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Abstract

In the field of numerical wave modeling, wave propagation over quickly varying

bathymetry is often demanding. Bjørnafjorden is an excellent example of a domain

where islands and skerries disrupt the propagation of waves, and the water depth

changes by several hundred meters over a short horizontal distance. The popular

phase-averaging wave models are struggling to simulate these rapidly varying wave

parameters accurately, and phase-resolved models are therefore needed. In this study,

the fully nonlinear potential flow model REEF3D::FNPF is used to simulate the wave

propagation of swell waves from an offshore location to Bjørnafjorden. The aim is to

present and analyze the wave conditions in the fjord, as well as comparing the results

to calculations by phase-averaging wave models, and data from field measurements.

Five different wave inputs with varying wave height, wave period, and main direction

are imposed at the offshore boundary of the numerical model.

The governing Laplace equation is discretized by a second-order central differences

method, while the higher-order WENO scheme is used for the kinematic and dynamic

boundary conditions. The domain is discretized in a structured grid in the horizontal

directions, while a sigma-coordinate system is used in the vertical direction. The veri-

fication of the numerical model is carried out by simplified two- and three-dimensional

simulations. The grid size, the stretching factor of the vertical mesh, and the distance

of the coastline damping zone are determined to reduce numerical dispersion, numer-

ical damping, unphysical dissipation, and artificial reflection to a neglectable amount.

For a 100-year return period, the maximum significant wave height in Bjørnafjorden

is calculated to be 0.58 meters by REEF3D::FNPF, which is more than twice as high

as the similar value calculated by the phase-averaged wave model SWAN. However,

field measurements for 19 months show that even in this short period, the significant

wave height exceeds 0.30 meters frequently. Results from REEF3D::FNPF also shows

that low-frequency waves at 0.01 Hz are generated in Selbjørnsfjorden. SWAN, on

the other hand, does not capture these waves. Additionally, the wave conditions in

the fjord are found to be inhomogeneous.
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The study concludes that REEF3D::FNPF is proven to be a stable and relatively

efficient numerical wave model, which can calculate wave propagation over the chal-

lenging bathymetry of Bjørnafjord reasonably accurately. The phase-resolving wave

model REEF3D::FNPF clearly shows a better correlation to measured data than the

phase-averaged wave model SWAN. Still, further studies with comparison to more

comprehensive field measurements are advised.

Keywords : Fully nonlinear potential flow, REEF3D, quickly varying bathymetry,

phase-resolving wave model.
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Chapter 1

Introduction

1.1 Background

As part of the National Transport Plan (NTP) for 2014-2023, the E39 coastal highway

project aims to build a continuous ferry-free road connection along the west coast of

Norway, covering a distance of approximately 1100 km, including seven major fjord

crossings. To cross these wide and deep fjords in Norway, innovative floating bridges

and tunnels are proposed. A good understanding of the marine environment, espe-

cially the wave conditions, is therefore essential for safe and cost-effective designs of

such floating structures.

Offshore wind farms and fish farms are other examples of how some of the industries

of the future are making use of the marine environment. As a consequence of the

increased attention to marine constructions, improved technology to predict the en-

vironmental impact on these structures is of great importance. Another factor is that

we will experience more extreme weather in the future due to global warming, which

implies that the structures need to withstand tougher waves and stronger winds [28].

A complex set of physical processes determines the wave conditions, of which the

importance will vary for different domains. The atmospheric input, like wind and

pressure, will lead to a transfer of energy between air and water. The physical pro-

cesses of white-capping, wave breaking, and bottom friction will dissipate energy from

the sea. Furthermore, a redistribution of the wave energy is the effect of nonlinear

wave interaction, likewise for diffraction, shoaling, and refraction [8]. To correctly

replicate these processes, could be both costly and complicated. For instance, the

effect of white-capping in a wavefield is not fully understood and could, therefore, be

challenging to evaluate and incorporate in a model [12].
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Experiments, in-situ measurements, and numerical models are some of the applica-

tions used when trying to understand the wave propagation for varying topography.

The latter is becoming increasingly more manageable with the quick development

of computational infrastructure and supercomputers. Numerical wave models are

proved to be reliable design tools with great flexibility and are seen to be more af-

fordable and time-efficient than other alternatives [2]. Nevertheless, these simulations

are so computationally demanding that we still need simplifications when modeling

large-scale wave climate.

1.2 State-of-the-Art

1.2.1 Numerical Wave Models

Phase-averaging models, like SWAN and STWAVE, are the most common wave mod-

els used nowadays. Another name for these models is spectral wave models, the reason

being that the evolution of the wave energy spectra is the basis of these models. A con-

sequence of this statistical method is that these models will not provide local extreme

values. Nevertheless, this type of wave model provides an efficient way to model large

wave fields under the influence of wind. By comparing with in-situ measurements,

Rusu & Soares [50] showed that the phase-averaging models, in general, provide re-

liable results. Mainly for deep and intermediate water, but also for many shallow

coastal areas along the Portuguese coast. A critical weakness of the phase-averaged

models is the lack of capability to calculate a rapid variation in wave parameters due

to bathymetry, diffraction, and reflection [14], [41]. These weaknesses make phase-

averaged models not suitable for modeling coastal areas with many islands and deep

fjords, like the coast of Norway.

Another type of wave model is therefore needed to cope with coasts of extremely vary-

ing bathymetry, like the Norwegian coast. Phase-resolved models are models where

the sea surface and the velocity field are explicitly reproduced [13]. This approach

makes the models able to capture quick variations in wave parameters and to calculate

local extreme values, but also computationally more demanding. Consequently, there

exist different models based on different governing equations, where the complexity

is varying.

The most exact and, by far, the most computationally demanding are the ones solving

Navier Stokes’ equations (NSE) with few assumptions. For example, direct numeri-

cal simulation (DNS), large eddy simulation (LES), and Reynolds-averaged Navier-

Stokes equations (RANS). Simplifications are therefore needed to make large-scale

2



Figure 1.1: Overview of some phase-resolved wave models.

wave modeling with phase-resolved models possible. Several different approaches

have been developed, all with their advantages and disadvantages. Shallow-water

equation (SWE) models, Boussinesq wave models, and fully nonlinear potential flow

models are all efficient phase-resolved models. This study will focus on the fully

nonlinear potential flow (FNPF) model, which is closely related to the higher-order

spectral (HOS) method [57], [22].

Both of these wave models solve the Laplace equation and are capable of modeling

large-scale wavefields at a manageable cost. HOS models solve the nonlinear potential

problem primarily for deep water, while FNPF models also are shown to simulate fast

varying bathymetry accurately [11], [22]. Nevertheless, a shortcoming of these wave

models is that they are constrained by empirical-based wave breaking (see Section

3.4) and wind forcing.

One way to overcome the limitations of the various wave models is to decompose the

domain using different models for different parts of the domain. Such nested models

make use of the strengths of each model and reduce the impact of the weaker features

of the models. A logical way to decompose the domain is to utilize the spectral wave

models to model the waves from offshore to the coastal areas, where a phase-resolved

model takes over and simulates the waves propagating towards land. A possible

3



Numerical Wave Model Model Type
TELEMAC-3D Shallow water equation
FUNWAVE Boussinesq wave model
Symphonie Boussinesq wave model
MIKE 21 Boussinesq wave model
BOUSS-2D Boussinesq wave model
Whispers3D High-order spectral wave model
HOS-Ocean High-order spectral wave model
OceanWave3D High-order spectral wave model
OpenFOAM Reynolds-averaged Navier–Stokes equations
3D-Flow Reynolds-averaged Navier-Stokes equations
ANSYS-Fluent Reynolds-averaged Navier–Stokes equations
ReFRESCO Reynolds-averaged Navier–Stokes equations
Star CCM+ Reynolds-averaged Navier–Stokes equations
REEF3D SWE, NSE, FNPF and RANS

Table 1.1: Examples of different phase-resolving wave models

extension will be to simulate slamming forces against a pier. A more complex com-

putational fluid dynamics (CFD) model is therefore needed in this proposed nested

wave model to simulate the small-scale wave actions at the pier.

When studying the Norwegian coast, the phase-resolved wave models are supposed

to simulate wave propagation from offshore to the point of interest in the fjord. This

distance could be up to 200 km. Combined with the fact that the Norwegian fjords are

wide and deep, with numerous islands, cause a new set of challenges for phase-resolved

wave models [23]. For more homogenous coasts, like the Danish and Portuguese, the

coastal area is shorter, and the gradient of the bathymetry is usually smaller than in

Norwegian fjords. Consequently, SWE models or Boussinesq wave models are often

used, and wind-wave interaction is not essential compared to other physical features.

On the contrary, simulations of waves in the Norwegian fjords require a wave model

able to cope with the complicated bathymetry over such a vast area. Table 1.1 dis-

plays some numerical models and the governing equation of the model.

The open-source hydrodynamic model REEF3D will be used for numerical wave mod-

eling in this work. Hans Bihs originally developed this software to solve local scouring

[9]. Today, REEF3D consists of four different modules based on different sets of equa-

tions: three-dimensional Navier-Stokes equations (REEF3D::CFD), non-hydrostatic

Navier-Stokes equation (REEF3D::NSEWAVE), non-hydrostatic shallow water equa-

tions (REEF3D::SFLOW), and the three-dimensional fully nonlinear potential flow

solver (REEF3D::FNPF). The latter will be used in this study.
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The capability of REEF3D has been demonstrated through several studies related to

fluid-structure interaction [4], [34], [52] , sediment transport [3], [49], extreme waves

[10], and numerical solutions [35]. Additionally, the FNPF module of REEF3D shows

high accuracy when compared to experimental and theoretical data [11], [56].

1.2.2 Current Studies on Bjørnafjorden

Bjørnafjorden will be the Norwegian fjord of interest in this study. The wave climate

in Bjørnafjorden has been the topic of several published studies [1], [15], [16], [17] due

to the proposed fjord crossing, which is a part of the E39 coastal highway project. The

Norwegian Public Roads Administration (NPRA) and DHI have measured the waves

in Bjørnafjorden, and numerical studies with phase-averaging wave models have been

used to get an insight into the long-term wave parameters. This section presents this

measured wave data and the results from the phase-averaging models.

In the design basis from NPRA [45] for a side- and end-anchored floating bridge in

Bjørnafjorden, Norconsult calculated the wave conditions with the phase-averaging

wave model, STWAVE. The calculations show that the 100-year return period for the

significant wave height for swell waves is 40 cm and that the impact of swell from

Selbjørnsfjorden is neglectable. Even though the influence of swell is small compared

to wind-generated waves, it needs to be accounted for in a situation with severe wind

from the west. At the location of the proposed fjord crossing, the significant wave

height is 2.8 m for a 100 year return period.

Cheng et al. [17] present and analyze measured wave data for 19 months from

Bjørnafjorden. DHI measured the wave conditions along the proposed bridge. The

highest record significant wave height of the recorded wave data was ranging from

1.22 m to 1.10 m for the different wave-buoys, while the peak period was 3.77 seconds

for all. Swell is also present in Bjørnafjorden. However, the wave height of this type of

wave is considerably smaller and rarer than wind-waves in the fjord. Out of 3250 data

points, there were only 11 occurrences where the Hs > 0.3m and Tp > 7 s. It is also

found that the waves appear to be inhomogenous over the cross-section of the fjord,

meaning that the wave state along the proposed bridge, at the same time, will differ.

Larger sway motion, axial force, and strong axis bending moment, as well as signifi-

cantly larger weak axis bending moment along the bridge girder, are consequences of

the bridge being exposed to inhomogeneous waves instead of homogeneous waves [16].

However, Aarnes [1] raises the concern that phase-averaging models might be under-

estimating both Hs and Tp for swell waves in Bjørnafjorden. In this study, two sets of

5



measured data are compared to the results of numerical simulations with SWAN. This

concern is backed by the fact that the highest recorded significant wave height for

swell is 0.25 m, while the simulated Hs,swell is below 0.02 m, especially considering that

the recorded data were for three years, and the simulated time is 15 years. Hindcast

data for 15 years determined the incident waves for the numerical simulation. The

conclusion is that the 100-year return value estimate of significant swell wave height

is approximately 0.3 m. Like the other studies, Aarnes concluded that wind-induced

waves are dominating in Bjørnafjorden, and that swell coming from the northwest into

Bjørnafjorden has a more significant impact than those coming from Selbjørnsfjorden.
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1.3 Motivation and Objectives

The use of phase-resolving models in large-scale wave modeling is a novel approach

in Norway. Due to the lack of computer resources, and because the less demanding

types of phase-resolving models cannot accurately model the complex coast of Norway,

the computationally efficient phase-averaging models are usually preferred. However,

with increased computational resources, it is possible to utilize the advantages of the

more exact phase-resolving models when modeling wave climate in Norwegian fjords.

The introduction of phase-resolving models will theoretically result in more accurate

results and possibly reduce safety factors in design.

The purpose of this study is to simulate the propagation of swell waves in Bjørnafjorden

by using the phase-resolving wave model REEF3D::FNPF. Firstly, the properties of

the incident waves and different parameters of the numerical model are determined.

Furthermore, the results of the large-scale simulation are presented and analyzed to

describe the wave state in Bjørnafjorden. Finally, the results provided by REEF3D are

compared to field measurements and results from phase-averaging models to investi-

gate if phase-resolved models can provide more accurate results than phase-averaging

models for simulations of swell waves in Bjørnafjorden.
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Chapter 2

Wave Theory

Many wave theories are implemented in REEF3D. In the following, the most relevant

theories for this study are presented.

2.1 Linear Wave Theory

∂ui
∂xi

= 0 (2.1)

∂ux
∂t

= −1

ρ

∂p

∂x

∂uy
∂t

= −1

ρ

∂p

∂y

∂uz
∂t

= −1

ρ

∂p

∂z
− g (2.2)

Linear wave theory is the small-amplitude approximation and applies when the wave

amplitude is small compared to the water depth and wavelength. The governing equa-

tions are deduced from two fundamental equations: the mass balance equation (Eq.

(2.1)), and the momentum balance equation(Eq. (2.2)). Given the small-amplitude

approximation, the corresponding linearized boundary conditions are presented in

Eq. (2.3) and Eq. (2.4), and is known as the kinematic boundary condition and the

dynamic boundary condition, respectively [30].

∂η(x, t)

∂t
= w(x, 0, t) (2.3)

∂Φ(x, 0, t)

∂t
+ gη(x, t) = 0 (2.4)

η, Φ, u, w and the dispersion relation is defined as [43]:

η = a sin(ωt− kx) (2.5)
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Φ =
ag

ω

cosh k(z + d)

cosh (kd)
cos(ωt− kx) (2.6)

u =
∂Φ

∂x
= ωa

cosh k(z + d)

sinhkd
sin(ωt− kx) (2.7)

w =
∂Φ

∂z
= ωa

sinh k(z + d)

sinhkd
cos(ωt− kx) (2.8)

ω2 = gk tanh kd (2.9)

2.2 Nonlinear Wave Theories

Second-Order Stokes Wave Theory

Similar to the linear wave theory, Stokes’ wave theory applies to conditions where

the wave height is small compared to the water depth. The theory proposes an

approximation for nonlinear wave motion with the introduction of a power series of

the wave steepness H/L [19]. η, Φ, u and w are defined as:

η = a cos(kx− ωt) +
π

8

H2

L

cosh kd(2 + cosh 2kd)

sinh3 kd
cos 2(kx− ωt) (2.10)

Φ = −ag
ω

cosh k(z + d)

cosh kd
sin (kx− ωt)− 3π

16

H2

T

cosh 2k(z + d)

sinh4 kd
sin 2(kx− ωt) (2.11)

u = −∂Φ

∂x
=
agk

ω

cosh k(z + d)

cosh kd
cos(kx− ωt) +

3

16
H2ωk

cosh(2k(z + d))

4T sinh4 kd
cos2(kx− ωt)

(2.12)

w = −∂Φ

∂z
=
agk

ω

sinh k(z + d)

cosh kd
sin(kx−ωt) +

3

16
H2ωk

sinh(2k(z + d))

4T sinh4 kd
sin2(kx−ωt)

(2.13)

Stokes’ wave theory is a continuation of the linear wave theory, where Stokes waves

are made of harmonic components determined by the linear wave theory. The first

term in Eq. (2.10) is taken directly from the linear wave theory, while the second

term is the second harmonic wave component or the second-order Stokes correction.

The phase speed of the second harmonic wave component is equal to the phase speed

of the first harmonic wave component, which implies that the dispersion relation is

equal for linear wave theory and second-order Stokes waves [30].

The Ursell parameter is used to determine if the theory of Stokes’ wave can be applied

under certain conditions. If Ur < 10 Stokes’ waves are applicable [30].

Ur =
H L2

d3
(2.14)
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Fifth-Order Stokes Wave Theory

The required number of terms is increasing as the wave height increases. Several

theories are available for solving the expansion of the Stokes’ wave theory to the fifth

order, one of them being the analytical solution proposed by Fenton [27]. Fenton has

obtained a solution to the fifth-order Stokes’ waves based on the power series of the

wave steepness to the fifth order. The resulting η, Φ, u, and w are:

η =
1

k

5∑
n=1

εnbn cos(nθ) (2.15)

where, b1 = 1 + ε2B31 − ε4(B53 +B55)

b2 = B22 + ε2B42

b3 = −B31 + ε2B53

b4 = B44

b5 = B55

(2.16)

Φ = C0

√
g

k3

5∑
n=1

εnancosh(nkz)sin(nθ) (2.17)

where, a1 = A11 + ε2A31 + ε4A51

a2 = A22 + ε2A42

a3 = A33 + ε2A53

a4 = A44

a5 = A55

(2.18)

u = C0

√
g

k

5∑
n=1

εn n ancosh(nkz)cos(nθ) (2.19)

w = C0

√
g

k

5∑
n=1

εn n ansinh(nkz)sin(nθ) (2.20)

The coefficients C0, Aij, Bij are dimensionless functions of the water depth h and

wavelength L. The dimensionless wave amplitude is defined as:

ε =
kH

2
(2.21)
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2.3 Irregular Wave Theory

The model is also able to generate irregular waves based on different distributions. In

the large-scale simulation of this study, multi-directional first-order irregular waves

are used to simulate realistic wave fields. The JONSWAP spectrum suggested by

DNV-GL [21] is adopted to determine the energy at different frequencies for a fully-

developed sea, while a Mitsuyasu-type spreading function [42] is used to describe the

directionality of the wave components. The latter is a continuation of the original

Pierson-Neumann-James (PNJ) directional spreading function [48], which is expressed

in Eq. (2.25). The following equation determines the JONSWAP spectrum:

S (ω) =
5

16
H2
sω

4
pω

−5exp

(
−5

4

(
ω

ωp

)−4
)
γ
exp

(
−(ω−ωp)2

2σ2ω2p

)
Aγ. (2.22)

Aγ = 1− 0.287ln(γ). (2.23)

σ =

{
0.07 if ω ≤ ωp
0.09 if ω ≥ ωp

(2.24)

where Hs is the significant wave height, ωp is the peak angular frequency, N is the

number of wave components, and the peak enhancement factor γ is typically chosen

to be 3.3.

G(βj) =

{
2
π

cosn(βj − β) , if |βj| < π
2

0 , else.
(2.25)

Where β is the principal direction and βj is the direction of each incident wave com-

ponent measured counterclockwise from the principal direction. The shape parameter

n determines the strength of the directional spreading.

2.4 Wave Transformation

Waves in water are the result of energy transferred to the water at one location and

transported away to return to equilibrium, which for an idealized scenario is still wa-

ter level (SWL). Energy is transferred to the water through numerous processes like

the attraction of the sun and the moon (tidal waves), tectonic movement (tsunamis),

and, of course, wind. The latter could be separated into two different categories:

swell waves and wind waves. In general, they are the same thing; surface friction

between the blowing wind and the water causes movements in the sea. The difference
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is where the waves are generated. Wind waves are locally formed by the wind, and

the wave period is shorter compared to swell waves. Swell waves, on the other hand,

are generated by the wind blowing far away from the location where the swell waves

are observed. These waves can cross oceans before they reach land [51], and as they

propagate, the dissipation of energy for shorter and steeper waves are more significant

[5].

When the waves travel from deep to shallower water, the waves start to transform due

to interaction with the seabed and land. Currents can also transform waves but is not

emphasized in the following. Refraction, shoaling, and depth-induced wave breaking

are caused by variations in water depth, while obstacles and slits induce diffraction

and reflection.

As waves propagate towards shallower water, the wave speed decreases due to wave-

seabed interaction. Since the wave energy needs to be conserved, and the wave period

is constant, the wave height increases to preserve the constant energy flux, which is

named shoaling. When the wave becomes too steep, the wave breaks, which is called

depth-induced breaking or shallow-water breaking. If the wave crests approach the

contours of the bathymetry at an angle, it will result in a difference in wave speed

along the wave crest. The parts of the wave crest that are in shallower water will

move slower, and the wave will turn towards the shallower areas. This process is

called refraction.

The diffraction of water waves is the effect of waves propagating into the shadow zone

behind an obstacle at another angle than the original wave direction. This process

occurs due to variations in amplitude along the wave crest. Energy from higher parts

of the wave crest is transferred to the smaller parts. Figure 2.1 illustrates an ideal-

ized scenario where the other physical processes are neglected. If diffraction did not

exist, there would be no waves in the shadow area, and the waves would unaffectedly

propagate straight towards the shoreline.

Reflection of waves is especially important for harbors and areas with a steep coast-

line, which can reflect the wave energy on impact. For beach-like coasts, it is often

assumed that the reflected energy is neglectable. A full reflection of the wave may

cause a standing wave pattern, which is especially relevant for harbor modeling.

These physical processes are further explained in [30].
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Figure 2.1: Illustration of the diffraction of water waves. Refraction and reflection
are neglected.
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Chapter 3

Numerical Model

This chapter presents the numerical solutions implemented in the wave model REEF3D::FNPF,

as well as how the calculations are solved. This three-dimensional, fully nonlinear po-

tential flow model is used in this study to simulate wave propagation. A fully nonlinear

potential flow model is regarded as a computational efficient wave model compared

to more complex CFD software. However, FNPF models do not take viscosity and

turbulence into account.

3.1 Governing Equation

The Laplace equation is the governing equation for the flow calculations in the open-

source fully nonlinear potential flow model REEF3D::FNPF:

∂2Φ

∂x2
+
∂2Φ

∂y2 +
∂2Φ

∂z2 = 0 (3.1)

where ∂Φ
∂xi

= ui, Φ is the velocity potential, and ui is the flow velocity in a spatial

direction.

The Laplace equation fulfills the assumptions of the theory of potential flow:

• Inviscid. The flow of water could be divided into the potential flow and the

boundary layer. The latter occurs around obstacles and other discontinuities

where the shear forces in the flow are particularly influential. Otherwise, the

flow is assumed to be inviscid, meaning that the shear stresses are neglected.

• Incompressible. The continuity equation (Eq. (3.2)) is fulfilled, which implies

that the flow is incompressible.
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∂ui
∂xi

= 0 (3.2)

• Irrotational. A consequence of the neglected shear forces in the water is that

the flow is also assumed to be irrotational:

∂u

∂z
+
∂w

∂x
= 0 (3.3)

These three assumptions are also valid for linear wave theory since both theories are

based on potential flow theory.

3.1.1 Boundary Conditions

Boundary conditions are required to solve the Laplace equation. First, the fluid

particles at the free surface need to remain at the free surface, yielding the kinematic

boundary condition expressed in Eq. (3.4). Another principle is that the pressure in

the fluid at the free surface is equal to the atmospheric pressure, which results in the

dynamic boundary condition presented in Eq. (3.5). These two principles result in

the free surface boundary conditions :

∂η

∂t
=− ∂η

∂x

∂Φ̃

∂x
− ∂η

∂y

∂Φ̃

∂y

+ w̃

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)
,

(3.4)

∂Φ̃

∂t
=− 1

2

(∂Φ̃

∂x

)2

+

(
∂Φ̃

∂y

)2


+
1

2
w̃2

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)
− gη.

(3.5)

Where Φ̃ = Φ(x, η, t) is the velocity potential at the free surface, x = (x, y) repre-

sents the horizontal location, w̃ is the vertical velocity at the free surface, and g is

gravitational constant.

At the bottom, the vertical water velocity must be zero since the particles cannot

penetrate the seabed. This yields the bottom boundary condition:
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∂Φ

∂z
+
∂h

∂x

∂Φ

∂x
+
∂h

∂y

∂Φ

∂y
= 0, z = −d. (3.6)

where d = d(x) is the water depth from the seabed to the still water level.

3.1.2 Sigma Grid

With the implementation of the σ-coordinate scheme, the vertical grid size in the

numerical model is dependent on the bathymetry. The flexible σ-coordinate system

is visualized in figure 3.1, and the following equation defines the transfer function

from a Cartesian coordinate system to the σ-domain:

σ =
z + d (x)

η(x, t) + d(x)
(3.7)

Once the velocity potential Φ is obtained in the σ-domain, the velocities can be

calculated as follows:

u (x, z) =
∂Φ (x, z)

∂x
=
∂Φ (x, σ)

∂x
+
∂σ

∂x

∂Φ (x, σ)

∂σ
, (3.8)

v (x, z) =
∂Φ (x, z)

∂y
=
∂Φ (x, σ)

∂y
+
∂σ

∂y

∂Φ (x, σ)

∂σ
, (3.9)

w (x, z) =
∂σ

∂z

∂Φ (x, σ)

∂σ
. (3.10)

3.2 Numerical Treatment of Governing Equations

The governing equations have to be discretized to solve a fluid dynamic problem nu-

merically, both in the spatial domain and the time domain. In the spatial domain,

the domain is divided into points that form cells, typically shaped as cuboids, cubes,

or tetrahedrons for a three-dimensional case. Cell points are located at the corners

of the cells, and this set of points is referred to as the grid or the mesh. A structured

grid is a set of cells with some regularity. This decomposition is less computationally

demanding than an unstructured grid. A structured grid is incorporated in REEF3D.

In REEF3D, staggered grids are used in the numerical discretization of the equations,

meaning that the variables are not located at the same parts of the cell. For instance,

the pressure is determined at the center of the cells, while the velocity is calculated at
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Figure 3.1: Illustration of the sigma grid over varying bathymetry.

the midpoint of the cell edges. Contrary to the other scheme referred to as collocated

grids, where all the variables are located at the cell edges. This type of scheme is

commonly used for unstructured grids. An advantage of using the staggered grid is

that it prevents pressure oscillations [36].

Accuracy and stability are the two main aspects when evaluating numerical schemes.

The error between the numerical solution and the exact solution is called the trun-

cation error. The order of this error determines the accuracy of a numerical scheme.

The numerical scheme is deemed stable if there is an upper and lower limit on the

errors.

3.2.1 Spatial Discretization

With the domain decomposed into points, the governing equation also needs to be

discretized by implementing numerical schemes. Spatial schemes vary in accuracy

and efficiency. A numerical scheme involving more steps are generally more accurate,

but also the most computationally demanding. The central difference scheme (CDS)

is an example of a simple and efficient numerical scheme, while the fifth-order WENO

(weighted essentially non-oscillatory) scheme [33] represents a more accurate, but also

more computationally demanding spatial scheme. The WENO scheme is chosen for

the discretization of the kinematic (Eq. (3.4)) and the dynamic boundary condition

(Eq. (3.5)). The less expensive central difference scheme is utilized for the discretiza-
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tion of the Laplace equation (Eq. (3.1)).

Central Difference Scheme (CDS)

This central difference scheme makes use of the adjacent values at each side, and the

error is of second-order in ∆x.

∂Ui
∂x

=
Ui+1 − Ui−1

2∆x
(3.11)

Weighted Essentially Non-Oscillatory (WENO) Scheme

The more expensive WENO scheme takes local smoothness into account, which makes

it possible to calculate large gradients. Three local ENO-stencils are involved for a

single WENO discretization. These ENO-stencils are weighted according to their

smoothness, where the smoothest stencil has the most substantial contribution. The

implementation of a fifth-order WENO scheme [32] for the level-set function (Eq.

(3.12)) is illustrated in the following equations.

φx =


φ−
x if U1 > 0

φ+
x if U1 < 0

0 if U1 = 0

(3.12)

The WENO approximation for φ±
x is a convex combination of the three possible ENO

approximations:

φ±
x = ω±

1 φ
1±
x + ω±

2 φ
2±
x + ω±

3 φ
3±
x (3.13)

The three ENO stencils defined for φ are

φ1±
x =

q±1
3
− 7q±2

6
+

11q±3
6

φ2±
x = −q

±
2

6
+

5q±3
6

+
q±4
3

φ3±
x =

q±3
3

+
5q±4
6
− q±5

6

(3.14)

where,

q−1 =
φi−2 − φi−3

∆x
, q−2 =

φi−1 − φi−2

∆x
, q−3 =

φi − φi−1

∆x
,

q−4 =
φi+1 − φi

∆x
, q−5 =

φi+2 − φi+1

∆x

(3.15)
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and

q+
1 =

φi+3 − φi+2

∆x
, q+

2 =
φi+2 − φi+1

∆x
, q+

3 =
φi+1 − φi

∆x
,

q+
4 =

φi − φi−1

∆x
, q+

5 =
φi−1 − φi−2

∆x

(3.16)

the weights are written as:

ω±
1 =

α±
1

α±
1 + α±

2 + α±
3

, ω±
2 =

α±
2

α±
1 + α±

2 + α±
3

, ω±
3 =

α±
3

α±
1 + α±

2 + α±
3

, (3.17)

and

α±
1 =

1

10

1(
ε̃+ IS±

1

)2 , α±
2 =

6

10

1(
ε̃+ IS±

2

)2 , α±
3 =

3

10

1(
ε̃+ IS±

3

)2 (3.18)

with the regularization parameter ε̃ = 10−6 in order to avoid division by zero, and

the following smoothness indicators:

IS±
1 =

13

12
(q1 − 2q2 + q3)2 +

1

4
(q1 − 4q2 + 3q3)2 ,

IS±
2 =

13

12
(q2 − 2q3 + q4)2 +

1

4
(q2 − q4)2 ,

IS±
3 =

13

12
(q3 − 2q4 + q5)2 +

1

4
(3q3 − 4q4 + q5)2

(3.19)

This weighting ensures that the smoothest stencil of the three in Eq. (3.14) will have

the greatest contribution.

3.2.2 Time Discretization

The time discretization is essential to ensure stability in the calculation, especially

for the rapidly changing parameters found in fluid dynamics. The TVD Runge-Kutta

scheme is implemented in REEF3D for this purpose.

Total Variance Diminishing (TVD) Runge-Kutta Scheme

A total variance diminishing Runge-Kutta scheme is an explicit numerical scheme

developed by Harten [29], which is often used in computational fluid dynamics. The

ability to capture quick changes accurately, even for relatively coarse grids, is one

advantage of the TVD Runge-Kutta scheme. The third-order TVD Runge-Kutta is

presented in the following.
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φ(1) = φn + ∆tL (φn)

φ(2) =
3

4
φn +

1

4
φ(1) +

1

4
∆tL

(
φ(1)
)

φn+1 =
1

3
φn +

2

3
φ(2) +

2

3
∆tL

(
φ(2)
) (3.20)

The term ‘L’ represents the spatial discretization. For the time treatment in this

study, a third-order accurate TVD Runge-Kutta scheme [53] is used.

3.2.3 Adaptive Time-Stepping

The method of adaptive time-stepping is implemented, which adjust the time step

based on the grid size, maximum particle velocity, and the maximum depth. A

constant time factor, equivalent to the CFL condition, is introduced. The time steps

are determined as follows:

cu =
∆x∣∣max(umax, 1.0
√

9.81 ∗ hmax)
∣∣ ,

cv =
∆x∣∣max(vmax, 1.0
√

9.81 ∗ hmax)
∣∣ ,

ctot = min(cu, cv),

∆t = ctotCFL.

(3.21)

Where umax, vmax are the maximum particle velocities in x and y directions, and hmax
is the maximum water depth.

3.3 Wave Generation and Absorption

For a basic configuration, the numerical wave tank consists of a zone where the waves

are generated based on different theories implemented in the software. Numerous

wave theories that can be imposed at this boundary are available in REEF3D. Addi-

tionally, there exists a numerical beach where the wave energy is dissipated, reducing

the particle velocity to zero, and the pressure to hydrostatic conditions. The propa-

gation of waves occurs in the working zone, between the wave generation zone and the

wave absorption zone. This simple configuration is illustrated in figure 3.2. However,

more complicated arrangements are possible, like a three-dimensional domain with

generation and absorption zones only covering parts of the boundary.
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Figure 3.2: Illustration of a 2D wave tank with wave generation zone and wave
absorption zone.

3.3.1 Relaxation Method

Several numerical approaches can be implemented at the wave generation zone to

impose the waves, and at the numerical beach to dissipate the energy — one of those

being the relaxation method [40]. In this model, the relaxation function proposed by

Jacobsen [31] is used. In the wave generation zone, the theoretical values for particle

velocity and pressure are imposed over the distance of the generation zone. Contrary

to the wave absorption zone, where the particle velocity is reduced to zero, and pres-

sure decreased to hydrostatic conditions following Eq. (3.22) and Eq. (3.23).

urelaxed = Γ(x)uanalytical + (1− Γ(x))ucomputational

prelaxed = Γ(x)panalytical + (1− Γ(x))pcomputational
(3.22)

Γ(x̃) = 1− e(x̃3.5) − 1

e− 1
for x̃ ∈ [0; 1] (3.23)

where x̃ is scaled to the length of the relaxation zone.

3.4 Wave Breaking

A combination of how the governing equations are solved and the fact that turbulence

and viscosity are neglected makes it impossible for the FNPF wave model to explicitly

simulate the overturning crest and the turbulence following the collapse. Empirical-

based formulations are therefore introduced in the numerical model to account for

both deep-water breaking and depth-induced breaking. Breaking is identified if the

steepness of the wave exceeds a specific value β, or the vertical particle velocity ex-

ceeds a fraction α of the shallow water celerity. After the breaking wave is detected,
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Figure 3.3: Illustration of the numerical coastal zone.

wave energy is dissipated locally by introducing a viscous damping term in the free

surface boundary conditions in the area where the breaking is detected [6].

In deep water, the wave breaking criterion associated with wave steepness is used:

∂η

∂x
≥ β (3.24)

In shallow water domain, the depth-induced wave breaking is detected following this

criterion:

∂η

∂t
≥ α

√
gd. (3.25)

In this study, the input parameters α and β are set to 0.6 [20] and 1.25, respectively.

3.5 Coastline Damping

In addition to the wave breaking algorithm and the wave absorption zone along the

edges of the domain, there is a third way that energy is dissipated in the model: the

coastline damping zone. The interaction between the moving water and the land could

cause problems for numerical solvers if not treated with caution. One source of insta-

bility is due to very shallow water, which occurs close to the coastline. As the depth

approaches infinitesimally small, a divergence of the depth-dependent calculations is

possible. Another challenge is to determine what is water and what is defined as land.

In REEF3D, a threshold water depth ĥ is used to determine which cells that are to be

considered as dry cell, and which that are wet. If a cell is defined as dry, the velocity
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is set to zero. The water depth h is defined as the sum of the still water level d and

the surface elevation η (see figure 3.3).{
u = 0, if h < ĥ

v = 0, if h < ĥ
(3.26)

After the cells are sorted in dry and wet cells, a level-set function [46] is used to

identify the shoreline, denoted Γ:

φ(~x, t) =


> 0 if ~x ∈ wet cell

= 0 if ~x ∈ Γ

< 0 if ~x ∈ dry cell

(3.27)

A level-set method is also used to determine the distance perpendicular to the coast-

line. The distance between a certain point and the coastline is determined by the

signed distance property incorporated with the level-set method. However, these val-

ues need to be updated for every iteration to ensure mass conservation as the exact

shoreline evolves. A partial differential equation-based reinitialization procedure pre-

sented by Sussmann et al. [54] is implemented to update the values.

∂φ

∂τ
+ S(φ)

(∣∣∣∣ ∂φ∂xj
∣∣∣∣− 1

)
= 0 (3.28)

where S(φ) is the smooth signed function by [47].

S(φ) =
φ√

φ2 +
∣∣∣ ∂φ∂xj ∣∣∣2(∆x)2

(3.29)

The signed distance property is restored by solving Eq. (3.28) until equilibrium is

achieved. The sign function in Eq. (3.29) assigns the value of zero to the coastline,

and according to Eq. (3.27) for the rest of the domain.

As illustrated in figure 3.3, another measure to prevent numerical instabilities is to

implement relaxation zones on the wet side of the coastline. A consequence is that

modeling of run-up is not conducted. However, for many cases, this is not of interest.

3.6 Parallel Processing

In the field of computational fluid dynamics, one frequently ends up with domains that

are decomposed into millions of cells. The workload is therefore distributed across
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multiple processors to handle this immense number of calculations. In REEF3D,

the parallelized geometric multi-grid algorithm, provided by hypre [26], solves the

Laplace equation. hypre is a software library of high-performance preconditioners

and solvers. This library is used to solve large, sparse linear systems of equations

on parallel processors and is one of the most time-consuming processes in numerical

modeling of fluids. The efficiency of the solvers in this library depends on the type

of grid. REEF3D uses a structured grid with a sigma grid in the vertical direction,

which opens the possibility to use the most efficient solvers of this library [25]. One

of those being the BiCGStab algorithm, developed by van der Vorst [55] and applied

in REEF3D.

Every processor is assigned with a subdomain. In these subdomains, the neighboring

points determine the value at a specific grid point. For calculations at the edge of these

subdomains, ghost cells are introduced to ensure communication between adjacent

points that are allocated to different processors. These ghost cells are updated with

the values from the neighboring processors via MPI (Message Passing Interface) [38].
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Chapter 4

Determination of Sea States

Bjørnafjorden is a perfect example of the challenges Norwegian fjords causes numeri-

cal wave models with the rapidly varying and irregular bathymetry, and are therefore

used in this study to test the capability of REEF3D::FNPF. For a wave to propagate

from an offshore location to Bjørnafjorden, it needs to pass either Selbjørnsfjorden

and Langenuen in the south or Korsfjorden and partly Lysefjorden in the north. In

the following, these two pathways will be referred to as the southern channel and the

northern channel.

Figure 4.1: Bjørnfjorden, the northern channel (Korsfjorden), and the southern
channel (Selbjørnsfjorden). Screenshot from UT.no.

There are several ways to determine the properties of the incident waves at an off-
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Figure 4.2: Location of the NORA10 data. Coordinates: 60.0600 N, 4.6900 E.
Screenshot from Google Maps.

shore location. The following sections present two different approaches: based on

measurements (Section 4.1), and based on NORSOK standards. This information

results in five separate wave inputs that are simulated in the domain.

The majority of the procedures and the argumentation used to develop reasonable

wave inputs in Section 4.1 and Section 4.2 are replicated from an earlier submitted

project report [18].

4.1 NORA10

During the last 61 years, waves and wind measurements west of Bjørnafjorden (see

figure 4.2) have been recorded and gathered in the NORA10 datasets. These datasets

are used to get an estimate of realistic wave inputs for the numerical simulations in

this thesis.

The directional distribution of the wave energy is presented with the help of wave

roses in figure 4.3, figure 4.4, and figure 4.5. The eastern direction is the dominant

wave direction, especially when considering the swell waves. For wind-waves, the

dominant wave direction are propagation in a northern direction.
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Figure 4.3: Wave rose for swell waves at NORA10.

Figure 4.4: Wave rose for wind waves at NORA10.
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Figure 4.5: Wave rose at NORA10.

The waves of smaller amplitudes are of minor concern in this analysis. Therefore, the

data presented in figure 4.5 has been filtered so that only waves with a significant

wave height above eight meters are included. These results are illustrated in figure

4.6, which shows that the biggest waves are propagating in eastern and southeastern

direction. It also leads to the conclusion that the smaller waves are dominant in

the southern and northern directions. Based on these results, the direction of the

incoming waves in the simulation is chosen to be 0, 45, and 315 degrees, where 0 zero

degrees is equal to propagation towards the east in REEF3D.
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Figure 4.6: Wave rose at NORA10 for measurements with a wave height larger than
eight meters.

In the numerical simulations of Bjørnafjorden, different wave heights and wave periods

are used as input. One of the simulations is completed with incident wave heights

equal to the maximum recorded wave height at NORA10 (Hs = 14.2m), and its

corresponding wave period (Tp = 14.9 s).

4.2 Wave Inputs

The following incident waves are imposed at the western boundary and simulated in

the domain. Hs is the significant wave height, and Tp is the peak period.

• Wave Input 1 (WI1): Hs = 15.0m, Tp = 16.0 s. These wave properties are

taken from the NORSOK STANDARD N-003 [44]. The significant wave height

(Hs) and the related maximum peak period (Tp) for a 100-year return period

and a 3 hours sea state on the Norwegian coast are found in figure 1 of the

standard. These input wave properties is used in three of the simulations, with

the main wave directions found in Section 4.1:

– 0 degrees: waves propagating towards the east.

– 45 degrees: waves propagating towards the northeast.

– 315 degrees waves propagating towards the southeast.

• Wave Input 2 (WI2): Hs = 14.2m, Tp = 14.9 s. The largest significant wave

height in the NORA10-dataset is used with the corresponding peak period. See

29



Section 4.1. The simulation is performed with a main incident wave direction

of 0 degrees.

• Wave Input 3 (WI3): Hs = 18.0m, Tp = 21.8 s. 21.8 seconds is the largest

recorded peak period in the NORA10-dataset, while the significant wave height

is just a random big wave. The simulation is performed with a main incident

wave direction of 0 degrees.

The simulations with Wave Input 1 is emphasized in this study since it is based on

the significant wave height for a return period of 100-years on an offshore location.

4.3 Determination of Input Wave Properties

Two-dimensional and three-dimensional simulations on a smaller domain are used to

validate the numerical model. Regular waves are used to make the simulation more

transparent and hence increase the probability of detecting deviations. REEF3D of-

fers a variety of different wave theories for the incident waves, so calculations are

needed to determine the correct wave theory for all three wave inputs.

4.3.1 Wavelength at the Wave Generation Zone

The linear wave dispersion relation is at first assumed to be valid, which holds only if

the correct wave theory shows to be either linear wave theory or second-order Stokes

waves. Recall from Section 2.2 that the dispersion relation for second-order Stokes

waves is equal to the one for linear wave theory.

There are several methods to solve the dispersion relation for arbitrary depth, de-

pending on the mathematical numerical method used [58]. One common method is

Bob You’s approximation formula:

L0 = 1.56T 2 k0 =
2π

L0

(4.1)

ξ0 =
√
k0 d (1 +

k0 d

6
+

(k0 d)2

30
) (4.2)

L = L0 tanh(ξ0) (4.3)

Where L is the wavelength, T is the wave period, k is the wavenumber, and d is the

depth. The subscript ’0’ indicates a deep water parameter. The shallowest part of
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the numerical wave generation zone (d = 170m) is used in the calculation because it

is the conservative choice for these specific conditions. Inserting the values provided

in Section 4.2 into Eq. (4.1), (4.2), and (4.3), yields the following results:

Hs Tp L0 k0 d ξ0 L d/L
Wave Input 1 15.0m 16.0 s 399.4m 2.67 2.75 396.2m 0.43 Intermediate water
Wave Input 2 14.2m 14.9 s 346.3m 3.08 3.21 345.2m 0.49 Intermediate water
Wave Input 3 18.0m 21.8 s 741.4m 1.44 1.57 680.0m 0.25 Intermediate water

Table 4.1: Calculation of wavelength for the three wave inputs. In linear wave
theory, deep water is d/L > 0.5, shallow water is d/L < 0.05, and intermediate

water depth between these.

4.3.2 Applicable Wave Theory at the Wave Generation Zone

The work by Le Méhauté [37] is used to determine which wave theory that applies
to these conditions. The values for Eq. (4.4) are presented in table 4.2. By inserting
these dimensionless numbers into figure 4.7, it is apparent that Wave Input 1 (red),
Wave Input 2 (purple), and Wave Input 3 (orange) are all in the range of second-order
Stokes waves under these conditions.

Y-axis:
Hs

g · T 2
p

X-axis:
d

g · T 2
p

(4.4)

Hs
g T 2

p

d
g T 2

p
Applicable wave theory

Wave Input 1 0.0060 0.068 Second-order Stokes waves
Wave Input 2 0.0065 0.078 Second-order Stokes waves
Wave Input 3 0.0039 0.036 Second-order Stokes waves

Table 4.2: Dimensionless wave height and depth for figure 4.7.

The Ursell parameter is another criterion that indicates if the theory of Stokes waves

applies. The theory of Stokes is considered to be applicable as long as Ur < 10 [30].

Wave Input 3 includes the highest and longest waves, so for Eq. (4.5), it is only

necessary to check these conditions. Since Ur < 10 for Wave Input 3, it is also valid

for the remaining wave inputs.

Ur =
HsL

2

d3
=

18.0m · (680.0m)2

(170.0m)3
= 1.69 < 10 (4.5)
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d

Figure 4.7: The ranges of applicability for different wave theories. The values from
table 4.2 are illustrated in different colors.

Both of these theories confirm the assumption that the linear wave dispersion relation

is valid for all three wave inputs, and that the applicable wave theory is the second-

order Stokes waves. Consequently, the regular waves in Section 5.1 and Section 5.2

are imposed as second-order Stokes waves.
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Chapter 5

Verification of the Numerical

Model

In this chapter, the validity of the model is tested, and different parameters of the

numerical model are justified. While Chapter 2 and Chapter 3 present several theo-

ries and numerical methods used in this study, this chapter focus on determining the

parameters, like the required coastal damping distance and the numerical grid size,

both vertically and horizontally.

The topography, provided by the NPRA, is implemented in a 45 km long, and 35 km

wide numerical wave tank (see figure 5.1), which is discretized by a numerical grid.

The five different wave inputs presented in Section 4.2 are imposed on the western

boundary of the domain.

The bathymetry of this area perfectly illustrates the challenging nature of numerical

wave modeling in Norwegian fjords. Numerous small islands and skerries demand an

accurate numerical model, and sharp gradients in the bathymetry require a numerical

scheme that can handle it. There is only 600 meters, horizontally, between the deepest

spot in the domain and land. The higher-order WENO scheme is therefore used for

the spatial discretization of the kinematic and dynamic boundary conditions at the

free surface. In contrast, central differences of the second order are used for the

discretization of the Laplace equation, while third-order TVD Runge-Kutta is the

time scheme used in this study.

5.1 Grid Convergence Study

A grid convergence is used to determine the fixed mesh size in the horizontal direc-

tions. The goal is to optimize the grid size so that it will replicate the wave action

33



Figure 5.1: Bathymetry of the domain. Screenshot from Paraview.

accurately with as few cells as possible to reduce the computational cost.

One challenge is to overcome numerical diffusion. Numerical diffusion refers to artifi-

cial damping of the amplitude, as compared to the exact solution. The discretization

of a continuous equation, like the Laplace equation, will result in a discrete equation

that is more diffusive than the original equation. One way to reduce numerical damp-

ing is to use higher-order numerical schemes [39], like WENO, which is used in this

study.

Another method to minimize numerical diffusion is grid refinement. A two-dimensional

grid convergence study is conducted in this section to determine the necessary num-

ber of meshes per wavelength. Firstly, a numerical wave tank with constant depth is

used. The results are then further validated with a two-dimensional wave tank with

varying topography, extracted from the original domain. Wave Input 1 is imposed at

the boundary, and the number of meshes in the vertical direction is fixed at ten.

For the simulations of the entire domain, a CFL factor of 1.0 is used to determine the

time step. Since the maximum depth is 669 m, and the maximum particle velocity

is smaller than 10 m/s, the time step is determined by the depth according to Eq.

(3.21). Constant time steps for different mesh sizes are therefore used throughout the

grid convergence study. Calculation of Eq. (3.21) yields the time steps presented in

table 5.1.
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Figure 5.2: The free surface elevation for different grid sizes for a constant depth,
compared to the theoretical solution.

∆x[m] Number of meshes per wavelength ∆t[s]

20 20 0.247

25 16 0.309

30 13 0.372

35 11.5 0.434

40 10 0.497

Table 5.1: Number of meshes per wavelength for Wave Input 1, and the
corresponding time step used in the simulations for different grid sizes.

5.1.1 Constant Depth

Since the domain covers such a vast area, even small deviations in the numerical

simulation might cause significant discrepancies over such long distances. Therefore,

a 10 kilometers long numerical wave tank is used in this grid convergence study. Like

the calculations in Section 4.3, the depth is determined by the shallowest part of the

numerical wave generation zone, which is 170 meters.

Figure 5.2 shows that numerical diffusion will occur, but is neglectable for grid size

finer than 35 m. The same result is notable in table 5.2, where the error of the

extremes is quantified to be approximately one percent of the theoretical solution.

However, some deviations are to be expected since the discretized points might not

always coincide with the extremes. Grid sizes of 20 m, 25 m, and 30 m correspond
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to 20, 16, and 13 meshes per wavelength, respectively. Phase-shifting or numerical

dispersion is also evident, but this inaccuracy is addressed in Section 5.2.

5.1.2 Varying Depth

Figure 5.3: Northern channel with illustration of the extracted points used for 2D
bathymetry, and the position of the wave gauges.

The two-dimensional bathymetry is extracted directly from the northern channel to

make a representable bathymetry for the one-dimensional simulation. Figure 5.3 il-

lustrates the extracted points, in addition to the numerical wave gauges located in

the channel. The resulting bathymetry is presented in figure 5.4.

By including the varying bathymetry, the results will additionally indicate how well

the numerical wave model handles the wave-seabed interaction — specifically, the

shoaling/deshoaling process. The deshoaling process is challenging to replicate for

the popular shallow water wave models. Eldrup and Andersen [24], and Beji and

Battjes [7] showed that waves propagating towards deeper water decomposes into

higher frequency wave components for steep slopes, which makes the shallow water

assumption invalid in some cases. However, Hans Bihs et al. [11] demonstrated,

through a case study, that the potential flow model REEF3D::FNPF is capable of

replicating the deshoaling process accurately.

Simulations of a numerical wave tank with varying bathymetry (figure 5.5) reveal that

also a grid size of 30 m is insufficient to replicate the wave action. On the other hand,
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Figure 5.4: The two-dimensional topography extracted from the points in figure 5.3,
and the location of the wave gauges.
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Figure 5.5: The free surface elevation of waves simulated over the bathymetry
presented in figure 5.4.

dx = 40 m dx = 35 m dx = 30 m dx = 25 m dx = 20 m
Constant depth 10.7 % 4.84 % 1.00 % 1.61 % 1.12 %
Varying depth 16.51 % 11.73 % 9.62 % 0.62 % -

Table 5.2: Errors in numerical results for wave crests and wave troughs relative to
theoretical values for constant depth (for 7500m ≤ x ≤ 8500m), and relative to a

simulation with dx = 20 m for varying depth (for 13000m ≤ x ≤ 14000m).
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a refinement of the mesh from 25 m to 20 m will not improve accuracy significantly,

which is further validated by the values presented in table 5.2. The conclusion is that

a mesh size of 25 meters in the horizontal directions is necessary to avoid numerical

damping and to capture wave-seabed interaction accurately. Numerical dispersion is

visible, but this source of error is addressed in the following section.

5.2 Vertical Stretching of the Computational Grid

While errors in magnitude are termed dissipation, errors in phase are called dis-

persion. Both of these physical processes occur naturally in most physical systems

described by partial differential equations. For water waves, shallow water waves are

non-dispersive, which implies that the phase velocity is equal to the group velocity.

Deep water waves, on the contrary, are dispersive, indicating that the phase veloc-

ity is higher than the group velocity. Other physical processes, such as refraction,

diffraction, and breaking, are closely related to dispersion.

Like numerical dissipation, the discretization of an equation could similarly introduce

numerical dispersion, which is visible in figure 5.2 and figure 5.5. Numerical disper-

sion is a well-known problem related to numerical wave models and is a result of the

wave model either under- or overestimating the wave speed of a wave component.

Figure 5.6: Distribution of particle velocity in the vertical direction (z-direction).
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Figure 5.7: Free surface elevation, at different depths, with different vertical
stretching factors for Wave Input 1.

One way to change numerical dispersion is to adjust the grid size both vertically

and horizontally, but this is computationally demanding. Another way is to use a

nonuniform mesh in the vertical direction. In this study, ten cells are used in the

vertical direction. Grid stretching with the focus point at the free surface (see figure

3.1) is introduced to capture the velocity profile more accurately. For shallow water,

a uniform mesh is reasonable since the particle velocity of the waves extends down

to the seabed, as visualized in figure 5.6. However, for deeper water and a uniform

mesh, the velocity profile is only captured by some of the cells closest to the surface.

Consequently, adjusting the vertical stretching factor of the numerical grid in simu-

lations for deeper water will have a more significant impact on the results than for

shallower water, which is especially visible for shorter waves (see figures 5.7 and 5.8).

Since the most accurate amount of vertical stretching depends on the depth, it im-

plies that there is no one correct answer for this domain. In other words, artificial

phase-shifting will occur, but the aim is to reduce it to a neglectable amount. By

investigating figure 5.1, it is evident that the depth off the coast, in the northern

channel, southern channel, and Bjørnafjorden is ranging from 325 m to 675 m (ex-

cept for some subsea ridges in the southern channel). To get the most accurate vertical

stretching factor for these depths is therefore emphasized.

Numerous simulations with different vertical stretching factors have been conducted.

In figure 5.7, 5.8, and 5.9, two of the most accurate solutions are presented. Waves

in deep water require a high factor of vertical stretching to avoid significant phase-
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Figure 5.8: Free surface elevation, at different depths, with different vertical
stretching factors for Wave Input 2.

Wave Input 3
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Figure 5.9: Free surface elevation, at different depths, with different vertical
stretching factors for Wave Input 3.
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shifting. Comparing the results for WI3 to WI1 and WI2, it is evident that a refine-

ment of the grid close to the free surface is necessary to replicate the wave motion in

deep water (wavelength small compared the to depth) accurately. For longer waves,

like WI3, a vertical stretching of the grid will not influence accuracy considerably,

especially compared to the effect that is visible for WI1 and WI2.

Using a vertical stretching factor of 1.8 will result in a significant lagging phase error

(one wave period per 10 km) for the deepest parts of the domain for WI2. A lagging

phase error means that wave speed is less than the analytical solution, the opposite of

a leading phase error. For shallower depths, the result of this factor is more accurate.

On the other hand, a vertical stretching factor of 2.5 results in a small lagging phase

error (approximately one wave period per 100km) for a depth of 675 meters. The

leading phase errors of the results from the shallower domains are in the same order

of magnitude. Similar results are shown for WI1.

Unlike the one-dimensional simulations in this section, the large-scale simulations

will be conducted with irregular incident waves made up of 2048 regular wave com-

ponents. The wave periods of these components are determined by the JONSWAP

spectrum. This implies that shorter wave components will also be generated for the

simulation of WI3. With that in mind, it is reasonable to use a vertical stretching

factor of 2.5 for all simulations to ensure that the wave model is able to capture the

velocity profile of shorter waves in deep water, thus reducing the numerical dispersion.

5.3 Coastal Damping Distance

Section 3.5 presents the theory of how REEF3D::FNPF incorporates a numerical

coastline. This method requires two inputs by the user: the threshold water depth

and the coastline damping distance.

The threshold water depth ĥ is set to 10 cm.

The coastline damping distance is the length of the coastal relaxation zone (see figure

3.3). The determination of this parameter is a trade-off between unphysical damping

and reflection of the coastline. A small coastal relaxation zone may cause a reflection

off the numerical shoreline because the energy of the waves is not entirely dissipated

within the relaxation zone. On the other hand, a more extended coastal relaxation

zone might reduce waves traveling along the coastline. In this study, the importance

of diffraction is high, and a considerable damping distance will unrealistically miti-
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Figure 5.10: Location of Eldjarnet and Kyrholmen, highlighted by a red box.

gate the effect.

An example is the wave propagation around Eldjarnet and Kyrholmen (see figure

5.10). An extensive coastline damping distance dissipates the energy from waves

traveling around these islands and towards Bjørnafjorden, and therefore reduces the

fidelity of this study.

The purpose of this part of the thesis is to find the smallest damping distance that

does not result in an unphysical reflection of waves. Simulations of the northern

channel combined with WI3 are used to determine the required damping distance.

Figure 5.11, 5.12, and 5.13 visualize the particle velocity at the numerical coastline

for a coastline damping distance of 100 m, 120 m, and 200 m, respectively. Figure

5.13 illustrates that a damping distance of 200 m substantially dissipates the energy

of the waves all over the domain. However, the dissipation process is too substantial,

which is visualized in figure 5.16. A damping distance of 200 m causes a dissipation of

waves traveling parallel to the coastline at depths of up to 300 m, which is unrealistic.

Contrarily, a coastline damping distance of 100 m results in less unphysical damping.

Figure 5.14 shows that the coastal relaxation zone extends to depths of approximately
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Figure 5.11: Particle velocity at the numerical coastline for a damping distance of
100 m.

150 m at the deepest. Nevertheless, significant reflection is evident all over the do-

main (see figure 5.11).

To increase the damping distance to 120 m results in some reflection. However, this is

mainly in the outer coastline and is relatively small. At P3, there is a difference in the

significant wave height of two percent between simulations with a damping distance

of 120 m and 200 m. Additionally, the coastal relaxation zone is not unnecessarily

extensive, which is visible in figure 5.15. Most of the numerical coastline remains in

shallow water, although there are some small stretches where the energy is dissipated

for depths up to 250 m.
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Figure 5.12: Particle velocity at the numerical coastline for a damping distance of
120 m.

Figure 5.13: Particle velocity at the numerical coastline for a damping distance of
200 m.
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Figure 5.14: Depth at the start of the coastal relaxation zone. The coastline is
represented by the black lines. Coastline damping distance = 100 m.

Figure 5.15: Depth at the start of the coastal relaxation zone. The coastline is
represented by the black lines. Coastline damping distance = 120 m.
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Figure 5.16: Depth at the start of the coastal relaxation zone. The coastline is
represented by the black lines. Coastline damping distance = 200 m.
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Chapter 6

Study of Wave Properties in

Bjørnafjorden

The numerical domain is decomposed into a computational grid with a cell size of

25x25 meters in the horizontal directions, and ten cells in the vertical direction. The

sigma-grid, with a vertical stretching factor of 2.5, determines the mesh size in the

vertical direction. This grid resolution yields 25 200 000 cells. The CFL criterion is

set to 1.0, which results in a constant time step of 0.309 seconds under these condi-

tions. Combined with a simulated time of 12 800 seconds, the simulation will require

an enormous number of calculations. The workload is therefore distributed across 256

processors, resulting in an average of 98 437 cells per processor. The supercomputer

FRAM is used to conduct the simulations with the run time presented in table 6.1.

Wave Input 1 (0 degrees) 15 hrs, 56 min

Wave Input (45 degrees) 16 hrs, 28 min

Wave Input (315 degrees) 16 hrs, 35 min

Wave Input 2 15 hrs, 07 min

Wave Input 3 16 hrs, 26 min

Table 6.1: Run time of full-scale simulations.

Figure 6.1 shows that the incident waves are imposed at the western boundary (green

box), while wave absorption zones (red boxes) are placed at the other boundaries to

avoid unphysical reflection. Energy is also dissipated within the coastal relaxation

zone that extends 120 m out from the coastline.

The location and identification of the 22 numerical wave gauges in the computational

model are also illustrated in figure 6.1. Seventeen of these wave gauges are placed
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offshore and along both channels to see how the waves develop as they propagate

towards Bjørnafjorden, while five of the wave gauges are placed in Bjørnafjorden to

determine the wave conditions in the fjord.

The three different wave inputs presented in Section 4.2 are used in the full-scale

modeling of Bjørnafjorden in different directions, resulting in five unique simulations.

These wave properties are imposed as first-order irregular waves made up of 2048 reg-

ular waves. The individual wave periods are distributed according to the JONSWAP

spectrum, with the corresponding peak shape parameter γ set to 3.3. The directional

spreading of the incident waves is determined by the Mitsuyasu-type spreading func-

tion, with a shape parameter n of 80 and a sector of 180 degrees.

The results of these simulations are presented in the following sections. Comparisons

to measured data and numerical results from phase-averaging models are also pre-

sented. Additionally, simulations with the phase-averaging wave model SWAN are

conducted in this study to complement the data presented by Aarnes [1]. The work

by Aarnes involved simulations with real hindcast data as wave input. So the pur-

pose of including simulations with SWAN in this work is to have more comparable

simulations with the same wave input. The wave state is calculated with a spatial

resolution of 150 m, 35 frequency bands, and 36 directional sectors, which is equal to

the simulations presented by Aarnes.

6.1 Numerical Results

One of the advantages of using phase-resolving wave models compared to phase-

averaging wave models is that each wave component is solved explicitly and hence

providing more informative visualizations. The wave propagation for the different

incident wave angles is presented in figures 6.2, 6.3, and 6.4. As one would expect,

the waves propagate through the northern channel and the southern channel. The

change in wave direction is distinct around Kyrholmen in the northern channel. The

energy of these waves is concentrated towards the location of P18 and P19 due to

refraction and diffraction.

On the other hand, waves from the southern channel are hardly visible in Bjørnafjorden.

Even though the curve of the propagating waves in the southern channel is more gen-

tle than in the northern channel, the energy is dissipated more significantly. One

reason is the obstruction due to small islands and protruding parts of the land. An-

other reason is the water depth. In the northern channel, the gradient close to the

48



Figure 6.1: Illustration of the numerical domain, wave generation zone, wave
absorption zones, and wave gauges (P1 - P22).

Figure 6.2: Free surface elevation in the domain for Wave Input 1 with the main
wave direction of 0 degrees. Simulated time: 10 000 seconds.
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Figure 6.3: Free surface elevation in the domain for Wave Input 1 with the main
wave direction of 45 degrees. Simulated time: 10 000 seconds.

Figure 6.4: Free surface elevation in the domain for Wave Input 1 with the main
wave direction of 315 degrees. Simulated time: 10 000 seconds.
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shoreline is sharp, and the water is deep in the fjord, causing little wave-seabed in-

teraction. However, in the southern channel, the water is shallower, resulting in more

wave-seabed interaction. Waves are refracted towards the even shallower water, and

the coastline, where the energy is dissipated.

The shallow water area of the southern channel could also cause low-frequency waves

to decompose into smaller wave components. This process, and the capability of

REEF3D to replicate it, is investigated by Bihs et al. [11].

It takes approximately 30 minutes for the waves to propagate from the offshore loca-

tion to Bjørnafjorden.

Figure 6.3 illustrates a weakness of this study; when imposing an incident wave di-

rection of 45 degrees, the waves will not directly propagate towards the inlet of the

southern channel. To overcome this challenge, a domain that extends further south

is needed. However, figure 4.6 indicates that the most severe wave conditions are

because of waves propagating from the west or northwest. For an incident wave angle

of 315 degrees, the domain area is sufficient.

As stated in Section 5.3, some reflection in the outer parts of the coast is expected

in the simulation. These reflected waves propagate in a north-south direction, or a

westerly direction, and are especially visible in the less disturbed offshore areas of the

domain in figures 6.3 and 6.4. An alternative simulation with more extensive damp-

ing to avoid reflection is computed to check the impact of these reflected waves, and

the difference in wave height at P1, P2, P16, and P17 is approximately four percent.

This effect is therefore considered neglectable in this study due to the direction and

the small wave height.

6.1.1 Northern Channel

The significant wave height in the northern channel for different incident wave di-

rections is presented in figure 6.5. An incident wave angle of 45 (propagation from

the southwest) or 315 degrees (propagation from the northwest) results in higher

waves offshore (P1, P2, and P3). However, the inlets of the two channels are both

facing west, consequently making waves entering the channels in from the west less

obstructed. The significant wave height at P4 manifests this characteristic.

Figure 6.6 displays the significant wave height with a main incident wave direction

of 0 degrees. The results for the similar simulations with SWAN are also presented.
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Figure 6.5: Northern channel. Relative significant wave height for Wave input 1
with different incident wave directions.
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Figure 6.7: Northern channel. Wave spectra for Wave Input 1.

The findings of REEF3D shows that the wave heights of WI1 and WI2 are reduced

the most at the inlet (between P3 and P4) and close to Kyrholmen (between P5 and

P6/P7) while the wave height of WI3 is significantly reduced at the entrance of the

channel.

When comparing the results of REEF3D and SWAN, the deviations are significant.

In the offshore region, SWAN tends to calculate higher waves than REEF3D. Inside

the fjord, the energy of the waves is dissipated more extensively for SWAN result-

ing in smaller waves. However, the results at P7 match to some extent for all three

wave inputs. While REEF3D estimates approximately the same wave height at P6

and P7, SWAN calculates the wave height at P7 to be almost ten times as high as P6.

Recall from Section 5.2 that there will be some numerical dispersion in the model.

Nevertheless, this is reduced to a minimum for this domain. Over a distance of ten

kilometers, the wave phase is shifted by a maximum of one-fourth of the wavelength,

according to figures 5.7, 5.8, and 5.9. However, with the varying depth, the amount

of numerical dispersion will change over the domain. The waves in the domain are

phase-shifted by a wavelength every 40 kilometers, as a conservative approximation.

Given the longest wave input (WI3) at 680 m, the artificial change of a wavelength

due to numerical dispersion will be 11.5 m or a change of 1.7 percent in wavelength

from the wave generation zone to P22, assuming that this distance is 40 kilometers.

The error might be even smaller when considering wave frequency. The simplified

reason is that the relationship between the wave period and wavelength is ranging

from proportional to quadratic depending on the water depth, according to linear wave

theory. Hence, the artificial phase-shift due to the numerical dispersion is neglectable.
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Figure 6.8: Northern channel. Wave spectra for Wave Input 2.
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Figure 6.9: Northern channel. Wave spectra for Wave Input 3.
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The development of the wave spectra for WI1 (figure 6.7) and WI2 (figure 6.8) is sim-

ilar; the frequency distribution remains unchanged, and the energy is reduced as the

waves propagate through the northern channel. However, there is a small deviation

at P6. As the waves turn northwards, there is some tendency of energy moving to

higher frequencies. This effect is more significant for WI2, which in general consists

of smaller waves than WI1.

The redistribution of energy is even more significant for the longer waves of WI3 (fig-

ure 6.9). At P6, a notable amount of energy is redistributed to waves of almost twice

as high frequency as the input frequency. The development of energy in waves with

a frequency of approximately 0.01 Hz is another noteworthy characteristic of figure

6.9.

The sharp bend in the northern channel acts as a filter for higher frequency waves in

Bjørnafjorden. The reason why the energy of higher frequencies are heavily reduced

in P8 and P9 is that the refraction and diffraction process is more substantial for

longer waves. That is why the shorter waves strongly influence the wave spectra at

P6 and partly P7, but not at P8 and P9.

6.1.2 Southern Channel

Figure 6.10 presents a comparison of the wave height from different incident wave

directions in the southern channel. Similar to the northern part, it is evident that

waves that are coming from the southwest and the northwest result in smaller waves

in the fjords, compared to waves propagating from the west. However, due to the

constraints of the domain and the model configuration, the waves coming from the

southwest will not directly propagate towards the southern channel. Waves are only

imposed on the western boundary of the numerical domain, and with an incident wave

angle of 45 degrees, only diffracted waves will reach the inlet of the southern channel.

The wave propagation is visible in figure 6.3. To correctly analyze the influence of

waves coming from the southwest, the domain needs to be extended in the southern

direction.

For waves coming from the west (figure 6.11), the reduction in significant wave height

is more evenly distributed in the southern channel than in the northern channel. Nev-

ertheless, the wave heights of WI3 are significantly reduced at the inlet of the fjord,

between P16 and P15. A considerable amount of these long waves are probably re-

fracted towards the shoreline due to the relatively shallow water. Although REEF3D
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and SWAN provide very similar results for WI3, SWAN does not capture this feature.

For WI1 and WI2, the wave heights calculated by SWAN are, in general, smaller than

what is estimated by REEF3D. The same trend is evident for the northern channel.
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Figure 6.10: Southern channel. Relative significant wave height for Wave input 1
with different incident wave directions.
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Figure 6.11: Southern channel. Relative significant wave height for different wave
inputs with a wave direction of 0 degrees.

Evaluating WI1 and WI2 (figure 6.12 and 6.13), the distribution of wave frequency

appears unchanged offshore and in Selbjørnsfjorden (P15-P13), except for the dissi-

pation of wave energy. However, for WI3 (figure 6.14), the distinct peak frequency

is lost as the wave energy is spread over a wider band of frequencies when the waves

enter the shallow inlet of Selbjørnsfjorden. As the waves propagate into Langenuen

(P12-P10), a peak in the frequency spectrum develops slightly below 0.01 Hz. This

peak in the frequency spectrum is particularly dominant in the results for WI3.
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Figure 6.12: Southern channel. Wave spectra for Wave Input 1.
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Figure 6.13: Southern channel. Wave spectra for Wave Input 2.
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Figure 6.14: Southern channel. Wave spectra for Wave Input 3.

6.1.3 Bjørnafjorden

Long waves with a frequency of approximately 0.01 Hz are also present in Bjørnafjorden

for all three wave inputs, although the energy of these wave components is low (see

figures 6.15, 6.16, and 6.17). More interestingly is the fact that these wave com-

ponents are not apparent in the results from SWAN despite being in the frequency

domain of the SWAN simulation. Since REEF3D::FNPF is the wave model with

fewer simplifications, it is reasonable to assume that the deficiency lies with SWAN,

which is not able to replicate these wave components.

In general, the dominating wave frequencies at approximately 0.06 Hz are captured

by both wave models. However, for all cases, SWAN seems to underestimate the

wave energy at P19, especially. One explanation is that the waves propagate over

bathymetry with a steep gradient, before reaching P19. Over a horizontal distance of

approximately 300 m, the water depth changes from 140 m to 378 m. Phase-averaging

models, like SWAN, are not as accurate for rapidly varying conditions, such as the

depth at this location.

The significant wave heights for the wave gauges in Bjørnafjorden, presented in table

6.2, illustrates the same tendency at P19. Additionally, the other wave gauges show

the same outcome; the significant wave heights calculated by SWAN are smaller than

the calculations by REEF3D.

The significant wave heights calculated by REEF3D varies from 14 cm at P22 to 58

cm at P18, where shoaling is evident. The depth at this location is 49 m, which causes
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the waves to slow down and the wave height to increase. It seems reasonable that

the wave heights for WI3 are higher than the two other wave inputs. However, that

is not the case for P18. When evaluating figure 6.17, it seems like a larger share of

the energy is redistributed to the lower frequencies compared to the other two wave

inputs. This effect is especially evident for P10 and P18, where also the difference in

significant wave height is smaller than at most of the wave gauges (see table 6.2).
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Figure 6.15: Wave spectra in Bjørnafjorden calculated by REEF3D::FNPF (left)
and SWAN (right) for Wave Input 1.
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Figure 6.16: Wave spectra in Bjørnafjorden calculated by REEF3D::FNPF (left)
and SWAN (right) for Wave Input 2.
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Figure 6.17: Wave spectra in Bjørnafjorden calculated by REEF3D::FNPF (left)
and SWAN (right) for Wave Input 3.

REEF3D::FNPF SWAN
Wave Input 1 Wave Input 2 Wave Input 3 Wave Input 1 Wave Input 2 Wave Input 3

P9 0.25 m 0.23 m 0.28 m 0.10 m 0.08 m 0.13 m
P10 0.18 m 0.17 m 0.21 m 0.05 m 0.04 m 0.05 m
P18 0.58 m 0.54 m 0.55 m 0.27 m 0.23 m 0.29 m
P19 0.28 m 0.24 m 0.41 m 0.09 m 0.07 m 0.11 m
P20 0.19 m 0.18 m 0.32 m 0.14 m 0.11 m 0.19 m
P21 0.17 m 0.15 m 0.18 m 0.05 m 0.05 m 0.07 m
P22 0.17 m 0.14 m 0.26 m 0.09 m 0.07 m 0.09 m

Table 6.2: Significant wave height in Bjørnafjorden.

6.2 Discussion of the Results

6.2.1 Discussion of the Results

In the study by Aarnes [1], simulations with a phase-averaging wave model are pre-

sented to evaluate the wave conditions in Bjørnafjorden because of swell waves. The

computed significant wave height for a 100-year return period is 3 cm in the middle

of the proposed fjord crossing, close to P20. The swell waves are imposed offshore at

the western boundary and are based on 15 years of wave measurements. The signif-

icant wave height is statistically calculated. However, these results are compared to

measurements that indicate a significant wave height of approximately 30 cm for a

return period of 100 years is to be expected in Bjørnafjorden. The conclusion in this

study is that SWAN attenuates swell too efficiently propagating into the fjord. This

outcome is also evident in this study when comparing REEF3D and SWAN in table

6.2.
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Cheng et al. [17] also analyze wave measurements from Bjørnafjorden. The dataset

contains 27 024 samples from 19 months. There were 11 occasions where the wave

height surpassed 30 cm, and the wave period exceeded seven seconds. These mea-

surements indicate that the significant wave height for swell waves should be well

above 30 cm for a return period of 100 years. The location of these measurements

was approximately at P19 and P20.

The significant wave height of 40 cm, calculated by Norconsult and presented in the

design basis for the fjord crossing [45], might be a more accurate estimate. However,

the value is assumed to be constant across the fjord due to a lack of adequate data,

which raises some concerns about the validity of the estimation.

Based on the results from both REEF3D and SWAN (see table 6.2), it is evident that

shoaling occurs at P18 and P19, which corresponds to almost one-third of the fjord

crossing. This physical process results in twice as high waves for the northern part of

the fjord crossing. So, to assume a constant significant wave height across the fjord

appears inaccurate.

Measurements in Bjørnafjorden shows that the wave height is reduced by approxi-

mately ten percent between P19 and P20 [17]. The results for REEF3D shows the

same tendency between these two locations, but with a magnitude of approximately

25 percent. However, these measuring points are not in identical positions, and small

changes in the location could cause significant changes in the water depth, especially

with the rapidly varying water depth around P19. SWAN, on the other hand, con-

sistently calculate higher waves at P20 than P19. This deviation is due to rapidly

varying water depth, as discussed earlier.

Compared to the significant wave heights presented in this section, the results from

REEF3D appears to be of the same magnitude. Phase-averaging wave models, like

SWAN and STWAVE, often struggle when the conditions are quickly varying, mak-

ing the calculations of, among other physical processes, refraction and diffraction less

accurate. These processes are particularly critical for wave propagation in Norwegian

fjords and might be the reason for the deviations in the results. Based on the sim-

ulation with Wave Input 1, where the offshore significant wave height for a 100-year

return period is simulated, the significant wave height at the fjord crossing is ranging

from 17 cm to 58 cm. The wave height could potentially be even higher closer to

the shore than P18. The Hs at P20, calculated by REEF3D, are smaller than the

measured data, which are given for a location close to P20. A too extensive coastal

damping zone might be the reason.
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The distribution of energy for different frequencies of swell waves is not illustrated

in the studies presented in this section, which is understandable since the impor-

tance of swell waves in Bjørnafjorden is small compared to wind-generated waves.

This type of wave is the main focus of these studies. However, the results from the

phase-averaging simulation in this study show that SWAN is struggling to capture

low-frequency waves that develop in the domain.

All the studies indicate that the impact of the northern channel is more significant

than the southern channel, with the simulation by REEF3D revealing that 80 to 85

percent of the wave energy is coming from the northern channel. This value coincides

with the results presented in the design basis [45].

6.2.2 Inhomogeneity at Fjord-Crossing Locations

It is common to assume homogeneous wave conditions across a fjord, meaning that

the wave parameters are constant, yet this is often not the case in reality. Measure-

ments in Bjørnafjorden [17] reveal that the wave parameters are varying along the

proposed fjord crossing. The simulations by REEF3D show the same trend; the wave

heights (see table 6.2) and the distribution of wave frequencies (see figures 6.15, 6.16,

and 6.17) in the fjord are different to some degree. Particularly the longer waves of

WI3 result in inhomogeneous wave conditions. The inhomogeneity of the wave condi-

tions is an essential aspect since it is shown that inhomogeneous waves result in larger

sway motion, axial force, and strong axis bending moment, together with significantly

increased weak axis bending along the bridge girder compared to homogeneous wave

conditions [16].

As illustrated by the introduced wave spectra, the wave energy is spread out over a

broader band of frequencies in Bjørnafjorden compared to an offshore location. Still,

the peak wave periods are quite distinct in Bjørnafjorden. The peak period along

the proposed fjord crossing ranges from 15.5 seconds to 16.7 seconds for WI1 and

WI2, and from 20.4 seconds to 22.2 seconds for WI3. Additionally, waves with a

period of approximately 100 seconds are apparent in Bjørnafjorden for all wave in-

puts. In the design of floating structures, these wave periods are used to check if they

match the eigenfrequencies of the structure, which could cause resonance. The first

five eigenfrequencies of the proposed bridge design are 56.72, 31.69, 22.68, 18.62, and

14.33 seconds [15], which implies that none of the wave conditions investigated in this

study will excite any of the modes of the proposed bridge. Nevertheless, the swell

waves might be relevant for other aspects of the bridge design, like fatigue calculations.
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Although the influence of swell waves is relatively small, it could coincide with wind

from the west or the northwest direction, resulting in an amplified effect. This sce-

nario is likely to occur since one of the two longest fetch distances in the fjord is

along the line of P6, P7, P8, and P9, and measurements reveal that the dominating

direction for wind waves in Bjørnafjorden are from the northern channel [17].
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Chapter 7

Conclusion and Outlook

7.1 Summary

The main goal of this thesis is to simulate the swell wave conditions in Bjørnafjorden

with the phase-resolving wave model REEF3D and to test the results against other

wave models and measured data. The theoretical basis and the basic concepts of

the fully nonlinear potential flow model are presented in Chapter 2 and Chapter 3.

Before the large-scale simulations are calculated, the different input parameters are

established to ensure the fidelity of the simulations. Initially, offshore wave parame-

ters are determined to get realistic wave inputs used in the verification of the model,

and the large-scale simulation. These wave inputs are used in a two-dimensional grid

convergence study, with both constant depth and varying bathymetry, to obtain the

necessary grid size in the horizontal plane, and the amount of grid stretching in the

vertical direction. Furthermore, three-dimensional numerical simulations of Korsfjor-

den was used to determine the optimal coastline damping distance.

During the validation of the numerical model, it is observed that a horizontal grid size

of 25 meters in both horizontal directions gives accurate results, with an error in the

wave amplitude of approximately one percent. The numerical dispersion in the model

is reduced to a neglectable amount with the implementation of vertical stretching of

the grid. A vertical stretching factor of 2.5 with a focal point at the free surface

yields an artificial phase-shift of the waves below 1.7 percent of the theoretical value.

Finally, the coastline damping distance is set to 120 meters to optimize diffraction

and reduce the unphysical dissipation and reflection of wave energy.

In the large-scale simulations of Bjørnafjorden, different incident wave angles are

evaluated. These simulations show that waves with the main direction from the west

cause the most severe waves in the fjords, even though the simulation with waves
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coming from the southwest was hampered due to the restrictions of the domain. The

northern channel affects the wave conditions in Bjørnafjorden more than the shallow

waters of the southern channels, which is in agreement with all available studies. The

simulations with Wave Input 1 is emphasized in this study since it is based on the

significant wave height for a return period of 100-years on an offshore location.

Besides the large-scale simulations with REEF3D, additional simulations with SWAN

are performed. These simulations are performed with the same configurations as

Aarnes [1] to complement the data presented in his study. The only difference is the

wave input, which is identical to the ones used in the simulations with REEF3D.

The simulations with REEF3D show that swell waves with significant wave height up

to 0.58 meters are apparent in Bjørnafjorden. SWAN, on the other hand, predicts a

maximum wave height of 0.27 meters for the same offshore wave input. Nevertheless,

some of the other studies indicate that phase-averaging wave models underpredict the

wave height, which is reasonable given that these are the less demanding models of

the two types of wave models. Data from field measurements for 19 months present

several data points with waves higher than 0.3 meters, which indicates that the sig-

nificant wave height for a 100-year return period is well above the 27 centimeters

proposed by SWAN, and it strengthens the statement that SWAN underestimates

the wave conditions. Even though it is stated that parts of the simulation are inad-

equate, it is worth noticing that simulations with STWAVE calculated a significant

wave height of 40 centimeters in Bjørnafjorden [45].

Both types of models show agreement when it comes to the development of the wave

spectra at the peak frequency. In the northern channel, the shorter wave components

are filtered out by the sharp curve since diffraction and refraction are more signifi-

cant for longer waves. Whereas in the southern channel, wave spectra calculated by

REEF3D indicates that energy is redistributed to waves at a frequency of approxi-

mately 0.01 Hz. SWAN, on the other hand, does not capture these low-frequent wave

components.

Finally, the wave conditions in Bjørnafjorden is found to be inhomogeneous, which

implies that the design wave parameters are varying across the fjord. However, it

is assumed homogeneous wave conditions in the design basis of the proposed fjord

crossing [45], even though the study by Chen [16] found it to be a nonconservative

assumption.
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7.2 Conclusion

Large-scale simulations have successfully been simulated with the phase-resolving

wave model REEF3D::FNPF to explore the wave conditions in Bjørnafjorden. The

quickly varying bathymetry of this fjord is a challenge for numerical wave models, yet

this wave model is proven to be stable and relatively efficient.

The numerical model is verified through several two- and three-dimensional simu-

lations. The necessary grid resolution is found to be 25 meters in both horizontal

directions, while a nonuniform sigma-grid with ten cells is used in the vertical di-

rection. A coastline damping distance of 120 meters is found to be the minimum

distance to avoid the unphysical reflection that will corrupt the results. Despite be-

ing significantly more computationally demanding than phase-averaging models, this

numerical model requires a computation time below 17 hours on 256 processors, which

is relatively efficient.

The significant wave height with a 100-year return period is calculated by REEF3D::FNPF

to be 0.58 meters for swell waves, which is approximately one-fifth of the correspond-

ing wave height for wind-generated waves. Even though the influence from swell waves

in Bjørnafjorden is small compared to wind-generated waves, co-occurrence with the

same direction is an anticipated event, and so cannot be neglected in Bjørnafjorden.

Additionally, the comparison to measured data shows better agreement with results

from REEF3D::FNPF than results from SWAN, which support the claim that phase-

averaging wave models are underestimating the wave heights. The phase-average

models also struggle to replicate the low-frequent wave components that are gener-

ated in the southern channel.

This thesis illustrates the capability of phase-resolving models, exemplified by REEF3D::FNPF,

and proves that these models are significant upgrades from phase-averaging wave mod-

els, provided that the necessary computational resources are available and that the

wind-generated waves are also considered.

7.3 Outlook

This study illustrates several of the advantages by using phase-resolved wave mod-

els compared to phase-averaging wave models. With the increased utilization of the

ocean space and the expected extreme weather due to global warming, environmental

forces, like wave forces, are of increased importance in the design process of marine

structures. Consequently, resulting in an increased demand for more accurate nu-
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merical models, which could result in high demand for well-developed phase-resolved

wave models for large-scale modeling in the future. Another factor is that computer

resources are continuously becoming less costly, making the upgrade from phase-

averaging to phase-resolving wave models less expensive.

Nevertheless, phase-resolving wave models are still relatively unproven for large-scale

wave modeling, especially for challenging topography like the Norwegian coast. Fur-

ther verification of the model is therefore needed. One possibility is to gather simulta-

neous wave data for an offshore and in-fjord location. The offshore wave data is used

as input for the wave model, while the in-fjord data is used to check if the numerical

model can replicate the wave propagation accurately.

One major disadvantage of the more advanced phase-resolved wave models is the

lack of wind-generated waves in the domain. However, for REEF3D, this is expected

to be implemented in the future. Another limitation of the numerical model is the

dissipation of the energy at the coastline. The existing method raises the concern

with a trade-off between unphysical damping and a reduced diffraction process, and

artificial reflection. The development of an alternative method with a less extensive

damping distance, which still can dissipate the energy sufficiently, will provide more

accurate refraction and diffraction processes.
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