 30 35

Iteration nr.

-20

-15

-10

-5

0

R
e

la
tiv

e
 E

rr
o

r 
[%

]

Model Updating Run 1 - Convergence

Figure 6.2: Convergence of model updating procedure - run 1



88 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

6.3.2 Run 2

For the second run of the model updating it was necessary to increase the up-
per limit for the area and 2nd moment of inertia of the connector segments for
the target solver to be able to reach a solution within the specified tolerance of
0.001. After 58 iterations the solution presented in Table 6.6 was found. The res-
ults shows the same tendency as in the first run; the stiffness in the initial model is
underestimated. This conclusion remains after the imposed mass is included as a
parameter in the updating and is reduced during the process to a final value that
is approx. 50% compared to the (fixed value) mass applied in the first run.

Table 6.6: Initial and updated input parameters - Run 2

Parameter Initial Value Final Value
Vertical Foundation Stiffness [N/m] 1⇥ 109 2⇥ 109

Material Stiffness - Walls(1) 1.0 1.307
Diagonal Connector Segments - Area(2) 0.2 1.0
Beam Connector Segments - 2nd Mom. of Area(2) 0.2 1.0
Wall Connector Zones - Thickness(2) 0.1 0.8
Non-structural Mass - Distributed(3) 0.5 0.252
Material Density - Walls [kg/m3] 250 320.3
(1): Factor multiplied with the mean Young’s moduli of the material.
(2): Factor multiplied with the area/thickness/second moment of area of the original beam/shell.
(3): Factor multiplied with the quasi-permanent mass equivalent to the imposed loads.

0 10 20 30 40 50 60

Iteration nr.

-20

-15

-10

-5

0

R
e

la
tiv

e
 E

rr
o

r 
[%

]

Model Updating Run 2 - Convergence

Figure 6.3: Convergence of model updating procedure - run 2



Chapter 6: Model Updating 89

6.3.3 Run 3

When the tolerance of output parameters was increased and the lower limit of
the distributed load multiplication factor was decreased slightly compared to the
previous runs, the target solver managed to find a solution without needing 100%
connector stiffness. A total of 50 iterations were needed to achieve the solution in
Table 6.7.

Table 6.7: Initial and updated input parameters - Run 3

Parameter Initial Value Final Value
Vertical Foundation Stiffness [N/m] 1⇥ 109 2⇥ 109

Material Stiffness - Walls(1) 1.0 1.310
Diagonal Connector Segments - Area(2) 0.2 0.9
Beam Connector Segments - 2nd Mom. of Area(2) 0.2 0.9
Wall Connector Zones - Thickness(2) 0.1 0.8
Non-structural Mass - Distributed(3) 0.5 0.206
Material Density - Walls [kg/m3] 250 313.1
(1): Factor multiplied with the mean Young’s moduli of the material.
(2): Factor multiplied with the area/thickness/second moment of area of the original beam/shell.
(3): Factor multiplied with the quasi-permanent mass equivalent to the imposed loads.

0 5 10 15 20 25 30 35 40 45 50

Iteration nr.

-20

-15

-10

-5

0

R
e

la
tiv

e
 E

rr
o

r 
[%

]

Model Updating Run 3 - Convergence

Figure 6.4: Convergence of model updating procedure - run 3



90 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

6.4 Summary

From the three model updating runs some general observations can be made.
All three runs show the same tendency in that the stiffness of the base model is
underestimated. For instance, the connection parameters for the frame is set to the
upper limit for the best fit in all runs. Also, the foundation stiffness is significantly
increased for all runs. The stiffness of the exterior walls, both in terms of material
stiffness and connection-zone thickness, is generally increased.

The two runs that include mass as parameter, also show the same tendencies:
non-structural loads on floors are overestimated in base model and the material
density of outer walls is underestimated. This might be a real effect, but it can
also be due to the randomness of the Isight procedure.

Although the tendencies are the same, the output values from all three runs differs.
This is especially evident for the values of the stiffness parameters. The added
stiffness is distributed differently in the model in all three runs. Two important
notices can be made from this:

• In order to obtain good and reliable predictions of parameter values from
a model updating procedure, it is important to base it on a larger amount
of target values. In this case, it can be in the form of more frequencies.
Including mode shapes as targets is also likely to improve the reliability of
the estimations significantly.
• The input of the base model, and the allowed range for the parameters in

model updating procedure, should be based on values that are feasible. This
will reduce the chance of obtaining a combination of parameters that does
not represent the real structure.



Chapter 7

Wind Loads

This chapter is meant to be a demonstration of some of the possibilities for doing
wind-related analyses using the scripts that are developed and included in the
digital appendix of this thesis. The basis of the calculations is Eurocode 1: Actions
on structures - Part 1-4: General actions - Wind actions [23] and its Norwegian
national annex. A detailed explanation on the theory behind wind actions, as well
as a review of the calculation procedure, including the most important equations,
are given in section 2.3 of the background chapter.

The model used in the analysis is set up to resemble Mjøstårnet with the input
described in chapter 4, with the values of some of the parameters improved by the
model updating performed in chapter 6. The results of the final (subsection 6.3.3)
of the three model updating runs are used. However as mentioned previously, the
main focus of this thesis as been the development of the parametric model, not to
get all the input exact for Mjøstårnet. As a consequence the results presented the
results section of this chapter must be seen as demonstration of the capabilities
of the script and an estimate of the values to be expected for Mjøstårnet, rather
than an accurate solution.

7.1 Estimation of Parameters

A modal dynamics step is implemented in the wind analysis procedure. The step
is designed to model a free vibration time history, initialized by an impulse load.
The free vibration time history is then used to determine some basic parameters
for use in the upcoming wind-related calculations.

91



92 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

7.1.1 Frequency

The frequency of a system can be determined by measuring the the time it takes
for the system to complete one or more cycles of vibration. The equation for the
frequency f as a function of the period T = ti+1� ti , where ti is the elapsed time
at the i th peak, is:

f =
1
T

(7.1)

or averaged over n cycles:

f =
n

ti+n � ti
(7.2)

The default option implemented in the script is to measure the frequency over
n = 2 peaks, starting from the second peak. The reason for not measuring from
the first peak is to minimize the risk of the frequency being influenced by the
impulse load used to initialize to free vibration. Figure 7.1 shows a "XYPlot" from
Abaqus with the time span illustrated.

t4 - t2

Figure 7.1: Estimation of natural frequency based on free vibration

7.1.2 Damping Values

The damping ratio for a mode can be estimated by the method of logarithmic
decrement. The method is accurate for lightly damped structures, which is the
case for most civil engineering structures. The logarithmic decrement, �, is found



Chapter 7: Wind Loads 93

by taking the natural logarithm of the ratio between the magnitudes of two sub-
sequent peaks:

� = ln
xi

xi+1
(7.3)

If the damping is independent of the magnitude of the deformations, the accuracy
of the measurements can be improved by averaging over n cycles [47]:

� =
1
n

ln
xi

xi+n
(7.4)

It can be shown that the damping ratio ⇣ can be calculated from the logarithmic
decrement using Equation 7.5:

⇣ =
1q

1+ (2⇡
� )2

(7.5)

Alternatively when ⇣⌧ 1.0:

⇣ ⇡ �
2⇡

(7.6)

X2 X4

Ae-��t

Figure 7.2: Estimation of logarithmic decrement based on free vibration

The plot in Figure 7.2 shows the peaks (i = 2, n = 2) used for estimation of
damping in the script, as well as the envelope curve defined by the exponential
expression x(t) = Ae�⇣!t .



94 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

7.2 Method

The main focus of the analyses performed in this section are the output related to
the accelerations of the building. A parameter study has been performed, where
selected parameters related to the damping of the structure and the wind condi-
tions at the site have been modified to study their effect on the resulting acceler-
ation response.

The main script used for running the analyses is TTB_3D_EC_Wind.py which is
designed for the exact purpose of analysing the response of a parametric structure
to wind actions. To be able to execute many iterations with different parameters
efficiently, an Isigth routine similar to the one used for the sensitivity study in
chapter 5 is used. Instructions for setting up a parameter study like the one shown
in Figure 7.3 are given in section A.4 of the user guide included in the appendix.

Almost all the analyses in this chapter are performed with the wind coming from
the x-direction (i.e. perpendicular to longest side of the building), however the
comparison with the threshold values in section 7.5 includes both horizontal dir-
ections.

Figure 7.3: Isight setup for a parameter study

7.3 Verification of Calculations

Before presenting and interpreting the acceleration results, some simple test are
performed to verify that the script functions as intended.



Chapter 7: Wind Loads 95

7.3.1 Damping Measured in the Free Vibration Analysis Step

Since the damping parameters used in the wind calculations are based off the
results of a analysis step simulating free vibration, it was necessary to check that
the measured damping in the free vibration step corresponds well with the applied
damping. The test was performed by applying a direct modal (global) damping
to the first 10 modes of the system. The mode excited in the free vibration step is
similar to the first mode of the system, hence the damping measured in the free
vibration step should be similar to the applied modal damping. The results are
plotted in Figure 7.4, with the applied and measured damping along the x- and
y-axis respectively.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Critical Damping Factor Applied in Mode 1-10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

S
tr

u
ct

u
ra

l D
a

m
p

in
g

 R
a

tio
 -

 M
e

a
su

re
d

 in
 F

re
e

 V
ib

ra
tio

n
 S

te
p

Applied Damping vs. Measured Damping

Figure 7.4: Applied damping versus damping measured in free vibration step

The results shows good correlation between the applied and measured damping,
maybe with a trend of the measured damping being slightly underestimated.

7.3.2 Frequency Measured in the Free Vibration Analysis Step

The first natural frequency in the wind direction used in the wind calculations
is also determined (measured) on the basis of the same free vibration analysis
step as the damping. By including a frequency step for determining the natural
frequencies based on the eigenvalues of the system, the two frequencies can be



96 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

compared and the accuracy of the "measured" frequency can be assessed.

Free Vibration Step Frequency Step
f1 0.500Hz 0.496Hz

Table 7.1: First frequency in the wind (x-) direction

The results in Table 7.1 shows less than 1% deviation between the two differ-
ent ways of calculating the frequency, which is considered to be well within the
acceptable margin of error.

Note that the accuracy of both the measured damping ratio and frequency should
be expected to decrease if the mode investigated is a mode that consists of a com-
bination of e.g. translation and torsion, or translation in more than one of the
global axes. This is because the parameters are determined based on the displace-
ments in the wind direction, sampled at the centre of the top floor. It is always
advised to verify that the results from the free vibration step seems reasonable.
One way to check the results is to create an "XYPlot" in Abaqus and check that at
least the first few cycles are like a sinusoidal, without any additional local peaks.
Another way to get a quick indication of the quality is to check that the frequency
calculated in the free vibration step matches the frequency of the corresponding
mode in the frequency step. If the deviation between the frequencies are small,
one can be fairly confident that the script were able to identify the peaks of the
cycles correctly, hence the damping estimate should be of decent quality as well.

7.4 Results - Acceleration

The results of the different analyses performed are presented in the following
sections.

7.4.1 Structural Vs. Aerodynamic Damping

The damping used in the Eurocode for wind-related calculations are the sum of the
damping in the structure and the aerodynamic damping. The structural damping
are determined by modelling free vibration in Abaqus, while the aerodynamic part
are determined by equation F.16/F.17 in the Eurocode. Note that the Eurocode
measures damping as logarithmic decrement, however the values are converted
to a damping ratio for the purpose of this thesis. The structural, aerodynamic and
total damping are presented in the figure below.



Chapter 7: Wind Loads 97

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Critical Damping Factor Applied in Mode 1-10

0

0.01

0.02

0.03

0.04

0.05

0.06

D
a
m

p
in

g
 R

a
tio

Structural, Aerodynamic and Total Damping

Structural (Measured) Aerodynamic (Calculated) Total

Figure 7.5: Structural, aerodynamic and total damping

As shown in Figure 7.5 the aerodynamic damping ratio is independent of the
structural damping. The aerodynamic damping ratio is in this case around 1% and
can be an important contribution to the total damping of the system, especially if
the structural damping is low.

7.4.2 Peak Acceleration

The peak value is the highest acceleration that is expected to occur within a spe-
cified return period. Guidelines/threshold values for peak acceleration of many
different structures are given in ISO:10137 [25], based on a return period of 1
year.

With the one year return period, the resulting peak acceleration at the top floor
(excluding the rooftop terrace) of the building are plotted against the damping
applied directly in mode 1-10 of the model in Figure 7.6.

The results shows that increasing the damping of a structure reduces the acceler-
ations significantly. For instance a damping ratio of 2.5%, which is not unrealistic
for a timber structure, shows less than half the acceleration compared to structure
with 0.5% applied modal damping.



98 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Critical Damping Factor Applied in Mode 1-10

0

0.05

0.1

0.15

0.2

0.25

P
e
a
k 

A
cc

e
le

ra
tio

n
 [
m

/s
2
]

Peak Acceleration

Figure 7.6: Peak acceleration at highest level below rooftop terrace

7.4.3 Standard Deviation of Acceleration

Some prefer to state the acceleration as a standard deviation instead of giving the
peak value. The standard deviation is also commonly denoted RMS or root mean
square in the literature. The peak acceleration is defined as the standard deviation
multiplied by a peak factor kp which is simply a function of the natural frequency.
Hence, it is only a matter of preference, or the units of the threshold values in the
codes/guidelines, whether the results are stated as a standard deviation or as a
peak value. For instance ISO:6897 [48] specifies threshold values in terms of the
standard deviation.

The standard deviation of the acceleration as a function of the applied modal
damping is plotted in Figure 7.7.

Note that the results for the standard deviation is the same as the peak acceleration
reduced by the peak factor kp, which is constant for all relevant damping values
(⇣⌧ 1, such that!d ⇡!n). This confirms what is stated above; that in practice it
does not matter if the acceleration is given as a peak value or standard deviation.
The peak factor of the structure investigated is found to be approx. 3.56.



Chapter 7: Wind Loads 99

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Critical Damping Factor Applied in Mode 1-10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

S
ta

n
d
a
rd

 D
e
vi

a
tio

n
 [
m

/s
2
]

Standard Deviation of Acceleration

Figure 7.7: Standard deviation of the acceleration at highest level below rooftop
terrace

7.4.4 Acceleration at Different Levels

The acceleration varies at the different levels of the building, and it is usually only
at the top few floors where too large accelerations is a problem. The parametric
model allows the user to specify at what height the acceleration should be cal-
culated, hence the accelerations can easily be determined for every level of the
building. The results of this feature is demonstrated below.

Before running the analysis the damping values identified by Tulebekova et al.
[33] listed in Table 7.2, are added to the model. The rest of the model is the same
resulting model from the third run of the model updating in chapter 6 as used
previously. The acceleration response are shown in Figure 7.8 for level 0 (ground
level) to level 17 (rooftop terrace).

Table 7.2: Damping values from Tulebekova et al. [33] (Mean values from 6 DD-
SSI analyses (March 2019 - May 2019))

Mode Applied Damping
1 1.685%
2 2.458%
3 1.863%



100 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

0 0.03 0.06 0.09 0.12 0.15

Peak Acceleration

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

L
e

v
e

l

Peak Acceleration at Different Levels

0.6

1.0

1.5

2.0

2.5

Mode Shape Exponent

Figure 7.8: Peak acceleration at different levels for different mode shapes

The different lines in Figure 7.8 each represent different values of the exponent,
⇣, used to approximate the first mode shape in accordance with equation F.13 in
the Eurocode [23]:

�1(y) =
⇣ y

h

⌘⇣
(7.7)

Note that the variable z is replaced with y in Equation 7.7 to match the orientation
of the axes used in the model, and that ⇣ in this expression is not related to the
damping ratio, also denoted ⇣. Appendix F to the Eurocode [23] recommends the
following choice of ⇣:

Table 7.3: Recommended mode shape exponents (from [23])

⇣ Building Type
0.6 Slender frame structures with non load-sharing

walling or cladding.
1.0 Buildings with a central core plus peripheral

columns or larger columns plus shear walls.
1.5 Slender cantilever building and buildings suppor-

ted by central reinforced concrete cores.
2.0 Towers and chimneys.
2.5 Lattice steel towers.

Based on the recommendations shown in Table 7.3, a mode shape exponent of
⇣ = 1.5 are used for the remainder of the analyses. However, the results presen-



Chapter 7: Wind Loads 101

ted in this section shows that getting the mode shape right is important for the
acceleration estimates to be accurate. Both the max acceleration at the top of the
structure, as well as the distribution in the lower parts of the structure are heavily
influenced by the chosen exponent.

7.4.5 Acceleration at Different Return Periods

The return period indicates the probability for a acceleration value (or any other
quantity) to be exceeded a given year, refer to section 2.3.3 for further explanation
of the relation between annual exceedance probability and return period. As an
uncomplicated, but slightly inaccurate explanation one can say that a value with
e.g. a return period 50 years is estimated to be exceeded once every 50 years on
average.

0 10 20 30 40 50 60 70 80 90 100

Return Period

0

0.05

0.1

0.15

0.2

0.25

0.3

P
e
a
k
 A

c
c
e
le

ra
ti
o
n

Peak Acceleration at Different Return Periods

Figure 7.9: Peak Acceleration at different return periods

Figure 7.9 shows the results peak acceleration value at the highest level below the
rooftop terrace, plotted against return periods of the wind actions ranging from 1
to 100 years. For serviceability design it is common to use short return periods, e.g.
one or five years [25][48], since the consequences of exceeding a threshold value
are small. For ultimate limit state design, however, longer return periods are used
(typically 50 years [23]), and much higher actions/response of the structure is
expected. It should be noted that the acceleration is rarely a ULS design problem,
however increasing the return period of the wind action will also increase the



102 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

forces/stresses in the structure, in a similar manner as for the accelerations.

7.4.6 Accelerations at Different Wind Speeds

As the final parameter the effect of the wind velocity is investigated. Note that
the values along the x-axis are the mean wind velocity vm at the reference height
for the structural factor zs = 0.6h, and not the fundamental value of the basic
wind velocity vb,0. The values are almost the same; the mean value are the basic
wind velocity multiplied with factors adjusting for e.g. the terrain and altitude at
the site. Hence, the mean value is the most accurate to use for comparison with
on-site wind measurements.

5 10 15 20 25 30

Mean Wind Velocity (v
m

) at height z
s

0

0.05

0.1

0.15

0.2

0.25

0.3

P
e

a
k 

A
cc

e
le

ra
tio

n

Peak Acceleration at Different Wind Velocities

Figure 7.10: Peak Acceleration at different mean wind velocities

The peak acceleration grows exponentially as the mean wind velocity increases
(Figure 7.10). This response is as expected, due to the velocity pressure being a
function of, amongst other, the mean wind velocity squared, recall Equation 2.31
of the background chapter:

qp(z) =
1
2
·⇢ · v2

m(z) · [1+ 2kp Iv(z)] (2.31)

Tulebekova et al. [33] have measured the accelerations and the wind velocity of
Mjøstårnet. Their results are plotted along with the results from the parametric



Chapter 7: Wind Loads 103

model in Figure 7.11:

2 4 6 8 10 12 14

Mean Wind Velocity (v
m

) at height z
s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
P

e
a

k 
A

cc
e

le
ra

tio
n

Comparison of Results

Parametric Model

Tulebekova et al.

Figure 7.11: Comparison of results

The results shows that the results from Tulebekova et al. gives slightly higher ac-
celeration values than the parametric model. However the fact that the sensors
used in the experiments are placed a little higher on the structure (ref. subsec-
tion 2.5.3), than the level where acceleration are sampled in the parametric model
(highest floor below to rooftop terrace), may contribute to make the actual devi-
ation less than it appears to be in the plot.

7.5 Comparison with ISO10137 Guidelines

Peoples perception of vibration is highly subjective. An acceleration level that
causes discomfort or even motion-sickness symptoms for one person, may be
barely noticeable for other people. The perception of acceleration is also highly
dependant on the frequency of the vibrations [21]. ISO10137 [25] provides re-
commendations for serviceability design of buildings and walkways. The recom-
mended threshold values for horizontal motion are presented in Figure 7.12, the
upper line (1) marks the threshold for offices, while the lower (2) is for the design
of residential buildings. The limit for residential buildings are set to when the per-
ception probability is approximately 90% [25].



104 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure 7.12: Threshold values for vibrations in buildings (Figure D.1 from ([25])

The red dots added to the plot marks the peak acceleration values in both dir-
ections acquired using the updated base setup of the parametric model, with the
damping values listed in Table 7.2. The results are also listed in Table 7.4.

Table 7.4: Peak acceleration response for wind in x- and z-directions

Marker nr. Direction Peak Acceleration
1 X (Transversal) 0.114
2 Z (Longitudinal) 0.038

The results indicates that the peak acceleration value at the highest non-roof level
of Mjøstårnet, in the transverse direction are above the recommend threshold.

7.6 Static Displacement

Although the main focus of this chapter has been on accelerations, the script also
calculates the equivalent static load according the the Eurocode [23]. The load is
converted to line loads which are applied to the columns of the frame structure,
as illustrated in Figure 7.13.

The resulting deformation in the global x-direction from the equivalent static
wind load on the updated model of Mjøstårnet, with the damping values listed
in Table 7.2, are shown in Figure 7.14.



Chapter 7: Wind Loads 105

Figure 7.13: Application of static wind load

Figure 7.14: Static displacement [m]





Chapter 8

Discussion

The results of each separate test is already presented and discussed in the respect-
ive sections. Hence, the purpose of this chapter is to tie the different parts of the
thesis together and try to make connections between the different results. The
parametric model is also discussed. Both things that have worked as intended, as
well as issues and possible sources of error that have been revealed in the process
are presented. Finally possible solutions to the issues and ways to increase the
accuracy are discussed.

8.1 Results

This section will mainly focus on the observations made in the sensitivity study,
as the other analyses were mostly conducted as demonstrations of the capabilities
of the script, and based on input that in some cases are rough estimations or even
mere guesses.

The results of the sensitivity study can be used to sort out what parameters it is
important to make sure are correct in order to create a realistic model. The mater-
ial stiffness of the frame is one of the most influential parameters for all modes.
However, this is also the stiffness parameter that most easily can be predicted with
good accuracy. As stated in subsection 6.1.2 in the model updating chapter, the
large cross-sections required for the glulam members of tall timber buildings will
result in little variation in stiffness throughout the frame. Naturally, some degree
of variation will occur due to e.g. variation in moisture content. For this kind of
structure, these variations are often limited as the frame usually is sheltered from
the weather, resulting in a Service Class 1 structure.

107



108 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

The stiffness of the frame connections, in particular the axial stiffness of diagonal
connections, is an important parameter. For the kind of building studied, diagonals
are the main contributor to the horizontal stiffness. The result is therefore as ex-
pected. The rotational stiffness of beam connections is also a relatively important
parameter, although less so than the diagonal connections. Determining the stiff-
ness of connections is not as straight forward as for the members. Eurocode 5 part
1-1 [49] provides a simple way of predicting the stiffness of connections by intro-
ducing the slip modulus, Kser , of connections for use in SLS. Studies does however
show that the stiffness obtained from this procedure vary significantly from what
is measured, and is generally underestimated [50] [51] [52]. Nonetheless, the
Eurocode does provide a better initial prediction for the connector stiffness than
the guesses used for the base model in this thesis. When the model is paired with
more output variables (ref. section 6.2), model updating can hopefully be a useful
tool for making good estimates for finding the connector stiffness.

The vertical foundation stiffness of a building is very hard to predict, as the soil
conditions will vary from building to building. Regardless of this, the study demon-
strates the importance of getting a good prediction of the parameter, as it is the
single most important parameter. In fact, if the stiffness of the foundation is very
low, other measures for increasing the horizontal stiffness of the structure will
become trivial. In this case the building will rotate at its base while the structure
it self will act as a rigid body. Tulebekova et al. [33] suggests that the prediction
of the foundation stiffness of Mjøstårnet done by Sweco underestimates the ac-
tual stiffness. This might be the reason for the difference between the calculated
and measured frequencies and direction of modes. The results from the sensitivity
study supports this suggestion. Simply put, a good estimation of the foundation
stiffness is essential in order to be able to predict the dynamic behaviour of a
structure.

The final parameters that will be highlighted is the parameters related to the stiff-
ness of the exterior walls, both in terms of the stiffness of the fictitious material
used and the stiffness of the connections. Both parameters are shown to be im-
portant, especially for the longitudinal bending mode and torsional mode. The
possible reason to why they have little influence on the transverse bending mode
is that the amount of walls spanning in this direction are much lower compared
to the walls spanning in the longitudinal direction, thus introducing less stiffness
to transverse bending. The results questions the assumption usually used during
design, that the contribution from non-structural external walls towards the hori-
zontal stiffness of a building can be neglected. It is important to consider that the
magnitude used for these parameters in the base model are highly uncertain, and
it has not been verified if they are realistic. In order to be able to conclude how
much of an impact external walls might have on the behaviour of a building, it is
necessary to establish better predictions of their stiffness. Regardless, the results
found in this thesis are interesting, as it allows for an alternate explanation to



Chapter 8: Discussion 109

why predicted modes of Mjøstårnet have frequencies that are significantly lower
and of different direction compared to the measurements of the finished building.
It is likely that it can be explained by a combination of the effects from the ver-
tical foundation stiffness being underestimated and the exterior walls not being
represented in the model.

Some parameters have very little influence on the dynamic behavior of the model.
It is valuable to have an overview of these factors, as a rough estimate of this
variables can still produce results of sufficient accuracy. Time and resources can
therefore be saved. As an example, a considerable amount of time was spent on
finding the parameters to define the section of the timber floor elements. However,
the influence of the stiffness in the floors proved to be of very little importance.
The parameters found to fall under this category are listed below:

• Horizontal foundation stiffness (as long as it is not too low)
• Rotational stiffness of foundations
• Timber floor material stiffness
• Timber floor connection stiffness
• Material stiffness of shaft walls
• Rotational stiffness of diagonal connections
• Axial stiffness of beam connections

It must be considered that not every parameter of the model have been studied.
Some of the parameters where expected to be of little importance, and therefore
neglected in the studied. However, it is possible that some of the expectations
were wrong, leading to important parameters being undiscovered.

8.2 Parametric Model

By far, the most of the time spent working on this thesis have been dedicated to
the development of the parametric model. Resulting in between 6000 and 7000
lines of Python code (excluding many scripts discarded during the process), an ex-
tensive excel file for setting up the input and several Isight models, all of which is
included in the digital appendix. The model has later been used in several different
tests and analyses, including a sensitivity analysis of mainly stiffness parameters
(chapter 5), several model updating runs and finally a series of wind-related para-
meter studies. Several useful experiences were made about the functioning of the
model, a selection of things that work well, an addition to some of the problems
encountered follows.



110 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure 8.1: Typical connection between two beams and a diagonal

8.2.1 Modelling of Connections in Beam Elements

The method of using connector segments (ref. subsection 3.7.1 and Figure 8.1)
to model the reduced stiffness of connections between the different parts of the
frame structure proved to be successful. The effect of changing either the area or
one of the 2nd moments of areas have a clear effect on the stiffness of the structure.
The effects of change in axial stiffness of the connections can most easily be seen
in the part of the sensitivity study concerning the diagonals, while the change of
rotational stiffness becomes clear when dealing with the horizontal beams of the
structure.

There are some doubts related to the validity of using beam theory for the finite
element formulation of the short connection. However, for the purpose of the
global analyses the model are intended for a lower accuracy of the stiffness in
the connection segments are deemed acceptable. The method where the stiffness
are controlled by tweaking the cross sectional properties of is in itself not the
most accurate way of modelling stiffness in connections, but the fact that it is
easy to understand and interpret the input values was important in the choice of
method. Another important factor to consider is that the chosen method has low
risk of failing. Such that if a connector segment for some reason are not generated
the parts will still be connected, and the consequences will be much less severe
than missing connector if the parts of the structure was created separately and
connected through e.g. springs.



Chapter 8: Discussion 111

A potential downside of using the connector segments is that they are unfit for
stress analysis, and local analysis of the structural members in general. Since the
main focus of this thesis are directed towards the global behavior of structures
under service loads, this was not considered a problem.

8.2.2 Modelling of Connections in Shell Elements

A similar approach as for the connections in beam elements where chosen for the
shell elements, primarily used to model walls and floors. The wall panels are en-
closed by a connector zone with reduced stiffness as demonstrated in Figure 8.2.
The chosen approach worked well as long as the thickness was not reduced too
much. If the thickness becomes too low, local, spurious modes will arise and in-
terfere with the global modes.

Figure 8.2: Wall panel enclosed by connector zones

It is the in-plane stiffness that it is the most important contribution from the walls
to the global stiffness of the structure. A possible solution to the problem with local
bending modes in the walls could then be to keep the thickness of the section high,
and reduce the material parameters of the material. Reducing the material stiff-
ness instead of the thickness would cause the same reduction of the in-plane stiff-
ness, while out-of-plane bending stiffness will be reduced less than if the thickness
were to be reduced. This is because the in-plane stiffness is proportional with the
thickness, t, while the bending stiffness is proportional with the thickness cubed,
t3. It could also be argued that altering the shear moduli would be a better way of



112 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

representing the connections than to change the thickness Young’s moduli of the
material. Solving the issue with spurious local modes is of great importance if the
model should be used for model updating with higher modes as target variables,
since the spurious modes interfere with the real modes.

8.2.3 Using Excel for Parameter Input

Relatively early in the work with the parametric model it became clear that the
number of input variables to the model was going to be substantial and that writ-
ing the input directly into the Python script was not going to be a good solution.
By moving all the input variables to a separate excel file the process of setting up
a model became much more tidy. Also, more people have experience with Excel
than with programming and editing code files, thus using a well known interface
might make it easier for inexperienced programmers to use the model.

Also considering that Excel is easily integrated in Isight routines for parameter
studies, model updating, optimization etc., the choice of gathering all the input
files in a single Excel file must be considered successful. The only real downside
is that installing the Python package needed to read Excel files might be cumber-
some, however a thorough step-by-step installation guide is provided as a part of
Appendix A.

8.2.4 Isight

To produce the results presented in this thesis over 600 analyses have been run
in Abaqus, plus at least as many who did not make it into the thesis. It is obvious
that running over a thousand analyses manually, over the course of a few weeks
after the scripts were ready, would be impossible. Isight has shown to be an ex-
tremely useful tool for running many analyses automatically. The native Abaqus
component in Isight is not possible to use with the way the model is programmed,
however running the scripts using the Simcode component instead have proved to
work flawlessly, albeit the setup is more complicated. Isight integrates well with
Excel, which makes setting up the updating of the input variables between each
of the iterations relatively simple.

An issue with Isight is that the software is not nearly as well documented, as for
instance Abaqus is. The lack of documentation meant that the learning process to
a large extent was based on trial and error, and therefore required a significant
amount of time. To make this process a little easier for anyone that may want to



Chapter 8: Discussion 113

try running a similar analysis to one featured in this thesis, a step-by-step guide
is provided in Appendix A.

8.2.5 Damping Estimates and Wind Loads

The Eurocode wind load calculation and the corresponding estimation of accel-
eration have been tested thoroughly in chapter 7. The analyses performed in this
thesis have been successful, the damping estimation method implemented worked
well with and gave relatively accurate results when the accuracy where tested in
subsection 7.3.1, the same has to be said for the frequency estimation.

However, as Mjøstårnet is a highly symmetric structure, especially for the wind
direction tested, this causes the vibration mode of interest to be almost a pure
translational/bending mode without any torsion. The way the free vibration is
initialized by a uniform impulse load along the upper edge of the structure, com-
bined with the sampling of displacement at the centre of the top level, is a good
approach for exciting and capturing pure translational modes.

Figure 8.3: Impulse load along upper edge of structure

If the mode includes e.g. torsion, the chosen approach may not be able to capture
the mode in a satisfactory manner and the time history would likely have more
than one local peak per cycle of vibration, as seen in the plot in Figure 8.4. Since
both the frequency and damping estimates relies on the peaks of the time history
(ref. section 7.1), and the peak finding algorithm implemented are very simple,
the resulting estimates would be completely wrong.

One way to make the script able to deal with time histories who is not a perfect



114 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure 8.4: Time history with more than one peak per cycle

sinusoidal (although not as messy as shown in Figure 8.4) is to implement a more
sophisticated peak finding algorithm, with the ability to filter out small local peaks
based on e.g. prominence. In Abaqus 2020 the Scipy package should be supported
[53], this package includes an advanced peak finding algorithm with filtering cap-
abilities, called scipy.signal.find_peaks(). However to be able to deal with modes
dominated by torsion or higher order bending, both the excitation and sampling
of deformations in the free vibration step have to be changed. Alternatively an
entirely new method of estimating damping and frequency can be implemented,
for instance the frequency can relatively easy be taken directly from the frequency
step already implemented in the analysis.

8.2.6 Mode Shape Comparison

The only criterion used for the model updating performed in this thesis are the
frequencies of the different modes, before the direction and shape of the modes are
checked visually after the updating is completed. However after more thorough
experiments are performed at Mjøstårnet more detailed information about the
mode shapes will be available. If the mode shapes is taken into the model updating
as a criterion along with the frequencies, one could be much more certain that the
identified parameters resemble the properties of the actual structure.

A possible method for comparing mode shapes, that is also relatively a straight
forward method to implement, is using the modal assurance criterion (MAC). The
modal assurance criterion is a measure of the similarity between a pair of modes,
the result is a scalar (matrix if more than one pair of modes) with values between
0 (no similarity) and 1.0 (full similarity). The definition of the MAC between a
set of analytical mode shape vectors �A and set of measured mode shape vectors



Chapter 8: Discussion 115

�X are given in Equation 8.1 [54].

MAC(r, q) =
| �T

A,r�X ,q |2

(�T
A,r�A,r)(�T

X ,q�X ,q)
(8.1)

where:

�A,r = Analytical modal vector, mode r
�X ,q = Experimental mode vector, mode q

Note since the analytical mode shape vector usually contains data for many more
DOFs than the measured one, it is necessary to either reduce the analytical or add
interpolated values to the measured vector.

8.2.7 Making the Model More General

The parametric model have been developed with Mjøstårnet and other similar
buildings in mind. However, during the entire process the design philosophy have
been to make the model as general as possible, to allow for future use of the
model on other types of buildings as well. Due to the limited time available and
to make the model as clear as possible the main scripts, who makes use of the
functions written in the other scripts, and input file is somewhat limited to mod-
elling a specific type of building. However we strongly believe that most of the
functions written are compatible for use in other types of buildings, with little or
no modification. Below follows a list of possible changes to make the model more
general:

• The script in its current state is unsuitable for generating non-rectangular
buildings. It might work for some configurations, but the function would be
unstable and errors must be expected.
• To limit the amount of input parameters to the script there are a few pre-

defined groups of cross sections for the beams, columns and diagonals. If
one should wish to change or add more groups of cross sections, it can be
done by changing the set definitions in the script and adding the new groups
of sets to the input file.
• The model currently assumes that there is floors on every level of the build-

ing. Changing this assumption should be doable, for a user with coding
experience, directly in the python-script, but the option is not accessible
trough the Excel input file.



116 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

• There is no option to not generate the exterior walls of the structure. The
alternative is to generate the model automatically by use of the script, before
removing the selected walls manually in the GUI of Abaqus CAE.
• Currently the stiffness and damping properties are assumed to be identical

for the entire foundation. Since the sensitivity study proved that the found-
ation stiffness are one of the most influential parameters for the dynamical
behavior of the structure, it could be interesting to see the effects of being
able to assign different stiffness to different parts of the foundations. Adding
this option should be straight forward, and is achieved by modifying a the
input file and a couple of functions in the script.
• At the current state, the model requires diagonals to be included. In fact,

both of the diagonals that can be defined are required. As the model has
the possibility of introducing horizontal stiffness in other ways as well, this
requirement can be removed in order to allow for more types of buildings
to be modelled. In addition, the model only allows for two diagonals to be
defined, one placed in each of the vertical principle planes. There are ex-
amples of timber buildings, such as "Treet" in Bergen, where more diagonals
must be included in order for it to be correctly modelled.
• In order to make it possible to study the damping parameters of floor-to-

frame connections, a connection-zones representing these connections must
be added to the model.



Chapter 9

Conclusion and
Recommendations for Further
Work

9.1 Conclusion

The parametric model developed in this thesis has proved to be a powerful tool.
It made it possible to conduct a study of how various stiffness parameters in-
fluence the frequencies of the first three modes of vibrations of Mjøstårnet. The
corresponding mode shapes of mode 1 and 2 were bending in the transverse and
longitudinal directions, while mode 3 was torsional. The following parameters
were found to have the greatest impact:

• Vertical stiffness of foundations
• Material stiffness of timber frame
• Axial stiffness of connections in the diagonal bracing system
• Rotational stiffness of connections in the timber frame
• Stiffness of exterior walls

A surprising observation was the low influence on the frequencies from the stiff-
ness of the floors of the building.

Tulebekova et al. [33] showed that the numerical model Sweco produced during
design of Mjøstårnet underestimated the fundamental frequencies and that the

117



118 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

two first mode shapes was predicted to be in the opposite direction of what was
measured. The results of the sensitivity study in this thesis showed that variations
in both the vertical foundation stiffness and the stiffness of the exterior walls
would cause the two first mode shapes to switch directions. A possible reason for
the wrong estimations made by Sweco can therefore be a combination of exterior
walls not being included in the model and an underestimation of the foundation
stiffness.

A model updating procedure was used in order to see if it was possible recreate
the first three fundamental frequencies of the building accurately and thus find
good estimations for the parameters. While it was possible to find parameters that
made the model match all the measured frequencies accurately, the procedure was
repeated three times, all of which resulted in different parameters. This show that
three frequencies alone is not enough in order to use the model to make good
predictions of the parameter’s of the building. However, if more frequencies can
be measured and included together with the mode shapes as targets for the model
updating, it is likely that reliable and accurate estimations of the real parameters
can be made using the model.

The parametric model also includes possibility for running wind-load analysis
based on the Eurocode. A parameter study proved that the acceleration response
of the structure is highly dependant on the damping and mode shape of the struc-
ture, as well as the wind velocity. A quick comparison with the accelerations meas-
ured at different wind velocities by Tulebekova et al. [33] was made and showed
relatively good correlation between the calculated and measured results.

9.2 Recommendations for Further Work

An extensive test of "Mjøstårnet" involving a "shaker" and detailed instrumentation
is planned as a part of the DynaTTB project [2]. The test will provide measured
frequencies for many more modes, as well as information about mode shapes,
damping properties etc. that can be added to the list of targets for the model
updating and improve the accuracy and certainty of the results considerably. With
more output/target variables the number of input variables may also be increased.

During the analyses conducted in the study some weaknesses was discovered in
the parametric model. One of which was the spurious local modes that would
occur in shell members when the thickness of the connection-zones was set too
low. Because of this, very low stiffness values in the connection-zones could not be
studied. Another problem caused by this is that the model in its current state, only
is able to produce the first three fundamental frequencies reliably, as the spurious



Chapter 9: Conclusion and Recommendations for Further Work 119

modes may interfere with the higher modes. Solving the issue with spurious local
modes is of great importance if the model should be used for model updating
with higher modes as target variables. Possible solutions to this is discussed in
subsection 8.2.2.

In order to be able to study other timber buildings, such as Treet in Bergen, it is
likely that a more general model is required. Some suggestions for changes that
can be implemented to the model to make it more general is listed in subsec-
tion 8.2.7. However, it is strongly believed that the code developed in this thesis
can be used as a foundation for further development.

To get more accurate estimations of the response of the structure to wind actions,
the already implemented option of specifying a time history for the wind load
should be further developed and put in to use, as an alternative to the Eurocode-
estimations.





Bibliography

[1] Klima- og miljødepartementet. (13th Mar. 2020). Klimaendringer og norsk
klimapolitikk, Regjeringen.no, [Online]. Available: https://www.regjeringen.
no/no/tema/klima-og-miljo/innsiktsartikler-klima-miljo/klimaendringer-
og-norsk-klimapolitikk/id2636812/ (visited on 05/11/2020).

[2] DynaTTB consortium. (2019). Dynamic response of tall timber buildings
under service load, [Online]. Available: https://www.dynattb.com/ (vis-
ited on 11/05/2020).

[3] Statsbygg, ‘Tre for bygg og bygg i tre: Kunnskapsgrunnlag for økt bruk av
tre i offentlige bygg’, Analysedokument fra Strategi- og utviklingsavdelin-
gen, 1st Mar. 2013. [Online]. Available: https://www.regjeringen.no/
no/dokumenter/tre-for-bygg-og-bygg-i-tre/id721773/.

[4] G. Glasø, ‘Tre og brann’, Treteknisk, Oslo, FOKUS på tre 37, Feb. 2012.
[Online]. Available: http://trefokus.no/resources/filer/fokus-pa-
tre/37-Tre-og-brann.pdf.

[5] P. Bernhard and P. F. Jørgensen, ‘Byggsektorens klimagassutslipp’, KanEn-
ergi AS, Oslo, 19th Apr. 2007. [Online]. Available: http://www.byggemiljo.
no / wp - content / uploads / 2015 / 01 / Notat - klimagassutslipp - fra -
byggsektoren21des06rev190407.pdf.

[6] Ø. Selvig, ‘Økt bruk av tre i offentlige bygg - klimagassvirkninger’, Civitas,
Oslo, Notat, 31st Jan. 2013. [Online]. Available: https://www.statsbygg.
no/globalassets/files/publikasjoner/rapporter/oktbruktreoffbygg-
civitas2013.pdf.

[7] Treindustrien, TreFokus, Skogeierforbundet and Treteknisk, ‘Treindustriens
lille grønne’, Oslo, May 2013. [Online]. Available: http://www.trefokus.
no/resources/Treindustriens-lille-gronne.pdf.

[8] Swedish Wood, Design of timber structures, Volume 1, 2nd ed. Stockholm:
Swedish Forest Industries Federatioin, 2016, ISBN: 978-91-980304-8-8.

[9] K. A. Malo, ‘Anisotropy in wooden materials’, Lecture Notes (TKT 4212 -
Timber Structuers 2), Department of Structal Engineering, NTNU, Trond-
heim, Norway, 28th Aug. 2018.

121

https://www.regjeringen.no/no/tema/klima-og-miljo/innsiktsartikler-klima-miljo/klimaendringer-og-norsk-klimapolitikk/id2636812/
https://www.regjeringen.no/no/tema/klima-og-miljo/innsiktsartikler-klima-miljo/klimaendringer-og-norsk-klimapolitikk/id2636812/
https://www.regjeringen.no/no/tema/klima-og-miljo/innsiktsartikler-klima-miljo/klimaendringer-og-norsk-klimapolitikk/id2636812/
https://www.dynattb.com/
https://www.regjeringen.no/no/dokumenter/tre-for-bygg-og-bygg-i-tre/id721773/
https://www.regjeringen.no/no/dokumenter/tre-for-bygg-og-bygg-i-tre/id721773/
http://trefokus.no/resources/filer/fokus-pa-tre/37-Tre-og-brann.pdf
http://trefokus.no/resources/filer/fokus-pa-tre/37-Tre-og-brann.pdf
http://www.byggemiljo.no/wp-content/uploads/2015/01/Notat-klimagassutslipp-fra-byggsektoren21des06rev190407.pdf
http://www.byggemiljo.no/wp-content/uploads/2015/01/Notat-klimagassutslipp-fra-byggsektoren21des06rev190407.pdf
http://www.byggemiljo.no/wp-content/uploads/2015/01/Notat-klimagassutslipp-fra-byggsektoren21des06rev190407.pdf
https://www.statsbygg.no/globalassets/files/publikasjoner/rapporter/oktbruktreoffbygg-civitas2013.pdf
https://www.statsbygg.no/globalassets/files/publikasjoner/rapporter/oktbruktreoffbygg-civitas2013.pdf
https://www.statsbygg.no/globalassets/files/publikasjoner/rapporter/oktbruktreoffbygg-civitas2013.pdf
http://www.trefokus.no/resources/Treindustriens-lille-gronne.pdf
http://www.trefokus.no/resources/Treindustriens-lille-gronne.pdf


122 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

[10] ‘Eurokode 3: Prosjektering av stålkonstruksjoner. del 1-1: Allmenne regler
og regler for bygninger’, Standard Norge, Lysaker, NS-EN 1993-1-1:2005
+A1:2014+NA:2015, 2015.

[11] ‘Eurokode 2: Prosjektering av betongkonstruksjoner. del 1-1: Allmenne reg-
ler og regler for bygninger’, Standard Norge, Lysaker, NS-EN 1992-1-1:2004
+NA:2008, 2008.

[12] ‘Konstruksjonstrevirke - fasthetsklasser’, Standard Norge, Lysaker, NS-EN
338:2016, 2016.

[13] N. Labonnote, Damping in Timber Structures. Department of Structal En-
gineering, NTNU, Trondheim, Norway: Phd. Thesis, 2012, ISBN: 978-82-
471-3836-6.

[14] Jayamon Jeena R., Line Philip and Charney Finley A., ‘State-of-the-art re-
view on damping in wood-frame shear wall structures’, Journal of Struc-
tural Engineering, vol. 144, no. 12, 2018. DOI: 10.1061/(ASCE)ST.1943-
541X.0002212.

[15] K. A. Malo, R. Abrahamsen and M. Bjertnæs, ‘Some structural design is-
sues of the 14-storey timber framed building “treet” in norway’, European
Journal of Wood and Wood Products, vol. 74, pp. 407–424, 2016. DOI: 10.
1007/s00107-016-1022-5.

[16] M. Williams, Structural Dynamics. Boca Raton, USA: Taylor & Francis, 2016,
256 pp., ISBN: 978-0-415-42732-6.

[17] A. Harish. (16th Jul. 2018). Why the tacoma narrows bridge collapsed: An
engineering analysis, SimScale Blog, [Online]. Available: https://www.
simscale.com/blog/2018/07/tacoma-narrows-bridge-collapse/ (vis-
ited on 30/01/2020).

[18] A. K. Chopra, Dynamics of Structures, 4th ed. Boston: Prentice Hall, 2012,
979 pp., ISBN: 978-0-13-307269-3.

[19] M. Liu and D. G. Gorman, ‘Formulation of rayleigh damping and its exten-
sions’, Computers & Structures, vol. 57, no. 2, pp. 277–285, Oct. 1995. DOI:
10.1016/0045-7949(94)00611-6.

[20] C. T. Yeh, B. J. Hartz and C. B. Brown, ‘Damping sources in wood structures’,
Journal of Sound and Vibration, vol. 19, no. 4, pp. 411–419, Dec. 1971. DOI:
10.1016/0022-460X(71)90612-2.

[21] Y. Tamura and A. Kareem, Eds., Advanced Structural Wind Engineering,
Tokyo: Springer Japan, 2013, ISBN: 978-4-431-54337-4. DOI: 10.1007/
978-4-431-54337-4.

[22] E. N. Strømmen, Theory of bridge aerodynamics, 2nd ed. Berlin: Springer,
2010, 302 pp., ISBN: 978-3-642-13659-7.

[23] ‘Eurokode 1: Laster på konstruksjoner: Del 1-4 : Allmenne laster. vind-
laster’, Standard Norge, Lysaker, NS-EN 1991-1-4:2005+NA:2009, 2009.

https://doi.org/10.1061/(ASCE)ST.1943-541X.0002212
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002212
https://doi.org/10.1007/s00107-016-1022-5
https://doi.org/10.1007/s00107-016-1022-5
https://www.simscale.com/blog/2018/07/tacoma-narrows-bridge-collapse/
https://www.simscale.com/blog/2018/07/tacoma-narrows-bridge-collapse/
https://doi.org/10.1016/0045-7949(94)00611-6
https://doi.org/10.1016/0022-460X(71)90612-2
https://doi.org/10.1007/978-4-431-54337-4
https://doi.org/10.1007/978-4-431-54337-4


Bibliography 123

[24] A. Feldmann, H. Huang, W.-S. Chang, R. Harris, P. Dietsch, M. Gräfe and
C. Hein, ‘Dynamic properties of tall timber structures under wind-induced
vibration’, presented at the WCTE World Conference on Timber Engineer-
ing 2016, Vienna, Austria, Aug. 2016. [Online]. Available: https://www.
semanticscholar.org/paper/Dynamic-properties-of-tall-timber-
structures-under-Feldmann-Huang/8f54865d1d737c8da6653ca2af1ce81c2258986f.

[25] ‘Bases for design of structures - serviceability of buildings and walkways
against vibrations’, Geneva, Switzerland, ISO 10137:2007, 2007.

[26] A. Talja and L. Fülüp, ‘Evaluation of wind-induced vibrations of modular
buildings’, VTT Technical Research Centere of Finland Ltd, Helsinki, Cus-
tomer Report VTT-CR-03593-16, 2016. [Online]. Available: https://www.
vttresearch.com/sites/default/files/julkaisut/muut/2016/VTT-
CR-03593-16.pdf (visited on 01/04/2020).

[27] K. Bell, An Engineering Approach to Finite Element Analysis of Linear Struc-
tural Mechanics Problems. Bergen: Fagbokforlaget, 2014, ISBN: 978-82-321-
0268-6.

[28] Abaqus 6.11 - Analysis User’s Manual. Providence, USA: Dassault Systèmes,
2011.

[29] Abaqus 6.11 - Theory Manual. Providence, USA: Dassault Systèmes, 2011.

[30] R. Abrahamsen, ‘Mjøstårnet - 18 storey timber building completed’, presen-
ted at the Internationales Holzbau-Forum, Garmisch-Partenkirchen, Ger-
many, 2018. [Online]. Available: https://www.moelven.com/globalassets/
moelven-limtre/mjostarnet/mjostarnet---18-storey-timber-building-
completed.pdf (visited on 05/05/2020).

[31] R. Abrahamsen, ‘Mjøstårnet - construction of an 81 m tall timber building’,
presented at the Internationales Holzbau-Forum, Garmisch-Partenkirchen,
Germany, 2017. [Online]. Available: https://www.moelven.com/globalassets/
moelven-limtre/mjostarnet/mjostarnet---construction-of-an-81-
m-tall-timber-building.pdf (visited on 05/05/2020).

[32] ‘Trekonstruksjoner - limtre og limt laminert heltre - krav.’, Standard Norge,
Lysaker, NS-EN 14080:2013+NA:2016, 2016.

[33] S. Tulebekova, K. A. Malo, A. Rønnquist, P. Nåvik and M. Bjærtnes, ‘Iden-
tification of structural damping from ambient vibrations in an 18-storey
timber building in norway [paper to be submitted]’, Department of Structal
Engineering, NTNU, Trondheim, Norway, 2020.

[34] S. Tulebekova, ‘Mjøstårnet dynamics’, Department of Structal Engineering,
NTNU, Trondheim, Norway, Internal Presentation, 20th Feb. 2020.

[35] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

[36] Dassault Systèmes, Abaqus 2016 - Scripting Reference Guide. Providence,
USA: Dassault Systèmes, 2015.

https://www.semanticscholar.org/paper/Dynamic-properties-of-tall-timber-structures-under-Feldmann-Huang/8f54865d1d737c8da6653ca2af1ce81c2258986f
https://www.semanticscholar.org/paper/Dynamic-properties-of-tall-timber-structures-under-Feldmann-Huang/8f54865d1d737c8da6653ca2af1ce81c2258986f
https://www.semanticscholar.org/paper/Dynamic-properties-of-tall-timber-structures-under-Feldmann-Huang/8f54865d1d737c8da6653ca2af1ce81c2258986f
https://www.vttresearch.com/sites/default/files/julkaisut/muut/2016/VTT-CR-03593-16.pdf
https://www.vttresearch.com/sites/default/files/julkaisut/muut/2016/VTT-CR-03593-16.pdf
https://www.vttresearch.com/sites/default/files/julkaisut/muut/2016/VTT-CR-03593-16.pdf
https://www.moelven.com/globalassets/moelven-limtre/mjostarnet/mjostarnet---18-storey-timber-building-completed.pdf
https://www.moelven.com/globalassets/moelven-limtre/mjostarnet/mjostarnet---18-storey-timber-building-completed.pdf
https://www.moelven.com/globalassets/moelven-limtre/mjostarnet/mjostarnet---18-storey-timber-building-completed.pdf
https://www.moelven.com/globalassets/moelven-limtre/mjostarnet/mjostarnet---construction-of-an-81-m-tall-timber-building.pdf
https://www.moelven.com/globalassets/moelven-limtre/mjostarnet/mjostarnet---construction-of-an-81-m-tall-timber-building.pdf
https://www.moelven.com/globalassets/moelven-limtre/mjostarnet/mjostarnet---construction-of-an-81-m-tall-timber-building.pdf


124 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

[37] Dassault Systèmes, Isight - automate design exploration and optimaztion,
2014. [Online]. Available: https://www.3ds.com/fileadmin/PRODUCTS-
SERVICES/SIMULIA/RESOURCES/simulia-isight-brochure.pdf (visited
on 15/05/2020).

[38] K. A. Malo, ‘Guidance meetings’, Department of Structal Engineering, NTNU,
Trondheim, Norway, 2020.

[39] I. Utne, ‘Numerical models for dynamic properties of a 14 storey timber
building’, Master Thesis, NTNU, Trondheim, 2012. [Online]. Available: https:
//ntnuopen.ntnu.no/ntnu- xmlui/handle/11250/237175 (visited on
17/01/2020).

[40] H. Liven and Moelven Limtre AS, ‘Treet i bergen og mjøstårnet i brumun-
ddal; høyhus i tre - utfordringer’, Bygg Reis Deg, Presentation, 2017.

[41] Metsä Wood, ‘Kerto manual - mechanical properties’, Metsä, Finland, Feb.
2017. [Online]. Available: https://www.metsawood.com/global/Tools/
kerto-manual/Pages/Kerto-manual.aspx.

[42] S. Nesheim, ‘Python script for abaqus for closed hollow sections (PSACHS)’,
Department of Structal Engineering, NTNU, Trondheim, Norway, Nov. 2019.

[43] H. Unterwieser and G. Schickhofer, ‘Characteristic values and test config-
urations of CLT with focus on selected properties’, presented at the Focus
Solid Timber Solutions - European Conference on Cross Laminated Timber
(CLT), Graz, Austria: University of Bath, 2013, pp. 53–73.

[44] ‘Egenlaster for bygningsmaterialer, byggevarer og bygningsdeler’, Sintef,
Trondheim, Byggforskserien 471.031, 2013.

[45] ‘Eurocode 1: Actions on structures. part 1-1: General actions. densities,
self-weight, imposed loads for buildings’, Standard Norge, Lysaker, NS-EN
1991-1-1:2002+NA:2008, 2008.

[46] ‘Eurocode 0: Basis of structural design’, Standard Norge, Lysaker, NS-EN
1990:2002+A1:2005+NA:2016, 2016.

[47] A. Rønnquist, ‘Lecture 9 - damping of structures’, Lecture Notes (TKT 4201
- Structural Dynamics), Department of Structal Engineering, NTNU, Trond-
heim, Norway, 2019.

[48] ‘Guidelines for the evaluation of the response of occupants of fixed struc-
tures, especially buildings and off-shore structures, to low-frequency hori-
zontal motion (0,063 to 1 hz)’, Geneva, Switzerland, ISO 6897:1984, 1984.

[49] ‘Eurokode 5: Prosjektering av trekonstruksjoner. del 1-1: Allmenne regler
og regler for bygninger.’, Standard Norge, Lysaker, NS-EN 1995-1-1:2004
+A1:2008+NA:2010, 2010.

[50] J. M. Branco, P. J. S. Cruz and M. Piazza, ‘Experimental analysis of later-
ally loaded nailed timber-to-concrete connections’, Construction and Build-
ing Materials, vol. 23, no. 1, pp. 400–410, Jan. 2009. DOI: 10.1016/j.
conbuildmat.2007.11.011.

https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/SIMULIA/RESOURCES/simulia-isight-brochure.pdf
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/SIMULIA/RESOURCES/simulia-isight-brochure.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/237175
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/237175
https://www.metsawood.com/global/Tools/kerto-manual/Pages/Kerto-manual.aspx
https://www.metsawood.com/global/Tools/kerto-manual/Pages/Kerto-manual.aspx
https://doi.org/10.1016/j.conbuildmat.2007.11.011
https://doi.org/10.1016/j.conbuildmat.2007.11.011


Appendix : Conclusion and Recommendations for Further Work 125

[51] F. Solarino, L. Giresini, W.-S. Chang and H. Huang, ‘Experimental tests on a
dowel-type timber connection and validation of numerical models’, Build-
ings, vol. 7, p. 116, Dec. 2017. DOI: 10.3390/buildings7040116.

[52] R. Tomasi, A. Crosatti and M. Piazza, ‘Theoretical and experimental ana-
lysis of timber-to-timber joints connected with inclined screws’, Construc-
tion and Building Materials, vol. 24, no. 9, pp. 1560–1571, Sep. 2010. DOI:
10.1016/j.conbuildmat.2010.03.007. (visited on 06/06/2020).

[53] C. Obbink-Huizer. (9th Dec. 2020). Abaqus 2020: What’s new?, [Online].
Available: https://info.simuleon.com/blog/abaqus-2020-whats-new
(visited on 08/06/2020).

[54] M. Pastor, M. Binda and T. Harčarik, ‘Modal assurance criterion’, Procedia
Engineering, Modelling of Mechanical and Mechatronics Systems, vol. 48,
pp. 543–548, Jan. 2012. DOI: 10.1016/j.proeng.2012.09.551.

https://doi.org/10.3390/buildings7040116
https://doi.org/10.1016/j.conbuildmat.2010.03.007
https://info.simuleon.com/blog/abaqus-2020-whats-new
https://doi.org/10.1016/j.proeng.2012.09.551




Appendix A

Parametric Model - User Guide

This document gives a detailed guide on how to create a parametric model us-
ing the scripts developed in the master thesis "A Parametric Study of Tall Timber
Buildings" by Lars Håkon Wiig and Daniel Hjohlman Reed. The document also
covers how to run analyses using the model. Assumptions and limitations of the
model are covered in the thesis.

A.1 Prerequisites

Before running the model a few prerequisites must be fulfilled:

• Microsoft Excel must be installed
• Simulia Abaqus must be installed, preferably version 2019
• Simulia Isight (optional)
• OpenPyXL must be downloaded and added to Abaqus (subsection A.1.1)
• File paths must be updated inside the script (subsection A.1.2)

A.1.1 Installing OpenPyXl

The script relies on a Python package called OpenPyXl to be able to read the data
from the input file created in Excel. OpenPyXl is a package that is not included in
a standard installation of Python. Normally downloading and installing packages
in Python is relatively straight forward, however this is not the case with the Py-

A-1



A-2 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

thon installation featured in Abaqus. So instead of a straight forward installation,
getting OpenPyXl to work demands some extra steps, described below:

• Method 1 (The easy way):
This method is tested for Abaqus 2017 and 2019, and will likely work for
other Abaqus versions as well. This method is identical to "method 2" expect
for that the files that needs to be downloaded and installed in "method 2"
are already provided in the digital appendix.

1. Unzip the .zip archive called "OpenPyXl_files.zip" featured in the di-
gital appendix, and copy the content (not the folder itself) of the folder.

2. Locate the "site-packages" folder containing the packages featured in
the Abaqus Python installation, the path should be something like: C:
/SIMULIA/CAE/2019/win_b64/tools/SMApy/python2.7/Lib/site-packages

3. Paste the content copied in step 1 into the folder located in step 2.
4. Check that OpenPyXl is installed by opening Abaqus and typing the

following command into the python interpreter inside Abaqus:
>>> import openpyxl

Press enter and if no error messages are returned the installation should
be successful.

• Method 2 (The complicated way):
If an Abaqus version running a Python version not compatible with Open-
PyXl 2.6.4 is used, or for any other reason method 1 does not work, a differ-
ent version of OpenPyXl can be downloaded from the original source rather
than the digital appendix.

1. Begin by checking the Python version included in the Abaqus version
by typing the following into the python interpreter in Abaqus, note
that at the time of writing all Abaqus versions uses old 2.7.x versions
of Python instead of the newer 3.x.x:

>>> import sys
>>> print(sys.version)

2. Download and install the same version of Python as a standalone in-
stallation on your computer. The necessary installation files are found
at https://www.python.org/downloads/.

3. Download and add OpenPyXl to the Python installation installed in the
previous step. See https://openpyxl.readthedocs.io/en/stable/index.
html#installation and https://packaging.python.org/tutorials/
installing-packages/ for installation instructions. Make sure that
you install a version of OpenPyXl that is compatible with the installed
version of Python, as the newer versions of OpenPyXl does not work
with Python 2.x.x. If using pip to install the package the version (of
OpenPyXl) can be specified by using the following command:

pip install openpyxl==x.x.x

https://www.python.org/downloads/
https://openpyxl.readthedocs.io/en/stable/index.html%23installation
https://openpyxl.readthedocs.io/en/stable/index.html%23installation
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/


Appendix A: Parametric Model - User Guide A-3

where x.x.x is the desired version number of OpenPyXl. At the time of
writing this instructions the final version of OpenPyXl that can be used
with Python 2.7.x is 2.6.4. Note that the files needed for installing ver-
sion 2.6.4 are provided in the digital appendix as described in "method
1".

4. Open the (standalone, not inside Abaqus) python interpreter and type
the following command:

>>> import openpyxl

Press enter and if no error messages are returned the installation should
be successful.

5. After OpenPyXl is installed to the standalone Python version locate
the "site-packages" folder containing the installed libraries (for the
standalone version), the path to this folder is usually something like:
C:\Python27\Lib\site-packages.

6. Copy all the files and folders with names related to either "xmlfile",
"jd_cal" or "openpyxl", similar to the files in Figure A.1.

Figure A.1: Folders and files to copy. Note: Might vary depending on the version
of OpenPyXl

7. Locate the "site-packages" folder containing the packages featured in
the Abaqus Python installation, the path should be something like: C:
/SIMULIA/CAE/2019/win_b64/tools/SMApy/python2.7/Lib/site-packages

8. Paste the content copied in step 6 into the folder located in step 7.
9. Check that OpenPyXl is installed by opening Abaqus and typing the

following into the Python interpreter inside Abaqus:

>>> import openpyxl

Press enter and no error messages should be returned.



A-4 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

A.1.2 Preparing the Scripts

Before running the code, each script needs to be updated with the path to the
folder containing all the scripts. Open the scripts in a code editor or simply a basic
text editor, e.g Microsoft Notepad. Near the top of every script the following lines
can be found:

# -------------- Input folder path -------------
# Folder where all the scripts are located:
scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'

Replace the path with the real path to the folder where all the scripts are located.
Remember to keep the quotation marks enclosing the path.

In addition to updating the path to the folder containing all the scripts, the path
to the the input file (Excel file) and the working directory must be specified in the
main scripts. In the files TTB_3D.py and TTB_3D_EC_wind.py locate the following
lines:

# -------------- Input file/folder paths -------------
# All the locations specified must exist (i.e folders must be

created BEFORE running the script),!

# Folder where all the scripts are located:
scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
# Path to the Excel-file containing the input:
inputFile =

'C:\\Users\\username\\TTBParametricModel\\TTB_input.xlsx',!

# Path to Abaqus working directory (all result files will be
stored here):,!

workDir = 'C:\\temp'

Replace the paths in the scripts with the relevant paths, all the folders specified
in the paths must be created before running the scripts, Abaqus/Python will not
create them automatically. Remember to keep the quotation marks enclosing the
path.



Appendix A: Parametric Model - User Guide A-5

A.2 Setting Up the Input File

This section goes through the Excel workbook sheet-by-sheet. The purpose is to
explain the input that is used in the model. The Excel file is a part of the digital
appendix delivered directly to prof. Malo at the Department of Structural Engin-
eering at NTNU. Note that the input shown in the screenshots featured is for a
fictitious building that is not related to Mjøstårnet.

A.2.1 General Remarks

The following list points out a few general remarks for use of input file:

• Only add input to yellow cells. Some red cells turn yellow if depending on
the previous user input, and can then be modified.
• Cells that are either, red, white or grey should _not be modified.
• All input should be inserted to the table starting from the top row and/or

left column. No rows should be left empty between two rows that contain
input.
• Do not add cells, rows or columns to the file. (Unless the appropriate changes

have been applied to the script)
• Some of the inputs are in the form of questions. In these cases the user can

choose between 1 and 0, which means Yes and No, respectively.
• It is recommended to fill out the sheets in the same order as they appear in

the user guide.

A.2.2 Units

Abaqus lets the user specify the input in whatever units they want as long as
they are consistent, however we strongly recommend using SI-units as listed in
Table A.1.

Table A.1: Recommended units

Length Force Mass Time Stress Energy Density Angle (Rot. DOFS)
m N kg s Pa J kg/m3 rad



A-6 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

A.2.3 Coordinate System

The coordinate system used for the model is oriented with the xz-plane as the ho-
rizontal plane. The y-axis is pointing in positive vertical direction. The script only
allows for internal beams to span in one direction, the x-direction. The x-direction
is typically along the short side of a building, and will hereafter be referred to as
the transverse direction. The z-direction is along the long side of the building,
hereafter referred to as the longitudinal direction. The orientation of the coordin-
ate system is illustrated in Figure A.2.

Figure A.2: Orientation of coordinate system

A.2.4 Grid

The geometry of the entire model is based on the grid system. By defining the
grid, the geometry of the frame is also automatically defined. The grid is defined
in two separate sheets, the "Grid (XZ)" sheet (Figure A.3) and the "Grid (Y)" sheet
(Figure A.4). In the "Grid (XZ)" sheet, the positions of the x- and z-grid lines
are specified in the position rows. The grid lines are given a reference number,
starting from zero. The two position vectors are then creating a matrix where
every element is indicating a grid line intersection. A column is placed at every
grid line intersection that is marked with 1. If it instead reads 0, there will not be
placed a column. The example input in Figure A.3 results in the column placement
illustrated in Figure A.5.



Appendix A: Parametric Model - User Guide A-7

The "Grid (Y)" sheet defines the levels of the grid. In this sheet, the vertical co-
ordinate of the levels is the only thing that should be specified. Each level is given
an index, starting from 0. At every level, except from level 0, beams are added to
the frame. Beams spanning in x-direction will be placed at every grid line, while
beams spanning in z-direction will only be placed at the two outermost grid lines.

Figure A.3: Grid input for the horizontal plane (xz-plane)

Figure A.4: Grid input for the vertical direction (y-direction)

Figure A.5: Column placement based on input in Figure A.3

A.2.5 Diagonals

The geometry of the diagonals are defined in the "Diagonals" sheet (Figure A.6).
The script requires the model to include two types of diagonals: one in both the
longitudinal (z) and transverse (x) directions. The sheet have two input rows.
New rows should not be added. The "LongEdgeDiagonals" and the "ShortEdgeDi-
agonals" specify the parameters of the longitudinal and transverse diagonals, re-
spectively.



A-8 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

The "Plane" input should not be altered, as it is preset to orient the diagonals
correctly. The input of the "Axis" column defines the grid lines, at which the diag-
onals should be placed. The input should be one or more of the grid lines indices
defined in the "Grid (XZ)" sheet. If the diagonal is to be placed at more than one
grid line, the grid line indices should be separated by a semi-colon, see Figure A.6.
The "Start Level" and "End Level" inputs specify at what levels the diagonal should
start and end, respectively. Note that the start level should always have a lower
index than the end level. The "Start Column" and "End Column" inputs specify the
the columns that the diagonal should be placed between. The input should be grid
line indices. Note that the "Start Column" define the direction of the diagonal, and
does not necessarily have to be the lowest index (see Figure A.7).

The "Skip Levels" input specify the number of levels the diagonal should span
across before it changes direction. If the number of floors that the diagonal span
across varies throughout the height of the building a list of values separated by
semi-colons, can be used instead of a constant. In this case the first value specify
the number of floors that is spanned across between the start of the diagonal and
the first turning point, the second value between the first and the second turning
point etc. The example in Figure A.7a, has a constant "Skip Levels" input of 2.

The "Intersect At" parameter defines at what height the diagonal should intersect
with the start and end columns. The input can be of any value in the interval
[0,1]. If the input is set to 0 the turning point will be placed at the level specified
by the "Skip Levels" parameter, if the input is set to 1 it will be placed at the level
below and if it is 0.5 it will be placed in the middle of the two levels. If the "Start
Level" is set to 0, the diagonal will start at this level regardless of "Intersect At"
input. Likewise, if "End Level" is set to the upper level of the building, diagonal
will end at the top level. The "Intersect At" parameter is illustrated in Figure A.7b.
The example in Figure A.7a uses an "Intersect At" value of 0.5.

Figure A.6: Diagonals input



Appendix A: Parametric Model - User Guide A-9

(a) Parameter description (b) Intersect At

Figure A.7: Illustration of input parameters for "Diagonals" sheet.

A.2.6 Materials

The materials to be used later in the model are defined in the "Materials" sheet
(Figure A.8). The script allows the input of isotropic, transverse isotropic and
orthotropic linear elastic materials.

Begin by choosing the material type from the drop-down menu in the "Type"
column. The cells that needs to be filled out for defining the chosen material type
will turn yellow. Values must be inserted in the "Name", "Density" and the high-
lighted "Stiffness Parameters" columns. The input for the damping parameters are
optional. Note that any damping defined in the "Materials" sheet does not apply
to the connection zones or segments. Also note that using the composite damp-
ing option may lead to issues when used in combination with the other damping
types, see subsection A.2.18 and the Abaqus documentation for more information.

Figure A.8: Material input



A-10 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

A.2.7 Add to/Remove From Frame

The "Remove From Frame" and "Add To Frame" sheets can be used for altering
the original geometry of the timber frame that is defined by the grid. Only beams
and columns can be removed and added.

Starting with the "Remove From Frame" sheet (Figure A.9), the general idea of
this function is that beams and columns that lays along a specified grid line is re-
moved. The first input is "Parts to be removed". The input is list based, and specify
what should be removed. The options are "Beams", "Columns" and "Beams and
Columns". The "Plane" input specifies what plane the the parts should be removed
from. The two possible inputs are "XY" (transverse plane) and "YZ" (longitudinal
plane).

The "Axis" input specifies from what grid lines the parts should be removed. If
parts should be removed from multiple grid lines, more than one grid line number
could be added, separated by semi-colons. The "Start Level" and "End Level" inputs
specify the vertical limits of the area in which the parts will be removed, the input
should be level indices. If "Parts to be removed" includes beams, the beams placed
at the specified start and end levels will be removed. The "Start Column" and "End
Column" define the horizontal limits of the area that the operation is applied to.
Note that the start index for both the start level and column must be lower than
the end index. Finally, the "Remove start/end columns" should be set to 1 if the
start and end columns specified should be removed, and 0 in the opposite case.
This input is only relevant if columns are included in the "Parts to be removed"
input. The results of the input in Figure A.9, are illustrated in

Figure A.9: Remove From Frame input



Appendix A: Parametric Model - User Guide A-11

(a) Before (b) After

Figure A.10: Example for use of "Remove From Frame" sheet

The "Add To Frame" sheet (Figure A.11), allows for adding individual beams and
columns to the frame. The inputs that defines the geometry and the section of
the added features are shown in Figure A.11a. Each added feature is defined by
one row, and it must be given a unique name in the "Name/Description" column.
The "Startpoint" and "Endpoint" inputs define the position of the added feature.
The points are specified by coordinates, and can be placed independently of the
grid. Note that it is only possible to add features that solely span in either x-, y-
or z-direction.

The next input parameters are related to the cross-section. The "Width" and "Height"
inputs specify the geometry of the cross-section, and the "Material" input assigns
the material. The "Orientation of n1" input defines how the cross-section is ori-
ented in the global coordinate system. The input is a unit vector that specify the
n1 direction (see Figure A.12). The vector should be written on the form x;y;z.

(a) Geometry and section input

(b) Connector segment input

Figure A.11: Add to frame input



A-12 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure A.12: Orientation of cross-section

The final inputs that need to be defined for every added feature, are related to
the connections, or more specifically the connection segments used to model the
connections (Figure A.11b). If the "Connector segments?" input is set to 1 con-
nector segments are added to both ends of the added feature. If it is set to 0 it
will not be created a connector segment, and the added feature will be rigidly
connected to other parts of the frame. The following input parameters are only
required for added features where "Connector segments?" is set to 1. These are
specified in the same way as in the "Beam Connections" sheet, which is explained
in subsection A.2.10.

A.2.8 Shafts

The "Shafts" sheet (Figure A.13) is where the geometry of the shafts of the model
is defined. It is required to include one or more shafts in the model in order for the
script to run correctly. Start by giving each shaft a unique name in the "Name/De-
scription" column. The "Connect to Building" input is used to specify if the shaft
walls should be attached to other parts of the building, thus adding lateral sup-
port. The shaft will be connected to the building if this input is set to 1. If it is
set to 0, the shaft itself will not be created, but shaft openings will be created
in the floors. The position of the shafts in the horizontal (xz-) plane, is defined
by coordinates, rather than referring to the grid lines. This is done in the "Start
Coordinate" and "End Coordinate" columns.

The "Start Level" and "End Level" parameters specify the top and bottom of the
shaft. These inputs are limited to the level indices. However, in the "End Level
Offset" column, an offset of the the end level can be specified, allowing the shaft
to span to any desired coordinate. The input should be in the chosen length unit
for the model. If no offset is desired, the column should be kept blank. Finally, the
"Remove Wall" input is also optional. This allows for removing one of the walls
from the shaft. The input should be a number between 1-4, which specify which
wall should be removed. The numbering of the walls is illustrated in Figure A.14.
The column should be left blank if no wall is to be removed.



Appendix A: Parametric Model - User Guide A-13

Figure A.13: Shaft input

Figure A.14: Shaft wall numbering

A.2.9 Column/Beam/Diagonal Cross Sections

The input sheets for setting the cross sections of the columns, beams, and diag-
onals are identical. Figure A.15 shows the input sheet for the beams. The "Name"
column contains the names of the predefined groups of columns/beams/diagonals
(see section 3.3), the names should not be changed. The two following columns
are for defining the section width and height respectively. For all beams and diag-
onals, the cross-section is oriented such that the width is parallel to the horizontal
plane. Note that the orientation varies amongst the column groups. Corner and
Short Edge columns are oriented with the width along the Z-direction, while Long
Edge and Inner columns are oriented with the width along X-direction. Finally
choose the material from the drop-down menu in the "Material" column. The ma-
terial must be defined in the "Materials" sheet before in appears in the drop-down
menu. The final remaining columns contains cross sectional properties that are



A-14 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

calculated automatically, and should not be changed manually.

Figure A.15: Beam cross sections input

A.2.10 Beam Connections

The principle behind the connections between the diagonals, beams and columns
are explained in detail in subsection 3.7.1 of the thesis. Figure A.16 shows the
input sheet where the properties of the connector segments are set. Like for the
previous sheet the names in the first column are predefined in the code and should
not be changed. The length of the connector segments are set in the "Segment
Length" column. The next four columns are used for setting the fraction of the
original area, 2nd moment of area (about both axes) and the torsional constant
of the connector segment. The grey columns shows the resulting properties of the
connectors.

Figure A.16: Beam connections sheet

Finally the damping parameters of the connections are set. The generalized cross
sections used to create the connections in Abaqus does not support the structural
damping option, only Rayleigh and composite damping. Note that any damping
defined in the "Materials" sheet does not apply to the connection segments. Also
note that using the composite damping option may lead to issues when used in
combination with the other damping types, see subsection A.2.18 and the Abaqus
documentation for more information.

A.2.11 Wall Sections

The cross sections of the walls are set in the "Wall Sections" sheet (Figure A.17).
The wall types are predefined inside the code, and the only settings on this sheet



Appendix A: Parametric Model - User Guide A-15

are the section thickness and the material. The material must be defined in the
"Materials" sheet to show up in the drop-down menu.

Figure A.17: Wall sections input

A.2.12 Floor Sections

The parameters of the floors in the building are defined in the "Floor Sections"
sheet (Figure A.18). Start by defining the name, start and end level of the floor
type. As many different types of floors as necessary can be created, but each story
can only be assigned one type of floor section. A floor must be defined for every
level in the building for the model to function properly.

Figure A.18: Floor sections input

The script does only support creating homogeneous shell sections. Enter the sec-
tion thickness and pick a material from the drop-down menu in the "Material"
column. The next column gives the option of including (set the value to 1) beams
at the outer edges of the floor or not (set the value to 0). The "Include Connector
Segments" option can be turned on to create longitudinal connector zones with the
spacing specified in the "Distance between connector segments" column, note that
the connector zones can only be created in the global z-direction of the model. The
final column "Main (E1) Direction" is used to define the material orientation of
the floor; the direction specified becomes the 1-direction of the material, the other
in-plane axis becomes the 2-direction, while the 3-direction are always defined as
the out-of-plane direction. It is not necessary to define the material orientation if
an isotropic material is chosen.

Note that it is required to include a foundation slab at the the first floor (level 0)
in order for the script to run properly. In Figure A.18 this is represented with the
Concrete Slab. The material and thickness of this floor is not of importance to the



A-16 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

properties of the building, as it is mainly included in order to tie the bottom of
the walls to prevent spurious local modes.

A.2.13 Shell Connections

The "Shell Connections" sheet (Figure A.19) is used for setting the properties of
the connection zones for the exterior walls, and any connection zones that may
be defined in the "Floor Sections" sheet.

Figure A.19: Shell connections input

The first row of input is dedicated to the connection zones of the exterior walls.
This line should not be removed, and the name should not be changed. The rest of
the rows are for the floors with connector zones. The connector zones are created
previously in the "Floor Sections" sheets, while the properties are set in this sheet.
Choose a floor (with connector zones already created) from the drop-down menu
in the column called "Name (Original)". In the "Field Width" column the width of
the connector zone (see Figure A.20) is set, and the thickness of the zone is set as
a fraction of the original floor/wall thickness in the next column. Choose the ma-
terial from the drop-down menu, the material must be defined in the "Materials"
sheet before it appears in the list. Next the user can define damping parameters,
but this is optional. Note that any damping defined in the "Materials" sheet does
not apply to the connection zones, only the damping from this sheet is included.
Also note that using the composite damping option in combination with the other
damping options may lead to issues, see subsection A.2.18 and the Abaqus doc-
umentation for more information. The final column "Connect to" does only apply
to the exterior walls, and gives the choice of connecting the wall panels along
the horizontal edges (floors/beams) only, or along all edges (floors/beams and
columns).



Appendix A: Parametric Model - User Guide A-17

Figure A.20: Width of connection zone

A.2.14 Floor to Shaft Connections

The principle behind the connections between the floor and the shafts are de-
scribed in section 3.6. The input sheet are shown in Figure A.21. First start by
choosing the name of the floor that should be assigned a connection zone in the
drop-down menu that appears when clicking a cell in the "Floor Name" column,
all the floors defined in the "Floor Sections" sheet should be in the menu (if not
it can be entered manually). It is crucial that the name of floor written/chosen in
the "Floor Name" column is identical to floor defined in the "Floor Sections" sheet.
Note that the tie between the floor and shaft is established for all floors, the in-
put in this sheet only controls whether or not a connection zone with different
properties from the original floor is created.

In the "Field Width" column the width of the connector zone (see Figure 3.11) is
set, and the thickness of the zone is set as a fraction of the original floor thick-
ness in the next column. The material of the connection zone is chosen from a
drop-down menu in the "Material" column. The final four columns are used for
setting the damping of the material in the connector zone. Note that any damping
defined in the "Materials" sheet does not apply to the connection zones, only the
damping from this sheet is included. Also note that using the composite damping
option in combination with the other damping options may lead to issues, see
subsection A.2.18 and the Abaqus documentation for more information.

Figure A.21: Floor-to-shaft connections input



A-18 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

A.2.15 Boundary Conditions

The spring stiffness of the foundation springs are set in the "Boundary Condi-
tions" sheet. The values inserted in "Spring Stiffness" and "Dashpot Coeffcient"
columns are the values per spring/dashpot (in general one set of springs/dashpots
per column, in addition to one set at each shaft corner). The degrees of freedom
(DOFs) follow the global axis system.

Figure A.22: Boundary conditions input

A.2.16 Distributed/Point Mass

Additional non-structural distributed mass can be applied in the "Distributed Mass"
sheet (Figure A.23). The mass is applied to all floors between "Start Level" and
"End Level", including the start and end levels. There is no limit to how many
masses that can be assigned to each level. The start and end levels is specified
using the level indices from the "Grid (Y)" sheet.

Figure A.23: Distributed mass input

Concentrated mass can be added to the intersections of the grid. The vertices
where the point masses are applied are found by a imaginary box covering the
volume between the start point and the end point. The start and end points are
defined by the indices of the grid lines. Note that only intersections between the



Appendix A: Parametric Model - User Guide A-19

grid lines in the original grid system defined in the "Grid (XZ)" and "Grid (Y)"
sheets are assigned point masses, intersections between members created using
the "Add to Frame" sheet are omitted. Choose the part masses should be applied
to in the pull-down menu, and set the magnitude per point mass.

Figure A.24: Point mass input

A.2.17 Wind (Eurocode)

The input in this sheet is to great extent directly from Eurocode 1 part 1-4 [23],
and the method used for calculating the loads, including the formulas, are de-
scribed further in subsection 2.3.3 of the thesis.

The first input is self-explanatory, simply choose the wind direction from the pull-
down menu. The axis definition is the same as in the rest of the model.

The next section of input are parameters related to the structure, see Figure A.25

• The "Logarithmic Decrement (Structural)" input has two different meth-
ods. If "Abaqus Based" is chosen from the drop-down menu, the logarithmic
decrement are determined from a free vibration step in the Abaqus analysis.
The other method that can be chosen from the drop-down menu are "Spe-
cify", in this case the logarithmic decrement inserted in the "Value" column
is used instead of the value from Abaqus.
• The input to the "Logarithmic Decrement (Aerodynamic)" is similar to the

previous input. However instead of the "Abaqus Based" option there is a
"Eurocode" option where Equation F.16 from the Eurocode is used.
• "First Nat. Freq. (In wind dir.)" has three options. "Abaqus Based" determ-

ines the frequency based on the aforementioned free vibration step, the op-
tion "Eurocode" uses rough estimate given in the Eurocode appendix ( f1 =



A-20 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

46/h), while the final option "Specify" allows the user to input the frequency
directly in the "Value" column. Note that specifying the frequency does not
change frequency of the FEA-model, only the input to the wind calculations.
• For the "Mode Shape Exponent" the only option currently implemented is

to specify the value directly in the "Value" column. The mode shape is cal-
culated by the estimate given by Equation F.13 in the Eurocode, with the
specified value as the exponent in the expression.
• Finally the corner radius of the building can be specified. For most buildings

r = 0 is appropriate.

Figure A.25: Structural input

The terrain category and reference wind speed (Vb,0) are exactly the same inputs
as described in the Eurocode. The script allows to base the calculations of the
load and the acceleration on two different return periods to accommodate for
difference guidelines, the return period and probability factor are discussed in
section 2.3.3 of the thesis. The next section of input parameters are related to the
wind speed and the turbulence. The value is usually 1.0, but recommendations
and rules for all the parameters are given in the Eurocode clause given in the
"Ref." column. The final input is the "Sample height for acceleration results" where
the height coordinate of the floor where the acceleration should be evaluated is
specified.

A.2.18 Analysis Parameters

The first part (Figure A.26) of the sheet called "Analysis Parameters" is for setting
the finite element size and type used for meshing the different parts of the struc-
ture. Fill in the maximum element size in the "Element Size" column and choose
the element type from the drop-down menu. Note that some element sizes and/or
types may lead to errors for certain types of analyses.



Appendix A: Parametric Model - User Guide A-21

Figure A.26: Mesh settings

The next part (Figure A.27) of the sheet is dedicated to the setup of the analysis
steps. The first four steps are a part of the first analysis job called "TTBJob" while
the final step listed are run as a part of the second analysis job called "WindJob".
The second part (and the free vibration step of the first) of the analysis is only
a part of the TTB_3D_EC_wind.py script and is ignored when running the script
TTB_3D.py.

• The first step is a static step where gravity is applied, more loads can be
added manually in Abaqus after generating the model or by modifying the
script.
• The second step is a frequency step used to extract the natural frequencies

and mode shapes of the structure. Set the number of modes to be calcu-
lated in the column called "Number of Modes". There is also the option
to use or not use the SIM architecture in the calculation. The SIM option
has consequences on the damping of the structure. The Rayleigh and the
structural damping specified on material and element level in the previous
sheets are compatible with the SIM based architecture turned on. If the SIM
based calculation is turned off, only global/modal damping and the com-
posite damping (which is a combination of local and global damping) are
considered. For more information the user are referred to section 3.12 and
subsection A.2.19 of the thesis, in addition to the Abaqus docs, especially
the section "Damping in a linear dynamic analysis".
• The third step is called "Free Vibration" and is a modal dynamics step. The

purpose of this step is to determine the logarithmic decrement of the build-
ing, caused by the different damping settings defined in the previous sheets.
An impulse load is applied at the top of the building in the wind direction
specified in the wind-load sheet. The building is then allowed to freely vi-
brate. The logarithmic decrement is calculated later in the script based on
the magnitude of the peaks. The free vibration step is also used to determine
the first natural frequency (in the wind direction) for the wind calculations.
Set the length of each time step in the "Time-Step" column and the total
duration in the "Duration" column. It’s important that the time-steps are
small enough to capture the peaks and the duration long enough to allow
at least 4-5 full cycles. Note that for the results from the free vibration step



A-22 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

to be valid the first mode in the direction specified needs to be a bending
mode and at least the 3-4 first vibration cycles needs to be like a sine wave
with only one peak per cycle. The displacements used in the calculations
are sampled at the center of the top floor of the building (ref. chapter 7 of
the thesis).
• The fourth step is also a modal dynamics step. In this step a dynamic pres-

sure load is applied to one of the walls, the load amplitude is defined in a .txt
named load_amplitude.txt file located in the same folder as the scripts.
The amplitude included in the digital appendix is a random example, and
may be exchanged with a similar file with the same name and location.
This step may be appropriate to use for e.g. analyzing the response of the
structure to a specific time-history of wind loading. Set the length of each
time step in the "Time-Step" column and the total duration in the "Duration"
column.
• The final step is a static step used to calculate the response (deflection) of

the structure to wind load according to the method given in Eurocode 1 -
part 1.4 [23]. See subsection 2.3.3 of the thesis and subsection A.2.17 for
more information on the wind calculations.

Each step can be included or omitted as the user wants, but it should be noted
that the "Free Vibration" and "Modal Dynamics" steps must be proceeded by the
"Frequency" step. Also the "Static (EC Wind)" step relies on data calculated based
on the results from the "Free Vibration" step.

Figure A.27: Step settings

The final group of settings (Figure A.28) is related to setting up and running the
analysis jobs. The first job, "TTBJob", is the main job and is used for all types of
analyses. The second job, "WindJob", is ran in combination with "TTBJob" when
analysing the response of the structure to wind load according to the Eurocode.
Note that for all the parameters and results for EC wind loading to be calculated
properly, both jobs needs to be created and "Auto Run" must be turned on. How-
ever, for e.g. a simple frequency extraction it is not necessary to create the "Wind-
Job" and "Auto Run" for "TTBJob" is optional. It is also possible to specify the
number of CPUs to be used in the analyses.



Appendix A: Parametric Model - User Guide A-23

Figure A.28: Job settings

A.2.19 Step Level Damping

Damping can also be applied at a global level for each of the modal dynamics
steps (including the free vibration step, who is a modal dynamics step). The first
row of tables belongs to the free vibration step, while the second row is for the
step named "Modal Dynamics Step".

The first global damping method that can be assigned to the steps are "Direct
modal" damping. Here a "Critical Damping Factor" (i.e. damping ratio) can be
assigned to one or more modes. Enter the start and end mode in the two first
columns respectively, and the critical damping factor (as a percentage) in the final
column of the first table (Figure A.29).

Figure A.29: Direct modal damping input

The second option for adding damping at the step level is "Composite Modal"
damping. Here all the composite damping values previously specified for each
material, connector section etc. are converted into mass weighted damping ratios
for the modes in the range defined by the specified start and end mode in the table
shown in Figure A.30.



A-24 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure A.30: Composite modal damping input

The final way of defining global damping is by using "Rayleigh Damping", which is
simply a linear combination of the global stiffness and mass matrices (see subsec-
tion 2.2.3 of the thesis for more information on Rayleigh damping). Specify the
start and end modes, as well as the ↵ and � (also denoted as ↵0 and ↵1) factors
in the table (Figure A.31).

Figure A.31: Rayleigh damping input

A.3 Running the Script

After OpenPyXl (subsection A.1.1) is installed, the paths to the files and folders
(subsection A.1.2) are updated and the input file is finished and saved (section A.2),
the program is ready to be used. Start by choosing either the TTB_3D.py script for a
"normal" analysis or the TTB_3D_EC_wind.py script for running an analysis where
the wind load is calculated and applied. TTB_3D_EC_wind.py can also be used if



Appendix A: Parametric Model - User Guide A-25

any of the results from the free vibration step is of interest. There are at least two
different methods to run the chosen script:

A.3.1 Running the Script from the GUI

Open Abaqus CAE and click the "Run Script" button highlighted in Figure A.32.

Figure A.32: Running the script from the GUI - Step 1

Then locate the script (TTB_3D.py or TTB_3D_EC_wind.py) in the window that
appears (Figure A.33) and click "OK", the script starts automatically. The script
may take a few minutes to complete, depending on the complexity of the model
and the number of analysis steps defined.



A-26 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure A.33: Running the script from the GUI - Step 2

While the script is running information is written to the message area (Figure A.34.
These messages might be useful to ensure that the model works as it should, or
to help to resolve any errors that might occur.

Figure A.34: Typical output to message area when running TTB_3D.py

A.3.2 Running the Script from the Command Line (CMD)

The script can also be initialized through the command line by opening "CMD"
and typing the following command:

abaqus cae script="filepath.py"



Appendix A: Parametric Model - User Guide A-27

where "filepath.py" is replaced with the path to the Python-script. This will open
the GUI and run the script, hence the method is equivalent to running the script
trough the GUI. Alternatively the script can be ran without the GUI by typing the
following command:

abaqus cae noGUI="filepath.py"

However its strongly to recommended to open the GUI, at least the first time a new
configuration is tested, and check visually that the model is generated properly.

A.3.3 Result Files

If the "Auto Run" option is turned on in the "Analysis Parameters" sheet of the input
file, the script also does some post-processing of the results and writes the results
to the Abaqus working directory specified in the script (see subsection A.1.2). For
the TTB_3D.py script the only result file created are Frequencies.txt (Figure A.35),
a file containing all the frequencies calculated in the frequency step.

Figure A.35: Frequencies.txt

When running the TTB_3D_EC_wind.py script three additional files are created:
FreeVibrationResults.txt (Figure A.36), a file containing the results of the free vi-
bration step, EurocodeWindAccelerationResults.txt (Figure A.37), a file containing
the results of acceleration calculation based on the Eurocode [23] and finally
WindCalculationParameters.txt (Figure A.38) which contains most of the paramet-
ers used in the wind-related calculations.



A-28 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure A.36: FreeVibrationResults.txt

Figure A.37: EurocodeWindAccelerationResults.txt



Appendix A: Parametric Model - User Guide A-29

Figure A.38: WindCalculationParameters.txt



A-30 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

A.4 Isight

Simulia Isight [37] is a great tool for running multiple analyses automatically. This
guide shows how to setup a sensitivity study, like the one performed in chapter 5 of
this thesis, and a model updating routine similar to the one in chapter 6. Once the
application "Isight Design Gateway" is opened, a empty model should be initialized
like in Figure A.39.

Figure A.39: An empty Isight model

To be able to use Isight the "Auto Run" setting in "Analysis Parameters" sheet of
the input file needs to be activated, (ref. subsection A.2.18). In addition the script
should be tested and the model should be checked visually in the GUI of CAE
before running Isight, as it is much more difficult to notice and diagnose errors
trough Isight.

A.4.1 Adding the Application Components

The first step is to add the application components to the simulation flow. Click
the "Application Components" tab highlighted with a red box in Figure A.40, then
drag and drop the "Excel" and "Simcode" components into the simulation flow.
Another useful tool might be the "Calculator" which can be used for e.g. simple
pre- or post-processing of different parameters.



Appendix A: Parametric Model - User Guide A-31

Figure A.40: Adding the application components

A.4.2 Excel Component Setup

Bring up the "Component Editor" by double-clicking the Excel icon in the simula-
tion flow. Then follow the steps in the list below, illustrated in Figure A.41:

1. Click "Browse", locate and open the Excel input file.
2. Pick a cell that contains a parameter value that is to be changed by Isight.
3. Give the parameter a name.
4. Click the red "+" to save the parameter, the parameter should appear in the

list below and the cell should turn dark yellow/gold.

Repeat steps 2-4 for all desired parameters. If many parameters are to be updated
simultaneously with the same value, it can be time saving to do so by introducing
formulas (such that many cells are updated based on a single cell) in the Excel
sheet before loading it in Isight and map the reference cell only.



A-32 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure A.41: Excel component setup - Step 1

After the steps in Figure A.41 are completed, click "Apply" and move on to the
steps in Figure A.42:

1. Open the advanced settings.
2. Check the box "Save Excel file after execution". Make sure that the path is

exactly the same as the path to the input file specified in the script (subsec-
tion A.1.2).

The setup of the Excel component is completed, click "Apply" and "OK" to save
and close the settings.



Appendix A: Parametric Model - User Guide A-33

Figure A.42: Excel component setup - Step 2

A.4.3 Simcode Component Setup

Double-click the Simcode icon to open the "Component Editor". Part 1 of the setup
is listed below and illustrated in Figure A.43:

1. Set the script type to "Windows Batch"
2. Type the following command in the editor: abaqus cae noGUI="script_path.py",

replace script_path.py with the path to the main script that will be used to
perform the analysis.



A-34 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure A.43: Simcode component setup - Step 1

Then move on to Figure A.44:

1. Navigate to the "Advanced" tab.
2. Uncheck the option "There is output to the Standard Error stream".
3. Increase the number of seconds in the "Execution takes longer than..." op-

tion. The number of seconds must be higher than the duration of a single
iteration. Alternatively the option can be unchecked.



Appendix A: Parametric Model - User Guide A-35

Figure A.44: Simcode component setup - Step 2

Part 3 (Figure A.45) of the settings is about reading the results from the output
file(s).

1. Navigate to the "Output" tab. Click the on the box in the center of the win-
dow to define a new data source.

2. Browse to locate the results file. The script must be ran at least once out-
side Isigth before setting up Isight in order to have a result file to use as
a template in the setup. The values inside the files used for the setup are
irrelevant, but the structure of it needs to be correct.

3. Choose "General Text" (depending on the structure of the result file) from
the "Format" menu and press "OK".



A-36 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure A.45: Simcode component setup - Step 3

The process of mapping the results to parameters are shown in Figure A.46:

1. Give the parameter a name by typing in yellow box.
2. Specify the line number and, if relevant, the word number of the result to

be mapped to the parameter.
3. Press the book icon next to the yellow box to add the mapping.
4. Check that the parameter is mapped in the "Output Parameters" list on the

right hand side.

Repeat the sequence above for all results of interest, and click apply when finished.



Appendix A: Parametric Model - User Guide A-37

Figure A.46: Simcode component setup - Step 4

Finally setup how the result file(s) is stored. The procedure is shown in Fig-
ure A.47.

1. Navigate back to the "Command" tab.
2. Click "Required Files".
3. Press the button marked with "...".
4. Choose the "Absolute Path" option from the pull-down menu.
5. Browse to find the results file previously loaded.
6. Make sure that the path in the "Path" field is the same as the path to working

directory specified inside the script (ref. subsection A.1.2).
7. Finally check the "None" option inside the "Destination" box.

If results from more than one output file are used, repeat the procedure for each
file.



A-38 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure A.47: Simcode component setup - Step 5

The setup of the Simcode component is now complete, press "Apply" and "OK" to
save the settings and exit the component editor.

A.4.4 Adding a Process Component

When the setup of the application components is completed, it is time to add the
"Process Component". The "Process Component" is responsible for updating the
input parameters and keeping track of the output provided by the applications in
the sim-flow. There are many process components designed for different applic-
ations included in Isight. Subsection A.4.5 describes how to setup a parameter
study, while the "Target Solver" is described in subsection A.4.6.

The "Process Components" are located under the tab with the same name (high-
lighted in Figure A.48). Drag the selected component into the sim-flow at the
position highlighted in the figure, on top of the existing component. Click "OK" in
the box that appears.



Appendix A: Parametric Model - User Guide A-39

Figure A.48: Adding a process component

A.4.5 Parameter Study (DOE) Configuration

The sensitivity study in chapter 5 of the thesis is performed using the parameter
study functionality of Isight. The parameter study is a part of the DOE (Design of
experiments) component. After the component is placed in the sim-flow, open the
component editor by double-clicking the icon.

Choose the "Parameter Study" as the "DOE Technique" from the drop-down menu,
as shown in Figure A.49.



A-40 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure A.49: DOE component setup - Part 1

Then set the settings of the input parameters. The procedure is shown in Fig-
ure A.50, and listed below:

1. The settings are accessed by choosing the "Factors" tab.
2. Check the boxes for all the parameters to be included in the parameter study.
3. Set the "Relation" type. This specifies if the values should be defined as ab-

solute values, percentages of the starting-value etc.
4. Set the number of different values to be tested for each variable.
5. Set the range of the values to be tested. Remember that the upper and lower

limits depends on "Relation" set in step 3. All the parameter values to be
tested can be seen in the "Values" column to the far right.

Figure A.50: DOE component setup - Part 2



Appendix A: Parametric Model - User Guide A-41

The output parameters that is used for measuring the sensitivities of the paramet-
ers are picked in the next step. The procedure is shown in Figure A.50, and listed
below:

1. Go to the "Postprocessing" tab.
2. Check the boxes for all the output parameters to be included.

Figure A.51: DOE component setup - Part 3

The setup of the DOE component is now complete, press "Apply" and "OK" to
save the settings and exit the component editor. The analysis can be started by
pressing "Run Model" from the "Run" menu in the toolbar. All open Abaqus and
Excel instances should be closed before running the analysis. It is advised to follow
the first few iterations closely to make sure that both the input and output is
updated correctly.

A.4.6 Target Solver Configuration

The model updating performed in chapter 6 is performed using the "Target Solver"
component. Add the "Target Solver" as the process component of the sim-flow, as
described in subsection A.4.4, and open the component editor.

First set the settings for the target variables as demonstrated in Figure A.52:

1. Check the box for all the result variables to be used in the analysis.
2. Set the target value for each variable. The target is often results of physical

experiments.



A-42 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

Figure A.52: Target Solver setup - Part 1

Next set the variables to be updated by the target solver (Figure A.53)

1. Navigate to the "Variables" tab.
2. Check the box next to all the variables that are to be updated in the process.
3. Set the lower and upper limits of the variables.

Figure A.53: Target Solver setup - Part 2

Finally set the analysis options (Figure A.54)

1. Go to the options tab.
2. Set the maximum number of iterations.



Appendix A: Parametric Model - User Guide A-43

3. Set the target tolerance. The lower the tolerance, the more iterations are
needed to reach the target. A good starting point for the tolerance could be
the margin of error of the experimental results used as target values.

Figure A.54: Target Solver setup - Part 3

The setup of the "Target Solver" component is now completed, press "Apply" and
"OK" to save the settings and exit the component editor. The Isight process can
be started by pressing "Run Model" from the "Run" menu in the toolbar. All open
Abaqus and Excel instances should be closed before running the analysis. It is
advised to follow the first few iterations closely to make sure that both the input
and output is updated correctly.





Appendix B

Digital Appendix

A digital appendix containing various files relevenat to the thesis is delivered dir-
ectly to prof. Malo at the Department of Structural Engineering at NTNU. The
following files and folders are included:

• Test Results: This folder contains all results of the sensitivity study, model
updating and wind analyses.
• Calculations, Estimates etc.: This folder contains the files related to the

estimation of the floor stiffness, and some additional calculations for e.g.
the non-structural mass as well as a Mathcad-sheet for calculating Rayleigh
coefficients.
• Parametric Model: This folder contains all the scripts needed for the use

of the parametric model. The input sheet is also located here. Finally, the
input file used for the base model is also located here.
• User Guide: The user guide from Appendix A.

B-1





Appendix C

Python Scripts

This appendix includes all the scripts necessary for running the parametric model.
Each script is preceded by a short explanation. All the files are also included in
the digital appendix. The scripts included are:

• TTB_3D.py: This file is the main script for creating and analysing the para-
metric model. This script gathers and uses functions written in the other files
of this thesis. Note: This script does not include the wind analysis, use the
script TTB_3D_EC_wind.py instead for wind analysis according to Eurocode.
• TTB_3D_EC_Wind.py: This file is the main script for creating and analysing

the parametric model including wind loads according to the rules provided
in the Eurocode. Apart from the wind calculations the script is identical to
TTB_3D.py.
• TTB_analysis.py: This file contains all the functions related to setting up

and running the analysis. Examples include adding loads and non-strucural
mass, creating steps, generate mesh and setting up the job.
• TTB_boundaries.py: This file contains all the functions related to boundary

conditions and interaction between the different parts of the structure.
• TTB_excel.py: This file contains all the functions related to importing the

input data from the input file generated in Excel. The data from Excel is
mainly imported as dictionaries and lists to allow for further usage of the
data inside python.
• TTB_general.py: This file contains basic functions for e.g. initializing the

model and creating parts.
• TTB_geometry.py: This file contains all the functions related to generating

the geometry of the building. Beams, columns, bracing, walls, floors etc. are
created using the functions from this script.
• TTB_post_processing.py: This file contains functions used to gather and

C-1



C-2 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

process the results after a simulation. Used for getting the eigenfrequen-
cies, calculating the damping ratio/logarithmic decrements and writing the
results to a .txt file.
• TTB_properties.py: This file contains functions used to assign different

properties to objects. Such properties include material data and cross sec-
tions.
• TTB_sets.py: This file contains all the functions related to creating sets of

all kinds of objects in Abaqus e.g. beams, columns, surfaces etc...
• TTB_Windload_EC.py: This file contains all the functions and formulas for

calculating the wind load according to Eurocode 1.



Appendix C: Python Scripts C-3

C.1 TTB_3D.py

This file is the main script for creating and analysing the parametric model. This
script gathers and uses functions written in the other files of this thesis. Note:
This script does not include the wind analysis, use the script TTB_3D_EC_wind.py
instead for wind analysis according to Eurocode.

1 # This is the main file for the 3D model of a TTB, including wind
analysis.,!

2 # -------------- Input file/folder paths -------------
3 # All the locations specified must exist (i.e folders must be

created BEFORE running the script),!

4 # Folder where all the scripts are located:
5 scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
6 # Path to the Excel-file containing the input:
7 inputFile =

'C:\\Users\\username\\TTBParametricModel\\TTB_input.xlsx',!

8 # Path to Abaqus working directory (all result files will be stored
here):,!

9 workDir = 'C:\\temp'
10

11 # -------------- Import Packages -------------
12 from abaqus import *
13 from abaqusConstants import *
14 import regionToolset
15 import numpy as np
16 import math
17 import sys
18 import sketch
19 import part
20 import material
21 import section
22 import assembly
23 import material
24 import mesh
25 import time
26 import odbAccess
27 import load
28 import random
29 import step
30 import os
31

32 sys.path.append(scriptsFolder)



C-4 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

33 os.chdir(workDir)
34

35 ## Custom functions
36 from TTB_analysis import *
37 from TTB_excel import *
38 from TTB_boundaries import *
39 from TTB_general import *
40 from TTB_geometry import *
41 from TTB_post_processing import *
42 from TTB_properties import *
43 from TTB_sets import *
44

45 start_time = time.time()
46 print('\nScript started...')
47 session.viewports['Viewport: 1'].setValues(displayedObject=None)
48 close_odbs()
49

50 # Write negative values to file to indicate error.
51 # (The negative values are updated with the correct ones if the run

is successful),!

52 errorLst = [-1]*50
53 write_to_file(errorLst, 'Frequencies.txt', 'w+')
54

55 # -------------- Imports -------------
56 z_coord_lst, x_coord_matrix = xz_grid_from_xlsx('Grid (XZ)',

wb_name=inputFile),!

57 y_coord_lst = y_grid_from_xlsx('Grid (Y)', wb_name=inputFile)
58 grid = [x_coord_matrix, y_coord_lst, z_coord_lst]
59

60 shaft_dict = shaft_dict_from_xlsx('Shafts', wb_name=inputFile)
61

62 materials_dict = create_material_dict_from_xlsx('Materials',
wb_name=inputFile),!

63

64 damping_dict = damping_dict_from_xlsx('Materials',
wb_name=inputFile),!

65

66 diag_dict = diagonals_dict_from_xlsx('Diagonals', wb_name=inputFile)
67

68 remove_dict = remove_dict_from_xlsx('Remove From Frame',
wb_name=inputFile),!

69

70 add_dicts = add_to_frame_from_xlsx('Add To Frame',
wb_name=inputFile),!



Appendix C: Python Scripts C-5

71

72 connector_dict = create_connector_dict_from_xlsx2('Beam
Connections', wb_name=inputFile),!

73

74 crossSectionsCols = cross_section_dict_from_xlsx('Column Cross
Sections', wb_name=inputFile),!

75

76 orientationsCols = {'CornerColumns': (0, 0, -1),
77 'LongEdgeColumns': (-1, 0, 0),
78 'ShortEdgeColumns': (0, 0, -1),
79 'InnerColumns': (-1, 0, 0)}
80

81 crossSectionsBeams = cross_section_dict_from_xlsx('Beam Cross
Sections', wb_name=inputFile),!

82

83 orientationsBeams = {'LongEdgeBeams': (-1, 0, 0),
84 'ShortEdgeBeams': (0, 0, -1),
85 'InnerBeams': (0, 0, -1)}
86

87 crossSectionsDiags = cross_section_dict_from_xlsx('Diagonal Cross
Sections', wb_name=inputFile),!

88

89 orientationsDiags = {'LongEdgeDiagonals': (-1, 0, 0),
90 'ShortEdgeDiagonals': (0, 0, -1)}
91

92 floor_dict = floor_dict_from_xlsx('Floor Sections',
wb_name=inputFile),!

93

94 sectionsWalls = shell_section_dict_from_xlsx('Wall Sections',
wb_name=inputFile),!

95

96 shell_connector_dict = create_shell_connector_dict_from_xlsx('Shell
Connections', wb_name=inputFile),!

97

98 bc_dict = create_boundary_spring_dict_from_xlsx('Boundary
Conditions', wb_name=inputFile),!

99

100 mass_dict = mass_dict_from_xlsx('Distributed Mass',
wb_name=inputFile),!

101

102 point_mass_dict = point_mass_dict_from_xlsx("Point Mass",
wb_name=inputFile),!

103



C-6 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

104 mesh_dict = mesh_dict_from_xlsx('Analysis Parameters',
wb_name=inputFile),!

105

106 ec_wind_dict = ec_wind_param_from_xlsx('Wind (Eurocode)',
wb_name=inputFile),!

107

108 floor_to_shaft_dict = floor_shaft_connection_from_xlsx('Floor To
Shaft Connections', wb_name=inputFile),!

109

110 print('Import from Excel Time: ' + str(time.time()-start_time))
111

112 # -------------- Initialize Model and Parts -------------
113 change_model_name('Tall Timber Building')
114 TTBModel = get_model()
115

116 framePart = create_part(part_name='Frame')
117 floorPart = create_part(part_name='Floors')
118 wallPart = create_part(part_name='Walls')
119 shaftPart = create_part(part_name='Shafts')
120

121

122 # -------------- Material -------------
123 create_material_from_dict(materials_dict)
124 add_material_damping(damping_dict)
125 shell_connector_material(materials_dict, sectionsWalls, floor_dict,

shell_connector_dict),!

126 floor_to_shaft_material(materials_dict, floor_dict,
floor_to_shaft_dict),!

127

128

129 # --------------- Create Geometry ------------
130 geo_time = time.time()
131 build_frame(framePart, diag_dict, connector_dict, grid, floor_dict)
132 build_floors(floorPart, 0, 17, grid)
133 create_walls(wallPart, 0, 17, grid)
134 print('Creating Geometry Time: ' + str(time.time()-geo_time))
135

136

137 # --------------- Create Instances ------------
138 create_instance(framePart)
139 create_instance(floorPart)
140 create_instance(wallPart)
141 create_instance(shaftPart)
142



Appendix C: Python Scripts C-7

143

144 # --------------- Partition Shells ------------
145 parti_time = time.time()
146 partition_shells(floorPart, grid, XYPLANE)
147 partition_shells(wallPart, grid, XYPLANE)
148 partition_shells(wallPart, grid, XZPLANE)
149 partition_shells(wallPart, grid, YZPLANE)
150 print('Partitioning Time: ' + str(time.time()-parti_time))
151

152

153 # --------------- Create Sets ------------
154 set_time = time.time()
155 colSet, beamSet, diagSet = create_sets(framePart)
156 sets_of_cols(framePart, colSet, grid)
157 sets_of_beams(framePart, beamSet, grid)
158 sets_of_diagonals(framePart, diagSet, grid)
159

160 floorSet = create_set_all_floors(floorPart)
161 set_of_floor_types(floorPart, floor_dict, grid)
162 outer_floor_edges_set(floorPart,grid)
163 surface_of_bottom_floor(floorPart, grid)
164

165 wallSet = create_set_all_walls(wallPart)
166 longWall1Set = set_of_selected_walls(wallPart, wallSet, 0, 'yz')
167 wall_surfaces(wallPart)
168 print('Set Creation Time: ' + str(time.time()-set_time))
169

170

171 # --------------- Orient Floors ------------
172 orient_floors(floorPart, floor_dict)
173

174

175 # --------------- Create Shaft Geometry and Sets ------------
176 shaft_time = time.time()
177 create_shafts(shaftPart, floorPart, framePart, shaft_dict, grid)
178 sets_of_shaft_floor_edges(floorPart, shaft_dict, grid)
179 set_of_all_shafts(shaftPart)
180 set_of_single_shaft(shaftPart, shaft_dict, grid)
181 shaft_edges_for_wall_ties(shaftPart, shaft_dict, grid)
182 print('Shaft Creation Time: ' + str(time.time()-set_time))
183

184

185 # --------------- Create connector elements for floors
---------------,!



C-8 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

186 floor_time = time.time()
187 floor_connector_partition(floorPart, floor_dict,

shell_connector_dict, grid),!

188 set_of_floor_connectors(floorPart, floor_dict,
shell_connector_dict, grid),!

189 floor_shaft_partition(floorPart, floor_dict, shaft_dict,
floor_to_shaft_dict, grid),!

190 floor_to_shaft_set(floorPart, floor_dict, shaft_dict,
floor_to_shaft_dict, grid),!

191 print('Floor Connectors Time: ' + str(time.time()-floor_time))
192

193

194 # --------------- Assign Cross Sections ------------
195 cs_time = time.time()
196 section_assignment(framePart, crossSectionsCols, orientationsCols)
197 section_assignment(framePart, crossSectionsBeams, orientationsBeams)
198 section_assignment(framePart, crossSectionsDiags, orientationsDiags)
199 #
200 walls_with_connectors_section_assignment_auto(wallPart,

sectionsWalls, shell_connector_dict, grid),!

201 #
202 floor_assignment_from_dict(floorPart, floorSet, floor_dict, grid)
203 floor_connector_assignment(floorPart, floor_dict,

shell_connector_dict),!

204 assign_floor_shaft_connector(floorPart, floor_dict,
floor_to_shaft_dict),!

205 shaft_section_assignment(shaftPart, sectionsWalls)
206

207 connector_assignment_auto_generalized_profile(framePart,
crossSectionsBeams, connector_dict, materials_dict),!

208 connector_assignment_auto_generalized_profile(framePart,
crossSectionsDiags, connector_dict, materials_dict),!

209 print('Assigning Cross Sections (Including creating wall connection
zones) Time: ' + str(time.time()-cs_time)),!

210

211

212 # ---------- Alternate Original Frame -------------
213 alter_time = time.time()
214 remove_wires(framePart, remove_dict, grid)
215 add_wires(framePart, add_dicts)
216 colSet, beamSet, diagSet = create_sets(framePart)
217 sets_of_cols(framePart, colSet, grid)
218 sets_of_beams(framePart, beamSet, grid)
219 sets_of_added_wires(framePart, add_dicts)



Appendix C: Python Scripts C-9

220 section_assignment(framePart, add_dicts['Section'],
add_dicts['Orientation']),!

221 assign_connector_added_wire(framePart, add_dicts, materials_dict)
222 print('Changes to Original Frame Time: ' +

str(time.time()-alter_time)),!

223

224

225 # --------------- Establish Ties ------------
226 tie_time = time.time()
227 assembly_regenerate()
228 edges_for_wall_ties_set(shaftPart, framePart, floorPart,

shell_connector_dict),!

229 floor_surfaces(floorPart)
230 set_of_bottom_nodes(framePart, grid)
231 tie_floors_node_to_surf(floorPart, framePart)
232 wall_ties(wallPart)
233 shaft_floor_tie(shaftPart, floorPart, shaft_dict)
234 column_to_slab_tie(floorPart, framePart)
235 print('Tie Creation Time: ' + str(time.time()-tie_time))
236

237

238 # --------------- Meshing ------------
239 mesh_time = time.time()
240 create_mesh_auto(mesh_dict)
241 print('Mesh Generating Time: ' + str(time.time()-mesh_time))
242

243

244 # --------------- Add BC Springs ------------
245 create_boundary_springs_from_dict(framePart, bc_dict)
246 create_boundary_springs_from_dict(shaftPart, bc_dict)
247

248

249 # --------------- Create Steps ------------
250 steps_from_xlsx('Analysis Parameters', wb_name=inputFile)
251

252

253 # --------------- Add Step-Level Damping ------------
254 step_damping_from_xlsx('Step Level Damping', wb_name=inputFile)
255

256

257 # --------------- Loads/mass ------------
258 mass_from_dict(floorPart, floorSet, mass_dict, grid)
259

260 point_mass_from_dict(point_mass_dict, grid)



C-10 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

261

262 try:
263 add_gravity('StaticStep')
264 except:
265 print('Could not add gravity. Step is probably not created.')
266

267 try:
268 amplitude_from_file(scriptsFolder+'\\load_amplitude.txt')
269 create_pressure('WindLoad', wallPart, longWall1Set, 500,

'ImportedAmplitude', 'ModalDynamicsStep'),!

270 except:
271 print('Could not create pressure load. Step is probably not

created.'),!

272

273 # --------------- Create Set Of Output Node ------------
274 create_output_node_set(floorPart, grid)
275

276 # --------------- Regenerate Assembly ------------
277 assembly_regenerate()
278

279

280 # -------------- Create and run job -------------
281 try:
282 TTBModel.steps['FreeVibrationStep'].suppress()
283 except:
284 pass
285 try:
286 TTBModel.steps['Static_Wind_Eurocode'].suppress()
287 except:
288 pass
289

290 run_boolean = job_from_xlsx('Analysis Parameters', row_nr=21,
wb_name=inputFile),!

291

292

293 # -------------- Post Processing -------------
294 if run_boolean:
295 freqs = get_eigenfreqs()
296 write_to_file(freqs, 'Frequencies.txt', 'w+')
297

298 end_time = time.time()
299 print('Total Time: '+ str(end_time-start_time))
300 print('Finished!')



Appendix C: Python Scripts C-11

C.2 TTB_3D_EC_wind.py

This file is the main script for creating and analysing the parametric model includ-
ing wind loads according to the rules provided in the Eurocode. Apart from the
wind calculations the script is identical to TTB_3D.py.

1 # This is the main file for the 3D model of a TTB, including wind
analysis.,!

2 # -------------- Input file/folder paths -------------
3 # All the locations specified must exist (i.e folders must be

created BEFORE running the script),!

4 # Folder where all the scripts are located:
5 scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
6 # Path to the Excel-file containing the input:
7 inputFile =

'C:\\Users\\username\\TTBParametricModel\\TTB_input.xlsx',!

8 # Path to Abaqus working directory (all result files will be stored
here):,!

9 workDir = 'C:\\temp'
10

11 # -------------- Import Packages -------------
12 from abaqus import *
13 from abaqusConstants import *
14 import regionToolset
15 import numpy as np
16 import math
17 import sys
18 import sketch
19 import part
20 import material
21 import section
22 import assembly
23 import material
24 import mesh
25 import time
26 import odbAccess
27 import load
28 import random
29 import os
30 import step
31

32 sys.path.append(scriptsFolder)
33 os.chdir(workDir)



C-12 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

34

35 ## Custom functions
36 from TTB_analysis import *
37 from TTB_excel import *
38 from TTB_boundaries import *
39 from TTB_general import *
40 from TTB_geometry import *
41 from TTB_post_processing import *
42 from TTB_properties import *
43 from TTB_sets import *
44 from TTB_Windload_EC import *
45

46 start_time = time.time()
47 print('\nScript started...')
48 session.viewports['Viewport: 1'].setValues(displayedObject=None)
49 close_odbs()
50

51 # Write negative values to file to indicate error.
52 # (The negative values are updated with the correct ones if the run

is successful),!

53 errorLst = [-1]*50
54 write_to_file(errorLst, 'Frequencies.txt', 'w+')
55 write_to_file(errorLst, 'FreeVibrationResults.txt', 'w+')
56 write_to_file(errorLst, 'EurocodeWindAccelerationResults.txt', 'w+')
57 write_to_file(errorLst, 'WindCalculationParameters.txt', 'w+')
58

59 # -------------- Imports -------------
60 z_coord_lst, x_coord_matrix = xz_grid_from_xlsx('Grid (XZ)',

wb_name=inputFile),!

61 y_coord_lst = y_grid_from_xlsx('Grid (Y)', wb_name=inputFile)
62 grid = [x_coord_matrix, y_coord_lst, z_coord_lst]
63

64 shaft_dict = shaft_dict_from_xlsx('Shafts', wb_name=inputFile)
65

66 materials_dict = create_material_dict_from_xlsx('Materials',
wb_name=inputFile),!

67

68 damping_dict = damping_dict_from_xlsx('Materials',
wb_name=inputFile),!

69

70 remove_dict = remove_dict_from_xlsx('Remove From Frame',
wb_name=inputFile),!

71



Appendix C: Python Scripts C-13

72 add_dicts = add_to_frame_from_xlsx('Add To Frame',
wb_name=inputFile),!

73

74 diag_dict = diagonals_dict_from_xlsx('Diagonals', wb_name=inputFile)
75

76 connector_dict = create_connector_dict_from_xlsx2('Beam
Connections', wb_name=inputFile),!

77

78 crossSectionsCols = cross_section_dict_from_xlsx('Column Cross
Sections', wb_name=inputFile),!

79

80 orientationsCols = {'CornerColumns': (0, 0, -1),
81 'LongEdgeColumns': (-1, 0, 0),
82 'ShortEdgeColumns': (0, 0, -1),
83 'InnerColumns': (-1, 0, 0)}
84

85 crossSectionsBeams = cross_section_dict_from_xlsx('Beam Cross
Sections', wb_name=inputFile),!

86

87 orientationsBeams = {'LongEdgeBeams': (-1, 0, 0),
88 'ShortEdgeBeams': (0, 0, -1),
89 'InnerBeams': (0, 0, -1)}
90

91 crossSectionsDiags = cross_section_dict_from_xlsx('Diagonal Cross
Sections', wb_name=inputFile),!

92

93 orientationsDiags = {'LongEdgeDiagonals': (-1, 0, 0),
94 'ShortEdgeDiagonals': (0, 0, -1)}
95

96 floor_dict = floor_dict_from_xlsx('Floor Sections',
wb_name=inputFile),!

97

98 sectionsWalls = shell_section_dict_from_xlsx('Wall Sections',
wb_name=inputFile),!

99

100 shell_connector_dict = create_shell_connector_dict_from_xlsx('Shell
Connections', wb_name=inputFile),!

101

102 bc_dict = create_boundary_spring_dict_from_xlsx('Boundary
Conditions', wb_name=inputFile),!

103

104 mass_dict = mass_dict_from_xlsx('Distributed Mass',
wb_name=inputFile),!

105



C-14 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

106 point_mass_dict = point_mass_dict_from_xlsx('Point Mass',
wb_name=inputFile),!

107

108 mesh_dict = mesh_dict_from_xlsx('Analysis Parameters',
wb_name=inputFile),!

109

110 floor_to_shaft_dict = floor_shaft_connection_from_xlsx('Floor To
Shaft Connections', wb_name=inputFile),!

111

112 ec_wind_dict_xlxs = ec_wind_param_from_xlsx('Wind (Eurocode)',
wb_name=inputFile),!

113

114 print('Import from Excel Time: ' + str(time.time()-start_time))
115

116 # -------------- Initialize Model and Parts -------------
117 change_model_name('Tall Timber Building')
118 TTBModel = get_model()
119

120 framePart = create_part(part_name='Frame')
121 floorPart = create_part(part_name='Floors')
122 wallPart = create_part(part_name='Walls')
123 shaftPart = create_part(part_name='Shafts')
124

125

126 # -------------- Material -------------
127 create_material_from_dict(materials_dict)
128 add_material_damping(damping_dict)
129 shell_connector_material(materials_dict, sectionsWalls, floor_dict,

shell_connector_dict),!

130 floor_to_shaft_material(materials_dict, floor_dict,
floor_to_shaft_dict),!

131

132 # --------------- Create Geometry ------------
133 geo_time = time.time()
134 build_frame(framePart, diag_dict, connector_dict, grid, floor_dict)
135 build_floors(floorPart, 0, 17, grid)
136 create_walls(wallPart, 0, 17, grid)
137 print('Creating Geometry Time: ' + str(time.time()-geo_time))
138

139

140 # --------------- Create Instances ------------
141 create_instance(framePart)
142 create_instance(floorPart)
143 create_instance(wallPart)



Appendix C: Python Scripts C-15

144 create_instance(shaftPart)
145

146

147 # --------------- Partition Shells ------------
148 parti_time = time.time()
149 partition_shells(floorPart, grid, XYPLANE)
150 partition_shells(wallPart, grid, XYPLANE)
151 partition_shells(wallPart, grid, XZPLANE)
152 partition_shells(wallPart, grid, YZPLANE)
153 print('Partitioning Time: ' + str(time.time()-parti_time))
154

155

156 # --------------- Create Sets ------------
157 set_time = time.time()
158 colSet, beamSet, diagSet = create_sets(framePart)
159 sets_of_cols(framePart, colSet, grid)
160 sets_of_beams(framePart, beamSet, grid)
161 sets_of_diagonals(framePart, diagSet, grid)
162

163 floorSet = create_set_all_floors(floorPart)
164 set_of_floor_types(floorPart, floor_dict, grid)
165 outer_floor_edges_set(floorPart,grid)
166 surface_of_bottom_floor(floorPart, grid)
167

168 wallSet = create_set_all_walls(wallPart)
169 longWall1Set = set_of_selected_walls(wallPart, wallSet, 0, 'yz')
170 wall_surfaces(wallPart)
171 print('Set Creation Time: ' + str(time.time()-set_time))
172

173 # --------------- Orient Floors ------------
174 orient_floors(floorPart, floor_dict)
175

176 # --------------- Create Shaft Geometry and Sets ------------
177 shaft_time = time.time()
178 create_shafts(shaftPart, floorPart, framePart, shaft_dict, grid)
179 sets_of_shaft_floor_edges(floorPart, shaft_dict, grid)
180 set_of_all_shafts(shaftPart)
181 set_of_single_shaft(shaftPart,shaft_dict, grid)
182 shaft_edges_for_wall_ties(shaftPart, shaft_dict, grid)
183 print('Shaft Creation Time: ' + str(time.time()-set_time))
184

185 # --------------- Create connector elements for floors
---------------,!

186 floor_time = time.time()



C-16 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

187 floor_connector_partition(floorPart, floor_dict,
shell_connector_dict, grid),!

188 set_of_floor_connectors(floorPart, floor_dict,
shell_connector_dict, grid),!

189 floor_shaft_partition(floorPart, floor_dict, shaft_dict,
floor_to_shaft_dict, grid),!

190 floor_to_shaft_set(floorPart, floor_dict, shaft_dict,
floor_to_shaft_dict, grid),!

191 print('Floor Connectors Time: ' + str(time.time()-floor_time))
192

193 # --------------- Assign Cross Sections ------------
194 cs_time = time.time()
195 section_assignment(framePart, crossSectionsCols, orientationsCols)
196 section_assignment(framePart, crossSectionsBeams, orientationsBeams)
197 section_assignment(framePart, crossSectionsDiags, orientationsDiags)
198 #
199 walls_with_connectors_section_assignment_auto(wallPart,

sectionsWalls, shell_connector_dict, grid),!

200 #
201 floor_assignment_from_dict(floorPart, floorSet, floor_dict, grid)
202 floor_connector_assignment(floorPart, floor_dict,

shell_connector_dict),!

203 assign_floor_shaft_connector(floorPart, floor_dict,
floor_to_shaft_dict),!

204 shaft_section_assignment(shaftPart, sectionsWalls)
205

206 connector_assignment_auto_generalized_profile(framePart,
crossSectionsBeams, connector_dict, materials_dict),!

207 connector_assignment_auto_generalized_profile(framePart,
crossSectionsDiags, connector_dict, materials_dict),!

208

209 print('Assigning Cross Sections (Including creating wall connection
zones) Time: ' + str(time.time()-cs_time)),!

210

211 # ---------- Alternate Original Frame -------------
212 alter_time = time.time()
213 remove_wires(framePart, remove_dict, grid)
214 add_wires(framePart, add_dicts)
215 colSet, beamSet, diagSet = create_sets(framePart)
216 sets_of_cols(framePart, colSet, grid)
217 sets_of_beams(framePart, beamSet, grid)
218 sets_of_added_wires(framePart, add_dicts)
219 section_assignment(framePart, add_dicts['Section'],

add_dicts['Orientation']),!



Appendix C: Python Scripts C-17

220 assign_connector_added_wire(framePart, add_dicts, materials_dict)
221 print('Changes to Original Frame Time: ' +

str(time.time()-alter_time)),!

222

223 # --------------- Establish Ties ------------
224 tie_time = time.time()
225 assembly_regenerate()
226 edges_for_wall_ties_set(shaftPart, framePart, floorPart,

shell_connector_dict),!

227 floor_surfaces(floorPart)
228 set_of_bottom_nodes(framePart, grid)
229 tie_floors_node_to_surf(floorPart, framePart)
230 wall_ties(wallPart)
231 shaft_floor_tie(shaftPart, floorPart, shaft_dict)
232 column_to_slab_tie(floorPart, framePart)
233 print('Tie Creation Time: ' + str(time.time()-tie_time))
234

235 # --------------- Meshing ------------
236 mesh_time = time.time()
237 create_mesh_auto(mesh_dict)
238 print('Mesh Generating Time: ' + str(time.time()-mesh_time))
239

240

241 # --------------- Add BC Springs ------------
242 create_boundary_springs_from_dict(framePart, bc_dict)
243 create_boundary_springs_from_dict(shaftPart, bc_dict)
244

245

246 # --------------- Create Steps ------------
247 steps_from_xlsx('Analysis Parameters', wb_name=inputFile)
248

249

250 # --------------- Add Step-Level damping ------------
251 step_damping_from_xlsx('Step Level Damping', wb_name=inputFile)
252

253

254 # --------------- Loads/mass ------------
255 mass_from_dict(floorPart, floorSet, mass_dict, grid)
256

257 point_mass_from_dict(point_mass_dict, grid)
258

259 try:
260 add_gravity('StaticStep')
261 except:



C-18 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

262 print('Could not add gravity. Step is probably not created.')
263

264 try:
265 free_vibration_impulse(ec_wind_dict_xlxs, floorPart, grid)
266 except:
267 print('Could not create free vibration impulse. Step is

probably not created.'),!

268

269 try:
270 amplitude_from_file(scriptsFolder+'\\load_amplitude.txt')
271 create_pressure('WindLoad', wallPart, longWall1Set, 500,

'ImportedAmplitude', 'ModalDynamicsStep'),!

272 except:
273 print('Could not create pressure load. Step is probably not

created.'),!

274

275

276 # --------------- Create Set Of Output Node ------------
277 create_output_node_set(floorPart, grid)
278

279

280 # --------------- Regenerate Assembly ------------
281 assembly_regenerate()
282

283

284 # -------------- Create and run job -------------
285 try:
286 TTBModel.steps['Static_Wind_Eurocode'].suppress()
287 except:
288 pass
289

290 run_boolean_TTBJob = job_from_xlsx('Analysis Parameters',
row_nr=21, wb_name=inputFile),!

291

292 try:
293 TTBModel.steps['Static_Wind_Eurocode'].resume()
294 except:
295 pass
296

297

298 # -------------- Post Processing -------------
299 if run_boolean_TTBJob:
300 free_vib_res = free_vib_res_dict(ec_wind_dict_xlxs, floorPart)
301 freqs = get_eigenfreqs()



Appendix C: Python Scripts C-19

302 write_to_file(freqs, 'Frequencies.txt', 'w+')
303 write_to_file(free_vib_res, 'FreeVibrationResults.txt', 'w+')
304

305 print('Part 1 Finished! Time: '+ str(time.time()-start_time))
306

307

308 # -------------- EC-wind -------------
309 pt2_time = time.time()
310 if run_boolean_TTBJob:
311 param_dict = create_wind_param_dict(ec_wind_dict_xlxs,

free_vib_res, grid),!

312 try:
313 apply_EC_wind_force(framePart, colSet, grid, param_dict,

adjust_to_grid=True),!

314 except:
315 print('Could not apply Eurocode wind loading. Step is

probably not created. Or try setting "adjust_to_grid"
to False')

,!

,!

316 try:
317 TTBModel.steps['FreeVibrationStep'].suppress()
318 except:
319 pass
320 try:
321 TTBModel.steps['FrequencyStep'].suppress()
322 except:
323 pass
324 run_boolean_WindJob = job_from_xlsx('Analysis Parameters',

row_nr=22, wb_name=inputFile),!

325

326 acc_wind_res = acc_res_dict_EC(param_dict)
327 write_to_file(acc_wind_res,

'EurocodeWindAccelerationResults.txt', 'w+'),!

328 write_to_file(param_dict, 'WindCalculationParameters.txt', 'w+')
329

330 print('Part 2 Finished! Time: '+ str(time.time()-pt2_time))
331 print('Total Time: '+ str(time.time()-start_time))



C-20 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

C.3 TTB_analysis.py

This file contains all the functions related to setting up and running the analysis.
Examples include adding loads and non-strucural mass, creating steps, generate
mesh and setting up the job.

1 # -------------- Input folder path -------------
2 # Folder where all the scripts are located:
3 scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
4

5 # -------------- Import Packages -------------
6 from abaqus import *
7 from abaqusConstants import *
8 import regionToolset
9 import numpy as np

10 import math
11 import sketch
12 import part
13 import material
14 import section
15 import assembly
16 import mesh
17 import job
18 import odbAccess
19 import interaction
20 import load
21 import sys
22 import step
23

24 sys.path.append(scriptsFolder)
25

26 from TTB_general import *
27 from TTB_sets import *
28

29 # -------------- Create mesh -------------
30 # This function meshes the specified part (or only the set if

specified) with the selected element size and type.,!

31 def createMesh(part_, eleSize, eleName, subSet=None):
32 eleConst = elemcode_string_to_constant(eleName)
33 if subSet:
34 set = subSet
35 else:
36 set = part_



Appendix C: Python Scripts C-21

37 if len(set.faces) == 0:
38 edgesForMesh = set.edges
39 meshRegion = regionToolset.Region(edges=edgesForMesh)
40 part_.seedEdgeBySize(edges=edgesForMesh, size=eleSize)
41 else:
42 facesForMesh = set.faces
43 meshRegion = regionToolset.Region(faces=facesForMesh)
44 part_.seedPart(size=eleSize)
45 if ('tri' in eleName) or ('3' in eleName):
46 part_.setMeshControls(elemShape=TRI,

regions=facesForMesh),!

47 else:
48 part_.setMeshControls(elemShape=QUAD_DOMINATED,

regions=facesForMesh),!

49 element = mesh.ElemType(elemCode=eleConst, elemLibrary=STANDARD)
50 part_.setElementType(regions=meshRegion, elemTypes=(element,))
51

52 # -------------- Create mesh by dictionary-------------
53 # This function meshes all the parts with names and properties

specified in mesh_dict.,!

54 def create_mesh_auto(mesh_dict):
55 model = get_model()
56 for partName in mesh_dict.keys():
57 try:
58 part = model.parts[partName]
59 eleSize, eleName = mesh_dict[partName]
60 createMesh(part, eleSize, eleName)
61 part.generateMesh()
62 except:
63 print('Could not mesh part: ' + str(partName))
64

65 # -------------- Convert element name string to abaqus constant
-------------,!

66 # Converts a string with the elementcode to an Abaqus constant
defining the chosen element type.,!

67 def elemcode_string_to_constant(elemcode_str):
68 if elemcode_str.lower() == 'b31':
69 return B31
70 if elemcode_str.lower() == 'b31h':
71 return B31H
72 if elemcode_str.lower() == 'b32':
73 return B32
74 if elemcode_str.lower() == 'b33':
75 return B33



C-22 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

76 if elemcode_str.lower() == 'b33h':
77 return B33H
78 if elemcode_str.lower() == 't3d2':
79 return T3D2
80 if elemcode_str.lower() == 't3d2h':
81 return T3D2H
82 if elemcode_str.lower() == 'stri3':
83 return STRI3
84 if elemcode_str.lower() == 's3':
85 return S3
86 if elemcode_str.lower() == 's3r':
87 return S3R
88 if elemcode_str.lower() == 'stri65':
89 return STRI65
90 if elemcode_str.lower() == 's4':
91 return S4
92 if elemcode_str.lower() == 's4r':
93 return S4R
94 if elemcode_str.lower() == 's4r5':
95 return S4R5
96 if elemcode_str.lower() == 's8r':
97 return S8R
98 if elemcode_str.lower() == 's8r5':
99 return S8R5

100 if elemcode_str.lower() == 's9r5':
101 return S9R5
102 print('Unknown element code: '+ elemcode_str)
103

104 # -------------- Create Steps -------------
105 # Functions for creating different types of analysis steps
106 def create_static_step(name='StaticStep', prevStep='Initial',

desc=''):,!

107 model = get_model()
108 model.StaticStep(name=name, previous=prevStep, description=desc)
109

110 def create_freq_step(name='FrequencyStep', nModes=30,
prevStep='Initial', desc='', SIMBased=False):,!

111 model = get_model()
112 if SIMBased:
113 model.FrequencyStep(name=name, numEigen=nModes,

previous=prevStep, description=desc,
simLinearDynamics=ON, normalization=MASS)

,!

,!

114 else:



Appendix C: Python Scripts C-23

115 model.FrequencyStep(name=name, numEigen=nModes,
previous=prevStep, description=desc,
simLinearDynamics=OFF)

,!

,!

116

117 def create_modal_dyn_step(name='ModalDynamicsStep',
prevStep='FrequencyStep', desc='', period=60, stepSize=0.1):,!

118 model = get_model()
119 model.ModalDynamicsStep(name=name, previous=prevStep,

description=desc, timePeriod=period, incSize=stepSize),!

120 fieldOutputKeys = model.fieldOutputRequests.keys()
121 fieldOutputKeys.sort()
122 key = fieldOutputKeys[-1]
123 model.fieldOutputRequests[key].setValues(variables=('U', 'V',

'A')),!

124 model.fieldOutputRequests[key].setValues(frequency=1)
125

126 # -------------- Add Gravitational Acceleration -------------
127 # Adds gravity to the entire model
128 def add_gravity(stepName):
129 model = get_model()
130 model.Gravity('Gravitational Acceleration',

createStepName=stepName, distributionType=UNIFORM,
comp2=-9.81)

,!

,!

131

132 # -------------- Add distributed mass -------------
133 # This function adds distributed mass with the specified magnitude

to a set of faces in the specified part.,!

134 def add_mass_per_area(floorPart, set_of_faces, mass_per_area,
mass_name):,!

135 m = get_model()
136 f = set_of_faces.faces
137 r = regionToolset.Region(faces=f)
138 floorPart.engineeringFeatures.NonstructuralMass(name=mass_name,

region=r, units=MASS_PER_AREA, magnitude=mass_per_area),!

139

140 # This function takes in a dict containing information about
multiple masses and its corresponding levels, creates subsets
of the floors for each mass and applies mass to the subsets.

,!

,!

141 def mass_from_dict(floorPart, floorSet, mass_dict, grid):
142 for key in mass_dict.keys():
143 name = key
144 start_level, end_level, mass = mass_dict[key]
145 s = set_of_selected_floors(floorPart, floorSet,

start_level, end_level, grid),!



C-24 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

146 add_mass_per_area(floorPart, s, mass, key)
147

148 # -------------- Add concetrated mass -------------
149 # This function takes in a dict created containing information

about non-structural point masses and applies them to the
correct vertices of the grid.

,!

,!

150 def point_mass_from_dict(pointMassDict, grid):
151 m = get_model()
152 x_coord_matrix, y_coord_lst, z_coord_lst = grid
153 x_coord_lst = x_axes_coords(grid)
154 for key in pointMassDict.keys():
155 d = pointMassDict[key]
156 part_string = d["part"]
157 try:
158 prt = m.parts[part_string]
159 verts = prt.vertices
160 except:
161 print("Could not find part: "+part_string)
162 continue
163 magnitude = d["magnitude"]
164 x_start, y_start, z_start = d["startPoint"]
165 x_end, y_end, z_end = d["endPoint"]
166 x_iter = range(x_start,x_end+1)
167 y_iter = range(y_start,y_end+1)
168 z_iter = range(z_start,z_end+1)
169 vertices_lst = []
170 for y_ind in y_iter:
171 y = y_coord_lst[y_ind]
172 for z_ind in z_iter:
173 z = z_coord_lst[z_ind]
174 for x_ind in x_iter:
175 x = x_coord_lst[x_ind]
176 vertices_lst += [verts.findAt((x,y,z),)]
177 if len(vertices_lst) > 0:
178 vertices_array = part.VertexArray(vertices_lst)
179 reg = regionToolset.Region(vertices=vertices_array)
180 prt.engineeringFeatures.PointMassInertia(name=key,

region=reg, mass=magnitude),!

181 print('Point mass "'+key+'" applied to
'+str(len(vertices_lst))+' vertice(s) on part:
'+part_string)

,!

,!

182 else:
183 print('Could not create point mass "'+key+'" (no

vertices were found).'),!



Appendix C: Python Scripts C-25

184

185

186 # -------------- Import .txt table and create amplitude
-------------,!

187 # This fuction takes in amplitude_str (a string containg the
filename/path) of a,!

188 # .txt file containg a load amplitude (see ex. of such a file i the
digital appendix),!

189 # the amplitude in the file is imported to a amplitude-object in
abaqus.,!

190 def amplitude_from_file(amplitude_str):
191 f = open(amplitude_str, 'r')
192 lines = f.readlines()
193 seq = []
194 for line in lines:
195 line = line.split()
196 line = line[0].split(',')
197 pair = (float(line[0]), float(line[1]))
198 seq.append(pair)
199 f.close()
200 model = get_model()
201 model.TabularAmplitude(name='ImportedAmplitude',

data=tuple(seq)),!

202 return
203

204 # -------------- Create Job -------------
205 # This function creates a job and deletes and .lck files that might

exist from previous analyses.,!

206 def create_and_run_job(jobName='TTBJob', run=True, nCpu=1, desc=''):
207 if os.path.exists(jobName+'.lck'):
208 os.remove(jobName+'.lck')
209

210 mdb.Job(name=jobName, model=get_model(), numCpus=nCpu,
numDomains=nCpu, description=desc),!

211 if run:
212 mdb.jobs[jobName].submit(consistencyChecking=OFF)
213 mdb.jobs[jobName].waitForCompletion()
214

215 # -------------- Create Pressure -------------
216 # This function creates a pressure load with the specified

amplitude and magnitude,!

217 # and applies it to faces of the specified set in the specified
part.,!



C-26 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

218 def create_pressure(load_name, shellPart, shellSet, mag,
amplitude_name, step_name):,!

219 model = get_model()
220 a = get_assembly()
221 shellInst = a.instances[shellPart.name]
222 facesForLoad = shellSet.faces
223 surfaceForLoad = shellPart.Surface(name=load_name+'_surface',

side2Faces=facesForLoad),!

224 surf = shellInst.surfaces[load_name+'_surface']
225 model.Pressure(amplitude=amplitude_name,

createStepName=step_name, distributionType=UNIFORM,
field='', magnitude=mag, name=load_name, region=surf)

,!

,!

226

227 # -------------- Create Free Vibration Initial Load -------------
228 # This function creates a impulse load to the upper edge of the top

floor in the,!

229 # direction specified in xlsx_dict (imported from wind load sheet i
excel file).,!

230 def free_vibration_impulse(xlsx_dict, floorPart, grid,
stepName='FreeVibrationStep'):,!

231 m = get_model()
232 a = get_assembly()
233 direction = xlsx_dict['WindDir']
234 floorInst = a.instances[floorPart.name]
235 e = floorPart.edges
236 x_coord_matrix, y_coord_lst, z_coord_lst = grid
237 if stepName in m.steps.keys():
238 if direction.lower() == 'x':
239 x = x_coord_matrix[0][-1]
240 y = y_coord_lst[-1]
241 z_min = z_coord_lst[0]
242 z_max = z_coord_lst[-1]
243 mag = 1000000/(z_max-z_min)
244 edges_for_load = e.getByBoundingBox(xMin=x-0.01,

yMin=y-0.01, zMin=z_min, xMax=x+0.01, yMax=y+0.01,
zMax=z_max)

,!

,!

245 elif direction.lower() == 'z':
246 x_min = x_coord_matrix[-1][0]
247 x_max = x_coord_matrix[-1][-1]
248 y = y_coord_lst[-1]
249 z = z_coord_lst[-1]
250 mag = 1000000/(x_max-x_min)



Appendix C: Python Scripts C-27

251 edges_for_load = e.getByBoundingBox(xMin=x_min,
yMin=y-0.01, zMin=z-0.01, xMax=x_max, yMax=y+0.01,
zMax=z+0.01)

,!

,!

252

253 floorPart.Surface(name='FreeVibrationExcitation_surf',
circumEdges=edges_for_load),!

254 surf = floorInst.surfaces['FreeVibrationExcitation_surf']
255 amp_tuple = ((0,0), (0.2,1), (0.4,1), (0.41, 0))
256 m.TabularAmplitude(name='FreeVibrationExcitation_amp',

data=amp_tuple),!

257 m.ShellEdgeLoad(name='FreeVibrationExcitation',
createStepName=stepName,
amplitude='FreeVibrationExcitation_amp', magnitude=mag,
region=surf)

,!

,!

,!



C-28 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

C.4 TTB_boundaries.py

This file contains all the functions related to boundary conditions and interaction
between the different parts of the structure.

1 # -------------- Input folder path -------------
2 # Folder where all the scripts are located:
3 scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
4

5 # -------------- Import Packages -------------
6 from abaqus import *
7 from abaqusConstants import *
8 import regionToolset
9 import numpy as np

10 import math
11 import sketch
12 import part
13 import material
14 import section
15 import assembly
16 import mesh
17 import job
18 import odbAccess
19 import interaction
20 import load
21 import sys
22 import step
23

24 sys.path.append(scriptsFolder)
25

26 from TTB_general import *
27 from TTB_geometry import *
28

29 # -------------- Create Boundary Springs -------------
30 # This function creates springs (and dashpots) between ground and

the frame structure,!

31 # REQUIRED ARGUMENTS:
32 # framePart - The part containing the frame
33 # bc_dict - A dictionary imported from excel containing the spring

stiffnesses and dashpot coefs.,!

34 def create_boundary_springs_from_dict(framePart, bc_dict):
35 verticesForSprings =

framePart.vertices.getByBoundingBox(yMin=-0.01, yMax=0.01),!



Appendix C: Python Scripts C-29

36 if verticesForSprings:
37 regionForSprings =

regionToolset.Region(vertices=verticesForSprings),!

38 for dof_nr in bc_dict.keys():
39 spring_name, stiffness, dashpotCoef = bc_dict[dof_nr]
40 if (stiffness > 0) and (dashpotCoef > 0):
41 framePart.engineeringFeatures.SpringDashpotToGround c

(name=spring_name, region=regionForSprings,
dof=dof_nr, springBehavior=ON,
springStiffness=stiffness, dashpotBehavior=ON,
dashpotCoefficient=dashpotCoef)

,!

,!

,!

,!

42 elif stiffness > 0:
43 framePart.engineeringFeatures.SpringDashpotToGround c

(name=spring_name, region=regionForSprings,
dof=dof_nr, springBehavior=ON,
springStiffness=stiffness)

,!

,!

,!

44 elif dashpotCoef > 0:
45 framePart.engineeringFeatures.SpringDashpotToGround c

(name=spring_name, region=regionForSprings,
dof=dof_nr, dashpotBehavior=ON,
dashpotCoefficient=dashpotCoef)

,!

,!

,!

46

47

48 # -------------- Create Ties Along Floor Edge -------------
49 # This function creates ties (connections) between the floors and

the frame along the x-direction.,!

50 # REQUIRED ARGUMENTS:
51 # framePart - The part containing the frame
52 # floorPart - The part containing the floors
53 # grid - List/matrix imported from excel containing coordinates of

the axis system,!

54 # OPTIONAL ARGUMENTS:
55 # tie_rot - Boolean who specifies if rotations should be tied.

Default is False.,!

56 def tie_floors(framePart, floorPart, grid, tie_rot=False, tol=0.01):
57 model = get_model()
58 a = get_assembly()
59 frameInst = a.instances[framePart.name]
60 floorInst = a.instances[floorPart.name]
61 x_coord_matrix, y_coord_lst, z_coord_lst = grid
62 for y_ind in range(len(y_coord_lst)):
63 y = y_coord_lst[y_ind]
64 for z_ind in range(len(z_coord_lst)):
65 z = z_coord_lst[z_ind]



C-30 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

66 floorEdges = []
67 beamEdges = []
68 floorEdges =

floorPart.edges.getByBoundingBox(yMin=y-tol,
zMin=z-tol, yMax=y+tol, zMax=z+tol)

,!

,!

69 if len(floorEdges)>0:
70 beamEdges =

framePart.edges.getByBoundingBox(yMin=y-tol,
zMin=z-tol, yMax=y+tol, zMax=z+tol)

,!

,!

71 if len(beamEdges)>0:
72 floorPart.Surface(name='floorSurf_y'+str(y_ind) c

+'_z'+str(z_ind),
end1Edges=floorEdges)

,!

,!

73 framePart.Surface(name='frameSurf_y'+str(y_ind) c
+'_z'+str(z_ind),
circumEdges=beamEdges)

,!

,!

74 floorSurf = floorInst.surfaces['floorSurf_y'+st c
r(y_ind)+'_z'+str(z_ind)],!

75 frameSurf = frameInst.surfaces['frameSurf_y'+st c
r(y_ind)+'_z'+str(z_ind)],!

76 tieName = floorPart.name+'_Tie_alongX_(YAXIS:'+ c
str(y_ind)+'_ZAXIS:'+str(z_ind)+')',!

77 if tie_rot:
78 model.Tie(name=tieName, master=floorSurf,

slave=frameSurf, tieRotations=ON,
adjust=OFF, constraintEnforcement=SURFA c
CE_TO_SURFACE)

,!

,!

,!

79 else:
80 model.Tie(name=tieName, master=floorSurf,

slave=frameSurf, tieRotations=OFF,
adjust=OFF, constraintEnforcement=SURFA c
CE_TO_SURFACE)

,!

,!

,!

81

82

83 #------------- Create Ties Along Floor Edge ---------
84 # This function creates ties (connections) between the floors and

the frame along the x-direction.,!

85 def tie_floors_node_to_surf(floorPart, framePart, tie_rot=False):
86 model = get_model()
87 a = get_assembly()
88 frameInst = a.instances[framePart.name]
89 floorInst = a.instances[floorPart.name]
90 floorSurf = floorInst.surfaces['FloorSurfaces']
91 frameEdges = frameInst.sets['XDirBeams']



Appendix C: Python Scripts C-31

92 tieName = 'Floor_To_Frame_Tie'
93 if tie_rot:
94 model.Tie(name=tieName, master=floorSurf, slave=frameEdges,

tieRotations=ON, adjust=OFF,
constraintEnforcement=NODE_TO_SURFACE)

,!

,!

95 else:
96 model.Tie(name=tieName, master=floorSurf, slave=frameEdges,

tieRotations=OFF, adjust=OFF,
constraintEnforcement=NODE_TO_SURFACE)

,!

,!

97

98

99 # -------------- Create ties at corner of shells -------------
100 # This function creates ties (connections) between a shell part and

the frame at the corners at each face in the shell part.,!

101 # The shells should be partitioned beforehand.
102 # REQUIRED ARGUMENTS:
103 # shell_part - The part containing the shell(s)
104 # frame_part - The part containing the frame
105 def create_corner_ties(shell_part, frame_part):
106 model = get_model()
107 a = get_assembly()
108 frame_inst = a.instances[frame_part.name]
109 shell_inst = a.instances[shell_part.name]
110 shellFaces = shell_part.faces
111 shellVertices = shell_part.vertices
112 frameVertices = frame_part.vertices
113 shellVertices_inst = shell_inst.vertices
114 frameVertices_inst = frame_inst.vertices
115 counter = 0
116 tied_indices_list = []
117 for f in shellFaces:
118 v_list = f.getVertices()
119 for v_ind in v_list:
120 if v_ind not in tied_indices_list: # To aviod multiple

ties at same vertice,!

121 shellVertice = shellVertices[v_ind]
122 coord = shellVertice.pointOn
123 shellVertice = shellVertices_inst.findAt(coord)
124 frameVertice = frameVertices_inst.findAt(coord,

printWarning=False),!

125 if frameVertice:
126 frameRegion =

regionToolset.Region(vertices=frameVertice),!



C-32 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

127 shellRegion =
regionToolset.Region(vertices=shellVertice),!

128 tieName =
'CornerTie_'+shell_part.name+'_Vert_ind:'+s c
tr(v_ind)+'_(Counter:'+str(counter)+')'

,!

,!

129 model.Tie(master=frameRegion,
slave=shellRegion, name=tieName,
tieRotations=OFF, adjust=OFF)

,!

,!

130 counter += 1
131 tied_indices_list.append(v_ind)
132

133

134 # -------------- Create ties at the edges of shells -------------
135 # This function creates ties (connections) between a shell part and

the frame at the edges of each face in the shell part.,!

136 # The shells should be partitioned beforehand.
137 # REQUIRED ARGUMENTS:
138 # shell_part - The part containing the shell(s)
139 # frame_part - The part containing the frame
140 def create_edge_ties(shell_part, frame_part, tie_rot=False):
141 model = get_model()
142 a = get_assembly()
143 frame_inst = a.instances[frame_part.name]
144 shell_inst = a.instances[shell_part.name]
145 shellFaces = shell_part.faces
146 shellVertices = shell_part.vertices
147 shellEdges = shell_part.edges
148 tied_shell_edge_ind = []
149 for f in shellFaces:
150 e_list = f.getEdges()
151 for e_ind in e_list:
152 if e_ind not in tied_shell_edge_ind:
153 e = shellEdges[e_ind]
154 shellEdges_Tie = part.EdgeArray([e])
155 v_list = e.getVertices()
156 coords = [shellVertices[v_ind].pointOn[0] for v_ind

in v_list],!

157 frameEdges_Tie = frame_part.edges.getByBoundingCyli c
nder(center1=coords[0], center2=coords[1],
radius=0.1)

,!

,!

158 if frameEdges_Tie:
159 tied_shell_edge_ind.append(e_ind)
160 frame_surf_name = frame_part.name+'_surf_(edge_ c

'+str(e_ind)+')',!



Appendix C: Python Scripts C-33

161 shell_surf_name = shell_part.name+'_surf_(edge_ c
'+str(e_ind)+')',!

162 frame_part.Surface(name=frame_surf_name,
circumEdges=frameEdges_Tie),!

163 shell_part.Surface(name=shell_surf_name,
end1Edges=shellEdges_Tie),!

164 frame_surf =
frame_inst.surfaces[frame_surf_name],!

165 shell_surf =
shell_inst.surfaces[shell_surf_name],!

166 tieName = frame_part.name+'_to_'+shell_part.nam c
e+'_Tie_(edge_'+str(e_ind)+')',!

167 if tie_rot:
168 model.Tie(name=tieName, master=frame_surf,

slave=shell_surf, tieRotations=ON,
adjust=OFF, constraintEnforcement=SURFA c
CE_TO_SURFACE)

,!

,!

,!

169 else:
170 model.Tie(name=tieName, master=frame_surf,

slave=shell_surf, tieRotations=OFF,
adjust=OFF, constraintEnforcement=SURFA c
CE_TO_SURFACE)

,!

,!

,!

171

172

173 # -------------- Create ties at the edges of shells -------------
174 # This function creates ties (connections) between a shell part and

the frame at the edges of each face in the shell part.,!

175 # The shells should be partitioned beforehand.
176 # REQUIRED ARGUMENTS:
177 # shell_part - The part containing the shell(s)
178 # frame_part - The part containing the frame
179 # OPTIONAL ARGUMENTS
180 # floor_part - If the user wish to create ties between the

shell_part(i.e wall),!

181 # and the floors a floor_part may be specified. Ties
between walls,!

182 # and floors are only created if there is no beam at a
wall panel edge.,!

183 # tie_rot - Boolean specifying if rotations should be restrained
(if applicable),!

184 def create_edge_ties2(shell_part, frame_part, floor_part=None,
tie_rot=False):,!

185 model = get_model()
186 a = get_assembly()



C-34 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

187 frame_inst = a.instances[frame_part.name]
188 shell_inst = a.instances[shell_part.name]
189 shellFaces = shell_part.faces
190 shellVertices = shell_part.vertices
191 shellEdges = shell_part.edges
192 try:
193 floor_inst = a.instances[floor_part.name]
194 except:
195 pass
196 tied_shell_edge_ind = []
197 frame_counter = 0
198 floor_counter = 0
199 for f in shellFaces:
200 e_list = f.getEdges()
201 for e_ind in e_list:
202 if e_ind not in tied_shell_edge_ind:
203 e = shellEdges[e_ind]
204 shellEdges_Tie_temp = part.EdgeArray([e])
205 v_list = e.getVertices()
206 coords = [shellVertices[v_ind].pointOn[0] for v_ind

in v_list],!

207 frameEdges_Tie_temp = frame_part.edges.getByBoundin c
gCylinder(center1=coords[0], center2=coords[1],
radius=0.1)

,!

,!

208 if frameEdges_Tie_temp:
209 tied_shell_edge_ind.append(e_ind)
210 if frame_counter == 0:
211 frameEdges_Tie = frameEdges_Tie_temp
212 shellEdges_frameTie = shellEdges_Tie_temp
213 else:
214 frameEdges_Tie += frameEdges_Tie_temp
215 shellEdges_frameTie += shellEdges_Tie_temp
216 frame_counter += 1
217 elif floor_part:
218 mid_coord=tuple(np.divide(np.add(coords[0],

coords[1]), 2)),!

219 floorEdges_Tie_temp =
floor_part.edges.findAt(mid_coord,
printWarning=False)

,!

,!

220 if floorEdges_Tie_temp:
221 tied_shell_edge_ind.append(e_ind)
222 if floor_counter == 0:
223 floorEdges_Tie = [floorEdges_Tie_temp]



Appendix C: Python Scripts C-35

224 shellEdges_floorTie =
shellEdges_Tie_temp,!

225 else:
226 floorEdges_Tie += [floorEdges_Tie_temp]
227 shellEdges_floorTie +=

shellEdges_Tie_temp,!

228 floor_counter += 1
229

230 if frame_counter > 0:
231 frame_surf_name =

frame_part.name+'_surf_(tie_with_'+shell_part.name+')',!

232 shell_surf_name =
shell_part.name+'_surf_(tie_with_'+frame_part.name+')',!

233 frame_part.Surface(name=frame_surf_name,
circumEdges=frameEdges_Tie),!

234 shell_part.Surface(name=shell_surf_name,
end1Edges=shellEdges_frameTie),!

235 frame_surf = frame_inst.surfaces[frame_surf_name]
236 shell_surf = shell_inst.surfaces[shell_surf_name]
237 tieName = frame_part.name+'_to_'+shell_part.name+'_Tie_(edg c

e_'+str(e_ind)+')',!

238 if tie_rot:
239 model.Tie(name=tieName, master=frame_surf,

slave=shell_surf, tieRotations=ON, adjust=OFF,
constraintEnforcement=SURFACE_TO_SURFACE)

,!

,!

240 else:
241 model.Tie(name=tieName, master=frame_surf,

slave=shell_surf, tieRotations=OFF, adjust=OFF,
constraintEnforcement=SURFACE_TO_SURFACE)

,!

,!

242

243 if floor_counter > 0:
244 floorEdges_Tie = part.EdgeArray(floorEdges_Tie)
245 floor_surf_name =

floor_part.name+'_surf_(tie_with_'+shell_part.name+')',!

246 shell_surf_name =
shell_part.name+'_surf_(tie_with_'+floor_part.name+')',!

247 floor_part.Surface(name=floor_surf_name,
end1Edges=floorEdges_Tie),!

248 shell_part.Surface(name=shell_surf_name,
end1Edges=shellEdges_floorTie),!

249 floor_surf = floor_inst.surfaces[floor_surf_name]
250 shell_surf = shell_inst.surfaces[shell_surf_name]
251 tieName = floor_part.name+'_to_'+shell_part.name+'_Tie_(edg c

e_'+str(e_ind)+')',!



C-36 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

252 if tie_rot:
253 model.Tie(name=tieName, master=floor_surf,

slave=shell_surf, tieRotations=ON, adjust=OFF,
constraintEnforcement=SURFACE_TO_SURFACE)

,!

,!

254 else:
255 model.Tie(name=tieName, master=floor_surf,

slave=shell_surf, tieRotations=OFF, adjust=OFF,
constraintEnforcement=SURFACE_TO_SURFACE)

,!

,!

256

257 print('Ties established between '+str(frame_counter)+'
'+frame_part.name+' edges and '+shell_part.name+' edges.'),!

258 print('Ties established between '+str(floor_counter)+'
'+floor_part.name+' edges and '+shell_part.name+' edges.'),!

259

260

261 # -------------- Create connector panels (walls) -------------
262 # This function partitions each wall panel such that a "connection"

zone is created at the edge of the panel. The connection zones
can later be assigned material and sections that differs from
the rest of the wall.

,!

,!

,!

263 # This function are only functional for straight outer walls.
264 # REQUIRED ARGUMENTS:
265 # wallPart - The part containing the frame
266 # grid - List/matrix imported from excel containing coordinates of

the axis system,!

267 # width - The width of the connection zone to be created
268 def create_connector_panels_walls(shell_part, grid, width):
269 model = get_model()
270 x_coord_matrix, y_coord_lst, z_coord_lst = grid
271

272 # XY-Plane
273 for i in [0, len(z_coord_lst)-1]:
274 z = z_coord_lst[i]
275 x_coord_lst = x_coord_matrix[i]
276 for j in range(1,len(x_coord_lst)):
277 x_start = x_coord_lst[j-1]
278 x_start_offset = x_start + width
279 x_end = x_coord_lst[j]
280 x_end_offset = x_end - width
281 for k in range(1,len(y_coord_lst)):
282 y_start = y_coord_lst[k-1]
283 y_start_offset = y_start + width
284 y_end = y_coord_lst[k]
285 y_end_offset = y_end - width



Appendix C: Python Scripts C-37

286 pt1 = (x_start_offset, y_start_offset)
287 pt2 = (x_end_offset, y_end_offset)
288 f = shell_part.faces.getByBoundingBox(xMin=x_start,

yMin=y_start, zMin=z-0.001, xMax=x_end,
yMax=y_end, zMax=z+0.001)

,!

,!

289 shellPlane = create_principal_plane(XYPLANE, z,
shell_part),!

290 shellUpEdge = create_principal_axis(YAXIS,
shell_part),!

291 partitionTransform = shell_part.MakeSketchTransform c
(sketchPlane=shellPlane, origin=(0,0,z),
sketchPlaneSide=SIDE2,
sketchUpEdge=shellUpEdge,
sketchOrientation=LEFT)

,!

,!

,!

,!

292 partitionSketch =
model.ConstrainedSketch(name='partitionSketch',
sheetSize=20, transform=partitionTransform)

,!

,!

293 partitionSketch.rectangle(point1=(-pt1[0],pt1[1]),
point2=(-pt2[0],pt2[1])),!

294 try:
295 shell_part.PartitionFaceBySketch(faces=f,

sketchUpEdge=shellUpEdge,
sketchOrientation=RIGHT,
sketch=partitionSketch)

,!

,!

,!

296 except:
297 print('Could not partition wall panel in XY

plane...'),!

298

299 # YZ-Plane
300 for j in [0,-1]:
301 for i in range(1,len(z_coord_lst)):
302 z_start = z_coord_lst[i-1]
303 z_start_offset = z_start + width
304 z_end = z_coord_lst[i]
305 z_end_offset = z_end - width
306 x_coord_lst = x_coord_matrix[i]
307 x_start = x_coord_matrix[i-1][j]
308 x_end = x_coord_matrix[i][j]
309 x_min = min(x_start, x_end)
310 x_max = max(x_start, x_end)
311 for k in range(1,len(y_coord_lst)):
312 y_start = y_coord_lst[k-1]
313 y_start_offset = y_start + width
314 y_end = y_coord_lst[k]



C-38 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

315 y_end_offset = y_end - width
316 pt1 = (z_start_offset, y_start_offset)
317 pt2 = (z_end_offset, y_end_offset)
318 f = shell_part.faces.getByBoundingBox(xMin=x_min-0. c

001, yMin=y_start, zMin=z_start,
xMax=x_max+0.001, yMax=y_end, zMax=z_end)

,!

,!

319 shellPlane = create_principal_plane(YZPLANE,
x_start, shell_part),!

320 shellUpEdge = create_principal_axis(YAXIS,
shell_part),!

321 partitionTransform = shell_part.MakeSketchTransform c
(sketchPlane=shellPlane, origin=(x_start,0,0),
sketchPlaneSide=SIDE2,
sketchUpEdge=shellUpEdge,
sketchOrientation=RIGHT)

,!

,!

,!

,!

322 partitionSketch =
model.ConstrainedSketch(name='partitionSketch',
sheetSize=20, transform=partitionTransform)

,!

,!

323 partitionSketch.rectangle(point1=pt1, point2=pt2)
324 try:
325 shell_part.PartitionFaceBySketch(faces=f,

sketchUpEdge=shellUpEdge,
sketchOrientation=RIGHT,
sketch=partitionSketch)

,!

,!

,!

326 except:
327 print('Could not partition wall panel in YZ

plane...'),!

328

329

330 # ------------------- Create Shaft Floor-Shaft Ties
--------------------,!

331 # This function creates a tie between all shaft surfaces and floors.
332 # REQUIRED ARGUMENTS:
333 # shaftPart - Part object hosting the shafts
334 # floorPart - Part object hosting the floors
335 # Optional:
336 # tie_rot - Specifies if the rotational DOFs should be tied or not.
337 def shaft_floor_tie(shaftPart, floorPart, tie_rot = False):
338 model = get_model()
339 a = get_assembly()
340 shaftPart.Surface(name='AllOuterShaftFaces',

side2Faces=shaftPart.faces),!

341 floor_inst = a.instances[floorPart.name]
342 shaft_inst = a.instances[shaftPart.name]



Appendix C: Python Scripts C-39

343 tieName = 'Shaft_to_floor_tie'
344 try:
345 shaftSurf = shaft_inst.surfaces['AllOuterShaftFaces']
346 floorEdges = floor_inst.sets['AllFloorEdgesAroundShafts']
347 if tie_rot:
348 model.Tie(name=tieName, master=floorEdges,

slave=shaftSurf, adjust=OFF, tieRotations=ON,
constraintEnforcement=NODE_TO_SURFACE,
thickness=OFF)

,!

,!

,!

349 else:
350 model.Tie(name=tieName, master=floorEdges,

slave=shaftSurf, adjust=OFF, tieRotations=OFF,
constraintEnforcement=NODE_TO_SURFACE,
thickness=OFF)

,!

,!

,!

351 except KeyError:
352 pass
353

354

355 # ------------------- Tie Walls ---------------
356 # Creates ties between the predefined surfaces "InnerSurface" and

"EdgesForWallTies".,!

357 # Option to tie the rotational DOFs.
358 def wall_ties(wallPart, tie_rot=False):
359 model= get_model()
360 a = get_assembly()
361 tieName = 'Wall Tie'
362 wallInst = a.instances[wallPart.name]
363 wallSurf = wallInst.surfaces['InnerSurface']
364 tieEdges = a.sets['EdgesForWallTies']
365 if tie_rot:
366 model.Tie(name=tieName, master=wallSurf, slave=tieEdges,

adjust=OFF, tieRotations=ON,
constraintEnforcement=NODE_TO_SURFACE, thickness=OFF)

,!

,!

367 else:
368 model.Tie(name=tieName, master=wallSurf, slave=tieEdges,

adjust=OFF, tieRotations=OFF,
constraintEnforcement=NODE_TO_SURFACE, thickness=OFF)

,!

,!

369

370

371 # -------------- Tie the colomns and slab -------------
372 # Creates ties between the column ends and the slab.
373 def column_to_slab_tie(floorPart, framePart):
374 model= get_model()
375 a = get_assembly()



C-40 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

376 tieName = 'Slab to Coloumns'
377 floorInst = a.instances[floorPart.name]
378 frameInst = a.instances[framePart.name]
379 slabSurf = floorInst.surfaces['Slab Surface']
380 columnNodes = frameInst.sets['Column Ends']
381

382 model.Tie(name=tieName, master=slabSurf, slave=columnNodes,
adjust=OFF, tieRotations=OFF,
constraintEnforcement=NODE_TO_SURFACE, thickness=OFF)

,!

,!



Appendix C: Python Scripts C-41

C.5 TTB_excel.py

This file contains all the functions related to importing the input data from the in-
put file generated in Excel. The data from Excel is mainly imported as dictionaries
and lists to allow for further usage of the data inside python.

1 # -------------- Input folder path -------------
2 # Folder where all the scripts are located:
3 scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
4

5 # -------------- Import Packages -------------
6 from abaqus import *
7 from abaqusConstants import *
8 import regionToolset
9 import numpy as np

10 import math
11 import sketch
12 import part
13 import material
14 import section
15 import assembly
16 import mesh
17 import job
18 import odbAccess
19 import interaction
20 import load
21 import sys
22 import openpyxl
23 import unicodedata
24

25 sys.path.append(scriptsFolder)
26

27 from TTB_analysis import *
28

29 # --------------------- xz-grid coordinates --------
30 # This function creates a tuple containing a list of z-coordinates

and a matrix of x-coordinates from a excel sheet.,!

31 # REQUIRED ARGUMENTS:
32 # sheet_name - The name of the excel sheet containing the xz-grid

data.,!

33 # wb_name - The path/name of the excel file.
34 # OPTIONAL ARGUMENTS:



C-42 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

35 # output_type - Specify the output type. 'coords' returns the
coordinates, while 'lengths' returns the distances between the
points in the grid.

,!

,!

36 # start_col - The first column containing user specified input.
(Excel(1) indexing),!

37 # start_row - The first row containing 1/0 (Excel(1) indexing)
38 def xz_grid_from_xlsx(sheet_name, wb_name, start_col=3,

start_row=7):,!

39 workbook = openpyxl.load_workbook(wb_name, data_only=True)
40 sheet = workbook[sheet_name]
41

42 z_axis_vector = []
43 z_iter = list(sheet.iter_cols(min_row=start_row-1,

max_row=start_row-1, min_col=start_col, values_only=True)),!

44 for z in z_iter:
45 try:
46 val = float(z[0])
47 z_axis_vector.append(val)
48 except:
49 pass
50

51 x_axis_vector = []
52 x_iter = list(sheet.iter_rows(min_row=start_row,

min_col=start_col-1, max_col=start_col-1, values_only=True)),!

53 for x in x_iter:
54 try:
55 val = float(x[0])
56 x_axis_vector.append(val)
57 except:
58 pass
59

60 x_coord_matrix = []
61 for i in range(len(z_axis_vector)):
62 x_vec = []
63 for j in range(len(x_axis_vector)):
64 excel_i = start_col+i
65 excel_j = start_row+j
66 bol = sheet.cell(column=excel_i, row=excel_j).value
67 if bol:
68 x_coord = x_axis_vector[j]
69 x_vec.append(x_coord)
70 x_coord_matrix.append(x_vec)
71

72 return (z_axis_vector, x_coord_matrix)



Appendix C: Python Scripts C-43

73

74 # --------------------- y-grid coordinates --------
75 # This function creates a list of y-coordinates and a matrix.
76 # REQUIRED ARGUMENTS:
77 # sheet_name - The name of the excel sheet containing the y-grid

data.,!

78 # wb_name - The path/name of the excel file.
79 # OPTIONAL ARGUMENTS:
80 # output_type - Specify the output type. 'coords' returns the

coordinates, while 'lengths' returns the distances between the
points in the grid.

,!

,!

81 # start_col - The first column containing user specified input.
(Excel(1) indexing),!

82 # start_row - The first row containing user specified input.
(Excel(1) indexing),!

83 def y_grid_from_xlsx(sheet_name, wb_name, output_type='coords',
start_col=2, start_row=5):,!

84 workbook = openpyxl.load_workbook(wb_name, data_only=True)
85 sheet = workbook[sheet_name]
86 y_coord_row = sheet[start_row]
87 i = start_col - 1
88 y_coord_vector = [float(y_coord_row[i].value)]
89 i += 1
90 while y_coord_row[i].value:
91 val = y_coord_row[i].value
92 y_coord_vector.append(float(val))
93 i += 1
94

95 if output_type.lower() == 'lengths':
96 y_lengths_vector = []
97 for i in range(1, len(y_coord_vector)):
98 difference = y_coord_vector[i] - y_coord_vector[i - 1]
99 y_lengths_vector.append(difference)

100 return y_lengths_vector
101

102 else:
103 return y_coord_vector
104

105

106 # --------------------- (Beam-Type) Cross Sections --------
107 # This function creates a dictionary containg data about

(beam-type) cross sections.,!

108 # REQUIRED ARGUMENTS:



C-44 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

109 # sheet_name - The name of the excel sheet containing the cross
section data.,!

110 # wb_name - The path/name of the excel file.
111 # OPTIONAL ARGUMENTS:
112 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

113 def cross_section_dict_from_xlsx(sheet_name, wb_name, start_row=5):
114 workbook = openpyxl.load_workbook(wb_name, data_only=True)
115 sheet = workbook[sheet_name]
116 cs_dict = {}
117 for row in sheet.iter_rows(min_row=start_row, min_col=1,

max_col=4, values_only=True):,!

118 key_temp = row[0]
119 if key_temp:
120 key = unicodedata.normalize("NFKD",

key_temp).encode("ascii", "ignore"),!

121 dim_temp = row[1:3]
122 dim = [float(x) for x in dim_temp]
123 mat_temp = row[3]
124 mat = unicodedata.normalize("NFKD",

mat_temp).encode("ascii", "ignore"),!

125 data = dim + [mat]
126 cs_dict[key] = data
127 else:
128 continue
129 return cs_dict
130

131

132 # --------------------- (Shell) Cross Sections --------
133 # This function creates a dictionary containg data about

(shell-type) cross sections.,!

134 # REQUIRED ARGUMENTS:
135 # sheet_name - The name of the excel sheet containing the cross

section data.,!

136 # wb_name - The path/name of the excel file.
137 # OPTIONAL ARGUMENTS:
138 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

139 def shell_section_dict_from_xlsx(sheet_name, wb_name, start_row=5):
140 workbook = openpyxl.load_workbook(wb_name, data_only=True)
141 sheet = workbook[sheet_name]
142 cs_dict = {}
143 for row in sheet.iter_rows(min_row=start_row, min_col=1,

max_col=3, values_only=True):,!



Appendix C: Python Scripts C-45

144 key_temp = row[0]
145 if key_temp:
146 key = unicodedata.normalize("NFKD",

key_temp).encode("ascii", "ignore" ),!

147 t = float(row[1])
148 mat_temp = row[2]
149 mat = unicodedata.normalize("NFKD",

mat_temp).encode("ascii", "ignore" ),!

150 cs_dict[key] = [t, mat]
151 else:
152 continue
153 return cs_dict
154

155

156 # --------------------- Materials --------
157 # This function creates a dictionary containg data about all the

materials specified.,!

158 # REQUIRED ARGUMENTS:
159 # sheet_name - The name of the excel sheet containing the material

data.,!

160 # wb_name - The path/name of the excel file.
161 # OPTIONAL ARGUMENTS:
162 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

163 def create_material_dict_from_xlsx(sheet_name, wb_name,
start_row=8):,!

164 workbook = openpyxl.load_workbook(wb_name, data_only=True)
165 sheet = workbook[sheet_name]
166 all_mat_dict = {}
167 for row in sheet.iter_rows(min_row=start_row, min_col=1,

max_col=12, values_only=True):,!

168 mat_dict = {}
169 name_temp = row[0]
170 if name_temp:
171 name = unicodedata.normalize("NFKD",

name_temp).encode("ascii", "ignore" ),!

172 type_temp = row[1]
173 type = unicodedata.normalize("NFKD",

type_temp).encode("ascii", "ignore" ),!

174 mat_dict['Type'] = type
175 mat_dict['Density'] = float(row[2])
176 mat_dict['E1'] = float(row[3])
177 mat_dict['Nu12'] = float(row[6])
178 if type in ['Trans. Isotropic', 'Orthotropic']:



C-46 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

179 mat_dict['E2'] = float(row[4])
180 mat_dict['Nu23'] = float(row[8])
181 mat_dict['G12'] = float(row[9])
182 if type == 'Orthotropic':
183 mat_dict['E3'] = float(row[5])
184 mat_dict['Nu_13'] = float(row[7])
185 mat_dict['G13'] = float(row[10])
186 mat_dict['G23'] = float(row[11])
187 all_mat_dict[name] = mat_dict
188 else:
189 continue
190 return all_mat_dict
191

192

193 # --------------------- Elements --------
194 # This function creates a dictionary containg data about connector

elements.,!

195 # REQUIRED ARGUMENTS:
196 # sheet_name - The name of the excel sheet containing the connector

data.,!

197 # wb_name - The path/name of the excel file.
198 # OPTIONAL ARGUMENTS:
199 # start_row - The first row containing the name of the member.

(Excel(1) indexing),!

200 def create_connector_dict_from_xlsx2(sheet_name, wb_name,
start_row=8):,!

201 workbook = openpyxl.load_workbook(wb_name, data_only=True)
202 sheet = workbook[sheet_name]
203 connector_dict = {}
204 for row in sheet.iter_rows(min_row=start_row, min_col=1,

max_col=13, values_only=True):,!

205 key_temp = row[0]
206 if key_temp:
207 key = unicodedata.normalize("NFKD",

key_temp).encode("ascii", "ignore"),!

208 segLen = float(row[1])
209 fractions_temp = row[2:6]
210 fractions = [float(x) for x in fractions_temp] #

[Area, I11, I22, J],!

211 vals_temp = row[6:10]
212 vals = [float(x) for x in vals_temp] # [Area, I11,

I22, J],!

213 damping_temp = row[10:13]
214 damping = [0]*len(damping_temp)



Appendix C: Python Scripts C-47

215 for i in range(len(damping_temp)):
216 try:
217 damping[i] = float(damping_temp[i])
218 except:
219 damping[i] = 0
220

221 connector_dict[key] = [segLen, fractions, vals,
damping],!

222 else:
223 continue
224 return connector_dict
225

226

227 # --------------------- Boundary Conditions --------
228 # This function creates a dictionary containg spring stiffnesses

for ground springs.,!

229 # REQUIRED ARGUMENTS:
230 # sheet_name - The name of the excel sheet containing the spring

stiffness data.,!

231 # wb_name - The path/name of the excel file.
232 # OPTIONAL ARGUMENTS:
233 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

234 def create_boundary_spring_dict_from_xlsx(sheet_name, wb_name,
start_row=5):,!

235 workbook = openpyxl.load_workbook(wb_name, data_only=True)
236 sheet = workbook[sheet_name]
237 bc_dict = {}
238 for row in sheet.iter_rows(min_row=5, max_row=10,

min_col=1, max_col=4, values_only=True):,!

239 key = int(row[0])
240 try:
241 stiffness = float(row[2])
242 except:
243 stiffness = 0
244 try:
245 dashpotCoef = float(row[3])
246 except:
247 dashpotCoef = 0
248

249 desc_temp = row[1]
250 desc = unicodedata.normalize("NFKD",

desc_temp).encode("ascii", "ignore"),!

251 data = (desc, stiffness, dashpotCoef)



C-48 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

252 bc_dict[key] = data
253 return bc_dict
254

255

256 # --------------------- Diagonals --------
257 # This function creates a dictionary containg data about the

placement of the diagonals.,!

258 # REQUIRED ARGUMENTS:
259 # sheet_name - The name of the excel sheet containing the

information about the diagonals.,!

260 # wb_name - The path/name of the excel file.
261 # OPTIONAL ARGUMENTS:
262 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

263 def diagonals_dict_from_xlsx(sheet_name, wb_name, start_row=4):
264 workbook = openpyxl.load_workbook(wb_name, data_only=True)
265 sheet = workbook[sheet_name]
266 all_diag_dict = {}
267 for row in sheet.iter_rows(min_row=start_row, min_col=1,

max_col=9, values_only=True):,!

268 diag_dict = {}
269 name_temp = row[0]
270 if name_temp:
271 name = unicodedata.normalize("NFKD",

name_temp).encode("ascii", "ignore" ),!

272 plane_temp = row[1]
273 plane = unicodedata.normalize("NFKD",

plane_temp).encode("ascii", "ignore" ),!

274 diag_dict['Plane'] = plane
275

276 try:
277 axis_lst = [int(row[2])]
278 except:
279 axis_string = unicodedata.normalize("NFKD",

row[2]).encode("ascii", "ignore" ),!

280 axis_lst = axis_string.split(';')
281 axis_lst = [st.strip() for st in axis_lst]
282 axis_lst = [int(st) for st in axis_lst]
283

284 diag_dict['Axis'] = axis_lst
285 diag_dict['Start Level'] = int(row[3])
286 diag_dict['End Level'] = int(row[4])
287 diag_dict['Start Column'] = int(row[5])
288 diag_dict['End Column'] = int(row[6])



Appendix C: Python Scripts C-49

289

290 try:
291 diag_dict['Skip Levels'] = int(row[7])
292 except:
293 string = unicodedata.normalize("NFKD",

row[7]).encode("ascii", "ignore" ),!

294 lst = string.split(';')
295 lst = [st.strip() for st in lst]
296 lst = [int(st) for st in lst]
297 diag_dict['Skip Levels'] = lst
298

299 diag_dict['Intersect At'] = float(row[8])
300 all_diag_dict[name] = diag_dict
301 else:
302 continue
303 return all_diag_dict
304

305

306 #---------------------- Remove Coloumns/Beams -------------------
307 # This function creates a dictionary containing data about what

beams and coloumns to remove from the original frame based on
the grid.

,!

,!

308 # REQUIRED ARGUMENTS:
309 # sheet_name - The name of the excel sheet containing the

information about the diagonals.,!

310 # wb_name - The path/name of the excel file.
311 # OPTIONAL ARGUMENTS:
312 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

313 def remove_dict_from_xlsx(sheet_name, wb_name, start_row=4):
314 workbook = openpyxl.load_workbook(wb_name, data_only=True)
315 sheet = workbook[sheet_name]
316 all_remove_dict = {}
317 name_ind = 1
318 for row in sheet.iter_rows(min_row=start_row, min_col=1,

max_col=10, values_only=True):,!

319 remove_dict = {}
320 part_temp = row[0]
321 if part_temp:
322 name = 'Remove '+str(name_ind)
323 part = unicodedata.normalize("NFKD",

part_temp).encode("ascii", "ignore" ),!

324 remove_dict['Parts'] = part
325 plane_temp = row[1]



C-50 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

326 plane = unicodedata.normalize("NFKD",
plane_temp).encode("ascii", "ignore" ),!

327 remove_dict['Plane'] = plane
328 try:
329 axis_lst = [int(row[2])]
330 except:
331 axis_string = unicodedata.normalize("NFKD",

row[2]).encode("ascii", "ignore" ),!

332 axis_lst = axis_string.split(';')
333 axis_lst = [st.strip() for st in axis_lst]
334 axis_lst = [int(st) for st in axis_lst]
335

336 remove_dict['Axis'] = axis_lst
337 remove_dict['Start Level'] = int(row[3])
338 remove_dict['End Level'] = int(row[4])
339 remove_dict['Start Column'] = int(row[5])
340 remove_dict['End Column'] = int(row[6])
341 if part == 'Columns' or part == 'Beams and Columns':
342 remove_dict['Remove Start/End'] = int(row[7])
343

344 all_remove_dict[name] = remove_dict
345 name_ind += 1
346 else:
347 continue
348 return all_remove_dict
349

350

351 # --------------------- Damping --------
352 # This function creates a dictionary containg damping parameters

for materials.,!

353 # REQUIRED ARGUMENTS:
354 # sheet_name - The name of the excel sheet containing the damping

data.,!

355 # wb_name - The path/name of the excel file.
356 # OPTIONAL ARGUMENTS:
357 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

358 def damping_dict_from_xlsx(sheet_name, wb_name, start_row=8):
359 workbook = openpyxl.load_workbook(wb_name, data_only=True)
360 sheet = workbook[sheet_name]
361 damping_dict = {}
362 for row in sheet.iter_rows(min_row=start_row, min_col=1,

max_col=16, values_only=True):,!

363 name_temp = row[0]



Appendix C: Python Scripts C-51

364 if name_temp:
365 name = unicodedata.normalize("NFKD",

name_temp).encode("ascii", "ignore" ),!

366 data = []
367 for i in range(12,16):
368 try:
369 data.append(float(row[i]))
370 except:
371 data.append(0)
372 damping_dict[name] = data
373 return damping_dict
374

375

376 # --------------------- Non Structural Mass --------
377 # This function creates a dictionary containg the non structural

mass data.,!

378 # REQUIRED ARGUMENTS:
379 # sheet_name - The name of the excel sheet containing the mass data.
380 # wb_name - The path/name of the excel file.
381 # OPTIONAL ARGUMENTS:
382 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

383 def mass_dict_from_xlsx(sheet_name, wb_name, start_row=6):
384 workbook = openpyxl.load_workbook(wb_name, data_only=True)
385 sheet = workbook[sheet_name]
386 mass_dict = {}
387 for row in sheet.iter_rows(min_row=start_row, min_col=1,

max_col=4, values_only=True):,!

388 name_temp = row[0]
389 if name_temp:
390 name = unicodedata.normalize("NFKD",

name_temp).encode("ascii", "ignore" ),!

391 data = []
392 for i in range(1,3):
393 data.append(int(row[i]))
394 data.append(float(row[3]))
395 mass_dict[name] = data
396 return mass_dict
397

398

399 # --------------------- Non Structural Point Mass --------
400 def point_mass_dict_from_xlsx(sheet_name, wb_name, start_row=6):
401 workbook = openpyxl.load_workbook(wb_name, data_only=True)
402 sheet = workbook[sheet_name]



C-52 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

403 mass_dict = {}
404 for row in sheet.iter_rows(min_row=start_row, min_col=1,

max_col=9, values_only=True):,!

405 name_temp = row[0]
406 if name_temp:
407 name = unicodedata.normalize("NFKD",

name_temp).encode("ascii", "ignore" ),!

408 mass_dict[name] = {}
409 mass_dict[name]["part"] = unicodedata.normalize("NFKD",

row[1]).encode("ascii", "ignore" ),!

410 start_pt = []
411 end_pt = []
412 for i in range(2,5):
413 start_pt.append(int(row[i]))
414 end_pt.append(int(row[i+3]))
415 mass_dict[name]["startPoint"] = start_pt
416 mass_dict[name]["endPoint"] = end_pt
417 mass_dict[name]["magnitude"] = float(row[8])
418 return mass_dict
419

420

421 # --------------------- Floor Data --------
422 # This function creates a dictionary containg data about the floor

cross sections.,!

423 # REQUIRED ARGUMENTS:
424 # sheet_name - The name of the excel sheet containing the floor

data.,!

425 # wb_name - The path/name of the excel file.
426 # OPTIONAL ARGUMENTS:
427 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

428 def floor_dict_from_xlsx(sheet_name, wb_name, start_row=5):
429 workbook = openpyxl.load_workbook(wb_name, data_only=True)
430 sheet = workbook[sheet_name]
431 floor_dict = {}
432 for row in sheet.iter_rows(min_row=start_row, min_col=1,

max_col=9, values_only=True):,!

433 name_temp = row[0]
434 if name_temp:
435 name = unicodedata.normalize("NFKD",

name_temp).encode("ascii", "ignore"),!

436 data = []
437 for i in range(1,3):
438 data.append(int(row[i])) # StartFloor - Endfloor



Appendix C: Python Scripts C-53

439 data.append(float(row[3])) # Thickness
440 mat_temp = row[4] # Material
441 mat = unicodedata.normalize("NFKD",

mat_temp).encode("ascii", "ignore"),!

442 data.append(mat)
443 data.append(int(row[5])) # Include Outer Beams
444 data.append(int(row[6])) # Include connector segments
445 if data[-1] == 1:
446 data.append(float(row[7])) # Average width of floor

elements,!

447 else:
448 data.append(None)
449

450 try:
451 mat_dir = unicodedata.normalize("NFKD",

row[8]).encode("ascii", "ignore"),!

452 except:
453 mat_dir = None
454 data.append(mat_dir)
455 floor_dict[name] = data
456 return floor_dict
457

458

459 # --------------------- Shafts --------
460 # This function creates a dictionary containg information about the

shafts.,!

461 # REQUIRED ARGUMENTS:
462 # sheet_name - The name of the excel sheet containing the shaft

data.,!

463 # wb_name - The path/name of the excel file.
464 # OPTIONAL ARGUMENTS:
465 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

466 def shaft_dict_from_xlsx(sheet_name, wb_name, start_row=5):
467 workbook = openpyxl.load_workbook(wb_name, data_only=True)
468 sheet = workbook[sheet_name]
469 shaft_dict = {}
470 for row in sheet.iter_rows(min_row=start_row, min_col=1,

max_col=10, values_only=True):,!

471 name_temp = row[0]
472 if name_temp:
473 name = unicodedata.normalize("NFKD",

name_temp).encode("ascii", "ignore"),!

474 sub_dict = {}



C-54 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

475 sub_dict['Connect To Building'] = int(row[1])
476 start_coord = []
477 for i in range(2,4):
478 start_coord.append(float(row[i]))
479 sub_dict['Start Coordinate'] = start_coord
480 end_coord = []
481 for i in range(4,6):
482 end_coord.append(float(row[i]))
483 sub_dict['End Coordinate'] = end_coord
484 sub_dict['Start Level'] = int(row[6])
485 sub_dict['End Level'] = int(row[7])
486 try:
487 sub_dict['End Level Offset'] = float(row[8])
488 except:
489 sub_dict['End Level Offset'] = 0
490

491 if row[9] == None:
492 sub_dict['Remove Wall'] = 0
493 else:
494 sub_dict['Remove Wall'] = int(row[9])
495 shaft_dict[name] = sub_dict
496 return shaft_dict
497

498

499 # --------------------- Mesh --------
500 # This function creates a dictionary containg information about the

mesh.,!

501 # REQUIRED ARGUMENTS:
502 # sheet_name - The name of the excel sheet containing the mesh data.
503 # wb_name - The path/name of the excel file.
504 # OPTIONAL ARGUMENTS:
505 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

506 # end_row - The final row containg mesh input.
507 def mesh_dict_from_xlsx(sheet_name, wb_name, start_row=5,

end_row=8):,!

508 workbook = openpyxl.load_workbook(wb_name, data_only=True)
509 sheet = workbook[sheet_name]
510 mesh_dict = {}
511 for row in sheet.iter_rows(min_row=start_row, max_row=end_row,

min_col=1, max_col=3, values_only=True):,!

512 name_temp = row[0]
513 if name_temp:



Appendix C: Python Scripts C-55

514 name = unicodedata.normalize("NFKD",
name_temp).encode("ascii", "ignore"),!

515 size = float(row[1])
516 elType_temp = row[2]
517 elType = unicodedata.normalize("NFKD",

elType_temp).encode("ascii", "ignore"),!

518 mesh_dict[name]=[size, elType]
519 return mesh_dict
520

521

522 # --------------------- Steps --------
523 # This function creates analysis steps based on input in Excel file.
524 # REQUIRED ARGUMENTS:
525 # sheet_name - The name of the excel sheet containing the step data.
526 # wb_name - The path/name of the excel file.
527 # OPTIONAL ARGUMENTS:
528 # start_row - The first row containing user specified input.

(Excel(1) indexing),!

529 # end_row - The final row containg mesh input.
530 def steps_from_xlsx(sheet_name, wb_name, start_row=12, end_row=16):
531 workbook = openpyxl.load_workbook(wb_name, data_only=True)
532 sheet = workbook[sheet_name]
533 prev_step_name = 'Initial'
534 for row in sheet.iter_rows(min_row=start_row, max_row=end_row,

values_only=True):,!

535 type = unicodedata.normalize("NFKD",
row[0]).encode("ascii", "ignore"),!

536 inc_bool = bool(row[1])
537 try:
538 step_desc = unicodedata.normalize("NFKD",

row[6]).encode("ascii", "ignore"),!

539 except:
540 step_desc = ''
541 if inc_bool:
542 if type.lower() == 'static':
543 create_static_step(name='StaticStep',

prevStep=prev_step_name, desc=step_desc),!

544 prev_step_name = 'StaticStep'
545 elif type.lower() == 'frequency':
546 number_of_modes = int(row[2])
547 try:
548 sim_bool = bool(row[5])
549 except:
550 sim_bool = False



C-56 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

551 create_freq_step(name='FrequencyStep',
nModes=number_of_modes,
prevStep=prev_step_name, desc=step_desc,
SIMBased=sim_bool)

,!

,!

,!

552 prev_step_name = 'FrequencyStep'
553 elif type.lower() == 'free vibration':
554 time_step = float(row[3])
555 dur = float(row[4])
556 create_modal_dyn_step(name='FreeVibrationStep',

prevStep=prev_step_name, desc=step_desc,
period=dur, stepSize=time_step)

,!

,!

557 prev_step_name = 'FreeVibrationStep'
558 elif type.lower() == 'modal dynamics':
559 time_step = float(row[3])
560 dur = float(row[4])
561 create_modal_dyn_step(name='ModalDynamicsStep',

prevStep=prev_step_name, desc=step_desc,
period=dur, stepSize=time_step)

,!

,!

562 prev_step_name = 'ModalDynamicsStep'
563 elif type.lower() == 'static (ec wind)':
564 create_static_step(name='Static_Wind_Eurocode',

prevStep=prev_step_name, desc=step_desc),!

565 prev_step_name = 'Static_Wind_Eurocode'
566 else:
567 print('Step type "' +type+ '" not defined in Python

Script. Create it directly in Abaqus Cae or
modify script...')

,!

,!

568

569

570 # --------------------- Job --------
571 # This function creates and runs Abaqus job based on input in Excel

file.,!

572 # Returns a boolean (True if job is set to run automatically)
573 # REQUIRED ARGUMENTS:
574 # sheet_name - The name of the excel sheet containing the job data.
575 # wb_name - The path/name of the excel file.
576 # OPTIONAL ARGUMENTS:
577 # row_nr - The row containing user specified input. (Excel(1)

indexing),!

578 def job_from_xlsx(sheet_name, wb_name, row_nr=21):
579 workbook = openpyxl.load_workbook(wb_name, data_only=True)
580 sheet = workbook[sheet_name]
581 data_row = sheet[row_nr]
582 data_row = [c.value for c in data_row]



Appendix C: Python Scripts C-57

583 name_temp = data_row[0]
584 name = unicodedata.normalize("NFKD", name_temp).encode("ascii",

"ignore"),!

585 create_bool = bool(data_row[1])
586 if create_bool:
587 run_bool = bool(data_row[2])
588 cpu_int = int(data_row[3])
589 desc_temp = data_row[4]
590 try:
591 description = unicodedata.normalize("NFKD",

desc_temp).encode("ascii", "ignore"),!

592 except:
593 description = ''
594 create_and_run_job(jobName=name, run=run_bool,

nCpu=cpu_int, desc=description),!

595 return run_bool
596

597

598 # --------------------- Job from Excel except name--------
599 # This function creates and runs Abaqus job based on input in Excel

file.,!

600 # REQUIRED ARGUMENTS:
601 # sheet_name - The name of the excel sheet containing the job data.
602 # wb_name - The path/name of the excel file.
603 # jobName - name of job.
604 # OPTIONAL ARGUMENTS:
605 # row_nr - The row containing user specified input. (Excel(1)

indexing),!

606 def job_from_xlsx_except_name(sheet_name, wb_name, jobName,
row_nr=18):,!

607 workbook = openpyxl.load_workbook(wb_name, data_only=True)
608 sheet = workbook[sheet_name]
609 data_row = sheet[row_nr]
610 data_row = [c.value for c in data_row]
611 name_temp = data_row[0]
612 name = jobName
613 create_bool = bool(data_row[1])
614 if create_bool:
615 run_bool = bool(data_row[2])
616 cpu_int = int(data_row[3])
617 desc_temp = data_row[4]
618 try:
619 description = unicodedata.normalize("NFKD",

desc_temp).encode("ascii", "ignore"),!



C-58 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

620 except:
621 description = ''
622 create_and_run_job(jobName=name, run=run_bool,

nCpu=cpu_int, desc=description),!

623

624

625 # --------------------- Shell Connector dictionary from Excel
--------,!

626 ## This function creates a dictionary containing information on
connector-zones,!

627 ## shell type members
628 def create_shell_connector_dict_from_xlsx(sheet_name, wb_name,

start_row=6):,!

629 workbook = openpyxl.load_workbook(wb_name, data_only=True)
630 sheet = workbook[sheet_name]
631 connector_dict = {}
632 for row in sheet.iter_rows(min_row=start_row,

values_only=True):,!

633 key_temp = row[0]
634 sub_dict = {}
635 if key_temp:
636 key = unicodedata.normalize("NFKD",

key_temp).encode("ascii", "ignore"),!

637 section_temp = row[1:3]
638 section = [float(x) for x in section_temp]
639 material_temp = row[3]
640 material = unicodedata.normalize("NFKD",

material_temp).encode("ascii", "ignore"),!

641 section.append(material)
642 sub_dict['Section'] = section
643

644 damping = []
645 for i in range(4,8):
646 try:
647 damping.append(float(row[i]))
648 except:
649 damping.append(0)
650 sub_dict['Damping'] = damping
651 try:
652 sub_dict['ConnectTo'] =

unicodedata.normalize("NFKD",
row[8]).encode("ascii", "ignore")

,!

,!

653 except:
654 sub_dict['ConnectTo'] = 'NA'



Appendix C: Python Scripts C-59

655

656 connector_dict[key] = sub_dict
657 else:
658 continue
659 return connector_dict
660

661

662 # --------------------- Wind Parameters (Eurocode) --------
663 # This function creates a dictionary containing the input

parameters in the Wind-sheet of the input file.,!

664 def ec_wind_param_from_xlsx(sheet_name, wb_name):
665 workbook = openpyxl.load_workbook(wb_name, data_only=True)
666 sheet = workbook[sheet_name]
667 wind_dict = {}
668

669 wind_dict['WindDir'] = unicodedata.normalize("NFKD",
sheet['B4'].value).encode("ascii", "ignore"),!

670

671 wind_dict['LogDec_Struct'] = struct_param_wind(sheet[8])
672 wind_dict['LogDec_Aero'] = struct_param_wind(sheet[9])
673 wind_dict['NatFreq'] = struct_param_wind(sheet[10])
674 wind_dict['ModeExponent'] = struct_param_wind(sheet[11])
675 wind_dict['r'] = float(sheet['B12'].value)
676

677 wind_dict['TerrainCat'] = int(sheet['B16'].value)
678

679 wind_dict['v_b0'] = float(sheet['B20'].value)
680

681 wind_dict['ReturnPeriod_Load'] = float(sheet['B24'].value)
682 wind_dict['ReturnPeriod_Acc'] = float(sheet['B25'].value)
683

684

685 for row in sheet.iter_rows(min_row=29, max_row=33,
values_only=True):,!

686 key = unicodedata.normalize("NFKD", row[0]).encode("ascii",
"ignore"),!

687 wind_dict[key] = float(row[1])
688

689 wind_dict['SampleHeigth_Acc'] = float(sheet['B37'].value)
690 return wind_dict
691

692 # This function reades the input of a structural parameter row of
the wind-sheet.,!

693 def struct_param_wind(row):



C-60 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

694 if unicodedata.normalize("NFKD", row[2].value).encode("ascii",
"ignore") == 'Abaqus Based':,!

695 return 'Abaqus'
696 elif unicodedata.normalize("NFKD",

row[2].value).encode("ascii", "ignore") == 'Eurocode':,!

697 return 'Eurocode'
698 else:
699 return float(row[1].value)
700

701

702

703 # ---------------------- Add To Frame ------------
704 # This function creates a dict containing the information provided

in the "Add to frame" sheet of the excel file.,!

705 def add_to_frame_from_xlsx(sheet_name, wb_name, start_row=7,
end_row=132):,!

706 workbook = openpyxl.load_workbook(wb_name, data_only=True)
707 sheet = workbook[sheet_name]
708 add_placement_dict = {}
709 add_section_dict = {}
710 add_orientation_dict = {}
711 add_include_conn_dict = {}
712 add_connector_dict = {}
713 for row in sheet.iter_rows(min_row=start_row, max_row=end_row,

min_col=1, max_col=28, values_only=True):,!

714 key_temp = row[0]
715 sub_placement_dict = {}
716 sub_connector_dict = {}
717 if key_temp:
718 key = unicodedata.normalize("NFKD",

key_temp).encode("ascii", "ignore"),!

719 startPt = (float(row[1]), float(row[2]), float(row[3]))
720 endPt = (float(row[4]), float(row[5]), float(row[6]))
721 sub_placement_dict['Start Point'] = startPt
722 sub_placement_dict['End Point'] = endPt
723

724 width = float(row[7])
725 height = float(row[8])
726 material = unicodedata.normalize("NFKD",

row[9]).encode("ascii", "ignore"),!

727 section = [width, height, material]
728

729 orient_str = unicodedata.normalize("NFKD",
row[10]).encode("ascii", "ignore"),!



Appendix C: Python Scripts C-61

730 orient_vect = orient_str.split(';')
731 orient_vect = [comp.strip() for comp in orient_vect]
732 orient_vect = (float(comp) for comp in orient_vect)
733 orient_vect = tuple(orient_vect)
734

735 include_conn = int(row[15])
736

737 if include_conn:
738 sub_connector_dict = {}
739 segLen = float(row[16])
740 fractions_temp = row[17:21]
741 fractions = [float(x) for x in fractions_temp] #

[Area, I11, I22, J],!

742 vals_temp = row[21:25]
743 vals = [float(x) for x in vals_temp] # [Area, I11,

I22, J],!

744 damping_temp = row[25:28]
745 damping = [0]*len(damping_temp)
746 for i in range(len(damping_temp)):
747 try:
748 damping[i] = float(damping_temp[i])

#[Alpha, Beta, Composite],!

749 except:
750 damping[i] = 0
751 sub_connector_dict = [segLen, fractions, vals,

damping],!

752 add_connector_dict[key] = sub_connector_dict
753

754 add_placement_dict[key] = sub_placement_dict
755 add_section_dict[key] = section
756 add_orientation_dict[key] = orient_vect
757 add_include_conn_dict[key] = include_conn
758

759 else:
760 continue
761 add_dicts = {'Placement': add_placement_dict, 'Section':

add_section_dict,,!

762 'Orientation': add_orientation_dict,
'IncludeConn': add_include_conn_dict,,!

763 'Connector': add_connector_dict}
764 return add_dicts
765

766

767 # ---------------------- Add To Frame ------------



C-62 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

768 # This function creates a dict containing the information provided
in the "floor-to-shaft conections" sheet of the excel file.,!

769 def floor_shaft_connection_from_xlsx(sheet_name, wb_name,
start_row=5, end_row=14):,!

770 workbook = openpyxl.load_workbook(wb_name, data_only=True)
771 floor_to_shaft_dict = {}
772 sheet = workbook[sheet_name]
773 for row in sheet.iter_rows(min_row=start_row, max_row=end_row,

min_col=1, max_col=7, values_only=True):,!

774 key_temp = row[0]
775 if key_temp:
776 sub_dict = {}
777 key = unicodedata.normalize("NFKD",

key_temp).encode("ascii", "ignore"),!

778 section_temp = row[1:3]
779 section = [float(x) for x in section_temp]
780 material_temp = row[3]
781 material = unicodedata.normalize("NFKD",

material_temp).encode("ascii", "ignore"),!

782 section.append(material)
783 damping = []
784 for i in range(4,8):
785 try:
786 damping.append(float(row[i]))
787 except:
788 damping.append(0)
789

790 sub_dict['Section'] = section
791 sub_dict['Damping'] = damping
792 floor_to_shaft_dict[key] = sub_dict
793 return floor_to_shaft_dict
794

795

796 # ---------------------- Add To Frame ------------
797 # This function adds the damping specified in the "Step Level

Damping" sheet of excel to the respective steps.,!

798 def step_damping_from_xlsx(sheet_name, wb_name):
799 workbook = openpyxl.load_workbook(wb_name, data_only=True)
800 floor_to_shaft_dict = {}
801 sheet = workbook[sheet_name]
802 m = get_model()
803 startRowFreeVib = 6
804 endRowFreeVib = 17
805 startRowModalDyn = 23



Appendix C: Python Scripts C-63

806 endRowModalDyn = 34
807 try:
808 freeVibStep = m.steps['FreeVibrationStep']
809 freeVibStepIsCreated = 1
810 except:
811 freeVibStepIsCreated = 0
812 try:
813 modalDynStep = m.steps['ModalDynamicsStep']
814 modalDynStepIsCreated = 1
815 except:
816 modalDynStepIsCreated = 0
817

818 ## Free Vibration Step - Direct Modal
819 directDampingList = []
820 for row in sheet.iter_rows(min_row=startRowFreeVib,

max_row=endRowFreeVib, min_col=1, max_col=3,
values_only=True):

,!

,!

821 if row[0]:
822 startMode, endMode = [int(x) for x in row[:2]]
823 critDampingFactor = float(row[2])
824 directDampingList.append((startMode,endMode,critDamping c

Factor)),!

825 if len(directDampingList)>0 and freeVibStepIsCreated:
826 directDampingTup = tuple(directDampingList)
827 freeVibStep.setValues(directDamping=directDampingTup)
828

829 ## Free Vibration Step - Composite Modal
830 compositeDampingList = []
831 for row in sheet.iter_rows(min_row=startRowFreeVib,

max_row=endRowFreeVib, min_col=5, max_col=6,
values_only=True):

,!

,!

832 if row[0]:
833 startMode, endMode = [int(x) for x in row[:2]]
834 compositeDampingList.append((startMode,endMode))
835 if len(compositeDampingList)>0 and freeVibStepIsCreated:
836 compositeDampingTup = tuple(compositeDampingList)
837 freeVibStep.setValues(compositeDamping=compositeDampingTup)
838

839 ## Free Vibration Step - Rayleigh
840 rayleighDampingList = []
841 for row in sheet.iter_rows(min_row=startRowFreeVib,

max_row=endRowFreeVib, min_col=8, max_col=11,
values_only=True):

,!

,!

842 if row[0]:



C-64 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

843 startMode, endMode = [int(x) for x in row[:2]]
844 a, b = [float(x) for x in row[2:]]
845 rayleighDampingList.append((startMode,endMode,a,b))
846 if len(rayleighDampingList)>0 and freeVibStepIsCreated:
847 rayleighDampingTup = tuple(rayleighDampingList)
848 freeVibStep.setValues(rayleighDamping=rayleighDampingTup)
849

850 ## Modal Dynamics Step - Direct Modal
851 directDampingList = []
852 for row in sheet.iter_rows(min_row=startRowModalDyn,

max_row=endRowModalDyn, min_col=1, max_col=3,
values_only=True):

,!

,!

853 if row[0]:
854 startMode, endMode = [int(x) for x in row[:2]]
855 critDampingFactor = float(row[2])
856 directDampingList.append((startMode,endMode,critDamping c

Factor)),!

857 if len(directDampingList)>0 and modalDynStepIsCreated:
858 directDampingTup = tuple(directDampingList)
859 modalDynStep.setValues(directDamping=directDampingTup)
860

861 ## Modal Dynamics Step - Composite Modal
862 compositeDampingList = []
863 for row in sheet.iter_rows(min_row=startRowModalDyn,

max_row=endRowModalDyn, min_col=5, max_col=6,
values_only=True):

,!

,!

864 if row[0]:
865 startMode, endMode = [int(x) for x in row[:2]]
866 compositeDampingList.append((startMode,endMode))
867 if len(compositeDampingList)>0 and modalDynStepIsCreated:
868 compositeDampingTup = tuple(compositeDampingList)
869 modalDynStep.setValues(compositeDamping=compositeDampingTup)
870

871 ## Modal Dynamics Step - Rayleigh
872 rayleighDampingList = []
873 for row in sheet.iter_rows(min_row=startRowModalDyn,

max_row=endRowModalDyn, min_col=8, max_col=11,
values_only=True):

,!

,!

874 if row[0]:
875 startMode, endMode = [int(x) for x in row[:2]]
876 a, b = [float(x) for x in row[2:]]
877 rayleighDampingList.append((startMode,endMode,a,b))
878 if len(rayleighDampingList)>0 and modalDynStepIsCreated:
879 rayleighDampingTup = tuple(rayleighDampingList)



Appendix C: Python Scripts C-65

880 modalDynStep.setValues(rayleighDamping=rayleighDampingTup)



C-66 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

C.6 TTB_general.py

This file contains basic functions for e.g. initializing the model and creating parts.

1 # -------------- Input folder path -------------
2 # Folder where all the scripts are located:
3 scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
4

5 # -------------- Import Packages -------------
6 from abaqus import *
7 from abaqusConstants import *
8 import regionToolset
9 import numpy as np

10 import math
11 import sketch
12 import part
13 import material
14 import section
15 import assembly
16 import mesh
17 import job
18 import odbAccess
19 import interaction
20 import load
21 import sys
22 import datetime
23 import step
24

25 sys.path.append(scriptsFolder)
26

27 from TTB_general import *
28

29 # -------------- Rename model -------------
30 ## This function takes a new name as the input and renames the

model.,!

31 ## The new name of the model is also returned.
32 ## Max one model in database is assumed.
33 def change_model_name(new_name):
34 oldName = mdb.models.keys()[0]
35 mdb.models.changeKey(fromName=oldName, toName=new_name)
36 return new_name
37

38



Appendix C: Python Scripts C-67

39 # -------------- Return model -------------
40 ## This function takes no input and returns the model.
41 ## Max one model in database is assumed.
42 def get_model():
43 modelKey = mdb.models.keys()[0]
44 model = mdb.models[modelKey]
45 return model
46

47

48 # -------------- Create and return part -------------
49 ## This function creates and returns part.
50 ## Input are the name of the part and dimensions (optional, default

= 3D),!

51 ## Max one model in database is assumed.
52 def create_part(part_name,dimensions=3):
53 model = get_model()
54 if dimensions == 2:
55 dim=TWO_D_PLANAR
56 elif dimensions == 3:
57 dim=THREE_D
58 pt = model.Part(name=part_name, dimensionality=dim,

type=DEFORMABLE_BODY),!

59 return pt
60

61

62 # -------------- Get Assembly -------------
63 # This function takes no input and returns the assembly.
64 # Max one model in database is assumed.
65 def get_assembly():
66 model = get_model()
67 assembly = model.rootAssembly
68 return assembly
69

70

71 # -------------- Create and return instance -------------
72 # This function creates a instance from a part. The instance gets

the same name as the part.,!

73 # REQUIRED ARGUMENTS:
74 # partToInstance - The part to be instanced.
75 # OPTIONAL ARGUMENTS:
76 # dependentMeshing - (ON/OFF) Controls if meshing should be

dependent/independent,!

77 def create_instance(partToInstance, dependentMeshing=ON):
78 a = get_assembly()



C-68 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

79 instanceName = partToInstance.name
80 inst = a.Instance(name=instanceName, part=partToInstance,

dependent=dependentMeshing),!

81 return inst
82

83

84 # -------------- Regenerate assembly -------------
85 # This function updates the assembly/instances.
86 def assembly_regenerate():
87 a = get_assembly()
88 a.regenerate()
89

90

91 # ------------- Check if one value is close to equal to another
---------------,!

92 def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
93 return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
94

95

96 # ------------- Close all open Odbs ---------------
97 def close_odbs():
98 all_odb = session.odbs
99 keysLst = all_odb.keys()

100 for k in keysLst:
101 odb = all_odb[k]
102 odb.close()
103

104

105 # ------------- Get value from lst who is closest to K
---------------,!

106 def closest(lst, K):
107 return lst[min(range(len(lst)), key = lambda i: abs(lst[i]-K))]
108

109

110 # ------------- Get current date and time ---------------
111 def get_date_and_time():
112 d = datetime.datetime.now()
113 timestr = d.strftime('%H:%M:%S')
114 datestr = d.strftime('%d. %b %Y')
115 return datestr+' '+timestr



Appendix C: Python Scripts C-69

C.7 TTB_geometry.py

This file contains all the functions related to generating the geometry of the build-
ing. Beams, columns, bracing, walls, floors etc. are created using the functions
from this script.

1 # -------------- Input folder path -------------
2 # Folder where all the scripts are located:
3 scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
4

5 # -------------- Import Packages -------------
6 from abaqus import *
7 from abaqusConstants import *
8 import regionToolset
9 import numpy as np

10 import math
11 import sketch
12 import part
13 import material
14 import section
15 import assembly
16 import mesh
17 import job
18 import odbAccess
19 import interaction
20 import load
21 import sys
22

23 sys.path.append(scriptsFolder)
24

25 from TTB_general import *
26

27 # -------------- Create planes -------------
28 # This function creates parallell planes to either the XY-, XZ-,

and YZ-planes and places it with a userspecified offset from
the placement of the prinipal plane.

,!

,!

29 # Input is what plane you want to create (XYPLANE, XZPLANE or
YZPLANE), the planes offset value from origin, and what
part_or_instance the datum plane is related to.

,!

,!

30 # Returns the created plane.
31 def create_principal_plane(principalPlane, offset,

part_or_instance):,!



C-70 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

32 part_or_instance.DatumPlaneByPrincipalPlane(principalPlane,
offset),!

33 keysLst = part_or_instance.datums.keys()
34 keysLst.sort()
35 datumPlane = part_or_instance.datums[keysLst[-1]]
36 return datumPlane
37

38

39 # -------------- Create principal axes -------------
40 ## This function creates a datum axes of one of the principal axes

(X,Y,Z).,!

41 ## principalAxis input should be either XAXIS, YAXIS or ZAXIS.
42 ## Returns the created axis.
43 def create_principal_axis(principalAxis,part_or_instance):
44 datumAxis =

part_or_instance.DatumAxisByPrincipalAxis(principalAxis),!

45 keysLst = part_or_instance.datums.keys()
46 keysLst.sort()
47 datumAxis = part_or_instance.datums[keysLst[-1]]
48 return datumAxis
49

50 # -------------- Get coordinates -------------
51 ## This functions takes the nth, mth an kth axis in X,Y,Z

directions and lists containing the beam/col lengths in each
direction.

,!

,!

52 ## And returns a tuple with the coordinate of this point
53 def get_coordinates(xDiv, yDiv, zDiv, xLengths, yLengths, zLengths):
54 xCoord = sum(xLengths[:xDiv])
55 yCoord = sum(yLengths[:yDiv])
56 zCoord = sum(zLengths[:zDiv])
57 return (xCoord, yCoord, zCoord)
58

59 ## This function takes the nth axis and member length in one
direction and returns the position along that axis,!

60 def get_coordinate(nDiv, lengths):
61 coord = sum(lengths[:nDiv])
62 return coord
63

64 # -------------- Create Shell -------------
65 ## Input plane as string ('xy'/'xz'/'yz'), points as tuple with 2

coordinates in the plane, the offset from the zero plane, the
part to host the shells.

,!

,!

66 def create_shell(inPlane, pt1, pt2, planePosition, shellPart):
67 model = get_model()



Appendix C: Python Scripts C-71

68 if inPlane.lower() == 'xy':
69 shellPlane = create_principal_plane(XYPLANE, planePosition,

shellPart),!

70 shellUpEdge = create_principal_axis(YAXIS,shellPart)
71 shellTransform =

shellPart.MakeSketchTransform(sketchPlane=shellPlane,
origin=(0,0,planePosition))

,!

,!

72 shellSketch = model.ConstrainedSketch(name='shellSketch',
sheetSize=20, transform=shellTransform),!

73 shellSketch.rectangle(point1=pt1, point2=pt2)
74 shellPart.Shell(sketch=shellSketch, sketchPlane=shellPlane,

sketchPlaneSide=SIDE1, sketchUpEdge=shellUpEdge),!

75

76 elif inPlane.lower() == 'xz':
77 shellPlane = create_principal_plane(XZPLANE, planePosition,

shellPart),!

78 shellUpEdge = create_principal_axis(ZAXIS,shellPart)
79 shellTransform =

shellPart.MakeSketchTransform(sketchPlane=shellPlane,
origin=(0,planePosition,0), sketchPlaneSide= SIDE2,
sketchOrientation=LEFT, sketchUpEdge=shellUpEdge)

,!

,!

,!

80 shellSketch = model.ConstrainedSketch(name='shellSketch',
sheetSize=20, transform=shellTransform),!

81 shellSketch.rectangle(point1=pt1, point2=pt2)
82

83 shellPart.Shell(sketch=shellSketch, sketchPlane=shellPlane,
sketchPlaneSide=SIDE2, sketchUpEdge=shellUpEdge),!

84

85 elif inPlane.lower() == 'yz':
86 shellPlane = create_principal_plane(YZPLANE, planePosition,

shellPart),!

87 shellUpEdge = create_principal_axis(YAXIS,shellPart)
88 shellTransform =

shellPart.MakeSketchTransform(sketchPlane=shellPlane,
origin=(planePosition,0,0), sketchPlaneSide = SIDE2,
sketchOrientation=LEFT, sketchUpEdge=shellUpEdge)

,!

,!

,!

89 shellSketch = model.ConstrainedSketch(name='shellSketch',
sheetSize=20, transform=shellTransform),!

90 shellSketch.rectangle(point1=pt1, point2=pt2)
91

92 shellPart.Shell(sketch=shellSketch, sketchPlane=shellPlane,
sketchPlaneSide=SIDE2, sketchUpEdge=shellUpEdge,
sketchOrientation = LEFT)

,!

,!

93



C-72 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

94 else:
95 print('ERROR: Wrong plane setting, shell not created...')
96

97 # -------------- Create Floor -------------
98 # This function creates a floor at the specified level.
99 # REQUIRED ARGUMENTS:

100 # floorPart - The part set to host the floors
101 # grid - List/matrix imported from excel containing coordinates of

the axis system,!

102 # level - An integer specifing the level of the floor (0-indexed)
103 def create_floor(floorPart, grid, level):
104 x_coord_matrix, y_coord_lst, z_coord_lst = grid
105 y_coord = y_coord_lst[level]
106 for i in range(1,len(z_coord_lst)):
107 x1 = x_coord_matrix[i-1][0]
108 z1 = z_coord_lst[i-1]
109 x2 = x_coord_matrix[i][-1]
110 z2 = z_coord_lst[i]
111 create_shell('xz', (x1,z1), (x2,z2), y_coord, floorPart)
112

113 # -------------- Create Walls -------------
114 # This function creates walls between two levels.
115 # REQUIRED ARGUMENTS:
116 # wallPart - The part set to host the walls
117 # grid - List/matrix imported from excel containing coordinates of

the axis system,!

118 # start_level - An integer specifing the lower level of the walls
(0-indexed),!

119 # end_level - An integer specifing the top level of the walls
(0-indexed),!

120 def create_walls(wallPart, start_level, end_level, grid):
121 model = get_model()
122 x_coord_matrix, y_coord_lst, z_coord_lst = grid
123 y1 = y_coord_lst[start_level]
124 y2 = y_coord_lst[end_level]
125 plane = create_principal_plane(XZPLANE, y1, wallPart)
126 upEdge = create_principal_axis(ZAXIS, wallPart)
127 sketchTransform =

wallPart.MakeSketchTransform(sketchPlane=plane,
origin=(0,y1,0), sketchOrientation=LEFT,
sketchPlaneSide=SIDE1, sketchUpEdge=upEdge)

,!

,!

,!

128 wallSketch = model.ConstrainedSketch(name='wallSketch',
sheetSize=20, transform=sketchTransform),!

129 z_iter = list(range(1,len(z_coord_lst)))



Appendix C: Python Scripts C-73

130 for i in z_iter:
131 x1 = x_coord_matrix[i-1][0]
132 z1 = z_coord_lst[i-1]
133 x2 = x_coord_matrix[i][0]
134 z2 = z_coord_lst[i]
135 wallSketch.Line(point1=(-x1,z1), point2=(-x2,z2))
136

137 x1 = x_coord_matrix[-1][0]
138 z1 = z_coord_lst[-1]
139 x2 = x_coord_matrix[-1][-1]
140 z2 = z_coord_lst[-1]
141 wallSketch.Line(point1=(-x1,z1), point2=(-x2,z2))
142

143 z_iter.reverse()
144 for i in z_iter:
145 x1 = x_coord_matrix[i-1][-1]
146 z1 = z_coord_lst[i-1]
147 x2 = x_coord_matrix[i][-1]
148 z2 = z_coord_lst[i]
149 wallSketch.Line(point1=(-x1,z1), point2=(-x2,z2))
150

151 x1 = x_coord_matrix[0][0]
152 z1 = z_coord_lst[0]
153 x2 = x_coord_matrix[0][-1]
154 z2 = z_coord_lst[0]
155 wallSketch.Line(point1=(-x1,z1), point2=(-x2,z2))
156

157 wallPart.ShellExtrude(sketchPlane=plane, sketchPlaneSide=SIDE1,
sketchUpEdge=upEdge, sketch=wallSketch, depth=y2-y1,
sketchOrientation=LEFT)

,!

,!

158

159

160 # --------- Create shell by rectangular extrusion ----------
161 # This function create a shell from a rectangular extrosion.
162 # REQUIRED ARGUMENTS:
163 # drawingPlane - plane used to draw extrusion shape ('xy'/'xz'/'yz')
164 # pt1, pt2 - tuples of coordinates in drawingPlane defining

rectangle.,!

165 # startPlaneCoord - start position of extrusion
166 # endPlaneCoord - end position of extrusion
167 def create_rectangular_shell_extrude(drawingPlane, pt1, pt2,

startPlaneCoord, shellPart, endPlaneCoord):,!

168 depth = abs(endPlaneCoord - startPlaneCoord)
169 model = get_model()



C-74 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

170 if drawingPlane.lower() == 'xy':
171 plane = create_principal_plane(XYPLANE, startPlaneCoord,

shellPart),!

172 upEdge = create_principal_axis(YAXIS, shellPart)
173 sketchTransform =

shellPart.MakeSketchTransform(sketchPlane=plane,
origin=(0,0,startPlaneCoord))

,!

,!

174 shellSketch = model.ConstrainedSketch(name='shellSketch',
sheetSize=20, transform=sketchTransform),!

175 shellSketch.rectangle(point1=pt1, point2=pt2)
176 shellPart.ShellExtrude(sketchPlane=plane,

sketchPlaneSide=SIDE1, sketchUpEdge=upEdge,
sketch=shellSketch, depth=depth, sketchOrientation=LEFT)

,!

,!

177 if drawingPlane.lower() =='xz':
178 plane = create_principal_plane(XZPLANE, startPlaneCoord,

shellPart),!

179 upEdge = create_principal_axis(ZAXIS, shellPart)
180 sketchTransform =

shellPart.MakeSketchTransform(sketchPlane=plane,
origin=(0,startPlaneCoord,0), sketchOrientation=LEFT,
sketchPlaneSide=SIDE1, sketchUpEdge=upEdge)

,!

,!

,!

181 shellSketch = model.ConstrainedSketch(name='shellSketch',
sheetSize=20, transform=sketchTransform),!

182 shellSketch.rectangle(point1=(-pt1[0],pt1[1]),
point2=(-pt2[0],pt2[1])),!

183 shellPart.ShellExtrude(sketchPlane=plane,
sketchPlaneSide=SIDE1, sketchUpEdge=upEdge,
sketch=shellSketch, depth=depth, sketchOrientation=LEFT)

,!

,!

184 if drawingPlane.lower() == 'yz':
185 plane = create_principal_plane(YZPLANE, startPlaneCoord,

shellPart),!

186 upEdge = create_principal_axis(YAXIS, shellPart)
187 sketchTransform =

shellPart.MakeSketchTransform(sketchPlane=plane,
origin=(0,0,startPlaneCoord), sketchOrientation=LEFT,
sketchPlaneSide=SIDE1, sketchUpEdge=upEdge)

,!

,!

,!

188 shellSketch = model.ConstrainedSketch(name='shellSketch',
sheetSize=20, transform=sketchTransform),!

189 shellSketch.rectangle(point1=(-pt1[0],pt1[1]),
point2=(-pt2[0],pt2[1])),!

190 shellPart.ShellExtrude(sketchPlane=plane,
sketchPlaneSide=SIDE1, sketchUpEdge=upEdge,
sketch=shellSketch, depth=depth, sketchOrientation=LEFT)

,!

,!

191 del shellSketch



Appendix C: Python Scripts C-75

192

193 # -------------- Partition Shells -------------
194 ## This function partitions all faces in a given part by creating

planes according to the grid.,!

195 ## REQUIRED ARGUMENTS:
196 ## shellPart - The part hosting the shells to be partitioned.
197 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

198 ## cuttingPlaneOrientation - The orientation of the cutting plane.
(XYPLANE, XZPLANE or YZPLANE),!

199 def partition_shells(shellPart, grid, cuttingPlaneOrientation,
selection_tol=0.1):,!

200 x_coord_matrix, y_coord_lst, z_coord_lst = grid
201 if cuttingPlaneOrientation == XYPLANE:
202 for i in range(1, len(z_coord_lst)-1):
203 planePosition = z_coord_lst[i]
204 dp = create_principal_plane(cuttingPlaneOrientation,

planePosition, shellPart),!

205 f = shellPart.faces
206 try:
207 shellPart.PartitionFaceByDatumPlane(faces=f,

datumPlane=dp),!

208 except:
209 pass
210

211 if cuttingPlaneOrientation == XZPLANE:
212 for i in range(1, len(y_coord_lst)-1):
213 planePosition = y_coord_lst[i]
214 dp = create_principal_plane(cuttingPlaneOrientation,

planePosition, shellPart),!

215 f = shellPart.faces
216 try:
217 shellPart.PartitionFaceByDatumPlane(faces=f,

datumPlane=dp),!

218 except:
219 pass
220

221 if cuttingPlaneOrientation == YZPLANE:
222 for i in range(len(z_coord_lst)):
223 z = z_coord_lst[i]
224 for j in range(1, len(x_coord_matrix[i])-1):
225 planePosition = x_coord_matrix[i][j]



C-76 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

226 dp =
create_principal_plane(cuttingPlaneOrientation,
planePosition, shellPart)

,!

,!

227 f = shellPart.faces.getByBoundingBox(zMin=z-selecti c
on_tol,
zMax=z+selection_tol)

,!

,!

228 try:
229 shellPart.PartitionFaceByDatumPlane(faces=f,

datumPlane=dp),!

230 except:
231 pass
232

233 ## -------- Partition Shells at User Specified Plane --------
234 ## This function partitions a shell part or a set of a shell part

at a specified plane.,!

235 ## REQUIRED ARGUMENTS:
236 ## shellPart - the part hosting the shell to be partitioned
237 ## planeOrientation - The orientation of the cutting plane.

(XYPLANE, XZPLANE or YZPLANE),!

238 ## planePosition - The position of the cutting plane
239 ## OPTIONAL ARGUMENTS:
240 ## setName - name of the set the partition should be applied to.
241 ## If no input, partition is applied to entire part.
242 def partition_shells_specified(shellPart, planeOrientation,

planePosition, setName = None):,!

243 dp = create_principal_plane(planeOrientation, planePosition,
shellPart),!

244 if setName == None:
245 f = shellPart.faces
246 else:
247 f = shellPart.sets[setName].faces
248

249 try:
250 shellPart.PartitionFaceByDatumPlane(faces=f, datumPlane=dp)
251 except:
252 pass
253

254 # ----------- Create Connector Fields for Floors and Store Them as
A Set--------,!

255 ## This function creates partitions in the specified floors in
order to simulate element connections.,!

256 ## NOTE! There are only made partitions parallell to the span
direction of the floor elements, The floor elements are modeled
as continous in the span direction

,!

,!



Appendix C: Python Scripts C-77

257 ## REQUIRED ARGUMENTS:
258 ## floorPart - part osting the floors to be partitioned
259 ## floor_dict - dicitonary containing information about floor

sections,!

260 ## grid - List of lists containg the grid system (x,y and z
coordinates),!

261 def floor_connector_partition(floorPart, floor_dict,
shell_connector_dict, grid):,!

262 x_coord_matrix, y_coord_lst, z_coord_lst = grid
263 x_coord_lst = x_axes_coords(grid)
264 xWidth = abs(x_coord_lst[-1]-x_coord_lst[0])
265 for key in floor_dict.keys():
266 floor = floor_dict[key]
267 if floor[5] == 1:
268 connector = shell_connector_dict[key]
269 section = connector['Section']
270 connWidth = section[0]
271 approxElemWidth = floor[6]
272 numOfConn = int(xWidth/approxElemWidth)+1
273 elemWidth = xWidth/(numOfConn+1)
274 setName = key
275 xCoord = elemWidth
276 while xCoord < x_coord_lst[-1]-connWidth:
277 for offset in [-connWidth/2, connWidth/2]:
278 cuttingPlanePosition = xCoord + offset
279 cuttingPlaneOrientation = YZPLANE
280 partition_shells_specified(floorPart,

cuttingPlaneOrientation,
cuttingPlanePosition, setName)

,!

,!

281 xCoord += elemWidth
282

283 # ---------- Floor-to-shaft connector partition ------
284 ## This function creates partitions of floors in order to specify

properties at connection to shaft,!

285 ## REQUIRED ARGUMENTS:
286 ## floorPart - part hosting the floors to be partitioned
287 ## shaft_dict - dictionary containing information about shafts
288 ## floor_dict - dicitonary containing information about floor

sections,!

289 # floor_to_shaft_dict - dicitonary containing information about
floor to shaft connector,!

290 ## grid - List of lists containg the grid system (x,y and z
coordinates),!



C-78 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

291 def floor_shaft_partition(floorPart, floor_dict, shaft_dict,
floor_to_shaft_dict, grid):,!

292 model = get_model()
293 x_coord_matrix, y_coord_lst, z_coord_lst = grid
294 x_coord_lst = x_axes_coords(grid)
295 tol = 0.01
296 if floor_to_shaft_dict:
297 for floor_key in floor_to_shaft_dict.keys():
298 floor = floor_dict[floor_key]
299 floor_shaft_conn = floor_to_shaft_dict[floor_key]
300 startLevel_floor = floor[0]
301 endLevel_floor = floor[1]
302 connWidth = floor_shaft_conn['Section'][0]
303 for shaft_key in shaft_dict.keys():
304 shaft = shaft_dict[shaft_key]
305 if shaft['Connect To Building']:
306 startLevel_shaft = shaft['Start Level']
307 endLevel_shaft = shaft['End Level']
308 if startLevel_shaft < startLevel_floor:
309 startLevel = startLevel_floor
310 else:
311 startLevel = startLevel_shaft
312 if endLevel_shaft < endLevel_floor:
313 endLevel = endLevel_shaft
314 else:
315 endLevel = endLevel_floor
316 yStart = y_coord_lst[startLevel]-tol
317 yEnd = y_coord_lst[endLevel]+tol
318 if startLevel_shaft == 0:
319 yStart = yStart+tol
320

321 xzStart_shaft = shaft['Start Coordinate']
322 xzEnd_shaft = shaft['End Coordinate']
323

324 xzStart_connector =
(xzStart_shaft[0]-connWidth,
xzStart_shaft[1]-connWidth)

,!

,!

325 xzEnd_connector = (xzEnd_shaft[0]+connWidth,
xzEnd_shaft[1]+connWidth),!

326

327 cutFaces = floorPart.sets[floor_key].faces
328 shellPlane = create_principal_plane(XZPLANE,

yStart, floorPart),!



Appendix C: Python Scripts C-79

329 shellUpEdge =
create_principal_axis(ZAXIS,floorPart),!

330 partitionTransform = floorPart.MakeSketchTransf c
orm(sketchPlane=shellPlane,
origin=(0,yStart,0), sketchPlaneSide=
SIDE2, sketchOrientation=LEFT,
sketchUpEdge=shellUpEdge)

,!

,!

,!

,!

331 partitionSketch = model.ConstrainedSketch(name= c
'partitionSketch', sheetSize=20,
transform=partitionTransform)

,!

,!

332 partitionSketch.rectangle(point1=xzStart_connec c
tor,,!

333 point2=xzEnd_connecto c
r),!

334 floorPart.PartitionFaceBySketchDistance(faces=c c
utFaces, distance=yEnd-yStart,
sketchPlane=shellPlane,
sketchPlaneSide=SIDE2, sketchUpEdge=shellUp c
Edge,sketchOrientation=LEFT,
sketch=partitionSketch)

,!

,!

,!

,!

,!

335 del partitionSketch
336 else:
337 continue
338

339 # -------------- Create columns -------------
340 ## This function creates columns in the XY-plane at a given Z-axis
341 ## REQUIRED ARGUMENTS:
342 ## colPart - The part to host the created beams and columns.
343 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

344 ## z_axis_nr - The axis number of the created plane frame.
345 ## segmentLength - The length of the created connector segments
346 def create_columns(colPart, grid, z_axis_nr):
347 x_coord_matrix, y_coord_lst, z_coord_lst = grid
348 z = z_coord_lst[z_axis_nr]
349 x_coord_lst = x_coord_matrix[z_axis_nr]
350 colStartPts = []
351 colEndPts = []
352 for i in range(len(x_coord_lst)):
353 x = x_coord_lst[i]
354 for j in range(len(y_coord_lst)-1):
355 yStart = y_coord_lst[j]
356 yEnd = y_coord_lst[j+1]
357 colStartPts.append((x, yStart, z))



C-80 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

358 colEndPts.append((x, yEnd, z))
359 listOfColPtsTuples = []
360 for i in range(len(colStartPts)):
361 listOfColPtsTuples.append((colStartPts[i],colEndPts[i]))
362 tupleOfColPtsTuples = tuple(listOfColPtsTuples)
363 colPart.WirePolyLine(points=tupleOfColPtsTuples)
364

365 # -------------- Create beams for system without diagonals
--------------,!

366 # This functions creates beams in a specified plane, and is used
for planes without diagonals.,!

367 # REQUIRED ARGUMENTS:
368 # beamPlane - string specifying the plane the beas will be placed

in ('xy'/'yz'),!

369 # beamPart - specifying the part to host the beams
370 # grid - List of lists containg the grid system (x,y and z

coordinates),!

371 # axis_nr - the axis number specifying the placement of the beam
plane,!

372 # segmentLength - length connector segments
373 # OPTIONAL ARGUMENTS:
374 # beamLevels - integer or list of integer with level numbers

specifying at what levels,!

375 # the beams should be placed drawn
376 # Defulat input places beams at all levels, except

level 0.,!

377 def create_beams(beamPlane, beamPart, grid, axis_nr, segmentLength,
beamLevels='all'):,!

378 x_coord_matrix, y_coord_lst, z_coord_lst = grid
379 x_coord_lst = x_axes_coords(grid)
380 beamPts = []
381 beamStartPts = []
382 beamEndPts = []
383

384 if beamLevels == 'all':
385 beamLevels = []
386 for i in range(len(y_coord_lst)):
387 if i == 0:
388 continue
389 beamLevels.append(i)
390 if beamPlane.lower() == 'xy':
391 z = z_coord_lst[axis_nr]
392 for i in beamLevels:
393 y = y_coord_lst[i]



Appendix C: Python Scripts C-81

394 for j in range(len(x_coord_matrix[axis_nr])-1):
395 xStart = x_coord_matrix[axis_nr][j]
396 xStartSeg = xStart + segmentLength
397 xEnd = x_coord_matrix[axis_nr][j+1]
398 xEndSeg = xEnd - segmentLength
399 beamPts = [(xStart, y, z), (xStartSeg, y, z),

(xEndSeg, y, z), (xEnd, y, z)],!

400 for k in range(len(beamPts)-1):
401 beamStartPts.append(beamPts[k])
402 beamEndPts.append(beamPts[k+1])
403 if beamPlane.lower() == 'yz':
404 x = x_coord_lst[axis_nr]
405 for i in beamLevels:
406 if i == 0:
407 continue
408 y = y_coord_lst[i]
409 for j in range(len(z_coord_lst)-1):
410 zStart = z_coord_lst[j]
411 zStartSeg = zStart + segmentLength
412 zEnd = z_coord_lst[j+1]
413 zEndSeg = zEnd - segmentLength
414 beamPts = [(x, y, zStart), (x, y, zStartSeg), (x,

y, zEndSeg), (x, y, zEnd)],!

415 for k in range(len(beamPts)-1):
416 beamStartPts.append(beamPts[k])
417 beamEndPts.append(beamPts[k+1])
418 listOfBeamPtsTuples = []
419 for i in range(len(beamStartPts)):
420 listOfBeamPtsTuples.append((beamStartPts[i],beamEndPts[i]))
421 tupleOfBeamPtsTuples = tuple(listOfBeamPtsTuples)
422 beamPart.WirePolyLine(points=tupleOfBeamPtsTuples)
423

424 # -------------- Create beams with diagonal connector segments
--------------,!

425 ## This function create beams in YZ-plane. The beams are partitoned
into segments near connections to columns and diagonals in
order to modify the stiffness of these beam parts.

,!

,!

426 ## REQUIRED ARGUMENTS:
427 ## beamPlane - Specify the plane the beams should be span in

('xy'/'yz'),!

428 ## beamPart - part to host the beams
429 ## grid - list imported from excel file containing all coordinates

used to draw beams and columns,!



C-82 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

430 ## axis_nr - number of the axis specifying the plane the beam will
be placed in (numbering starting from 0),!

431 ## segmentLenght - the length of beam segments used to simulate
Connections,!

432 ## beamDiagIntersect - list containing the intersection points of
the beams and diagonals in the plane. This is the output from
function diagonal_intersections()

,!

,!

433 ## OPTIONAL ARGUMENTS:
434 ## beamLevels - list(or integer) specifying the levels at which the

beams should be created. If no input, beam will be added to all
levels

,!

,!

435 ## NOTE - even if a level is not listed, a beam will
be created in the span where the diagonal intersects with the
level.

,!

,!

436 def create_beams_diag(beamPlane, beamPart, grid, axis_nr,
segmentLength, beamDiagIntersect, beamLevels='all'):,!

437 beamStartPts = []
438 beamEndPts = []
439 x_coord_matrix, y_coord_lst, z_coord_lst = grid
440 x_coord_lst = x_axes_coords(grid)
441

442 if beamLevels == 'all':
443 beamLevels = []
444 for i in range(len(y_coord_lst)):
445 if i == 0:
446 continue
447 beamLevels.append(i)
448

449 k = 0
450 bl = 0
451 status = 'proceed'
452 if beamPlane.lower() == 'xy':
453 z = z_coord_lst[axis_nr]
454 for i in range(len(y_coord_lst)):
455 y = y_coord_lst[i]
456 for j in range(len(x_coord_matrix[axis_nr])-1):
457 xStart = x_coord_matrix[axis_nr][j]
458 xStartSeg = xStart + segmentLength
459 xEnd = x_coord_matrix[axis_nr][j+1]
460 xEndSeg = xEnd - segmentLength
461

462 startPt = (xStart, y, z)
463 startSegPt = (xStartSeg, y, z)
464 endPt = (xEnd, y, z)



Appendix C: Python Scripts C-83

465 endSegPt = (xEndSeg, y, z)
466

467 if k < len(beamDiagIntersect):
468 xIntersect = beamDiagIntersect[k][0]
469 yIntersect = beamDiagIntersect[k][1]
470 zIntersect = beamDiagIntersect[k][2]
471 if z == zIntersect:
472 if y == yIntersect:
473 if xStart == xIntersect or xEnd ==

xIntersect:,!

474 k += 1
475 elif xStart < xIntersect < xEnd:
476 xLeftSeg = xIntersect -

segmentLength,!

477 xRightSeg = xIntersect +
segmentLength,!

478

479 leftSegPt = (xLeftSeg, y, z)
480 intersectPt = (xIntersect, y, z)
481 rightSegPt = (xRightSeg, y, z)
482

483 if (xIntersect-xStart) <=
2*segmentLength:,!

484 newSegmentLength =
(xIntersect-xStart)/2,!

485 xStartSeg = xStart +
newSegmentLength,!

486 startSegPt = (xStartSeg, y, z)
487

488 beamPts = [startPt, startSegPt,
intersectPt, rightSegPt,
endSegPt, endPt]

,!

,!

489 elif (xEnd-xIntersect) <=
2*segmentLength:,!

490 newSegmentLength =
(xEnd-xIntersect)/2,!

491 xEndSeg = xEnd -
newSegmentLength,!

492 endSegPt = (xEndSeg, y, z)
493

494 beamPts = [startPt, startSegPt,
leftSegPt, intersectPt,
endSegPt, endPt]

,!

,!

495 else:



C-84 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

496 beamPts = [startPt, startSegPt,
leftSegPt, intersectPt,
rightSegPt,endSegPt, endPt]

,!

,!

497 for l in range(len(beamPts)-1):
498 if isclose(beamPts[l][0],

beamPts[l+1][0], 1e-05):,!

499 if isclose(beamPts[l][1],
beamPts[l+1][1],
1e-05):

,!

,!

500 if isclose(beamPts[l][ c
2],
beamPts[l+1][2],
1e-05):

,!

,!

,!

501 continue
502 beamStartPts.append(beamPts[l])
503 beamEndPts.append(beamPts[l+1])
504 k +=1
505 continue
506 if bl < len(beamLevels):
507 if beamLevels[bl] == i:
508 beamPts = [startPt, startSegPt, endSegPt,

endPt],!

509 for l in range(len(beamPts)-1):
510 beamStartPts.append(beamPts[l])
511 beamEndPts.append(beamPts[l+1])
512 status = 'proceed'
513 else:
514 status = 'wait'
515 if status == 'proceed':
516 bl += 1
517

518 if beamPlane.lower() == 'yz':
519 x = x_coord_lst[axis_nr]
520 for i in range(len(y_coord_lst)):
521 y = y_coord_lst[i]
522 for j in range(len(z_coord_lst)-1):
523 zStart = z_coord_lst[j]
524 zStartSeg = zStart + segmentLength
525 zEnd = z_coord_lst[j+1]
526 zEndSeg = zEnd - segmentLength
527

528 startPt = (x, y, zStart)
529 startSegPt = (x, y, zStartSeg)
530 endPt = (x, y, zEnd)



Appendix C: Python Scripts C-85

531 endSegPt = (x, y, zEndSeg)
532

533 if k < len(beamDiagIntersect):
534 xIntersect = beamDiagIntersect[k][0]
535 yIntersect = beamDiagIntersect[k][1]
536 zIntersect = beamDiagIntersect[k][2]
537 if x == xIntersect:
538 if y == yIntersect:
539 if zStart == zIntersect or zEnd ==

zIntersect:,!

540 k += 1
541 elif zStart < zIntersect < zEnd:
542 zLeftSeg = zIntersect -

segmentLength,!

543 zRightSeg = zIntersect +
segmentLength,!

544

545 leftSegPt = (x, y, zLeftSeg)
546 intersectPt = (x, y, zIntersect)
547 rightSegPt = (x, y, zRightSeg)
548

549 if (zIntersect-zStart) <=
2*segmentLength:,!

550 newSegmentLength =
(zIntersect-zStart)/2,!

551 zStartSeg = zStart +
newSegmentLength,!

552 startSegPt = (x, y, zStartSeg)
553

554 beamPts = [startPt, startSegPt,
intersectPt, rightSegPt,
endSegPt, endPt]

,!

,!

555 elif (zEnd-zIntersect) <=
2*segmentLength:,!

556 newSegmentLength =
(zEnd-zIntersect)/2,!

557 zEndSeg = zEnd -
newSegmentLength,!

558 endSegPt = (x, y, zEndSeg)
559

560 beamPts = [startPt, startSegPt,
leftSegPt, intersectPt,
endSegPt, endPt]

,!

,!

561 else:



C-86 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

562 beamPts = [startPt, startSegPt,
leftSegPt, intersectPt,
rightSegPt,endSegPt, endPt]

,!

,!

563 for l in range(len(beamPts)-1):
564 if isclose(beamPts[l][0],

beamPts[l+1][0], 1e-05):,!

565 if isclose(beamPts[l][1],
beamPts[l+1][1],
1e-05):

,!

,!

566 if isclose(beamPts[l][ c
2],
beamPts[l+1][2],
1e-05):

,!

,!

,!

567 continue
568 beamStartPts.append(beamPts[l])
569 beamEndPts.append(beamPts[l+1])
570 k +=1
571 continue
572 if bl < len(beamLevels):
573 if beamLevels[bl] == i:
574 beamPts = [startPt, startSegPt, endSegPt,

endPt],!

575 for l in range(len(beamPts)-1):
576 beamStartPts.append(beamPts[l])
577 beamEndPts.append(beamPts[l+1])
578 status = 'proceed'
579 else:
580 status = 'wait'
581 if status == 'proceed':
582 bl += 1
583

584 listOfBeamPtsTuples = []
585 for i in range(len(beamStartPts)):
586 listOfBeamPtsTuples.append((beamStartPts[i],beamEndPts[ c

i])),!

587 tupleOfBeamPtsTuples = tuple(listOfBeamPtsTuples)
588 beamPart.WirePolyLine(points=tupleOfBeamPtsTuples)
589

590

591 # -------------- Find Intersection Points of Diagonals -------------
592 # Find all points where diagonal intersects with beams and columns,

and return them in two separate lists.,!

593 # These lists are used as input for drawing diagonals and beams.
594 # REQUIRED ARGUMENTS:



Appendix C: Python Scripts C-87

595 # diagPlane - specify what plane the diagonals are placed in as a
string ('xy'/'xz'/'yz'),!

596 # startAxis - specifying what axis the bottom of the diagonal starts
597 # NOTE - choice of startAxis decide the direction of

the diagonal,!

598 # The index of the startAxis is therefore not
required to,!

599 # be less than the index of the endAxis.
600 # endAxis - specifying end axis as boundary for diagonal.
601 # startLevel - lowest level of diagonal
602 # endLevel - top level of diagonal
603 # grid - list imported from excel file containing all coordinates

used to draw beams and columns,!

604 # skipLevels - list or integer specifying the number of levels each
diagonal span across,!

605 # diagAxis - integer specifying the axis of the diagonal plane.
606 # diagPart - specify the part to host the diagonal
607 # intersectAt - specify the position of the diagonal ends. Should

be in the range 0-1, where 0 indicates that the diagonals ends
in the point where the beam intersects the column (no
offset),and 1 indicates that diagonals end at the level below
(max offset).

,!

,!

,!

,!

608 def diagonal_intersections(diagPlane, startAxis, endAxis,
startLevel, endLevel,,!

609 skipLevels, grid, diagAxis, diagPart,
intersectAt):,!

610 x_coord_matrix, y_coord_lst, z_coord_lst = grid
611 x_coord_lst = x_axes_coords(grid)
612 beamDiagIntersect = []
613 colDiagIntersect = []
614

615 # Check input
616 if (type(skipLevels) is list) or (type(skipLevels) is tuple):
617 if sum(skipLevels) != (endLevel-startLevel):
618 print('ERROR: The sum of skipLevels is not equal to

endLevel-startLevel!'),!

619 elif type(skipLevels) is int:
620 skipLevelsFloat = float(skipLevels)
621 numOfDiags = np.ceil((endLevel-startLevel)/skipLevelsFloat)
622 skipLevels = [skipLevels]*numOfDiags
623 else:
624 print('ERROR: skipLevels is neither a list or integer!')
625 skipSpans = abs(endAxis - startAxis)
626 if diagPlane.lower() == 'xy':



C-88 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

627 xCoords = x_coord_matrix[diagAxis]
628 yCoords = y_coord_lst
629 if diagPlane.lower() == 'xz':
630 xCoords = x_coord_matrix[diagAxis]
631 yCoords = z_coord_lst
632 if diagPlane.lower() == 'yz':
633 xCoords = z_coord_lst
634 yCoords = y_coord_lst
635 xStart = xCoords[startAxis]
636 xEnd = xCoords[endAxis]
637 j = startLevel
638 i = 0
639

640 while j < endLevel:
641 yStart = (1-intersectAt)*yCoords[j]+intersectAt*yCoords[j-1]
642 if j+skipLevels[i] < len(yCoords)-1:
643 yEnd = (1-intersectAt)*yCoords[j+skipLevels[i]]+interse c

ctAt*yCoords[j-1+skipLevels[i]],!

644 else:
645 yEnd = yCoords[endLevel]
646 if j == startLevel:
647 yStart = 0
648 diagIncl = abs((yEnd-yStart)/(xEnd-xStart))
649 # Create list of beam-diagonal intersection points, except

points where diagonals intersect with both columns and
beams

,!

,!

650 for k in range(skipLevels[i]+1):
651 # Find intersection points
652 if (j+k) > len(yCoords)-1:
653 continue
654 yBeamIntersect = yCoords[j+k]
655 if xEnd > xStart:
656 xBeamIntersect = xStart +

(yBeamIntersect-yStart)/diagIncl,!

657 if xBeamIntersect > xEnd:
658 continue
659 else:
660 xBeamIntersect = xStart -

(yBeamIntersect-yStart)/diagIncl,!

661 if xBeamIntersect < xEnd:
662 continue
663



Appendix C: Python Scripts C-89

664 # Avoid saving points where diagonal intersect beam and
coloumn at same place, and start/end point of
diagonal

,!

,!

665 if (k == 0 or k == skipLevels[i]) and intersectAt == 0:
666 continue
667 if yBeamIntersect == yCoords[startLevel] or

yBeamIntersect == yCoords[endLevel]:,!

668 continue
669 if diagPlane.lower() == 'xy':
670 if xBeamIntersect in x_coord_lst:
671 continue
672 beamDiagIntersect.append((xBeamIntersect,

yBeamIntersect, z_coord_lst[diagAxis])),!

673 if diagPlane.lower() == 'xz':
674 if xBeamIntersect in x_coord_lst:
675 continue
676 beamDiagIntersect.append((xBeamIntersect,

y_coord_lst[diagAxis], yBeamIntersect)),!

677 if diagPlane.lower() == 'yz':
678 if xBeamIntersect in z_coord_lst:
679 continue
680 beamDiagIntersect.append((x_coord_lst[diagAxis],

yBeamIntersect, xBeamIntersect)),!

681 # Create list of all coloumn-diagonal intersection points
682 for k in range(skipSpans+1):
683 # Find intersection points
684 if xEnd > xStart:
685 index = min(startAxis, endAxis)+k
686 xColIntersect = xCoords[index]
687 elif xEnd < xStart:
688 index = max(startAxis, endAxis)-k
689 xColIntersect = xCoords[index]
690 yColIntersect = yStart +

diagIncl*abs(xColIntersect-xStart),!

691

692 colCoords = coloumn_coords(grid)
693

694 # Save points to list
695 if diagPlane.lower() == 'xy':
696 if (xColIntersect, yColIntersect,

z_coord_lst[diagAxis]) not in colDiagIntersect:,!

697 colDiagIntersect.append((xColIntersect,yColInte c
rsect,
z_coord_lst[diagAxis]))

,!

,!



C-90 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

698 if diagPlane.lower() == 'xz':
699 if (xColIntersect, y_coord_lst[diagAxis],

yColIntersect) not in colDiagIntersect:,!

700 colDiagIntersect.append((xColIntersect,
y_coord_lst[diagAxis],yColIntersect)),!

701 elif xColIntersect == xStart or xColIntersect ==
xEnd:,!

702 print('ERROR: Diagonal must be connected to
coloumn at turning point'),!

703 if diagPlane.lower() == 'yz':
704 if (x_coord_lst[diagAxis],z_coord_lst[index]) in

colCoords:,!

705 if (x_coord_lst[diagAxis], yColIntersect,
xColIntersect) not in colDiagIntersect:,!

706 colDiagIntersect.append((x_coord_lst[diagAx c
is],yColIntersect,xColIntersect)),!

707 elif xColIntersect == xStart or xColIntersect ==
xEnd:,!

708 print('ERROR: Diagonal must be connected to
coloumn at turning point'),!

709

710 xStart_temp = xStart
711 xStart = xEnd
712 xEnd = xStart_temp
713 j += skipLevels[i]
714 i += 1
715 return beamDiagIntersect, colDiagIntersect
716

717 # -------------- Draw Diagonals -------------
718 ## This function creates a diagonal in a sepcified plane.
719 ## The diagonals will have separated segments close to intersection

with columns in order to simulate connection behaviour,!

720 ## REQUIRED ARGUMENTS:
721 ## diagPlane - specifying the plane of the diagonal ('xy'/'xz'/'yz')
722 ## diagPart - specify the part to host the diagonal
723 ## colDiagIntersect - list containg all points of intersections

between diagonal and columns,!

724 ## The list is one of the outputs of the
function diagonal_intersections(),!

725 ## segmentLength - specify length of the connection segments
726

727 def draw_diagonals(diagPlane, diagPart, colDiagIntersect,
segmentLength):,!

728 listOfDiagPoints = []



Appendix C: Python Scripts C-91

729 for i in range(len(colDiagIntersect)-1):
730 startPt = colDiagIntersect[i]
731 endPt = colDiagIntersect[i+1]
732

733 if diagPlane.lower() == 'xy':
734 diagIncl =

abs((endPt[1]-startPt[1])/(endPt[0]-startPt[0])),!

735 InclAngle = np.arctan(diagIncl)
736 if InclAngle == 0:
737 continue
738 if startPt[0] < endPt[0]:
739 xStartSegPt = startPt[0] +

np.cos(InclAngle)*segmentLength,!

740 xEndSegPt = endPt[0] -
np.cos(InclAngle)*segmentLength,!

741 elif startPt[0] > endPt[0]:
742 xStartSegPt = startPt[0] -

np.cos(InclAngle)*segmentLength,!

743 xEndSegPt = endPt[0] +
np.cos(InclAngle)*segmentLength,!

744

745 yStartSegPt = startPt[1] +
np.sin(InclAngle)*segmentLength,!

746 yEndSegPt = endPt[1] - np.sin(InclAngle)*segmentLength
747

748 startSegPt = (xStartSegPt, yStartSegPt, startPt[2])
749 endSegPt = (xEndSegPt, yEndSegPt, startPt[2])
750 elif diagPlane.lower() == 'xz':
751 diagIncl =

abs((endPt[2]-startPt[2])/(endPt[0]-startPt[0])),!

752 InclAngle = np.arctan(diagIncl)
753 if InclAngle == 0:
754 continue
755 if startPt[0] < endPt[0]:
756 xStartSegPt = startPt[0] +

np.cos(InclAngle)*segmentLength,!

757 xEndSegPt = endPt[0] -
np.cos(InclAngle)*segmentLength,!

758 elif startPt[0] > endPt[0]:
759 xStartSegPt = startPt[0] -

np.cos(InclAngle)*segmentLength,!

760 xEndSegPt = endPt[0] +
np.cos(InclAngle)*segmentLength,!

761



C-92 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

762 zStartSegPt = startPt[2] +
np.sin(InclAngle)*segmentLength,!

763 zEndSegPt = endPt[2] - np.sin(InclAngle)*segmentLength
764

765 startSegPt = (xStartSegPt, startPt[1], zStartSegPt)
766 endSegPt = (xEndSegPt, startPt[1], zEndSegPt)
767 elif diagPlane.lower() == 'yz':
768 diagIncl =

abs((endPt[1]-startPt[1])/(endPt[2]-startPt[2])),!

769 InclAngle = np.arctan(diagIncl)
770 if InclAngle == 0:
771 continue
772 if startPt[2] < endPt[2]:
773 zStartSegPt = startPt[2] +

np.cos(InclAngle)*segmentLength,!

774 zEndSegPt = endPt[2] -
np.cos(InclAngle)*segmentLength,!

775 elif startPt[2] > endPt[2]:
776 zStartSegPt = startPt[2] -

np.cos(InclAngle)*segmentLength,!

777 zEndSegPt = endPt[2] +
np.cos(InclAngle)*segmentLength,!

778

779 yStartSegPt = startPt[1] +
np.sin(InclAngle)*segmentLength,!

780 yEndSegPt = endPt[1] - np.sin(InclAngle)*segmentLength
781

782 startSegPt = (startPt[0], yStartSegPt, zStartSegPt)
783 endSegPt = (startPt[0], yEndSegPt, zEndSegPt)
784

785 listOfDiagPoints.append((startPt, startSegPt))
786 listOfDiagPoints.append((startSegPt, endSegPt))
787 listOfDiagPoints.append((endSegPt, endPt))
788 diagPart.WirePolyLine(points=listOfDiagPoints)
789

790 # ------------------ Create Shaft ---------------
791 # This function creates an elevator shaft
792 # NOTE - The function must be exectued AFTER sets have been created
793 # REQUIRED ARGUMENTS:
794 # shaftPart - part to host the shaft
795 # floorPart - part containing the floors to which holes will be

added,!

796 # framePart - part containing beams that need to be removed in
order to make room for shaft,!



Appendix C: Python Scripts C-93

797 # shaf_dict - dictionary containg all relevant information
regarding shaft geometry (generated from input file),!

798 # grid - list imported from excel file containing all coordinates
used to draw beams and columns,!

799 def create_shafts(shaftPart, floorPart, framePart, shaft_dict,
grid, tol=0.01):,!

800 x_coord_matrix, y_coord_lst, z_coord_lst = grid
801 for key in shaft_dict.keys():
802 shaft = shaft_dict[key]
803 pt1 = tuple(shaft['Start Coordinate'])
804 pt2 = tuple(shaft['End Coordinate'])
805 startLevel = shaft['Start Level']
806 endLevel = shaft['End Level']
807 endLevelOffset = shaft['End Level Offset']
808 removeWall = shaft['Remove Wall']
809 yStart = y_coord_lst[startLevel]
810 yEnd = y_coord_lst[endLevel]+endLevelOffset
811 if shaft['Connect To Building']:
812 create_rectangular_shell_extrude('xz', pt1, pt2,

yStart, shaftPart, yEnd),!

813 if removeWall > 0:
814 if removeWall == 1:
815 face = shaftPart.faces.getByBoundingBox(xMin=pt c

1[0]-tol, zMin=pt1[1]-tol, xMax=pt2[0]+tol,
zMax=pt1[1]+tol)

,!

,!

816 if removeWall == 2:
817 face = shaftPart.faces.getByBoundingBox(xMin=pt c

2[0]-tol, zMin=pt1[1]-tol, xMax=pt2[0]+tol,
zMax=pt2[1]+tol)

,!

,!

818 if removeWall == 3:
819 face = shaftPart.faces.getByBoundingBox(xMin=pt c

1[0]-tol, zMin=pt2[1]-tol, xMax=pt2[0]+tol,
zMax=pt2[1]+tol)

,!

,!

820 if removeWall == 4:
821 face = shaftPart.faces.getByBoundingBox(xMin=pt c

1[0]-tol, zMin=pt1[1]-tol, xMax=pt1[0]+tol,
zMax=pt2[1]+tol)

,!

,!

822 shaftPart.RemoveFaces(deleteCells=False,
faceList=face),!

823 if startLevel == 0:
824 yStart_cut = yStart+tol
825 else:
826 yStart_cut = yStart



C-94 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

827 rectangular_cutout('xz', pt1, pt2, floorPart, yStart_cut,
yEnd),!

828 pt1 = (pt1[0], yStart, pt1[1])
829 pt2 = (pt2[0], yEnd, pt2[1])
830 remove_edges_within_box(framePart, pt1, pt2,

setName='InnerBeams'),!

831

832

833 # ------------------ Create Rectangular Cutout of Face
--------------,!

834 # This function create a rectangular hole in a number of faces in
the same part.,!

835 # REQUIRED ARGUMENTS:
836 # inPlane - specify what plane the cut should be made in

('xy'/'xz'/'yz'),!

837 # pt1, pt2 - points defining rectangle
838 # shellPart - specify what part the cut should be applied to
839 # startPlanePos - specify position of the start plane of the cut
840 # endPlanePos - specify the position of the end plane of the cut
841 def rectangular_cutout(inPlane, pt1, pt2, shellPart, startPlanePos,

endPlanePos):,!

842 model = get_model()
843 cutFaces = shellPart.faces
844

845 if inPlane.lower() == 'xy':
846 shellPlane = create_principal_plane(XYPLANE, startPlanePos,

shellPart),!

847 shellUpEdge = create_principal_axis(YAXIS,shellPart)
848 partitionTransform =

shellPart.MakeSketchTransform(sketchPlane=shellPlane,
origin=(0,0,startPlanePos), sketchPlaneSide=SIDE2,
sketchUpEdge=shellUpEdge, sketchOrientation=RIGHT)

,!

,!

,!

849 partitionSketch =
model.ConstrainedSketch(name='partitionSketch',
sheetSize=20, transform=partitionTransform)

,!

,!

850 partitionSketch.rectangle(point1=(-pt1[0],pt1[1]),
point2=(-pt2[0],pt2[1])),!

851 shellPart.PartitionFaceBySketchDistance(faces=cutFaces,
distance=endPlanePos-startPlanePos,
sketchPlane=shellPlane, sketchPlaneSide=SIDE2,
sketchUpEdge=shellUpEdge, sketchOrientation=RIGHT,
sketch=partitionSketch)

,!

,!

,!

,!



Appendix C: Python Scripts C-95

852 partitionFaces =
shellPart.faces.getByBoundingBox(xMin=pt1[0],
yMin=pt1[1], zMin=0, xMax=pt2[0], yMax=pt2[1],
zMax=endPlanePos)

,!

,!

,!

853

854 elif inPlane.lower() == 'xz':
855 shellPlane = create_principal_plane(XZPLANE, startPlanePos,

shellPart),!

856 shellUpEdge = create_principal_axis(ZAXIS,shellPart)
857 partitionTransform =

shellPart.MakeSketchTransform(sketchPlane=shellPlane,
origin=(0,startPlanePos,0), sketchPlaneSide=
SIDE2,sketchOrientation=LEFT,sketchUpEdge=shellUpEdge)

,!

,!

,!

858 partitionSketch =
model.ConstrainedSketch(name='partitionSketch',
sheetSize=20,transform=partitionTransform)

,!

,!

859 partitionSketch.rectangle(point1=pt1, point2=pt2)
860 shellPart.PartitionFaceBySketchDistance(faces=cutFaces,

distance=endPlanePos-startPlanePos,
sketchPlane=shellPlane, sketchPlaneSide=SIDE2,
sketchUpEdge=shellUpEdge, sketchOrientation=LEFT,
sketch=partitionSketch)

,!

,!

,!

,!

861 partitionFaces =
shellPart.faces.getByBoundingBox(xMin=pt1[0], yMin=0,
zMin=pt1[1], xMax=pt2[0], yMax=endPlanePos, zMax=pt2[1])

,!

,!

862

863 elif inPlane.lower() == 'yz':
864 shellPlane = create_principal_plane(YZPLANE, startPlanePos,

shellPart),!

865 shellUpEdge = create_principal_axis(YAXIS,shellPart)
866 partitionTransform =

shellPart.MakeSketchTransform(sketchPlane=shellPlane,
origin=(startPlanePos,0,0), sketchPlaneSide = SIDE2,
sketchOrientation=LEFT, sketchUpEdge=shellUpEdge)

,!

,!

,!

867 partitionSketch =
model.ConstrainedSketch(name='partitionSketch',
sheetSize=20, transform=partitionTransform)

,!

,!

868 partitionSketch.rectangle(point1=pt1, point2=pt2)
869 shellPart.PartitionFaceBySketchDistance(faces=cutFaces,

distance=endPlanePos-startPlanePos,
sketchPlane=shellPlane, sketchPlaneSide=SIDE2,
sketchUpEdge=shellUpEdge, sketchOrientation=LEFT,
sketch=partitionSketch)

,!

,!

,!

,!



C-96 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

870 partitionFaces = shellPart.faces.getByBoundingBox(xMin=0,
yMin=pt1[1], zMin=pt1[0], xMax=endPlanePos,
yMax=pt2[1], zMax=pt2[0])

,!

,!

871 else:
872 print('ERROR: Wrong plane setting, cutout not created...')
873 del partitionSketch
874 shellPart.RemoveFaces(faceList=partitionFaces)
875

876 # ---------------- Remove Edges Within Bounding Box --------------
877 # This function removes the edges of a specified set of a part,

that lie within a user specified bounding box.,!

878 # REQUIRED ARGUMENTS:
879 # framePart - the part that the changes should be applied to
880 # pt1 - lower bound of bounding box
881 # pt2 - upper bound of bounding box
882 # OPTIONAL ARGUMENT:
883 # setName - name of set of which edges will be removed.(NOTE: Must

be a string),!

884 # "None" input causes the command to be applied to entire
part.,!

885

886 def remove_edges_within_box(framePart, pt1, pt2, setName=None):
887 if setName == None:
888 wireEdges =

framePart.edges.getByBoundingBox(xMin=pt1[0]-0.001,
yMin=pt1[1]-0.001, zMin=pt1[2]-0.001,
xMax=pt2[0]+0.001, yMax=pt2[1]+0.001, zMax=pt2[2]+0.001)

,!

,!

,!

889 else:
890 wireEdges = framePart.sets[setName].edges.getByBoundingBox(

xMin=pt1[0]-0.001, yMin=pt1[1]-0.001,
zMin=pt1[2]-0.001, xMax=pt2[0]+0.001,
yMax=pt2[1]+0.001, zMax=pt2[2]+0.001)

,!

,!

,!

891 try:
892 framePart.RemoveWireEdges(wireEdgeList=wireEdges)
893 except:
894 return
895

896 # --------------------- Coloumn grid coordinates --------
897 # This function returns a list of all coloumn coordinates in

XZ-plane,!

898 # REQUIRED ARGUMENTS:
899 # grid - list imported from excel file containing all coordinates

used to draw beams and columns,!

900 def coloumn_coords(grid):



Appendix C: Python Scripts C-97

901 colCoords = []
902 x_coord_matrix, y_coord_lst, z_coord_lst = grid
903 for i in range(len(z_coord_lst)):
904 z = z_coord_lst[i]
905 for j in range(len(x_coord_matrix[i])):
906 x = x_coord_matrix[i][j]
907 colCoords.append((x,z))
908 return colCoords
909

910 # -------------------- List of X-axes coordinates ---------------
911 # This function returns list of x-axes coordinates
912 # REQUIRED ARGUMENTS:
913 # grid - list imported from excel file containing all coordinates

used to draw beams and columns,!

914 def x_axes_coords(grid):
915 x_coord_lst = []
916 x_coord_matrix, y_coord_lst, z_coord_lst = grid
917 for i in range(len(x_coord_matrix)):
918 for j in range(len(x_coord_matrix[i])):
919 if x_coord_matrix[i][j] not in x_coord_lst:
920 x_coord_lst.append(x_coord_matrix[i][j])
921 x_coord_lst.sort()
922 return x_coord_lst
923

924 # ------------ Functions combining other functions in order to
create frame and floors -----------------,!

925 # The following set of functions combine previously defined
functions in order to create the frame,!

926 def get_diag_indices(plane, diag_dict):
927 ind_lst = []
928 key_lst = []
929 for key in diag_dict.keys():
930 if diag_dict[key]['Plane'].lower() == plane.lower():
931 ax_lst = diag_dict[key]['Axis']
932 ind_lst += ax_lst
933 if key not in key_lst:
934 key_lst.append(key)
935 return ind_lst, key_lst
936

937 def create_all_diagonals(framePart, diag_dict, connector_dict,
grid):,!

938 for key in diag_dict.keys():
939 diag = diag_dict[key]
940 diagSegLen = connector_dict[key][0]



C-98 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

941 ax_lst = diag['Axis']
942 plane = diag['Plane']
943 startAxis, endAxis = (diag['Start Column'], diag['End

Column']),!

944 startLevel, endLevel = (diag['Start Level'], diag['End
Level']),!

945 skipLevels = diag['Skip Levels']
946 intersectAt = diag['Intersect At']
947 for axis in ax_lst:
948 beamDiagIntersect, colDiagIntersect =

diagonal_intersections(plane, startAxis, endAxis,
startLevel, endLevel, skipLevels, grid, axis,
framePart, intersectAt)

,!

,!

,!

949 draw_diagonals(plane, framePart, colDiagIntersect,
diagSegLen),!

950

951

952 def create_all_frames(framePart, diag_dict, connector_dict, grid):
953 x_coord_matrix, y_coord_lst, z_coord_lst = grid
954 frames_diag_ind, diag_plane_keys = get_diag_indices('xy',

diag_dict),!

955 frames_diag_ind = list(dict.fromkeys(frames_diag_ind))
956 frames_no_diag_ind = list(range(len(z_coord_lst)))
957 for i in frames_diag_ind:
958 frames_no_diag_ind.remove(i)
959 for z_ind in frames_no_diag_ind:
960 if z_ind in [0, len(z_coord_lst)-1]:
961 segmentLength = connector_dict['ShortEdgeBeams'][0]
962 else:
963 segmentLength = connector_dict['InnerBeams'][0]
964 create_columns(framePart, grid, z_ind)
965 create_beams('xy', framePart, grid, z_ind, segmentLength)
966 for key in diag_plane_keys:
967 diag = diag_dict[key]
968 ax_lst = diag['Axis']
969 plane = diag['Plane']
970 startAxis, endAxis = (diag['Start Column'], diag['End

Column']),!

971 startLevel, endLevel = (diag['Start Level'], diag['End
Level']),!

972 skipLevels = diag['Skip Levels']
973 intersectAt = diag['Intersect At']
974 for z_ind in ax_lst:



Appendix C: Python Scripts C-99

975 beamDiagIntersect, colDiagIntersect =
diagonal_intersections(plane, startAxis, endAxis,
startLevel, endLevel, skipLevels, grid, z_ind,
framePart, intersectAt)

,!

,!

,!

976 if z_ind in [0, len(z_coord_lst)-1]:
977 segmentLength = connector_dict['ShortEdgeBeams'][0]
978 else:
979 segmentLength = connector_dict['InnerBeams'][0]
980 create_columns(framePart, grid, z_ind)
981 create_beams_diag('xy', framePart, grid, z_ind,

segmentLength, beamDiagIntersect),!

982

983 def create_outer_beams(framePart, diag_dict, connector_dict, grid,
floor_dict):,!

984 x_coord_matrix, y_coord_lst, z_coord_lst = grid
985 x_coord_lst = x_axes_coords(grid)
986 beamLevels = get_beam_levels(floor_dict)
987 segmentLength = connector_dict['LongEdgeBeams'][0]
988 frames_diag_ind, diag_plane_keys = get_diag_indices('yz',

diag_dict),!

989 for key in diag_plane_keys:
990 diag = diag_dict[key]
991 ax_lst = diag['Axis']
992 for x_ind in ax_lst:
993 plane = diag['Plane']
994 startAxis, endAxis = (diag['Start Column'], diag['End

Column']),!

995 startLevel, endLevel = (diag['Start Level'], diag['End
Level']),!

996 skipLevels = diag['Skip Levels']
997 intersectAt = diag['Intersect At']
998 if x_ind in [0, len(x_coord_lst)-1]:
999 beamDiagIntersect, colDiagIntersect =

diagonal_intersections( plane, startAxis,
endAxis, startLevel, endLevel, skipLevels,
grid, x_ind, framePart, intersectAt)

,!

,!

,!

1000 create_beams_diag('yz',framePart, grid, x_ind,
segmentLength, beamDiagIntersect, beamLevels),!

1001

1002 def build_frame(framePart, diag_dict, connector_dict, grid,
beamLevels):,!

1003 create_all_diagonals(framePart, diag_dict, connector_dict, grid)
1004 create_all_frames(framePart, diag_dict, connector_dict, grid)



C-100 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

1005 create_outer_beams(framePart, diag_dict, connector_dict, grid,
beamLevels),!

1006

1007 def build_floors(floorPart, start_level, end_level, grid):
1008 for level in range(start_level, end_level+1):
1009 create_floor(floorPart, grid, level)
1010

1011 # ------------- Get beam levels ----------------
1012 # This function returns a list of the levels at which the outer

beams,!

1013 # should be created.
1014 # REQUIRED ARGUMENTS:
1015 # floor_dict - dictionary containging input of the different floors
1016 def get_beam_levels(floor_dict):
1017 beamLevels = []
1018 for key in floor_dict.keys():
1019 include = floor_dict[key][4]
1020 if include:
1021 startLevel = floor_dict[key][0]
1022 endLevel = floor_dict[key][1]
1023 level = startLevel
1024 while level <= endLevel:
1025 beamLevels.append(level)
1026 level += 1
1027 beamLevels.sort()
1028 return beamLevels
1029

1030 # ------------- Remove Beams and Coloumns -------
1031 # This function removes specified beams and coloumns from the frame
1032 # REQUIRED ARGUMENTS:
1033 # framePart - the part hosting the frame
1034 # remove_dict - dictionary containg data on what beams and coloumns

to be removed,!

1035 # grid - List/matrix imported from excel containing coordinates of
the axis system,!

1036 # OPTIONAL ARGUMENTS:
1037 # tol - tolerance used to ensure that all desired objects are

selected by bonding box,!

1038 def remove_wires(framePart, remove_dict, grid, tol = 0.001):
1039 x_coord_matrix, y_coord_lst, z_coord_lst = grid
1040 x_coord_lst = x_axes_coords(grid)
1041 for key in remove_dict.keys():
1042 parts = remove_dict[key]['Parts']
1043 plane = remove_dict[key]['Plane']



Appendix C: Python Scripts C-101

1044 axis = remove_dict[key]['Axis']
1045 startLevel = remove_dict[key]['Start Level']
1046 endLevel = remove_dict[key]['End Level']
1047 startCol = remove_dict[key]['Start Column']
1048 endCol = remove_dict[key]['End Column']
1049 if parts == 'Columns' or parts == 'Beams and Columns':
1050 removeEdgeCols = remove_dict[key]['Remove Start/End']
1051 for i in axis:
1052 if plane == 'XY':
1053 xStart = x_coord_lst[startCol]
1054 xEnd = x_coord_lst[endCol]
1055 zStart = z_coord_lst[i]
1056 zEnd = z_coord_lst[i]
1057 elif plane == 'YZ':
1058 xStart = x_coord_lst[i]
1059 xEnd = x_coord_lst[i]
1060 zStart = z_coord_lst[startCol]
1061 zEnd = z_coord_lst[endCol]
1062 yStart = y_coord_lst[startLevel]
1063 yEnd = y_coord_lst[endLevel]
1064

1065 pt1 = (xStart-tol, yStart-tol, zStart-tol)
1066 pt2 = (xEnd+tol, yEnd+tol, zEnd+tol)
1067

1068 if parts == 'Beams and Columns' or parts == 'Beams':
1069 remove_edges_within_box(framePart, pt1, pt2,

setName='BeamSet'),!

1070 if parts == 'Beams and Columns' or parts == 'Columns':
1071 if removeEdgeCols == 0:
1072 if plane == 'XY':
1073 pt1 = (xStart+0.1, yStart-tol, zStart-tol)
1074 pt2 = (xEnd-0.1, yEnd+tol, zEnd+tol)
1075 elif plane == 'YZ':
1076 pt1 = (xStart-tol, yStart-tol, zStart+0.1)
1077 pt2 = (xEnd+tol, yEnd+tol, zEnd-0.1)
1078 remove_edges_within_box(framePart, pt1, pt2,

setName='ColumnSet'),!

1079

1080 # ------------------- Add Wires -----------------
1081 # This function adds wires to existing part and saves them as

separate sets,!

1082 # The function also saves the connector parts of the wires to a set
1083 # REQUIRED ARGUMENTS:
1084 # framePart - part the wire should be added to



C-102 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

1085 # add_dict - dictionary containing data about the wires that should
be added,!

1086 def add_wires(framePart, add_dicts, tol = 0.01):
1087 placements = add_dicts['Placement']
1088 sections = add_dicts['Section']
1089 orientations = add_dicts['Orientation']
1090 includeConn = add_dicts['IncludeConn']
1091 connectors = add_dicts['Connector']
1092 if len(placements) == 0:
1093 return
1094 startPts = []
1095 endPts = []
1096 for key in placements.keys():
1097 startPt = placements[key]['Start Point']
1098 endPt = placements[key]['End Point']
1099 dX = endPt[0]-startPt[0]
1100 dY = endPt[1]-startPt[1]
1101 dZ = endPt[2]-startPt[2]
1102 #Draw wire and save edges to unique sets
1103 if includeConn[key]:
1104 connectorLst = []
1105 segLength = connectors[key][0]
1106 totLength = np.sqrt(np.power(dX,2)+np.power(dY,2)+np.po c

wer(dZ,2)),!

1107 if totLength <= 2*segLength:
1108 segLength = totLength/2
1109 if startPt[0]!=endPt[0] and startPt[1]!=endPt[1] and

startPt[2]!=endPt[2]:,!

1110 print('ERROR: Added wire "'+key+'" is not placed in
one of the principal planes!'),!

1111 elif startPt[0] != endPt[0] and startPt[1] == endPt[1]
and startPt[2] == endPt[2]:,!

1112 startSegPt = (startPt[0]+segLength, startPt[1],
startPt[2]),!

1113 endSegPt = (endPt[0]-segLength, endPt[1], endPt[2])
1114 elif startPt[0] == endPt[0] and startPt[1] != endPt[1]

and startPt[2] == endPt[2]:,!

1115 startSegPt = (startPt[0], startPt[1]+segLength,
startPt[2]),!

1116 endSegPt = (endPt[0], endPt[1]-segLength, endPt[2])
1117 elif startPt[0] == endPt[0] and startPt[1] == endPt[1]

and startPt[2] != endPt[2]:,!

1118 startSegPt = (startPt[0], startPt[1],
startPt[2]+segLength),!



Appendix C: Python Scripts C-103

1119 endSegPt = (endPt[0], endPt[1], endPt[2]-segLength)
1120

1121 if isclose(totLength,2*segLength):
1122 wirePts = [startPt, startSegPt, endPt]
1123 else:
1124 wirePts = [startPt, startSegPt, endSegPt, endPt]
1125 for i in range(len(wirePts)-1):
1126 startPts.append(wirePts[i])
1127 endPts.append(wirePts[i+1])
1128 else:
1129 startPts.append(startPt)
1130 endPts.append(endPt)
1131 listOfWirePtsTuples = []
1132 for i in range(len(startPts)):
1133 listOfWirePtsTuples.append((startPts[i],endPts[i]))
1134 tupleOfWirePtsTuples = tuple(listOfWirePtsTuples)
1135 framePart.WirePolyLine(points=tupleOfWirePtsTuples)



C-104 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

C.8 TTB_post_processing.py

This file contains functions used to gather and process the results after a simula-
tion. Used for getting the eigenfrequencies, calculating the damping ratio/logar-
ithmic decrements and writing the results to a .txt file.

1 # -------------- Input folder path -------------
2 # Folder where all the scripts are located:
3 scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
4

5 # -------------- Import Packages -------------
6 from abaqus import *
7 from abaqusConstants import *
8 import regionToolset
9 import numpy as np

10 import os
11 import math
12 import sketch
13 import part
14 import material
15 import section
16 import assembly
17 import mesh
18 import job
19 import odbAccess
20 import interaction
21 import load
22 import sys
23 import datetime
24 import step
25

26 sys.path.append(scriptsFolder)
27

28 from TTB_general import *
29 from TTB_geometry import *
30 from TTB_sets import *
31

32 # -------------- Extract Eigenfreqs -------------
33 # This function gets the natural frequencies from the .odb file and

returns them as a list.,!

34 def get_eigenfreqs(jobName='TTBJob', stepName='FrequencyStep'):
35 freqsLst = []
36 odb = odbAccess.openOdb(jobName+'.odb')



Appendix C: Python Scripts C-105

37 try:
38 freqStep = odb.steps[stepName]
39 except:
40 print('Unable to find '+stepName+' in odb file. Check that

the step is included in the Excel input file'),!

41 return []
42 region = freqStep.historyRegions['Assembly ASSEMBLY']
43 try:
44 freqs = region.historyOutputs['EIGFREQ'].data
45 except:
46 print('Unable to find EIGFREQ data for step: '+stepName)
47 for i in range(len(freqs)):
48 freqsLst.append(freqs[i][1])
49 odb.close()
50 return freqsLst
51

52

53 # -------------- Write to file -------------
54 # Writes list to file. Types: 'w+' overwrite excisting file, 'a+'

append to file,!

55 # Option to write the indices before each row.
56 def list_to_file(list, fileName, type, indices=False, startIndex=0,

indexStep=1, date_heading=True):,!

57 f = open(fileName, type)
58 if date_heading:
59 d = get_date_and_time()
60 f.write(d+'\n')
61 i = startIndex
62 for item in list:
63 if indices:
64 f.write(str(i)+'; '+str(item)+'\n')
65 else:
66 f.write(str(item)+'\n')
67 i += indexStep
68 f.close()
69

70 # Writes a dictonary to file, sorted by the keys.
71 # Types: 'w+' overwrite excisting file, 'a+' append to file
72 def dict_to_file(dictionary, fileName, type, date_heading=True):
73 f = open(fileName, type)
74 if date_heading:
75 d = get_date_and_time()
76 f.write(d+'\n')
77 keysLst = dictionary.keys()



C-106 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

78 keysLst.sort()
79 for key in keysLst:
80 val = dictionary[key]
81 f.write(str(key)+'; '+str(val)+'\n')
82 f.close()
83

84 # Writes item to file. Can be list, dict, int, float, bool etc.
85 # Option to create header with date and time of writing.
86 def write_to_file(item, fileName, type, print_date=True):
87 try:
88 item.keys() # To check if item is a dict.
89 dict_to_file(item, fileName, type, date_heading=print_date)
90 return
91 except:
92 pass
93 try:
94 iter(item) # To check if item is a list/tuple.
95 list_to_file(item, fileName, type, date_heading=print_date)
96 return
97 except:
98 pass
99 try:

100 f = open(fileName, type)
101 if print_date:
102 d = get_date_and_time()
103 f.write(d+'\n')
104 f.write(str(item)+'\n')
105 f.close()
106 return
107 except:
108 print('Could not write item to file...')
109

110

111 # -------------- Get peaks -------------
112 # Returns the magnitude and time values for the peaks of a time

series.,!

113 # Simple algorithm, some filtering etc. should be added.
114 def get_peaks(dir, floorPart, var='U',

outputNodeSetName='OUTPUTNODESET', jobName='TTBJob',
stepName='FreeVibrationStep'):

,!

,!

115 odb = odbAccess.openOdb(jobName+'.odb')
116 floorPartOdb = odb.parts[floorPart.name.upper()]
117 outputSet = odb.rootAssembly.instances[floorPart.name.upper()]. c

nodeSets[outputNodeSetName],!



Appendix C: Python Scripts C-107

118 freeVibStep = odb.steps[stepName]
119 freeVibFrames = freeVibStep.frames
120 u_vec = []
121 time_vec = []
122 peak_lst = []
123 if dir.lower() == 'x':
124 ind = 0
125 elif dir.lower() == 'y':
126 ind = 1
127 elif dir.lower() == 'z':
128 ind = 2
129 for i in range(len(freeVibFrames)):
130 time_vec.append(float(freeVibFrames[i].frameValue))
131 u_vec.append(float(freeVibFrames[i].fieldOutputs[var].getSu c

bset(region=outputSet).values[0].data[ind])),!

132 for i in range(1,len(u_vec)-1):
133 if (u_vec[i]>u_vec[i-1]) and (u_vec[i]>u_vec[i+1]) and

(u_vec[i]>0):,!

134 peak = (time_vec[i], u_vec[i])
135 peak_lst.append(peak)
136 odb.close()
137 return peak_lst
138

139

140 # -------------- Calculate logarithmic decrement -------------
141 # Estimates the logarithmic decrement of a underdamped structure

from a list,!

142 # containing the peaks of a time series (mag. and time). (Only
positive peaks),!

143 def log_dec(peak_lst, start_ind=1, n=2):
144 t1, x1 = peak_lst[start_ind]
145 t2, x2 = peak_lst[start_ind+n]
146 if x2 >= x1:
147 print('Log_Dec (Structural) - Warning: The value of the

second peak are greater than or equal to to first peak.
Log_dec (structural) is set to 0 (if Abaqus Based is
choosen)')

,!

,!

,!

148 return 0
149 ld = np.log(x1/x2)/n
150 return ld
151

152

153 # -------------- Calculate natural frequency from peaks
-------------,!



C-108 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

154 # Estimates the natural frequency of a underdamped structure from a
list,!

155 # containing the peaks of a time series. (mag. and time). (Only
positive peaks),!

156 def freq_from_peaks(peak_lst, start_ind=1, n=2):
157 t1, x1 = peak_lst[start_ind]
158 t2, x2 = peak_lst[start_ind+n]
159 T = (t2-t1)/n
160 freq = 1/T
161 return freq
162

163

164 # -------------- Calculate damping ratio -------------
165 # Calculates the damping ratio based on a logarithmic decrement

value.,!

166 # Assumes lightly damped structures.
167 def damping_ratio(logarithmic_decrement):
168 if logarithmic_decrement == 0:
169 return 0
170 g = (1+(2*math.pi/logarithmic_decrement)**2)
171 dr = 1/(g**0.5)
172 return dr



Appendix C: Python Scripts C-109

C.9 TTB_properties.py

This file contains functions used to assign different properties to objects. Such
properties include material data and cross sections.

1 # -------------- Input folder path -------------
2 # Folder where all the scripts are located:
3 scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
4

5 # -------------- Import Packages -------------
6 from abaqus import *
7 from abaqusConstants import *
8 import regionToolset
9 import numpy as np

10 import math
11 import sketch
12 import part
13 import material
14 import section
15 import assembly
16 import mesh
17 import job
18 import odbAccess
19 import interaction
20 import load
21 import sys
22 import step
23

24 sys.path.append(scriptsFolder)
25

26 from TTB_general import *
27 from TTB_sets import *
28 from TTB_geometry import *
29 from TTB_boundaries import *
30

31 # -------------- Create (rectangular) cross sections -------------
32 ## Input: A dictionary with the cross section name as keys and a

tuple with corresponding the dimensions (w*h) as value.,!

33 ## Returns a tuple with the names of the created cross sections.
34 def create_cross_sections(crossSectionDict):
35 model = get_model()
36 lstOfNames = []
37 for cs_name in crossSectionDict.keys():



C-110 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

38 w = crossSectionDict[cs_name][0]
39 h = crossSectionDict[cs_name][1]
40 material_name = crossSectionDict[cs_name][2]
41 model.RectangularProfile(name=cs_name, a=w, b=h)
42 model.BeamSection(name=cs_name, profile=cs_name,

integration=DURING_ANALYSIS, material=material_name),!

43 lstOfNames.append(cs_name)
44 return tuple(lstOfNames)
45

46 # -------------- Create shell cross sections -------------
47 # This function creates the homogeous shell sections defined in

sectionDict (imported from excel).,!

48 def create_shell_section(sectionDict):
49 model = get_model()
50 lstOfNames = []
51 for cs_name in sectionDict.keys():
52 t = sectionDict[cs_name][0]
53 material_name = sectionDict[cs_name][1]
54 model.HomogeneousShellSection(name=cs_name,

material=material_name, thickness=t),!

55

56 # -------------- Define materials -------------
57 ## The following sets of functions defines different types of

materials,!

58 ## This function defines an orthotropic material
59 def create_ortho_material(matName, matDensity, E_1, E_2, E_3,

Nu_12, Nu_13, Nu_23, G_12, G_13, G_23):,!

60 model = get_model()
61 material = model.Material(name=matName)
62 material.Density(table=((matDensity, ), ))
63 material.Elastic(table=((E_1, E_2, E_3, Nu_12, Nu_13, Nu_23,

G_12, G_13, G_23), ), type = ENGINEERING_CONSTANTS),!

64 return material
65

66 ## This function defines a transversely isotropic material
67 def create_trans_iso_material(matName, matDensity, E_1, E_2, Nu_12,

Nu_23, G_12):,!

68 material = create_ortho_material(matName, matDensity, E_1, E_2,
E_2, Nu_12, Nu_12, Nu_23, G_12, G_12, E_2/(2*(1+Nu_23))),!

69 return material
70

71 ## This function defines an isotropic material
72 def create_isotropic_material(matName, matDensity, E_1, Nu_12):
73 model = get_model()



Appendix C: Python Scripts C-111

74 material = model.Material(name=matName)
75 material.Density(table=((matDensity, ),))
76 material.Elastic(table=((E_1,Nu_12), ))
77 return material
78

79 ## This function creates all the materials specified in the
allMaterialsDict by the use of the functions above.,!

80 def create_material_from_dict(allMaterialsDict):
81 model = get_model()
82 material_names = allMaterialsDict.keys()
83 for matName in material_names:
84 matDict = allMaterialsDict[matName]
85 type = matDict['Type']
86 matDensity = matDict['Density']
87 E_1 = matDict['E1']
88 Nu_12 = matDict['Nu12']
89 if type == 'Isotropic':
90 create_isotropic_material(matName, matDensity, E_1,

Nu_12),!

91 elif type in ['Trans. Isotropic', 'Orthotropic']:
92 E_2 = matDict['E2']
93 Nu_23 = matDict['Nu23']
94 G_12 = matDict['G12']
95 if type == 'Trans. Isotropic':
96 create_trans_iso_material(matName, matDensity, E_1,

E_2, Nu_12, Nu_23, G_12),!

97 elif type == 'Orthotropic':
98 E_3 = matDict['E3']
99 Nu_13 = matDict['Nu_13']

100 G_13 = matDict['G13']
101 G_23 = matDict['G23']
102 create_ortho_material(matName, matDensity, E_1,

E_2, E_3, Nu_12, Nu_13, Nu_23, G_12, G_13, G_23),!

103

104 ## This function adds the damping parameters from damping_dict to
already created materials.,!

105 def add_material_damping(damping_dict):
106 model = get_model()
107 for mat_name in damping_dict.keys():
108 mat = model.materials[mat_name]
109 a, b, c, s = damping_dict[mat_name]
110 mat.Damping(alpha=a, beta=b, composite=c, structural=s)
111

112



C-112 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

113 # -------------- Create and assign beam-type cross sections
-------------,!

114 ## Every cross section name must have a matching Set (same name).
115 ## This functions creates and assigns (beam) sections in

crossSectionDict to the framePart.,!

116 def section_assignment(framePart, crossSectionDict,
orientationsDict):,!

117 create_cross_sections(crossSectionDict)
118 for csName in crossSectionDict.keys():
119 setName = csName
120 edgesForCs = framePart.sets[setName].edges
121 regionForCs = regionToolset.Region(edges=edgesForCs)
122 orientationTuple = orientationsDict[csName]
123 framePart.SectionAssignment(region=regionForCs,

sectionName=csName),!

124 framePart.assignBeamSectionOrientation(region=regionForCs,
method=N1_COSINES, n1=orientationTuple),!

125

126

127 # ------- Section Assignemnt of Added Wires ------------
128 # REQUIRED ARGUMENTS:
129 # framePart - part hosting the added Wires
130 # add_dicts - dictionary containing data about the wires that is be

added,!

131 def assign_section_added_wires(framePart, add_dicts):
132 crossSectionsDict = add_dicts['Section']
133 orientationsDict = add_dicts['Orientation']
134 section_assignment(framePart, crossSectionsDict,

orientationsDict),!

135

136 # -------------- Create and assign cross sections -------------
137 ## Every cross section name must have a matching Set (same name).
138 ## This functions assigns shell sections in crossSectionDict to the

floorPart.,!

139 ## Can also be used for other parts containing shells.
140 def shell_section_assignment(floorPart, crossSectionDict):
141 create_shell_section(crossSectionDict)
142 for csName in crossSectionDict.keys():
143 setName = csName
144 try:
145 facesForCs = floorPart.sets[setName].faces
146 regionForCs = regionToolset.Region(faces=facesForCs)
147 floorPart.SectionAssignment(region=regionForCs,

sectionName=csName),!



Appendix C: Python Scripts C-113

148 except:
149 continue
150

151 # ------- Section Assignemnt of Shafts ------------
152 # This functions assigns the shell sections to the shaft walls.
153 def shaft_section_assignment(shaftPart, sectionsWalls):
154 create_shell_section(sectionsWalls)
155 for csName in sectionsWalls.keys():
156 if csName == 'Shaft Walls':
157 facesForCs = shaftPart.faces
158 regionForCs = regionToolset.Region(faces=facesForCs)
159 shaftPart.SectionAssignment(region=regionForCs,

sectionName=csName),!

160

161 # ------- Section Assignemnt of Floors ------------
162 # This function creates subsets of the floorSet and assigns the

respective sets with the correct cross sections.,!

163 def floor_assignment_from_dict(floorPart, floorSet, floor_dict,
grid):,!

164 model = get_model()
165 for key in floor_dict.keys():
166 start_level = floor_dict[key][0]
167 end_level = floor_dict[key][1]
168 t = floor_dict[key][2]
169 mat_name = floor_dict[key][3]
170 s = set_of_selected_floors(floorPart, floorSet,

start_level, end_level, grid),!

171 model.HomogeneousShellSection(name=key, material=mat_name,
thickness=t),!

172 reg = regionToolset.Region(faces=s.faces)
173 floorPart.SectionAssignment(region=reg, sectionName=key)
174

175 # ------- Assigning sections of connector elements --------
176 ## Connector Section Assignment
177 ## This function can be used to create and assign connector

segments defined by,!

178 ## fractions of the original width and height of the member.
(Currently not in use),!

179 def connector_assignment_auto2(framePart, originalCrossSectionDict,
connector_dict, tol):,!

180 model = get_model()
181 colSet = framePart.sets['ColumnSet']
182 beamSet = framePart.sets['BeamSet']
183 diagSet = framePart.sets['DiagonalSet']



C-114 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

184 for originalCS_Name in originalCrossSectionDict.keys():
185 origSet = framePart.sets[originalCS_Name]
186 newSetName = originalCS_Name+'_connectors'
187 segmentLength = connector_dict[originalCS_Name][0]
188 if 'beam' in newSetName.lower():
189 s = set_of_connectors(framePart, newSetName, origSet,

diagSet, colSet, segmentLength, tol),!

190 elif 'diag' in newSetName.lower():
191 s = set_of_connectors(framePart, newSetName, origSet,

colSet, False, segmentLength, tol),!

192 elif 'col' in newSetName.lower():
193 s = set_of_connectors(framePart, newSetName, origSet,

beamSet, diagSet, segmentLength, tol),!

194 else:
195 print('Error in connector_assignment_auto')
196

197 w_orig, h_orig, material_name =
originalCrossSectionDict[originalCS_Name],!

198 w_ratio, h_ratio = connector_dict[originalCS_Name][1:]
199 model.RectangularProfile(name=newSetName, a=w_orig*w_ratio,

b=h_orig*h_ratio),!

200 model.BeamSection(name=newSetName, profile=newSetName,
integration=DURING_ANALYSIS, material=material_name),!

201

202 edgesForCs = s.edges
203 regionForCs = regionToolset.Region(edges=edgesForCs)
204 framePart.SectionAssignment(region=regionForCs,

sectionName=newSetName),!

205

206 # ------- Assigning section for connector elements with generalized
profile --------,!

207 ## Connector Section Assignment
208 ## This function can be used to create and assign connector

segments defined by fractions of the original A, I11, I22 and J
of the member.

,!

,!

209 def connector_assignment_auto_generalized_profile(framePart,
originalCrossSectionDict, connector_dict, mat_dict, tol=0.001):,!

210 model = get_model()
211 colSet = framePart.sets['ColumnSet']
212 beamSet = framePart.sets['BeamSet']
213 diagSet = framePart.sets['DiagonalSet']
214 for originalCS_Name in originalCrossSectionDict.keys():
215 origSet = framePart.sets[originalCS_Name]
216 newSetName = originalCS_Name+'_connectors'



Appendix C: Python Scripts C-115

217 segmentLength = connector_dict[originalCS_Name][0]
218 if 'beam' in newSetName.lower():
219 s = set_of_connectors(framePart, newSetName, origSet,

diagSet, colSet, segmentLength, tol),!

220 elif 'diag' in newSetName.lower():
221 s = set_of_connectors(framePart, newSetName, origSet,

colSet, False, segmentLength, tol),!

222 elif 'col' in newSetName.lower():
223 s = set_of_connectors(framePart, newSetName, origSet,

beamSet, diagSet, segmentLength, tol),!

224 else:
225 print('Error in connector_assignment_auto')
226

227 A_frac = connector_dict[originalCS_Name][1][0]
228 A, I11, I22, J = connector_dict[originalCS_Name][2]
229 alpha, beta, composite = connector_dict[originalCS_Name][3]
230 mat_name = originalCrossSectionDict[originalCS_Name][2]
231 youngsMod = mat_dict[mat_name]['E1']
232 pois = mat_dict[mat_name]['Nu12']
233 dens = (1/A_frac)*mat_dict[mat_name]['Density']
234 try:
235 shearMod = mat_dict[mat_name]['G12']
236 except:
237 shearMod = youngsMod/(2*(1+pois))
238 model.GeneralizedProfile(name=newSetName, area=A, i11=I11,

i22=I22, j=J, i12=0, gammaO=0, gammaW=0),!

239 model.BeamSection(name=newSetName, profile=newSetName,
integration=BEFORE_ANALYSIS, poissonRatio=pois,
density=dens, table=((youngsMod, shearMod),),
alphaDamping=alpha, betaDamping=beta,
compositeDamping=composite)

,!

,!

,!

,!

240

241 edgesForCs = s.edges
242 regionForCs = regionToolset.Region(edges=edgesForCs)
243 framePart.SectionAssignment(region=regionForCs,

sectionName=newSetName),!

244

245 # ------- Exterior Wall Connector Zones ----------
246 # This function creates connector zones of the exterior walls and

assignes the correct cross sections.,!

247 def walls_with_connectors_section_assignment_auto(wallPart,
originalSectionDict, wallConnectorDict, grid):,!

248 model = get_model()
249 for val in wallConnectorDict.values():



C-116 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

250 field_width = val['Section'][0]
251 try:
252 if field_width != prev_field_width:
253 field_width = prev_field_width
254 print('Warning: Different field widths are

unsuported, field with '+str(field_width)+'are
used...')

,!

,!

255 except:
256 pass
257

258 create_connector_panels_walls(wallPart, grid, field_width)
259 for originalSection_name in originalSectionDict.keys():
260 try:
261 set = wallPart.sets[originalSection_name]
262 except:
263 continue
264

265 inner_name = originalSection_name+'_center'
266 outer_name = originalSection_name+'_connection'
267 innerSet, outerSet = subsets_of_wall_panels(wallPart, set,

inner_name, outer_name),!

268 orig_thickness, mat_name =
originalSectionDict[originalSection_name],!

269 conn_mat_name = originalSection_name+' Connector Material'
270 try:
271 material = model.materials[conn_mat_name]
272 except KeyError:
273 conn_mat_name = wallConnectorDict[originalSection_name] c

['Section'][2],!

274 thickness_fraction =
wallConnectorDict[originalSection_name]['Section'][1],!

275 model.HomogeneousShellSection(name=inner_name,
material=mat_name, thickness=orig_thickness),!

276 inner_reg = regionToolset.Region(faces=innerSet.faces)
277 wallPart.SectionAssignment(region=inner_reg,

sectionName=inner_name),!

278 model.HomogeneousShellSection(name=outer_name,
material=conn_mat_name,
thickness=thickness_fraction*orig_thickness)

,!

,!

279 outer_reg = regionToolset.Region(faces=outerSet.faces)
280 wallPart.SectionAssignment(region=outer_reg,

sectionName=outer_name),!

281

282



Appendix C: Python Scripts C-117

283 # ------- Assign Section to Floor Connectors ----------
284 # Assigns cross sections to the connection zones of the floors.
285 def floor_connector_assignment(floorPart, floor_dict,

shell_connector_dict):,!

286 model = get_model()
287 for key in floor_dict.keys():
288 floor = floor_dict[key]
289 if floor[5] == 1:
290 connector = shell_connector_dict[key]
291 name = key+'_Connectors'
292 thickness_fraction = connector['Section'][1]
293 matName = key+' Connector Material'
294 origThickness = floor[2]
295 model.HomogeneousShellSection(name=name,

material=matName,
thickness=origThickness*thickness_fraction)

,!

,!

296 f = floorPart.sets[name].faces
297 connReg = regionToolset.Region(faces=f)
298 floorPart.SectionAssignment(region=connReg,

sectionName=name),!

299

300

301 # ---------- Assign Connector Sections to Added Wires --------
302 # This function assigns properties to the connectors of the added

Wires,!

303 # REQUIRED ARGUMENT:
304 # framePart - part hosting the added wires
305 # add_dicts - dictionary containing data on the wires and the

connectors,!

306 # mat-dict - material dictionary
307 def assign_connector_added_wire(framePart, add_dicts, mat_dict):
308 model = get_model()
309 crossSectionsDict = add_dicts['Section']
310 orientationsDict = add_dicts['Orientation']
311 connectorsDict = add_dicts['Connector']
312 for key in connectorsDict.keys():
313 connectorSetName = key+' Connectors'
314 originalCS = crossSectionsDict[key]
315 connector = connectorsDict[key]
316

317 A_frac = connector[1][0]
318 A, I11, I22, J = connector[2]
319 alpha, beta, composite = connector[3]
320 mat_name = originalCS[2]



C-118 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

321 youngsMod = mat_dict[mat_name]['E1']
322 pois = mat_dict[mat_name]['Nu12']
323 dens = (1/A_frac)*mat_dict[mat_name]['Density']
324 try:
325 shearMod = mat_dict[mat_name]['G12']
326 except:
327 shearMod = youngsMod/(2*(1+pois))
328 model.GeneralizedProfile(name=connectorSetName, area=A,

i11=I11, i22=I22, j=J, i12=0, gammaO=0, gammaW=0),!

329 model.BeamSection(name=connectorSetName,
profile=connectorSetName, integration=BEFORE_ANALYSIS,
poissonRatio=pois, density=dens, table=((youngsMod,
shearMod),), alphaDamping=alpha, betaDamping=beta,
compositeDamping=composite)

,!

,!

,!

,!

330 edgesForCs = framePart.sets[connectorSetName].edges
331 regionForCs = regionToolset.Region(edges=edgesForCs)
332 framePart.SectionAssignment(region=regionForCs,

sectionName=connectorSetName),!

333

334

335 # --------- Create Shell Connector Material ---------
336 # Creates a duplicate of the material assigned to the connection

zones to allow for different damping properties from the
original material

,!

,!

337 def shell_connector_material(material_dict, sectionsWalls,
floor_dict, shell_connector_dict):,!

338 model = get_model()
339 for key in shell_connector_dict.keys():
340 material_name = shell_connector_dict[key]['Section'][2]
341 if key in sectionsWalls.keys():
342 orig_mat_name = sectionsWalls[key][1]
343 if key in floor_dict.keys():
344 orig_mat_name = floor_dict[key][3]
345 if material_name != orig_mat_name:
346 orig_mat_name = material_name
347 material_name = key+' Connector Material'
348 orig_material = model.materials[orig_mat_name]
349 material = model.Material(name=material_name,

objectToCopy=orig_material),!

350 a, b, c, s = shell_connector_dict[key]['Damping']
351 material.Damping(alpha=a, beta=b, composite=c, structural=s)
352

353



Appendix C: Python Scripts C-119

354 # --------- Create Connector Material for Floor-to-shaft Connectors
---------,!

355 # Creates a duplicate of the material assigned to the connection
zones to allow for different damping properties from the
original material

,!

,!

356 def floor_to_shaft_material(material_dict, floor_dict,
floor_to_shaft_dict):,!

357 model = get_model()
358 for key in floor_to_shaft_dict.keys():
359 material_name = floor_to_shaft_dict[key]['Section'][2]
360 orig_mat_name = floor_dict[key][3]
361 if material_name != orig_mat_name:
362 orig_mat_name = material_name
363 material_name = key +' F-S Material'
364 orig_material = model.materials[orig_mat_name]
365 material = model.Material(name=material_name,

objectToCopy=orig_material),!

366 a, b, c, s = floor_to_shaft_dict[key]['Damping']
367 material.Damping(alpha=a, beta=b, composite=c, structural=s)
368

369

370 # --------- Create and Assign Section to Floor-to-shaft Connectors
-------------,!

371 ## Creates and assigns the modified sections for use in the
connections between the floors and shafts.,!

372 def assign_floor_shaft_connector(floorPart, floor_dict,
floor_to_shaft_dict):,!

373 model = get_model()
374 for floor_key in floor_to_shaft_dict.keys():
375 floor = floor_dict[floor_key]
376 connection = floor_to_shaft_dict[floor_key]
377 connSection = connection['Section']
378 connSetName = floor_key+' Floor-to-shaft Connectors'
379 try:
380 facesForCs = floorPart.sets[connSetName].faces
381 regionForCs = regionToolset.Region(faces=facesForCs)
382 t = connSection[1]*floor[2]
383 mat_name = floor_key +' F-S Material'
384 model.HomogeneousShellSection(name=connSetName,

material=mat_name, thickness=t),!

385 floorPart.SectionAssignment(region=regionForCs,
sectionName=connSetName),!

386 except KeyError:
387 pass



C-120 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

388

389

390 # --------- Material orientation of the floors -------------
391 # Creates a local CSys and assigns the specified material

orientations to the corresponding floors.,!

392 def orient_floors(floorPart, floorDict):
393 for key in floorDict.keys():
394 mat_dir = floorDict[key][7]
395 try:
396 mat_dir.lower()
397 except:
398 continue # Moves to next floor if orientation is not

specified,!

399 floorPart.DatumPointByCoordinate(coords=(0,0,0)) # Origin
of local csys,!

400 k = floorPart.datums.keys()
401 if mat_dir.lower() == "x":
402 floorPart.DatumPointByCoordinate(coords=(1,0,0)) #

1-Dir of local csys,!

403 floorPart.DatumPointByCoordinate(coords=(1,0,1)) #
Point in 1-2 plane of local csys,!

404 elif mat_dir.lower() == "z":
405 floorPart.DatumPointByCoordinate(coords=(0,0,1)) #

1-Dir of local csys,!

406 floorPart.DatumPointByCoordinate(coords=(1,0,1)) #
Point in 1-2 plane of local csys,!

407 else:
408 continue # Moves to next floor if orientation is not

specified,!

409 k = floorPart.datums.keys()
410 k.sort()
411 orig = floorPart.datums[k[-3]]
412 local_1_dir_point = floorPart.datums[k[-2]]
413 local_12_plane_point = floorPart.datums[k[-1]]
414 floorPart.DatumCsysByThreePoints(name=key+"_mat_csys",

coordSysType=CARTESIAN, origin=orig,
point1=local_1_dir_point, point2=local_12_plane_point)

,!

,!

415 k = floorPart.datums.keys()
416 k.sort()
417 matCsys = floorPart.datums[k[-1]]
418 reg = floorPart.sets[key]
419 floorPart.MaterialOrientation(region=reg,

localCsys=matCsys, axis=AXIS_3, orientationType=SYSTEM),!

420 print('Material orientation added to '+key)



Appendix C: Python Scripts C-121

C.10 TTB_sets.py

This file contains all the functions related to creating sets of all kinds of objects in
Abaqus e.g. beams, columns, surfaces etc...

1 # -------------- Input folder path -------------
2 # Folder where all the scripts are located:
3 scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
4

5 # -------------- Import Packages -------------
6 from abaqus import *
7 from abaqusConstants import *
8 import regionToolset
9 import numpy as np

10 import math
11 import sketch
12 import part
13 import material
14 import section
15 import assembly
16 import mesh
17 import job
18 import odbAccess
19 import interaction
20 import load
21 import sys
22 import step
23

24 sys.path.append(scriptsFolder)
25

26 from TTB_general import *
27

28 from TTB_geometry import *
29

30 # -------------- Create Set of Diagonal Intersection Vertices
-----------,!

31 # This function creates a set of all vertices where the diagonals
intersects with other members,!

32 # REQUIRED ARGUMENTS:
33 # framePart - Part hosting the framePart
34 # beamDiagIntersectList - list of all beam-diagonal intersection

Points,!



C-122 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

35 # colDiagIntersectList - list of all beam-diagonal intersection
Points,!

36 def diagonal_intersections_set(framePart, beamDiagIntersectList,
colDiagIntersectList):,!

37 bArray = []
38 cArray = []
39 for i in range(len(beamDiagIntersectList)):
40 for j in range(len(beamDiagIntersectList[i])):
41 bArray.append(framePart.vertices.findAt(((beamDiagInter c

sectList[i][j]),))),!

42 bds = framePart.Set(name="BeamDiagonalIntersectionSet",
vertices=bArray),!

43 for i in range(len(colDiagIntersectList)):
44 for j in range(len(colDiagIntersectList[i])):
45 cArray.append(framePart.vertices.findAt(((colDiagInters c

ectList[i][j]),))),!

46 cds = framePart.Set(name="ColoumnDiagonalIntersectionSe c
t",
vertices=cArray)

,!

,!

47 return (bds,cds)
48

49 # -------------- Create Sets Of All Columns, Beams, And Diagonals
-------------,!

50 ## Takes the frame part as input and returns a tuple of sets
(ColumnSet, BeamSet, DiagonalSet),!

51 def create_sets(framePart):
52 allEdges = framePart.edges
53 allVertices = framePart.vertices
54 beamLst = []
55 colLst = []
56 diagLst = []
57 xDirBeamLst = []
58 for e in allEdges:
59 verticeIDs = e.getVertices()
60 sX, sY, sZ = allVertices[verticeIDs[0]].pointOn[0]
61 eX, eY, eZ = allVertices[verticeIDs[1]].pointOn[0]
62 if (sX == eX) and (sZ == eZ):
63 colLst.append(e)
64 elif sY == eY:
65 beamLst.append(e)
66 if sZ == eZ:
67 xDirBeamLst.append(e)
68 else:
69 diagLst.append(e)



Appendix C: Python Scripts C-123

70

71 colLst = filter(None, colLst)
72 colArray = part.EdgeArray(colLst)
73 cs = framePart.Set(name='ColumnSet', edges=colArray)
74 beamLst = filter(None, beamLst)
75 beamArray = part.EdgeArray(beamLst)
76 bs = framePart.Set(name='BeamSet', edges=beamArray)
77 diagLst = filter(None, diagLst)
78 diagArray = part.EdgeArray(diagLst)
79 ds = framePart.Set(name='DiagonalSet', edges=diagArray)
80 xDirBeamLst = filter(None, xDirBeamLst)
81 XDirBeamArray = part.EdgeArray(xDirBeamLst)
82 framePart.Set(name='XDirBeams', edges=XDirBeamArray)
83 return (cs,bs,ds)
84

85

86 # -------------- List of vertices on edge -------------
87 # This function takes a set of edges, and returns a list of the

vertices found on the edges,!

88 def get_vertices_from_edges(set_of_edges):
89 edgesLst = set_of_edges.edges
90 vertLst = []
91 for e in edgesLst:
92 vert = e.getVertices()
93 for i in [0,1]:
94 if vert[i] not in vertLst:
95 vertLst.append(vert[i])
96 return vertLst
97

98

99 # -------------- Create Set Of Short "Connector" Elements
-------------,!

100 ## This function creates set of beam-type connector elements
101 ## REQUIRED ARGUMENTS:
102 ## framePart - part hosting the connector elements
103 ## newSetName - name of set to be created
104 ## originSet - set the original member belong to
105 ## set2 - Based on the use of the function the input should be:
106 ## set of all diagonals if set of beam connector elements

should be created,!

107 ## set of all columns if set of diagonal connector elements
should be created,!

108 ## set of all beams if set of column connector elemnts
should be created,!



C-124 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

109 ## set3 - Based on the use of the function the input should be:
110 ## set of all columns if set of beam connector elements

should be created,!

111 ## False if set of diagonal connector elements should be
created,!

112 ## set of all diagonals if set of column connector elemnts
should be created,!

113 ## segmentLength - length of connector segment
114 ## tol - geometric tolerance used when selecting the segments
115 ## OPTIONAL ARGUMENTS:
116 ## check - If true, a check if of the selected connector segments

is conducted,!

117

118 def set_of_connectors(framePart, newSetName, originSet, set2, set3,
segmentLength, tol, check=True):,!

119 allVertices = framePart.vertices
120 edgesLst = []
121 edgesInSet = originSet.edges
122 set2vert = get_vertices_from_edges(set2)
123 set3vert = []
124 if set3:
125 set3vert = get_vertices_from_edges(set3)
126 set2and3vert = set2vert + set3vert
127

128 for i in range(len(edgesInSet)):
129 if edgesInSet[i] not in edgesLst:
130 beamSeq = edgesInSet[i:i+1]
131 edLen = framePart.getLength(beamSeq)
132 if edLen < segmentLength+tol:
133 edgesLst.append(edgesInSet[i])
134

135 edgesLst = filter(None, edgesLst)
136 if check:
137 for e in edgesLst:
138 vert1 = e.getVertices()[0]
139 vert2 = e.getVertices()[1]
140 if (vert1 not in set2and3vert) and (vert2 not in

set2and3vert):,!

141 edgesLst.remove(e)
142

143 edgesArray = part.EdgeArray(edgesLst)
144

145 s = framePart.Set(name=newSetName, edges=edgesArray)
146 return s



Appendix C: Python Scripts C-125

147

148 # -------------- Create Set Of All Corner Columns -------------
149 ## REQUIRED INPUT:
150 ## framePart - part hosting the frame
151 ## colSet - set containing all columns
152 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

153 def set_of_corner_cols(framePart, colSet, grid):
154 edgesLst = []
155 x_coord_matrix, y_coord_lst, z_coord_lst = grid
156 y_min = y_coord_lst[0]
157 y_max = y_coord_lst[-1]
158 for i in [0,-1]:
159 z = z_coord_lst[i]
160 for j in [0,-1]:
161 x = x_coord_matrix[i][j]
162 edgesLst += colSet.edges.getByBoundingCylinder(center1= c

(x,y_min,z), center2=(x,y_max,z),
radius=0.01)

,!

,!

163 edgesLst = filter(None, edgesLst)
164 edgesArray = part.EdgeArray(edgesLst)
165 s = framePart.Set(name='CornerColumns', edges=edgesArray)
166 return s
167

168 # -------------- Create Set Of All Outer Columns -------------
169 ## REQUIRED ARGUMENTS:
170 ## framePart - part hosting the frame
171 ## colSet - set containing all columns
172 ## xWidth - transverse width of building
173 ## zWidth - longitudinal width of building
174 def set_of_outer_cols(framePart, colSet, xWidth, zWidth):
175 edgesLst = []
176 for i in [0,1]:
177 x = i*xWidth
178 z = i*zWidth
179 edgesLst += colSet.edges.getByBoundingBox(xMin=(x-0.01) c

,zMin=-0.01,
xMax=(x+0.01),zMax=(zWidth+0.01))

,!

,!

180 edgesLst += colSet.edges.getByBoundingBox(xMin=-0.01,zM c
in=(z-0.01), xMax=(xWidth+0.01),
zMax=(z+0.01))

,!

,!

181

182 edgesLst = filter(None, edgesLst)
183 edgesArray = part.EdgeArray(edgesLst)



C-126 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

184 s = framePart.Set(name='OuterColoumns', edges=edgesArray)
185 return s
186

187 # -------------- Create Sets Of Edge Columns (-Corner) -------------
188 # Creates and returns sets of columns (Long Edge, Short Edge),

excluding corner columns.,!

189 ## REQUIRED ARGUMENTS:
190 ## framePart - part hosting the frame
191 ## colSet - set containing all columns
192 ## cornerColSet - set of all corner columns
193 ## xWidth - transverse width of building
194 ## zWidth - longitudinal width of building
195 def sets_of_edge_cols(framePart, colSet, cornerColSet, xWidth,

zWidth):,!

196 cornerColumnsEdges = cornerColSet.edges
197 edgesLst = []
198 for i in [0,1]:
199 x = i*xWidth
200 edgesLst += colSet.edges.getByBoundingBox(xMin=x-0.01,

zMin=0, xMax=x+0.01, zMax=zWidth),!

201 edgesLst = filter(None, edgesLst)
202 edgesArray = part.EdgeArray(edgesLst)
203 LE = framePart.Set(name='LongEdgeColumns', edges=edgesArray,

xEdges=cornerColumnsEdges),!

204

205 edgesLst = []
206 for i in [0,1]:
207 z = i*zWidth
208 edgesLst += colSet.edges.getByBoundingBox(xMin=0,

zMin=z-0.01, xMax=xWidth, zMax=z+0.01),!

209 edgesLst = filter(None, edgesLst)
210 edgesArray = part.EdgeArray(edgesLst)
211 SE = framePart.Set(name='ShortEdgeColumns', edges=edgesArray,

xEdges=cornerColumnsEdges),!

212 return (LE, SE)
213

214 # ---------------- Create set of Inner Columns ------
215 ## REQUIRED ARGUMENTS:
216 ## framePart - part hosting the frame
217 ## colSet - set containing all columns
218 ## cornerColSet - set of all corner columns
219 ## longEdgeColSet - set of LongEdgeColumns
220 ## shortEdgeColSet - set of ShortEdgeColumns
221 ## xWidth - transverse width of building



Appendix C: Python Scripts C-127

222 ## zWidth - longitudinal width of building
223 def set_of_inner_cols(framePart, colSet, cornerColSet,

longEdgeColSet, shortEdgeColSet, xWidth, zWidth):,!

224 excludeColumnsEdges = cornerColSet.edges + longEdgeColSet.edges
+ shortEdgeColSet.edges,!

225 edgesLst = []
226 edgesLst += colSet.edges.getByBoundingBox(xMin=0, zMin=0,

xMax=xWidth, zMax=zWidth),!

227 edgesLst = filter(None, edgesLst)
228 edgesArray = part.EdgeArray(edgesLst)
229 IC = framePart.Set(name='InnerColumns', edges=edgesArray,

xEdges=excludeColumnsEdges),!

230 return IC
231

232

233 # -------------- Create all sets of columns -------------
234 ## Combines the previously defined function, and creates all

subsets of columns,!

235 ## REQUIRED ARGUMENTS:
236 ## framePart - part hosting the frame
237 ## colSet - set containing all columns
238 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

239 def sets_of_cols(framePart, colSet, grid):
240 x_coord_matrix, y_coord_lst, z_coord_lst = grid
241 xWidth = max(x_axes_coords(grid))
242 zWidth = max(z_coord_lst)
243 cornerColumnsSet = set_of_corner_cols(framePart,colSet, grid)
244 longEdgeColumnsSet, shortEdgeColumnsSet =

sets_of_edge_cols(framePart, colSet, cornerColumnsSet,
xWidth, zWidth)

,!

,!

245 innerColumnsSet = set_of_inner_cols(framePart, colSet,
cornerColumnsSet, longEdgeColumnsSet, shortEdgeColumnsSet,
xWidth, zWidth)

,!

,!

246 outerColoumnSet = set_of_outer_cols(framePart, colSet, xWidth,
zWidth),!

247

248 ## Checking
249 nC = len(colSet.edges)
250 nCC = len(cornerColumnsSet.edges)
251 nLE = len(longEdgeColumnsSet.edges)
252 nSE = len(shortEdgeColumnsSet.edges)
253 nI = len(innerColumnsSet.edges)
254



C-128 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

255 if nC != (nCC+nLE+nSE+nI):
256 print('WARNING: Total number of columns are different from

the number placed in subsets.'),!

257

258 return (cornerColumnsSet, longEdgeColumnsSet,
shortEdgeColumnsSet, innerColumnsSet),!

259

260

261 # --------------- Sets of edge beams ------------
262 ## Creates sets of LongEdgeBeams and Short Edge Beams
263 ## REQUIRED ARGUMENTS:
264 ## framePart - part hosting the frame
265 ## beamSet - set containing all beams
266 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

267 ## xWidth - transverse width of building
268 ## zWidth - longitudinal width of building
269 ## height - height of building
270 def sets_of_edge_beams(framePart, beamSet, xWidth, zWidth, height):
271 edgesLst = []
272 for i in [0,1]:
273 x = i*xWidth
274 edgesLst += beamSet.edges.getByBoundingBox(xMin=x-0.01,

yMin=0, zMin=0, xMax=x+0.01, yMax=height,
zMax=zWidth)

,!

,!

275 edgesLst = filter(None, edgesLst)
276 edgesArray = part.EdgeArray(edgesLst)
277 LE = framePart.Set(name='LongEdgeBeams', edges=edgesArray)
278

279 edgesLst = []
280 for i in [0,1]:
281 z = i*zWidth
282 edgesLst += beamSet.edges.getByBoundingBox(xMin=0,

yMin=0, zMin=z-0.01, xMax=xWidth, yMax=height,
zMax=z+0.01)

,!

,!

283 edgesLst = filter(None, edgesLst)
284 edgesArray = part.EdgeArray(edgesLst)
285 SE = framePart.Set(name='ShortEdgeBeams', edges=edgesArray)
286 return (LE, SE)
287

288

289 # --------------- Sets of inner beams ------------
290 ## Creates set of internal beams
291 ## REQUIRED ARGUMENTS:



Appendix C: Python Scripts C-129

292 ## framePart - part hosting the frame
293 ## beamSet - set containing all beams
294 ## longEdgeBeamSet - set containing all LongEdgeBeams
295 ## shortEdgeBeamSet - set containing all ShortEdgeBeams
296 ## xWidth - transverse width of building
297 ## zWidth - longitudinal width of building
298 ## height - height of building
299 def set_of_inner_beams(framePart, beamSet, longEdgeBeamSet,

shortEdgeBeamSet, xWidth, zWidth, height):,!

300 excludeBeamEdges = longEdgeBeamSet.edges +
shortEdgeBeamSet.edges,!

301 edgesLst = []
302 edgesLst += beamSet.edges.getByBoundingBox(xMin=0, yMin=0,

zMin=0, xMax=xWidth, yMax=height, zMax=zWidth),!

303 edgesLst = filter(None, edgesLst)
304 edgesArray = part.EdgeArray(edgesLst)
305 IB = framePart.Set(name='InnerBeams', edges=edgesArray,

xEdges=excludeBeamEdges),!

306 return IB
307

308 # -------------- Create all sets of beams -------------
309 ## Combines the previously defined functions and creates all

subsets of beams,!

310 ## REQUIRED ARGUMENTs:
311 ## framePart - part hosting the frame
312 ## beamSet - set containing all beams
313 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

314 def sets_of_beams(framePart, beamSet, grid):
315 x_coord_matrix, y_coord_lst, z_coord_lst = grid
316 xWidth = max(x_axes_coords(grid))
317 zWidth = max(z_coord_lst)
318 height = max(y_coord_lst)
319 longEdgeBeamSet, shortEdgeBeamSet =

sets_of_edge_beams(framePart, beamSet, xWidth, zWidth,
height)

,!

,!

320 innerBeamSet = set_of_inner_beams(framePart, beamSet,
longEdgeBeamSet, shortEdgeBeamSet, xWidth, zWidth, height),!

321

322 ## Checking
323 nB = len(beamSet.edges)
324 nLE = len(longEdgeBeamSet.edges)
325 nSE = len(shortEdgeBeamSet.edges)
326 nI = len(innerBeamSet.edges)



C-130 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

327

328 if nB != (nLE+nSE+nI):
329 print('WARNING: Total number of beams are different from

the number placed in subsets.'),!

330

331 return (longEdgeBeamSet, shortEdgeBeamSet, innerBeamSet)
332

333

334 # -------------- Create all sets of diagonals -------------
335 ## Creates set of LongdEdgeDiagonals and ShortEdgeDiagonals
336 ## REQUIRED ARGUMENTs:
337 ## framePart - part hosting the frame
338 ## diagonalSet - set containing all diagonals
339 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

340 def sets_of_diagonals(framePart, diagonalSet, grid):
341 x_coord_matrix, y_coord_lst, z_coord_lst = grid
342 xWidth = max(x_axes_coords(grid))
343 zWidth = max(z_coord_lst)
344 height = max(y_coord_lst)
345 edgesLst = []
346 for i in [0,1]:
347 x = i*xWidth
348 edgesLst +=

diagonalSet.edges.getByBoundingBox(xMin=x-0.01,
yMin=0, zMin=0, xMax=x+0.01, yMax=height,
zMax=zWidth)

,!

,!

,!

349 edgesLst = filter(None, edgesLst)
350 edgesArray = part.EdgeArray(edgesLst)
351 LE = framePart.Set(name='LongEdgeDiagonals', edges=edgesArray)
352

353 edgesLst = []
354 for i in [0,1]:
355 z = i*zWidth
356 edgesLst += diagonalSet.edges.getByBoundingBox(xMin=0,

yMin=0, zMin=z-0.01, xMax=xWidth, yMax=height,
zMax=z+0.01)

,!

,!

357 edgesLst = filter(None, edgesLst)
358 edgesArray = part.EdgeArray(edgesLst)
359 SE = framePart.Set(name='ShortEdgeDiagonals', edges=edgesArray)
360 return (LE, SE)
361

362 # -------------- Create set of all walls -------------
363 ## REQUIRED ARGUMENTS:



Appendix C: Python Scripts C-131

364 ## wallPart - part hosting walls
365 def create_set_all_walls(wallPart):
366 f = wallPart.faces
367 ws = wallPart.Set(name='Walls', faces=f)
368 return ws
369

370 # -------------- Create subsets of wall panels -------------
371 ## Creates sets of Outer (connectors) and Inner (original wall)

Wall panel,!

372 ## REQUIRED ARGUMENTS:
373 ## wallPart - part hosting walls
374 ## allWallsSet - set of all walls
375 ## inner_name - name of inner set
376 ## outer_name - name of outer set
377 def subsets_of_wall_panels(wallPart, allWallsSet, inner_name,

outer_name):,!

378 allFaces = allWallsSet.faces
379 innerList = []
380 outerList = []
381 for f in allFaces:
382 vertList = f.getVertices()
383 if len(vertList) == 4:
384 innerList.append(f)
385 else:
386 outerList.append(f)
387 innerArray = part.FaceArray(innerList)
388 innerSet = wallPart.Set(name='CenterPanels', faces=innerArray)
389 outerArray = part.FaceArray(outerList)
390 outerSet = wallPart.Set(name='WallPanelConnectors',

faces=outerArray),!

391 return innerSet, outerSet
392

393 # -------------- Create set of all floors -------------
394 ## REQUIRED ARGUMENTS:
395 ## floorPart - part hosting floors
396 def create_set_all_floors(floorPart):
397 f = floorPart.faces
398 FS = floorPart.Set(name='Floors', faces=f)
399 return FS
400

401 # -------------- Create set of selected floors -------------
402 ## REQUIRED ARGUMENTS:
403 ## floorPart - part hosting floors
404 ## allFloorsSet - set of all floors



C-132 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

405 ## fromLevel - index of lowest level to be included in set
406 ## toLevel - index of hihgest level to be included in set
407 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

408 def set_of_selected_floors(floorPart, allFloorsSet, fromLevel,
toLevel, grid):,!

409 x_coord_matrix, y_coord_lst, z_coord_lst = grid
410 setName = 'Floors_'+str(fromLevel)+'-'+str(toLevel)
411 yStart = y_coord_lst[fromLevel]
412 yEnd = y_coord_lst[toLevel]+0.001
413 f = allFloorsSet.faces.getByBoundingBox(yMin=yStart-0.01,

yMax=yEnd+0.01),!

414 FS = floorPart.Set(name=setName, faces=f)
415 return FS
416

417 # -------------- Create surface of bottom surface of floors
-------------,!

418 ## REQUIRED ARGUMENTS:
419 ## floorPart - part hosting floors
420 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

421 def surface_of_bottom_floor(floorPart, grid):
422 x_coord_matrix, y_coord_lst, z_coord_lst = grid
423 surfName = 'Slab Surface'
424 yStart = y_coord_lst[0]
425 yEnd = y_coord_lst[0]
426 f = floorPart.faces.getByBoundingBox(yMin=yStart-0.01,

yMax=yEnd+0.01),!

427 floorPart.Surface(name=surfName, side1Faces=f)
428

429 # -------------- Creates set of floor types from dictionary
-------------,!

430 ## REQUIRED ARGUMENTS:
431 ## floorPart - part hosting floors
432 ## floor_dict - dictionary containing information on floors
433 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

434 def set_of_floor_types(floorPart, floor_dict, grid):
435 x_coord_matrix, y_coord_lst, z_coord_lst = grid
436 for key in floor_dict.keys():
437 setName = key
438 floor = floor_dict[key]
439 fromLevel = floor[0]
440 toLevel = floor[1]



Appendix C: Python Scripts C-133

441 yStart = y_coord_lst[fromLevel]-0.001
442 yEnd = y_coord_lst[toLevel]+0.001
443 f = floorPart.faces.getByBoundingBox(yMin=yStart, yMax=yEnd)
444 FS = floorPart.Set(name=setName, faces=f)
445 return FS
446

447 # -------------- Creates set of selected walls -------------
448 ## REQUIRED ARGUMENTS:
449 ## wallPart - part hosting walls
450 ## allWallsSet - set of all walls
451 ## planePos - grid line index defining position of walls
452 ## plane - 'xy' or 'yz'
453 def set_of_selected_walls(wallPart, allWallsSet, planePos, plane):
454 if plane.lower() == 'xy':
455 setName = 'xyWall_z='+str(planePos)
456 f = allWallsSet.faces.getByBoundingBox(zMin=planePos-0.001,

zMax=planePos+0.001),!

457 elif plane.lower() == 'yz':
458 setName = 'yzWall_x='+str(planePos)
459 f = allWallsSet.faces.getByBoundingBox(xMin=planePos-0.001,

xMax=planePos+0.001),!

460 else:
461 print('Error in wall set creation, wrong plane definition.')
462 ws = wallPart.Set(name=setName, faces=f)
463 return ws
464

465 # -------------- Creates set of all shafts -------------
466 ## REQUIRED ARGUMENTS:
467 ## shaftPart - part hosting shafts
468 def set_of_all_shafts(shaftPart):
469 f = shaftPart.faces
470 if f:
471 SS = shaftPart.Set(name='Shaft Walls', faces=f)
472 return SS
473

474 # -------------- Create individual sets of all shafts -------
475 ## REQUIRED ARGUMENTS:
476 ## shaftPart - part hosting shafts
477 ## shaft_dict - dictionary containing information about shafts
478 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

479 def set_of_single_shaft(shaftPart, shaft_dict, grid):
480 x_coord_matrix, y_coord_lst, z_coord_lst = grid
481 for key in shaft_dict.keys():



C-134 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

482 shaft = shaft_dict[key]
483 if shaft['Connect To Building']:
484 pt1_xz = tuple(shaft['Start Coordinate'])
485 pt2_xz = tuple(shaft['End Coordinate'])
486 startLevel = shaft['Start Level']
487 endLevel = shaft['End Level']
488 endLevelOffset = shaft['End Level Offset']
489 removeWall = shaft['Remove Wall']
490 yStart = y_coord_lst[startLevel]
491 yEnd = y_coord_lst[endLevel]+ endLevelOffset
492

493 pt1 = (pt1_xz[0], yStart, pt1_xz[1])
494 pt2 = (pt2_xz[0], yEnd, pt2_xz[1])
495 f = shaftPart.faces.getByBoundingBox(xMin=pt1[0]-0.001,

yMin=pt1[1]-0.001, zMin=pt1[2]-0.001,
xMax=pt2[0]+0.001, yMax=pt2[1]+0.001,
zMax=pt2[2]+0.001)

,!

,!

,!

496 shaftPart.Set(name=str(key), faces=f)
497 shaftPart.Surface(name=str(key)+'_surface',

side2Faces=f),!

498

499

500 # ---------- Create set of floor edges that intercepts with shaft
-------------,!

501 # This function creates a set of all floor edges adjacent to each
shaft,!

502 # REQUIRED ARGUMENTS:
503 # floorPart - part containing the floors the set will be saved to
504 # shaft_dict - dictionary containg all relevant information

regarding shaft geometry (generated from input file),!

505 # grid - List of lists containg the grid system (x,y and z
coordinates),!

506 def sets_of_shaft_floor_edges(floorPart, shaft_dict, grid):
507 x_coord_matrix, y_coord_lst, z_coord_lst = grid
508 allSets = []
509 for key in shaft_dict.keys():
510 shaft = shaft_dict[key]
511 if shaft['Connect To Building']:
512 pt1_xz = tuple(shaft['Start Coordinate'])
513 pt2_xz = tuple(shaft['End Coordinate'])
514 startLevel = shaft['Start Level']
515 endLevel = shaft['End Level']
516 removeWall = shaft['Remove Wall']
517 yStart = y_coord_lst[startLevel]



Appendix C: Python Scripts C-135

518 yEnd = y_coord_lst[endLevel]
519

520 pt1 = (pt1_xz[0], yStart, pt1_xz[1])
521 pt2 = (pt2_xz[0], yEnd, pt2_xz[1])
522 edgesLst =floorPart.edges.getByBoundingBox(xMin=pt1[0]- c

0.001, yMin=pt1[1]-0.001, zMin=pt1[2]-0.001,
xMax=pt2[0]+0.001, yMax=pt2[1]+0.001,
zMax=pt2[2]+0.001)

,!

,!

,!

523 floorPart.Set(name='FloorEdgesAround'+str(key),
edges=edgesLst),!

524 allSets.append(floorPart.sets['FloorEdgesAround'+str(ke c
y)]),!

525 if allSets:
526 floorPart.SetByBoolean(name='AllFloorEdgesAroundShafts',

operation=UNION, sets=allSets),!

527

528 # --------- Shaft Surfaces to Tie to Floor ---------------
529 ## Creates surface of outer surfacce of
530 ## shaft that will be used for creating ties to floors
531 ## REQUIRED ARGUMENTS:
532 ## shaftPart - part hosting shafts
533 ## floorPart - part hosting floors
534 ## shaft_dict - dictionary containing information about shafts
535 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

536 def shaft_surfaces_for_ties(shaftPart, floorPart, shaft_dict, grid):
537 x_coord_matrix, y_coord_lst, z_coord_lst = grid
538 for key in shaft_dict.keys():
539 shaft = shaft_dict[key]
540 if shaft['Connect To Building']:
541 pt1_xz = tuple(shaft['Start Coordinate'])
542 pt2_xz = tuple(shaft['End Coordinate'])
543 startLevel = shaft['Start Level']
544 endLevel = shaft['End Level']
545 removeWall = shaft['Remove Wall']
546 yStart = y_coord_lst[startLevel]
547 yEnd = y_coord_lst[endLevel]
548 pt1 = (pt1_xz[0], yStart, pt1_xz[1])
549 pt2 = (pt2_xz[0], yEnd, pt2_xz[1])
550

551 # --------- Set of Floor Connectors ---------------
552 ## Creates set of connector zones between floor elements
553 ## REQUIRED ARGUMENTS:
554 ## floorPart - part hosting floors



C-136 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

555 ## floor_dict - dictionary containing information about floors
556 ## shell_connector_dict - dictionary containing information

shell_type connections,!

557 ## grid - List of lists containg the grid system (x,y and z
coordinates),!

558 ## OPTIONAL ARGUMENT:
559 ## tol - tolerance for selecting the geometry
560 def set_of_floor_connectors(floorPart, floor_dict,

shell_connector_dict, grid, tol = 0.001):,!

561 x_coord_matrix, y_coord_lst, z_coord_lst = grid
562 x_coord_lst = x_axes_coords(grid)
563 xWidth = abs(x_coord_lst[-1]-x_coord_lst[0])
564 for key in floor_dict.keys():
565 floor = floor_dict[key]
566 faceLst = []
567 if floor[5] == 1:
568 connector = shell_connector_dict[key]
569 section = connector['Section']
570 connWidth = section[0]
571 approxElemWidth = floor[6]
572 numOfConn = int(xWidth/approxElemWidth)+1
573 elemWidth = xWidth/(numOfConn+1)
574 setName = key
575 xCoord = elemWidth
576 while xCoord < x_coord_lst[-1]-connWidth:
577 xmin = xCoord-connWidth/2-tol
578 xmax = xCoord+connWidth/2+tol
579 f = floorPart.sets[setName].faces.getByBoundingBox( c

xMin=xmin,
xMax=xmax)

,!

,!

580 for i in range(len(f)):
581 faceLst.append(f[i])
582 xCoord += elemWidth
583 faceArray = part.FaceArray(faceLst)
584 floorPart.Set(faces=faceArray, name=key+'_Connectors')
585

586 # -------------- Create set contaning a single node (to be used to
get results) -------------,!

587 ## REQUIRED ARGUMENTS:
588 ## floorPart - part hosting floors
589 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

590 ## OPTIONAL ARGUMENTS:
591 ## setName - name of set



Appendix C: Python Scripts C-137

592 ## relX - x-position of node, as fraction of total x-width
593 ## relY - y-position of node, as fraction of total y-width
594 ## relZ - z-position of node, as fraction of total z-width
595 ## If neither are altered, central node on top floor is selected
596 def create_output_node_set(floorPart, grid,

setName='OUTPUTNODESET', relX=0.5, relY=1, relZ=0.5):,!

597 x_coord_matrix, y_coord_lst, z_coord_lst = grid
598 x_coord_lst = x_axes_coords(grid)
599 x_coord = relX*(x_coord_lst[-1]-x_coord_lst[0])
600 z_coord = relZ*(z_coord_lst[-1]-z_coord_lst[0])
601 y_coord = relY*(y_coord_lst[-1]-y_coord_lst[0])
602 n = floorPart.nodes
603 outputNodeLst = [n.getClosest((x_coord, y_coord, z_coord))]
604 outputNodeArray = mesh.MeshNodeArray(nodes=outputNodeLst)
605 s = floorPart.Set(name=setName, nodes=outputNodeArray)
606 return s
607

608 # ------------- Set of Outer Floor Edges ------
609 ## REQUIRED ARGUMENTS:
610 ## floorPart - part hosting floors
611 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

612 ## OPTIONAL ARGUMENT:
613 ## tol - tolerance for selecting the geometry
614 def outer_floor_edges_set(floorPart, grid, tol = 0.01):
615 x_coord_matrix, y_coord_lst, z_coord_lst = grid
616 x_coord_lst = x_axes_coords(grid)
617 xmin=x_coord_lst[0]
618 xmax=x_coord_lst[-1]
619 zmin=z_coord_lst[0]
620 zmax=z_coord_lst[-1]
621 e_z = []
622 e_x = []
623 e_z.append(floorPart.edges.getByBoundingBox(xMin=xmin-tol,

zMin=zmin-tol, xMax=xmin+tol, zMax=zmax+tol)),!

624 e_z.append(floorPart.edges.getByBoundingBox(xMin=xmax-tol,
zMin=zmin-tol, xMax=xmax+tol, zMax=zmax+tol)),!

625 floorPart.Set(name='OuterFloorEdgesZDir', edges=e_z)
626 e_x.append(floorPart.edges.getByBoundingBox(xMin=xmin-tol,

zMin=zmin-tol, xMax=xmax+tol, zMax=zmin+tol)),!

627 e_x.append(floorPart.edges.getByBoundingBox(xMin=xmin-tol,
zMin=zmax-tol, xMax=xmax+tol, zMax=zmax+tol)),!

628 floorPart.Set(name='OuterFloorEdgesXDir', edges=e_x)
629 e = e_z + e_x



C-138 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

630 floorPart.Set(name='OuterFloorEdges', edges=e)
631

632

633 # ------------ Floor Surfaces for Frame Ties -----------
634 ## REQUIRED ARGUMENTS:
635 ## floorPart - part hosting floors
636 def floor_surfaces(floorPart):
637 f = floorPart.faces
638 floorPart.Surface(name='FloorSurfaces', side1Faces=f)
639

640

641 # ------------ Set of Shaft Edges At Removed Wall ------------
642 ## REQUIRED ARGUMENTS:
643 ## shaftPart - part hosting shafts
644 ## shaft_dict - dictionary containing information about shafts
645 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

646 ## OPTIONAL ARGUMENT:
647 ## tol - tolerance for selecting the geometry
648 def shaft_side_edges_set(shaftPart, shaft_dict, grid, tol=0.01):
649 x_coord_matrix, y_coord_lst, z_coord_lst = grid
650 for key in shaft_dict.keys():
651 shaft = shaft_dict[key]
652 if shaft['Connect To Building']:
653 pt1_xz = tuple(shaft['Start Coordinate'])
654 pt2_xz = tuple(shaft['End Coordinate'])
655 startLevel = shaft['Start Level']
656 endLevel = shaft['End Level']
657 endLevelOffset = shaft['End Level Offset']
658 removeWall = shaft['Remove Wall']
659 yStart = y_coord_lst[startLevel]
660 yEnd = y_coord_lst[endLevel]+endLevelOffset
661

662 if removeWall == 1:
663 e = shaftPart.edges.getByBoundingBox(xMin=pt1_xz[0]-

tol, yMin=yStart-tol, zMin=pt1_xz[1]-tol,
xMax=pt2_xz[0]+tol, yMax=yEnd+tol,
zMax=pt1_xz[1]+tol)

,!

,!

,!

664 shaftPart.Set(name=key+'_SideEdges', edges=e)
665

666 if removeWall == 2:



Appendix C: Python Scripts C-139

667 e = shaftPart.edges.getByBoundingBox(xMin=pt2_xz[0]-
tol, yMin=yStart-tol, zMin=pt1_xz[1]-tol,
xMax=pt2_xz[0]+tol, yMax=yEnd+tol,
zMax=pt2_xz[1]+tol)

,!

,!

,!

668 shaftPart.Set(name=key+'_SideEdges', edges=e)
669

670 if removeWall == 3:
671 e = shaftPart.edges.getByBoundingBox(xMin=pt1_xz[0]-

tol, yMin=yStart-tol, zMin=pt2_xz[1]-tol,
xMax=pt2_xz[0]+tol, yMax=yEnd+tol,
zMax=pt2_xz[1]+tol)

,!

,!

,!

672 shaftPart.Set(name=key+'_SideEdges', edges=e)
673

674 if removeWall == 4:
675 e = shaftPart.edges.getByBoundingBox(xMin=pt1_xz[0]-

tol, yMin=yStart-tol, zMin=pt1_xz[1]-tol,
xMax=pt1_xz[0]+tol, yMax=yEnd+tol,
zMax=pt2_xz[1]+tol)

,!

,!

,!

676 shaftPart.Set(name=key+'_SideEdges', edges=e)
677

678

679 # ----------- Set of Shaft Edges for Wall Ties ------------
680 ## REQUIRED ARGUMENTS:
681 ## shaftPart - part hosting shafts
682 ## shaft_dict - dictionary containing information about shafts
683 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

684 def shaft_edges_for_wall_ties(shaftPart, shaft_dict, grid):
685 shaft_side_edges_set(shaftPart, shaft_dict, grid)
686 x_coord_matrix, y_coord_lst, z_coord_lst = grid
687 x_coord_lst = x_axes_coords(grid)
688 setList = []
689 for key in shaft_dict.keys():
690 shaft = shaft_dict[key]
691 if shaft['Connect To Building']:
692 pt1_xz = tuple(shaft['Start Coordinate'])
693 pt2_xz = tuple(shaft['End Coordinate'])
694 startLevel = shaft['Start Level']
695 endLevel = shaft['End Level']
696 endLevelOffset = shaft['End Level Offset']
697 removeWall = shaft['Remove Wall']
698 yStart = y_coord_lst[startLevel]
699 yEnd = y_coord_lst[endLevel]+endLevelOffset



C-140 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

700 if isclose(pt1_xz[1],z_coord_lst[0],rel_tol=1e-06) and
removeWall==1:,!

701 setList.append(shaftPart.sets[key+'_SideEdges'])
702 if isclose(pt2_xz[0],x_coord_lst[-1],rel_tol=1e-06) and

removeWall==2:,!

703 setList.append(shaftPart.sets[key+'_SideEdges'])
704 if isclose(pt2_xz[0],z_coord_lst[-1],rel_tol=1e-06) and

removeWall==3:,!

705 setList.append(shaftPart.sets[key+'_SideEdges'])
706 if isclose(pt1_xz[0],x_coord_lst[0],rel_tol=1e-06) and

removeWall==4:,!

707 setList.append(shaftPart.sets[key+'_SideEdges'])
708 if setList:
709 shaftPart.SetByBoolean(name='ShaftEdgesForWallTies',

sets=setList, operation=UNION),!

710

711

712 # ------------ Assembly Set of Edges Used For Wall TIes ---------
713 ## REQUIRED ARGUMENTS:
714 ## shaftPart - part hosting shafts
715 ## framePart - part hosting frame
716 ## floorPart - part hosting floors
717 ## shellConnectorDict - dictionary containing information about

shell connections,!

718 def edges_for_wall_ties_set(shaftPart, framePart, floorPart,
shellConnectorDict):,!

719 a = get_assembly()
720 connectWallsTo =

shellConnectorDict['Walls']['ConnectTo'].lower(),!

721 ofe = a.allInstances[floorPart.name].sets['OuterFloorEdges']
722 leb = a.allInstances[framePart.name].sets['LongEdgeBeams']
723 seb = a.allInstances[framePart.name].sets['ShortEdgeBeams']
724 oc = a.allInstances[framePart.name].sets['OuterColoumns']
725 setList = []
726 if 'floors' in connectWallsTo:
727 setList.append(ofe)
728 if 'beams' in connectWallsTo:
729 setList.append(leb)
730 setList.append(seb)
731 if 'columns' in connectWallsTo:
732 setList.append(oc)
733 if len(setList) < 0:
734 print('Error: Check wall connection input.')



Appendix C: Python Scripts C-141

735 a.SetByBoolean(name='EdgesForWallTies', sets=setList,
operation=UNION),!

736

737

738 # ----------- Inner Surface of Wall ---------
739 ## REQUIRED ARGUMENTS:
740 ## wallPart- part hosting walls
741 def wall_surfaces(wallPart):
742 f = wallPart.faces
743 wallPart.Surface(name='InnerSurface', side1Faces=f)
744 wallPart.Surface(name='OuterSurface', side2Faces=f)
745

746 # ----------- Set of Added Wire ----------
747 # This function creates individual sets of the added Wires
748 # REQUIRED ARGUMENTS:
749 # framePart - part hosting the added Wires
750 # add_dicts - dictionary containing required data about the added

Wires,!

751 # OPTIONAL ARGUMENT:
752 # tol - tolerance used to ensure that all desired objects are

selected by bonding box,!

753 # default value is 0.01
754 def sets_of_added_wires(framePart, add_dicts, tol=0.01):
755 placements = add_dicts['Placement']
756 connectors = add_dicts['Connector']
757 includeConn = add_dicts['IncludeConn']
758 # Set of each individual wire
759 for key in placements.keys():
760 startPt = placements[key]['Start Point']
761 endPt = placements[key]['End Point']
762 dX = endPt[0]-startPt[0]
763 dY = endPt[1]-startPt[1]
764 dZ = endPt[2]-startPt[2]
765 wireEdge = framePart.edges.getByBoundingBox(xMin=min(startP c

t[0],endPt[0])-tol, yMin=min(startPt[1],endPt[1])-tol,
zMin=min(startPt[2],endPt[2])-tol,
xMax=max(startPt[0],endPt[0])+tol,
yMax=max(startPt[1],endPt[1])+tol,
zMax=max(startPt[2],endPt[2])+tol)

,!

,!

,!

,!

,!

766 framePart.Set(name=key, edges=wireEdge)
767

768 if includeConn[key]:
769 segLength = connectors[key][0]



C-142 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

770 totLength = np.sqrt(np.power(dX,2)+np.power(dY,2)+np.po c
wer(dZ,2)),!

771 if totLength <= 2*segLength:
772 connectorEdges = framePart.sets[key].edges
773 framePart.Set(name=key+' Connectors',

edges=connectorEdges),!

774 else:
775 if startPt[0]!=endPt[0] and startPt[1]!=endPt[1]

and startPt[2]!=endPt[2]:,!

776 print('ERROR: Added wire "'+key+'" is not
placed in one of the principal planes!'),!

777 elif startPt[0] != endPt[0] and startPt[1] ==
endPt[1] and startPt[2] == endPt[2]:,!

778 startSegPt = (startPt[0]+segLength, startPt[1],
startPt[2]),!

779 endSegPt = (endPt[0]-segLength, endPt[1],
endPt[2]),!

780 elif startPt[0] == endPt[0] and startPt[1] !=
endPt[1] and startPt[2] == endPt[2]:,!

781 startSegPt = (startPt[0], startPt[1]+segLength,
startPt[2]),!

782 endSegPt = (endPt[0], endPt[1]-segLength,
endPt[2]),!

783 elif startPt[0] == endPt[0] and startPt[1] ==
endPt[1] and startPt[2] != endPt[2]:,!

784 startSegPt = (startPt[0], startPt[1],
startPt[2]+segLength),!

785 endSegPt = (endPt[0], endPt[1],
endPt[2]-segLength),!

786

787 startConnEdge = framePart.sets[key].edges.getByBoun c
dingBox(xMin=min(startPt[0],startSegPt[0])-tol,
yMin=min(startPt[1],startSegPt[1])-tol,

zMin=min(startPt[2],startSegPt[2])-tol,
xMax=max(startPt[0],startSegPt[0])+tol,
yMax=max(startPt[1],startSegPt[1])+tol,
zMax=max(startPt[2],startSegPt[2])+tol)

,!

,!

,!

,!

,!

,!

788 endConnEdge = framePart.sets[key].edges.getByBoundi c
ngBox(xMin=min(endPt[0],endSegPt[0])-tol,
yMin=min(endPt[1],endSegPt[1])-tol,
zMin=min(endPt[2],endSegPt[2])-tol,
xMax=max(endPt[0],endSegPt[0])+tol,
yMax=max(endPt[1],endSegPt[1])+tol,
zMax=max(endPt[2],endSegPt[2])+tol)

,!

,!

,!

,!

,!

,!



Appendix C: Python Scripts C-143

789 framePart.Set(name=key+' Connectors', edges =
[startConnEdge, endConnEdge]),!

790

791 # ------------- Floor-to-shaft connector set -------------
792 ## Creates set of floor-to-shaft connector zones
793 ## REQUIRED ARGUMENTS:
794 ## floorPart - part hosting floors
795 ## floor_dict - dictionary containing information about floors
796 ## shaft_dict - dictionary containing information about shafts
797 ## floor_to shaft_dict - dictionary containing information about

floor-to-shaft connections,!

798 ## grid - List of lists containg the grid system (x,y and z
coordinates),!

799 # OPTIONAL ARGUMENT:
800 # tol - tolerance used to ensure that all desired objects are

selected by bonding box default value is 0.01,!

801 def floor_to_shaft_set(floorPart, floor_dict, shaft_dict,
floor_to_shaft_dict, grid, tol = 0.001):,!

802 x_coord_matrix, y_coord_lst, z_coord_lst = grid
803 x_coord_lst = x_axes_coords(grid)
804 if floor_to_shaft_dict:
805 for floor_key in floor_to_shaft_dict.keys():
806 setName = floor_key+' Floor-to-shaft Connectors'
807 floor = floor_dict[floor_key]
808 floor_shaft_conn = floor_to_shaft_dict[floor_key]
809 startLevel_floor = floor[0]
810 endLevel_floor = floor[1]
811 connWidth = floor_shaft_conn['Section'][0]
812 faceLst = []
813 for shaft_key in shaft_dict.keys():
814 shaft = shaft_dict[shaft_key]
815 if shaft['Connect To Building']:
816 startLevel_shaft = shaft['Start Level']
817 endLevel_shaft = shaft['End Level']
818 if startLevel_shaft < startLevel_floor:
819 startLevel = startLevel_floor
820 else:
821 startLevel = startLevel_shaft
822 if endLevel_shaft < endLevel_floor:
823 endLevel = endLevel_shaft
824 else:
825 endLevel = endLevel_floor
826 yStart = y_coord_lst[startLevel]
827 yEnd = y_coord_lst[endLevel]



C-144 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

828 #if startLevel_shaft == 0:
829 # yStart = yStart+2*tol
830

831 xzStart_shaft = shaft['Start Coordinate']
832 xzEnd_shaft = shaft['End Coordinate']
833

834 xzStart_connector =
(xzStart_shaft[0]-connWidth,
xzStart_shaft[1]-connWidth)

,!

,!

835 xzEnd_connector = (xzEnd_shaft[0]+connWidth,
xzEnd_shaft[1]+connWidth),!

836

837 f = floorPart.sets[floor_key].faces.getByBoundi c
ngBox(xMin=xzStart_connector[0]-tol,
yMin=yStart-tol,
zMin=xzStart_connector[1]-tol,
xMax=xzEnd_connector[0]+tol, yMax=yEnd+tol,
zMax=xzEnd_connector[1]+tol)

,!

,!

,!

,!

,!

838 for i in range(len(f)):
839 faceLst.append(f[i])
840 else:
841 continue
842 faceArray = part.FaceArray(faceLst)
843 if faceArray:
844 floorPart.Set(faces=faceArray, name=setName)
845

846 # ------------------ Set of Nodes At Bottom of Columns ------------
847 ## REQUIRED ARGUMENTS:
848 ## framePart - part hosting frame
849 ## grid - List of lists containg the grid system (x,y and z

coordinates),!

850 # OPTIONAL ARGUMENT:
851 # tol - tolerance used to ensure that all desired objects are

selected by bonding box default value is 0.01,!

852 def set_of_bottom_nodes(framePart, grid, tol = 0.01):
853 x_coord_matrix, y_coord_lst, z_coord_lst = grid
854 x_coord_lst = x_axes_coords(grid)
855 verts = framePart.vertices.getByBoundingBox(yMin=y_coord_lst[0]-

tol,
yMax=y_coord_lst[0]+tol)

,!

,!

856 framePart.Set(vertices=verts, name='Column Ends')



Appendix C: Python Scripts C-145

C.11 TTB_Windload_EC.py

This file contains all the functions and formulas for calculating the wind load
according to Eurocode 1.

1 # Script for wind calculations according to Eurocode.
2 # Equation references are from NS-EN-1991-1-4 (inc. Appendices)

unless otherwise is stated.,!

3 # Friction forces are assumed to be negligible.
4 # Forces on internal faces cancel each other (forces with equal

magnitude acts on opposing faces).,!

5 # -------------- Input folder path -------------
6 # Folder where all the scripts are located:
7 scriptsFolder = 'C:\\Users\\username\\TTBParametricModel'
8

9 # -------------- Import Packages -------------
10 from abaqus import *
11 from abaqusConstants import *
12 import regionToolset
13 import numpy as np
14 import math
15 import sys
16 import sketch
17 import part
18 import material
19 import section
20 import assembly
21 import material
22 import mesh
23 import time
24 import odbAccess
25 import load
26 import random
27 import os
28 import step
29

30 sys.path.append(scriptsFolder)
31

32 from TTB_geometry import *
33 from TTB_excel import *
34 from TTB_post_processing import *
35 from TTB_general import *
36



C-146 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

37 # Creates a dictionary containing all the parameters used in the
calculations based on the excel imported dict and the results
of the free vibration step.

,!

,!

38 def create_wind_param_dict(xlsx_dict, res_dict, grid):
39 x_coord_matrix, y_coord_lst, z_coord_lst = grid
40 x_coord_lst = x_axes_coords(grid)
41 d = {}
42 cat = xlsx_dict['TerrainCat']
43 d['z_0'], d['z_min'] = terrain_param(cat)
44

45 for key in ['Cdir', 'Calt', 'Cseason', 'Co', 'kl',
'ModeExponent', 'v_b0',,!

46 'WindDir', 'ReturnPeriod_Acc', 'ReturnPeriod_Load',
'SampleHeigth_Acc']:,!

47 d[key] = xlsx_dict[key]
48

49 d['AnnualExceedenceProb_Load'] =
annual_exceedence_probability(d['ReturnPeriod_Load']),!

50 d['Cprob_Load'] = c_prob(d['AnnualExceedenceProb_Load'])
51

52 d['AnnualExceedenceProb_Acc'] =
annual_exceedence_probability(d['ReturnPeriod_Acc']),!

53 d['Cprob_Acc'] = c_prob(d['AnnualExceedenceProb_Acc'])
54

55 if d['WindDir'].lower() == 'x':
56 d['b'] = z_coord_lst[-1]-z_coord_lst[0]
57 d['d'] = x_coord_lst[-1]-x_coord_lst[0]
58 else:
59 d['d'] = z_coord_lst[-1]-z_coord_lst[0]
60 d['b'] = x_coord_lst[-1]-x_coord_lst[0]
61

62 d['h'] = y_coord_lst[-1]
63 d['r'] = xlsx_dict['r']
64 d['z_s'] = max(0.6*d['h'], d['z_min'])
65

66 if xlsx_dict['NatFreq'] == 'Abaqus':
67 d['NatFreq'] = res_dict['NatFreq']
68 elif xlsx_dict['NatFreq'] == 'Eurocode':
69 d['NatFreq'] = 46/h
70 else:
71 d['NatFreq'] = xlsx_dict['NatFreq']
72

73 if xlsx_dict['LogDec_Struct'] == 'Abaqus':
74 d['LogDec_Struct'] = res_dict['LogDec_Struct']



Appendix C: Python Scripts C-147

75 else:
76 d['LogDec_Struct'] = xlsx_dict['LogDec_Struct']
77

78 d['DampingRatio_Struct'] = damping_ratio(d['LogDec_Struct'])
79

80 if xlsx_dict['LogDec_Aero'] == 'Eurocode':
81 d['LogDec_Aero'] = delta_a(d)
82 else:
83 d['LogDec_Aero'] = xlsx_dict['LogDec_Aero']
84

85 d['DampingRatio_Aero'] = damping_ratio(d['LogDec_Aero'])
86

87 d['LogDec_Total'] = d['LogDec_Struct'] + d['LogDec_Aero']
88 d['DampingRatio_Total'] = damping_ratio(d['LogDec_Total'])
89

90 d['m_e'] = m_e(d)
91

92 return d
93

94

95 # Change Cprob depending on type of calculation and its specified
return periods (Acceleration vs Load),!

96 def set_Cprob(set_to, param_dict):
97 if set_to == None or set_to.lower() == 'none':
98 param_dict['Cprob'] = None
99 print('Cprob is set to "None".')

100 elif set_to.lower() in ['acc', 'acceleration']:
101 param_dict['Cprob'] = param_dict['Cprob_Acc']
102 print('Cprob is set to "acceleration" value.')
103 elif set_to.lower() in ['load']:
104 param_dict['Cprob'] = param_dict['Cprob_Load']
105 print('Cprob is set to "load" value.')
106 elif set_to.lower() in ['delete', 'del']:
107 try:
108 del param_dict['Cprob']
109 print('Cprob reset/deleted.')
110 except:
111 pass
112 else:
113 print('Error: Could not change C_prob (Invalid input)')
114 set_Cprob('delete', param_dict)
115

116

117 # Terrain parameters (Table NA.4.1)



C-148 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

118 def terrain_param(cat):
119 if cat == 0:
120 z_0 = 0.003
121 z_min = 2.0
122 elif cat == 1:
123 z_0 = 0.01
124 z_min = 2.0
125 elif cat == 2:
126 z_0 = 0.05
127 z_min = 4.0
128 elif cat == 3:
129 z_0 = 0.3
130 z_min = 8.0
131 elif cat == 4:
132 z_0 = 1.0
133 z_min = 16.0
134 else:
135 print('Error: Invalid terrain category. Parameters for cat.

2 set'),!

136 return terrain_param(2)
137 return z_0, z_min
138

139

140 # Basic wind velocity (Eq. NA.4.1)
141 def v_b(param_dict):
142 c_dir = param_dict['Cdir']
143 c_season = param_dict['Cseason']
144 c_alt = param_dict['Calt']
145 c_prob = param_dict['Cprob']
146 v_b0 = param_dict['v_b0']
147 return c_dir*c_season*c_alt*c_prob*v_b0
148

149

150 # Turbulence Length Scale (Eq. B.1)
151 def L(z, param_dict):
152 z_0 = param_dict['z_0']
153 z_min = param_dict['z_min']
154 z_t = 200 # Ref. height
155 L_t = 300 # Ref. length scale
156 alpha = 0.67 + 0.05 * math.log(z_0)
157 if z < z_min:
158 return L(z_min, param_dict)
159 else:
160 return L_t*(z/z_t)**alpha



Appendix C: Python Scripts C-149

161

162

163 # Terrain roughness coefficient (Eq. 4.5)
164 def k_r(param_dict):
165 z_0 = param_dict['z_0']
166 return 0.19*(z_0/0.05)**0.07
167

168

169 # Roughness Coefficient (Eq. 4.4)
170 def c_r(z, param_dict):
171 z_0 = param_dict['z_0']
172 z_min = param_dict['z_min']
173 z_max = 200
174 if z < z_min:
175 return c_r(z_min, param_dict)
176 elif z > z_max:
177 return c_r(z_max, param_dict)
178 else:
179 return k_r(param_dict)*math.log(z/z_0)
180

181

182 # Annual exceedence probability
183 # Often the formula p=1/T is used, but it does not work with short

return periods, therefore the exponetial expression
p=1-exp(-1/T) is used.

,!

,!

184 def annual_exceedence_probability(return_period):
185 T = return_period
186 return 1-exp(-1/T)
187

188

189 # Propability Coefficient
190 def c_prob(p, K=0.2, n=0.5):
191 f = 1-K*np.log(-np.log(1-p))
192 g = 1-K*np.log(-np.log(0.98))
193 return (f/g)**n
194

195

196 # Mean wind velocity (Eq. 4.3)
197 def v_m(z, param_dict):
198 c_o = param_dict['Co']
199 return c_r(z, param_dict)*c_o*v_b(param_dict)
200

201

202 # Non-dimensional frequency (Eq. B.2)



C-150 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

203 def f_L(z,n, param_dict):
204 return n*L(z, param_dict)/v_m(z, param_dict)
205

206

207 # Non-dimensional power spectral density function (Eq. B.2)
208 def S_L(z,n, param_dict):
209 s = (6.8*f_L(z,n,param_dict))/((1+10.2*f_L(z,n,param_dict))**(5 c

/3)),!

210 return s
211

212

213 # Background factor (Eq. B.3)
214 def B(param_dict):
215 z_s = param_dict['z_s']
216 b = param_dict['b']
217 h = param_dict['h']
218 g = ((b+h)/L(z_s,param_dict))**0.63
219 return (1/(1+0.9*g))**0.5
220

221

222 # Eq. B.7
223 def eta_h(param_dict):
224 z_s = param_dict['z_s']
225 h = param_dict['h']
226 n_1 = param_dict['NatFreq']
227 return (4.6*h/L(z_s,param_dict))*f_L(z_s, n_1,param_dict)
228

229

230 # Eq. B.8
231 def eta_b(param_dict):
232 z_s = param_dict['z_s']
233 b = param_dict['b']
234 n_1 = param_dict['NatFreq']
235 return (4.6*b/L(z_s,param_dict))*f_L(z_s,n_1,param_dict)
236

237

238 # Aerodynamic admittance (Eq. B.7)
239 def R_h(param_dict):
240 n = eta_h(param_dict)
241 if n == 0:
242 return 1
243 else:
244 return (1/n)-(1/(2*n**2))*(1-math.e**(-2*n))
245



Appendix C: Python Scripts C-151

246

247 # Aerodynamic admittance (Eq. B.8)
248 def R_b(param_dict):
249 n = eta_b(param_dict)
250 if n == 0:
251 return 1
252 else:
253 return (1/n)-(1/(2*n**2))*(1-math.e**(-2*n))
254

255

256 # Resonance response factor (Eq. B.6)
257 def R(param_dict):
258 log_dec = param_dict['LogDec_Total']
259 z_s = param_dict['z_s']
260 n_1 = param_dict['NatFreq']
261 g = (math.pi**2/(2*log_dec))*S_L(z_s,

n_1,param_dict)*R_h(param_dict)*R_b(param_dict),!

262 return g**0.5
263

264

265 # Equivalent mass (Section F.4(2))
266 def m_e(param_dict):
267 h = param_dict['h']
268 h_min = (2/3)*h
269 m = get_model()
270 part_keys = m.parts.keys()
271 massUpperThird = 0
272 for part_key in part_keys:
273 prt = m.parts[part_key]
274 edgeSelection = prt.edges.getByBoundingBox(yMin=h_min)
275 faceSelection = prt.faces.getByBoundingBox(yMin=h_min)
276 cellSelection = prt.cells.getByBoundingBox(yMin=h_min)
277 edgeSelectionMass =

prt.getMassProperties(regions=edgeSelection)['mass'],!

278 faceSelectionMass =
prt.getMassProperties(regions=faceSelection)['mass'],!

279 cellSelectionMass =
prt.getMassProperties(regions=cellSelection)['mass'],!

280

281 if edgeSelectionMass:
282 massUpperThird += edgeSelectionMass
283 if faceSelectionMass:
284 massUpperThird += faceSelectionMass
285 if cellSelectionMass:



C-152 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

286 massUpperThird += cellSelectionMass
287

288 avgDistMassUpperThird = massUpperThird/(h/3)
289 return avgDistMassUpperThird
290

291

292 # logarithmic Decrement (Aerodynamic) (Eq. F.16)
293 def delta_a(param_dict, acc_or_load='Load'):
294 set_Cprob(acc_or_load, param_dict)
295 h_vector, disp_vector = mode_shape_vector(param_dict)
296 zs = param_dict['z_s']
297 b = param_dict['b']
298 n1 = param_dict['NatFreq']
299 ro = 1.25
300 cf = c_f(param_dict)
301 vm = v_m(zs, param_dict)
302 me = m_e(param_dict)
303 da = (cf*ro*b*vm)/(2*n1*me)
304 set_Cprob('delete', param_dict)
305 return da
306

307

308 # Up-crossing frequency (Eq. B.5)
309 def nu(param_dict):
310 n_1 = param_dict['NatFreq']
311 v = n_1*(R(param_dict)**2/(B(param_dict)**2+R(param_dict)**2))* c

*0.5,!

312 return max(v, 0.08)
313

314

315 # Peak Factor (Eq. B.4)
316 def k_p(param_dict, v=None):
317 if not v:
318 v = nu(param_dict)
319 T = 600
320 g = 2*math.log(v*T)
321 if g <= 0:
322 return 3
323 else:
324 return max(g**0.5+(0.6/(g**0.5)), 3)
325

326

327 # Standard deviation of turbulence (Eq. 4.6)
328 def sigma_v(param_dict):



Appendix C: Python Scripts C-153

329 k_l = param_dict['kl']
330 return k_r(param_dict)*v_b(param_dict)*k_l
331

332

333 # Turbulence intensity (Eq. 4.7)
334 def I_v(z, param_dict):
335 z_max = 200
336 z_min = param_dict['z_min']
337 if z < z_min:
338 return I_v(z_min, param_dict)
339 elif z > z_max:
340 return I_v(z_max, param_dict)
341 else:
342 return sigma_v(param_dict)/v_m(z, param_dict)
343

344

345 # Size Factor (Eq. 6.2)
346 def c_s(param_dict):
347 z_s = param_dict['z_s']
348 g = 7*I_v(z_s, param_dict)
349 return (1+g*B(param_dict))/(1+g)
350

351

352 # Dynamic Factor (Eq. 6.3)
353 def c_d(param_dict):
354 z_s = param_dict['z_s']
355 f = 1+2*k_p(param_dict)*I_v(z_s,param_dict)*((B(param_dict)**2+ c

R(param_dict)**2)**0.5),!

356 g = 1+7*I_v(z_s,param_dict)*B(param_dict)
357 return f/g
358

359

360 # Peak velocity pressure (Eq. NA.4.8)
361 def q_p(z, param_dict):
362 ro = 1.25
363 qm = 0.5*ro*v_m(z, param_dict)**2
364 qp = qm*(1+2*3.5*I_v(z, param_dict))
365 return qp
366

367

368 # Exposure coefficient (Eq. 4.9)
369 def c_e(z, param_dict):
370 return q_p(z, param_dict)/q_b(param_dict)
371



C-154 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

372

373 # Basic velocity pressure (Eq. 4.10)
374 def q_b(param_dict):
375 ro = 1.25
376 return 0.5*ro*v_b(param_dict)**2
377

378

379 # Reference Height (Fig. 7.4)
380 def z_e(param_dict):
381 h = param_dict['h']
382 b = param_dict['b']
383 if h <= b:
384 return [h]
385 elif h > 2*b:
386 z_strip = (h-2*b)/4
387 temp = [b+z_strip*i for i in range(5)]
388 return temp+[h]
389 else:
390 return [b, h]
391

392

393 # Force coefficient of rectangular sections (Fig. 7.23)
394 # Using linear interpolation to approx. fig. 7.36 gives slightly

inaccurate results...,!

395 def c_f0(param_dict):
396 d = param_dict['d']
397 b = param_dict['b']
398 xp = [0.1, 0.2, 0.6, 0.7, 1, 2, 5, 10, 20, 50]
399 fp = [2, 2, 2.35, 2.4, 2.1, 1.65, 1, 0.9, 0.9, 0.9]
400 x = d/b
401 return np.interp(x, xp, fp, left=None, right=None)
402

403

404 # Reduction factor for quadratic sections with rounded corners
(Fig. 7.24),!

405 def psi_r(param_dict):
406 r = param_dict['r']
407 b = param_dict['b']
408 xp = [0, 0.2, 0.4]
409 fp = [1, 0.5, 0.5]
410 x = r/b
411 return np.interp(x, xp, fp)
412

413



Appendix C: Python Scripts C-155

414 # Reduction factor for end effects (Tab. 7.16 + Fig. 7.36)
415 # Using linear interpolation to approx. fig. 7.36 gives slightly

inaccurate results...,!

416 def psi_lambda(param_dict):
417 h = param_dict['h']
418 b = param_dict['b']
419 l = h
420 xp = [15, 50]
421 fp = [1.0, 0.7]
422 c = np.interp(l, xp, fp)
423 lam = max(70, c*l/b)
424 xp = [1, 10, 70, 200]
425 fp = [0.6, 0.7, 0.92, 1] # Assumes phi = 1.0 (Eq. 7.28)
426 return np.interp(lam, xp, fp)
427

428

429 # Force coef. for struc. elements with rect. cross sections (Eq.
7.9),!

430 def c_f(param_dict):
431 return c_f0(param_dict)*psi_r(param_dict)*psi_lambda(param_dict)
432

433

434 # Factor for reduction in correlation (Section 7.2.2(3))
435 def c_corr(param_dict):
436 h = param_dict['h']
437 d = param_dict['d']
438 x = h/d
439 xp = [1, 5]
440 fp = [0.85, 1]
441 return np.interp(x, xp, fp)
442

443

444 # Shape factors
445 def c_pe10(param_dict):
446 h = param_dict['h']
447 d = param_dict['d']
448 if h/d > 5: # Use section 7.6 of Eurocode
449 return c_corr(param_dict)*c_f(param_dict)
450 else: # Use section 7.2.2 of Eurocode
451 x = h/d
452 xp = [0.25, 1, 5]
453 fp_D = [0.7, 0.8, 0.8]
454 fp_E = [0.3, 0.5, 0.7]
455 c_pe10D = np.interp(x, xp, fp_D)



C-156 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

456 c_pe10E = np.interp(x, xp, fp_E)
457 return c_corr(param_dict)*(c_pe10D+c_pe10E)
458

459

460 # Wind pressure acting on exterior faces (eq. 5.1)
461 def w_e(param_dict):
462 w = []
463 for ze in z_e(param_dict):
464 w.append(q_p(ze, param_dict)*c_pe10(param_dict))
465 return w
466

467

468 # Exterior wind forces (Eq. 5.6). By default the force on a 1m^2
face is calculated. But other areas can be specified.,!

469 # The area input can be a vector containing different areas for the
different height division (see fig. 7.4), or a float if the
area is the same for all zones (or if force by area is wanted).

,!

,!

470 def F_we(param_dict, A_ref=1):
471 c = c_s(param_dict)*c_d(param_dict)
472 cA = np.multiply(c, A_ref)
473 return np.multiply(cA, w_e(param_dict))
474

475

476 # Non-dimensional coefficient (Eq. B.11)
477 def K_x(param_dict):
478 zs = param_dict['z_s']
479 z_vec, phi_vec = mode_shape_vector(param_dict)
480 integrand_1 = np.zeros(len(z_vec))
481 integrand_2 = np.zeros(len(z_vec))
482 for i in range(len(integrand_1)):
483 z = z_vec[i]
484 integrand_1[i] = (v_m(z,param_dict)**2)*phi_vec[i]
485 integrand_2[i] = phi_vec[i]**2
486 f = np.trapz(y=integrand_1, x=z_vec)
487 g = (v_m(zs, param_dict)**2)*np.trapz(y=integrand_2, x=z_vec)
488 return f/g
489

490 # Standard deviation of the acceleration (Eq. B10)
491 # NB! Needs to be adjusted to correct return period!
492 def sigma_a(z, param_dict):
493 set_Cprob('Acceleration', param_dict)
494 z_vec, phi_vec = mode_shape_vector(param_dict)
495 phi_z = np.interp(z, z_vec, phi_vec)
496 ro = 1.25



Appendix C: Python Scripts C-157

497 b = param_dict['b']
498 zs = param_dict['z_s']
499 cf = c_f(param_dict)
500 Iv = I_v(zs, param_dict)
501 Vm = v_m(zs, param_dict)
502 m1 = m_e(param_dict)
503 stdev =

((cf*ro*b*Iv*Vm**2)/m1)*R(param_dict)*K_x(param_dict)*phi_z,!

504 set_Cprob('delete', param_dict)
505 return stdev
506

507

508 # Peak (max) acceleration (Eq. B10)
509 def peak_acc(z, param_dict):
510 set_Cprob('Acceleration', param_dict)
511 natFreq = param_dict['NatFreq']
512 val = k_p(param_dict, v=natFreq)*sigma_a(z, param_dict)
513 set_Cprob('delete', param_dict)
514 return val
515

516 # Apply the calculated force to the structure.
517 # If adjust_to_grid=True the height of the different horizonal

strips are adjusted to mach the level heights.,!

518 # If this is not done the load will not be applied to the columns
intersected by a change between strips.,!

519 # See fig. 7.4 in the Eurocode for what is meant by a "horizontnal
strip",!

520 def apply_EC_wind_force(frame_part, column_set, grid, param_dict,
step_name='Static_Wind_Eurocode', adjust_to_grid=True):,!

521 set_Cprob('Load', param_dict)
522 counter = 0
523 model = get_model()
524 a = get_assembly()
525 x_coord_matrix, y_coord_lst, z_coord_lst = grid
526 x_coord_lst = x_axes_coords(grid)
527 wind_dir = param_dict['WindDir']
528 e = column_set.edges
529 frame_inst = a.instances[frame_part.name]
530 ze_vector = z_e(param_dict)
531 ze_vector = [0]+ze_vector
532 Fwe_vec = F_we(param_dict, A_ref=1)
533 if wind_dir.lower() == 'x':
534 x = x_coord_lst[-1]
535 z_min = z_coord_lst[0]



C-158 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

536 z_max = z_coord_lst[-1]
537 for i in range(1, len(ze_vector)):
538 y_below = ze_vector[i-1]
539 y_current = ze_vector[i]
540 if adjust_to_grid:
541 y_below = closest(y_coord_lst, y_below)
542 y_current = closest(y_coord_lst, y_current)
543 for j in range(len(z_coord_lst)):
544 z = z_coord_lst[j]
545 load_width = get_load_width(j, z_coord_lst)
546 load_mag = Fwe_vec[i-1]*load_width
547 cols_for_load =

frame_inst.edges.getByBoundingBox(xMin=x-0.01,
xMax=x+0.01, yMin=y_below, yMax=y_current,
zMin=z-0.01, zMax=z+0.01)

,!

,!

,!

548 reg_for_load =
regionToolset.Region(edges=cols_for_load),!

549 load_name = 'WindLoad_'+str(counter)
550 model.LineLoad(name=load_name,

createStepName=step_name, region=reg_for_load,
comp1=load_mag)

,!

,!

551 counter += 1
552 elif wind_dir.lower() == 'z':
553 x_coord_lst = x_coord_matrix[0]
554 z = z_coord_lst[0]
555 x_min = x_coord_lst[0]
556 x_max = x_coord_lst[-1]
557 for i in range(1, len(ze_vector)):
558 y_below = ze_vector[i-1]
559 y_current = ze_vector[i]
560 if adjust_to_grid:
561 y_below = closest(y_coord_lst, y_below)
562 y_current = closest(y_coord_lst, y_current)
563 for j in range(len(x_coord_lst)):
564 x = x_coord_lst[j]
565 load_width = get_load_width(j, x_coord_lst)
566 load_mag = Fwe_vec[i-1]*load_width
567 cols_for_load =

frame_inst.edges.getByBoundingBox(xMin=x-0.01,
xMax=x+0.01, yMin=y_below, yMax=y_current,
zMin=z-0.01, zMax=z+0.01)

,!

,!

,!

568 reg_for_load =
regionToolset.Region(edges=cols_for_load),!

569 load_name = 'WindLoad_'+str(counter)



Appendix C: Python Scripts C-159

570 model.LineLoad(name=load_name,
createStepName=step_name, region=reg_for_load,
comp3=load_mag)

,!

,!

571 counter += 1
572 set_Cprob('delete', param_dict)
573

574

575 # Calculte the load width. Used for converting pressure to line
loads.,!

576 def get_load_width(ind, coordinate_vector):
577 if ind == 0:
578 start_ind = 0
579 end_ind = ind+1
580 elif ind == len(coordinate_vector)-1:
581 start_ind = ind-1
582 end_ind = ind
583 else:
584 start_ind = ind-1
585 end_ind = ind+1
586 coord = coordinate_vector[ind]
587 start_coord = coordinate_vector[start_ind]
588 end_coord = coordinate_vector[end_ind]
589 width_a = 0.5*(coord-start_coord)
590 width_b = 0.5*(end_coord-coord)
591 return width_a + width_b
592

593

594 # Generate a mode shape vactor based on the input in the wind-sheet
in the excel file.,!

595 def mode_shape_vector(param_dict, n_points=200):
596 mode_exp = param_dict['ModeExponent']
597 h = param_dict['h']
598 if mode_exp == 'Abaqus':
599 print('Abaqus mode shape is not yet implemented, it must be

specified directly...'),!

600 ## Not Finished!
601 else:
602 zeta = mode_exp
603 h_vector = np.linspace(0, h, n_points)
604 disp_vector = [(z/h)**zeta for z in h_vector]
605 return h_vector, disp_vector
606

607



C-160 D. H. Reed L. H. Wiig: A Parametric Study of Tall Timber Buildings

608 # Creates a dictionary containing the results from the free
vibration step, plus some basic information.,!

609 def free_vib_res_dict(xlsx_dict, floorPart):
610 d = {}
611 freeVib_direction = xlsx_dict['WindDir']
612 peak_lst = get_peaks(freeVib_direction, floorPart)
613 struct_log_dec = log_dec(peak_lst)
614 struct_damp_ratio = damping_ratio(struct_log_dec)
615 d['LogDec_Struct'] = struct_log_dec
616 d['DampingRatio_Struct'] = struct_damp_ratio
617 d['NatFreq'] = freq_from_peaks(peak_lst)
618 return d
619

620

621 # Creates a dictionary containing the results from the accelartion
response calculation, plus some basic information.,!

622 # The sampleHeigth option gives the option yo override the sample
height specified in the excel file.,!

623 def acc_res_dict_EC(param_dict, sampleHeigth=None):
624 d = {}
625 if sampleHeigth: ## Possible to override excel input
626 height_coordinate = sampleHeigth
627 print('Warning: Override of Excel sample height is

specified directly in script.'),!

628 else:
629 height_coordinate = param_dict['SampleHeigth_Acc']
630

631 pA = peak_acc(height_coordinate, param_dict)
632 stDev = sigma_a(height_coordinate, param_dict)
633 d['1. Direction'] = param_dict['WindDir']
634 d['2. Return Period'] = param_dict['ReturnPeriod_Acc']
635 d['3. Height Coordinate'] = height_coordinate
636 d['4. Natural Frequency'] = param_dict['NatFreq']
637 d['5. Peak Acceleration'] = pA
638 d['6. Standard Deviation (Acceleration)'] = stDev
639 d['7. Peak Factor'] = pA/stDev
640 set_Cprob('acc', param_dict)
641 z_s = param_dict['z_s']
642 d['8.1 v_b0'] = param_dict['v_b0']
643 d['8.2 v_b'] = v_b(param_dict)
644 d['8.3 v_m (At height z_s)'] = v_m(z_s, param_dict)
645 set_Cprob('del', param_dict)
646 return d



D
. H

. Reed and L. H
. W

iig

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Daniel Hjohlman Reed
Lars Håkon Wiig

A Parametric Study of Tall Timber
Buildings

Master’s thesis in Civil and Environmental Engineering

Supervisor: Kjell Arne Malo

June 2020


	Preface
	Abstract
	Sammendrag
	Contents
	Nomenclature
	Introduction
	Background and Motivation
	Project Description
	Limitations
	Outline of Thesis

	Background
	Timber as a Structural Material
	Environmental Benefits of Timber
	Mechanical Properties of Timber
	Damping in Timber Structures

	Structural Dynamics
	Equation Of Motion
	Modal Analysis
	Damping

	Wind Loads
	Aerodynamics
	Buffeting Theory
	Eurocode

	Finite Element Analysis
	Element Types
	Beam Theory

	Mjøstårnet
	Structural System and Materials
	Numerical Model
	Monitoring and Measurements


	Modelling
	Choice of Software
	Model Overview and Limitations
	Frame
	Columns and Beams
	Diagonals

	Floors
	Walls
	Shafts
	Connections
	Connections of Beam-type Members
	Connections of Shell-type Members

	Foundation
	Loads and Non-Structural Mass
	Wind Load
	Materials
	Damping
	Analysis Steps

	Case Study: Mjøstårnet
	Frame
	Floors
	Timber Floor Elements
	Concrete Floors

	Walls
	Shaft Walls
	Exterior Walls

	Live Loads and Additional Mass
	Finite Element Types
	Convergence Study
	Simulation Results

	Sensitivity Study
	Vertical Stiffness of Foundation
	Horizontal Stiffness of Foundation
	Rotational Stiffness of Foundation
	Axial Stiffness of Connections - Frame
	Rotational Stiffness of Connections - Frame
	Stiffness of Floor to Shaft Connections
	Stiffness of Connections Between Floor Modules
	Stiffness of Wall to Frame/Floors Connection
	Material Stiffness - Frame
	Material Stiffness - Timber Floors
	Material Stiffness - Walls
	Summary of the Sensitivity Study
	Material Stiffness - Concrete Floors

	Model Updating
	Input Parameters
	Run 1
	Run 2
	Run 3

	Output Parameters
	Results
	Run 1
	Run 2
	Run 3

	Summary

	Wind Loads
	Estimation of Parameters
	Frequency
	Damping Values

	Method
	Verification of Calculations
	Damping Measured in the Free Vibration Analysis Step
	Frequency Measured in the Free Vibration Analysis Step

	Results - Acceleration
	Structural Vs. Aerodynamic Damping
	Peak Acceleration
	Standard Deviation of Acceleration
	Acceleration at Different Levels
	Acceleration at Different Return Periods
	Accelerations at Different Wind Speeds

	Comparison with ISO10137 Guidelines
	Static Displacement

	Discussion
	Results
	Parametric Model
	Modelling of Connections in Beam Elements
	Modelling of Connections in Shell Elements
	Using Excel for Parameter Input
	Isight
	Damping Estimates and Wind Loads
	Mode Shape Comparison
	Making the Model More General


	Conclusion and Recommendations for Further Work
	Conclusion
	Recommendations for Further Work

	Bibliography
	Parametric Model - User Guide
	Prerequisites
	Installing OpenPyXl
	Preparing the Scripts

	Setting Up the Input File
	General Remarks
	Units
	Coordinate System
	Grid
	Diagonals
	Materials
	Add to/Remove From Frame
	Shafts
	Column/Beam/Diagonal Cross Sections
	Beam Connections
	Wall Sections
	Floor Sections
	Shell Connections
	Floor to Shaft Connections
	Boundary Conditions
	Distributed/Point Mass
	Wind (Eurocode)
	Analysis Parameters
	Step Level Damping

	Running the Script
	Running the Script from the GUI
	Running the Script from the Command Line (CMD)
	Result Files

	Isight
	Adding the Application Components
	Excel Component Setup
	Simcode Component Setup
	Adding a Process Component
	Parameter Study (DOE) Configuration
	Target Solver Configuration


	Digital Appendix
	Python Scripts
	TTB_3D.py
	TTB_3D_EC_wind.py
	TTB_analysis.py
	TTB_boundaries.py
	TTB_excel.py
	TTB_general.py
	TTB_geometry.py
	TTB_post_processing.py
	TTB_properties.py
	TTB_sets.py
	TTB_Windload_EC.py


