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Let E = En be Morava E-theory of height n. In [8] Devinatz and Hopkins introduced 
the K(n)-local En-Adams spectral sequence and showed that, under certain 
conditions, the E2-term of this spectral sequence can be identified with continuous 
group cohomology. We work with the category of L-complete E∨

∗ E-comodules, and 
show that in a number of cases the E2-term of the above spectral sequence can be 
computed by a relative Ext group in this category. We give suitable conditions for 
when we can identify this Ext group with continuous group cohomology.

© 2016 Elsevier B.V. All rights reserved.

0. Introduction

Let En denote the n-th Morava E-theory (at a fixed prime p), the Landweber exact cohomology theory 
with coefficient ring

π∗(En) = W(Fpn)[[u1, . . . , un−1]]][u±1],

where each ui is in degree 0, and u has degree −2. Here W(Fpn) refers to the Witt vectors over the finite 
field Fpn (an unramified extension of Zp of degree n). Note that E0 is a complete local regular Noetherian 
ring with maximal ideal m = (p, u1, . . . , un−1).

Unless indicated otherwise, let us fix an integer n ≥ 1 and write E instead of En throughout. The 
cohomology theory E plays a very important role in the chromatic approach to stable homotopy theory, in 
particular in the understanding of the K(n)-local homotopy category (see, for example, [21]).

The formal group law associated to E∗ is the universal deformation of the Honda formal group law Γn of 
height n over Fpn . Let Gn = Aut(Γn) � Gal(Fpn/Fp) denote the n-th (extended) Morava stabilizer group. 
Lubin–Tate theory implies that Gn acts on the ring E∗, and Brown representability implies that Gn acts 
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on E itself in the stable homotopy category. The Goerss–Hopkins–Miller theorem [31,12] implies that this 
action can be taken to be via E∞-ring maps.

In general Gn is a profinite group, and it is not clear how to form the homotopy fixed points with 
respect to such groups (although progress has been made in this area; see [6,2,29]). Nonetheless, in [8]
Devinatz and Hopkins defined E∞-ring spectra EhG for G ⊂ Gn a closed subgroup of the Morava stabilizer 
group, which behave like continuous homotopy fixed point spectra (and indeed if G is finite they agree with 
the usual construction of homotopy fixed points). Remarkably they showed that there is an equivalence 
EhGn � LK(n)S

0, a result expected since the work of Morava [26]. Davis [6], Behrens–Davis [2] and Quick [29]
have given constructions of homotopy fixed point spectra with respect to the continuous action of G on E, 
and these agree with the construction of Devinatz and Hopkins.

Devinatz and Hopkins additionally showed that for any spectrum Z there is a strongly convergent spectral 
sequence

E∗,∗
2 = H∗

c (G,E∗Z) ⇒ (EhG)∗Z

which is a particular case of a spectral sequence known as the K(n)-local E-Adams spectral sequence [8, 
Appendix A]. Here, for a closed subgroup G ⊂ Gn the continuous cohomology of G with coefficients in a 
topological Gn-module N is defined using the cochain complex Homc(G•, N) (see the discussion before the 
proof of Theorem 4.3).

Using homology instead of cohomology Devinatz and Hopkins identified conditions [8, Proposition 6.7]
under which the K(n)-local E-Adams spectral sequence takes the form

E∗,∗
2 = H∗

c (Gn, E∗Z) ⇒ π∗LK(n)Z.

It was remarked that this was probably not the most general result. In many cases the E2-term of Adams-type 
spectral sequences can be calculated by Ext groups (for example [30, Chapter 2]). Thus we ask the following 
two questions:

(a) Can the E2-term of the K(n)-local E-Adams spectral sequence be calculated by a suitable Ext group?
(b) In what generality can we identify the E2-term with continuous group cohomology?

In this document we give partial answers to both these questions. Some work on the second problem has 
been done previously, and we provide a comparison between some known results and our results.

In the K(n)-local setting the natural functor to consider for a spectrum X is not E∗X but rather E∨
∗ X :=

π∗LK(n)(E∧X). The use of this completed version of E-homology becomes very important in understanding 
the E2-term of this spectral sequence.1 This is not just an E∗-module, but rather an L-complete E∗-module, 
and based on work of Baker [1] we work in the category of L-complete E∨

∗ E-comodules. This category is 
not abelian, and so we use the methods of relative homological algebra to define a relative Ext functor for 
certain classes of objects in the category, which we denote by Êxt

s,t

E∨
∗ E(−, −). The following is our answer 

for (a).

Theorem 3.1. Let X and Y be spectra and suppose that E∨
∗ X is pro-free, and E∨

∗ Y is either a finitely-
generated E∗-module, pro-free, or has bounded m-torsion (i.e., is annihilated by some power of m). Then 
the E2-term of the K(n)-local E-Adams spectral sequence with abutment πt−sF (X, LK(n)Y ) is

1 This also gives one reason why the case of continuous cohomology with coefficients in E∗Z is easier than in E∨
∗ Z for any 

spectrum Z; since F (Z, ΣkE) is already K(n)-local for any k ∈ Z (since E is), there is no need for a ‘completed’ version of 
E-cohomology.
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Es,t
2 = Êxt

s,t

E∨
∗ E(E∨

∗ X,E∨
∗ Y ).

Our answer to question (b) is the following.

Theorem 4.3. Suppose that X is a spectrum such that E∨
∗ X is either a finitely-generated E∗-module, pro-free, 

or has bounded m-torsion. Then, for the K(n)-local E-Adams spectral sequence with abutment π∗LK(n)X, 
there is an isomorphism

E∗,∗
2 = Êxt

∗,∗
E∨

∗ E(E∗, E
∨
∗ X) � H∗

c (Gn, E
∨
∗ X).

We then compare this to some of the known results in the literature.
We have two applications of these results. Firstly, we can almost immediately extend a result of Goerss–

Henn–Mahowald–Rezk, used in their construction of a resolution of the K(2)-local sphere at the prime 3 [13], 
from finite subgroups of Gn to arbitrary closed subgroups.

The second application appears to work at height n = 1 only. Here we construct a spectral sequence 
with E2-term Li Exts,tE∗E

(E∗X, E∗Y ), where E∗X is a projective E∗-module, E∗Y a flat E∗-module, and Li

refers to the derived functor of completion on the category of Z(p)-modules. We show that the abutment of 
this spectral sequence is Êxt

s−i,t

E∨
∗ E (E∨

∗ X, E∨
∗ Y ) and calculate this when X = Y = S0 at the prime 2.

1. L-completion and L-complete comodules

1.1. L-completion

It is now well understood (see, for example [21]) that in the K(n)-local setting the functor E∨
∗ (−) =

π∗LK(n)(E ∧ −), from spectra to E∗-modules, mentioned in the introduction is a more natural covariant 
analogue of E∗(−) than ordinary E∗-homology, despite the fact that it is not a homology theory. It is equally 
well understood that this functor is naturally thought of as landing in the category M̂odE∗ of L-complete 
E∗-modules, rather than the category of E∗-modules. We review the basics of this category now; for more 
details see [21,3,18,32].

Remark 1.1. Since we always work with E-modules there is some ambiguity to the type of Bousfield 
localisation we are using. Recall that LK(n) denotes Bousfield localisation with respect to Morava K-theory 
K(n) on the category of spectra. Let LE

K(n) denote Bousfield localisation on the category of E-modules. 
Suppose now that M is an E-module. Then by [4, Lemma 4.3] there is an equivalence LK(n)M � LE

K(n)∧EM . 
But by [19, Proposition 2.2] the latter is just LE

K(n)M and so it does not matter if we use LK(n) or LE
K(n).

To keep the theory general, suppose that R is a complete local Noetherian graded ring with a unique 
maximal homogeneous ideal m, generated by a regular sequence of n homogeneous elements. Our assump-
tions imply that the (Krull) dimension of R is n. Let ModR denote the category of graded R-modules, where 
the morphisms are the morphisms of R-modules that preserve the grading.

Recall that given an R-module M , the completion of M (at m) is

M∧
m = lim←−−

k

M/mkM.

Here we must take the limit in the graded sense. This is functorial, but completion is not right (nor in fact 
left) exact; the idea is to then replace completion with its zeroth derived functor.

Definition 1.2. For s ≥ 0 let Ls(−) : ModR → ModR be the s-th left derived functor of the completion 
functor (−)∧m.
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Since completion is not right exact it is not true that L0M � M∧
m. In fact the natural map M → M∧

m

factors as the composite M
ηM−−→ L0M

εM−−→ M∧
m.

Definition 1.3. We say that M is L-complete if ηM is an isomorphism of R-modules.

The map εM is surjective with kernel

lim←−−
1
k TorR1 (R/mk,M); (1.1)

in general these derived functors fit into an exact sequence [21, Theorem A.2]

0 → lim←−−
1
k TorRs+1(R/mk,M) → LsM → lim←−−

k

TorRs (R/mk,M) → 0,

and vanish if s < 0 or s > n.
Let M̂odR denote the subcategory of ModR consisting of those graded R-modules M for which ηM is an 

isomorphism. This category is a bicomplete full abelian subcategory of the category of graded R-modules, 
and is closed under extensions and inverse limits formed in ModR. One salient feature of this category 
is that ExtsM̂odR

(M, N) � ExtsR(M, N) for all s ≥ 0 whenever M and N are L-complete R-modules [18, 
Theorem 1.11]. The tensor product of L-complete modules need not be L-complete; we write M �R N :=
L0(M ⊗R N). By [21, Proposition A.6] this gives M̂odR the structure of a symmetric monoidal category.

Remark 1.4. We will use the following properties of L-completion repeatedly:

(i) If M is a flat R-module, then L0M = M∧
m is flat as an R-module and thus LsM = 0 for s > 0 (see [18, 

Corollary 1.3] or [3, Proposition A.15]);
(ii) If M is a finitely-generated R-module, then L0M = M and LsM = 0 for s > 0 [21, Proposition A.4, 

Theorem A.6]; and,
(iii) If M is a bounded m-torsion module, then L0M = M and LsM = 0 for s > 0.

The last item follows from [21, Theorem A.6] and the observation that for large enough k there are equiva-
lences (by [21, Proposition A.4])

L0M � L0(M ⊗R R/mk)

� L0M ⊗R R/mk

� M ⊗R R/mk

� M,

so that M is L-complete. Modules M that have LsM = 0 for s > 0 are known as tame. For example, 
L-complete modules are always tame.

Example 1.5. Let R = Z(p) and m = (p). Since Z(p) has Krull dimension 1 the only potential non-zero 
derived functors are L0 and L1. By [3, Proposition 5.2], L-completion with respect to Z(p) naturally lands 
in the category of Zp-modules.

It is immediate from the remark above that L0Z(p) = Zp and LiZ(p) = 0 for i > 0. By [21, Theorem A.2]
for any Z(p)-module M we have

L0M = Ext1Z(p)
(Z/p∞,M) and L1M = HomZ(p)(Z/p

∞,M) � lim←−−HomZ(p)(Z/p
r,M).
r
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If M is any injective Z(p)-module M , for example if M = Q/Z(p), then it follows from this description that 
L0M = 0. On the other hand the inverse system defined above gives L1(Q/Z(p)) = Zp.

The discussion above also shows that if M is any bounded p-torsion Z(p)-module then it is L-complete 
and hence tame.

Suppose now that M is a flat R-module so that, by Lazard’s theorem, we can write it canonically as a 
filtered colimit over finite free modules, M = lim−−→j

Fj . Since HomR(Fj , L0N) is L-complete for any j ∈ J , 
the same is true for lim←−−j

HomR(Fj , L0N) = HomR(M, L0N), and hence we get a natural factorization

L0 HomR(M,N)

HomR(M,N) HomR(M,L0N)

for arbitrary N .

Proposition 1.6. If M is projective and N is flat, then the natural map

L0 HomR(M,N) HomR(M,L0N)

is an isomorphism of L-complete R-modules.

Proof. It is enough to show the claim for M =
⊕

I R free. Since R is Noetherian, products of flat modules 
are flat, so we get

L0 HomR(M,N) = L0
∏
I

N = lim←−−
k

((
∏
I

N) ⊗R/mk)

and similarly

HomR(M,L0N) =
∏
I

lim←−−
k

(N ⊗R/mk) = lim←−−
k

∏
I

(N ⊗R/mk).

Therefore, it suffices to show that the natural map

ε : (
∏
I

N) ⊗R/mk →
∏
I

(N ⊗R/mk)

is an isomorphism for all k. Since R/mk is finitely-presented, this is true by [23, Proposition 4.44], and the 
proposition follows. �
Corollary 1.7. For M projective and N flat, there are isomorphisms

Ls HomR(M,N) =
{

HomM̂odR
(L0M,L0N) if s = 0

0 otherwise.

Proof. The first statement is a direct consequence of the previous proposition. For the case of s > 0 note 
that HomR(M, N) is flat, hence tame. �
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Remark 1.8. Using work of Valenzuela [35] it is possible to construct a spectral sequence

Es,t
2 = Lp ExtqR(M,N) ⇒ Extq−p

R (M,LR/mN),

where M and N are arbitrary R-modules and LR/m is the total left derived functor of L0. Specialising to 
M projective and N tame gives the above corollary.

1.2. Completed E-homology

We now specialise to the case where R = E∗. By [21, Proposition 8.4] the functor E∨
∗ (−) always takes 

values in M̂odE∗ . This is in fact a special case of the following theorem.

Proposition 1.9. ([3, Corollary 3.14]) An E-module M is K(n)-local if and only if π∗M is an L-complete 
E∗-module.

Remark 1.10. The case where M = E ∧ X, for X an arbitrary spectrum, proved in [21], uses a different 
method. In particular there is a tower of generalised Moore spectra MI such that LK(n)X � holimI LnX ∧
MI [21, Proposition 7.10]. This gives rise to a Milnor sequence

0 → lim←−−
I

1E∗+1(X ∧MI) → E∨
∗ X → lim←−−

I

E∗(X ∧MI) → 0, (1.2)

which by [21, Theorem A.6] implies E∨
∗ X is L-complete.

The projective objects in M̂odE∗ will be important for us. These are characterised in [21, Theorem A.9]
and [3, Proposition A.15].

Definition 1.11. An L-complete E∗-module is pro-free if it is isomorphic to the completion (or, equivalently, 
L-completion) of a free E∗-module. Equivalently, these are the projective objects in M̂odE∗ .

Proposition 1.12. If E∨
∗ X is either finitely-generated as an E∗-module, pro-free, or has bounded m-torsion, 

then E∨
∗ X is complete in the m-adic topology.

Proof. The case where E∨
∗ X is finitely-generated follows from the fact that E∗ is complete and Noetherian. 

Since E∨
∗ X is always L-complete and L0-completion is idempotent, when E∨

∗ X is pro-free (and hence flat) 
L0(E∨

∗ X) � E∨
∗ X = (E∨

∗ X)∧m, so that E∨
∗ X is complete. The case where E∨

∗ X has bounded m-torsion is 
clear. �
Remark 1.13. The condition that E∨

∗ X is pro-free is not overly restrictive. Let K denote the 2-periodic 
version of Morava K-theory with coefficient ring K∗ = E∗/m = Fpn [u±1]. If K∗X is concentrated in even 
degrees, then E∨

∗ X is pro-free [21, Proposition 8.4]. For example, this implies that E∨
∗ E

hF
n is pro-free for any 

closed subgroup F ⊂ Gn. By [21, Theorem 8.6] E∨
∗ X is finitely generated if and only if X is K(n)-locally 

dualisable.

We will need the following version of the universal coefficient theorem (for Y = S this is [18, Corol-
lary 4.2]).

Proposition 1.14. Let X and Y be spectra. If E∨
∗ X is pro-free, then

HomE∗(E∨
∗ X,E∨

∗ Y ) � π∗F (X,LK(n)(E ∧ Y )).
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Proof. Let M , N be K(n)-local E-module spectra. Note that π∗M and π∗N are always L-complete by 
Proposition 1.9. Under such conditions Hovey [18, Theorem 4.1] has constructed a natural, strongly and 
conditionally convergent, spectral sequence of E∗-modules2

Es,t
2 = Exts,t

M̂odE∗
(π∗M,π∗N) � Exts,tE∗

(π∗M,π∗N) ⇒ πt−sFE(M,N).

Set M = LK(n)(E ∧X) and N = LK(n)(E ∧ Y ). Note then that

FE(LK(n)(E ∧X), LK(n)(E ∧ Y )) � FE(E ∧X,LK(n)(E ∧ Y )) � F (X,LK(n)(E ∧ Y )),

where the second isomorphism is [10, Corollary III.6.7], giving a spectral sequence

Es,t
2 = Exts,t

M̂odE∗
(E∨

∗ X,E∨
∗ Y ) � Exts,tE∗

(E∨
∗ X,E∨

∗ Y ) ⇒ πt−sF (X,LK(n)(E ∧ Y )).

Since E∨
∗ X is pro-free it is projective in M̂odE∗ and so the spectral sequence collapses, giving the desired 

isomorphism. �
Remark 1.15. The map above can be described in the following way: given

f : X → LK(n)(E ∧ Y )

then the homomorphism takes

g : S → LK(n)(E ∧X)

to the element

S
g−→ LK(n)(E ∧X) 1∧f−−−→ LK(n)(E ∧ E ∧ Y ) μ∧1−−−→ LK(n)(E ∧ Y ).

1.3. L-complete Hopf algebroids

Since E∨
∗ X always lands in the category of L-complete E∗-modules, one is led to wonder if E∨

∗ X is 
a comodule over a suitable L-complete Hopf algebroid. The category of L-complete Hopf algebroids has 
previously been studied by Baker [1], and we now briefly review this work.

Suppose that R is as in Section 1.1 and, additionally, R is an algebra over some local subring (k0, m0) of 
(R, m), such that m0 = k0 ∩m.

We say A ∈ M̂odk0 is a ring object if it has an associative product φ : A ⊗k0 A → A. An R-unit for φ is a 
k0-algebra homomorphism η : R → A. A ring object A is R-biunital if it has two units ηL, ηR : R → A which 
extend to give a morphism ηL ⊗ ηR : R⊗k0 R → A. Such an object is called L-complete if it is L-complete 
as both a left and right R-module.

Definition 1.16. ([1, Definition 2.3]) Suppose that Γ is an L-complete commutative R-biunital ring object 
with left and right units ηL, ηR : R → Γ, along with the following maps:

Δ : Γ → Γ �R Γ (composition)

ε : Γ → R (identity)

c : Γ → Γ (inverse)

2 Note that we have regraded the spectral sequence in [18] to reflect the fact we use homology rather than cohomology.
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satisfying the usual identities (as in [30, Appendix A]) for a Hopf algebroid. Then the pair (R, Γ) is an 
L-complete Hopf algebroid if Γ is pro-free as a left R-module, and the ideal m is invariant, i.e., mΓ = Γm.

Lemma 1.17. ([1, Proposition 5.3]) The pair (E∗, E∨
∗ E) is an L-complete Hopf algebroid.

Definition 1.18. ([1, Definition 2.4]) Let (R, Γ) be an L-complete Hopf algebroid. A left (R, Γ)-comodule M
is an L-complete R-module M together with a left R-linear map ψ : M → Γ �R M which is counitary and 
coassociative.

We will usually refer to a left (R, Γ)-comodule as an L-complete Γ-comodule and we write ĈomodΓ for 
the category of such comodules.

Remark 1.19. In all cases we will consider, E∨
∗ X will be a complete E∗-module, and so we could work in the 

category of complete E∨
∗ E-comodules, as studied previously by Devinatz [7]. However, whilst the category 

of L-complete E∗-modules is abelian, the same is not true for the category of complete E∗-modules, so we 
prefer to work with L-complete E∨

∗ E-comodules.

Given an L-complete R-module N , let Γ �R N be the comodule with structure map ψ = Γ �R Δ. This 
is called an extended L-complete Γ-comodule. The following is the standard adjunction between extended 
comodules and ordinary modules.

Lemma 1.20. Let N be an L-complete R-module and let M be an L-complete Γ-comodule. Then there is an 
isomorphism

HomM̂odR
(M,N) = HomĈomodΓ

(M,Γ �R N).

Suppose that F is a ring spectrum (in the stable homotopy category) such that F∗F is a flat F∗-module. 
In this case the pair (F∗, F∗F ) is an (ordinary) Hopf algebroid. To show that F∗(X) is an F∗F -comodule 
for any spectrum X requires knowing that F∗(F ∧ X) � F∗F ⊗F∗ F∗X. The same is true here; to show 
that E∨

∗ X is an L-complete E∨
∗ E-comodule we need to show that E∨

∗ (E ∧X) � E∨
∗ E �E∗ E

∨
∗ X. We do not 

know if it is true in general; our next goal will be to give the examples of L-complete E∨
∗ E-comodules that 

we need. We first start with a preliminary lemma.

Lemma 1.21. Let M and N be E∗-modules such that M is flat and N is either a finitely-generated E∗-module, 
pro-free, or has bounded m-torsion. Then M ⊗E∗ N is tame.

Proof. First assume N is finitely-generated. Since E∗ is Noetherian there is a short exact sequence

0 → K → F → N → 0

where F = ⊕IE∗ is free and K and F are finitely-generated. Tensoring with the flat module M gives another 
short exact sequence, and by [21, Theorem A.2] there is a long exact sequence

· · · → Lk+1(M ⊗E∗ N) → Lk(M ⊗E∗ K) → Lk(M ⊗E∗ F ) → Lk(M ⊗E∗ N) → · · · . (1.3)

The functors Lk are additive for all k ≥ 0, and since M is flat we see that L0(M ⊗E∗ F ) = ⊕IM
∧
m and 

Lk(M ⊗E∗ F ) = 0 for k > 0. It follows that Lk+1(M ⊗E∗ N) � Lk(M ⊗E∗ K) for k ≥ 1.
Since K, F and N are all finitely-generated E∗-modules we use [21, Theorem A.4] to see that the end of 

the long exact sequence (1.3) takes the form



198 T. Barthel, D. Heard / Topology and its Applications 206 (2016) 190–214
0 → L1(M ⊗E∗ N) → L0(M) ⊗E∗ K → L0(M) ⊗E∗ F → L0(M) ⊗E∗ N → 0.

Since M is flat, L0(M) is pro-free, and hence flat [3, Proposition A.15], so L0(M) ⊗E∗ K → L0(M) ⊗E∗ F

is injective, forcing L1(M ⊗E∗ N) = 0. Since N was an arbitrary finitely-generated E∗-module and K is 
finitely generated, we see that L1(M ⊗E∗ K) = 0, also. It follows that L2(M ⊗E∗ N) � L1(M ⊗E∗ K) = 0, 
and arguing inductively we see that Lk(M ⊗E∗ N) = 0 for k > 0, so that M ⊗E∗ N is tame.

Now assume that N is pro-free, and hence flat. It follows that M ⊗E∗ N is also flat, and hence tame.
For the final case, where N has bounded m-torsion, note that M ⊗E∗ N also has bounded m-torsion, and 

so is tame (see Remark 1.4). �
We now identify conditions on a spectrum X so that E∨

∗ X is an L-complete E∨
∗ E-comodule.

Proposition 1.22. Let X be a spectrum. If E∨
∗ E ⊗E∗ E∨

∗ X is tame, then

E∨
∗ (E ∧X) � E∨

∗ E �E∗ E∨
∗ X (1.4)

and E∨
∗ X is an L-complete E∨

∗ E-comodule. In particular this occurs when E∨
∗ X is either a finitely-generated 

E∗-module, pro-free or has bounded m-torsion.

Proof. There is a spectral sequence [10, Theorem IV.4.1]

E2
s,t = TorE∗

s,t (E∨
∗ E,E∨

∗ X) ⇒ πs+t(LK(n)(E ∧ E) ∧E LK(n)(E ∧X)). (1.5)

For any E-module M we also have the spectral sequence of E∗-modules [19, Theorem 2.3]

E2
s,t = (Lsπ∗M)t ⇒ πs+tLK(n)M.

In particular there is a spectral sequence starting from the abutment of (1.5) that has the form

(Liπ∗(LK(n)(E ∧ E) ∧E LK(n)(E ∧X)))s+t ⇒ πi+s+tLK(n)(LK(n)(E ∧ E) ∧E LK(n)(E ∧X)).

By Remark 1.1 we deduce that there is an equivalence

LK(n)(LK(n)(E ∧ E) ∧E LK(n)(E ∧X)) � LK(n)(E ∧E ∧X),

and so the latter spectral sequence abuts to E∨
∗ (E ∧X). Since E∨

∗ E is a flat E∗-module the first spectral 
sequence always collapses, and the second spectral sequence becomes

(Li(E∨
∗ E ⊗E∗ E∨

∗ X))s+t ⇒ E∨
i+s+t(E ∧X). (1.6)

Thus, if E∨
∗ E ⊗E∗ E∨

∗ X is tame, this gives an isomorphism

E∨
∗ (E ∧X) � E∨

∗ E �E∗ E∨
∗ X,

and so E∨
∗ X is an L-complete E∨

∗ E-comodule. Since E∨
∗ E is pro-free it is flat, and Lemma 1.21 applies to 

show that E∨
∗ E ⊗E∗ E∨

∗ X is tame in the given cases. �
Remark 1.23. This raises the question: what is the most general class of L-complete comodules M such that 
E∨

∗ E ⊗E∗ M is tame? In light of Baker’s example [1, Appendix B] of an L-complete – and hence tame –
module N such that L1(

⊕∞
i=0 N) �= 0, this seems to be a subtle problem. In particular, we note that this 

example implies that the collection of tame modules itself need not satisfy the above condition.
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The following corollary shows that the equivalence of (1.4) can be iterated.

Corollary 1.24. Let Y be a spectrum such that E∨
∗ Y is either a finitely-generated E∗-module, pro-free or 

has bounded m-torsion. Then for all s ≥ 0 there is an isomorphism

E∨
∗ (E∧s ∧ Y ) � (E∨

∗ E)�s �E∗ E∨
∗ Y.

Proof. We will prove this by induction on s, the case s = 0 being trivial. Assume now that E∨
∗ (E∧(s−1)∧Y ) �

(E∨
∗ E)�(s−1) �E∗ E∨

∗ Y ; we will show that E∨
∗ E ⊗E∗ ((E∨

∗ E)�(s−1) �E∗ E∨
∗ Y ) is tame. We claim that this 

is true in the three cases we consider.

1. If E∨
∗ Y is flat, then so is (E∨

∗ E)�(s−1) �E∗ E∨
∗ Y , and we can apply Lemma 1.21 to see that E∨

∗ E ⊗E∗

((E∨
∗ E)�(s−1) �E∗ E∨

∗ Y ) is tame.
2. If E∨

∗ Y is finitely-generated then (E∨
∗ E)�(s−1) �E∗ E∨

∗ Y � (E∨
∗ E)�(s−1) ⊗E∗ E∨

∗ Y [21, Theorem A.4]. 
Since E∨

∗ E ⊗E∗ (E∨
∗ E)�(s−1) is a flat E∗-module, once again we can apply Lemma 1.21 to see that 

E∨
∗ E ⊗E∗ ((E∨

∗ E)�(s−1) �E∗ E∨
∗ Y ) is tame.

3. If E∨
∗ Y has bounded m-torsion, then the same is true for E∨

∗ E ⊗E∗ ((E∨
∗ E)�(s−1) �E∗ E∨

∗ Y ), and it 
follows that it is tame, as required.

Therefore, Proposition 1.22 applied to X = E∧(s−1) ∧ Y implies that

E∨
∗ (E∧s ∧ Y ) � E∨

∗ E �E∗ E∨
∗ (E∧(s−1) ∧ Y ) � (E∨

∗ E)�s �E∗ E∨
∗ Y,

where the last isomorphism uses the inductive hypothesis once more. �
2. Relative homological algebra

2.1. Motivation

Recall [30, Appendix A] that the category of comodules over a Hopf algebroid (A, Γ) is abelian whenever 
Γ is flat over A, and that if I is an injective A-module then Γ ⊗A I is an injective Γ-comodule. This implies 
that the category of Γ-comodules has enough injectives.

Given Γ-comodules M and N we can define ExtiΓ(M, N) in the usual way as the i-th derived functor 
of HomΓ(M, N), functorial in N . However, the category of L-complete Γ-comodules does not need to be 
abelian. In this case, in order to define L-complete Ext-groups, we need to use relative homological algebra, 
for which the following is meant to provide some motivation.

The following two lemmas show that we can form a resolution by relative injective objects, instead of 
absolute injectives.

Lemma 2.1. Let (A, Γ) be a Hopf algebroid (over a commutative ring K) such that Γ is a flat A-module, 
and let

0 → N → R0 → R1 → · · ·

be a sequence of left Γ-comodules which is exact (over K) and such that for each i, ExtnΓ(M, Ri) = 0 for all 
n > 0. Then ExtΓ(M, N) is the cohomology of the complex

Ext0Γ(M,R0) → Ext0Γ(M,R1) → · · · .
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Proof. See [27, Lemma 1.1] or [30, Lemma A1.2.4]. �
Definition 2.2. A Γ-comodule S is a relative injective Γ-comodule if it is a direct summand of an extended 
comodule, i.e., one of the form Γ ⊗A N .

Lemma 2.3. Let S be a relatively injective comodule. If M is a projective A-module, then ExtiΓ(M, S) = 0
for i > 0. Hence if I∗ is a resolution of N by relatively injective comodules then

ExtnΓ(M,N) = Hn(HomΓ(M, I∗)) (2.1)

for all n ≥ 0.

Proof. The second statement follows from the first and Lemma 2.1. For the first statement proceed as in [30, 
A1.2.8(b)]. �

In the case of L-complete Γ-comodules, we will take the analogue of Equation (2.1) as a definition of 
ÊxtΓ(−, −) (see Definition 2.13).

Remark 2.4. The reader may wonder about projective objects. In general, comodules over a Hopf algebra 
do not have enough projectives. For example, when (A, Γ) = (Fp, A), where A is the dual of the Steenrod 
algebra, it is believed that there are no non-zero projective objects [28].

2.2. Homological algebra for L-complete comodules

The category ĈomodΓ of L-complete Γ-comodules is not abelian; it is an additive category with cokernels. 
The absence of kernels is due to the failure of tensoring with Γ to be flat. If θ : M → N is a morphism of 
L-complete comodules, then there is a commutative diagram [1]

0 ker θ M N

Γ �R ker θ Γ �R M Γ �R N,

θ

ψM ψN

id�Rθ

but the dashed arrow need not exist or be unique.
Since ĈomodΓ is not abelian we need to use the methods of relative homological algebra to define a 

suitable Ext functor, which we briefly review now. For a more thorough exposition see [11] (although in 
general one needs to dualise what they say, since they mainly work with relative projective objects). Our 
work is in fact similar to that of Miller and Ravenel [27].

Definition 2.5. An injective class I in a category C is a pair (D, S) where D is a class of objects and S is a 
class of morphisms such that:

1. I is in D if and only if for each f : A → B in S

f∗ : HomC(B, I) → HomC(A, I)

is an epimorphism. We call such objects relative injectives.
2. A morphism f : A → B is in S if and only if for each I ∈ D

f∗ : HomC(B, I) → HomC(A, I)
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is an epimorphism. These are called the relative monomorphisms.
3. For any object A ∈ C there exists an object Q ∈ D and a morphism f : A → Q in S.

Remark 2.6. Note that given either S or D, the other class is determined by the requirements above, and 
that the third condition ensures the existence of enough relative injectives.

It is not hard to check that D is closed under retracts and that if the composite morphism A 
f−→ B → C

is in S then so is f : A → B.

Example 2.7 (The split injective class). The split injective class Is = (Ds, Ss) has Ds equal to all objects 
of C and Ss all morphisms that satisfy Definition 2.5, i.e., HomC(f, −) is surjective for all objects. One can 
easily check that this is equivalent to the requirement that f : A → B is a split monomorphism.

Example 2.8 (The absolute injective class). Let S be the class of all monomorphisms and then let D be the 
objects as needed. This satisfies (3) if there are enough categorical injectives.

One way to construct an injective class is via a method known as reflection of adjoint functors.

Proposition 2.9. Suppose that C and F are additive categories with cokernels, and there is a pair of adjoint 
functors

T : C � F : U.

Then, if (D, S) is an injective class in C, we define an injective class (D′, S ′) in F , where the class of objects 
is given by the set of all retracts of T (D) and the class of morphisms is given by all morphisms whose image 
(under U) is in S.

Sketch of proof. 3 First note that, since relative injectives are closed under retracts, to show that D′ is as 
claimed, it suffices to show that T (I) is relative injective, whenever I ∈ D. Let A → B be in S ′ and I ∈ D; 
then the map

HomF (B, T (I)) → HomF (A, T (I))

is equivalent to the epimorphism

HomC(U(B), I) → HomC(U(A), I).

A similar method shows that the relative monomorphisms are as claimed. Finally we observe that for all 
A ∈ F there exists a Q ∈ D such that U(A) → Q ∈ S. Then the adjoint A → T (Q) satisfies Condition 3. To 
see this note that U(A) → Q factors as U(A) → U(T (Q)) → Q; since relative monomorphisms are closed 
under left factorisation (see above) U(A) → U(T (Q)) ∈ S. Then A → T (Q) ∈ S ′ as required. �

We recall the following definition.

Definition 2.10. An extended L-complete E∨
∗ E-comodule is a comodule isomorphic to one of the form 

E∨
∗ E �E∗ M , where M is an L-complete E∗-module. Here the comultiplication is given by the map

E∨
∗ E �E∗ M

Δ�id−−−−→ E∨
∗ E �E∗ E∨

∗ E �E∗ M.

3 For full details see [11, p. 15] – here it is proved for relative projectives, but it is essentially formal to dualise the given argument.
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Example 2.11. Give M̂odE∗ the split injective class. Then the adjunction

HomM̂odE∗
(A,B) = HomĈomodE∨∗ E

(A,E∨
∗ E �E∗ B)

produces an injective class in ĈomodE∨
∗ E . In particular we have

1. S is the class of all comodule morphisms f : A → B whose underlying map of L-complete E∗-modules 
is a split monomorphism.

2. D is the class of L-complete E∨
∗ E-comodules which are retracts of extended complete E∨

∗ E-comodules.

Note that for any complete E∨
∗ E-comodule M the coaction map M

ψ−→ E∨
∗ E⊗̂E∗M is a relative monomor-

phism into a relative injective.

We will say that a three term complex M
f−→ N

g−→ P of comodules is relative short exact if gf = 0 and 
f : M → N is a relative monomorphism. A relative injective resolution of a comodule M is a complex of 
the form

0 → M → J0 → J1 → · · ·

where each J i is relatively injective, and each three-term subsequence

Js−1 → Js → Js+1,

where J−1 = M and Js = 0 for s < −1, is relative short exact. Note that, by definition, relative exact 
sequences are precisely those that give exact sequences of abelian groups after applying HomĈomodE∨∗ E

(−, I), 
whenever I is relative injective.

We have the usual comparison theorem for relative injective resolutions. The proof is nearly identical to 
the standard inductive homological algebra proof – in this context see [14, Theorem 2.2].

Proposition 2.12. Let M and M ′ be objects in an additive category C with relative injective resolutions P ∗

and P ′∗, respectively. Suppose there is a map f : M → M ′. Then, there exists a chain map f∗ : P ∗ → P ′∗

extending f that is unique up to chain homotopy.

Definition 2.13. (Cf. [11, p. 7]) Let M and N be L-complete E∨
∗ E-comodules, and let M be pro-free. Let I∗

be a relative injective resolution of N . Then, for all s ≥ 0, we define

Êxt
s

ĈomodE∨∗ E
(M,N) = Hs(HomĈomodE∨∗ E

(M, I∗)).

For brevity we will write Êxt
s

E∨
∗ E(M, N) for this Ext functor.

Note that Proposition 2.12 implies that the derived functor is independent of the choice of relative 
injective resolution.

Remark 2.14.

1. The reader should compare this definition to Lemma 2.3.
2. The category of L-complete E∗-modules has no non-zero injectives [3, p. 40]; this suggests that the same 

is true of L-complete E∨
∗ E-comodules, which is yet another reason we need to use relative homological 

algebra.
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Let M be an L-complete comodule. As in [27] we have the standard, or cobar resolution of M , denoted 
Ω∗(E∨

∗ E, M), with

Ωn(E∨
∗ E,M) = E∨

∗ E �E∗ · · · �E∗ E∨
∗ E︸ ︷︷ ︸

n+1 times

�E∗M

and differential

d(e0 � · · · � en � m) =
n∑

i=0
(−1)ie0 � · · · ei−1 � Δ(ei) � ei+1 � · · · � m

+ (−1)n+1e0 � · · · en � ψ(m).

The usual contracting homotopy of [27] given by

s(e0 � · · · � en � m) = ε(e0)e1 � · · · � en � m

shows that (Ω∗(E∨
∗ E, M), d) defines a relative injective resolution of M .

Lemma 2.15. Let M and N be L-complete E∨
∗ E-comodules. Then there is an isomorphism

Êxt
0
E∨

∗ E(M,N) � HomĈomodE∨∗ E
(M,N).

Proof. Let ψM : M → E∨
∗ E �E∗ M and ψN : N → E∨

∗ E �E∗ N be the comodule structure maps. Define

ψ∗
M , ψ∗

N : HomM̂odE∗
(M,N) → HomM̂odE∗

(M,E∨
∗ E �E∗ N)

by

ψ∗
M (f) = (1 � f)ψM and ψ∗

N (f) = ψNf.

Note that (see [30, Proof of A1.1.6] for the case of an ordinary Hopf algebroid)

HomĈomodE∨∗ E
(M,N) = ker(ψ∗

M − ψ∗
N ).

The cobar complex begins

E∨
∗ E E∨

∗ E �E∗ N
Δ�1−1�ψN

E∨
∗ E �E∗ E∨

∗ E �E∗ N.

Applying HomĈomodE∨∗ E
(M, −) and using the adjunction of Lemma 1.20 between extended L-complete 

E∨
∗ E-comodules and L-complete E∗-modules we see that

Êxt
0
E∨

∗ E(M,N) = ker
(
HomM̂odE∗

(M,N) f−→ HomM̂odE∗
(M,E∨

∗ E �E∗ N)
)
.

One can check that the map f is precisely ψ∗
M − ψ∗

N , and the claim follows. �
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3. The K(n)-local En-Adams spectral sequence

3.1. Adams spectral sequences

Here we present some standard material on Adams-type spectral sequences following [25,8]. Throughout 
this section we always work in the homotopy category of spectra.

Let R be a ring spectrum. We say that a spectrum I is R-injective if the map I → R ∧ I induced by the 
unit is split. A sequence of spectra X ′ → X → X ′′ is called R-exact if the composition is trivial and

[X ′, I] ← [X, I] ← [X ′′, I]

is exact as a sequence of abelian groups for each R-injective spectrum I. An R-resolution of a spectrum X
is then an R-exact sequence of spectra (i.e., each three term subsequence is R-exact)

∗ → X → I0 → I1 → · · ·

such that each Is is R-injective. Given an R-resolution of X we can always form an Adams resolution of X; 
that is, a diagram

X = X0 X1 X2 X3

I0 Σ−1I1 Σ−2I2
j

i

j

i

j

i

k k k
· · ·

such that each Σ−sIs is R-injective and each Xk+1 → Xk → Σ−kIk is a fiber sequence. Note that the 
composition Ik → Σk+1Xk+1 → Ik+1 corresponds to the original morphism in the R-resolution of X.

Given such a diagram we can always form the following exact couple

Ds+1,t+1 = πt−s(Xs+1) πt−s(Xs) = Ds,t

Es,t
1 = πt−s(Σ−sIs).

i

jk

If we form the standard resolution, where Ik = R∧(k+1) ∧X for k ≥ 0, and if R∗R is a flat R∗-module, then 
it is not hard to see that on the E1-page we get the following sequence

0 → R∗X → R∗R⊗R∗ R∗X → R∗R
⊗2 ⊗R∗ R∗X → · · · .

By explicitly checking the maps one can see that this is the cobar complex for computing Ext, and so we 
get the usual Adams spectral sequence

Ext∗,∗R∗R
(R∗, R∗X) ⇒ π∗X

∧
R.

Here X∧
R is the R-nilpotent completion of X [5]. This construction can be suitably modified to construct 

the F -local R-Adams spectral sequence (see [8, Appendix A]), where F is any spectrum. Following Devinatz 
and Hopkins say an F -local spectrum I is R-injective if the map I → LF (R ∧ I) is split. The definition of 
R-exact sequence and R-exact resolution then follow in the same way as the unlocalised case.

We specialise to the case where F = K(n) and R = E is Morava E-theory. Following [8, Remark A.9] we 
take Ij = LK(n)(E∧(j+1) ∧ X). The formulas of [8, Construction 4.11] actually show that the Ij form an 
Adams resolution (in fact they can be assembled into a cosimplicial resolution). Here is our main result.
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Theorem 3.1. Let X and Y be spectra and suppose that E∨
∗ X is pro-free, and E∨

∗ Y is either a finitely-
generated E∗-module, pro-free, or has bounded m-torsion (i.e., is annihilated by some power of m). Then 
the E2-term of the K(n)-local E-Adams spectral sequence with abutment πt−sF (X, LK(n)Y ) is

Es,t
2 = Êxt

s,t

E∨
∗ E(E∨

∗ X,E∨
∗ Y ).

Proof. By mapping X into an Adams resolution of LK(n)Y we obtain an exact couple with Es,t
1 =

πt−sF (X, Σ−sIs) � πtF (X, Is). Unwinding the exact couple we see that the E2-page is the cohomology of 
the complex

π∗F (X, I0) → π∗F (X, I1) → π∗F (X, I2) → · · · .

As usual, the Adams spectral sequence is independent of the choice of resolution from the E2-page 
onwards, so we use the standard resolution, i.e., we let Is = LK(n)(E∧(s+1) ∧Y ). Applying Proposition 1.14
(which we can do under the assumption that E∨

∗ X is pro-free) we see that

π∗F (X, Is) � HomE∗(E∨
∗ X,E∨

∗ (E∧s ∧ Y ))

� HomM̂odE∗
(E∨

∗ X,E∨
∗ (E∧s ∧ Y )),

where the latter follows from the fact that E∨
∗ (−) is always L-complete.

By Corollary 1.24 we have E∨
∗ (E∧s ∧ Y ) � (E∨

∗ E)�s �E∗ E∨
∗ Y . Using the adjunction between extended 

comodules and L-complete E∗-modules we get

HomM̂odE∗
(E∨

∗ X,E∨
∗ (E∧s ∧ Y )) � HomĈomodE∨∗ E

(E∨
∗ X, (E∨

∗ E)�(s+1) �E∗ E∨
∗ Y ).

This implies that the E2-page is the cohomology of the complex

HomĈomodE∨∗ E
(E∨

∗ X,E∨
∗ E �E∗ E∨

∗ Y ) → HomĈomodE∨∗ E
(E∨

∗ X, (E∨
∗ E)�2 �E∗ E∨

∗ Y ) → · · ·

which is precisely Êxt
∗,∗
E∨

∗ E(E∨
∗ X, E∨

∗ Y ). �
The following is now a consequence of [8, Theorem 2] and uniqueness of the E2-term.

Corollary 3.2. Let X be a spectrum such that E∨
∗ X is pro-free. If F is a closed subgroup of Gn, then there 

is an isomorphism

Êxt
s,t

E∨
∗ E(E∨

∗ X,E∨
∗ E

hF ) � Hs
c (F, πtF (X,E)) � Hs

c (F,E−tX).

4. Identification of the E2-term with group cohomology

It has been known since the work of Morava [26], that completed Ext groups (as considered in [7]) can, 
under some circumstances, be identified with continuous group cohomology. The results of this section say 
that our L-complete Ext groups can also be identified with continuous group cohomology. In fact, in many 
cases complete and L-complete Ext groups coincide, although we do not make this statement precise. Before 
we can give our result identifying L-complete Ext groups and group cohomology, we need two preliminary 
lemmas. We write M⊗̂E∗N for the m-adic completion of the ordinary tensor product.
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Lemma 4.1. Let M be a pro-free E∗-module, and N a finitely-generated E∗-module. Then

M⊗̂E∗N � M ⊗E∗ N.

Proof. For a fixed finitely generated E∗-module N , the category of E∗-modules M for which the conclusion 
of the lemma holds is closed under retracts. By [21, Proposition A.13] M = L0(⊕IE∗) is a retract of 

∏
I E∗, 

and so it suffices to prove the lemma for M =
∏

I E∗. Note that by [23, Proposition 4.44] an E∗-module N
is finitely-presented (equivalently, finitely-generated, since E∗ is Noetherian) if and only if for any collection 
{Cα} of E∗-modules, the natural map N ⊗E∗

∏
Cα →

∏
(N ⊗E∗ Cα) is an equivalence.

We then have a series of equivalences

(
∏
I

E∗)⊗̂E∗N = lim←−−
k

(E∗/m
k ⊗E∗ (

∏
I

E∗) ⊗E∗ N)

� lim←−−
k

∏
I

(E∗/m
k ⊗E∗ N)

�
∏
I

lim←−−(E∗/m
k ⊗E∗ N)

�
∏
I

N∧
m

�
∏
I

N

� (
∏
I

E∗) ⊗E∗ N �.

Lemma 4.2. Let M and N be E∗-modules. Suppose that M is pro-free and N is either pro-free, finitely-
generated as an E∗-module, or has bounded m-torsion. Then

M⊗̂E∗N � M �E∗ N.

Proof. Note that in each case Proposition 1.12 implies that M and N are both complete in the m-adic 
topology. When N is finitely generated there is an isomorphism [21, Proposition A.4]

M �E∗ N � L0(M) ⊗E∗ N � M ⊗E∗ N,

where the last isomorphism follows from the fact that M is already L-complete. Since N is finitely-generated 
Lemma 4.1 implies that M ⊗E∗ N � M⊗̂E∗N .

Now suppose that N has bounded m-torsion. Note that M ⊗E∗ N is still bounded m-torsion, and so 
M �E∗ N � M ⊗E∗ N . Furthermore, there is an isomorphism M ⊗E∗ N � M⊗̂E∗N , since the inverse 
system defining the completed tensor product is eventually constant.

For the final case, assume that N is pro-free. Since both M and N are flat E∗-modules the same is true 
for M ⊗E∗ N . This implies (see Remark 1.4) that M⊗̂E∗N � M �E∗ N . �

We can now identify when the E2-term of the K(n)-local E-Adams spectral sequence is given by contin-
uous group cohomology.

Theorem 4.3. Suppose that X is a spectrum such that E∨
∗ X is either a finitely-generated E∗-module, pro-free, 

or has bounded m-torsion. Then, for the K(n)-local E-Adams spectral sequence with abutment π∗LK(n)X, 
there is an isomorphism
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Es,t
2 = Êxt

s,t

E∨
∗ E(E∗, E

∨
∗ X) � Hs

c (Gn, E
∨
t X).

To prove this we will need to be explicit about the definition of continuous group cohomology we use, 
following [34, Section 2]. Let N be a topological Gn-module and define

Ck(Gn, N) = Homc(Gk
n, N),

the group of continuous functions from Gk
n to N , where Gk

n = Gn × . . .×Gn︸ ︷︷ ︸
k times

and k ≥ 0. Define morphisms 

d : Ck(Gn, N) → Ck+1(Gn, N) by

(df)(g1, . . . , gk+1) = g1f(g2, . . . , gk+1) +
k∑

j=1
(−1)jf(g1, . . . , gjgj+1, . . . , gk+1)

+ (−1)k+1f(g1, . . . , gk).

One can check that d2 = 0 and thus we obtain a complex C∗(Gn, N). We then define H∗
c (Gn, N) as 

H∗(C∗(Gn, N), d). Of course, the same definition holds for any closed subgroup G ⊂ Gn. We refer the 
reader to [6, Section 2] for a more thorough discussion of various notions of continuous group cohomology 
used in chromatic homotopy theory.

Proof. As previously we have that

Êxt
∗,∗
E∨

∗ E(E∗, E
∨
∗ X) � H∗(HomĈomodE∨∗ E

(E∗, (E∨
∗ E)�(∗+1) �E∗ E∨

∗ X))

� H∗(HomE∗(E∗, (E∨
∗ E)�∗ �E∗ E∨

∗ X))

� H∗((E∨
∗ E)�∗ �E∗ E∨

∗ X).

By Corollary 1.24 we see there is an equivalence E∨
∗ E

�∗ � E∨
∗ (E∧∗), which is isomorphic to Homc(G∗

n, E∗)
[8, p. 9]. This is pro-free by [17, Theorem 2.6] and so applying Lemma 4.2 we see that

(E∨
∗ E)�∗ �E∗ E∨

∗ X � Homc(G∗
n, E∗) �E∗ E∨

∗ X

� Homc(G∗
n, E∗)⊗̂E∗E

∨
∗ X.

Since, under our assumptions, E∨
∗ X is m-adically complete we have that

Homc(G∗
n, E∗)⊗̂E∗E

∨
∗ X � Homc(G∗

n, E
∨
∗ X).

Then

H∗((E∨
∗ E)�∗ �E∗ E∨

∗ X) � H∗(Homc(G∗
n, E

∨
∗ X)).

As in [24, Proof of Theorem 5.1] one can see that the latter is precisely H∗
c (Gn, E∨

∗ X). �
Remark 4.4. In [9] the authors give several examples where the E2-term of the K(n)-local E-Adams spectral 
sequence for π∗LK(n)X can be identified with continuous group cohomology; we compare Theorem 4.3 with 
these. The following cases are considered.



208 T. Barthel, D. Heard / Topology and its Applications 206 (2016) 190–214
(a) By [8, Theorem 2(ii)], if X is finite then Es,∗
2 = Hs

c (Gn, E∗X). If X is finite, then smashing with 
it commutes with localisation and so E∗X = E∨

∗ X. By induction on the number of cells one can 
check that if X is finite then K∗X is finite (in each degree), where K is the 2-periodic version of 
Morava K-theory used in Remark 1.13. By [21, Theorem 8.6] this is equivalent to E∨

∗ X being finitely 
generated.

(b) By [24, Theorem 5.1] if E∗X is a flat E∗-module then Es,∗
2 = Hs

c (Gn, E∨
∗ X). But by Remark 1.4 if 

E∗X is flat then E∨
∗ X = L0(E∗X) = (E∗X)∧m is pro-free.

(c) By [15, Proposition 7.4] if Kn,∗(X) is finitely generated as an E∗-module then Es,∗
2 = Hs

c (Gn, Kn,∗(X)). 
Here Kn,∗(X) = lim←−−I

E∗(X ∧ MI). We suspect, but have been unable to prove, that if Kn,∗(X) is 
finitely generated then Kn,∗(X) � E∨

∗ X. We note that if E∨
∗ X is finitely generated, then X is dualis-

able [21, Theorem 8.6], and in this case the lim1 term in the Milnor exact sequence (1.2) vanishes [3, 
Proposition 6.2], so that E∨

∗ X � Kn,∗(X).
(d) The last case considered is more complex. Let X be a spectrum such that, for each E(n)-module 

spectrum M , there exists a k with mkM∗X = 0. Here E(n) is the n-th Johnson–Wilson theory. 
Then, by [8, Proposition 6.7], E∗,∗

2 = H∗
c (Gn, E∗X). Note that E is an E(n)-module spectrum 

and so the proof of [8, Proposition 6.11] implies that E ∧ X is K(n)-local, so that E∗X = E∨
∗ X. 

Since E is an E(n)-module spectrum, E∨
∗ X is a bounded m-torsion module and so Theorem 4.3 ap-

plies.

5. The category of Morava modules

In this section we will show how Corollary 3.2 allows us to easily extend a result originally proved in [13]
for finite subgroups of Gn to arbitrary closed subgroups. First we need a definition.

Definition 5.1. ([13]) A Morava module is a complete E∗-module M equipped with a continuous Gn-action 
such that, if g ∈ Gn, a ∈ E∗ and x ∈ M , then

g(ax) = g(a)g(x).

We denote the category of Morava modules by EGn. Here a homomorphism φ : M → N of Morava 
modules is a continuous (with respect to the m-adic topology) E∗-module homomorphism such that the 
following diagram commutes, where g ∈ Gn:

M
φ

g

N

g

M
φ

N.

For example, if X is any spectrum such that E∨
∗ X is either finitely-generated, pro-free, or has bounded 

m-torsion, then E∨
∗ X is a complete E∗-module (by Proposition 1.12) and the Gn-action on E defines 

a compatible action on E∨
∗ X. This gives E∨

∗ X the structure of a Morava module. The category EGn is a 
symmetric monoidal category; given Morava modules M and N their monoidal product is given by M⊗̂E∗N

with the diagonal Gn-action.
A homomorphism of complete E∗-modules is a homomorphism of E∗-modules that is continuous 

with respect to the m-adic topology. However, it turns out that any homomorphism between complete 
E∗-modules is automatically continuous. We learnt this from Charles Rezk, who also provided the following 
proof.
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Lemma 5.2. Let f : M → N be an E∗-module homomorphism between complete E∗-modules. Then f is 
continuous with respect to the m-adic topology.

Proof. The map f is an E∗-module homomorphism and so f(mkM) is a subset of mkN for any k ≥ 0; thus 
mkM is a subset of f−1(mkN). Therefore f−1(mkN) is a union of mkM -cosets. It follows from the fact that 
mkM is open that f−1(mkN) is open in the m-adic topology. �

Let {Ui} be a system of open normal subgroups of Gn such that 
⋂

i Ui = {e} and Gn = lim←−−i
Gn/Ui. Then 

we define E∗[[Gn] ] = lim←−−i
E∗[Gn/Ui], the completed group ring, with diagonal Gn-action. If H is a closed 

subgroup of Gn, then we define E∗[[Gn/H] ] in a similar way, with diagonal Gn-action. With this in mind 
there is the following result.

Proposition 5.3. ([13, Theorem 2.7]) Let H1 and H2 be closed subgroups of Gn and suppose that H2 is finite. 
Then there is an isomorphism

E∗[[Gn/H1]]]H2
∼=−→HomEGn

(E∨
∗ E

hH1 , E∨
∗ E

hH2)

We will in fact see that this holds more generally whenever H2 is a closed subgroup of Gn.
We will need the following relationship between homomorphisms of Morava modules and L-complete 

comodules.

Proposition 5.4. If M and N are both Morava modules and L-complete comodules, such that the underlying 
L-complete E∗-modules are pro-free, then

HomEGn
(M,N) � HomĈomodE∨∗ E

(M,N).

Proof. Let φ : M → N be a homomorphism of Morava modules. Note that M and N are complete, and 
hence also L-complete, and so φ defines a morphism in M̂odE∗ . We wish to show that this is in fact a 
comodule homomorphism. Let ψM : M → Homc(Gn, M) � E∨

∗ E⊗̂E∗M be the adjoint of the Gn-action 
map, and similarly for ψN . By Lemma 4.2 E∨

∗ E⊗̂E∗M � E∨
∗ E �E∗ M , and equivariance of φ implies that 

the following diagram commutes

M
φ

ψM

N

ψN

E∨
∗ E �E∗ M

id�φ
E∨

∗ E �E∗ N,

so that φ defines a morphism of comodules.
Conversely, suppose that we are given an L-complete comodule homomorphism Φ : M → N . Since M

and N are complete Lemma 5.2 implies that Φ is a homomorphism of complete E∗-modules. Given the 
structure map ψM we define a Gn-action on M using the retract diagram

M
ψM−−→ E∨

∗ E �E∗ M � Homc(Gn, E∗)⊗̂E∗M
ev(g)⊗̂id−−−−−−→ M,

where ev(g) : Homc(Gn, E∗) → E∗ is the evaluation map at g ∈ Gn. The fact that Φ is a L-complete 
comodule homomorphism shows that, with this Gn-action, Φ is in fact a morphism of Morava modules.

These constructions define maps HomEGn
(M, N) → HomĈomodE∨∗ E

(M, N) and vice-versa, and it is not 
hard to see that these are inverse to each other. �
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Corollary 5.5. If E∨
∗ X and E∨

∗ Y are pro-free, then

HomEGn
(E∨

∗ X,E∨
∗ Y ) � HomĈomodE∨∗ E

(E∨
∗ X,E∨

∗ Y ).

Proof. The condition that E∨
∗ X and E∨

∗ Y are pro-free ensures that they are Morava modules; they are also 
L-complete E∨

∗ E-comodules by Proposition 1.12. �
We can now easily derive our version of the Goerss–Henn–Mahowald–Rezk result.

Proposition 5.6. Let H1 and H2 be closed subgroups of Gn. Then there is an isomorphism

E∗[[Gn/H1]]]H2
∼=−→HomEGn

(E∨
∗ E

hH1 , E∨
∗ E

hH2).

Proof. By Corollary 3.2 we have

Êxt
s,∗
E∨

∗ E(E∨
∗ E

hH1 , E∨
∗ E

hH2) � Hs
c (H2, E

−∗EhH1).

From the results of [17,8] it can be deduced that E−∗EhH1 � E∗[[Gn/H1] ] for any closed subgroup H1 ⊂ Gn, 
and that this isomorphism respects the Gn-actions on both sides. Using Lemma 2.15

HomĈomodE∨∗ E
(E∨

∗ E
hH1 , E∨

∗ E
hH2) � H0

c (H2, E∗[[Gn/H1]]])

� E∗[[Gn/H1]]]H2 .

Since E∨
∗ E

hH1 and E∨
∗ E

hH2 are pro-free, Corollary 5.5 implies that

HomĈomodE∨∗ E
(E∨

∗ E
hH1 , E∨

∗ E
hH2) � HomEGn

(E∨
∗ E

hH1 , E∨
∗ E

hH2),

so that

HomEGn
(E∨

∗ E
hH1 , E∨

∗ E
hH2) � E∗[[Gn/H1]]]H2

as required. �
Remark 5.7. Let H be a topological group and assume that R is an H-spectrum and X = limi Xi is an 
inverse limit of a sequence of finite discrete H-sets Xi, such that X has a continuous H-action. Following [13]
we define the H-spectrum

R[[X]]] = holimi R ∧ (Xi)+,

with the diagonal H-action. In [2] Behrens and Davis show that if H1 and H2 are as above then there is an 
equivalence

F (EhH1 , EhH2) � E[[Gn/H1]]]hH2 .

This was originally proved for H2 finite in [13]. Combined with Proposition 5.6 it is easy to see that there 
is a commutative diagram
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π∗E[[Gn/H1]]]hH2 (E∗[[Gn/H1]]])H2

π∗F (EhH1 , EhH2) HomEGn
(E∨

∗ E
hH1 , E∨

∗ E
hH2),

� �

for H1, H2 closed subgroups of Gn. Again this is proved in [13] under the additional assumption that H2 is 
finite.

6. The E1 and K(1)-local E1-Adams spectral sequences

Since E∗E is a flat E∗-module we have the E-Adams spectral sequence (see, for example [20])

Es,t
2 = Exts,tE∗E

(E∗, E∗X) ⇒ π∗LnX.

This is a spectral sequence of Z(p)-modules and our goal in this section is to use the derived functor of 
p-completion on Z(p)-modules to construct a spectral sequence abutting to the E2-term of the K(n)-local 
E-Adams spectral sequence.

Unfortunately our proof only works when n = 1 and p is an arbitrary prime. We shall see that, for a 
spectrum X, the spectral sequence naturally carries copies of Q/Z(p) in Ext∗,∗E∗E

(E∗, E∗X) to copies of Zp

in H∗
c (Gn, E∨

∗ X). Already at height 2, for primes greater than or equal to 5, the calculations of [33] imply 
that there are 3 copies of Q/Z(p) which lie in bidegree (4, 0), (4, 0) and (5, 0), whilst in H∗

c (G2, (E2)∗) there 
are copies of Zp in bidegrees (0, 0), (1, 0) and (3, 0). The grading on the spectral sequence we construct will 
imply that there is no possible class that could give rise to the copy of Zp in bidegree (1, 0). If one accepts 
the chromatic splitting conjecture [16] then an analogue of our spectral sequence cannot exist at all when 
n ≥ 2.

Note: From now on, unless otherwise stated, it is implicit that E refers to Morava E-theory at height 1 
only.

The reason that the spectral sequence exists when n = 1 is due to the fact that E∗ � Zp[u±1]. As Hovey 
shows in [19, Lemma 3.1], given a graded E∗-module M , there is an isomorphism (L0M)k � L0Mk where 
the second L0 is taken in the category of Zp-modules. A similar result holds for completion with respect 
to Z(p)-modules. We will often use this implicitly to pass between ungraded Z(p)-completion and graded 
E∗-completion.

Theorem 6.1. If E∗X is a projective E∗-module and E∗Y is a flat E∗-module, then there is a spectral 
sequence

Ei,s
2 = Li Exts,tE∗E

(E∗X,E∗Y ) ⇒ Êxt
s−i,t

E∨
∗ E (E∨

∗ X,E∨
∗ Y ),

where Li is taken in the category of Z(p)-modules.

Remark 6.2. The assumption that E∗X is projective ensures that Ext∗,∗E∗E
(E∗X, E∗Y ) can be computed 

by a relative injective resolution of E∗Y . Additionally, if E∗X is projective, the spectral sequence of [19, 
Theorem 2.3] collapses, so E∨

∗ X
∼= L0E∗X is pro-free by [3, Proposition A.15].

Proof. Let M∗ be the cobar complex with Ms = E∗E⊗(s+1) ⊗E∗ E∗Y . Then

Ext∗,∗E∗E
(E∗X,E∗Y ) = H∗(HomE∗E(E∗X,E∗E

⊗(∗+1) ⊗E∗ E∗Y ))

� H∗(Hom (E X,E E⊗∗ ⊗ E Y ))
E∗ ∗ ∗ E∗ ∗
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For brevity, we denote HomE∗(E∗X, E∗E⊗∗ ⊗E∗ E∗Y ) by N∗. Since E∗E and E∗Y are flat E∗-modules, so 
is the iterated tensor product E∗E⊗∗ ⊗E∗ E∗Y ; since E∗X is projective, and E∗ is Noetherian, each Ns is 
flat, and hence tame. Under such a condition there is a spectral sequence4 [32, Proposition 8.7]

Ei,s
2 = Li(Hs(N∗)) � Li Exts,∗E∗E

(E∗X,E∗Y ) ⇒ Hs−i(L0(N∗)).

To identify the abutment use the spectral sequence of [19, Theorem 2.3] to see that L0(E∗X) = E∨
∗ X and 

L0(E∗Y ) = E∨
∗ Y , since both E∗X and E∗Y are flat. It also follows from the symmetric monoidal structure 

on L-complete E∗-modules [21, Corollary A.7] that L0(E∗E⊗∗ ⊗E∗ E∗Y ) = L0(E∗E)�∗ �E∗ L0(E∗Y ). 
Applying Corollary 1.7 we see that

L0(N∗) = HomM̂odE∗
(E∨

∗ X,E∨
∗ E

�∗ �E∗ E∨
∗ Y )

� HomĈomodE∨∗ E
(E∨

∗ X,E∨
∗ E

�(∗+1) �E∗ E∨
∗ Y ).

The cohomology of the latter is precisely Êxt
∗,∗
E∨

∗ E(E∨
∗ X, E∨

∗ Y ). �
Remark 6.3. This spectral sequence can also be obtained as a Grothendieck spectral sequence. Again as-
suming that E∗X is projective, consider the following functors, and their derived functors:

G : HomE∗E(E∗X,−), RtG : ExttE∗E(E∗X,−)

from E∗E-comodules with flat underlying E∗-module to Z(p)-modules, and

F : L0(−), LtF : Lt(−),

from Z(p)-modules to Zp-modules. Then

FG(−) = L0 HomE∗E(E∗X,−).

Let E∗E ⊗E∗ N be an extended E∗E-comodule, where N is a flat E∗-module; this implies E∗E ⊗E∗ N is 
still flat. Then, for s > 0,

LsF (G(E∗E ⊗E∗ N)) � Ls(HomE∗E(E∗X,E∗E ⊗E∗ N))

� Ls HomE∗(E∗X,N) = 0.

by Corollary 1.7. This implies that the Grothendieck spectral sequence exists. To identify the abutment 
we just need to identify the derived functors of FG. Once again we can use the cobar resolution M →
E∗E ⊗E∗ M → · · · , where M is an E∗E-comodule that is flat as an E∗-module. Then

RsFG(M) = Hs(L0 HomE∗E(E∗X, (E∗E)⊗(∗+1) ⊗E∗ M))

� Hs(L0 HomE∗(E∗X, (E∗E)⊗∗ ⊗E∗ M))

� Hs(HomM̂odE∗
(E∨

∗ X,E∨
∗ E

�∗ �E∗ L0M))

� Hs(HomĈomodE∨∗ E
(E∨

∗ X,E∨
∗ E

�(∗+1) �E∗ L0M)).

As we have seen previously this identifies RsFG(M) with Êxt
s,∗
E∨

∗ E(E∨
∗ X, L0M).

4 Note that we switch from a chain complex to a cochain complex, which accounts for the shift in grading in the abutment.
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6.1. Height 1 calculations

As an example we will show how the calculation of H∗
c (G1, E∗) follows from the corresponding calculation 

of Ext∗,∗E∗E
(E∗, E∗). We work at the prime 2 since the calculations are more interesting here, due to the 

presence of 2-torsion in G1 = Z×
2 � Z2 × Z/2. We first need the following lemma that relates the E(n) and 

E-Adams spectral sequences. This result holds for all heights n and primes p.

Lemma 6.4 (Hovey–Strickland). Let M and N be E(n)∗E(n)-comodules. Then, for all s and t, there is an 
isomorphism

Exts,tE(n)∗E(n)(M,N) � Exts,tE∗E
(M ⊗E(n)∗ E∗, N ⊗E(n)∗ E∗).

Proof. By [22, Theorem C] the functor that takes M to M ⊗E(n)∗ E∗ defines an equivalence of categories 
between E(n)∗E(n)-comodules and E∗E-comodules. �

This implies that Exts,tE(1)∗E(1)(E(1)∗, E(1)∗) = Exts,tE∗E
(E∗, E∗) for all s and t. We start with a calculation 

described in [20, Section 6].5

Proposition 6.5. Let p = 2. Then

Exts,tE(1)∗E(1)(E(1)∗, E(1)∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(2) t = 0, s = 0
Q/Z(2) t = 0, s = 2
Z/2k+2 t = 2k+1m,m �≡ 0 mod (2), k �= 0, s = 1
Z/2 t = 4t′ + 2, s = 1, t′ ∈ Z

Z/2 s ≥ 2, t = even
0 else.

We now run the spectral sequence of Theorem 6.1. Note that Example 1.5 computes the E2-term of this 
spectral sequence. It can be checked that the differentials are dr : Ei,s

r → Ei+r,s+r−1
r ; since the spectral 

sequence is non-zero only for i = 0 and i = 1 we see that there are no differentials in the spectral sequence, 
and that it collapses at the E2-page. We deduce the following:

Theorem 6.6. Let p = 2. Then

Hs
c (G1, Et) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Z2 t = 0, s = 0, 1
Z/2k+2 t = 2k+1m,m �≡ 0 mod (2), k �= 0, s = 1
Z/2 t = 4t′ + 2, s = 1, t′ ∈ Z

Z/2 s ≥ 2, t = even
0 else.
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