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Abstract

The power loss and subsequent cold start of an electrical transformer may cause ex-
tensive temperatures that results in premature aging. Oil is therefore used to advect the
heat from the transformer. However, the viscosity of oil is highly temperature-dependent
such that, as temperatures get decreases, oils may become very viscous. This can be a
problem in cold environments during a cold start of the transformer. A cold start is when
the transformer is powered up after the oil has reached the ambient temperatures.

In this thesis, a CFD model is used to simulate the cold-start problem in a section
of a transformer that consists of 4 passes stacked on top of each other. The top pass
is fully resolved, while a porous-medium approximation is employed on the 3 bottom
passes to significantly decrease the computation time. The CFD model is solved using
OpenFOAM, where a mesh is constructed to adapt to the stacked transformer passes. Both
the implementation and the mesh are verified and shown to accurately solve the governing
equations. The simulations reveal that the maximum HST during a cold start in a cold
environment is found to be 17.2 K higher than one conducted in milder climate. This
indicates that cold starting a transformer in cold environments may cause premature aging.




Sammendrag

Effekttapet, samt gjentatte kaldstart av en elektrisk transformator kan fgre til at tem-
peraturen i transformatoren blir s hgy at levetiden reduseres. For & minke denne tem-
peraturgkningen brukes tranformatorolje som kjgler ned transformatoren ved hjelp av
varmeadveksjon. Oljens viskositet er svart temperaturavhengig og kan bli svert viskgs
nar den blir kald. Dette kan skape problomer dersom man kaldstarter en transformator i
kalde omgivelser. En kaldstart er nar transformatoren blir startet opp etter at oljen har nadd
temperaturen til omgivelsene.

I denne master oppgaven er CFD tatt i bruk for & simulere et slikt kaldstartscenario.
Dette er gjort ved a betrakte en del av transformatoren som bestar av 4 pass lagt oppa
hverandre. Det gverste passet er lgst fullt ut, porgst materiale approksimasjon er brukt pa
de 3 nederste passene for & redusere kjgretiden. Dette CFD problemet er simulert ved bruk
av OpenFOAM, hvor et grid av celler er laget til a tilpasse passene i transformatoren. Bade
implementasjonen og grid er verifisert og vist at de lgser ligningene som beskriver prob-
lemet, ngyaktig. Simuleringen viser at den maksimale HST under en kaldstart ved lave
omgivelsestemperaturer er 17.2 K hgyere enn ved milde omgivelsestemperaturer. Dette
indikerer at kaldstarting av transformatorer ved lave omgivelsestemperaturer kan fgre til
at levetiden til transformatorene reduseres.
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Chapter

Introduction

Electrical transformers, hereon called transformers, are a vital component of today’s power
system. Today there exist more than a thousand transformers in the power system in
Norway, some of these have a capacity of hundreds of MW. Theses transformers are
typically 2m to 3m high and cost up to 7.5 million USD [15]. It is therefore of great
interest to keep the lifespan of the transformer as high as possible.

The purpose of a transformer is to change the voltage of an alternating current (AC).
This is achieved by using different number of windings in the low-voltage (LV) and high-
voltage (HV) winding. A simple transformer model is shown in Figure 1.1. In this figure,
the primary and secondary winding are HV and LV winding, respectively. The primary
winding is where the current is given as an input, while the secondary is the output. When
the current flows through the windings, it is subjected to heat loss [49]. The major con-
tributor to the heat loss is the electrical resistance in the windings given by ohm’s law,
R = U/I. Here, U is the voltage and I is the current. Moreover, the power P = U[
is ideally the same in both windings. Thus, the current will be higher at the LV winding
compared to the HV winding, and therefore also the heat loss, as Joule’s law of heating is
given as Eg = I?’R [10, page 132]. For a transformer, the total losses are around 1 % [3].
Consequently, a high power capacity transformer may cause a significant amount of heat
loss to be significant, especially in the LV windings.

To counteract this heat buildup, it is common to use an oil to convect the heat out of
the windings. This oil flows inside a closed loop starting from the windings and flowing
to a radiator through a pipe and then back, as seen in Figure 1.2. There are mainly two
mechanisms used for driving the oil convection through the windings. The first is called
oil natural (ON) and relies on natural convection, where the buoyancy force is the driving
factor. The second one is called oil forced (OF). Here, a pump is used to move the oil
between the radiator and the windings. Convection is the transfer of heat from a solid to a
fluid in the presence of advection. Advection is the transfer of heat by the flow of a fluid.
Similarly, air cooling of the radiator is driven by air natural (AN) and air forced (AF). For
the ONAN transformer, the velocity will be low, due to the low compressibility of the oil
[5]. The oil flow in these transformers can therefore be assumed as purely laminar. Fur-
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Figure 1.1: A simple transformer circuit [42].

thermore, there exist different kinds of geometric arrangements to steer the flow through
the transformer windings. One such arrangement is zig-zag. This arrangement is when the
windings are divided into blocks, called passes, where a washer is used for each pass to
divert the flow from one corner to the opposite corner. In this type of transformer, several
passes are stacked on top of each other as shown in Figure 1.3 [28].

The main cause of a transformer breakdown is the degradation of the insulating layer
of paper between the oil and the windings. This degradation is caused by high temperature
working as a catalyst for different chemical processes on the oil, which then reacts with the
insulating paper. For a typical transformer, the degradation process becomes significant at
oil temperatures above 413 K. In addition, a sudden transformer failure may occur if the
oil temperature exceeds 453 K [37]. Therefore, adequate heat convection is important to
provide sufficient cooling to keep the temperature below this level.

Most transformers that are built today are equipped with several temperature sensors.
This enables better prediction of the hot-spot temperature (HST) and its locations. How-
ever, older transformers lack these sensors, which makes it harder to accurately predict
their lifespan and characteristics. These transformers are therefore often significantly over-
dimensioned. By being able to more accurately determine the HST and its locations from
the load history of the transformers, the expensive reinvestments may be delayed. Addi-
tionally, by increasing the knowledge about the load characteristics of the transformers,
the operators will be able to better optimize their transformer operation. This may further
increase the lifespan of their transformers.

The viscosity of the transformer oil is highly temperature-dependent, especially at
lower temperatures. The lowest temperature where oil is not capable of flowing under
gravity is called pour point [7]. For the commonly used transformer oil MIDEL7131 [5],
the pour point is reached at 253.15 K. This temperature level is quite common during a
Norwegian winter. This increase in viscosity will restrict the oil flow, potentially mak-
ing the oil unable to convect the heat from the windings. Consequently, a cold start of
a transformer in a cold environment may cause significant degradation of the insulation

2
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paper, compromising the lifespan of the transformer. Thus, to increase the knowledge of
the transformer’s load characteristics, it is important to model the viscosity accurately.

A typical scenario of a cold start at sub-zero temperatures is when the transformer
is powered up after a prolonged power outage. In this case, the oil may have reached
the ambient sub-zero temperature. Moreover, houses with temperature controlled devices
such as electrical heaters will simultaneously be on full load to increase temperature to
the set level before the power outage [16]. This will increase the load of the transformers,
further increasing the risk of too high HST.

This thesis presents a computational fluid dynamics (CFD) model to study the cold-
start problem of a transformer. The model is based on an adapted transformer from Torri-
ano et al. [43], which is a 2D ONAN type of transformer that consists of 4 passes config-
ured in a zig-zag arrangement. A porous-medium approximation is used for the 3 bottom
passes to reduce the computation cost. Only the passes enclosing the LV windings are con-
sidered. The inlet and the outlet of the transformer are connected with a channel, which
includes an artificial radiator to simulate the external cooling of the oil. The model is here-
after referred to as the LV loop. The model is implemented within the open-source CFD
toolbox, OpenFOAM.

The CFD model is used to study a cold-start case where the initial temperature is
253.15 K. The model is shown to have comparable results with results found in Ref.[43].
The simulation results reveal a maximum HST of 447.2 K. Moreover, this simulation
reveals an increased in the maximum HST compared to its steady-state value of 21.7 K.
Additionally, the maximum HST is observed to be 17.2 K higher for a cold-start initiated
from cold temperature compared to mild temperature. These results, all indicate that this
situation may indeed cause significant degradation of the transformer. However, further
investigation is required, as some of the model uncertainties are shown to have significant
influence on these results.

The thesis is outlined as follows. Chapter 2 provides a literature study of the several
existing methods to obtain the HSTs and some relevant transformer cold-start studies. The
governing equations and the model geometry are presented in Chapter 3. In Chapter 4,
the implementation details are described. A couple of verification and validation cases,
the cold-start case and a sensitivity analysis are specified in Chapter 5. The results from
these case studies are presented and discussed in Chapter 6. Finally, concluding remarks
are given in Chapter 7.




Chapter

Literature Review

Power transformers have existed for more than 100 years, and the problem with high hot-
spot temperatures (HSTs) has been considered for almost as long [30]. As such, there
has been a lot of research both on how to determine the HST at normal steady-state co-
operation, and in the transient phase of a cold-start situation. The following chapter will
provide a literature review of the most relevant studies. In particular, the different meth-
ods that have been used to find the HST and studies that have investigated the cold-start
phenomena at sub-zero temperatures.

Today, there exist several methods to determine the HST. However, the industry stan-
dard is to employ the models by the International Electrotechnical Commission (IEC) [22]
and the Institute of Electrical and Electronics Engineers (IEEE) [25]. These models pre-
dict the HST from the temperature of the oil at the top of the transformer, called the top-oil
temperature (TOT). The TOT can be determined either by a so-called heat-run test or by
using some simple empirical equations that are made for simple geometries. The initial
models presented by the IEEE and IEC assumed that the TOT and the HST were the same
[34, 24, 23]. However, with the introduction of fiber-optic temperature sensors in trans-
formers in recent years, many authors have addressed that TOT and HST are far from equal
during a change in the load [41, 32, 34]. In fact, the data from the acquired sensors have
shown that the rise in HST was up to 2 times higher than the rise in TOT during a change
in the load. IEC and IEEE have therefore later changed their loading guides to consider
this transient behavior, as well as different geometries and cooling methods. Nonetheless,
they still rely on primitive thermal models with only a few coefficients [22, 25]. Thus,
compromising the accuracy of the obtained HST value.

Numerous authors have tried to introduce more advanced methods in order to more
accurately predict the HST [35, 11]. The thermal-hydraulic network model (THNM) and
computational fluid dynamics (CFD) are the two main methods used by these authors to
determine the HST. THNM is a method where a given problem is modeled using an elec-
trical circuit analogy. The model assigns constant properties to each part of the domain,
called lumped elements. Radakovic and Sorgic [35] were the first to apply this method
on a transformer. However, due to the complexity of the physics and the geometry in ad-
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Chapter 2. Literature Review

dition of being time constrained, they were not able to obtain a solution. Furthermore, a
problem with the THNM that is addressed by Campelo et al. [11], is that the hydraulic and
thermal resistance terms have to be determined for all the lumped elements in the network.
Additionally, these are different for different transformers. The resistance terms can be de-
termined by the estimated friction factors and heat transfer coefficients or by performing
a heat-run test. The latter have been done by Radakovic and Sorgic [35] to obtained those
coefficients on the investigated transformer. However, this requires the transformer to be
taken out of service. Consequently, Campelo et al. [11] did instead run several CFD sim-
ulations in order to obtain some general expressions for these coefficients. THNM have
later been successfully adapted to include the transient behavior of a transformer by Cotas
etal. [14].

CFD is a numerical method to simulate a fluid flow based on the conservation of mass,
momentum and energy. This allows detailed simulations of the heat and mass flow through
the transformer winding. However, large computational resources are needed from a trans-
former design point of view [35]. That said, as the computational power is rapidly increas-
ing, the use of CFD to find the HST is gaining popularity. Nonetheless, most CFD simu-
lations of the oil flow in the transformer are only applied on some simple cases. Here, the
most common approach is to simulate the steady-state case of a single transformer using
a 2D axisymmetrical assumption, as done by Kranenborg et al. [27] and Torriano et al.
[43]. However, simplifying the simulation to be 2D axisymmetric neglects the influence
of instabilities in 3D due the duct spacers [44]. A 2D axisymmetric approximation is still
justifiable because the distance between the spacers are relative large compared to the dis-
tance between the windings [38]. That said, some researchers have choose to include more
of the transformer geometry in their domain. As an example, Skillen et al. [38] considered
five transformer passes stacked upon each other to create a full windings model. They
found that by restricting the simulated domain to a single pass, the effects of hot streaks
will be neglected. Consequently, the commonly assumed uniform inlet oil temperature
and velocity when considering a single pass will be inaccurate. However, the influence
of neglecting the temperature and velocity inlet profiles have not been considered in their
study. Although, Torriano et al. [43] only considered a single transformer pass, they do
provide a detailed description of both the geometry of the used ONAN transformer pass,
and its boundary conditions. Additionally, their results have been validated. This case will
therefore be interesting as a reference for comparisons.

As stated, CFD becomes very expensive, in particular when one considers fully 3D
geometries under high resolutions. Torriano et al. [44] reports that a full 3D steady-state
simulation of only a single pass required four days of compute time on a memory-cluster
compromised of 60 CPU nodes. To counteract this problem with high computational cost,
Gastelurrutia et al. [17] run a 3D simulation of the oil flow in the transformer by ap-
proximating the vertical cooling channels as porous medium. It is interesting to note that
Gastelurrutia et al. [17] considered the flow to have some turbulent regions. They em-
ployed the standard k£ — € turbulence CFD model to find the HST and its location in the
transformer. They endorsed the presence of turbulence by referring to some previous ana-
Iytical estimates of the Rayleigh number. This number can in fact be used to determine if a
buoyancy driven flow is turbulent. Furthermore, they confirmed the presence of turbulence
by referring to Oh and Ha [33]. Nevertheless, Oh and Ha [33] investigated a much simpler
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geometry where the whole transformer consisted of a single horizontal heated core that
was surrounded by oil. As a result, their setup experienced very little drag forces due to
less wall area compared to the oil volume. Hence, the flow velocity did get abnormally
high. Whereas Gastelurrutia et al. [17] examined a more realistic ONAN transformer with
zig-zag flow pattern making the drag forces more prominent.

Recently, Meyer et al. [29] proposes a similar porous-medium approximation as
Gastelurrutia et al. [17]. However, their approximation have been conducted on the trans-
former pass instead of the cooler. The approximation was shown to significantly reduce
the number of cells needed to achieve reasonable macroscopic results compared to a fully
resolved model.

There exist a lot of literature regarding whether the THNM or CFD should be the
most preferable method to find the HST and its location in a transformer [38, 47, 45].
Weinlader et al. [47] and Torriano et al. [45] are stating that the THNM provides fast-to-
use approximations, as the number of lumped elements in THNM are far less than the
number of cells in CFD simulations. However, the THNM are based on some underlying
assumptions and empirical relations that compromises the accuracy. Moreover, the results
from the THNM do not provide a complete depiction of the oil flow and temperature
distribution throughout the windings [38, 47]. Similarly, Torriano et al. [45] concluded that
although the THNM is capable of predicting the global thermal behavior of the windings,
some local discrepancies can be observed. As an example, the hot streaks mentioned by
Skillen et al. [38] should be observed inside the transformer. Nonetheless, THNM is not
able to resolve this effect due to the need for fine discretization [26]. In conclusion, the
use of THNM neglects important flow characteristics. Hence, detailed knowledge about
the transformer’s temperature distribution, such as the HST location cannot be obtained.

The cold start of a transformer, and especially from sub-zero temperatures, has not
received a lot of attention in the literature. The IEEE loading guide [25] states that cold
starts may yield localized hot spots, but it does not consider this particular case in more
detail. One of the few papers that investigate this effect is Ref. [16], which investigates
a cold start in a cold environment after a prolonged power outage. The authors claim
that the described situation will induce the thermally controlled devices, such as all the
buildings with electrical heaters, to work on full power simultaneously. This may cause a
possible overloading of the transformer. However, they neither perform calculations nor
experiments on a sub-zero ambient case.

Conversely, Rapp et al. [36] performed experimental cold-start simulations at —30 °C
on a small 167kV A transformer. For these experiments, different liquids, all being in
a solid state at —30 °C where considered. Temperatures where measured for the top oil,
the core structure, the primary winding duct exit oil and the secondary winding. Here,
the primary is the input and the secondary is the output. These experiments, revealed the
maximum temperature at full load to be about 80 °C.

Similarly, Cloet et al. [13] considered the cold-start phenomena at sub-zero ambient
temperature by performing experiments. However, these experiments was conducted on
an offshore wind turbine transformer, which is a bit larger than the transformer that Rapp
et al. [36] examined. Their experiments were done at —30 °C, using temperature sensors
at the top oil in addition to the top and bottom windings. From these experiments, they
reached a conclusion that the temperatures did not rise above 60 °C. However, as previ-
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ously mentioned, Susa et al. [41], Nordman et al. [32], and Pierce [34] all concluded that
the HST increase may be up to twice the increase in TOT during a step change in the load.
Thus, the actual HST may be much higher then the predicted values by Cloet et al. [13]
and Rapp et al. [36]. Therefore, further investigation is needed.

CFD simulation of the cold-start scenario has been performed by Moore et al. [31] on
both a large ONAN and ONAF type of transformer pass. The investigated transformer
pass was assumed to be 2D axissymmetric. Their CFD model was successfully vali-
dated through experimental results by performing a test run with an initial temperature
of —13.8°C. The validated CFD model was then used to run another simulation with
—25°C as the initial temperature, revealing that the HST was below 105 °C. However,
they found that the transformer needed a significant amount of heating, more precisely 6
hours of fully load, before the fluid reached a mass flow rate of 20 % of its steady-state
value. This indicates that the oil temperature in some regions may reach dangerously high
levels, although this was not captured in the paper. In addition, they did not consider the
zig-zag type of transformer.

Rapp et al. [36], Cloet et al. [13], Moore et al. [31] all consider the cold-start problem,
but not the likely case of overloading of the transformer after a prolonged power break-
down as Edstrom et al. [16] mentioned. However, both effects are considered by Adibi [9].
They conducted experiments by overloading different transformers at an ambient temper-
ature of as low as —40 °C. The HSTs were found using thermocouples in the accessible
portion of the windings. The maximum measured temperatures were between 102 °C and
210 °C when overloading at three times the rated capacity for 2 hours, depending on the
transformer. This reveals that a cold-start overload may in fact cause serious degradation.

To summarize, this literature review exposes a knowledge gap in the literature regard-
ing the HST in the cold-start problem. The THNM does not accurately resolve the HST as
the resolution in the domain is low, and the average quantities are used for the resistance
terms [45]. Therefore, CFD models seem to be the only viable option to study the HST
accurately [26].However, using CFD on the whole geometry of the transformer LV loop
will bring the computational cost unrealistically high with the limited resources at hand.
Therefore, a porous-medium approximation as proposed by Meyer et al. [29] should be
applied on all the passes in the LV loop except for the top pass. Furthermore, there are
some uncertainties whether the flow contain some turbulent regions that need to be consid-
ered to correctly estimate the HST Gastelurrutia et al. [17]. Moreover, a 2D axisymmetric
model is demonstrated by Skillen et al. [38] to be reasonably accurate. Thus, a 2D trans-
former pass given by Torriano et al. [43] will be used in this study. This has an inner radius
of curvature of 316.2 mm, which is much higher than its width of 67.2 mm for the pass.
Thus, the effects in the radial direction can be neglected, thereby considering the LV loop
to be purely 2D in this thesis.




Chapter

Model and governing equations

As described in the introduction, the main objective of this thesis is to investigate the
cold-start phenomena in a cold environment. In such an environment, one must account
for highly temperature-dependent fluid properties, in particular with regard to viscosity.
In this chapter, the governing equations for fluid flow in a transformer will be presented
and described. First, the simplified case of incompressible, steady-state Navier-Stokes
equations are presented for verification purposes. Next, the compressible Navier-Stokes
equations are presented, as these are required to considered the temperature dependent
properties of the cold-start problem. Then, a porous-medium approximation is considered
for the less interesting part of the domain, that will significantly decrease the computational
cost. Finally, a brief discussion of the geometry and the boundary condition will be given
in this chapter.

3.1 Compressible flow

To model the flow of oil through the transformer in cold-start cases with strongly
temperature-dependent fluid properties, the well-known compressible Navier-Stokes equa-
tions with energy conservation are used [48, page 73]:

9p _
% + V- (pu) =0, (3.1a)
d
T4V (puw) = ~Vp+pg + V- [ (Vu+ (Vu)")] + £, (.16)
Iph | 3. 9K | . _ g (B .
ot + V- (puh) + En + V- (puK) = atJrV (CpVh)eru g+o+S. (3.1¢)

Here, h is the enthalpy,  is the thermal conductivity coefficient, f is the volumetric body
forces except for the gravity, which is given as g, K is the specific energy field given as

9



Chapter 3. Model and governing equations

K= %u -u and O is the (viscous) dissipation function [48, page 72]:
duy \” duy du
D =p|2 X 2 (=2 2 z
”l (ax) i (ay> i (a>
duy | Oux\> | (Ou,  Ouy\?  [Ouy  Ou,\”
- - , (32
+<8x+8y)+8y+82 +8z+5‘x (32)
where x, y and z are the coordinates of the three dimensions in space, these have also been
used as a subscript for the velocity u to denote directions.

In the case of an ONAN transformer, the buoyancy force is the driving force for the
oil flow. Transformer oil is typically not very compressible and the temperature change
is expected to be within 413K [37]. Therefore, the velocities are expected to be low.
This implies that the rate of change of the kinetic and potential energy, respectively the
ag—f{ + V- (puK) and the pu - g, can be neglected [18]. This also applies for the (viscous)
dissipation function ®. In addition, the pressure work dp/dt have also been neglected.

Applying these assumption, the compressible energy equation Eq. (3.1c) can be rewritten
as:

9P G (pub) =V - (“Vh) + 8. (3.3)
ot cp

Thus, this simplified compressible energy equations will be considered for the compress-

ible cases instead of Eq. (3.1c). For the steady-state compressible cases, the time deriva-

tive terms will vanish. Furthermore, these governing equations are solved from an initially
specified state in some domain with boundaries, that will be discussed in the last section.

3.2 Incompressible flow

For verification purposes, some temperature-independent cases for which there exist ana-
Iytical solutions are considered. For these cases is resolved by the incompressible Navier-
Stokes equations with energy conservation [48, page 97],

Vou—0, (3.42)

ou 1 tr

E—&-V(uu) :—p—Vp—i—V- [v (Vu+ (Vu)™)], (3.4b)
0

oT S

i V- (ul)=V-(aVT) + oo (3.4¢)

Here, u is the velocity vector, ¢ is the time, ¢ is the gravitational constant, 7" is the tem-
perature, p is the pressure, S is the volumetric heat source, pg is the constant reference
density, v is the kinematic viscosity, and ¢, is the specific heat capacity at constant pres-
sure. Similarly to the compressible equations, the time derivative will be zero for the
steady-state cases. In addition, these steady-state incompressible equations will be solved
from an initially specified state in some domain with boundaries, that will be discussed in
the following section.

10



3.3 Geometry

3.3 Geometry

As discussed in Chapter 1, the heat production is higher for the LV- than the HV-winding,
because the power loss is electrical resistance times current squared [10, page 132]. Con-
sequently, only the passes enclosing the low voltage windings will be considered in this
thesis. Furthermore, the 2D geometry of the low voltage pass that is used by Torriano
et al. [43] will be used to resolve the cold-start situation of a transformer at low-ambient
temperatures. This geometry is presented in section 3.3.1.

Instead of only considering a single transformer pass as done by Torriano et al. [43],
the whole stack of 4 LV passes configured in a zig-zag arrangement is considered. Each
pass have the same geometry, with a height of 367 mm and a length of 66.1 mm. Inside
each pass there are 19 windings, each with a height and width of 15 mm and 50.8 mm,
respectively. In between each winding and at the top and bottom, there is a space of
4.1 mm creating 20 horizontal channels. At each side of the windings, continuous vertical
channels are made. Here, the right channel have a width of 8.9 mm and the left 6.4 mm.
The whole geometry has a depth of 10 mm'.

Furthermore, Torriano et al. [43] did only considered the top pass with predefined
inflow mass rate and temperature. The same cannot be applied for the cold-start situation
as both the inflow mass rate and its temperature are transient parameters. Accordingly, the
inlet at the bottom pass and the outlet at the top pass are connected through an artificial
canal. The canal is made to have a constant width of 8.9 mm. This canal is extended by
17.8 mm out of the inlet and outlet. These are then extended to the right with a length of
26.7mm, and are then connected through a straight vertical canal. The parameters of the
canal are only assumed values. A sensitivity analysis will therefore be performed using
different canal geometries. Moreover, a radiator has to be added to simulate the external
cooling of the oil, which in turn is necessary for the process to reach steady state. That
said, the geometry of the radiator will not be resolved as it is beyond the scope of this
thesis. In this thesis the radiator is assumed to reset the temperature with the purpose
of reaching steady state. The influence of this assumption will also be investigated in a
sensitivity analysis.

To fully specify the cases, boundary conditions along the domain boundaries have to
be determined. For the temperature, the same uniform heat flux from the windings to the
oil as Torriano et al. [43] is applied, as the same geometry is used. That is 2336.4 W m~2.
This is not an perfect assumption because the heat production at the windings and the
temperature profile of the fluid along the windings are not uniform [45, 43]. However,
only a overestimation of 8 K for the HST is found as investigated by Torriano et al. [43].
Thus, this assumption is considered to be sufficiently accurate for this case.

The remaining of the walls are assumed to be adiabatic, as they are made of insulating
material. For the velocity a no-slip condition is applied for all the walls, and the pressure
is set to correspond with that. Rest of the boundary conditions are case specific and will
be presented with the cases. This also applies for the initial conditions.

Torriano et al. [43] have used another depth for this case, as they consider the transformer pass to be 2D
axisymmetric
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Chapter 3. Model and governing equations

3.3.1 Porous-medium approximation

The horizontal channels, are fairly narrow compared to its length. Additionally, most of
the heat from the windings are transferred to the fluid at this region. These will result in
large gradients. Accordingly, a relatively large amount of cells have to be used compared
to its width. However, the HST is assumed to be located in the top pass [45, 27]. It is
therefore unnecessary to fully resolve the three bottom passes, as long as the macroscopic
properties are conserved at the inlet for of the top pass. An approach to significantly
reduce the number of cells, while conserving the macroscopic properties, are introduced
and validated by Meyer et al. [29]. This approximation is therefore implemented for the
three bottom passes. The resulting geometry of the stack of LV passes including the canal
with the radiator is shown in section 3.3.1.

The porous-medium approximation can be implemented in the momentum equation
Eqg. (3.1b) as a pressure drop in the volumetric body force term f. This relation is given
by the 2D Darcy-Forchheimer equation [20]:

1
fi = —pDju; — §PF1|Ukk‘ui- (3-3)

Here, the D; and Fj are the i-component of the Darcy and Forchheimer coefficients. The
Forchheimer coefficients denote the inertial effects. These can be neglected for this prob-
lem as only low velocities are considered [39]. The Darcy coefficients are given as the
inverse of the effective permeabilities k, in their respective directions. At the flow direc-
tion of the porous-medium approximated region, the effective permeability for multiple
parallel channels is given as [29]:

Nh, h?
'k&p = H 1—; = ¢/{;p/7 (36)

where, N is the number of channels, A, is the channel height, ¢ is the porosity specified as
¢ = Nhe/H and Ky is the single-channel permeability prescribed as h?2 /12. This equation
consider the drag in all the channels. Hence, the slip boundary condition should be used
for the top and the bottom of the pass that is included in the porous region. Moreover,
the Darcy coefficients in the transverse directions have to be set to a very high number, to
restrict the flow to only travel in the horizontal direction.

The simplified compressible energy equation Eq. (3.3) equivalent for a porous block is
specified as [29]:

oph

Puny=v- (&

where k is the heat conductivity tensor. The volumetric heat source term S is given as:
_ q”Awin

S = .
¢‘/por

(3.8)

Here, ¢” is the heat flux, A, is the surface area where the heat flux is active, and Voor 18
the volume of the porous region.
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3.3 Geometry

Figure 3.1: The geometry of a single pass on the left and the whole LV winding on the right.
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Chapter

Numerical methods

The open-source framework OpenFOAM version 18.12 from OpenCFD Ltd. is used to
solve the governing equations. For each case, one must provide a set of input param-
eters to specify the solvers, numerical schemes, mesh, and physical parameters such as
the geometry and fluid properties. These parameters and their implementation will be de-
scribed in detail in the following sections. However, the boundary and initial conditions
are excluded from this chapter, since these are case specific and will be described in their
respective cases.

4.1 Solver

The builtin compressible transient solver buoyantPimpleFoam solves the compress-
ible Navier-Stokes equations presented in Eq. (3.1) by default. However, the energy equa-
tion in this solver is modified to correspond to the simplified compressible energy equation
given in Eq. (3.3). This solver is used to run both the transient incompressible and com-
pressible cases. For the steady-state cases, the builtin solver buoyantSimpleFoam
is used. This also solve the same compressible Navier-Stokes equations specified in
Eq. (3.1) excluding the time derivative terms. Additionally, the simplified energy equa-
tion, Eq. (3.3), is implemented for the energy equation.

In both solvers, temperature-dependent fluid properties can be specified using the
thermophysicalProperties parameter file. Nevertheless, the cold-start phenom-
ena of the transformer in a cold environment is the main focus of this thesis. It is therefore
important to model the highly temperature-dependent viscosity accurately for the whole
relevant temperature range. This is not fully supported by the builtin solvers. Conse-
quently, advanced temperature-dependent viscosity function is implemented by chang-
ing the source code. Both the buoyantPimpleFoam and buoyantSimpleFoam
solvers have been duplicated to the custom solvers compressibleSteady and
compressibleTransient with the improved temperature-dependent properties.

The developed porous-medium approximation in section 3.3.1 is also implemented in
the transient solver via a custom solver, porousTransient. It was constructed by
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Chapter 4. Numerical methods

duplicating the compressibleTransient solver. The continuity equation Eq. (3.1a)
is the same in both cases. The pressure drop found in Eq. (3.5) can be implemented in the
already provided volumetric body force term in Eq. (3.1b). However, the same procedure
cannot be applied for the implementation of the porous energy equation Eq. (3.7), since
this equation and the fully resolved compressible energy equation Eq. (3.3) have different
enthalphy advection terms. A parameter ¢ is therefore implemented in order to make the
solver differentiate between the porous and the fully resolved regions. This parameter is
set to 1 in the porous region and 0O in the fully resolved region. Using this parameter, the
coupled compressible energy equation can be expressed as:
0Pl 1=+ YV (puh) = (1— ) V- (””w) te [v. <"‘Vh) +s} @1
ot @ Cp Cp
Accordingly, the compressible energy equation is modified to match this equation in
the porousTransient solver. In addition, the field parameter ¢ and the ther-
mal conductivity tensor divided by the specific heat capacity «/c, is implemented in
createFields.H. The value of the tensor k/c, is implemented inside the time loop
of the source file porousTransient.C according to the specifications given in sec-
tion 3.3.1. By including this tensor in the time loop, it is updated at each time step. This
will make it consistent with the temperature-dependent fluid properties.

4.1.1 Numerical schemes

The bounded second-order numerical scheme Gauss vanLeer is used for the di-
vergence schemes to avoid instabilities. For the velocity divergence scheme, the
Gauss vanLeerV version is used to make the limiter consider the direction of the ve-
locity field [4]. Moreover, the second-order central difference method Gauss linear
is used for the gradient schemes. The Laplacian and surface-normal gradient schemes are
set to orthogonal, because the considered geometries only have right angles. To match the
second-order spatial discretization, the second-order Crank-Nicolson time discretization
method is used [4].

4.1.2 Solver parameters

The discretized governing equations have to be solved using matrix solvers. These solvers
need to be defined for all the equations. Additionally, a set tolerance of the residual for the
matrix solvers should be specified. In this thesis, the symmetrical matrices are solved with
the PCG method using a DIC preconditioner. While the asymmetrical matrices are solved
using the PBiCGStab solver with the DILU preconditioner. The residuals for the matrix
solvers are normalized with respect to the absolute residual using the average field value
added to the difference between the field values that is compared to its average value [2].
The tolerances for these residuals are set to 10° for all the solvers.

For the steady-state solvers, either the residual controls or the end time is the termi-
nating condition. The solver should terminate when the obtained solution are sufficiently
close to the steady-state solution. The residuals give an indication of how close to steady
state the solution is. Therefore, to ensure that the solver has reached a solution close to
steady state, the residual controls are set to 10~4,
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4.2 Mesh structure

The pressure-velocity coupling algorithms SIMPLE and PIMPLE are used for
the steady-state and transient cases, respectively. The PIMPLE algorithm is effec-
tively a combination of the SIMPLE and the PISO algorithms [46]. These algo-
rithms need a set of parameters to work, namely the momentumpredictor and
nNonOrthogonalCorrectors for both, in addition to nOuterCorrectors and
nCorrectors for the PIMPLE algorithm. The momentumpredictor is turned off,
as it is expected that velocities are small [19]. The nNonOrthogonalCorrectors is
set to 0, because only right-angled meshes are considered. The nOuterCorrectors
gives the number of times that the whole set of equations are solved or until the optional
residual controls are reached. This value is set to 1 as recommended by the OpenFOAM
user guide [19]. However, by doing this, the PIMPLE algorithm will replicate the PISO al-
gorithm. The PISO algorithm alone is only stable for Courant numbers lower than 1 [21].
The Courant number, also called the Courant-Friedrichs-Levy (CFL) number is defined
as:

At
c=U Ay 4.2)
where At is the time step, Ax is the cell length and U is the velocity in the given cell at
the given time step. A value of the Courant number under 1 effectively imply that some
particles have moved through more than one cell during one time step. Lastly, the value
for nCorrectors determines the number of times the PISO algorithm is run. This is set
to 2 as recommended by the OpenFOAM user guide [19].

Moreover, relaxation factors can be applied to suppress the solver in order to avoid
oscillations and instabilities. This is done by limiting the amount which a variable changes
from one iteration to the next [19]. These do only apply for the SIMPLE algorithm, and
is therefore not considered in the transient solver. For the steady-state cases the energy
equation and the velocity field have been assigned a relaxation factor of 0.3. Whereas for
the pressure field it is set to 0.7.

4.2 Mesh structure

The mesh structure for the geometry has to be determined for the simulations. This should
be carefully considered to obtain a good balance between accuracy and run time. The
accuracy of the mesh should be verified by replicating cases where the solutions are known.
As the implementation of the cases may be wrong, a couple of mesh refinements should
be performed to check if the solution converges. This is called a grid convergence study.
A grid convergence study will also provide valuable information about the size of cells
that is needed to get within an acceptable error. This analysis will therefore be performed
in the upcoming sections. For the same reasons, the time step is investigated in a similar
way.

For the convergence analysis, a way of determining the error have to be found for the
different meshes and time steps. This will be done by calculating the difference between
the simulated and the exact solution at different sample points in cases where the solution
is available. The errors will then be given as the average of the errors normalized with the
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exact solution. This error is hereafter called the relative error and can be formulated as

Motal
IR AR

n n
total n—1 fe

E= . 4.3)

Here, n¢otq; is the total number of sample points, fI* and f* are respectively the exact and
the simulated solution for a given quantity at a given point n.
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Chapter

Cases

The previous chapters have presented the governing equations for oil flow through a trans-
former and the numerical methods used to solve the equations for a particular case. As
discussed in the introduction, the goal of the thesis is to investigate the challenge with
excessive oil temperatures during the cold start of a transformer. This chapter will specify
test cases for verifying that the equations are correctly implemented and solved, as well
as cases used to study the cold-start phenomenon. The test cases for verification are se-
lected to have known analytical solutions or already validated solutions. At the end, the
case of the LV loop will be presented along with its input parameters and fluid properties.
The results and corresponding discussions for the various cases are presented in the next
chapter.

Most of the following cases consider the transformer oil MIDEL7131. The properties
of this oil are specified in its data sheet [5] for various temperatures at an increment of
10K. Meyer et al. [29] presents regression functions that determine the properties as
continuous functions of the temperature with almost perfect accuracy,

Inv(T) = 20.81369191 In* T — 252.81869067 In T 4 755.03026555, (5.1a)
K(T) = =72 x107"T? +3.71 x 107*T +9.75 x 1072, (5.1b)
ep(T) = 2.17T + 1249.29. (5.1¢)

Here, v is the kinematic viscosity, ¢, is the specific heat capacity at constant pressure and x
is the thermal heat conductivity. Moreover, a thermal expansion coefficient is given in the
data sheet. This coefficient is used to determine the density as a function of temperature
through the Boussinesq approximation,

p=poll—pB(T—-To), (5.2)

where Tj is the reference temperature at the temperature where p(T) = py and
is the thermal expansion coefficient. These values are measured at 293.15K to be
po=968kgm=3,3=75-10"*and Ty = 293.15K [5].

Some of the following cases assume constant fluid properties. In these cases,
MIDEL7131 is used at a constant temperature of 293.15 K, which corresponds to the
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values k = 0.147TWm 1K™, ¢, = 1902Jkg ' K1, pg = 968kgm™3, and v =
7.47 x 107°m?s™ 1,

Finally, this thesis considers a transformer pass similar to the one used by Torriano
et al. [43], who specified a constant uniform heat flux from the windings into the oil of
2336.4 W m—2. The same heat flux is used in this work. Unless otherwise specified, the
initial velocity in the whole domain is set to 0.

5.1 Horizontal channel flow

From the literature review, it is clear that the HSTs are going to be located at the horizontal
channels [38]. It is therefore important to model this flow region with sufficient accuracy.
This will be considered in the following subsections by performing verification studies.

One of the horizontal channels is presented in Figure 5.1. As seen from this figure,
the length, height and the depth are 50.8 mm, 4.1 mm and 10 mm, respectively. Thus,
the channels are very narrow. This combined with the heat flux from the windings will
cause high temperature gradients throughout this region. To capture these gradients with
sufficient accuracy, the traverse direction of the horizontal channels must be sufficiently
resolved. This implies very small grid cells. Further, uniform square cells would lead to
very large requirements of computational resources. Different rectangular shapes of the
cells should therefore be considered.

By assuming constant Newtonian fluid properties, there exist analytical steady-state
and transient solutions for some specific channel flow problems. These can be used for ver-
ification, and in the following subsections, an extension of the well-known Graetz problem
and the transient Poiseuille equation will be presented. The former is used to determine
the grid resolution, as its solution consider both the hydrodynamic and thermal solution.
The latter is used to verify that the correct transient evolution is captured.

For the channel flow test case, the inlet boundary condition is specified with a constant
volumetric flow rate of 1.8944 x 10" m3s~! and a constant temperature of 300 K. The
flow rate corresponds to the flow rate used in Torriano et al. [43], where they specify a
volumetric flow rate of 3.7888 x 107m3 s~ for a pass with 20 horizontal channels '.
The outlet boundary condition is set to be adiabatic with a pressure of 1 x 10° Pa.

5.1.1 Graetz extended problem

The Graetz problem considers both the thermal and the hydraulic part of the steady-state
incompressible governing equations for an enclosed laminar flow Eq. (3.4). Its analytical
solution is therefore ideal for investigating the horizontal channels presented in the pre-
vious section. However, the original Graetz problem does only apply for a thermally and
hydrodynamically fully developed flow. Nonetheless, there exist different extensions of
this problem depending on whether the flow is hydrodynamically or thermally developing
or developed. Consequently, the flow regime needs to be determined. This is done by
finding the hydrodynamic and thermal entry lengths using empirical correlations.

ISince another depth is used compared to Torriano et al. [43], their inlet velocity is used to find the corre-
sponding volumetric flow rate for this case
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5.1 Horizontal channel flow
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Figure 5.1: The geometry of a horizontal channel.

The empirical correlations for the entry lengths depend on the dimensionless Reynolds
and Prandtl numbers. The former is the ratio between the inertial and viscous forces,
while the latter is the ratio of the viscous and heat conduction effects. These dimensionless
numbers are given as:

D
Rep, = % (5.32)

Pr=—. (5.3b)

v
Here, « is the thermal diffusivity coefficient, that is given as o« = k/(cpp). The rest of the
notations are 1w,y for the average inlet velocity and Dy, for the hydraulic diameter at the
inlet defined as Dy, = 4A./ P, where P is the perimeter and A, is the cross-sectional area.

The dimensionless numbers are calculated using the determined constant fluid proper-
ties of MIDEL7131 and the geometry of the investigated horizontal channel. For this ge-
ometry the hydraulic diameter is 5.82 mm, resulting in Rep, = 0.360, while Pr = 1002.
The estimated Reynolds number of 0.360 for the horizontal channels is well below the
turbulent transition region at about 2 x 10, Thus, the channel flow is verified to be purely
laminar.

The entry length of a laminar uniform inlet velocity can be estimated by the following
equation: L.p/Dy = 0.5 + 0.05Rep, [48, page 107] ,where L.} is the hydrodynamic
entry length. This revealed a hydrodynamic entry length of 3.01 mm. Moreover, the
thermal entry length is estimated using the following empirical correlation: Le,/Dy =
0.05Rep,Pr [48, page 124]. From this, it is estimated that the thermal entry length is
105 mm. Therefore, except for a first 3.01 mm of the 50.8 mm long horizontal channel,
the flow is estimated to be hydrodynamically developed while still thermally developing.
Consequently, an extension of the Graetz problem that considered this flow regime will be
employed in the flowing investigation of the channel mesh.

As mentioned in the previous section, the HST is estimated to be in the horizontal
channels. A detailed investigation will therefore be conducted on its mesh. This will con-
sist of testing different cell sizes and aspect ratios. The aspect ratio is the ratio between the
longest and the shortest length of a cell. The solution, using different mesh structures will
then be compared with an analytical solution. That is the solution to the Graetz problem,
extended to hydrodynamically developed, thermally developing flow. Such an extension
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that also includes the uniform heat flux between parallel plates have been implemented by
Cess and Shaffer [12]. They provided the following analytical solution for this problem:

o0 2

TWZEH_F% ;;Z“F;;‘f’;cnyn(l)exp <_§&2)] . 54
Here, T\, is fluid temperature at the wall, 7, is the inlet temperature, gy, is the uniform heat
flux through the walls, a is half the channel width, Pe is the dimensionless Peclet number,
that is for this particular problem defined as Pe = 4u,,a/«. Furthermore, /3, and Y;,(1)
are respectively the eigenvalues and eigenfunctions of an equation presented in Cess and
Shaffer [12]. While the ¢,, are some coefficients given by another equation in Cess and
Shaffer [12]. The three first values for 3,,, Y, (1) and ¢, can be found in Cess and Shaffer
[12], whereas the 10 first values are given in Sparrow et al. [40] and presented in Table 5.1.
This solution does not include the gravitational force, and it assumes that the fluid proper-
ties are not temperature dependent. The gravitational force is therefore excluded from the
corresponding simulation, and the fluid properties are regarded as constants as specified in
the chapter introduction.

Table 5.1: Values for the given extension of the Graetz problem.

n  Bn Y, (1) Cn

1 4.2872 -1.2697  0.17503

2 8.3037 1.4022 -0.051727
3 12.3106 -1.4916 0.025053
4 16.3145 1.5601 -0.014924
5 20.3171 -1.6161  0.0099692
6 243189 1.6638 -0.0071637
7 28.3203 -1.7054 0.0054147
8 32.3214  1.7425 -0.0042475
9 36.3223  -1.7760  0.0034280
10 40.3231 1.8066 -0.0028294

5.1.2 Transient Poiseuille flow

The transient solver needs to be verified to correctly capture the transient behavior of a
case. This will be done by replicating a transient Poiseuille flow between parallel plates
for which there exist an analytical solution [6]. This is performed by inducing a sudden
pressure gradient on a standing still fluid in the horizontal channel presented in section 5.1.
However, its solution only considers the hydrodynamic part of the problem. Therefore, an
additional verification of the solver is conducted using the extended Graetz problem with
the determined mesh from the Graetz extended problem analysis. Its steady-state solution
is then compared to the solution of the Graetz extended problem.

The previous verification only identifies if the transient solver is able to reach the
correct steady-state solution in the steady-state case. To also verify the transient behavior
of the solver, the analytical solution of the transient Poiseuille flow is used. Its solution is
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given as [6]:

1 dp Y\ 2
u(y,t)z—%dxHQ{l— (ﬁ)

32 o= (—1)k+1 (2k — ym (2k — 1)27%wt
-3 2h— 1) cos [ Vi ] exp {_4H2 } , (5.95)
k=1

where H is half the channel height and y is the vertical position determined from the
middle of the channel. This equation neglects the gravity and assumes constant fluid prop-
erties. Additionally, the equation requires pressure gradient as input parameter instead of
the previously implemented constant volumetric inflow rate. To find the pressure gradi-
ent corresponding to the volumetric flow rate of 1.8944 x 10~" m?®s~!, one may use the
steady-state solution of this equation [1]:

B 12LQu

A =
p ng )

(5.6)

where w is the depth and L is the length. The pressure drop is calculated to be 12.11 Pa.
Accordingly, the inlet pressure is set to 100 012.11 Pa while the outlet is left as 1 x 10° Pa
for this case. Moreover, as mentioned in the introduction of this subsection, the presented
analytical solution of the transient Poiseuille flow does not consider the thermal solution.
Consequently, the heat flux from the walls are excluded in this analysis.

5.2 Transformer pass

The previous section considered the horizontal channels between the windings. Zooming
out to the full pass shown in Figure 5.2, one must consider the vertical channels. These
are less complicated than the horizontal channels as they are wider and with one side at
the outer adiabatic wall. Consequently, sharp temperature gradients will only be present
at one side of their walls. Additionally, as mentioned in the Chapter 2 the HSTs are
expected to be in the horizontal channels [38]. Therefore, using the same mesh structure
at the vertical channels as the horizontal will result in an unnecessarily huge computational
cost. Moreover, the transition from the outlet of the vertical channels to the inlet of the
horizontal channels as well as the opposite, should also be considered. In order to consider
the accuracy of a mesh for the transformer pass, a test case is needed. Therefore, a case
is created by allocating the inlet and the outlet of this pass in the same way as Torriano
et al. [43]. That is, inlet at the bottom of the left vertical channel, and the outlet at the
top of the right vertical channel. For this geometry, a constant volumetric inflow rate of
3.7888 x 1079 m3 s~! is used, which is the same as in Ref. [43] 2. Nonetheless, the rest
of the boundary and initial conditions are kept the same as the channel case section 5.1.
However, for simplicity only the steady-state solution with constant fluid properties are
considered, and the gravity is neglected.

2Due to the different depth that is been employed, the inlet velocity is used with the cross-section area of the
inlet to determine the constant volumetric inflow rate.
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Unfortunately, there are no analytical solution for this case with this complex geome-
try. Therefore, a reference result is simulated using the steady-state solver with constant
fluid properties and a very fine mesh. This mesh consists of square, uniform cells with cell
lengths of 0.1 mm.

5.2.1 Mesh verification

The reference case will be used to verify the new mesh that will be specified later in this
section, as it consist of a very fine mesh. For this verification analysis, the relative error of
the pressure drop from the inlet to the outlet between the reference and the new mesh case
will be used.

The new mesh structure of the transformer pass will be based on the obtained mesh
structure from the grid convergence analysis of the horizontal channel. However, a sym-
metrical expansion factor of 1.2 is applied on the horizontal channels toward the middle,
by keeping the same number of cells. This is done to better capture the inlet and outlet
effect. Moreover, the mesh at the vertical channels are assigned an expansion factor of 1.2
towards the outer walls for the first 2/3 of their horizontal lengths. Then, a decrease by the
inverse of 1.2 is introduced for the rest of the lengths. With this, the inlet and outlet effects,
in addition to the temperature gradient from the winding heat flux and the velocity gradient
from the walls are expected to be better resolved. For the regions of the vertical channels
that are not connected by the (structured) mesh of the horizontal channels, a symmetric
vertical expansion factor of 1.1 is used towards the middle.

5.2.2 Single pass validation

Torriano et al. [43] investigated the HST and its location in a single transformer pass at
steady-state conditions. Their results have been successfully validated through experi-
ments. These results can therefore be used to validate the implementation of the case with
the single transformer pass. The boundary conditions and geometry is specified similar to
Torriano et al. [43] and have been described earlier. The initial and inlet temperatures are
set to 319.9 K and the gravity is included. Additionally, the fluid properties in this case are

w(T) = 0.08467 — 4.0 x 107*T 4 5.0 x 107772, (5.7a)
x(T) = 0.1509 — 7.101 x 10757, (5.7b)
cp(T) = 807.163 + 3.58T, (5.7¢)
p(T) = 1098.72 — 0.712T. (5.7d)

The solution obtained for this case from the steady-state solver is then validated by com-
paring the resulting HST and its location to the results of Torriano et al. [43].

5.3 Porous-medium approximation

The LV loop consist of 4 passes stacked upon each other. However, only the HST and its
location are of interest for the cold-start problem, which is the focus of this thesis. This
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Figure 5.2: The geometry of the single pass.
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HST is assumed to be located in the top pass [45]. It is therefore unnecessary to fully
resolved the 3 bottom passes. A porous-medium approximation presented by Meyer et al.
[29] and described in Chapter 3 is used to approximate these bottom passes.

The implementation of this approximation need to be verified. For this a single porous-
medium approximated pass will be considered, as the geometry for each pass is the same.
Furthermore, only the macroscopic accuracy of the approximated passes are of interest,
particularly the top-oil temperature, defined as,

[ pcpTu-dA

TOT = .
© [ peyu - dA

(5.8)

Here, A is the surface-normal vector of the outlet of the pass. The TOT is a critical
parameter for the lower passes as it determines the average temperature that is transported
to the upstream passes. Hence, the TOT will be used to verify the implemented porous-
medium approximation by comparing to a fully-resolved simulation. Both cases will be
run using the same parameters as defined in section 5.2. However, the case is modified
to capture the transient evolution of the TOT by using the transient solvers, as that is of
importance for the cold-start problem. Additionally, a uniform, square mesh with cell
lengths of 1 mm is used for the porous-medium approximated case. This reduces the
number of cells by about 53 % compared to the fully-resolved case.

5.4 Cold start of LV loop

In this section, the cold-start problem of the transformer in a cold environment will be de-
scribed. For this problem the HST and its location are of interest, as they provide valuable
insight about its cold-load capabilities.

As discussed in Chapter 1, most of the heat loss in a transformer will be in the LV
windings. Accordingly, only the passes enclosing the LV windings are considered in this
simulation. Moreover, some assumptions have to be made to fully specify this model.
Thus, a square canal is implemented to create a closed loop between the outlet and the
inlet of the stacked LV passes. In addition, an artificial radiator is placed near the inlet of
the canal to cool down the oil. Its only function is to reset the temperature of the oil to
a predefined value. This geometry as a whole is denoted as LV loop and is presented in
Figure 1.2.

The different components of the LV loop are implemented according to the parame-
ters determined in their respective verification studies. Nevertheless, a grading factor of
approximately 1.1 is applied in order to ensure a smooth transition between the separately
considered regions. The canal is implemented using almost uniform cells where 8 cells is
used in its width of 8.9 mm.

The oil inside this geometry will initially be set to 253.15 K to reproduce an extreme
cold-start situation in a cold environment. The radiator at the inlet of the canal is assigned
to reset the oil temperature to 293.15 K. Both the canal and the radiator are model uncer-
tainties. The influence of them will therefore be assessed in a sensitivity analysis in the
final subsection.

26



5.4 Cold start of LV loop

5.4.1 Verification of LV loop

The implementation of this case is verified by running the simulation until steady-state
conditions appear. The residuals are inspected to identify if they are below the set toler-
ances. Additionally, a mass and energy balance analysis will be conducted in a similar
way as the compressible channel case presented in 2?.

5.4.2 Validation of LV loop

Validating the solution is of paramount importance as the input and model uncertainties
have to be resolved. Thus, the LV loop will have to be validated. The solution of the
case considered by Torriano et al. [43] is used for this study to examine if similar steady-
state solution is obtained. However, they only consider a single transformer pass with
predefined inlet and outlet conditions as presented in section 5.2.2. That said, these are set
to recreate normal working conditions at steady state. Hence, similar conditions should be
observed when resolved the LV loop.

To get comparable results, the same oil is used here as in section 5.2.2. Its properties
are specified in Eq. (5.7). The steady-state results of both the mass flow rate and the TOT
are used as a comparison in this validation®.

5.4.3 Cold-start problem

Here, the results from the cold-start simulation will be presented. As mentioned in the
introduction of this section, the time evolution of the HST and its location are of interest
as they provide valuable insight about the load capabilities of the transformer. Thus, the
time trace of the HST will be graphed, and a time series of the temperature distribution
will be visualized.

5.4.4 Sensitivity analysis

The LV loop model contains a few model uncertainties, in particular the length and width
of the canal and the assigned reset temperature and the drag of the radiator. This sensitivity
analysis will only consider the radiator reset temperature. However, by using the steady-
state Poiseuille flow solution given in Eq. (5.6) a sensitivity parameter can be constructed

as follows: I
B=tipps- (59)
p

Here, p, is the dynamic viscosity at the radiator reset temperature, whereas L, is the
total length of the canal and h, is the width of the canal. The sensitivity parameter 3
determines the pressure drop divided by the velocity for a straight canal section, according
to the steady-state Poiseuille flow solution. Therefore, if this parameter is constant for two
different cases, the pressure drop in the canal will be the comparable assuming the velocity
is the same.

3 Another depth is used for this geometry compared to Ref.[43]. This is therefore compensated for by mul-
tiplying their mass flow rate to the ratio between the inlet area for this geometry and the inlet area for their
geometry, when obtaining their mass flow rate in this comparison.
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The radiator reset temperatures used in this analysis will be 313.15 K and 283.15 K.
These will be compared to the reset temperature of 293.15 K, considered in the previous
section.
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Chapter

Results and Discussion

The cases that have been described in the previous chapter will be employed in this chapter.
That is, using the Graetz extended problem to verify the steady-state solver and the mesh in
the horizontal channel in addition to the temperature-dependent fluid properties. Then, the
transient Poiseuille solution is used to verify the transient solver by considering the same
channel. This will be followed by verification and validation of the single transformer
pass using its reference case and the case considered in Ref.[43], respectively. This case
will then be used to verify the porous-medium approximation. Lastly, the cold-start case
is considered with a verification and validation study, continued by its relevant results and
ending with a sensitivity analysis.

6.1 Horizontal channel flow

Section 5.1 presents and describes two flow problems within simple horizontal channel.
The extended Graetz problem involves both thermal and hydrodynamical elements, while
the transient Poiseuille flow only involves flow patterns. Both problems have analytical
solutions and are useful to verify the implementation of the governing equations in the
OpenFOAM framework.

In the following, results are presented first for the Graetz extended problem, then for
the transient Poiseuille flow.

6.1.1 Graetz extended problem

The solution of the presented extension of the Graetz problem is used to verify the im-
plementation of the solver by conducting a grid convergence study. Then, different mesh
structures are assessed to investigate the possibility to reduce the number of cells and there-
fore the computational cost. However, the solution of this extension of the Graetz problem
is as discussed only valid for the hydrodynamically fully developed and thermally de-
veloping region. Fortunately, this region is estimated from the empirical correlations of
the entry lengths. Nonetheless, the hydrodynamic and thermal entry length correlations
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Figure 6.1: Results for the uniform mesh with 64 cells in the transverse direction.

are empirical and assumes uniform inlet profiles. Hence, the determined entry lengths
are only estimates. Therefore, a test case with a fine mesh consisting of square, uniform
cells with 64 cells in the vertical direction is initially run to verify the determined entry
lengths. The hydrodynamically entry length is determined by investigating where the ve-
locity along the middle of the channel, visualized in Figure 6.1a, become uniform. From
this figure, it is seen that the velocity is independent of the horizontal position at about
3.5 mm of the total 50.8 mm, which is a little above the estimated value in section 5.1.1 of
3.01 mm. Such a small deviation is however reasonable, because the previously estimated
value is both empirical and assumes an uniform inlet flow velocity. Moreover, Figure 6.1b
presents the temperature profile along the wall. This profile shows that the temperature at
the wall does not become linear, confirming the thermally developing assumption done in
section 5.1.1. Therefore, the first 4 mm of the inlet will be excluded from the following
analysis, to replicate the extended Graetz problem.

The grid convergence study is conducted with square, uniform meshes. Simulations
are first run on a coarse square mesh which is incrementally refined by a factor of 2. This
mesh refinement process is performed until the solution is observed to have converged to
solution of the extended Graetz problem. The resulting relative errors for the different grid
resolutions are given in Figure 6.2a. These error are calculated with respect to the temper-
ature difference between the inlet and wall. In addition, linear interpolation is used for the
simulated cases to estimate the wall temperature from the temperature of the cell closest
to the wall. Looking at Figure 6.2a the convergence is obvious. Thus, the implementation
is verified. Additionally, this figure reveal that 32 cells in the vertical direction is sufficient
to capture the flow characteristics, as the relative error is only 0.53 %. Hence, 32 cells in
the vertical direction will be used for all subsequent simulations.

The uniform mesh with 32 cells in the vertical direction is then relaxed in the flow
direction, because the aspect ratio is allowed to be high in the flow direction. The relative
errors for different relaxations that are determined in a similar way as for the uniform
meshes, are visualized in Figure 6.2b. Here, negligible differences are seen by relaxing
the number of cells in the flow direction of the channel. This is a reasonable, since there
are only small gradients in this direction. Therefore, only 30 cells will be used in this
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Figure 6.2: Grid convergence tests with the extended Graetz problem, using interpolated values at
the cells.

direction for the following simulations.

Furthermore, it should be remarked that fine cells near the walls are preferred due to the
large gradients. However, this will cause problems when including the vertical channels,
since the structured mesh will cause the flow to be in the direction with the low aspect ratio
of the cell at the vertical channels. Hence, the time steps would have been unnecessarily
small due to the stability criteria of the Courant number for the employed PISO algorithm.
Grading in the transverse direction of the horizontal channel is therefore not considered.

The determined mesh resolution is only verified for this specific case. That said, the
input parameters are determined from a real ONAN transformer in Ref.[43]. As the same
geometry will be employed for the cold-start problem, the flow characteristic will be com-
parable.

In conclusion, this study reveal that the steady-state solver has been successfully im-
plemented. In addition, a good balance between accuracy and cell count can be achieved
by using 30 cells in the flow direction and 32 cells in the vertical direction for this case.
This mesh is shown in Figure 6.3. The flow characteristic will be similar for the cold-start
problem. This mesh will therefore be used as a basis for all subsequent simulations that
include the horizontal channels.

The implemented temperature-dependent fluid properties are verified using the case
with the Graetz extended problem. This is initially performed by verifying that the mass
and energy are conserved in the channel. The former is investigated by subtracting the
mass flow at the inlet to the outlet. Whereas the latter is determined by subtracting inlet to
the outlet enthalpy, kinetic and potential energy flow rate, and adding the heat transfer sub-
tracted with the pressure work due to the friction at the wall. The results from these analy-
ses reveal that the mass is perfectly conserved, whereas a relative error of 0.014 % is found
for the energy conservation with respect to the total heat transfer from the walls. Hence,
the initial verification of the implemented temperature-dependent properties is proven suc-
cessful, as either the mass or the energy can be created from nowhere. The conserved mass
and energy also verify that the convergence criteria of the residuals and that the assump-
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Figure 6.3: A close-up of the resulting mesh from the grid convergence study of the horizontal
channel.

tions made in the simplified energy equation, Eq. (3.3), are valid [48, page 90-92].

Furthermore, the values of the temperature-dependent fluid properties should be ver-
ified to correspond to the temperature at their cells according to Eq. (5.1). For this,
the bottom cell at the end of the channel is used. Its temperature is found to be
316.5 K. Which from Eq. (5.1) should correspond to 951.0kgm~2, 2.314 x 1072 Pas,
0.1428 WK~'m~! and 1936 J kg~ ' K~! for respectively the density, dynamic viscos-
ity, thermal conductivity coefficient and the specific heat capacity. The resulting values
from the simulation for these properties at that cell are found to be exactly the same as
the expected values. Consequently, the implementation of the temperature dependent fluid
properties are successfully verified.

6.1.2 Transient Poiseuille flow

The Graetz problem was used to verify the steady-state solver and to analyse the lengths
of the thermal and hydrodynamic developing regions. A sufficiently accurate mesh for
that particular case was determined. This is visualised in Figure 6.3. This mesh will be
used in the horizontal channel presented in Figure 5.1 to verify the transient solver. The
verification will be conducted in two steps. First, the steady-state solution of the Graetz
extended problem using the transient solver will be verified. Then, the transient behavior
of the solver will be verified using the transient Poiseuille flow solution. This is done by
applying a sudden pressure gradient on the oil from a standing still position.

The implementation of the transient solver is initially investigated by replicating the
Graetz extended problem of the previous case in section 6.1.1, using the transient solver.
As mentioned in section 5.1.2, this investigation is conducted since the transient Poiseuille
flow that will later be employed does not consider the thermal solution. The steady-state
solution of the linearly interpolated temperature profile along the wall is then compared
to the analytical solution. This result is presented in Figure 6.4. The figure shows that
the steady-state result from the simulation matches the analytical solution, verifying that
the implemented transient solver is able to reach the correct steady-state solution in the
steady-state case.
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Figure 6.4: Temperature profile along the wall of the channel, using the transient solver.

The transient behavior of the solver is then verified by comparing the results of de-
creasing time steps to the analytical transient Poiseuille solution of parallel plates. This
will also be used to estimate the time step for the cold-start simulation. For this study a
time step for the first convergence iteration has to be determined. As the PISO algorithm
is used in the transient solver, the Courant number needs to be below 1 to ensure stability.
It should be noted that the implemented solver buoyantPimpleFoam has the ability to
change the time step based on an maximum Courant number and time step. Nevertheless,
this feature is not used in this convergence study since the Courant number is dependent
on both the local cell size and velocity as shown inEq. (4.2). A Courant number, that is
found from this study to provide accurate results, will therefore not be characteristic for
the cold-start phenomena using the whole LV pass. For this purpose, a time step found
in a similar way, will be more representative. That said, the Courant number must be
considered to make sure that it never exceeds unity. This number depends on both the
local cell length and velocity. Fortunately, the maximum velocity for this Poiseuille flow
is known and given as 1.5 times the average velocity [1], resulting in 4.44 x 10~ ms™1.
In addition, as the resulting uniformly distributed mesh from the previous mesh conver-
gence study is employed, the maximum cell length is 1.69 mm in the flow direction. Thus,
Eq. (4.2) implies a time step of 0.38 s for the first iteration. This value is reduced by a
factor of 2 until reasonable convergence to the analytical solution is observed. The results
of this investigation is shown in Figure 6.5. The figure shows that the transient behavior
of the solver reaches the analytical solution as the time step goes towards zero. This in-
dicates that the transient solver is correctly implemented. Furthermore, the plots reveals
that the time step has to be in an order of 1 x 1073 s to capture the transient behavior with
sufficient accuracy. Nevertheless, the considered transient Poiseuille flow Eq. (5.5) does
not use the energy conservation equation Eq. (3.4c) and is only valid for this specific case.
That adds an extra layer of error. However, a time step in the order of 1 x 1073 s still
provides a reasonable indication of what the time steps should be in the final cold-start
simulation.
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Figure 6.5: Velocity at the middle of the outlet.

6.2 Transformer pass

Now the vertical channels are merged with the previously considered horizontal channels
to create a single transformer pass as described in section 5.2. A new mesh is generated
for this geometry. However, to verify that the mesh is sufficiently resolved for the problem
at hand, a reference case is made for comparison. This, in addition to a validation case
will be the main focus in the following subsection.

The case that has been described in section 5.2 is initially investigated for the presence
of turbulence, since Gastelurrutia et al. [17] stated that their ON transformer had some
turbulent regions. This investigation is conducted by calculating the Reynolds number
using Eq. (5.3a) for both the inlet and the outlet of the transformer pass. These are esti-
mated using the determined constant properties in Chapter 5 with the volumetric inflow
rate for this case, which is 3.7888 x 1076 m3 s~!. By using this, in addition to the width
of respectively 6.4 and 8.9 for the inlet and outlet, result in Reynolds numbers of 6.18 and
5.37 for respectively the inlet and outlet. Additionally, the previously calculated Reynolds
number for the horizontal channel was 0.360. These values are far below the transition
region from laminar to turbulence flow at about 2 x 103. It is therefore safe to assume
that the fluid flow in this transformer pass is purely laminar. This is also verified, running
the reference case, as no instabilities are observed for the residuals. Because the turbulent
effects will cause instabilities, and lead to major convergence issues for the residuals.

Furthermore, the results from the mass and the energy balance analysis conservation
show that the mass is perfectly conserved, while the relative error for the energy conserva-
tion is 0.020 % with respect to the total heat transfer from the windings at 58.42 W. Thus,
indicating that the mesh and the set tolerances for the convergence of the residuals are
legitimate.
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Table 6.1: Comparison of some parameters for different meshes in a single transformer pass.

Pressure drop [Pa] TOT [K] HST [K]

Reference 3658.4 308.4 361.4
New mesh  3653.3 308.4 360.4

6.2.1 Mesh verification

A mesh is created for the single pass geometry, using the specifications presented in sec-
tion 5.2.1. Which is by beginning with the resulting mesh for the horizontal channels from
the analysis of the extended Graetz problem. That is the That is 32 and 30 uniformly
distributed cells in respectively the height of 4.1 mm and length of 50.8 mm of the chan-
nel. The different grading factors are then applied. The resulting mesh is presented in
Figure 6.6. As mentioned in the introduction of this section, a reference case is created to
verify that this mesh is sufficiently resolved for the problem in hand. This case is made
using a very fine mesh, consisting of square, uniform cells with lengths of 0.1 mm.

Figure 6.6: Details of the mesh near intersection between vertical and horizontal channels.

The results for the HST, TOT and pressure drop between the inlet and the outlet by
using the new mesh and the reference mesh are presented in Table 6.1. The table shows
that the TOT is the same in both cases, whereas the relative errors for both the pressure
drop and the HST are small. This shows that the new mesh is sufficiently resolved for
problem at hand.
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6.2.2 Single pass validation

As discussed in section 5.2.2, Torriano et al. [43] performed CFD simulations of a steady-
state single transformer pass. They found the HST to be 376.6 K. The HST was located at
the 16" winding counting from the bottom. They have successfully compared this HST
with fiber-optic measurements.

The fluid properties used in the case is specified in Chapter 5. The same simulation is
performed here, and the results are presented in Figure 6.7. The figure shows the resulting
maximum temperature at each winding. It is observed that the HST is located at the 17"
winding, where the temperature is 379.9 K. This gives a relative error of only 0.64 % with
respect to the HST found by Torriano et al. [43]. Whereas, the difference in the location
is only of one winding. In addition, the maximum temperature at the 16"" winding is just
marginally below the HST. The result therefore indicates that the current model provides
physically adequate solutions.
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Figure 6.7: Maximum temperature at the different windings for the case presented by Torriano et al.
[43] marked by blue dots. While the HST from Torriano et al. [43] is visualized by the red line.

6.3 Porous-medium approximation

The porous-medium approximation is implemented to significantly decrease the compu-
tational resources needed to simulate the cold-start problem. This implementation will be
verified by comparing a porous with a fully resolved single transformer pass.

The porous simulation is run until steady-state conditions are achieved. The resulting
time evolution of the TOT for this simulation is then compared to the TOT of the equivalent
fully resolved simulation. The results are presented in Figure 6.8 and show somewhat
faster dynamics for the porous case as the maximum TOT appears about 10s earlier. The
maximum deviation for TOT is only 1 K, which gives a relative error with respect to the
fully resolved TOT of about 0.3 %. Additionally, the steady-state TOT is almost the same,
as only a temperature difference of 0.1 K is observed. The porous-medium approximated
pass is therefore verified, since these differences are small.

The motivation for using a porous medium approximation is to reduce the computa-
tional time. In this case, the fully-resolved simulation uses 8092 s to reach 300 s of simu-
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Figure 6.8: Comparison between porous and full resolved pass with respect to the TOT.

lation time, while the porous-medium approximated simulation only uses 735s. Hence, a
reduction in compute time of remarkable 91.2 % is gained. That said, the given reduction
only applies for this specific case, as part of this reduction is due to the increased time step
in the porous case. Which is as a consequence of implemented larger cells combined with
the use of maximum Courant number to determine the time steps. Therefore, when later
considering the whole LV winding which has both fully-resolved and porous passes, the
gain with increased time step for the porous case will mostly vanish. Nonetheless, as the
number of cells is reduced by 53 % in the porous case compared to the fully-resolved, the
reduction in compute time will still be significant.

6.4 Cold-start of LV loop

The previous cases has shown that the current model and its implementation should be
able to simulate the passes enclosing the LV windings as described in section 5.4.3. In this
section, the implementation of the cold-start problem will be further verified and validated.
Then, the simulation results for the cold-start case of the LV loop will be presented and
discussed. This is followed by a sensitivity analysis that investigates the radiator reset
temperature.

In addition to the mentioned case description of the cold-start problem given in sec-
tion 5.4.3, the maximum time step is set to 1 x 10~2 s based on to the results in sec-
tion 6.1.2. However, the maximum Courant number remains at 0.9 to ensure stability.

6.4.1 Verification of LV loop

The cold-start simulation is verified by conducting mass and energy balance analyses for
the steady-state solution. These analyses show that the mass is perfectly conserved, while
the relative error for the energy conservation is 0.81 % with respect to the total heat transfer
from the windings at 233.68 W.
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Table 6.2: A comparison between the TOT and the mass flow rate in Torriano et al. [43] and the
steady-state results for the cold-start validation simulation.

Mass flow rate [kgs~™'] TOT [K]

Simulation of Torriano et al. [43] 3.30 x 1073 328.3
The validation simulation 3.27 x 1073 331.6

6.4.2 Validation of LV loop

It is important to ensure that the implemented cold-start case is physically accurate. The
results of Torriano et al. [43] will again be used as a reference. Since Torriano et al. [43]
considers the normal working condition at steady-state for this transformer, comparable
results should be obtained by adapting to the same fluid properties as used here.

Table 6.2 shows the resulting TOTs and mass flow rates for the present simulation and
the simulation performed by Torriano et al. [43]'. The differences in the TOT and mass
flow rates are 3.3 K and 3 x 107° kgs ™!, respectively. These correspond to relative errors
of 1.0 % and 0.9 %, respectively. The low relative errors indicate that the physics is well
captured.

6.4.3 Cold-start problem

In this subsection, the results from the cold-start simulation is presented. The parameters
and configurations of this simulation are specified in section 5.4.3.

In this simulation, the magnitude of the HST and its time duration are the critical output
parameters as they provide an indication of the degradation of the transformer [37]. The
time evolution of the HST is plotted in Figure 6.9. In addition, the locations of the HSTs
are of interest as they provide valuable information on where the transformer may fail.
A time series of the temperature distribution in the LV loop is visualized in Figure 6.10.
The figure shows that high temperatures are found in the top two passes. The highest
temperatures, the HSTs, are observed at around 500s. This is confirmed by Figure 6.9,
which displays a peak in maximum HST of 447.2 K at time 535s. This temperature is
detected at the 11** winding of the top pass.

As the observed maximum HST is above 413 K, the transformer can be expected to
experience significant degradation [37]. In addition, this temperature level is dangerously
close to the temperature where a sudden transformer failure may occur. However, this
failure temperature is very dependent on the type of transformer insulation being used,
and some are rated to withstand temperatures up to 493 K [37]. The steady-state HST is
425.5K as shown in Figure 6.9 and is located at the same 11** winding on the top pass.
The HST of the oil will therefore at steady-state operation always be above the temperature
level where significant degradation is expected, given this geometry and heat flux. The
steady-state result of the HST is not coherent with the conducted literature review, as none

! Another depth is used in the geometry of this simulation compared to Ref.[43]. This is compensated by
multiplying their mass flow rates to the ratio between the inlet area of this geometry and the inlet area of their
geometry, when obtaining their mass flow rates in this comparison.
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Figure 6.9: Temperature evolution of a cold-start case with radiator reset temperature set to
293.15 K and initial temperature assigned to be 253.15 K.

of the considered studies have reached HSTs above 383.15 K during normal, steady-state
operations. A further investigation of this case is therefore conducted.

This investigation shows that the dynamic viscosity at 293.15 K of the considered
MIDEL7131 is 7.3 x 102 Pas™!, while the oil considered by Torriano et al. [43] had
a dynamic viscosity of 1.0 x 1072 Pas™! at the same temperature. A much more signif-
icant amount of drag is therefore present in the simulated case. In addition, the dynamic
viscosities at 333.15 K are 1.3 x 1072 Pas~!and 6.9 x 1073 Pas~! for the MIDEL7131
and the oil considered by Torriano et al. [43], respectively. The viscosity of MIDEL7131
is therefore much more temperature dependent. Thus, also more sensitive to the assumed
canal geometry and radiator reset temperature. A probable explanation for these unre-
alistically high temperatures are therefore that the assigned radiator reset temperature of
293.15 K and the canal geometry are not completely realistic. To determine the influence
of these model uncertainties a sensitivity analysis will be conducted in the final subsection.

To further determine if the cold-start situation in a cold environment may be a problem
in terms of transformer degradation, a new test case is developed where an initial temper-
ature of 293.15 K is used instead of 253.15 K. The remaining parameters are kept similar.
This case is created to analyse the maximum HST as well as the increase in the HST com-
pared to its steady-state value between the two cases with the different initial temperatures,
hereon called HST rise. The resulting plot of the time evolution of the HST for this test
case is presented in Figure 6.11. The figure shows that the steady-state HST is 426.5 K and
its maximum value only rises with 3.5 K reaching 430 K. Whereas the case with an initial
temperature of 253.15 K, this value is determined to be 21.7 K. Thus, the rise in HST is
significantly higher during a cold-start from 253.15 K compared to 293.15 K. Addition-
ally, the maximum HST is higher in the case initiated from a colder state. A cold-start in a
cold environment may therefore be problematic in terms of high HST. Therefore, further
investigation is needed.
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Figure 6.10: Time series of the temperature profile for the case with radiator at the top of the canal

and the reset temperature set to 293.15 K.
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Figure 6.11: The hot-spot temperatures for a cold-start case from an initial and radiator reset tem-
perature of 293.15 K.

6.4.4 Sensitivity analysis

The influence of the radiator reset temperature and thus also an indication of the influ-
ence from the canal width and length through the sensitivity parameter 3, will be used in
this sensitivity analysis. The resulting time trace of the HSTs using a reset temperature
of 283.15K and 313.15K are visualized in Figure 6.12a and Figure 6.12b, respectively.
The maximum and steady-state HSTs, and the difference between them for the different
radiator reset temperatures, are given in Table 6.3.

This table shows that the HST rise are doubled for the cases with temperature reset
of 283.15K and 313.15 K compared to 293.15 K. Revealing that the HST rise is very
sensitive to changes in radiator reset temperature.

Moreover, the table shows that the HST increases significantly when the reset temper-
ature is decreased. The reason for this is that the viscosity increases significantly when
decreasing the temperature. This very viscous oil will then have to flow through the whole
channel, leading to a significant drag force. The oil velocity will therefore be decreased,
which results in insufficient cooling.

The /3 values are given in the same table. This value gives an indicator of the pressure
drop divided by the velocity. Thus, if this parameter is constant for two different cases,
the pressure drop in the canal should be the comparable assuming the velocity is the same.
Accordingly, the case 3 = 2646 Pasm ™! gives an indication of what HSTs to expect if
the reset temperature is kept to 293 K and increased the Lph§ by 82 %. From Table 6.3, it
is shown that the max HST follows [ as it is increased when increasing the 5 and similar
for a decrease. Revealing promising results for the assumptions with the introduction of

B.
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Figure 6.12: HST for different radiator reset temperatures.

Table 6.3: Some critical parameters for several radiator reset temperature simulations.

Reset [K] Max HST [K] Steady-state HST [K] HSTrise [K] S [Pasm™1]

283.15 463 425.5 43.0 2646
293.15 447.2 425.5 21.7 1453
313.15 445.7 404.3 41.4 532.8

42



Chapter

Conclusion

The CFD model is used to study a transformer’s cold-start problem in a cold environment.
The cold environment is assumed to be at 253.15 K. A section of the transformer where
the hot-spot temperature (HST) is likely to be, is considered in this model. A simple canal
with a simplified radiator is made to create a closed loop and to cool down the oil by
resetting the temperature to a predefined value. The geometry and some input parameters
are obtained from Ref.[43]. Due to the limited computational resources available and the
complexity of the problem, both the computational time and accuracy of the solution is
considered. Thus, a porous-medium approximation is used on the part of the domain where
only the macroscopic properties are of interest, revealing significant simulation speed-up.
This model is verified though the analytical solution of the Graetz extended problem and
the transient Poiseuille flow, in addition to some reference simulations using very fine
uniform meshes. The model shows comparable results with results found in Ref.[43].

The results from this simulation show a maximum HST of 447.2 K, exceeding the
temperature of 413 K where a typical transformer will experience significant degradation.
Moreover, the maximum HST is observed to be 17.2 K higher during a cold-start initiated
in a cold environment compared to an environment with mild temperature. This further
indicates that a cold-start in a cold environment require careful consideration. However,
the performed sensitivity analysis reveals that the radiator reset temperature may have a
significant influence on the results. The pipe geometry is suggested to also have a similar
significant impact. Further investigation is therefore needed to model the radiator and the
pipe more accurately.
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Appendix

The following are the main files used to run the cold-start simulation in OpenFOAM
v18.12.
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st

Appendix

Case files

The files included in this section are the case files for the cold-start simulation.

System

These files should be in the system-directory.

controlDict
e s— CH+ —k *\
| ========= [ |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ /O peration | Version: vI1812 |
| \\ 7/ A nd | Web: www . OpenFOAM . com |
| \\/ M anipulation | |
/

FoamFile
{

version 2.0;

format ascii;

class dictionary ;

location ”system”;

object controlDict;
b
J1 % % % % % % % % % % % % % * *k * * * * * *k k *k * *k * * k *k * *k * * % *x % *x [/
// application buoyantPimpleFoam ;
/l application compressibleTransient;
/l application compressibleSteady ;
application porousTransient;
startFrom latestTime ;
// startTime 0;
stopAt endTime;
endTime 1800;
deltaT 0.1;
writeControl adjustableRunTime ;//runTime;
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writelnterval 10;
purgeWrite 0
writeFormat binary ;
writePrecision 6;
writeCompression off;
timeFormat general ;
timePrecision 6;
runTimeModifiable true;
adjustTimeStep yes;

// maxCo
maxCo
maxDeltaT
functions

#includeEtc “caseDicts/postProcessing/probes/probes
/% probesl

type probes;
libs (”libsampling .so0”);
writeControl adjustableRunTime ;
writelnterval 0.1;
probeLocations ((0.075 0.005 0.001));
fields U);
}
*/
T_in
{
type surfaces;
libs (”libsampling .so0”);
writeControl writeTime ;
surfaceFormat raw ;
fields
(
T phi
)
interpolationScheme cellPoint;
surfaces
( .
in
type patch;
patches (inlet);
triangulate false;
}
)
}
T_out
{
type surfaces;
libs (”libsampling .s0”);
writeControl writeTime ;
surfaceFormat raw ;
fields
(
T phi

.cfg

”»
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)3

interpolationScheme cellPoint;

surfaces
(
out
{
type
patches

patch;
(outlet);

triangulate false;

)s
}

pressureDelta

type fieldValueDelta;
libs (”libfieldFunctionObjects .so”);

// Difference operation
operation subtract;

// Volume averaged pressure

regionl

type
operation
fields
writeFields
regionType
name

}

// Minimum pressure
region?2

surfaceFieldValue ;
areaAverage;

(p):

no;

patch;

inlet;

at ‘outlet’ patch

{
type surfaceFieldValue ;
operation areaAverage;
fields (p);
writeFields no;
regionType patch;
name outlet ;

}

TOTdelta

type fieldValueDelta;

libs (”libfieldFunctionObjects.so”);

// Difference operation
operation subtract;

/! Volume averaged pressure

regionl

type
operation
fields
writeFields
regionType
name

//scaleFactor

weightField

surfaceFieldValue ;
weightedAverage ;// weightedSum ;
(T);

no;

patch;

inlet;

1902; //cp

phi;
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// Minimum pressure at ‘outlet’ patch
region2

{

type surfaceFieldValue ;
operation weightedAverage;
fields (T);

writeFields no;

regionType patch;

name outlet ;

// scaleFactor 1902;
weightField phi;

/1 #includeFunc singleGraphECell

#includeFunc residuals

#includeFunc temp

minMax

{
type fieldMinMax ;
libs (”libfieldFunctionObjects.so”);
writeControl adjustableRunTime ;
writelnterval 0.5;
fields (T);

}

T1 stk s sk ootk s s ok ok sk ok ok ok ok sk ok Kk ok ok ok ok ok ok ok sk ok KK R ok ok ok oK K sk ok sk ok KK R ok sk ok o KR Kk sk ok R Rk sk sk kR R Rk ok [/
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blockMeshDict.m4

e s— CH+ —k *\
| ========c [ [
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|\ /O peration | Version: 5 |
| / A nd | Web: www . OpenFOAM.. org |
| \\/ M anipulation | |
\ /
FoamFile
{

version 2.0;

‘format ’ ascii;

class dictionary ;

object blockMeshDict;
dnl>
dnl> <STANDARD DEFINTIONS>
dnl>

changecom (//) changequote ([ ,]) dnl>

define (calc, [esyscmd(perl —e ’print ($1)’)]) dnl>

define (VCOUNT, 0) dnl>

define (vlabel, [[// ]pt VCOUNT ($1) define ($1, VCOUNT)define ([VCOUNT], incr(VCOUNT))])
dnl>

dnl> </STANDARD DEFINTIONS>

dnl>
dnl> Coordinates used in definition of verticies

dnl> x—values
define (x0,0) dnl> origin position of x

define (xin ,6.4) dnl> position at inlet (x)

define (xout, 57.2) dnl> position at outlet (x)

define (xmax, 66.1) dnl> maximum of x, length of the entire sustem

dnl> y—values
define (yO, 0) dnl> origin position of y

define (ymax,10) dnl> maximum value of y, width of the entire system

dnl> z—values
define (z0,0) dnl> origin position of z

define (channelHeight, 4.1)

define (channelGap, 15)

dnl define (firstChannel , 9)

define (firstChannel , 0)

define (firstChannelB , 0)

define (zpass ,367) dnl> Heigth of a single pass

dnl>edited
dnl>
define (zp, calc(367%2)) dnl> Where the detailed pass start

define (zpl, 8.9)

define (zp2, calc(2%8.9))

define (xpl, calc(xmax+2%8.9))

define (xp2, calc(xpl+8.9))

define (calc_round, [esyscmd(perl —e "printf ("%d’, $1)”)]) dnl> same as floor ()
dnl>
dnl>
dnl> Number of cells in Porous region
dnl>
dnl>define (nxPoroLeft, 25)

define (nxPoroCenterAdj, 55)

define (nxPoroCenter, 50)

dnl>define (nxPoroRight, 25)

define (nyPoro, 1)

define (nzPoro, 367)

define (nxPoroE , calc_round (xmax—xout))
define (nxPoroW, calc_round (xin))

dnl>
dnl>edited
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dnl>
dnl> Number of cells
dnl>
define (nxchannel, 30) dnl> Number of cells in x—direction in channel (50.8 mm)
define (nychannel, 1) dnl> Number of cells in y—direction in channel (10 mm)
define (nzchannel, 32) dnl> Number of cells in z—direction in channel (4.1 mm)
define (nzchannelTB, 32) dnl> Number of cells in z—direction in channel (4.1 mm)
define (nxfineW, 11) dnl> Number of cells in x—direction in the high resolutuion legs (6.4 mm)
define (nxfineE, 13)dnl> Number of cells in x—direction in the high resolutuion legs (8.9 mm)
define (nyfine, 1) dnl> Number of cells in y—direction in the high resolutuion legs (10 mm)
define (nzfine , 1324) dnl> Number of cells in z—direction in the high resolutuion legs (367 mm)
dnl>
dnl> Definition of blocks
dnl>
define (createChannelBlock , hex ($la $Ib $1c $1d $le $1f $1g $1h)

channel$1 (nxchannel nychannel nzchannel) simpleGrading (

((0.5 15 12.84 )(0.5 15 calc(1/12.84))) 1 1)) dnl> se senere om dette er 1.2 i grading
define (createChannelBlockTB , hex ($la $1b $1c $1d $le $1f $lg $1h)

channel$1 (nxchannel nychannel nzchannelTB) simpleGrading (

((0.5 15 12.84)(0.5 15 calc(1/12.84))) 1 1))

define (createSideBlockWest , hex ($la $1b $1c $1d $le $1f $1g $1h)
West (nxfineW nyfine nzfine) simpleGrading (((2.112 3 1.44)(4.288 8 0.279)) 1

(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1))

)) dnl> Do not use for central block

define (createSideBlockEast , hex ($la $1b $1c $1d $le $1f $1g $1h)
East (nxfineE nyfine nzfine) simpleGrading (((5.963 9 4.3)(2.937 4 0.578)) 1

(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)
(4.1 32 1)(7.5 18 5.6)(7.5 18 0.1786)(4.1 32 1))

)) dnl> Do not use for central block

dnl> edited
dnl>
dnl> Definition of porous blocks
dnl>
define (createCoarseBlockWestAdj, hex ($la $1b $1c $1d $le $1f $1g $1h)

coarseL$1 (nxfineW nyPoro nzPoro) simpleGrading (((2.112 3 1.44)(4.288 8 0.279)) 1

((0.9 300 1)(0.1 67 calc(1./10.))))) dnl> Used to define porous block on the right side
define (createPorousBlockCenterAdj, hex ($1b $1i $11 $lc $1f $Im $1p $1g)

porosity (nxPoroCenterAdj nyPoro nzPoro) simpleGrading (((0.1 10 3)(0.9 45 1)) 1

((0.9 300 1)(0.1 67 calc(1./10.))))) dnl> Used to define porous block in the middle
define (createCoarseBlockEastAdj, hex ($1i $1j $1k $11 $Im $1n $lo $1p)

coarseR$1 (nxPoroE nyPoro nzPoro) simpleGrading (1 1 ((0.9 300 1)(0.1 67 calc(1./10.)))))
dnl> Used to define porous block on the right side

define (createCoarseBlockWest, hex ($la $1b $lc $1d $le $1f $1g $1h)
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coarseL$1 (nxPoroW nyPoro nzPoro) simpleGrading (1 1 1))

dnl> Used to define porous block on the right side

define (createPorousBlockCenter , hex ($1b $1i $11 $lc $1f $Im $1p $1g)
porosity (nxPoroCenter nyPoro nzPoro) simpleGrading (1 1 1))

dnl> Used to define porous block in the middle

define (createCoarseBlockEast, hex ($1i $1j $1k $11 $lm $1n $lo $lp)
coarseR$1 (nxPoroE nyPoro nzPoro) simpleGrading (1 1 1))

dnl> Used to define porous block on the right side

define (createPipeBlock , hex ($la $1b $1c $1d $le $1f $1g $1lh))

dnl> edited

dnl>
dnl> Definition of patches
dnl>
define (upPatch, ($le $1f $1g $1h)) dnl> up patch, not for central block or ribchannels
define (downPatch, ($la $1d $1c $1b)) dnl> down patch, not for central block or ribchannels
define (leftPatch , ($le $1h $1d $la)) dnl> left patch, not for central block or ribchannels
define (rightPatch, ($1g $1f $1b $lc)) dnl> right patch, not for central block or ribchannels
define (frontPatch, ($le $la $1b $1f)) dnl> front patch, not for central block or ribchannels
define (backPatch, ($1g $lc $1d $1h)) dnl> back patch, not for central block or ribchannels

define (upPatchPoro, ($1f $lm $1p $1g)) dnl> up patch, not for central block or ribchannels
define (downPatchPoro, ($1b $1i $11 $1c)) dnl> down patch, not for central block or ribchannels
define (leftPatchPoro, ($1b $1f $1g $1c)) dnl> left patch, not for central block or ribchannels
define (rightPatchPoro, ($Im $1i $11 $1p)) dnl> right patch, not for central block or ribchannels
define (frontPatchPoro, ($1b $1i $Im $1f)) dnl> front patch, not for central block or ribchannels
define (backPatchPoro, ($11 $1c $1g $1p)) dnl> back patch, not for central block or ribchannels

define (upPatchCR, ($lm $1n $lo $1p)) dnl> up patch, not for central block or ribchannels
define (downPatchCR, ($1i $11 $1k $1j)) dnl> down patch, not for central block or ribchannels
define (leftPatchCR, ($1i $Im $1p $11)) dnl> left patch, not for central block or ribchannels
define (rightPatchCR, ($1k $lo $In $1j)) dnl> right patch, not for central block or ribchannels
define (frontPatchCR, ($1j $In $lm $1i)) dnl> front patch, not for central block or ribchannels
define (backPatchCR, ($1p $lo $1k $11)) dnl> back patch, not for central block or ribchannels

dnl>
define (channellnternalPatch , ($1h $1d $la $le)

($1f $1b $1c $1g)) dnl> Defines all the internal patches for the channels
define (channelExternalFrontBack , ($le $la $1b $1f)

($lg $lc $1d $1h))
define (channelExternalTopBottom , ($1h $le $I1f $1g)

($la $1d $1c $1b)) dnl> Defines all the external patches of the channels

dnl>

convertToMeters 0.001;

vertices

(

/1 West
( x0 yO calc(z0+zp) ) vlabel(wa)

( xin yO0 calc(z0+zp) ) vlabel(wb)

( xin ymax calc(z0+zp) ) vlabel (wc)

( x0 ymax calc(z0+zp) ) vlabel (wd)

( x0 yO calc(zpass+zp) ) vlabel (we)

( xin y0 calc(zpass+zp) ) vlabel (wf)

( xin ymax calc(zpass+zp) ) vlabel(wg)
( x0 ymax calc(zpass+zp) ) vlabel(wh)
// East

( xout y0 calc(zO+zp) ) vlabel(ea)

( xmax y0 calc(z0+zp) ) vlabel(eb)

( xmax ymax calc(z0+zp) ) vlabel(ec)

( xout ymax calc(z0+zp) ) vlabel(ed)

( xout y0 calc(zpass+zp) ) vlabel(ee)
( xmax y0 calc(zpass+zp) ) vlabel(ef)
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( xmax ymax calc(zpass+zp) ) vlabel(eg)

( xout ymax calc(zpass+zp) ) vlabel(eh)

// A—channel

( xin y0 calc(firstChannelB+zp) ) vlabel(Aa)

( xout y0 calc(firstChannelB+zp) ) vlabel (Ab)

( xout ymax calc(firstChannelB+zp) ) vlabel (Ac)

( xin ymax calc(firstChannelB+zp) ) vlabel (Ad)

( xin yO calc(zp+firstChannelB+channelHeight) ) vlabel(Ae)

( xout y0 calc(zp+firstChannelB+channelHeight) ) vlabel (Af)

( xout ymax calc(zp+firstChannelB+channelHeight) ) vlabel (Ag)

( xin ymax calc(zp+firstChannelB+channelHeight) ) vlabel (Ah)

// B—channel

( xin y0 calc(zp+firstChannel + Ix(channelHeight+channelGap)) ) vlabel(Ba)

( xout y0 calc(zp+firstChannel + Ix(channelHeight+channelGap)) ) vlabel (Bb)
( xout ymax calc(zp+firstChannel + lx(channelHeight+channelGap)) ) vlabel(Bc)
( xin ymax calc(zp+firstChannel + Ix(channelHeight+channelGap)) ) vlabel(Bd)
( xin y0 calc(zp+firstChannel+2xchannelHeight+l*channelGap) ) vlabel (Be)

( xout y0 calc(zp+firstChannel+2xchannelHeight+l+*channelGap) ) vlabel (Bf)

( xout ymax calc(zp+firstChannel+2xchannelHeight+lxchannelGap) ) vlabel (Bg)

( xin ymax calc(zp+firstChannel+2«channelHeight+lxchannelGap) ) vlabel (Bh)

/!l C—channel

( xin y0 calc(zp+firstChannel + 2x(channelHeight+channelGap)) ) vlabel (Ca)

( xout y0 calc(zp+firstChannel + 2x(channelHeight+channelGap)) ) vlabel (Cb)
( xout ymax calc(zp+firstChannel + 2x(channelHeight+channelGap)) ) vlabel(Cc)
( xin ymax calc(zp+firstChannel + 2x(channelHeight+channelGap)) ) vlabel (Cd)
( xin y0 calc(zp+firstChannel+3xchannelHeight+2+«channelGap) ) vlabel (Ce)

( xout y0 calc(zp+firstChannel+3+«channelHeight+2xchannelGap) ) vlabel (Cf)

( xout ymax calc(zp+firstChannel+3xchannelHeight+2xchannelGap) ) vlabel (Cg)

( xin ymax calc(zp+firstChannel+3%channelHeight+2xchannelGap) ) vlabel (Ch)

// D—channel

( xin y0 calc(zp+firstChannel + 3%(channelHeight+channelGap)) ) vlabel(Da)

( xout y0 calc(zp+firstChannel + 3x(channelHeight+channelGap)) ) vlabel (Db)
( xout ymax calc(zp+firstChannel + 3x(channelHeight+channelGap)) ) vlabel(Dc)
( xin ymax calc(zp+firstChannel + 3x(channelHeight+channelGap)) ) vlabel(Dd)
( xin y0 calc(zp+firstChannel+4xchannelHeight+3*channelGap) ) vlabel (De)

( xout y0 calc(zp+firstChannel+4xchannelHeight+3xchannelGap) ) vlabel (Df)

( xout ymax calc(zp+firstChannel+4xchannelHeight+3xchannelGap) ) vlabel (Dg)

( xin ymax calc(zp+firstChannel+4xchannelHeight+3xchannelGap) ) vlabel (Dh)

/! E—channel

( xin y0 calc(zp+firstChannel + 4x(channelHeight+channelGap)) ) vlabel (Ea)

( xout y0 calc(zp+firstChannel + 4x(channelHeight+channelGap)) ) vlabel (Eb)
( xout ymax calc(zp+firstChannel + 4x(channelHeight+channelGap)) ) vlabel(Ec)
( xin ymax calc(zp+firstChannel + 4x(channelHeight+channelGap)) ) vlabel (Ed)
( xin y0 calc(zp+firstChannel+5+«channelHeight+4xchannelGap) ) vlabel (Ee)

( xout y0 calc(zp+firstChannel+5%channelHeight+4xchannelGap) ) vlabel (Ef)

( xout ymax calc(zp+firstChannel+5%xchannelHeight+4xchannelGap) ) vlabel (Eg)

( xin ymax calc(zp+firstChannel+5«channelHeight+4xchannelGap) ) vlabel (Eh)

/!l F—channel

( xin y0 calc(zp+firstChannel + 5%(channelHeight+channelGap)) ) vlabel (Fa)

( xout y0 calc(zp+firstChannel + S5x(channelHeight+channelGap)) ) vlabel (Fb)
( xout ymax calc(zp+firstChannel + S5x(channelHeight+channelGap)) ) vlabel(Fc)
( xin ymax calc(zp+firstChannel + S5x(channelHeight+channelGap)) ) vlabel (Fd)
( xin y0 calc(zp+firstChannel+6+channelHeight+5%channelGap) ) vlabel (Fe)

( xout y0 calc(zp+firstChannel+6*channelHeight+5xchannelGap) ) vlabel (Ff)

( xout ymax calc(zp+firstChannel+6xchannelHeight+5xchannelGap) ) vlabel (Fg)

( xin ymax calc(zp+firstChannel+6xchannelHeight+5+«channelGap) ) vlabel (Fh)

/!l G—channel

( xin y0 calc(zp+firstChannel + 6x(channelHeight+channelGap)) ) vlabel (Ga)

( xout y0 calc(zp+firstChannel + 6x(channelHeight+channelGap)) ) vlabel (Gb)

( xout ymax calc(zp+firstChannel + 6x(channelHeight+channelGap)) ) vlabel(Gc)
( xin ymax calc(zp+firstChannel + 6x(channelHeight+channelGap)) ) vlabel (Gd)
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( xin y0 calc(zp+firstChannel+7+«channelHeight+6xchannelGap) ) vlabel (Ge)

( xout y0 calc(zp+firstChannel+7+«channelHeight+6xchannelGap) ) vlabel (Gf)

( xout ymax calc(zp+firstChannel+7«xchannelHeight+6xchannelGap) ) vlabel (Gg)
( xin ymax calc(zp+firstChannel+7«channelHeight+6xchannelGap) ) vlabel (Gh)
/!l H—channel

( xin y0 calc(zp+firstChannel + 7x(channelHeight+channelGap)) ) vlabel (Ha)

( xout y0 calc(zp+firstChannel + 7x(channelHeight+channelGap)) ) vlabel (Hb)
( xout ymax calc(zp+firstChannel + 7x(channelHeight+channelGap)) ) vlabel(Hc)
( xin ymax calc(zp+firstChannel + 7%(channelHeight+channelGap)) ) vlabel (Hd)
( xin y0 calc(zp+firstChannel+8+channelHeight+7«channelGap) ) vlabel (He)

( xout y0 calc(zp+firstChannel+8+channelHeight+7«channelGap) ) vlabel (Hf)

( xout ymax calc(zp+firstChannel+8xchannelHeight+7+channelGap) ) vlabel (Hg)
( xin ymax calc(zp+firstChannel+8«channelHeight+7«channelGap) ) vlabel (Hh)

/!l I—channel

( xin y0 calc(zp+firstChannel + 8x(channelHeight+channelGap)) ) vlabel(Ia)

( xout y0 calc(zp+firstChannel + 8x(channelHeight+channelGap)) ) vlabel (Ib)
( xout ymax calc(zp+firstChannel + 8x(channelHeight+channelGap)) ) vlabel(Ic)
( xin ymax calc(zp+firstChannel + 8x(channelHeight+channelGap)) ) vlabel (Id)
( xin y0 calc(zp+firstChannel+9+channelHeight+8«channelGap) ) vlabel(Ile)

( xout y0 calc(zp+firstChannel+9*channelHeight+8«channelGap) ) vlabel (If)

( xout ymax calc(zp+firstChannel+9xchannelHeight+8+channelGap) ) vlabel (Ig)

( xin ymax calc(zp+firstChannel+9%channelHeight+8+channelGap) ) vlabel (Ih)

/" J—channel

( xin y0 calc(zp+firstChannel + 9x(channelHeight+channelGap)) ) vlabel(Ja)

( xout y0 calc(zp+firstChannel + 9x(channelHeight+channelGap)) ) vlabel (Jb)

( xout ymax calc(zp+firstChannel + 9x(channelHeight+channelGap)) ) vlabel(Jc)
( xin ymax calc(zp+firstChannel + 9x(channelHeight+channelGap)) ) vlabel(Jd)
( xin y0 calc(zp+firstChannel+10*channelHeight+9xchannelGap) ) vlabel (Je)

( xout y0 calc(zp+firstChannel+10xchannelHeight+9xchannelGap) ) vlabel (Jf)

( xout ymax calc(zp+firstChannel+10xchannelHeight+9+channelGap) ) vlabel(Jg)
( xin ymax calc(zp+firstChannel+10xchannelHeight+9+channelGap) ) vlabel(Jh)

/!l K—channel

( xin y0 calc(zp+firstChannel + 10x(channelHeight+channelGap)) ) vlabel (Ka)

( xout y0 calc(zp+firstChannel + 10x(channelHeight+channelGap)) ) vlabel (Kb)
( xout ymax calc(zp+firstChannel + 10x(channelHeight+channelGap)) ) vlabel (Kc)
( xin ymax calc(zp+firstChannel + 10x(channelHeight+channelGap)) ) vlabel (Kd)
( xin y0 calc(zp+firstChannel+ll+*channelHeight+10xchannelGap) ) vlabel (Ke)

( xout y0 calc(zp+firstChannel+ll*channelHeight+10xchannelGap) ) vlabel (Kf)

( xout ymax calc(zp+firstChannel+llxchannelHeight+10xchannelGap) ) vlabel (Kg)
( xin ymax calc(zp+firstChannel+l1xchannelHeight+10xchannelGap) ) vlabel (Kh)

// L—channel
( xin yO calc(zp+firstChannel + llx(channelHeight+channelGap)) ) vlabel(La)

( xout y0 calc(zp+firstChannel + llx(channelHeight+channelGap)) ) vlabel(Lb)

( xout ymax calc(zp+firstChannel + 11x(channelHeight+channelGap)) ) vlabel(Lc)
( xin ymax calc(zp+firstChannel + 1lx(channelHeight+channelGap)) ) vlabel(Ld)
( xin y0 calc(zp+firstChannel+12+«channelHeight+11xchannelGap) ) vlabel(Le)

( xout y0 calc(zp+firstChannel+12xchannelHeight+I1xchannelGap) ) vlabel (Lf)

( xout ymax calc(zp+firstChannel+12xchannelHeight+1llxchannelGap) ) vlabel(Lg)
( xin ymax calc(zp+firstChannel+12«channelHeight+ll+*channelGap) ) vlabel(Lh)
// M—channel

( xin yO calc(zp+firstChannel + 12x(channelHeight+channelGap)) ) vlabel (Ma)

( xout y0 calc(zp+firstChannel + 12x(channelHeight+channelGap)) ) vlabel (Mb)

( xout ymax calc(zp+firstChannel + 12+(channelHeight+channelGap)) ) vlabel (Mc)
( xin ymax calc(zp+firstChannel + 12x(channelHeight+channelGap)) ) vlabel (Md)
( xin y0 calc(zp+firstChannel+13+xchannelHeight+12xchannelGap) ) vlabel (Me)

( xout y0 calc(zp+firstChannel+13xchannelHeight+12«xchannelGap) ) vlabel (Mf)

( xout ymax calc(zp+firstChannel+13xchannelHeight+12xchannelGap) ) vlabel (Mg)
( xin ymax calc(zp+firstChannel+13s«channelHeight+12+xchannelGap) ) vlabel (Mh)

// N—channel
( xin y0 calc(zp+firstChannel + 13x(channelHeight+channelGap)) ) vlabel(Na)
( xout y0 calc(zp+firstChannel + I3x(channelHeight+channelGap)) ) vlabel (Nb)
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(
(
(
(
(
(

xout ymax calc(zp+firstChannel + 13x(channelHeight+channelGap)) ) vlabel (Nc)
xin ymax calc(zp+firstChannel + 13%(channelHeight+channelGap)) ) vlabel (Nd)
xin y0 calc(zp+firstChannel+l4xchannelHeight+13%channelGap) ) vlabel (Ne)
xout y0 calc(zp+firstChannel+14xchannelHeight+13xchannelGap) ) vlabel (Nf)
xout ymax calc(zp+firstChannel+l4xchannelHeight+13xchannelGap) ) vlabel (Ng)
xin ymax calc (zp+firstChannel+l4+xchannelHeight+13xchannelGap) ) vlabel (Nh)

/!l O—channel

(
(
(
(
(
(
(
(

xin y0 calc(zp+firstChannel + 14x(channelHeight+channelGap)) ) vlabel (Oa)
xout y0 calc(zp+firstChannel + l4x(channelHeight+channelGap)) ) vlabel (Ob)
xout ymax calc(zp+firstChannel + 14x(channelHeight+channelGap)) ) vlabel (Oc)
xin ymax calc (zp+firstChannel + 14x(channelHeight+channelGap)) ) vlabel (Od)
xin y0 calc(zp+firstChannel+15xchannelHeight+14xchannelGap) ) vlabel (Oe)
xout y0 calc(zp+firstChannel+15xchannelHeight+14xchannelGap) ) vlabel (Of)
xout ymax calc(zp+firstChannel+15%channelHeight+14xchannelGap) ) vlabel (Og)
xin ymax calc (zp+firstChannel+I5«xchannelHeight+l4xchannelGap) ) vlabel (Oh)

// P—channel

(
(
(
(
(
(
(
(

xin y0 calc(zp+firstChannel + I5%(channelHeight+channelGap)) ) vlabel(Pa)
xout y0 calc(zp+firstChannel + 15%(channelHeight+channelGap)) ) vlabel (Pb)
xout ymax calc(zp+firstChannel + 15%(channelHeight+channelGap)) ) vlabel(Pc)
xin ymax calc (zp+firstChannel + 15%(channelHeight+channelGap)) ) vlabel (Pd)
xin y0 calc(zp+firstChannel+l6xchannelHeight+15%channelGap) ) vlabel (Pe)
xout y0 calc(zp+firstChannel+l6xchannelHeight+15xchannelGap) ) vlabel (Pf)
xout ymax calc(zp+firstChannel+l6xchannelHeight+I5+xchannelGap) ) vlabel (Pg)
xin ymax calc (zp+firstChannel+l6+xchannelHeight+15%xchannelGap) ) vlabel (Ph)

// Q-channel

(
(
(
(
(
(
(
(

xin y0 calc(zp+firstChannel + 16x(channelHeight+channelGap)) ) vlabel(Qa)
xout y0 calc(zp+firstChannel + 16x(channelHeight+channelGap)) ) vlabel (Qb)
xout ymax calc(zp+firstChannel + 16x(channelHeight+channelGap)) ) vlabel (Qc)
xin ymax calc (zp+firstChannel + 16x(channelHeight+channelGap)) ) vlabel (Qd)
xin y0 calc(zp+firstChannel+17«xchannelHeight+16%channelGap) ) vlabel (Qe)
xout y0 calc(zp+firstChannel+17«channelHeight+16xchannelGap) ) vlabel (Qf)
xout ymax calc(zp+firstChannel+17xchannelHeight+16+*channelGap) ) vlabel (Qg)
xin ymax calc (zp+firstChannel+17+«channelHeight+16xchannelGap) ) vlabel (Qh)

// R—channel

(
(
(
(
(
(
(
(

xin y0 calc(zp+firstChannel + 17%(channelHeight+channelGap)) ) vlabel(Ra)
xout y0 calc(zp+firstChannel + 17%(channelHeight+channelGap)) ) vlabel (Rb)
xout ymax calc(zp+firstChannel + 17+(channelHeight+channelGap)) ) vlabel(Rc)
xin ymax calc (zp+firstChannel + 17%(channelHeight+channelGap)) ) vlabel (Rd)
xin y0 calc(zp+firstChannel+18xchannelHeight+17+«channelGap) ) vlabel (Re)
xout y0 calc(zp+firstChannel+18+channelHeight+17«xchannelGap) ) vlabel (Rf)
xout ymax calc(zp+firstChannel+18xchannelHeight+17+«channelGap) ) vlabel (Rg)
xin ymax calc (zp+firstChannel+18+channelHeight+17xchannelGap) ) vlabel (Rh)

/!l S—channel

( xin y0 calc(zp+firstChannel + 18x(channelHeight+channelGap)) ) vlabel(Sa)

( xout y0 calc(zp+firstChannel + 18x(channelHeight+channelGap)) ) vlabel(Sb)

( xout ymax calc(zp+firstChannel + 18«(channelHeight+channelGap)) ) vlabel(Sc)
( xin ymax calc(zp+firstChannel + 18x(channelHeight+channelGap)) ) vlabel(Sd)
( xin y0 calc(zp+firstChannel+19%channelHeight+18+channelGap) ) vlabel(Se)

( xout y0 calc(zp+firstChannel+19xchannelHeight+18+channelGap) ) vlabel (Sf)

( xout ymax calc(zp+firstChannel+19%xchannelHeight+18+channelGap) ) vlabel(Sg)
( xin ymax calc(zp+firstChannel+19%channelHeight+18+channelGap) ) vlabel(Sh)
// T—channel

( xin y0 calc(zp+firstChannel + 19%(channelHeight+channelGap)) ) vlabel(Ta)

( xout y0 calc(zp+firstChannel + 19x(channelHeight+channelGap)) ) vlabel (Tb)

( xout ymax calc(zp+firstChannel + 19%(channelHeight+channelGap)) ) vlabel(Tc)
( xin ymax calc(zp+firstChannel + 19%(channelHeight+channelGap)) ) vlabel(Td)
( xin y0 calc(zp+firstChannel+20xchannelHeight+19+xchannelGap) ) vlabel(Te)

( xout y0 calc(zp+firstChannel+20xchannelHeight+19xchannelGap) ) vlabel (Tf)

( xout ymax calc(zp+firstChannel+20xchannelHeight+19%channelGap) ) vlabel(Tg)
( xin ymax calc(zp+firstChannel+20xchannelHeight+19%channelGap) ) vlabel(Th)

// CoarseWestl
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(
(
(
(
(
(
(
(

x0 y0 calc(0Oxzpass) ) vlabel(pla)
xin y0 calc(0Oxzpass) ) vlabel(plb)
xin ymax calc(O=xzpass) ) vlabel(plc)
x0 ymax calc(Oxzpass) ) vlabel(pld)
x0 y0 calc(lxzpass) ) vlabel(ple)
xin y0 calc(l*xzpass) ) vlabel(plf)
xin ymax calc(l=xzpass) ) vlabel(plg)
x0 ymax calc(l*xzpass) ) vlabel(plh)

// CoarseEastl

(
(
(
(
(
(
(
(

xout y0 calc(0O*zpass) ) vlabel(pli)
xmax y0 calc(Oxzpass) ) vlabel(plj)
xmax ymax calc(0Oxzpass) ) vlabel(plk)
xout ymax calc(Oxzpass) ) vlabel(pll)
xout y0 calc(lxzpass) ) vlabel (plm)
xmax y0 calc(lxzpass) ) vlabel(pln)
xmax ymax calc(lxzpass) ) vlabel(plo)
xout ymax calc(lxzpass) ) vlabel(plp)

// CoarseWest2

(

(
(
(
(
(
(
(

x0 y0 calc(l*zpass) ) vlabel(p2a)
xin y0 calc(lxzpass) ) vlabel(p2b)
xin ymax calc(l=xzpass) ) vlabel (p2c)
x0 ymax calc(lxzpass) ) vlabel (p2d)
x0 y0 calc(2+zpass) ) vlabel(p2e)
xin y0 calc(2xzpass) ) vlabel (p2f)
xin ymax calc(2=xzpass) ) vlabel (p2g)
x0 ymax calc(2*xzpass) ) vlabel(p2h)

// CoarseEast2

(
(
(
(
(
(
(
(

xout y0 calc(lxzpass) ) vlabel(p2i)
xmax y0 calc(lxzpass) ) vlabel(p2j)
xmax ymax calc(lxzpass) ) vlabel (p2k)
xout ymax calc(lxzpass) ) vlabel(p2l)
xout y0 calc(2+zpass) ) vlabel(p2m)
xmax y0 calc(2xzpass) ) vlabel(p2n)
xmax ymax calc(2xzpass) ) vlabel(p2o0)
xout ymax calc(2xzpass) ) vlabel (p2p)

// CoarseWest0

(

(
(
(
(
(
(
(

x0 y0 calc(—1*zpass) ) vlabel(pOa)
xin y0 calc(—1l*xzpass) ) vlabel (pOb)
xin ymax calc(—1xzpass) ) vlabel(pOc)
x0 ymax calc(—1xzpass) ) vlabel (p0d)
x0 y0 calc(0*zpass) ) vlabel(pOe)

xin y0 calc(0Oxzpass) ) vlabel (pOf)
xin ymax calc(Oxzpass) ) vlabel (pOg)
x0 ymax calc(Oxzpass) ) vlabel (pOh)

// CoarseEast0

(
(
(
(
(
(
(
(

xout y0 calc(—1xzpass) ) vlabel(pOi)
xmax y0 calc(—1xzpass) ) vlabel(p0j)
xmax ymax calc(—1xzpass) ) vlabel (pOk)
xout ymax calc(—1xzpass) ) vlabel(pOl)
xout y0 calc(Oxzpass) ) vlabel (pOm)
xmax y0 calc(Oxzpass) ) vlabel(pOn)
xmax ymax calc(0Oxzpass) ) vlabel (pOo)
xout ymax calc(0xzpass) ) vlabel (pOp)

// pipel

(
(
(
(
(
(
(
(

xout y0 calc(lxzpass+zp) ) vlabel(rla)

xmax y0 calc(l*zpass+zp) ) vlabel(rlb)

xmax ymax calc(lxzpass+zp) ) vlabel(rlc)
xout ymax calc(l*zpass+zp) ) vlabel(rld)
xout y0 calc(l*zpass+zp+zp2) ) vlabel(rle)
xmax y0 calc(lxzpass+zp+zp2) ) vlabel(rlf)
xmax ymax calc(l*zpass+zp+zp2) ) vlabel(rlg)
xout ymax calc(l*zpass+zp+zp2) ) vlabel(rlh)
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// pipe2

( xmax y0 calc(lxzpass+zp+zpl) ) vlabel(r2a)

( xpl yO calc(l*zpass+zp+zpl) ) vlabel(r2b)

( xpl ymax calc(l*zpass+zp+zpl) ) vlabel(r2c)
( xmax ymax calc(l*zpass+zp+zpl) ) vlabel(r2d)
( xmax y0 calc(l*zpass+zp+zp2) ) vlabel(r2e)

( xpl yO calc(l=xzpass+zp+zp2) ) vlabel (r2f)

( xpl ymax calc(l*zpass+zp+zp2) ) vlabel(r2g)
( xmax ymax calc(l*zpass+zp+zp2) ) vlabel(r2h)

// pipe3

/1

/1

):

( xpl yO calc(—zp2—zpass) ) vlabel(r3a)

( xp2 y0 calc(—zp2—zpass) ) vlabel(r3b)

( xp2 ymax calc(—zp2—zpass) ) vlabel(r3c)

( xpl ymax calc(—zp2—zpass) ) vlabel(r3d)

( xpl yO calc(l=xzpass+zp+zp2) ) vlabel(r3e)
( xp2 y0 calc(l*zpass+zp+zp2) ) vlabel(r3f)
( xp2 ymax calc(l*zpass+zp+zp2) ) vlabel(r3g)
( xpl ymax calc(l*zpass+zp+zp2) ) vlabel(r3h)

pipe4

( xout y0 calc(—zp2—zpass) ) vlabel(rda)

( xpl y0 calc(—zp2—zpass) ) vlabel(rdb)

( xpl ymax calc(—zp2—zpass) ) vlabel(rdc)
( xout ymax calc(—zp2—zpass) ) vlabel(rd4d)
( xout y0 calc(—zpl—zpass) ) vlabel(rde)

( xpl yO calc(—zpl—zpass) ) vlabel(r4f)

( xpl ymax calc(—zpl—zpass) ) vlabel(rdg)
( xout ymax calc(—zpl—zpass) ) vlabel(rd4h)

pipe5

( xout y0 calc(—zpl—zpass) ) vlabel(r5a)
( xmax y0 calc(—zpl—zpass) ) vlabel(r5b)
( xmax ymax calc(—zpl—zpass) ) vlabel(r5c)
( xout ymax calc(—zpl—zpass) ) vlabel(r5d)
( xout y0 —zpass ) vlabel(rSe)

( xmax y0 —zpass ) vlabel(r5f)

( xmax ymax —zpass ) vlabel(r5g)

( xout ymax —zpass ) vlabel(r5h)

blocks

(

createSideBlockWest (w)
createSideBlockEast (e)

createChannelBlockTB (A)
createChannelBlock (B)
createChannelBlock (C)
createChannelBlock (D)
createChannelBlock (E)
createChannelBlock (F)
createChannelBlock (G)
createChannelBlock (H)
createChannelBlock (1)
createChannelBlock (J)
createChannelBlock (K)
createChannelBlock (L)
createChannelBlock (M)
createChannelBlock (N)
createChannelBlock (O)
createChannelBlock (P)
createChannelBlock (Q)
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createChannelBlock (R)
createChannelBlock (S)
createChannelBlockTB (T)

createCoarseBlockWest(pl)
createPorousBlockCenter (pl)
createCoarseBlockEast(pl)

createCoarseBlockWestAdj (p2)
createPorousBlockCenterAdj (p2)
createCoarseBlockEastAdj (p2)

createCoarseBlockWest (p0)
createPorousBlockCenter (p0)
createCoarseBlockEast (p0)

createPipeBlock (rl)

pipe (nxfineE nyfine calc.round (zp2+10)) simpleGrading (((5.963 9 4.3)(2.937 4 0.578)) 1
((0.5 calc_round(zp2%0.5+10) 8)(0.5 calc_round (0.5%xzp2) 1)))

createPipeBlock (r2)

pipe (calc_round (xpl—xmax+2) nyfine calc_round(zp2—zpl)) simpleGrading

(((0.15 calc_round (2+0.25%(zpl—xmax)) 1.6)(0.85 calc_round(0.75%(zpl—xmax)) 1)) 1 1)
createPipeBlock (r3)

pipe (calc_round (xp2—xpl) nyfine calc_round(2*zp2+zpassx*2+zp)) simpleGrading (1 1
((8.9 calc_round (8.9) 1)(calc(zpass*2+zp+zpl=*2) calc_round (zpass+*2+zp+zpl=*2) 1)
(8.9 calc_.round(8.9) 1)))

createPipeBlock (r4)

pipe (calc_round (xpl—xout) nyfine calc_round (zp2—zpl)) simpleGrading

(((8.9 calc_round(8.9) 1)(calc(xpl—xout —8.9) calc_round (xpl—xout—8.9) 1)) 1 1)

dnl >(calc_round ((2*(xpl—xout)*1.4)+30) nyfine calc_.round(2x*(zp2—zpl))) simpleGrading
(((calc(0.25*%xin/xpl) 3 1.44)(calc(0.75%xin/xpl) 17 0.2325)(calc(0.4xxin/xpl) 17 4)
(calc(l—1.4%xxin/xpl) calc.round (2x(xpl—xinx*1.4)) 1)) 1 1)

createPipeBlock (r5)

pipelnletBlock (nxPoroE nyfine calc_round(zpl)) simpleGrading (1 1 1)

)

edges
(
)3

// patches
boundary
(
/%
wall legsFrontBack
(
frontPatch (w)
frontPatch (e)
backPatch (w)
backPatch(e)
)

empty porousFrontBack

frontPatch (pcl)
backPatch (pcl)

frontPatch (pc2)
backPatch (pc2)

)

empty coarseFrontBack

(
frontPatch (cel)
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*/

11

/1

/1

backPatch(cel)
frontPatch (cwl)
backPatch (cwl)

frontPatch (ce2)
backPatch(ce2)
frontPatch (cw2)
backPatch (cw2)

)
empty pipeFrontBack
(

frontPatch(rl)
frontPatch (r2)
frontPatch (r3)
frontPatch (r4)
frontPatch (r5)
backPatch(rl)
backPatch(r2)
backPatch(r3)
backPatch(r4)
backPatch (r5)
)

wall coilFrontBack

(
channelExternalFrontBack (A)
channelExternalFrontBack (B)
channelExternalFrontBack (C)
channelExternalFrontBack (D)
channelExternalFrontBack (E)
channelExternalFrontBack (F)
channelExternalFrontBack (G)
channelExternalFrontBack (H)
channelExternalFrontBack (I)
channelExternalFrontBack (J)
channelExternalFrontBack (K)

pipeWall

type wall;
faces
(
upPatch(rl)
leftPatch(rl)
rightPatch(rl)
upPatch(r2)
downPatch(r2)
upPatch(r3)
downPatch(r3)
leftPatch (r3)
rightPatch (r3)
leftPatch (r4)
downPatch(r4)
upPatch(r4)
leftPatch (r5)
rightPatch (r5)

———

legsTopBottom
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/1

/1

type wall;
faces

(

)3
}

upPatch (w)

downPatch (e)

downPatch (A)

upPatch (T)

//upPatch (cwl)

// downPatch(cel)
upPatch (pl)
// downPatch(pl)
upPatchPoro(pl)
downPatchPoro(pl)

upPatchCR (pl)

downPatchCR (pl)
downPatch (p2)
upPatchCR (p2)
downPatchPoro (p2)
upPatchPoro (p2)
upPatchCR (p0)
downPatch (p0)
upPatchPoro (p0)
downPatchPoro (p0)
upPatch (ce2)
downPatch (cw2)

legsLeftRight

type wall;
faces

(

B

)
}

leftPatch (w)
rightPatch(e)

coilTopBottom

type wall;
faces

(

———

// channelExternalTopBottom (A)

upPatch (A)
channelExternalTopBottom (B)
channelExternalTopBottom (C)
channelExternalTopBottom (D)
channelExternalTopBottom (E)
channelExternalTopBottom (F)
channelExternalTopBottom (G)
channelExternalTopBottom (H)
channelExternalTopBottom (1)
channelExternalTopBottom (J)
channelExternalTopBottom (K)
channelExternalTopBottom (L)
channelExternalTopBottom (M)
channelExternalTopBottom (N)
channelExternalTopBottom (O)
channelExternalTopBottom (P)
channelExternalTopBottom (Q)
channelExternalTopBottom (R)
channelExternalTopBottom (S)
downPatch (T)
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/1
/1

inlet
{
type cyclic;
neighbourPatch outletPipe;
faces
(
downPatchCR (p0)
// downPatch (w)
//leftPatch (w)
);
}
outlet

type cyclic;
neighbourPatch inletPipe;
faces
(

upPatch(e)

//rightPatch (e)
):
}
master

type wall;
faces
(
leftPatch (e)
rightPatch (w)
)
}
coarseLeftRight

type wall;

faces

(
leftPatch (pl)
rightPatchCR (pl)
leftPatch (p2)
rightPatchCR (p2)
leftPatch (p0)
rightPatchCR (p0)

leftPatch (cw2)
rightPatch (ce2)

)3
}
pipeSlave3 //outlets

type patch;
faces
(
rightPatch (r4)
rightPatch (r2)
):
}
pipeMaster3 //inlets
{
type patch;
faces
(
leftPatch(r3)
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);
}

pipeSlavel //outlets

Eype patch;
faces
(
leftPatch (r2)
);
}
pipeMasterl //inlets
type patch;
faces
(
rightPatch (rl)
);
}
pipeSlave5 //outlets
{
type patch;
faces
(
upPatch(r4)
);
}
pipeMasterS //inlets
{
type patch;
faces
(
downPatch (r5)
);
}
inletPipe

type cyclic;

neighbourPatch outlet;

faces
(

downPatch(rl)
);
}
outletPipe
{
type cyclic;
neighbourPatch inlet;
faces

(
upPatch(r5)

);
}

internallnlet

{

type patch;

faces

(

// downPatch(ce2)
downPatch (w)
downPatchCR (p2)

69



)}

)
}

// downPatch(pl)

// downPatchCR (p0)

B

internalOutlet

{

type patch;
faces

(

)
}

porousInletl

{

upPatchCR (pl)
upPatch (p2)

// upPatch (p0)

//upPatch (cw2)

type patch;
faces

(

downPatch(pl)

)
}

5

porousOutletl

type patch;
faces

(
upPatch (p0)

)
}

slave //Used to merge with

5

type wall;
faces

(

———

channellnternalPatch (A)
channellnternalPatch (B)
channellnternalPatch (C)
channellnternalPatch (D)
channellnternalPatch (E)
channellnternalPatch (F)
channellnternalPatch (G)
channellnternalPatch (H)
channellnternalPatch (1)
channellnternalPatch (J)
channellnternalPatch (K)
channellnternalPatch (L)
channellnternalPatch (M)
channellnternalPatch (N)
channellnternalPatch (O)
channellnternalPatch (P)
channellnternalPatch (Q)
channellnternalPatch (R)
channellnternalPatch (S)
channellnternalPatch (T)

mergePatchPairs

// missvisende navn

the outer blocks,

no boundary condition necessary
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(master slave) //merging between the channels and the outer blocks
//(coarseSlave porousMaster)

(internallnlet internalQOutlet)

(pipeMaster]l pipeSlavel)

(pipeSlave3 pipeMaster3)

(pipeMaster5 pipeSlave5)

//(pipeOutlet inlet)

//(outlet pipelnlet)

(porousInletl porousOutletl)

):
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fvSchemes

A C++ \
| ========= | |
| A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|\ / O peration | Version: vI812 |
| \\ 7/ A nd | Web: www . OpenFOAM . com |
| \\/ M anipulation | |
\ .4
FoamFile
{

version 2.0,

format ascii;

class dictionary ;

location system”;

object fvSchemes;
}
/] % % x x % % % % % % *k *k *k *k *k *k * % % % % X X X% *x * *k *k * *k * * * *x *x % x [/
ddtSchemes
{

default CrankNicolson 1;//0.9;//Euler;
/1 default Euler ;// — works
}
gradSchemes

default Gauss linear;
11/ grad (U) cellMDLimited Gauss linear 1.0;
1/ default Gauss linear vanLeer 1;
}
divSchemes
{

default none ;

div (phi ,U) Gauss vanLeerV ;// Gauss linearUpwind grad(U);
11/ div (phi ,K) Gauss vanLeer ;//linear; //what is K?

div (phi,h) Gauss vanLeer; //use a better method

div (((rhoxnuEff)xdev2(T(grad(U))))) Gauss vanLeer phi 1;//Gauss linear;

}

laplacianSchemes
default Gauss linear orthogonal;//corrected;
/1 default Gauss linear corrected;

interpolationSchemes

{
default linear;
¥
snGradSchemes
default orthogonal ;// corrected ;
/1 default corrected ;
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fvSolution

e s— CH+ —k *\
| ========= [ |
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|\ /O peration | Version: vI812 |
| / A nd | Web: www . OpenFOAM . com |
| \\/ M anipulation | |
\ /
FoamFile
{
version 2.0;
format ascii;
class dictionary ;
location ”system ”;
object fvSolution;
b
J1 % % % % % % % % *x % % * *k k *k * * * * * *k k *k * *k * *k k *k * *k % * % * % *x [/
solvers
“"rho.x”
{
solver PCG;
preconditioner DIC;
tolerance le —6;
relTol 0.05;
}
p-rgh
{
// solver GAMG:;
// smoother DIC;
solver PCG;
preconditioner DIC;
tolerance le —6;//1e—6;
relTol 0.001;
// maxIter 1000;
}
p-rghFinal
{
$p-rgh;
relTol 0;//1e—6;//1e—6
}
"(U|T|h|k|epsilon)”
{
solver PBiCGStab;
preconditioner DILU;
tolerance le —6;//1e—7
relTol 0.01;
/!l maxIter 1000;
}
"(U|T|h|k|epsilon)Final”
{
$U;
relTol 0;
11/ maxlIter 1000;
}
}
PIMPLE

momentumPredictor no;//no;
nOuterCorrectors 1://50;
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nNonOrthogonalCorrectors 0;

nCorrectors 2:/12 /14,
// pRefCell 10000;
pRefPoint (0.06165 0.005 0.5505);
pRefValue le5;
/%
// outerCorrectorResidualControl
residualControl

“(U|p|p-rgh|rho|h)”

tolerance le—3;

relTol 0;
}
*/
}
/%
relaxationFactors
fields
{
rho 1.0;
p-rgh 0.7;
}
equations
U 0.3;
h 0.2;
“(k|epsilon|omega)” 0.7;
}
*/
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topoSetDict

Y C++ \
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
A\ /O peration | Website: https ://openfoam.org
\\ 7/ A nd | Version: 7
\\/ M anipulation |
e *«f
FoamFile
version 2.0;
format ascii;
class dictionary ;
object topoSetDict;

}

J1 % % % % % % % % % % % %k *k *k *k *k *k *k *k *k *k * k¥ k¥ %k X Kk k *k *k *k *k *k *k *k *k *k [/
actions

(
name radiator ;
type cellSet;
action new;

source boxToCell;
sourcelnfo

{
}

box (0.07 0 1.102) (0.08 0.01 1.2);

):

J1 skosk sk ok sk sk sk sk sk sk ok sk ok ok ok sk ok sk ok ok ok ok ok oK oK oK oK oK oK oK 5K 5K 5K 5K 5K 5K oK 3K ok 3k ok 3k 3k 3k 3k ok 3k K ok o ok ok ok ok ok ok ok ok ok ok ok sk ok kR kR ok ok ok ok ok [/
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setFieldsDict

A C++ \
| ========= | |
| A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|\ / O peration | Version: plus |
| \\ 7/ A nd | Web: www . OpenFOAM . com |
| \\/ M anipulation | |
\ .4
FoamFile
{

version 2.0,

format ascii;

class dictionary ;

location system”;

object setFieldsDict;

}

Il % % % % % % % % % % %k % %k %k % % * x % >k >k >k k %k %k %k % % x sk % % * * *x *x x [/

defaultFieldValues
(
volScalarFieldValue perm 0
)i
regions
(
zoneToCell
{
zone “porosity”
fieldValues
(
volScalarFieldValue perm 1
)i
}
)3
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Constant

These files should be in the constant-directory.

thermophysicalProperties

e s Ct —k A\
N [
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
A\ /O peration | Website: https ://openfoam.org
\ / A nd | Version: 7
\\/ M anipulation |
\ Y
FoamFile
{
version 2.0;
format ascii;
class dictionary ;
location “constant”;
object thermophysicalProperties ;
b
J1 % % % % % % % % *x % % * *k k *k * * * * k *k k *k * *k * * * *k * *k * * % * % *x [/
thermoType
type heRhoThermo;
mixture pureMixture ;
transport custom ;
// transport const;
// thermo hConst;
// thermo hCustom ;
thermo hPolynomial;

// equationOfState rhoConst;
equationOfState Boussinesq;

specie specie;
energy sensibleEnthalpy ;
/%
type heRhoThermo;
mixture pureMixture ;
transport polynomial;
// transport custom ;
thermo hPolynomial;
equationOfState icoPolynomial;
specie specie;
energy sensibleEnthalpy ;
*/
}
mixture
specie
{
molWeight 17.0;
}
equationOfState
TO 293.15;
beta 7.5e—4;
rho0 968;
/1 rho 1000;
thermodynamics
Hf 0;
// kappa 1.19;
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/1

/1

//Cp 1902;
St 0
CpCoeffs<8> (1249.29 2.17 0 0 0 0 0 0);
}
transport
{
mu 7.23e —2;//1e—5;
Pr 935.6; //0.150;

specie
molWeight 17.0;
equationOfState
g/ rhoCoeffs <8 (968 00 0 0 00 0);

/! rhoCoeffs <8 (1184.46 —0.726 0 0 0 0 O 0); // rearranged from Boussinesq.
rhoCoeffs <8 (1098.72 —0.712 0 0 0 0 0 0);

thermodynamics
{

Hf 0;

Sf 0;

/] CpCoeffs<8> (0 0 0.021133333 0 0 0 0 0);

CpCoeffs <8 (1902 000 0 0 0 0);
/1 CpCoeffs<8> (1249.29 2.17 0 0 0 0 0 0);
CpCoeffs <8 (807.163 3.58 00 0 0 0 0);

}

transport

//mu 7.23e—-2;

/! Pr 935.6; // These values should have nothing to say! Test that!
muCoeffs<8> (7.23e—=2000000 0);
kappaCoeffs<8 ( 0.147 0 0 0 0 0 0 0);
muCoeffs<8> ( 7.23e—21e=3 00 0 0 0 0);
kappaCoeffs<8 ( 0.147 0.1 0 0 0 0 0 0);

muCoeffs <8 ( 0.08467 —4e—4 5¢—7 0 0 0 0 0);

kappaCoeffs<8> ( 0.1509 —7.10le—5 0 0 0 0 0 0);
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turbulenceProperties

Y C++ \
| ========= |
| A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|\ /O peration | Version: vI1812 |
| / A nd | Web: www . OpenFOAM . com |
| \\/ M anipulation | |
\# =
FoamFile
{

version 2.0;

format ascii;

class dictionary ;

location ”constant”;

object turbulenceProperties ;

}

I1 % % % % % % % % % % % % k k * *k *k *x *k k *x *k *k x k¥ *k *k * *k k * *k *k x * *k x [/

simulationType laminar;

/%

RAS
RASModel kEpsilon;
turbulence on;
printCoeffs on;

}
*/

T 1 stk ok sk sk sk sk sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok K ok 3 ok s ok sk ok sk oK sk K sk o ok s ok ok sk ok sk ok sk ok sk ok ok Rk sk okskokskkok sk okk ok [/
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fvOptions

e s— CH+ —k *\
| ========c [ [
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|\ /O peration | Version: 5 |
| / A nd | Web: www . OpenFOAM.. org |
| \\/ M anipulation | |
\ /
FoamFile
{

version 2.0;

format ascii;

class dictionary ;

location “constant”;

object fvOptions;
b

J1 % % % % % % % % *x % % * *k k *k * * * * * *k k *k * *k * *k k *k * *k % * % * % *x [/

options
energySource

type scalarSemilmplicitSource;
selectionMode cellZone;

// cellZone centralWest;
cellZone porosity;

volumeMode specific;

injectionRateSuSp

{
}

h (1.4024e6 0); //for specific case;

}

porositySource

type explicitPorositySource;

explicitPorositySourceCoeffs

{

type DarcyForchheimer;
selectionMode cellZone ;
cellZone porosity ;
// volumeMode specific;
d d [0 20000 0] (3.2e6 —le2 —le2);
f f [0—-10000 0] (00 0);
coordinateSystem
/ltype cartesian;
origin (0 0 0);
el (1 0 0);
e2 (01 0);
/*coordinateRotation
{
type axesRotation;
el (1 0 0);
e2 (01 0);
¥
*/
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fixedInletTemp

{

type fixedTemperatureConstraint;

// selectionMode cellSet;

//cellSet pipeSet;

selectionMode cellSet;

cellSet radiator ;// pipelnletBlock;
// mode lookup ;

/1T maxT;

mode uniform ;

temperature 293.15;

}

T stk sk sk sk sk sk ok sk sk sk ok sk sk sk sk sk ok sk ok sk ok sk ok ok ok sk ok sk ok K ok K ok ok ok Kk ok KK ok Kk ok Kk ok Kk ok Ok sk ok skokokokkok [/
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Y C++ \
| ========= | |
| A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|\ /O peration | Version: vI1812 |
| / A nd | Web: www . OpenFOAM . com |
| \\/ M anipulation | |
\se +
FoamFile
{

version 2.0;

format ascii;

class uniformDimensionedVectorField ;

location ”constant”;

object g

}

I1 % % % % % % % % % % % % k k * *k *k *x *k k *x *k *k x k¥ *k *k * *k k * *k *k x * *k x [/

dimensions [0 1 =2000 0];
value (0 0 —9.81); // (0 —9.81 0);
/1l value (0 0 0);

T stttk ootk s s ok ok ook ok ok ok ok sk ok o ok ok ok ok ok ok ok sk ok KK R ok ok ok oK K sk ok sk ok KK R sk sk ok o KRk sk sk ok R R Rk sk kR kR ok ok [/
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0

These files should be in the O-directory.

Y C++ \
| ========= | |
| A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|\ /O peration | Version: 5 |
| \ / A nd | Web: www. OpenFOAM.. org |
| \\/ M anipulation | |
\se s+
FoamFile
{

version 2.0;

format ascii;

class volScalarField ;

object p-rgh;

}

Il % % % % % % % % % % %k % %k %k % % * x % >k >k >k k k %k %k %k % x * *x % * *x *x *x x [/

dimensions [l =1 —2000 0];
internalField uniform le5;
boundaryField

{

”(coarseFrontBack | coilFrontBack | porousFrontBack |legsFrontBack)”

{
type empty;

”(legsLeftRight|coarseLeftRight|legsTopBottom |porousTopBottom |coilTopBottom | master | porousMaster | co

/1 type zeroGradient;
type fixedFluxPressure ;
// gradient uniform O;
value $internalField ;

“(inlet|inletPipe|outlet|outletPipe)”

type cyclic;
/%
outlet
//type fixedFluxPressure ;
//type fixedValue;
// value $internalField ;
// —— for g neq 0 —
type fixedMean ;
meanValue $internalField;
value uniform O0;

*/
}
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/ C++ \
| ========= | |
| A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|\ /O peration | Version: vI1812 |
| / A nd | Web: www . OpenFOAM . com |
| \\/ M anipulation | |

\se +

FoamFile
{
version 2.0;
format ascii;
class volScalarField ;
object P

}

11 % % % % % sk %k %k % % % % % sk % % % >k >k %k %k %k k % *x x kx * *k *k *k k %k % *x x x [/

dimensions [T =1 —=2000 0];
internalField uniform le5;
boundaryField

”(coarseLeftRight |porousTopBottom |legsTopBottom |legsLeftRight|porousLeftRight|coilTopBottom | master

type calculated ;
value $internalField;

}
“(inlet|inletPipe |outlet|outletPipe)”

type cyclic;

”(legsFrontBack | porousFrontBack | coilFrontBack | coarseFrontBack)”
type empty;
}

T stk sk ok stk s ok ok sk ok ok ok ok ok sk ok K ok ok ok ok ok ok ok ok ok K R ok ok ok ok KK R ok sk ok KK R sk sk ok o Rk sk sk ok R Rk sk kR kR kokk [/
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e s— CH+ —k *\
| ========c [ [
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|\ /O peration | Version: plus |
| / A nd | Web: www . OpenFOAM . com |
| \\/ M anipulation | |
\ /
FoamFile
{

version 2.0;

format ascii;

class volVectorField ;

object U;
}

I1 % % % % % % % * % % % % % * * * *x * % * *k *k * * *x * %k * *k *k *x * *x * *x * *x [/
dimensions [0 1T =1 000 O]

internalField uniform (0 0 0);

boundaryField

“(coarseFrontBack | legsFrontBack | coilFrontBack | porousFrontBack)”

//type slip;
type empty ;
legsTopBottom
type noSlip;
“(pipe.x)”
{
type noSlip;
}
/%
legsBottom
{
type noSlip;
*/
”(legsLeftRight|coarseLeftRight|porousMaster|coarseSlave |internallnlet|internalOutlet|slave)”
type noSlip;
porousTopBottom
type noSlip;
coilTopBottom
{
type noSlip;
master
//type slip ;
// value $internalField;
type noSlip;
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“(inlet|inletPipe|outlet|outletPipe)”

type cyclic;
/%
inlet
{
type flowRatelInletVelocity ;
//type fixedValue ;
volumetricFlowRate constant 7.4e—6;
// value uniform (le—2 0 0);
outlet
{
type zeroGradient;
//type inletOutlet;
//inletValue uniform (0 0 0);
//inletValue uniform O0;
//type flowRateOutletVelocity ;
//type zeroGradient;
// volumetricFlowRate constant le—05;
//type inletOutlet ;
// value uniform (0 0 0);
/! value uniform O;
//inletValue uniform (0 0 0);
}
*/
}

T 1 stk st sk s sk s sk sk ok sk ok sk ok sk ok sk sk ok s ok sk ok sk ok sk ok sk o ok ok 3 ok sk ok sk ok sk oK sk K ok oK s ok sk oK sk ok sk ok sk o ok ok s ok sk ok sk ok sk ok sk o ok ok ok
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e s— CH+ —k *\
| ========c [ [
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|\ /O peration | Version: plus |
| / A nd | Web: www . OpenFOAM . com |
| \\/ M anipulation | |
\ /
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

object T;
}

I1 % % % % % % % * % % % % % * * * *x * % * *k *k * * *x * %k * *k *k *x * *x * *x * *x [/
dimensions [00OO0OT1O0O0 0];
internalField uniform 253.15;//300;
boundaryField
”(porousMaster | coarseSlave | internallnlet|internalOutlet|slave|pipe.*)”
type zeroGradient;

“(coarseFrontBack | coilFrontBack |legsFrontBack | porousFrontBack)”

{

type empty ;
legsTopBottom
type zeroGradient;

”(coarseLeftRight|legsLeftRight)”

{

type zeroGradient;

”(master|coilTopBottom)”

type externalWallHeatFluxTemperature;
mode flux ;

q 2336.4;
kappaMethod fluidThermo ;
value $internalField;

3

(inlet|inletPipe|outlet|outletPipe)”
type cyclic;

type zeroGradient;

{
}
/% outlet
{
}

*/
porousTopBottom

type zeroGradient;




T 1 stk koo sk ok sk sk sk sk sk ok sk sk sk ok sk sk ok s ok sk ok sk ok sk ok sk ok sk s ok s ok sk ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok sk kR ok sk sk okskokskskokskokk ok [/
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o B

Appendix

Transport property source code

The following is the advanced fluid transport property implemented directly in the source
code.

; | \
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
A\ /O peration |
\ / A nd | Copyright (C) 2011—2017 OpenFOAM Foundation
\\/ M anipulation |

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http ://www.gnu.org/licenses/>.

\e +

/1 % % % % % % % % % % % % x % % % Constructors = *x x % % * * % % % % % x x [/

template<<class Thermo>
inline Foam::customTransport<Thermo >::customTransport

(
const Thermo& t,
const scalar mu,
const scalar Pr

)
Thermo(t),
mu_(mu) ,
rPr_(1.0/Pr)

{
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template<class Thermo>
inline Foam::customTransport<Thermo >::customTransport

(
const word& name,
const customTransport& ct
)
Thermo (name, ct),
mu_(ct.mu.),
rPr_(ct.rPr_)
{

template<class Thermo>
inline Foam:: autoPtr<Foam::customTransport<Thermo>>
Foam:: customTransport<Thermo >::clone () const

{
}

return autoPtr<customTransport<Thermo>>:New(x* this );

template<class Thermo>
inline Foam:: autoPtr<Foam:: customTransport<Thermo>>
Foam :: customTransport<Thermo >::New

(
const dictionary& dict
)
{ A
return autoPtr<customTransport<Thermo>>::New(dict);
}

/] % % % % % % % % % % * * *x *x x Member Functions * % % % x % % % % % % * % //

template<<class Thermo>
inline Foam:: scalar Foam::customTransport<Thermo >::mu

(

const scalar p,

const scalar T
) const

// return mu_;

return 968.%(l.—7.5e—4%(T—293.15))xexp(20.81369191xlog(T)*xlog(T) — 252.81869067+1og(T) + 755.03026
}

template<class Thermo>
inline Foam::scalar Foam::customTransport<Thermo >::kappa

(
const scalar p,
const scalar T
) const
//return this—>Cp(p, T)*mu(p, T)*rPr_;
return —7.2e—7+T«T + 3.7le—4+T + 9.75e—2;
}

template<<class Thermo>
inline Foam:: scalar Foam::customTransport<Thermo >::alphah

(

const scalar p,

const scalar T
) const

//return mu(p, T)*xrPr_;

return kappa(p,T)/this—>Cp(p,T);
}
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Il % % % % % % % % % % % % % % % Member Operators = * % % % % % % % x % % x [/
template<class Thermo>
inline void Foam::customTransport<Thermo >::operator=

(
)

const customTransport<Thermo>& ct

Thermo :: operator=(ct);

mu. = ct.mu_;
rPr_ = ct.rPr_;

template<class Thermo>
inline void Foam::customTransport<Thermo >::operator+=

(
const customTransport<Thermo>& st
)
{
scalar YI = this—>Y();
Thermo :: operator+=(st);
if (mag(this—>Y()) > SMALL)
Y1 /= this—=>Y();
scalar Y2 = st.Y()/this—=>Y();
mu_. = Ylsmu_. + Y2xst.mu_;
rPr_o = 1.0/(Y1l/rPr_ + Y2/st.rPr_);
}
}

template<class Thermo>
inline void Foam::customTransport<Thermo >::operator*=

(

const scalar s
)

Thermo :: operator *=(s);
}

Il % % % % % % % % % % % % * x * Friend Operators * * % % * % % % % x % % x [/

template<class Thermo>
inline Foam::customTransport<Thermo> Foam:: operator+

(
const customTransport<Thermo>& ctl ,
const customTransport<Thermo>& ct2
)
{
Thermo t
(

static_cast <const Thermo&>(ctl) + static_cast<const Thermo&>(ct2)
)3

if (mag(t.Y()) < SMALL)

return customTransport<Thermo>
(

t,

0,
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ctl . rPr_
)
}
else
{
scalar YI = ctl . Y()/t.Y();
scalar Y2 = ¢ct2.Y()/t.Y();

return customTransport<Thermo>
(
t,
Ylxctl .mu- + Y2*ct2.mu_,
1.0/(Y1/ctl .rPr_ + Y2/ct2.rPr_)
)i

template<class Thermo>
inline Foam::customTransport<Thermo> Foam:: operatorx*
(

const scalar s,

const customTransport<Thermo>& ct

return customTransport<Thermo>

(
sxstatic_cast <const Thermo&>(ct),
ct.mu_,
1.0/ct.rPr_

):

T 1 stk sk sk sk sk s sk sk ok sk ok sk sk sk ok sk sk ok sk ok sk ok sk ok sk ok sk o ok ok 3 ok sk ok sk ok sk K sk K ok oK s ok sk oK sk ok sk ok sk ok sk sk ok s ok sk ok sk ok sk ok sk o ok ok ok
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s C

Appendix

porousTransient solver

The following are the main files that are implemented in the custom solver
porousTransient.

porousTransient.C

|
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
A\ /O peration |
\\ 7 A nd |
|

\\/ M anipulation

Copyright (C) 2011—2017 OpenFOAM Foundation

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details .

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http ://www.gnu.org/licenses/>.

Application
buoyantPimpleFoam

Group
grpHeatTransferSolvers

Description
Transient solver for buoyant, turbulent flow of compressible fluids for
ventilation and heat—transfer.

Turbulence is modelled using a run—time selectable compressible RAS or
LES model.
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\

#include "fvCFD.H”

#include “rhoThermo.H”

#include “turbulentFluidThermoModel .H”
#include “radiationModel .H”

#include ”fvOptions.H”

#include “pimpleControl .H”

11 % % % % % sk %k %k % % % % % sk % %k *k sk >k %k k %k k % *x x %k * >k *k *k k% % % *x x x [/

int main(int argc, char =xargv|[])

/%

<<

*/

argList ::addNote

(
"Transient solver for buoyant, turbulent fluid flow”
” of compressible fluids , including radiation.”

)
#include “postProcess .H”

#include “addCheckCaseOptions .H”
#include ”setRootCaseLists .H”
#include “createTime .H”

#include “createMesh .H”

#include “createControl .H”
#include “createFields .H”
#include ”createFieldRefs .H”
#include ”initContinuityErrs .H”
#include ”createTimeControls .H”
#include “compressibleCourantNo .H”
#include ”setlnitialDeltaT .H”

turbulence —>validate ();

J1 % % % % % % % % % % sk k sk * *k * *k k >k k >k * *k * *k * *k * *k % *k x * x *x [/

Info<< ”\nStarting time loop\n” << endl;

rho = thermo.rho ();
Cp = thermo.Cp();
mu = thermo .mu();

kappa = thermo.kappa();

// tensorField& alphaTensorin. = alphaTensor.ref ();
forAll (alphaTensor ,i)

alphaTensor[i].xx()
alphaTensor[i].yy()
alphaTensor[i].zz()
/1if (i<10)
11{
Info<<

kappa[i]xporo.value ()/Cp[i];
kappal[i]*poro.value ()/Cpl[il];
kappal[i]/(Cpli]*poro.value());

alphaTensor_value_zz: "<< alphaTensor[i].zz()

“alphaTensor_value_xx: "<< alphaTensor[i].xx() << nl << endl;

/1%}
/! Info<< “alphaTensor_value_zz: << alphaTensor[i].xx() << nl << endl;
while (runTime.run())

{

#include "readTimeControls .H”
#include “compressibleCourantNo .H”
#include ”setDeltaT .H”

++runTime ;

forAll (alphaTensor ,i)
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alphaTensor[i].xx() kappa[i]*poro.value ()/Cp[il];
alphaTensor[i].yy() kappal[i]*poro.value ()/Cpl[il;
alphaTensor[i].zz() = kappal[i]/(Cp[i]*poro.value());

/%

int a = 1;

if (a==1)
a = 0;

Info<< “alphaTensor_value.zz: << alphaTensor[i].zz()

<< "alphaTensor_value_xx: "<< alphaTensor[i].xx() << nl << endl;

}

*/

Info<< "Time = ” << runTime.timeName () << nl << endl;
#include “rhoEqn.H”

// —— Pressure—velocity PIMPLE corrector loop
while (pimple.loop())

#include "UEqn.H”
#include “EEqn.H”

// —— Pressure corrector loop
while (pimple.correct())

#include “pEqn.H”

}
if (pimple.turbCorr())

turbulence —>correct ();

}
}
rho = thermo.rho ();
Cp = thermo.Cp();
mu = thermo.mu();

kappa = thermo.kappa();
runTime . write ();

runTime . printExecutionTime (Info);

Info<< "End\n” << endl;

return 0;
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createFields.H

Info<< ”Reading thermophysical properties\n” << endl;
autoPtr<rhoThermo> pThermo (rhoThermo ::New(mesh));
rhoThermo& thermo = pThermo ();

thermo.validate (args.executable (), "h”, "e”);

volScalarField rho

(
I0object
(
”rho”,
runTime . timeName () ,
mesh ,
IO0object : : READ_IF_PRESENT,
I0object : : AUTO_WRITE
)
thermo . rho ()
)3

volScalarField Cp

(
IO0object
(
"Cp”,
runTime . timeName () ,
mesh ,
I0object : : READ_IF_PRESENT,
I0object : : AUTO_WRITE
),
thermo .Cp ()
)3
volScalarField kappa
(
IO0object
(
“kappa”,
runTime . timeName () ,
mesh ,
IOobject : : READ_IF_.PRESENT,
I0object : : AUTO-WRITE
),
thermo . kappa ()
)3

volScalarField mu

(
IO0object
(
“mu”,
runTime . timeName () ,
mesh ,
IOobject : : READ_IF_PRESENT,
IOobject : : AUTO_-WRITE
),
thermo .mu()
)3

volScalarField& p = thermo.p();

Info<< “Reading field U\n” << endl;
volVectorField U
(
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IOobject

(
U,
runTime . timeName () ,
mesh ,
I0object : :MUSTREAD,
I0object : : AUTO_-WRITE
),
mesh

)3

Info<< "Reading field perm\n” << endl;
volScalarField perm

(
IO0object
(
“perm”,
runTime . timeName () ,
mesh ,
I0object : :MUSTREAD,
IO0object : : AUTO_-WRITE
),
mesh
)3

#include "compressibleCreatePhi .H”

//#include “readTransportProperties .H”

dimensionedScalar poro

(

”poro”,

dimless ,

runTime. controlDict (). lookupOrDefault<scalar >("poro”, 0.223)
)3

volTensorField alphaTensor
(
IO0object
(
“alphaTensor”,
runTime . timeName () ,
mesh ,
IOobject : : NOREAD,
I0object : : AUTO_-WRITE
)
mesh ,
dimensionedTensor (”alphaTensor”, dimensionSet(l,—1,—1,0,0,0,0),Zero) //(poroxthermo.kappa()/thermo

/%
volTensorField a

(
IO0object

”fileName”,

runTime . timeName () ,

mesh ,

IO0object : : NO_READ,

I0object : : AUTO-WRITE

),

mesh ,

dimentionedTensor (”name”, dimensionSet(0,0,0,0,0,0,0), //correct dimensions here
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tensor ::zero)
)
*/

Info<< "Creating turbulence model\n” << endl;
autoPtr<compressible :: turbulenceModel> turbulence

(

compressible :: turbulenceModel :: New

(
rho ,
U,
phi,
thermo
)

)

#include "readGravitationalAcceleration .H”
#include “readhRef.H”
#include ”gh.H”

Info<< "Reading field p._rgh\n” << endl;
volScalarField p._rgh

(
I0object
(
"p.rgh”,
runTime . timeName () ,
mesh ,
I0object : : MUSTREAD,
IOobject : : AUTO-WRITE
)
mesh
)

/!l Force p.rgh to be consistent with p
p-rgh = p — rhoxgh;

mesh . setFluxRequired (p-rgh.name());

label pRefCell = 0;

scalar pRefValue 0.0;

if (p-rgh.needReference ())

setRefCell
(
P,
p-rgh,
pimple . dict (),
pRefCell ,
pRefValue
):
p += dimensionedScalar
(
"7,
p.dimensions (),
pRefValue — getRefCellValue (p, pRefCell)
)
}
dimensionedScalar initialMass (”initialMass”, fvc::domainlntegrate(rho));

#include “createDpdt.H”
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#include

#include
#include
#include

“createK .H”

”createMRF .H”
”createRadiationModel .H”
“createFvOptions .H”
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createFieldRefs.H

const volScalarField& psi = thermo.psi();
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readTransportProperties.H

singlePhaseTransportModel laminarTransport(U, phi);
/%

/!l Thermal expansion coefficient [1/K]
dimensionedScalar beta

(
“beta”,
dimless/dimTemperature ,
laminarTransport

)3

/! Reference temperature [K]
dimensionedScalar TRef(”TRef”, dimTemperature, laminarTransport);

// Laminar Prandtl number
dimensionedScalar Pr(”Pr”, dimless, laminarTransport);

// Turbulent Prandtl number
dimensionedScalar Prt(”Prt”, dimless, laminarTransport);
*/

/1l Porosity [—]
dimensionedScalar poro(”poro”, dimless, laminarTransport);

dimensionedTensor alphaTensor(”alphaTensor”, dimensionSet(0,2,—1,0,0,0,0),

laminarTransport);
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EEqn.H

volScalarField& he = thermo.he();

fvScalarMatrix EEqn
(

fvm::ddt(rho, he) + (scalar(l) — perm + perm/poro)*fvm::div(phi,

/l + fvc::ddt(rho, K) + fvc::div(phi, K)

/% + (
he .name () == "e”
? fve::div
(

fvc::absolute (phi/fvc::interpolate (rho), U),

P,
»div (phiv ,p)”

)
: —dpdtx(scalar(l) — perm)
) x/

— (scalar (1) — perm)xfvm::laplacian (turbulence —>alphaEff (),

/! rhox(U&g)=(scalar (1) — perm)

//+ radiation —>Sh(thermo, he)
permxfvm:: laplacian (alphaTensor, he)

+ permxfvOptions (rho, he)

):
EEqn.relax ();
fvOptions.constrain (EEqn);
EEqn.solve ();
fvOptions.correct (he);

thermo . correct ();
radiation—>correct ();

he)
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UEqn.H

// Solve the Momentum equation
MRF. correctBoundaryVelocity (U);

fvVectorMatrix UEqn

(
fvm::ddt(rho, U) + fvm::div(phi, U)
+ MRF.DDt(rho, U)
+ turbulence —>divDevRhoReff (U)

fvOptions (rho, U)
);
UEqn.relax ();

fvOptions.constrain (UEqn);

if (pimple.momentumPredictor())

solve
(
UEqn
fvc::reconstruct
(
(
— ghfxfvc::snGrad(rho)
— fvec::snGrad(p-rgh)
)*mesh . magSf()
)

)3

fvOptions.correct (U);
K = 0.5xmagSqr(U);
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pEqn.H

dimensionedScalar compressibility = fvc::domainIntegrate (psi);
bool compressible = (compressibility.value () > SMALL);

rho = thermo.rho ();

/! Thermodynamic density needs to be updated by psixd(p) after the
/!l pressure solution

const volScalarField psipO(psi*p);

volScalarField rAU(1.0/UEqn.A());

surfaceScalarField rhorAUf(”rhorAUf”, fvc::interpolate (rhoxrAU));
volVectorField HbyA(constrainHbyA (rAUxUEqn.H(), U, p-rgh));
surfaceScalarField phig(—rhorAUfxghfxfvc::snGrad(rho)+mesh.magSf());

surfaceScalarField phiHbyA

(
”phiHbyA ™,
(
fve :: flux (rhoxHbyA)
+ MRF. zeroFilter (rhorAUfxfvc :: ddtCorr(rho, U, phi))
)
+ phig
)

MRF. makeRelative (fvc::interpolate (rho), phiHbyA);

// Update the pressure BCs to ensure flux consistency
constrainPressure (p-rgh, rho, U, phiHbyA, rhorAUf, MRF);

fvScalarMatrix p-rghDDtEqn
(
fve::ddt(rho) + psixcorrection (fvm::ddt(p-rgh))
+ fvec::div(phiHbyA)

fvOptions (psi, p-rgh, rho.name())
):

while (pimple.correctNonOrthogonal ())

fvScalarMatrix p.rghEqn

(
p-rghDDtEqn
— fvm::laplacian (rhorAUf, p_rgh)
)i
p-rghEqn.setReference
(
pRefCell ,
compressible ? getRefCellValue(p-rgh, pRefCell) : pRefValue
)

p-rghEqn.solve (mesh.solver (p_rgh.select(pimple. finallnnerIter ())));

if (pimple.finalNonOrthogonallter())

// Calculate the conservative fluxes
phi = phiHbyA + p_rghEqn. flux ();

// Explicitly relax pressure for momentum corrector
p-rgh.relax ();

// Correct the momentum source with the pressure gradient flux

// calculated from the relaxed pressure
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U = HbyA + rAUxfvc::reconstruct ((phig + p_rghEqn. flux ())/rhorAUf);

U.correctBoundaryConditions ();
fvOptions.correct (U);
K = 0.5%xmagSqr(U);

}

p = p-rgh + rhoxgh;

#include “rhoEqn.H”
#include “compressibleContinuityErrs .H”

if (p-rgh.needReference ())
if (!compressible)

p += dimensionedScalar

(
",
p.dimensions (),
pRefValue — getRefCellValue(p, pRefCell)
)i
}
else
{
p += (initialMass — fvc::domainIntegrate (psi*p))
/compressibility ;
thermo . correctRho (psi*p — psip0);
rho = thermo.rho ();
p-rgh = p — rhoxgh;
}
¥
else
{
thermo . correctRho (psi*p — psip0);
¥
rho = thermo.rho ();

if (thermo.dpdt())

dpdt = fvc::ddt(p);
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