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0. Introduction

Let E,, denote the n-th Morava E-theory (at a fixed prime p), the Landweber exact cohomology theory
with coefficient ring

T (En) = W(]Fp")[[ula R un-ﬂ]][ujﬂL

where each wu; is in degree 0, and u has degree —2. Here W(F,») refers to the Witt vectors over the finite
field Fp» (an unramified extension of Z, of degree n). Note that Ej is a complete local regular Noetherian
ring with maximal ideal m = (p, u1, ..., up—1).

Unless indicated otherwise, let us fix an integer n > 1 and write E instead of E, throughout. The
cohomology theory E plays a very important role in the chromatic approach to stable homotopy theory, in
particular in the understanding of the K (n)-local homotopy category (see, for example, [21]).

The formal group law associated to E, is the universal deformation of the Honda formal group law I',, of
height n over Fyn. Let G,, = Aut(I',,) x Gal(Fyn /F,) denote the n-th (extended) Morava stabilizer group.
Lubin—Tate theory implies that G,, acts on the ring F,, and Brown representability implies that G,, acts
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on E itself in the stable homotopy category. The Goerss—Hopkins—Miller theorem [31,12] implies that this
action can be taken to be via F..-ring maps.

In general G,, is a profinite group, and it is not clear how to form the homotopy fixed points with
respect to such groups (although progress has been made in this area; see [6,2,29]). Nonetheless, in [§]
Devinatz and Hopkins defined E.-ring spectra E"“ for G C G,, a closed subgroup of the Morava stabilizer
group, which behave like continuous homotopy fixed point spectra (and indeed if G is finite they agree with
the usual construction of homotopy fixed points). Remarkably they showed that there is an equivalence
E"Cn ~ Ly ,,)59, aresult expected since the work of Morava [26]. Davis [6], Behrens—Davis [2] and Quick [29]
have given constructions of homotopy fixed point spectra with respect to the continuous action of G on E,
and these agree with the construction of Devinatz and Hopkins.

Devinatz and Hopkins additionally showed that for any spectrum Z there is a strongly convergent spectral
sequence

Ey* = H:(G,E*Z) = (E"%)*Z

which is a particular case of a spectral sequence known as the K(n)-local E-Adams spectral sequence [8,
Appendix A]. Here, for a closed subgroup G C G,, the continuous cohomology of G with coefficients in a
topological G,-module N is defined using the cochain complex Hom®(G®, N) (see the discussion before the
proof of Theorem 4.3).

Using homology instead of cohomology Devinatz and Hopkins identified conditions [8, Proposition 6.7]
under which the K (n)-local E-Adams spectral sequence takes the form

Ey* = H:(Gn, E.Z) = m.Lig(m) 2.

It was remarked that this was probably not the most general result. In many cases the Eso-term of Adams-type
spectral sequences can be calculated by Ext groups (for example [30, Chapter 2]). Thus we ask the following
two questions:

(a) Can the Es-term of the K (n)-local E-Adams spectral sequence be calculated by a suitable Ext group?
(b) In what generality can we identify the Es-term with continuous group cohomology?

In this document we give partial answers to both these questions. Some work on the second problem has
been done previously, and we provide a comparison between some known results and our results.

In the K (n)-local setting the natural functor to consider for a spectrum X is not F, X but rather EY X :=
T« L (n) (EAX). The use of this completed version of E-homology becomes very important in understanding
the Ey-term of this spectral sequence.! This is not just an E,-module, but rather an L-complete E,-module,
and based on work of Baker [1] we work in the category of L-complete E) E-comodules. This category is
not abelian, and so we use the methods of relative homological algebra to define a relative Ext functor for
certain classes of objects in the category, which we denote by E/}X\ti;i g(—,—). The following is our answer
for (a).

Theorem 3.1. Let X and Y be spectra and suppose that EY X is pro-free, and E)Y is either a finitely-
generated E.-module, pro-free, or has bounded m-torsion (i.e., is annihilated by some power of m). Then
the Ea-term of the K(n)-local E-Adams spectral sequence with abutment m;_sF (X, Lg(n)Y') is

L This also gives one reason why the case of continuous cohomology with coefficients in E*Z is easier than in EYZ for any
spectrum Z; since F(Z,L*E) is already K(n)-local for any k € Z (since E is), there is no need for a ‘completed’ version of
E-cohomology.
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—s,t
Ey' =Extpyp(EYX,E)Y).
Our answer to question (b) is the following.

Theorem 4.3. Suppose that X is a spectrum such that E) X is either a finitely-generated E,-module, pro-free,
or has bounded m-torsion. Then, for the K(n)-local E-Adams spectral sequence with abutment m.Lg )X,
there is an isomorphism

E}* = Extyyp(Ey, BEYX) ~ H (G, EY X).

We then compare this to some of the known results in the literature.

We have two applications of these results. Firstly, we can almost immediately extend a result of Goerss—
Henn-Mahowald—Rezk, used in their construction of a resolution of the K (2)-local sphere at the prime 3 [13],
from finite subgroups of G,, to arbitrary closed subgroups.

The second application appears to work at height n = 1 only. Here we construct a spectral sequence
with Es-term L; Ext%’iE(E*X, E.Y), where E.X is a projective E,-module, E.Y a flat E,-module, and L;
refers to the derived functor of completion on the category of Z,)-modules. We show that the abutment of

——s—i,t
this spectral sequence is Ext;*sz (EYX,EYY) and calculate this when X =Y = S at the prime 2.
1. L-completion and L-complete comodules
1.1. L-completion

It is now well understood (see, for example [21]) that in the K(n)-local setting the functor E)(—) =
T L (n)(E A —), from spectra to E,-modules, mentioned in the introduction is a more natural covariant
analogue of E*(—) than ordinary F.-homology, despite the fact that it is not a homology theory. It is equally
well understood that this functor is naturally thought of as landing in the category M/\odE* of L-complete
FE.-modules, rather than the category of E,-modules. We review the basics of this category now; for more
details see [21,3,18,32].

Remark 1.1. Since we always work with F-modules there is some ambiguity to the type of Bousfield
localisation we are using. Recall that L ,) denotes Bousfield localisation with respect to Morava K-theory
K (n) on the category of spectra. Let Lf((n) denote Bousfield localisation on the category of E-modules.
Suppose now that M is an F-module. Then by [4, Lemma 4.3] there is an equivalence L g (,,) M =~ Lf((n)/\EM.
But by [19, Proposition 2.2] the latter is just L}E{(n)M and so it does not matter if we use Ly () or Lﬁ(n).

To keep the theory general, suppose that R is a complete local Noetherian graded ring with a unique
maximal homogeneous ideal m, generated by a regular sequence of n homogeneous elements. Our assump-
tions imply that the (Krull) dimension of R is n. Let Mod g denote the category of graded R-modules, where
the morphisms are the morphisms of R-modules that preserve the grading.

Recall that given an R-module M, the completion of M (at m) is

My = lim M/m* M.
k

Here we must take the limit in the graded sense. This is functorial, but completion is not right (nor in fact
left) exact; the idea is to then replace completion with its zeroth derived functor.

Definition 1.2. For s > 0 let Ls(—) : Modg — Modpg be the s-th left derived functor of the completion

A

functor (=),
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Since completion is not right exact it is not true that LoM ~ M. In fact the natural map M — M}
factors as the composite M -2 LoM 2Ly M.

Definition 1.3. We say that M is L-complete if 7, is an isomorphism of R-modules.
The map ey is surjective with kernel
lim ; Tor{"(R/m*, M); (1.1)
in general these derived functors fit into an exact sequence [21, Theorem A.2]

0 — lim ; Torl, | (R/m*, M) — L M — l%nTorf(R/mk,M) -0,

and vanish if s < 0 or s > n.

Let Mod r denote the subcategory of Modpg consisting of those graded R-modules M for which 7, is an
isomorphism. This category is a bicomplete full abelian subcategory of the category of graded R-modules,
and is closed under extensions and inverse limits formed in Modg. One salient feature of this category
is that EX‘C%{ER(M, N) ~ Exti (M, N) for all s > 0 whenever M and N are L-complete R-modules [18,
Theorem 1.11]. The tensor product of L-complete modules need not be L-complete; we write M Kp N :=

Lo(M ®r N). By [21, Proposition A.6] this gives @R the structure of a symmetric monoidal category.
Remark 1.4. We will use the following properties of L-completion repeatedly:

(i) If M is a flat R-module, then LoM = M/, is flat as an R-module and thus LM = 0 for s > 0 (see [18,
Corollary 1.3] or [3, Proposition A.15]);
(ii) If M is a finitely-generated R-module, then LoM = M and LyM = 0 for s > 0 [21, Proposition A.4,
Theorem A.6]; and,
(iif) If M is a bounded m-torsion module, then LoM = M and LM = 0 for s > 0.

The last item follows from [21, Theorem A.6] and the observation that for large enough k there are equiva-
lences (by [21, Proposition A.4])

LoM ~ Lo(M ®p R/m")
~ LoM &g R/mF
~ M ®r R/m"
~ M,

so that M is L-complete. Modules M that have Ly;M = 0 for s > 0 are known as tame. For example,
L-complete modules are always tame.

Example 1.5. Let R = Z,) and m = (p). Since Z,) has Krull dimension 1 the only potential non-zero
derived functors are Lo and L. By [3, Proposition 5.2], L-completion with respect to Z,y naturally lands
in the category of Z,-modules.

It is immediate from the remark above that LoZ Zy and L;Z ) = 0 for i > 0. By [21, Theorem A.2]

p) —
for any Z,)-module M we have

LoM = Exté(p) (Z/p>,M) and LM = Homg, (Z/p>, M) ~ lim Homg, (Z/p", M).
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If M is any injective Z,)-module M, for example if M = Q/Z ), then it follows from this description that
LoM = 0. On the other hand the inverse system defined above gives L1(Q/Z,)) = Zp.

The discussion above also shows that if M is any bounded p-torsion Z,)-module then it is L-complete
and hence tame.

Suppose now that M is a flat R-module so that, by Lazard’s theorem, we can write it canonically as a

filtered colimit over finite free modules, M = @j F;. Since Hompg(F}, LoN) is L-complete for any j € J,
the same is true for lim Hompg(F};, LoN) = Hompg(M, LoN), and hence we get a natural factorization

LoHompg(M, N)

T

Homp (M, N) —— Hompg(M, LyN)
for arbitrary N.

Proposition 1.6. If M is projective and N is flat, then the natural map
Lo HOIHR(M, N) —_— HomR(M, L()N)
s an isomorphism of L-complete R-modules.

Proof. It is enough to show the claim for M = @, R free. Since R is Noetherian, products of flat modules
are flat, so we get

LoHomp(M,N) = LOHN lim((J[ V) @ R/m")
k I

and similarly

o
k

Homp (M, LoN) = [[lim(N @ R/m*) =lim [[(V @ R/m*).
Ik I

Therefore, it suffices to show that the natural map

e: (][ V) ® R/m* — JJ(NV @ R/m)
I I

is an isomorphism for all k. Since R/m* is finitely-presented, this is true by [23, Proposition 4.44], and the
proposition follows. O

Corollary 1.7. For M projective and N flat, there are isomorphisms

LoM,LoN) ZfSZO

Hom.—
L Homp(M, N) = 0o .
0 otherwise.

Proof. The first statement is a direct consequence of the previous proposition. For the case of s > 0 note
that Hompg(M, N) is flat, hence tame. 0O
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Remark 1.8. Using work of Valenzuela [35] it is possible to construct a spectral sequence
Ey' = L,Extb(M,N) = Ext% P(M, Lp/mN),

where M and N are arbitrary R-modules and Lg/y, is the total left derived functor of Lg. Specialising to
M projective and N tame gives the above corollary.

1.2. Completed E-homology

We now specialise to the case where R = E,. By [21, Proposition 8.4] the functor E)(—) always takes
values in Modg,. This is in fact a special case of the following theorem.

Proposition 1.9. (/3, Corollary 3.14]) An E-module M is K(n)-local if and only if m.M is an L-complete
E.-module.

Remark 1.10. The case where M = E A X, for X an arbitrary spectrum, proved in [21], uses a different
method. In particular there is a tower of generalised Moore spectra M such that Ly ()X ~ holim; L, X A
My [21, Proposition 7.10]. This gives rise to a Milnor sequence

Oﬁli%nlE*H(X/\M])%E*VXﬂli%nE*(X/\MI)HO, (1.2)

which by [21, Theorem A.6] implies EY X is L-complete.

The projective objects in Mod g, will be important for us. These are characterised in [21, Theorem A.9]
and [3, Proposition A.15].

Definition 1.11. An L-complete E,-module is pro-free if it is isomorphic to the completion (or, equivalently,
L-completion) of a free E,-module. Equivalently, these are the projective objects in Modg, .

Proposition 1.12. If EY X is either finitely-generated as an Ex-module, pro-free, or has bounded m-torsion,
then EY X is complete in the m-adic topology.

Proof. The case where EY X is finitely-generated follows from the fact that F, is complete and Noetherian.
Since EY X is always L-complete and Lo-completion is idempotent, when EY X is pro-free (and hence flat)
Lo(EYX) ~ EYX = (EYX)h4, so that EY X is complete. The case where E X has bounded m-torsion is
clear. O

Remark 1.13. The condition that E) X is pro-free is not overly restrictive. Let K denote the 2-periodic
version of Morava K-theory with coefficient ring K, = E./m = Fyn[u™!]. If K, X is concentrated in even
degrees, then EY X is pro-free [21, Proposition 8.4]. For example, this implies that EY E'F" is pro-free for any
closed subgroup F' C G,,. By [21, Theorem 8.6] EY X is finitely generated if and only if X is K (n)-locally
dualisable.

We will need the following version of the universal coefficient theorem (for Y = S this is [18, Corol-
lary 4.2]).

Proposition 1.14. Let X and Y be spectra. If EY X is pro-free, then

Homg, (EY X, E)'Y) = m.F(X, Li(n)(EAY)).
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Proof. Let M, N be K(n)-local E-module spectra. Note that 7, M and 7N are always L-complete by
Proposition 1.9. Under such conditions Hovey [18, Theorem 4.1] has constructed a natural, strongly and
conditionally convergent, spectral sequence of E,-modules®

Ey' =Ext® (m,M,m,N) ~ Ext“;ji (M, 7 N) = m_sFp(M,N).

S
MOdE*

Set M = Lg(n)(EAX) and N = Lg(,)(E AY). Note then that
FE(LK(n)(E A X)vLK(n)(E ANY)) ~ Fg(E A X,LK(n)(E ANY)) =~ F(X,LK(n)(E AY)),
where the second isomorphism is [10, Corollary I11.6.7], giving a spectral sequence

ESt = Ext;//’[t\ (EYX,EYY) ~ Exty (EYX,E)Y) = m_ F(X,Lg)(EAY)).

OodE,

Since EY X is pro-free it is projective in m};* and so the spectral sequence collapses, giving the desired
isomorphism. O

Remark 1.15. The map above can be described in the following way: given
[:X = Lgm)(EAY)

then the homomorphism takes
g:8 = Lgm)(ENX)

to the element

HAL

S L Lcy(EAX) 2L Ly (EAEAY) 2L Ly (EAY).
1.8. L-complete Hopf algebroids

Since EYX always lands in the category of L-complete E,-modules, one is led to wonder if EYX is
a comodule over a suitable L-complete Hopf algebroid. The category of L-complete Hopf algebroids has
previously been studied by Baker [1], and we now briefly review this work.

Suppose that R is as in Section 1.1 and, additionally, R is an algebra over some local subring (kg, mg) of
(R, m), such that mg = kg Nm.

We say A € 1\//Io\d;§(J is a ring object if it has an associative product ¢ : A®y, A — A. An R-unit for ¢ is a
ko-algebra homomorphism 7 : R — A. A ring object A is R-biunital if it has two units 7z, ng : R — A which
extend to give a morphism n; ® nr : R ®k, B — A. Such an object is called L-complete if it is L-complete
as both a left and right R-module.

Definition 1.16. ([1, Definition 2.3]) Suppose that I' is an L-complete commutative R-biunital ring object
with left and right units np,nr : R — T', along with the following maps:

A:T' -5 T'KgrI (composition)
€ : ' = R (identity)

c¢: T — T (inverse)

2 Note that we have regraded the spectral sequence in [18] to reflect the fact we use homology rather than cohomology.
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satisfying the usual identities (as in [30, Appendix A]) for a Hopf algebroid. Then the pair (R,T") is an
L-complete Hopf algebroid if T is pro-free as a left R-module, and the ideal m is invariant, i.e., mI' = I'm.

Lemma 1.17. ([1, Proposition 5.3]) The pair (E., EYE) is an L-complete Hopf algebroid.

Definition 1.18. ([1, Definition 2.4]) Let (R,T') be an L-complete Hopf algebroid. A left (R, T')-comodule M
is an L-complete R-module M together with a left R-linear map v : M — I' Kp M which is counitary and
coassociative.

We will usually refer to a left (R,T')-comodule as an L-complete I'-comodule and we write Cﬁdr for
the category of such comodules.

Remark 1.19. In all cases we will consider, EY X will be a complete E,-module, and so we could work in the
category of complete EY E-comodules, as studied previously by Devinatz [7]. However, whilst the category
of L-complete F,-modules is abelian, the same is not true for the category of complete E.-modules, so we
prefer to work with L-complete EY E-comodules.

Given an L-complete R-module N, let I' Kz N be the comodule with structure map ¥ = I' Kl A. This
is called an extended L-complete I'-comodule. The following is the standard adjunction between extended
comodules and ordinary modules.

Lemma 1.20. Let N be an L-complete R-module and let M be an L-complete I'-comodule. Then there is an
isomorphism

H M,N) = Hom—, (M,I K N).

OmM()\dR ( omodr

Suppose that F is a ring spectrum (in the stable homotopy category) such that F.F is a flat Fy,-module.
In this case the pair (Fy, Fi.F') is an (ordinary) Hopf algebroid. To show that F.(X) is an F,F-comodule
for any spectrum X requires knowing that Fy.(F A X) ~ F.F ®p, F.X. The same is true here; to show
that E£Y X is an L-complete E, E-comodule we need to show that EY (EAX) ~ EY EXRg, EYX. We do not
know if it is true in general; our next goal will be to give the examples of L-complete E) E-comodules that
we need. We first start with a preliminary lemma.

Lemma 1.21. Let M and N be E,-modules such that M is flat and N is either a finitely-generated E,-module,
pro-free, or has bounded m-torsion. Then M ®g, N is tame.

Proof. First assume N is finitely-generated. Since F, is Noetherian there is a short exact sequence
0—-K—>F—-N=0

where F' = @ F, is free and K and F are finitely-generated. Tensoring with the flat module M gives another
short exact sequence, and by [21, Theorem A.2| there is a long exact sequence

The functors Ly are additive for all k¥ > 0, and since M is flat we see that Lo(M ®p, F) = &M/ and
Ly(M ®g, F) =0 for k > 0. It follows that Lyy1(M ®g, N) =~ Lpy(M ®g, K) for k > 1.

Since K, F and N are all finitely-generated E,-modules we use [21, Theorem A.4] to see that the end of
the long exact sequence (1.3) takes the form
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Since M is flat, Lo(M) is pro-free, and hence flat [3, Proposition A.15], so Lo(M) ®g, K — Lo(M) ®g, F
is injective, forcing L1 (M ®g, N) = 0. Since N was an arbitrary finitely-generated E.-module and K is
finitely generated, we see that L1 (M ®p, K) = 0, also. It follows that Ly(M ®g, N) ~ L1(M ®g, K) =0,
and arguing inductively we see that Ly(M ®p, N) =0 for k > 0, so that M ®g, N is tame.

Now assume that NNV is pro-free, and hence flat. It follows that M ®g, N is also flat, and hence tame.

For the final case, where N has bounded m-torsion, note that M ® g, N also has bounded m-torsion, and
so is tame (see Remark 1.4). O

We now identify conditions on a spectrum X so that EY X is an L-complete E, E-comodule.
Proposition 1.22. Let X be a spectrum. If EY E @g, EYX is tame, then
EY(EAX)~EYERp, E'X (1.4)

and EY X is an L-complete EY E-comodule. In particular this occurs when EY X is either a finitely-generated
E.-module, pro-free or has bounded m-torsion.

Proof. There is a spectral sequence [10, Theorem 1V.4.1]
EZ, =Torl;(EYE,EYX) = Te4(Li(n)(E A E) A L (n)(E A X)). (1.5)
For any F-module M we also have the spectral sequence of F.-modules [19, Theorem 2.3]
EZ, = (LsmeM); = myy 1 Lic(n)M.
In particular there is a spectral sequence starting from the abutment of (1.5) that has the form
(Limy(Lg(ny(ENE) Ag L) (ENX)))s4t = Tigstt L) (Lxm)(EAE) Ag L) (ENAX)).
By Remark 1.1 we deduce that there is an equivalence
Lgm)(Lg@m)(ENE)Ag Lgm)(ENX))~ Lgmy(ENEAX),

and so the latter spectral sequence abuts to EY(FE A X). Since E)E is a flat E,-module the first spectral
sequence always collapses, and the second spectral sequence becomes

(Li(BYE @p. BYX))ots = BYyupa(E A X), (16)
Thus, if EYE ®g, EYX is tame, this gives an isomorphism
EY(EAX)~E'ERp EYX,

and so EYX is an L-complete EY E-comodule. Since EY FE is pro-free it is flat, and Lemma 1.21 applies to
show that EY F ®g, EYX is tame in the given cases. O

Remark 1.23. This raises the question: what is the most general class of L-complete comodules M such that
EYE ®g, M is tame? In light of Baker’s example [1, Appendix B| of an L-complete — and hence tame —
module N such that Ll(@io N) # 0, this seems to be a subtle problem. In particular, we note that this
example implies that the collection of tame modules itself need not satisfy the above condition.
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The following corollary shows that the equivalence of (1.4) can be iterated.

Corollary 1.24. Let Y be a spectrum such that EYY is either a finitely-generated E.-module, pro-free or
has bounded m-torsion. Then for all s > 0 there is an isomorphism

EY(E" AY)~ (EYE)®* K, EYY.

Proof. We will prove this by induction on s, the case s = 0 being trivial. Assume now that £ (E/\(S_l) AY) ~
(EYE)RG-YD R EYY; we will show that EYE @p, (EYE)¥¢-) Xy EYY) is tame. We claim that this
is true in the three cases we consider.

1. If EYY is flat, then so is (EYE)®¥¢~) R EYY, and we can apply Lemma 1.21 to see that EYE @p,
(EYE)BC-D RE EYY) is tame.

2. If EYY is finitely-generated then (EYE)®C—D Ky EYY ~ (EYE)®¢-D @p EYY [21, Theorem A.4].
Since EYE ®p, (EXE)WS*U is a flat F,-module, once again we can apply Lemma 1.21 to see that
EYE ®g, (EYE)XE-D Ry EYY) is tame.

3. If EYY has bounded m-torsion, then the same is true for EYE ®p, ((EYE)®¢~) Ky EYY), and it
follows that it is tame, as required.

Therefore, Proposition 1.22 applied to X = EA~D A'Y implies that
EY(EM ANY)~ EYERp, EY(EN"DAY)~ (EYE)®** Rp, EVY,
where the last isomorphism uses the inductive hypothesis once more. O
2. Relative homological algebra
2.1. Motivation

Recall [30, Appendix A] that the category of comodules over a Hopf algebroid (A,T") is abelian whenever
I is flat over A, and that if I is an injective A-module then I' ® 4 I is an injective I'-comodule. This implies
that the category of I'-comodules has enough injectives.

Given T-comodules M and N we can define Exti-(M, N) in the usual way as the i-th derived functor
of Homp (M, N), functorial in N. However, the category of L-complete I'-comodules does not need to be
abelian. In this case, in order to define L-complete Ext-groups, we need to use relative homological algebra,
for which the following is meant to provide some motivation.

The following two lemmas show that we can form a resolution by relative injective objects, instead of
absolute injectives.

Lemma 2.1. Let (A, T) be a Hopf algebroid (over a commutative ring K ) such that T is a flat A-module,
and let

0—+N—-R >R — ...

be a sequence of left T-comodules which is exact (over K ) and such that for each i, Ext(M, R") = 0 for all
n > 0. Then Extpr(M, N) is the cohomology of the complex

Ext) (M, R®) — ExtX(M,R') — --- .
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Proof. See [27, Lemma 1.1] or [30, Lemma A1.2.4]. O

Definition 2.2. A T'-comodule S is a relative injective I'-comodule if it is a direct summand of an extended
comodule, i.e., one of the form I' ® 4 V.

Lemma 2.3. Let S be a relatively injective comodule. If M is a projective A-module, then Ext§(M, S)=0
fori > 0. Hence if I" is a resolution of N by relatively injective comodules then

Extr(M,N) = H"(Homp (M, I™)) (2.1)
for alln > 0.

Proof. The second statement follows from the first and Lemma 2.1. For the first statement proceed as in [30,
A1.28(b)]. O

In the case of L-complete I'-comodules, we will take the analogue of Equation (2.1) as a definition of
Extr(—, —) (see Definition 2.13).

Remark 2.4. The reader may wonder about projective objects. In general, comodules over a Hopf algebra
do not have enough projectives. For example, when (A4,T') = (F,,.A), where A is the dual of the Steenrod
algebra, it is believed that there are no non-zero projective objects [28].

2.2. Homological algebra for L-complete comodules

The category Cﬁdp of L-complete I'-comodules is not abelian; it is an additive category with cokernels.
The absence of kernels is due to the failure of tensoring with I" to be flat. If # : M — N is a morphism of
L-complete comodules, then there is a commutative diagram [1]

0 ker 6 M
| [

I
I
~

N
Jow
id&R()

I'Rpkerd —— TRp M 28 TRE N,

but the dashed arrow need not exist or be unique.

Since C?rrsdp is not abelian we need to use the methods of relative homological algebra to define a
suitable Ext functor, which we briefly review now. For a more thorough exposition see [11] (although in
general one needs to dualise what they say, since they mainly work with relative projective objects). Our
work is in fact similar to that of Miller and Ravenel [27].

Definition 2.5. An injective class Z in a category C is a pair (D,S) where D is a class of objects and S is a
class of morphisms such that:

1. I'isin D if and only if for each f: A - Bin S
f* :Home(B,I) — Home (A, I)

is an epimorphism. We call such objects relative injectives.
2. A morphism f: A — Bisin § if and only if for each I € D

f* :Home(B,I) — Home (A, I)
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is an epimorphism. These are called the relative monomorphisms.
3. For any object A € C there exists an object @@ € D and a morphism f: A — @ in S.

Remark 2.6. Note that given either S or D, the other class is determined by the requirements above, and
that the third condition ensures the existence of enough relative injectives.

It is not hard to check that D is closed under retracts and that if the composite morphism A EINy; TN C
isin S thensois f: A — B.

Example 2.7 (The split injective class). The split injective class T, = (Ds, Ss) has Dy equal to all objects
of C and S, all morphisms that satisfy Definition 2.5, i.e., Home/(f, —) is surjective for all objects. One can
easily check that this is equivalent to the requirement that f : A — B is a split monomorphism.

Example 2.8 (The absolute injective class). Let S be the class of all monomorphisms and then let D be the
objects as needed. This satisfies (3) if there are enough categorical injectives.

One way to construct an injective class is via a method known as reflection of adjoint functors.

Proposition 2.9. Suppose that C and F are additive categories with cokernels, and there is a pair of adjoint
functors

T:C=F: U

Then, if (D, S) is an injective class in C, we define an injective class (D', S’) in F, where the class of objects
is given by the set of all retracts of T(D) and the class of morphisms is given by all morphisms whose image
(under U ) is in S.

Sketch of proof. * First note that, since relative injectives are closed under retracts, to show that D’ is as
claimed, it suffices to show that T'(I) is relative injective, whenever I € D. Let A — B be in 8" and I € D;
then the map

Homz(B,T(I)) = Homz (A, T(I))
is equivalent to the epimorphism
Home(U(B),I) — Home(U(A), I).

A similar method shows that the relative monomorphisms are as claimed. Finally we observe that for all
A € F there exists a € D such that U(A) — @ € S. Then the adjoint A — T(Q) satisfies Condition 3. To
see this note that U(A) — @ factors as U(A) — U(T(Q)) — Q; since relative monomorphisms are closed
under left factorisation (see above) U(A) = U(T(Q)) € S. Then A — T(Q) € S’ as required. O

We recall the following definition.

Definition 2.10. An extended L-complete E, E-comodule is a comodule isomorphic to one of the form
EYEXg, M, where M is an L-complete E,-module. Here the comultiplication is given by the map

EVERy M 2% BVERy EYERp, M.

3 For full details see [11, p. 15] — here it is proved for relative projectives, but it is essentially formal to dualise the given argument.
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Example 2.11. Give 1\7&1& the split injective class. Then the adjunction

Hom— (A,B)=Hom.—, (A EYERg, B)

ModEg, ComodE*vE
. . . . .
produces an injective class in Comodgy g. In particular we have

1. S is the class of all comodule morphisms f : A — B whose underlying map of L-complete F.-modules
is a split monomorphism.
2. D is the class of L-complete E) E-comodules which are retracts of extended complete EY E-comodules.

Note that for any complete EY E-comodule M the coaction map M 2, EYE®g._ M is a relative monomor-
phism into a relative injective.

We will say that a three term complex M Ly N 2 P of comodules is relative short exact if gf =0 and
f: M — N is a relative monomorphism. A relative injective resolution of a comodule M is a complex of
the form

0—>M—=J" = Jt— ...
where each J? is relatively injective, and each three-term subsequence
A A At

where J~! = M and J* = 0 for s < —1, is relative short exact. Note that, by definition, relative exact
sequences are precisely those that give exact sequences of abelian groups after applying HomcﬁdE*vE (=, 1),
whenever [ is relative injective.

We have the usual comparison theorem for relative injective resolutions. The proof is nearly identical to

the standard inductive homological algebra proof — in this context see [14, Theorem 2.2].

Proposition 2.12. Let M and M’ be objects in an additive category C with relative injective resolutions P*
and P, respectively. Suppose there is a map f : M — M’. Then, there exists a chain map f* : P* — P™*
extending f that is unique up to chain homotopy.

Definition 2.13. (Cf. [11, p. 7]) Let M and N be L-complete E, E-comodules, and let M be pro-free. Let I*
be a relative injective resolution of N. Then, for all s > 0, we define
Extcomod gy , (M, N) = H* (Homros, (M, T7)).
For brevity we will write E}RZV g(M, N) for this Ext functor.

Note that Proposition 2.12 implies that the derived functor is independent of the choice of relative
injective resolution.

Remark 2.14.

1. The reader should compare this definition to Lemma 2.3.

2. The category of L-complete E,-modules has no non-zero injectives [3, p. 40]; this suggests that the same
is true of L-complete EY E-comodules, which is yet another reason we need to use relative homological
algebra.
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Let M be an L-complete comodule. As in [27] we have the standard, or cobar resolution of M, denoted

Q*(EYE, M), with

QY (EYE,M) = EYERyp, - Rp. EYERp M

n+1 times

and differential

n

d(eoﬁ---&en@m):Z(—l)i60®-~-ei_1 XA(@)X@Z_H&

=0

+ (=) Teg B -- e, B ah(m).
The usual contracting homotopy of [27] given by
s(eg®---Ke, Xm)=c¢(eg)er ®---Ke, ®m

shows that (Q*(EY E, M),d) defines a relative injective resolution of M.

Lemma 2.15. Let M and N be L-complete EY E-comodules. Then there is an isomorphism

—0
Extpyg(M, N) ~ Hom q—— (M,N).

ComodE*v B

Proof. Let ¢y : M — EYEXg, M and ¢ : N - EYFEKpg, N be the comodule structure maps. Define

(AP TN Hom@E* (M,N) = Hom— (M,E/EXg, N)

MOdE*

Yu(f) =AW v and Py (f) =¢nf

Note that (see [30, Proof of A1.1.6] for the case of an ordinary Hopf algebroid)

HomcfrrEdE*vE(M’ N) = ker(¢3 — ¥y)-
The cobar complex begins

AR1- 1Ry

EYE — > EYERpy N — " pVERp EYEXp N.

Applying Hom —— (M, —) and using the adjunction of Lemma 1.20 between extended L-complete

ComodE*v B

EY E-comodules and L-complete E,-modules we see that

—0
Ext gy (M, N) = ker (HomM/\ (M,N) L5 Home— (M, EYE K. N)) .

OdE* MOdE*

One can check that the map f is precisely ¥}, — ¥y, and the claim follows. O
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3. The K (n)-local E,,-Adams spectral sequence
3.1. Adams spectral sequences

Here we present some standard material on Adams-type spectral sequences following [25.8]. Throughout
this section we always work in the homotopy category of spectra.

Let R be a ring spectrum. We say that a spectrum I is R-injective if the map I — R A I induced by the
unit is split. A sequence of spectra X’ — X — X" is called R-exact if the composition is trivial and

(X' 1]« [X, 1]« [ X", ]

is exact as a sequence of abelian groups for each R-injective spectrum I. An R-resolution of a spectrum X
is then an R-exact sequence of spectra (i.e., each three term subsequence is R-exact)

« > X101 — ...

such that each I*® is R-injective. Given an R-resolution of X we can always form an Adams resolution of X;
that is, a diagram

21 P P
S A N A N

I° 2*111/ 2*212/

such that each X7°I° is R-injective and each Xj4; — Xx — YkI* is a fiber sequence. Note that the
composition I* — L*+1X;  ; — I**1 corresponds to the original morphism in the R-resolution of X.
Given such a diagram we can always form the following exact couple

DstLt+l — Wtfs(Xerl) i Wtfs(Xs) — Dsit

(\‘~\
k‘\\\\\\\ /

BV = (B750%).

If we form the standard resolution, where I* = RNk+1 A X for k > 0, and if R, R is a flat R.-module, then
it is not hard to see that on the E1-page we get the following sequence

0— R,X - R.R®p. R.X - R.R®?®r. R.X — ---.

By explicitly checking the maps one can see that this is the cobar complex for computing Ext, and so we
get the usual Adams spectral sequence

ExtEfR(R*, R.X)= T*X}/%.

Here X7 is the R-nilpotent completion of X [5]. This construction can be suitably modified to construct
the F-local R-Adams spectral sequence (see [8, Appendix A]), where F is any spectrum. Following Devinatz
and Hopkins say an F-local spectrum I is R-injective if the map I — Lp(R A I) is split. The definition of
R-exact sequence and R-exact resolution then follow in the same way as the unlocalised case.

We specialise to the case where F' = K(n) and R = E is Morava E-theory. Following [8, Remark A.9] we
take I7 = LK(n)(E/\(j'H) A X). The formulas of [8, Construction 4.11] actually show that the I form an
Adams resolution (in fact they can be assembled into a cosimplicial resolution). Here is our main result.
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Theorem 3.1. Let X and Y be spectra and suppose that EY X is pro-free, and EYY is either a finitely-
generated E.-module, pro-free, or has bounded m-torsion (i.e., is annihilated by some power of m). Then
the Ea-term of the K (n)-local E-Adams spectral sequence with abutment mi_oF (X, Lin)Y') is

——s,t
ESt = Bxty 5 (EYX, EYY).

Proof. By mapping X into an Adams resolution of Lg(,)Y we obtain an exact couple with Ef’t =
mi— o F(X,X7°1°) ~ m,F (X, I*). Unwinding the exact couple we see that the Fs-page is the cohomology of
the complex

T F(X,1°) = . F(X,I") - m,F(X,I?) — --- .

As usual, the Adams spectral sequence is independent of the choice of resolution from the Es-page
onwards, so we use the standard resolution, i.e., we let I° = Ly (y) (ENSTD AY). Applying Proposition 1.14
(which we can do under the assumption that EY X is pro-free) we see that

T F(X,I°) ~ Homp, (EY X, EY (E™ AY))

~ Homﬁo\d& (EYX,EY(E™ AY)),

where the latter follows from the fact that EY(—) is always L-complete.
By Corollary 1.24 we have EY(E" AY) ~ (EY E)®* R, EYY. Using the adjunction between extended
comodules and L-complete F,-modules we get

Homg, (EYX, EY(EM AY)) ~Home, (B X, (E) E)¥CHD Ry EYY).

Modg, ComodE;/
This implies that the Fs-page is the cohomology of the complex

Hom . —, (EYX,EYERg EYY)— Hom-—  (EYX,(EYE)®? Ky EYY) — -

ComodE;/ B ComodE*vE
which is precisely E/])?cbi*vE(E;/X, EYY). O
The following is now a consequence of [8, Theorem 2] and uniqueness of the Fs-term.

Corollary 3.2. Let X be a spectrum such that EY X is pro-free. If F' is a closed subgroup of G,,, then there
is an isomorphism

E?t‘;’;E(Em EYE") ~ HS(F,mF(X,E)) ~ H}(F,E~'X).
4. Identification of the E5-term with group cohomology

It has been known since the work of Morava [26], that completed Ext groups (as considered in [7]) can,
under some circumstances, be identified with continuous group cohomology. The results of this section say
that our L-complete Ext groups can also be identified with continuous group cohomology. In fact, in many
cases complete and L-complete Ext groups coincide, although we do not make this statement precise. Before
we can give our result identifying L-complete Ext groups and group cohomology, we need two preliminary
lemmas. We write M & g, N for the m-adic completion of the ordinary tensor product.
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Lemma 4.1. Let M be a pro-free E.-module, and N a finitely-generated E.-module. Then
M®p,N=~M®g, N.

Proof. For a fixed finitely generated F,-module N, the category of E.-modules M for which the conclusion
of the lemma holds is closed under retracts. By [21, Proposition A.13] M = Lo(®E,) is a retract of [[; E,
and so it suffices to prove the lemma for M = [[; E,. Note that by [23, Proposition 4.44] an E,-module N
is finitely-presented (equivalently, finitely-generated, since E, is Noetherian) if and only if for any collection
{C4} of E,-modules, the natural map N ®p, [[Co — [[(N ®g, C4) is an equivalence.

We then have a series of equivalences

pinininin

([ E-)&e.N =1lim(E,/m* @g, (][] E.) ®&. N)

~ lim [ [(B./m* @p, N)
koo

~ [[lim(E. /m* @5, N)
I

~ HNQ
I

~ HN
I

~([[E-) ®e. N. ©
I

Lemma 4.2. Let M and N be E.-modules. Suppose that M is pro-free and N is either pro-free, finitely-
generated as an E.-module, or has bounded m-torsion. Then

M®p N~ MRXg, N.

Proof. Note that in each case Proposition 1.12 implies that M and N are both complete in the m-adic
topology. When N is finitely generated there is an isomorphism [21, Proposition A.4]

M&E*NZL()(M)(@E*NZM@E* Na

where the last isomorphism follows from the fact that M is already L-complete. Since N is finitely-generated
Lemma 4.1 implies that M @5, N ~ M&p, N.

Now suppose that N has bounded m-torsion. Note that M ®p, N is still bounded m-torsion, and so
M Rp, N ~ M ®p, N. Furthermore, there is an isomorphism M @z, N ~ M®g, N, since the inverse
system defining the completed tensor product is eventually constant.

For the final case, assume that IV is pro-free. Since both M and N are flat E,-modules the same is true
for M ®p, N. This implies (see Remark 1.4) that M&g, N ~ M Kg N. O

We can now identify when the Es-term of the K (n)-local E-Adams spectral sequence is given by contin-
uous group cohomology.

Theorem 4.3. Suppose that X is a spectrum such that EY X is either a finitely-generated E,-module, pro-free,
or has bounded m-torsion. Then, for the K(n)-local E-Adams spectral sequence with abutment m.Lg )X,
there is an isomorphism
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B3t = ExtEvE(E*, EYX) ~ H{(G,, E/X).

To prove this we will need to be explicit about the definition of continuous group cohomology we use,
following [34, Section 2|. Let N be a topological G,-module and define

C*(G,,N) = Hom(GF, N),
the group of continuous functions from Gk to N, where G = G,, x ... x G,, and k > 0. Define morphisms
~—_—————

k times

d:C*G,,N)— C¥Y(G,,N) by

k
(df)(gla'~'7g/€+1) = glf(927"'ag/c+1 +Z gla"'agjgj+1a"'7g/€+1)
Jj=1

+ ( 1)k+1f(glu e 7gk)

One can check that d> = 0 and thus we obtain a complex C*(G,,, N). We then define H}(G,,N) as
H*(C*(Gp, N),d). Of course, the same definition holds for any closed subgroup G C G,,. We refer the
reader to [6, Section 2] for a more thorough discussion of various notions of continuous group cohomology
used in chromatic homotopy theory.

Proof. As previously we have that

Extp (B, BY X) ~ H*(Hom —, (B, (EYE)®C+) ®L EYX))

Comod g VE
~ H*(Homp, (E., (EYE)™ R, E/X))
~ H*((EYE)®* Kg, EYX).

By Corollary 1.24 we see there is an equivalence EY E¥* ~ EY(E"*), which is isomorphic to Hom®(G#, F.)
[8, p. 9]. This is pro-free by [17, Theorem 2.6] and so applying Lemma 4.2 we see that

(EYE)® Rp, EYX ~Hom®(G:, E,) K, EYX
~ Hom®(G}, E,)®p, EY X.
Since, under our assumptions, E, X is m-adically complete we have that
Hom®(G}, E,)®p, EY X ~ Hom®(G}, E) X).
Then
H*((EYE)™ Rp, EYX) ~ H*(Hom®(G;,, B/ X)).
As in [24, Proof of Theorem 5.1] one can see that the latter is precisely H} (G, EY X). O

Remark 4.4. In [9] the authors give several examples where the Fs-term of the K (n)-local E-Adams spectral

sequence for 7. L (,)X can be identified with continuous group cohomology; we compare Theorem 4.3 with
these. The following cases are considered.
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(a) By [8, Theorem 2(ii)], if X is finite then Ey* = HZ(G,, E.X). If X is finite, then smashing with
it commutes with localisation and so E,X = EYX. By induction on the number of cells one can
check that if X is finite then K,X is finite (in each degree), where K is the 2-periodic version of
Morava K-theory used in Remark 1.13. By [21, Theorem 8.6] this is equivalent to EY X being finitely
generated.

(b) By [24, Theorem 5.1] if E.X is a flat E,-module then ES™ = H(G,,EYX). But by Remark 1.4 if
E.X is flat then EY X = Lo(E.X) = (E.X)J is pro-free.

(c) By [15, Proposition 7.4] if K, »(X) is finitely generated as an E,-module then E5" = HS (G, K, «(X)).
Here Ky «(X) = lim, E,(X A M;). We suspect, but have been unable to prove, that if K, .(X) is
finitely generated then K, .(X) ~ EYX. We note that if EYX is finitely generated, then X is dualis-
able [21, Theorem 8.6, and in this case the lim' term in the Milnor exact sequence (1.2) vanishes [3,
Proposition 6.2], so that EY X ~ K, .(X).

(d) The last case considered is more complex. Let X be a spectrum such that, for each E(n)-module
spectrum M, there exists a k with m*M,X = 0. Here E(n) is the n-th Johnson-Wilson theory.
Then, by [8, Proposition 6.7], Ey* = H}(G,,E.X). Note that F is an F(n)-module spectrum
and so the proof of [8, Proposition 6.11] implies that £ A X is K(n)-local, so that E,X = EYX.
Since E is an E(n)-module spectrum, EY X is a bounded m-torsion module and so Theorem 4.3 ap-
plies.

5. The category of Morava modules

In this section we will show how Corollary 3.2 allows us to easily extend a result originally proved in [13]
for finite subgroups of G,, to arbitrary closed subgroups. First we need a definition.

Definition 5.1. ([13]) A Morava module is a complete E,-module M equipped with a continuous G,-action
such that, if g € G,, a € F, and x € M, then

g(ax) = g(a)g(x).
We denote the category of Morava modules by £G,. Here a homomorphism ¢ : M — N of Morava

modules is a continuous (with respect to the m-adic topology) E.-module homomorphism such that the
following diagram commutes, where g € Gy,:

Mi>
d
M

For example, if X is any spectrum such that EYX is either finitely-generated, pro-free, or has bounded

ZTZ

_—
¢

m-torsion, then EYX is a complete F,-module (by Proposition 1.12) and the G,-action on E defines
a compatible action on E)X. This gives EY X the structure of a Morava module. The category £G,, is a
symmetric monoidal category; given Morava modules M and N their monoidal product is given by M® e, N
with the diagonal G,,-action.

A homomorphism of complete E,-modules is a homomorphism of FE,-modules that is continuous
with respect to the m-adic topology. However, it turns out that any homomorphism between complete
FE,-modules is automatically continuous. We learnt this from Charles Rezk, who also provided the following
proof.
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Lemma 5.2. Let f : M — N be an E.-module homomorphism between complete E.-modules. Then f is
continuous with respect to the m-adic topology.

Proof. The map f is an E,-module homomorphism and so f(m*M) is a subset of m* N for any k > 0; thus
mF M is a subset of f~'(mFN). Therefore f~*(m*N) is a union of m*M-cosets. It follows from the fact that
mF M is open that f~'(m*N) is open in the m-adic topology. O

Let {U;} be a system of open normal subgroups of G,, such that (), U; = {e} and G,, = lim, G,,/U;. Then
we define E.[G,] = lim, F.[G, /U], the completed group ring, with diagonal G-action. If H is a closed
subgroup of G,,, then we define E,[G,/H] in a similar way, with diagonal G,-action. With this in mind
there is the following result.

Proposition 5.3. (/13, Theorem 2.7]) Let Hy and Hs be closed subgroups of G,, and suppose that Hy is finite.
Then there is an isomorphism

E.[G,/H\|]"> = Homgg (EYEMD EYEM?)

We will in fact see that this holds more generally whenever Hs is a closed subgroup of G,,.
We will need the following relationship between homomorphisms of Morava modules and L-complete
comodules.

Proposition 5.4. If M and N are both Morava modules and L-complete comodules, such that the underlying
L-complete E,-modules are pro-free, then
Homeg, (M, N) ~ HomcdeXE(M, N).

Proof. Let ¢ : M — N be a homomorphism of Morava modules. Note that M and N are complete, and
hence also L-complete, and so ¢ defines a morphism in Modg,. We wish to show that this is in fact a
comodule homomorphism. Let ¢y : M — Hom®(G,, M) ~ E*VEQA@E*M be the adjoint of the G,-action
map, and similarly for ¢¥. By Lemma 4.2 EYEQp M ~ EYE Rg_ M, and equivariance of ¢ implies that
the following diagram commutes

N

| o

EYERp M —= EYERy, N,
idXé

so that ¢ defines a morphism of comodules.

Conversely, suppose that we are given an L-complete comodule homomorphism ® : M — N. Since M
and N are complete Lemma 5.2 implies that ® is a homomorphism of complete F.-modules. Given the
structure map ps we define a G,,-action on M using the retract diagram

M Y, BYE Ry, M~ Hom'(Gy, BB, M 209, ap

where ev(g) : Hom®(G,, E,) — E. is the evaluation map at g € G,,. The fact that ® is a L-complete
comodule homomorphism shows that, with this G,-action, ® is in fact a morphism of Morava modules.

These constructions define maps Homeg, (M, N) — Hom q— (M, N) and vice-versa, and it is not
n omodEl/E

hard to see that these are inverse to each other. 0O
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Corollary 5.5. If EYX and E)Y are pro-free, then
Homeg, (EYX,EYY) ~ Hom—. (EYX,EY).

ComodE)\K/ E

Proof. The condition that EY X and EYY are pro-free ensures that they are Morava modules; they are also
L-complete E) E-comodules by Proposition 1.12. O

We can now easily derive our version of the Goerss—Henn—-Mahowald—Rezk result.
Proposition 5.6. Let Hy and Hs be closed subgroups of G,,. Then there is an isomorphism
E.[G,/H\]]"> = Homgg, (EY EMI | EY EM2),
Proof. By Corollary 3.2 we have
Extp p(EY EM, EYEM) ~ HE (Ha, E-*EM),

From the results of [17,8] it can be deduced that E~*EM1 ~ E,[G,,/H,] for any closed subgroup H; C G,
and that this isomorphism respects the G,-actions on both sides. Using Lemma 2.15

Homg—,y (B EMD EYEM?) o HY(Hy, B, Gy /Hy])

~ E.[G,/H]]"™=.

Since EY EMv and EY E"2 are pro-free, Corollary 5.5 implies that

Ho (EY MO EY EMA2) ~ Homgg (EY EM ) BY EM2),

M Gomod py 5
so that

Homgg, (EY EM EY E"2) ~ E,[G,,/H,|]"
as required. 0O
Remark 5.7. Let H be a topological group and assume that R is an H-spectrum and X = lim; X; is an
inverse limit of a sequence of finite discrete H-sets X;, such that X has a continuous H-action. Following [13]
we define the H-spectrum

R[X]] = holim; R A (X;),

with the diagonal H-action. In [2] Behrens and Davis show that if H; and Hs are as above then there is an
equivalence

F(EM", M) ~ B[G, /Hy]]"™.

This was originally proved for Hj finite in [13]. Combined with Proposition 5.6 it is easy to see that there
is a commutative diagram
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T E[Gy/Hi)]"2 ————— (E.[Gn/Hy]])"™

=| E

m F(EML EhH2) — Homgg (EYEML | EYEh2),

for Hy, Hy closed subgroups of G,,. Again this is proved in [13] under the additional assumption that Hj is
finite.

6. The F; and K (1)-local E;-Adams spectral sequences
Since E.F is a flat E,-module we have the E-Adams spectral sequence (see, for example [20])
Ey' = Exty (B, B.X) = 1. L, X.

This is a spectral sequence of Z,)-modules and our goal in this section is to use the derived functor of
p-completion on Z,y-modules to construct a spectral sequence abutting to the Eo-term of the K(n)-local
E-Adams spectral sequence.

Unfortunately our proof only works when n = 1 and p is an arbitrary prime. We shall see that, for a
spectrum X, the spectral sequence naturally carries copies of Q/Z,) in ExtEjE(E*, E,X) to copies of Z,
in H*(G,, EY X). Already at height 2, for primes greater than or equal to 5, the calculations of [33] imply
that there are 3 copies of Q/Z,) which lie in bidegree (4,0), (4,0) and (5,0), whilst in H}(Gg, (F2).) there
are copies of Z,, in bidegrees (0,0), (1,0) and (3,0). The grading on the spectral sequence we construct will
imply that there is no possible class that could give rise to the copy of Z,, in bidegree (1,0). If one accepts
the chromatic splitting conjecture [16] then an analogue of our spectral sequence cannot exist at all when
n > 2.

Note: From now on, unless otherwise stated, it is implicit that E refers to Morava E-theory at height 1
only.

The reason that the spectral sequence exists when n = 1 is due to the fact that £, ~ 7Z, [u*1]. As Hovey
shows in [19, Lemma 3.1], given a graded F.-module M, there is an isomorphism (LoM )y ~ LoM} where
the second Ly is taken in the category of Z,-modules. A similar result holds for completion with respect
to Zpy-modules. We will often use this implicitly to pass between ungraded Z,)-completion and graded
FE,-completion.

Theorem 6.1. If E,.X is a projective E.-module and E.Y is a flat E.-module, then there is a spectral
sequence

. ——5—1,t
Ey* = LiExty p(E.X, B,Y) = Extyy 5 (EY X, E)Y),
where L; is taken in the category of Z,)-modules.
Remark 6.2. The assumption that E,X is projective ensures that ExtE’jE(E*X ,E.Y) can be computed
by a relative injective resolution of E.Y. Additionally, if E,X is projective, the spectral sequence of [19,
Theorem 2.3] collapses, so EY X = LoFE, X is pro-free by [3, Proposition A.15].
Proof. Let M* be the cobar complex with M* = E,E®+t1) @5 E.Y. Then

Exty 5 (E.X, E.Y) = H (Homp, p(E.X, E.E®C*) @ E.Y))
~ H*(Homg, (E.X,E.E®* ®p, E.Y))
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For brevity, we denote Hompg, (E. X, E.E®* ®p, E.Y) by N*. Since E.FE and E.Y are flat E,-modules, so
is the iterated tensor product E,E®* @ E.Y; since E,X is projective, and E, is Noetherian, each N* is
flat, and hence tame. Under such a condition there is a spectral sequence® [32, Proposition 8.7]

Ey® = Li(H*(N*)) ~ L; Ext}* (B, X, E.Y) = H*7"(Lo(N*)).

To identify the abutment use the spectral sequence of [19, Theorem 2.3] to see that Lo(E.X) = E X and
Lo(E.Y) = EYY, since both E, X and E.Y are flat. It also follows from the symmetric monoidal structure
on L-complete E,-modules [21, Corollary A.7] that Lo(E,E®* @p, E.Y) = Lo(E.E)®* Kp, Lo(E.Y).
Applying Corollary 1.7 we see that

Lo(N*) = Homg  (EYX, B E¥ Xp EYY)

~Hom —— (EYX,EYEXU+tD Ry EYY).

Comod vE
The cohomology of the latter is precisely E/];t*E; s(EYX, EYY). O

Remark 6.3. This spectral sequence can also be obtained as a Grothendieck spectral sequence. Again as-
suming that F,X is projective, consider the following functors, and their derived functors:

G :Homp, p(E.X,—), R'G:Extly p(E.X,—)
from E, E-comodules with flat underlying E.-module to Z,)-modules, and
F:Lo(=), L'F:L(-)
from Z,)-modules to Z,-modules. Then
FG(—) = LoHompg, g(E.X,—).

Let E.F ®g, N be an extended E,.F-comodule, where N is a flat E,-module; this implies F.E ®p, N is
still flat. Then, for s > 0,

L°F(G(E+E ®g, N)) ~ L;(Hompg,g(E.X, E.E ®g, N))
~ Ls;Hompg, (F.X,N)=0.

by Corollary 1.7. This implies that the Grothendieck spectral sequence exists. To identify the abutment
we just need to identify the derived functors of F'G. Once again we can use the cobar resolution M —
E.E®p, M — ---, where M is an E,FE-comodule that is flat as an E,-module. Then

R*FG(M) = H*(LoHompg, p(E. X, (E.E)?*+t) @5 M))
~ H*(LoHomp, (E. X, (E.E)®* @p, M))

~ H*(Homgr (EY X, BY B R, LoM))

~ H*(

Hom —, (EYX,EYERC*YRg LoM)).

Comod EYE

As we have seen previously this identifies R*FG(M) with E/)x\t;jE(E;/X, LoM).

4 Note that we switch from a chain complex to a cochain complex, which accounts for the shift in grading in the abutment.
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6.1. Height 1 calculations

As an example we will show how the calculation of H}(Gq, E,) follows from the corresponding calculation
of ExtEfE(E*,E*). We work at the prime 2 since the calculations are more interesting here, due to the
presence of 2-torsion in Gy = ZJ ~ Zy x Z/2. We first need the following lemma that relates the E(n) and
FE-Adams spectral sequences. This result holds for all heights n and primes p.

Lemma 6.4 (Hovey—Strickland). Let M and N be E(n).E(n)-comodules. Then, for all s and t, there is an
isomorphism

Ext®t

By 5(m) (M N) = Exty! o(M @pn), By N @p(n), Bx)-

Proof. By [22, Theorem C] the functor that takes M to M ®pg(,), E« defines an equivalence of categories
between F(n).E(n)-comodules and E,E-comodules. O

This implies that EXt;zl)*E(l) (E(1)., BE(1),) = Ext;iE(E*, E,) for all s and t. We start with a calculation

described in [20, Section 6].”
Proposition 6.5. Let p = 2. Then

Z2) t=0,s=0

Q/Zpy t=0,5s=2

7282 t=2klm m#0 mod (2),k#0,s=1
Z)2  t=4t'+2s=1t¢cL

Z]2 s> 2,1 = even

EXtHlpEu)(E(l)*’E(l)*) =

0 else.

We now run the spectral sequence of Theorem 6.1. Note that Example 1.5 computes the Fs-term of this
spectral sequence. It can be checked that the differentials are d, : E»* — EF™5+7=1: gince the spectral
sequence is non-zero only for ¢ = 0 and ¢ = 1 we see that there are no differentials in the spectral sequence,
and that it collapses at the Fo-page. We deduce the following:

Theorem 6.6. Let p = 2. Then

Zo t=0,s=0,1

722 t=2F1m m #0 mod (2),k #0,s =1
H Gy, Ey) = Z/2  t=4t'+2,s=1,t €

Z]2 s> 2,1 = even

0 else.
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