Saket Jain

Application of Machine Learning
methods to flow problems in
unsaturated soil

Master’s thesis in MSc Geotechnics and Geohazards
Supervisor: Prof. Rao Martand Singh, NTNU, Dr. Ivan Depina (Research
Scientist, SINTEF), Mr. Emir Ahmet Oguz (PhD Candidate, NTNU]

June 2020

2
2
=
2

& &
o<
[}
23
{:)E
[N
9]
F G
T 4
c O
T >
o X
O S
& ®
g2
wn
Y—
o
2
(2]
—
19
=
c
)
c
.©
o0
:
o
Pz

o
C
=
(]
Q
£
oo
c
[im]
©
-
c
()
£
[
o
=
>
C
[im]
©
[
©
=
(@)
[T
(o]
—
c
()
£
€
©
o
[
[a]

® NTNU

Norwegian University of DIGITAL®
Science and Technology -

1. Preface

This thesis is about the application of different machine learning techniques to the process of
infiltration in the field of Geotechnical Engineering. It is a part of the project Klima Digital,
which is a spin-off project of Klima2050 in collaboration with SINTEF. This report fulfils the
requirements of TBA4900: Geotechnical Engineering, Master’s Thesis (30 Credits), as part of
International program in MSc Geotechnics and Geohazards at NTNU, Trondheim, during

spring semester of 2020.

Trondheim, 11" June 2020

iy

(Saket Jain)

2|Page

2. Acknowledgement

I have taken efforts in this project. However, it would not have been possible without the kind
support and help of many individuals and organizations. I would like to extend my sincere
thanks to all of them.

I'am highly indebted to Prof. Rao Martand Singh (Supervisor - NTNU), Dr: lvan Depina (Co-
Supervisor — SINTEF), and Mr. Emir Ahmet Oguz (Co- Supervisor - NTNU) for their guidance and
constant supervision as well.

As for providing necessary information regarding the project & also for their support in
completing the project.

I'would like to express my gratitude towards members of Norwegian University of Science and
Technology (NTNU), Trondheim, Norway and SINTEF

for their kind co-operation and encouragement which helped me in
completion of this project.
My thanks and appreciations also go to my friends for their help in developing the project
and people who have willingly helped me out with their abilities.

Thank you!

3|Page

Contents

Lo PIOIACE ettt ettt ettt 2
2. ACKNOWIEAZEMENLooiiieiiieiiiieiieeie ettt ettt ettt et e sibe et esaaeesbeassseensaesnseans 3
B ADSIIACT. ...ttt ettt h e bt e bt e et e b e st e e beeeaee 5
(0] 1101 () S LSS PP 6
INEEOAUCTION ...ttt ettt et ettt b e e s 6
I.1 0 Background.........coouiiiiiiiiiiecee ettt erae e ennes 6
| O] o <Tv1 5 AL PSSP 6
1.3 LAMIEALIONS ettt ettt ettt b et ettt e e sb e bt et ebe e bt et e sae e b enees 7
L N 0] (o - Tl H PSPPSR 7
1.5 Structure of the REPOTt.....cccueiiiiiiiiiecee e e 7
CRAPLET 2.ttt ettt e et e bt e st e e teeeab e e bt e enbeeseeenbeenbeeenbeesaennseens 14
Machine Learning Techniques to simulate infiltration............cccceeceviereniniencnicneenenene 14
2.1. Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)............... 17
2.2. Physics-Informed Neural Network (PINN)cccooviiiiiiiiiiiiieieeeeceeee e 27
(O] 1T 01 1<) o ST UUUPSUURURUPRRPRRRPRO 31
Theorical Background of Infiltration and Data Generation............ccoceevvevveneenienieneenennn. 31
3.1 Richard’s EQUAtION.......cccoieciiiiiieiiciieeieece ettt e ae e e eseenneas 31
3.2 Soil Water characteristic curve (SWECC)cccuvieeiiieriieeeiie ettt 32
3.3 Soil Matric Potential or Pressure head 1.........oocoeviieiiiiiiiiiiiiieeece e, 33
3.4 MOdEING SWCC.....co ottt ettt e e e e e e e s aaeesnaeeesnaeesnseaenns 33
3.5 SOIl tyPe dESCIIPLION ...eouviiiiieiieeiiieiie ettt ettt et et e et stte e sateebeesaaeenbeesnbeenseessneenseas 34
3.6 Datd GENETATIONeevieniiiiiiiiieiieie ettt ettt ettt ettt et sbt e be et e sbtenbe et e sseenbeennesanens 37
L0 1101) U USSR 42
Modelling with Python Code.........c.cooiiiiiiiiiiiiieiecece et 42
4.1 Long Short-Term Memory (LSTM) or Time series predictioncccceeeeveereenennnens 43
4.2 Physics-Informed Neural Network (PINN)c.ooiiiiiiiiiiiiieceeeee e 45
CRAPLET 5. ettt ettt e et e e bt e te e et e e bt e eabeeteeenbeenbeeenbeeseennaeens 47
RESUILS & DISCUSSIONS.eeuiiiieiiiiiiiieieeite ettt ettt sttt satesae b saeens 47
S8 R 51 1/ RS PRSRRSRRR 47
5.2 PINN Lttt ettt b et e h e bt et et e bt et e a bttt h e bt et e b e bt et satens 55
5.3 DISCUSSION ...ttt ettt ettt et sb et ettt s bt e bt e st e sb e e bt et e sat e bt enbeebeenbeennesanens 58
L0 1101 () A ¢ USSR 60
CONCIUSIONS ...ttt ettt et h bt ettt sb e bt et ebee bt enbesatesbe et e satenbeentesanens 60
RETETEICES ...ttt ettt ettt sb et e e bt e sanens 62
F N 07 01S) 116 G RS SUPSRRRR 63

4|Page

3. Abstract

Machine Learning (ML) is showing promising results in various fields of science and
engineering. In this thesis, idea to apply machine learning to the infiltration process in the soil
is explored. In order to do this, two main Machine Learning techniques are identified, Long
Short-Term Memory (LSTM) and Physics Informed-Neural Networks (PINN). Both of these
techniques use very different concepts to achieve the same goal. LSTM is used for sequential
or timeseries data, therefore values of water content (8), and pressure head (1) were calculated
and arranged in space and time. PINN uses the underlying Richard’s equation to mimic
infiltration. Both techniques have their own drawbacks but in this study PINN proved to be
better than LSTM. All the modelling was done using Python 3.6 in Sypder, Anaconda.

S5|Page

Chapter 1
Introduction

1.1 Background

The knowledge of hydrophysical properties of soil is extremely valuable in several disciplines
of science all the way ranging from agriculture to ecology ///. Hydrophysical characteristics
of soil i.e., water retention curve and hydraulic conductivity in saturated and unsaturated zones
have been historically measured experimentally or estimated using mathematical or statistical
models. However, due to the recent developments in the field of Artificial Intelligence (Al)
and Machine Learning (ML), we have come closer to solve such intricate problems in the field
of geotechnical engineering, using Al or ML. Moreover, due to our ever-increasing computing
power (which follows Moor’s law) and the rise of importance and the amount of data, these
methods have gained significant importance in the recent times. This provides us with an
opportunity to develop methods based on this data science of Machine learning, to compete or
complement our knowledge/models of these physical processes.

In Machine Learning, Artificial Neural Networks (ANNs) are used to identify patterns and
trends in data which can be missed otherwise. Historically, this is implemented to solve several
problems in the field of geotechnical engineering. Most of these applications were on
liquification analysis, pile foundation, slope stability, particularly where finding analytical
solutions were difficult /2]/3]. Other applications included settlement of foundations, soil
property estimation, site characterization, parameter estimation, prediction of the movement of
slopes. Another technique called Convolutional Neural Network (CNN) which specialize in
image recognition, has been used for grain size distribution using images, landslide
susceptibility mapping etc. Similarly, there are other techniques in Machine Learning, which
have been used in past to solve several other problems in geotechnical engineering. Table 1
gives a list of research done with ML and Al techniques to solve geotechnical problems. In this
thesis, the infiltration process in unsaturated soil has been studied by using Machine Learning.

1.2 Objectives

The main objective of this thesis was to develop a machine learning model which can replace
the physical models to replicate the infiltration process in an unsaturated soil. Moreover, one
of the major objectives of this research is also to explore the problems which can be addressed
in geotechnical Engineering using Machine Learning. The objectives of this thesis are as
follows:

6|Page

e Identification of Different Machine Learning techniques which can be used to mimic
infiltration process into the soil mass.

e Modelling our data in a way which is suitable to the ML technique to process.
e Identifying the potential and limitations of these techniques by studying the results.

e Discussing other problems in geotechnical engineering, which can be addressed using
these and other methods in ML.

1.3 Limitations

The scope of this study is limited to theoretically generated data. Therefore, performance of
the models will be needed to be tested on experimental data, which is outside the scope of this
thesis. Sometimes ML models are very specific to datasets. Therefore, they might need to be
optimized in order to use them for another dataset. Moreover, the models suggested can be
studied more given noise in the data, but ultimately it mainly boils down to the lack of time.
Lastly, COVID-19 has definitely affected the work pace of this thesis.

1.4 Approach

Two Machine Learning techniques namely Long Short-Term Memory (LSTM) and Physics
informed Neural Networks (PINNs) were identified to simulate infiltration. After a detailed
understanding of these techniques data was generated using a Python code named as
RichardsEquationdatagenerator.py. Then, the data was modelled to feed both the algorithms.
Afterwards, results were studied separately of the individual techniques. Finally, they were
compared to discuss which technique should be preferred.

1.5 Structure of the Report

The structure of the report is as follows:
e Chapter 1 outlines the objectives of the study.
e Chapter 2 gives a detailed understanding of the Machine Learning Techniques used.
e Chapter 3 introduces to the background of Infiltration Process and Data Generation.

e Chapter 4 introduces and explains the Python code and how does it address
Infiltration through LSTMs and PINNs.

e Chapter 5 presents and discusses the results produced by both techniques

e Chapter 6 states the conclusions of the thesis.

7|Page

No | Researchers | Data collection Techniques Results
methods
1 Pile driving records Reanalysed using neural networks
Goh 1996 Actual pile Back They indicated that the neural
driving records Propagation | network predictions
Neural are more reliable than the
Networks conventional pile driving
formulae
2 Application of an Artificial Neural Network for Analysis of Subsurface
Contamination at the Schuyler Falls
Landfill, NY
Rizzo and Historical Data Artificial Applied and tested a new
Dougherty Neural pattern method on a variety
1996 Networks of site characterization
problems, called it “SCANN™
(Site characterization using
Artificial Neural
Networks), Unlike the kriging
methods, SCANN is
data-driven and requires no
estimation of a
covariance function. It uses a
feed-forward counter
propagation training approach
to determine a "best
estimate" or map of a discrete
spatially distributed
field.
3 Prediction of Pile Bearing Capacity Using Artificial Neural Networks
Lee and Lee In situ pile load Error Back | The results showed that the
1996 tests obtained Propagation | neural networks predicted
from a Neural values corresponding the
literatures Networks measured values much
better than those obtained from
Meyerhof’s equation.
4 General regression neural networks for driven piles in cohesionless soils
Abu-Kiefa Historical Data General Concluded that the GRNNM is
1998 Regression | applicable for all
Network different conditions of driven
piles in cohesionless
soils.
5 Prediction of Pile Capacity Using Neural Networks
Teh et al. Historical Data Back The study showed that the
1997 Propagation | neural network model
Neural predicted the total capacity
Networks reasonably well. The
neural-network-predicted soil
resistance along the
pile was also in general

8|Page

agreement with the

CAPWAP solution.
6 Subsurface Characterization Using Artificial Neural Network And GIS
Gangopadhya | Historical Data Multilayer | The integrated approach of
y et al., 1999 perceptron | ANN and GIS, is shown
using to be a powerful tool for
the characterizing complex
backpropagat | aquifer geometry, and for
ion calculating aquifer
algorithm parameters for ground-water
flow modeling.
7 Artificial intelligence techniques for the design and analysis of deep foundations
Nawari et al., Historical Data NN, and Based on the results from this
1999 Generalized | investigation, it
Regression | appeared that the proposed
Neural neural network models
Network furnish a pragmatic and a
reliable alternative for the
current analysis and design
techniques of axial pile
capacity and laterally loaded
piles.
8 Bayesian Neural Network Analysis of Undrained Side Resistance of Drilled Shafts
Goh et al., Historical Data Bayesian The developed neural network
2005 neural model provided good
network estimates of the undrained side
algorithm | resistance adhesion
factor. Furthermore, one distinct
benefit of this neural
network model is the
computation of the error bars on
the predictions of the adhesion
factor. These error
bars will aid in giving
confidence to the predicted
values and the interpretation of
the results.
9 Undrained Lateral Load Capacity of Piles in Clay Using Artificial Neural Network
Das and Historical Data Back The developed ANN model is
Basudhar, Propagation | more efficient compared to
2006 Neural empirical models of Hansen and
Networks Broms.
10 Prediction of Friction Capacity of Driven Piles in Clay Using the Support Vector
Machine
Saumi, 2008 Data Base SVM With the database collected by

Goh (1995) the study
shows that SVM has the
potential to be a useful and

9|Page

practical tool for prediction of
friction capacity of
driven piles in clay.

11

Modelling Pile Capacity Using Gaussian Process Regression

Pal and
Deswal
2010

Actual piledriving

records
in cohesion-less
soil

Gaussian
Process
(GP)
Regression
and SVM

The GP regression approach
works well in predicting

the load-bearing capacity of
piles as compared to the

SVM approach. Another
conclusion from this study

is that the Pearson VII function
kernel performs well

in comparison to the radial basis
function kernel with

both GP- and SVM-based
approaches to model the

pile capacity. The results of this
study also suggest

that GP regression works well
as compared to the

empirical relations in predicting
the ultimate pile

capacity.

12

Prediction of Pile Settlement Us

ing Artificial Neural Networks Based on Cone
Penetration Test Data

Nejad and
Jaksa
2010

Database

Back
Propagation
Neural
Networks

The results indicate that back-
propagation neural

networks have the ability to
predict the settlement of

pile with an acceptable degree
of accuracy (r=0.956,
RMSE=1.06 mm) for predicted
settlements ranging

from 0.0 to 137.88 mm.

13

Intelligent Computing for Modeling Axial Capacity of Pile Foundations

Shahin 2010

Historical Data

Artificial
Neural

Networks
(ANN)

The results indicate that the
ANN models were

capable of accurately predicting
the ultimate capacity

of pile foundations and compare
well with what one

would expect based on available
geotechnical

knowledge and experimental
results.

14

Neural Network Model for Predicting the Resistance of Driven Piles

10| Page

Park and Cho
2010

data from
dynamic piles
load test

Artificial
Neural
Network
(ANN)

The results showed that the
ANN model served as a
reliable and simple predictive
tool to predict the

resistance of the driven pile
with correlation

coefficient values close to 0.9.

15 | Neural Network Application in Prediction of Axial Bearing Capacity of Driven Piles
Harnedi and Pile Driving Artificial The results showed that the
Kassim Analyzer (PDA) Neural neural network models
2013 Network give a good prediction of axial
(ANN) bearing capacity of
piles if both stress wave data
and properties of both
driven pile and driving system
are considered in the
input data.
16 | Application of Artificial Neural Network for Predicting Shaft and Tip Resistances of
Concrete Piles
Momeni et Pile Driving Artificial Founded that a network with
al., Analyzer (PDA) Neural five hidden nodes in one
2015 Network hidden layer yields the best
(ANN) performance.
Additionally, through a
sensitivity analysis, it was
founded/ that the pile length and
cross sectional area
are the most influential
parameters in predicting the
bearing capacity of piles
17 Analysis of Ultimate Bearing Capacity of Single Pile Using the Artificial Neural
Wardani et Full-Scale Pile Artificial The results showed that neural
al., Load Test and Neural networks can be used
2013 SPT Network for prediction of ultimate
(ANN) bearing capacity of single
pile foundation and the model
have the highest
performance among the other
methods, even though
the difference is not too big.
18 | ANN Prediction of Some Geotechnical Properties of Soilfrom their Index Parameters

Tizpa et. al
2014

Database

Arificial
Neural
Network
(ANN)

Comparison between the results
of the developed

models and experimental data
indicated that

predictions are within a
confidence interval of 95 %.
According to the performed

sensitivity analysis,

11|Page

Atterbeg limits and the soil fine
content (silt+clay)

are the most important variables
in predicting the

maximum dry density and
optimum moisture content.

19 Load—settlement modeling of axially loaded steel driven piles using CPT-based
recurrent NNs
Shahin Pile Load Tests, Recurrent | Founded that the developed
2014a and (CPT) Data neural RNN model has the
network ability to reliably predict the
(RNN) load—settlement
response of axially loaded steel
driven piles, and
thus, can be used by
geotechnical engineers for
routine design practice.
20 Evolutionary-Based Approaches for Settlement Prediction of Shallow
Foundations on Cohesionless Soils
Shahnazari Historical Data Polynomial | In this study, the feasibility of
et. regression, | the EPR, GP and GEP
al genetic approaches in finding solutions
2014 programming | for highly nonlinear
(GP), problems such as settlement of
& gene shallow foundations
expression | on granular soils is also clearly
programming | illustrated
(GEP)
21 State-of-the-Art Review of Some Artificial Intelligence Applications in Pile
Foundations
Shahin Historical Data Artificial Al techniques perform better
2014b intelligence | than, or at least as good
as, the most traditional methods.
22 | Arttificial Neural Network Model for Prediction of Bearing Capacity of Driven Pile
Maizir et. al Pile Driving Artificial The results show that the ANN
2015 Analyzer (PDA) Neural model serves as a
test data Network reliable prediction tool to predict
the resistance of the
driven pile with coefficient of
correlation (R) values
close to 0.9 and mean squared err|
(MSE) less than
1%.
23 Toward improved prediction of the bedrock depth underneath hillslopes: Bayesian

inference of the bottom-up
control hypothesis using high-resolution topographic data

12| Page

24

Gomes et al. High-resolution Numerical | The results demonstrate that the
2016 topographic data modeling, | proposed DTB
and model with lumped parameters
Bayesian mimics reasonably
analysis well the observed regolith depth
data with root mean
square error (RMSE).
Determination bearing capacity of driven piles in sandy soils using Artificial Neural
Networks
Mazaher and Database MLP Neural | The NN has very high
Berneti Network efficiency in predicting load
2016 carrying capacity of metal piles,

and it is concluded

that soil internal friction angle,
soil elastic modulus,

pile diameter and pile length
respectively have

maximum effect on load
carrying capacity of piles.

Table 1 - Summary of some applications of Al and ML techniques in geotechnical engineering [3].

13| Page

Chapter 2
Machine Learning Techniques to
simulate infiltration

In this thesis, an attempt was made to predict the pore pressure head, and the water content in
unsaturated soil by two Machine Learning techniques. First technique is called Long Short-
Term Memory (LSTM). It is an extension of Recurrent Neural Network and has been explained
in detail in the sections below. This technique required to pose this infiltration problem as a
time-series prediction or sequential data problem.

LSTM is a very powerful and proven technique whose applications can be seen for various
timeseries data emanating from sensors, stock markets and government agencies. In addition
to these, this technique is also pretty good at text generation, sequencing genomes, handwriting
recognition, Natural Language Processing (NLP), and even at music generation /4/. Before
proceeding on to the original data set, this technique was tested on opening price of google
stocks on NASDAQ for the last 3.5 years. Then a prediction was made of the opening stock
price of the same for the 20 days. Figure 1 below shows the values of opening stock price for
the last 3.5 years and Figure 2 shows real vs the predicted price for the next 20 days. This can
be refined and tuned to produce much better results than this. Furthermore, same technique was
also tested on another two datasets. Figure 3 shows the result of the 1% dataset which is
generated using a sine curve with some noise. In this case, model is trained from 0 to 200
timesteps and predicts from 201 to 400 timesteps. Result of second dataset is shown in Figure
4, where a damping equation is used to generate data without noise. Whereas, model is trained
for 0 to 100 timesteps and predicts from 101 to 200 timesteps.

900 T
800 +
700 +
600 +
500 +

400 A

300 +

Price of Stocks in USD

200 +

100 +

0 f } } } t } {
0 200 400 600 800 1000 1200 1400
Number of days

Figure I - Opening Stock prices of google at NASDAQ for the last 3.5 years.

14|Page

Google Stock Price Prediction

—— Real Google Stock Price
= Predicted Google Stock Price

Google Stock Price

T T
0.0 b5 5.0 5 10.0 12.5 15.0 17.5
Time

Figure 2 - Real vs predicted opening stock prices of google at NASDAQ for the next 20 days.

Predicted Values

Real Values

Sine Values

Time Steps

Figure 3 — Real vs predicted values of a sine curve with noise (0 — 200 training set, 201 — 400 testing/validation set)

—>—Real
08 1

—=—Predicted
06 +

04 1

02 +

04 +

-06 +

Time Steps

Figure 4 — Real vs predicted values on a damping curve (0 — 100 training set, 101 — 200 testing/validation set).

15|Page

After LSTMs, another ML technique, Physics Informed Neural Networks (PINNs), was tried
to mimic infiltration. This technique helps us to move forward from an approach, in which
huge amount of data is fed into deep learning algorithms, to extract knowledge and hidden
patterns in the data. It is done in a manner, which is agnostic to the underlying scientific
principles driving these variables, therefore techniques like LSTMs are also called Black Box.
These black box models have been very successful and show very promising results in
commercial problems, computer vison, speech recognition etc [5],[6]. However, these
techniques don’t really work on a lot of scientific problems, often because of the lack of
scientific data required for these models. Moreover, since these methods are black box
methods, interpretability is very limited. This is very important especially in any scientific
application, because that will be the basis for the further scientific research.

We can better understand with the dichotomy (Figure 5) between Theory — based data science
models (PINNs) verses Data Science models /7]. X- axis represents the amount of data being
used, and Y-axis represents the amount of theory utilized. In the green region, there are purely
theory-based models, based on equations, scientific theories, numerical models etc. Despite
their huge progress, they contain certain significant knowledge gaps, to describe certain
processes that are either too complex to understand or too difficult to observe directly. In the
blue, we have data science models, that have ample amount of data, but agnostic to the
underlying scientific theories. Both green and blue zone make an ineffective use of knowledge
of scientific theory and data. Therefore, there is a need for developing data science methods
which can use both scientific knowledge and data on an equal footing. This is the paradigm of
Theory-guided data science, that tries to take unique ability of data science methods to
automatically extract knowledge and pattern from data but without ignoring the treasure
accumulated in scientific theories.

AT
1%5]
High "'s / \
~| [8
§ =
< kS
3 § Theory - guided Data
= | Science Models
2
S| &
2 S
il =
«w |
o —
S \ 4
W
)
Eow [Data Science M odels}
Low Use of Data High

Figure 5 - Dichotomy between scientific models vs data-science models.

16| Page

2.1. Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM)

Long Short-Term Memory Networks or in short LSTM networks are an extension of Recurrent
Neural Networks (RNN). In order to understand LSTM, we first need to know Neural
Networks.

Neural Networks are set of algorithms which are designed to closely mimic the working of a
human brain to find and identify patterns in different forms of data (Figure 6 & Figure 7). This
network comprises of several units of Neurons/Perceptrons, which are connected by synapses
or weights. A biological neuron gives a response to a stimulus. This response is passed over to
the next neuron in the network via synapses, and this continues. An artificial Neuron does the
same by taking the input number as a stimulus. In response, it will perform a calculation on
this number via some activation function like sigmoid. Then this result will be multiplied by a
synaptic weight and passed on as an input (stimulus) to the next neuron in the network. It
usually takes a network of multi-layer Neurons to successfully complete the training process
and it is achieved by adjusting the synaptic weights in the network until a particular input leads

to a target output.
/
2 axon X
O'f" 1 \\
A \l
s)
cell body i T A
“ >
v

terminal axon 0

dendrites
7

Figure 6 - Shows the biological Neuron (left) and mathematical Neuron (right)

oy W
N
Input

output

synapse synapses
Figure 7 - Shows the mathematical equivalent of biological synapse

Recurrent Neural Networks or RNN’s are the best suited algorithm for sequential data and have
enormous applications like of which in Apple’s Siri and Google’s voice search/recognition,
handwriting recognition, music generation etc. It is quite suitable for machine learning
problems which involve sequential data, due to its ability to remember its input. Being recurrent
in nature, it performs the same operation for every input, while the output of the current input
depends on the previous computation. The produced output is then copied and sent back to the
recurrent neural network as an input. To make a decision, it considers the current input and the
output that it has learned from the previous input.

17| Page

RNN’s can be understood easily by the following example of a perfect roommate (because he
cooks everyday), which is inspired from a book Deep Learning: Grokking /8/. Let’s assume
this perfect roommate is actually very organized and very methodical, and therefore he cooks
in rotating sequence i.e., 1** day apple pie, 2" day Burger, 3™ day chicken and then repeat.
Therefore, it can be predicted what he is going to cook today based on what he cooked
yesterday. Hence, his cooking schedule somewhat looks like Figure 8 starting with an apple
pie on Monday. In Figure 9 we can see the output from last time, is being fed as an input for
this time. Hence, this network is recurring in nature and therefore, called Recurrent Neural
Network.

Monday Tuesday Wednesday Thursday Friday Saturday
< — 3 — 4 — < ¥
=< L‘é e R —r i \:_,3 —b e
Apple pie Burger Chicken Apple pie Burger Chicken

Figure 8 - Shows Cooking schedule of the perfect roommate [8]

Figure 9 - A typical RNN unit and its input

However, RNN’s usually have two inputs: one is a present input and the other is the output of
the last computation looped in as input. This also can be understood by a very similar example
again inspired from the textbook Grokking Machine Learning /§/. Again, we have the example
of this perfect roommate. He is still very methodical and organized, but now his rule for
cooking is a combination of two rules. He still cooks in the same sequence of Apple pie, Burger
and Chicken, but now his decision to cook also depends on the weather. If it’s sunny, he will
go outside and enjoy the day and therefore, he will not be cooking and will just give the same
thing as yesterday i.e., leftovers. If it’s rainy he will stay at home and will cook the next dish
on the list. In Figure 10, we can see on Monday he made an apple pie. On Tuesday we checked
the weather and its sunny, so we get the apple pie from Monday. And Wednesday turns out to
be rainy, so we get the next thing on the list i.e., Burger. On Thursday its rainy again so Chicken
and on Friday its sunny so we get the chicken from Thursday, and so on and so forth. Therefore,
an RNN like this looks like the one in Figure 11.

18| Page

Monday Tuesday Wednesday Thursday Friday Saturday

. ¢ ¢
A ~¢—>\‘$’3:$ e s > — e

Apple pie Apple pie Burger Chicken Chicken Apple pie
e — — %o e %o

Figure 10 - Cooking Schedule with weather [§]

Figure 11 — A typical RNN unit with two inputs

In short, RNN has a short memory. While making a decision, it considers the current input and
also what it has learned from the inputs it received previously. Therefore, RNN’s are good at
predicting sequential data. However, there are still two major issues that RNN’s have had to
deal with, exploding gradients and vanishing gradients.

Exploding gradients occurs when algorithm without much reason assigns an unreasonably high
importance to the weights. Fortunately, this problem can easily be solved by truncating or
squashing the gradients. On the other hand, vanishing gradient occurs when the value of
gradient is very small, i.e., the learning rate of the model is practically zero. It was a major
problem during 1990s and much difficult to solve than the exploding gradients. Fortunately, it
was solved through the concept of LSTM by Sepp Hochreiter and Juergen Schmidhuber /4.

A mathematical perspective

In order to proceed with LSTM, we should take a look at RNN and vanishing gradient problem
from a mathematical perspective. Then, we can have a clearer picture how LSTMs are effective
in solving the underlining problem with RNN. Let’s start off with a basic formula of RNN and
then visualize it. It works on the following recursive formula.

St = Fy(Se-1,X¢) (1)
Where, X; is the input at time step t, S; is the state at time step t and F,, is the recursive function.

Let’s look at the simplest representation of RNN and call it a simple RNN (Figure 12). In our
example, the recursive function is a tanh function. In equation (2) we multiply the input state
X¢, with weights of X which is Wy. While, the previous state S;_; is multiplied with W;, which
is a weight of State or S. The sum of the two values is passed through the activation function
tanh, which gives us the current or new state S;. In order to get an output vector, we multiply
the new state with W, as in Figure 12.

19| Page

St = tanh(WS,_y + WxXy) (2)

Output

Input

Figure 12 - A simple RNN

In unrolled RNN (Figure 13), we have a previous state Sy, and the input at time step 1 is Xj.
The RNN calculates the new state S;, based on this recursive formula, and gives us the output
Y;, by multiplying it with the weight, W,,. In the next time step, this new state §;, and X, serves
as the input and give the next state S,, and then the output Y,. This same thing goes on for many
times steps, but here it’s important to note that, same weights are used throughout the network
ie., Wy, W, and W,,. In multilayer RNN, the output generated as Y;, and Y, serves as input as
shown in Figure 14.

As we know RNN learns through backpropagation through time*. We calculate the loss using
the output and go back to update the weights, by multiplying gradients. As can be seen in Figure
15, Let’s Assume each state has a gradient of 0.01 and we have 100 states, therefore we have
to go back to each state and update the weights. To update the 1% state, the gradient will be
(0.01)199 =~ Q. Therefore, the update in weights will be negligible, and thus the neural network
wouldn’t learn at all. And therefore, this problem is called vanishing gradient problem, which
is addressed by LSTM.

*Backpropagation through time is a training algorithm used to update weights in recurrent
neural networks like LSTMs. In order to do this, model completes the forward propagation to
get the output, checks if the output is correct or not, to get the error, and then model goes back
to find the partial derivatives of the error with respect to the weights, which enables it to
subtract this value from the weights. Those derivates are then used by gradient decent
algorithm to adjust the weights up or down, to minimize the error. This done over several
iterations minimize a given function.

20| Page

Output Output

Figure 13 - A Unrolled RNN

Figure 14 - Multilayer RNN

21| Page

Update in weight = (0.01)1°° = 0

0.01 H
0.01 001 o0.01
|::> | > > > | RNN

100 time steps

Figure 15 - A visual representation of vanishing gradient problem in RNN

As stated earlier, LSTM networks are an extension of RNN’s, which basically extend the
memory. LSTM’s enable RNN’s to remember inputs over a long period of time. They contain
information in a memory, which is quite similar to the memory of a computer from which
LSTM’s can read, write or delete information.

This memory can be visualized as a gated cell, as the cell decides whether or not to store or
delete information (i.e., if it opens the gate or not), based on the importance it assigns to the
information. Importance is assigned through weights, which are learned by the algorithm. That
means, the model learns by itself which information is important, and which isn’t.

In an LSTM, you have three gates: input, forget or output gate. These gates determine whether
or not to let new input in (input gate), delete the information because it is not important (forget
gate), or let it impact the output at the current timestep (output gate). Figure 16 is an illustration
of an RNN with its three gates.

Figure 16 - Schematic Diagram for a LSTM Unit cell

22|Page

The gates in an LSTM network are analog in the form of sigmoid, therefore they range from
zero to one, instead just zero as one if it was digital. This enables them to arrange the
information in the order of importance and enables it to perform much -efficient
backpropagation through time.

In the following example, we can see how LSTM solves the problem of vanishing gradient. As
stated before, LSTM comprises of three gates and one cell state, and these are additional
interaction to an RNN. Mathematical formulation of all the gates have been given below. In all
the gates, previous state S;_; and X; are takes as input and are multiplied with respective
weights i.e., Wr, W;, or W, and then passed through a sigmoid activation function. One of the
important things to note here is each gate has a different set of weights. Moreover, there are
two different weights in one gate itself, one is to multiply with previous cell state and another
for the input X;. But both are represented as one weight to reduce the level of complexity, in
visualization. C, is an intermediate cell state which can also be calculated just like these gates
but with its own set of weights and then by passing through tanh activation function. And after
that cell state is calculated by multiplying input gate with intermediate cell state and adding it
to the product of previous cell state and forget gate. And then we pass the cell state through the
tanh activation and multiply it with the output gate.

fi = O'(VV}St_l + Wth) Forget gate
ir = o(W;Si_, + W X,) Input gate
0, = o(W,Si_1 + W, X;) Output gate
— (3)
C; = tanh(W,.S;_; + W.X,) intermediate cell state
e =t %) + (f, X 6pi) Cell State
S; = o; X tanh(c,) New State _—

In the Figure 17, it can be understood in a much better way. Here, we have our old state S, the
input X;, and our previous cell state which is . First, calculate the input gate by passing the
previous state and input through sigmoid activation. Then, calculate our intermediate cell state
by passing input and previous state through tanh activation. After that multiply the input gate
to intermediate cell state and then similarly, calculate the forget gate and multiply it with the
previous cell state Cy. Then, add both of these products to obtain a new cell state C;. This gives
the output gate and then it is multiplied with the new cell state C; passed through tanh
activation. It gives us the new state S;. Finally, this new cell state C; and the new state S, are
passed over to the next time step so it can be used for further calculation. By following these
steps LSTM solves the problem of vanishing gradient and works better than RNN, in terms of
accuracy.

23| Page

v

Backpropagation through time (BPTT) in RNNs

Figure 17 - A visual representation of the working of LSTM.

After the output is generated in an RNN, we compute the prediction error and use the
backpropagation through time algorithm to compute the gradient, which is change in prediction
error with respect to the change in weights of the network (4). Gradients in all the time steps
are added to find the final gradient and this gradient is used to update the model parameters.
This learning process continues and is called gradient decent algorithm.

08 _ N\ 05 4)
ow t=1aW
oE

W%W—am

Where, E is the total error,

Where, E is the total error, Er is the error in a single time step, W is the weight and « is
the coefficient to determine the change in weight.

Now, let’s say we have a learning task that includes T time steps, then the gradient of the error
on the k' time step is given by:

BEk _ 6Ek Bhk 652 651

oW — 0hy ds, s, OW

24| Page

0, ohy (T 05\ 9s:)
- ahk aSk) aSt_l ow

Now, s, = tanh(W,s,_, + WxX,),

So,

0s¢

0
P tanh' (Wese_y + Wy X). 5— (Wese—q + WxXy)
t-1

0S¢

= tanh'(Wyse—1 + WxX,). Wy (6)
Plug 6 into 5,

k
OE, _ OE, ol l—[, 9.
oW — 9hy dsg < tanh’ (Wyse—y + WxXe). W |50

t=2
The last expression tends to vanish when k is large, this is due to the derivative of the tanh
activation function which is smaller than 1.
So, we have,
K

1_[tanh' Wgse_q + Wy X). Ws; = 0

t=2
So, for some time step k:

0FE
9Bk _

ow
Therefore, the whole error gradient will vanish.
OE ~o 0F;
—_— NN
ow Luow

t=1

0

The network’s weights update will be:

wow—all Lw
-W—-a—=
Yow

In addition, no significant learning will be done in reasonable time.

Backpropagation through time (BPTT) in LSTMs

As in RNNSs, the error term gradient is given by the following sum of T gradients (4). For the
complete error gradient to vanish, all these T sub gradients need to vanish. If we think of it as
a series of functions, then by definition, this series converges to zero if the sequence of its
partial sums tends to zero. So, if we want the gradient not to vanish, our network needs to
increase the likelihood that at least some of these gradients will not vanish.

25| Page

0E _ ~ 0y
ow — Luow

t=1

In LSTMs too, the gradient of the error for some time step k has a very similar form to the one
in RNN:

0B, 0E,0h, dc,dc, O, ohy < £ dc, >6€1

oW ~ dhy dc, " dc, OW Oy dcy, e, Jow 7

_Oce
As we have seen [[¥_, —— 5o, causes the gradients to vanish.

In LSTM, cell state is represented as,

ce = (i X C)) + (fe X ¢e—1)

And therefore,
dc d .
aCt; =3¢) [(lt X Ct) + (fe X Ct—1)]
i, xCt)+ X c
actl(t t) atl(ft t-1)
die ~ 0C aft aCt 1 (8)

= . Ct + . lt + — C f
dce dce—q dceq 6 Ct—1
We can denote the four elements comprising the derivative of the cell state by:

di . 0
dce_1’ f

t = [o(W;[Se—1 + X D]. G

0ct—1

~

0s¢
=0 (W[St 1+Xt]) Wl a Ct
Ct—1

= o' (W[Se—1 + X¢]). Wi 0¢_y. tanh’ (c,—1). C;

Ce 0 .

B, = P lp = P [o(W,[Se-1 + XeD]- i
dsy .
= o' (W,[Se- 1+Xt])I/Vca e

Ct—1
=o' (W[St-1 + Xc]D-W. 041 tanh’ (c;—1). i;
o, 9
Ct —. t-1 = [O'(Wf[st—1 +Xt])]-ct—1
dce—q 0cr

ds
= O'I(Wf [St—l + Xt]) Wf a_t Ct—1
Ce—1

26| Page

== O-,(Wf [St—l + Xt]) Wf O¢_1. tanh’(ct_l). Ct—1

act 1
act 1

Je=fi

We write the additive gradient (8) as:

dc;
act 1=At+Bt+Ct+Dt
Plug the value of aict into the original equation
t—-1
K
OE, OE, dhy dc, ©)
= | | A+ By + Ce + D¢ | =—
oW ~ 0hy, dcy, t_z[e+ B+ G+ D ow

The presence of forget gate’s activation allows the LSTM to decide, at each time step, that
certain information should not be forgotten and to update the model’s parameters accordingly.
This allows the network to better control the gradients values.

Let’s go over how this property helps us. Say that for some time step k<T, and we have a

situation as follows,
k
> 5
W
t=1

Then, for the gradient not to vanish, model finds a suitable parameter update of the forget gate
at time step k+1 such that,

k+1
0Er 0
— %
ow
t=1
It is the presence of the forget gate’s vector of activations in the gradient term along with
additive structure which allows the LSTM to find such a parameter update at any time step,

such that the overall gradients don’t vanish.

2.2. Physics-Informed Neural Network (PINN)

Physics Informed neural networks are quite unique and different than other Neural Networks.
This technique provides a solution to the differential equations using Neural Networks. Due to
a large amount of differential equations in engineering and science, this tool becomes very
useful, in order to automatize these fields. One of the reasons of this being so unique is that,
there is no training, testing or validation set.

In this technique, we are essentially posing every ODE/PDE and converting into an
optimization problem and trying to automatize the whole process by using Neural Networks
instead of Finite difference methods. So here, Neural Network can solve as well as learn from
the solution and hence, it is a step forward towards full automation for solving differential

27| Page

equations using Neural Networks. We can understand this properly by a simple example. So,
let’s say we have a function u differentiable in x and has a simple differential equation (10).

0’u odu

 ta—=b (10)
0x? +a ox

with boundary conditions as: u(0) = u,, u(1) = u,;,where x € (0,1)

To solve the above equation using Neural Networks, we deploy a single hidden layer Neural

Network, which takes x as an input and gives u as output (Figure 18).

u = NN(x)

As Universal approximation theorem suggests, we can always approximate the solution of u
arbitrarily closely by a neural network. Hence, Neural Networks are quite excellent function
approximators.

Hidden Layer

Figure 18 — A typical neural network with single hidden layer consisting of 10 neurons with one input and one output.

Now, to understand how it helps us, let’s assume, a very simple neural network. As can be
seen in Figure 19, It just have one input x, one hidden neuron a,, activated by a sigmoid
function (o) and the output is a linear layer u.

@ :0

Output
Hidden Layer

Input

Figure 19 — A Neural network with one hidden layer made of 1 neuron.
So, we can write the following
a; = o(wyx)
u=wyo(w;x)

du
a = wyo' (Wi x)wy (1)

Where, w, is the weight in the neural network.

28| Page

.. d?u
Similarly, we can calculate —, ... etc.
dx?

That means all derivates of u with respect to input x can be found. But it can be said that its
only possible because, here we have just one single neuron in one single layer. But if we have
multiple neurons or multiple hidden layers with multiple neurons, we can use autograd or
automatic differentiation. The idea is similar to Backpropagation, we can always find out the
difference of output using the difference of input, same as in backpropagation, and we use
difference of loss function to the difference in weights. This automatic differentiation is present
in TensorFlow package. Now using this, we can find out all the differential terms in the
equation. Now, we can pose the whole problem as optimization problem, as shown in equation

(12).
(12)

; 0%u N ou b= 0
= —_— a— — =
0x? 0x
Now, since we can’t make it exactly zero, as neural network can’t give the exact solution but

approximate it. Therefore, we can write it as follows

2

o d“u du g 13
f = minimize W+a%—b (13)

Now, this is the cost function and we can minimize it using gradient descent. But we also need
to accommodate the boundary conditions. We can do it buy adding that also to the cost function
(14).

ou

0%u ?
f = minimize <lﬁ + az_- bl + [ug — ugl? + [uj — u1]2> (14)

We can see, this looks like an extremely clever way of posing the problem. The whole
differential equation and all the boundary conditions together are now just an optimization
problem.

So, while solving it, algorithm tries various values of x, between 0 to 1. Calculate the
differential terms and tries to minimize the above-mentioned loss function. So, we can see, in
reality there is no training or testing set as in all the conventional Machine Learning or Neural
Network problems.

In Figure 20, x and t serves as inputs to the neural network, which figures out u. Now,
Automatic differentiation is used to calculate all the differential terms in the differential
equation. This can be channelled to the loss function and can be minimized using
backpropagation.

29| Page

PDE: f(u(x,t),0) = g

O EEN EEN EEN BN EEN BN EEN BN BN B N B Ry,

NN(x,t)

Loss function

V i
MSE = MSE(, pcic) + MSEg]

30|Page

Figure 20 - Schematic diagram to explain Physics informed Neural Network (PINN)

~

4

L P —————

Chapter 3

Theorical Background of
Infiltration and Data Generation

Infiltration process in an unsaturated soil is essentially a two-phase flow of two immiscible
fluids — air and water. The process of infiltration of surface water through the upper layers of
soil, enriches the soil moisture, and subsurface flow through soils, that are partially filled with
air. The understanding of this infiltration process is important for geotechnical engineers
because due to infiltration, unsaturated soil is transformed to saturated soil which is unstable
due to reduced effective stress and the suction forces in soil. Mathematically, the flow of water
in a variably saturated or unsaturated soil is described by Richard’s Equation.

3.1 Richard’s Equation

Richard’s equation can be obtained by combining continuity equation with Darcy’s Law.
Continuity equation in an unsaturated porous media having flow in one direction can be written
as given below.

00 0dq
EAR T
Where, 6 is water content, g is the rate of flow, ¢ is the time, and z is the depth.
Darcy’s law states that
q =—Ki
Where, K is hydraulic conductivity, i is the hydraulic gradient Z—Z, and H is the hydraulic head.

The above Darcy’s law is for one dimensional saturated flow. For unsaturated flow Hydraulic
head can be split in Suction Head () and gravity head (z). Therefore, we get

0
q=—K--(+2)

In addition, for unsaturated flow hydraulic conductivity (K) is a function of both ¥ and 6.
Therefore, 6 and v are intrinsically related as follows

31|Page

dy 0y oe
dz 00 0z
26 N P . .
Where, 5, 18 the gradient of water content in vertical direction and 55 18 the specific water

capacity or water storage constant.

Hence,

oy

Defining, D = K Pl

And D is soil — water dif fusivity

Therefore, we get
= [D 06 + K
1= 0z

From continuity equation,

06 0q
ot 0z
Therefore,
ae o a0
v _9[,9Y (15)
at 0z b 0z * K]

This is the Richards equation which is used to describe one dimensional flow in an unsaturated
media. It can also be expressed in terms of pressure head (16) /10].

96 9 o
== [k 2+ k)] (16)

3.2 Soil Water characteristic curve (SWCCQC)

A soil-water characteristic curve (SWCC) describes the amount of water retained in a soil under
the equilibrium at a given matric potential. This water retained can be expressed in terms of
mass or volume of water content, (6,,) or (6,). A SWCC plays a very important role in
understanding the hydraulic properties, which are related to size and connectedness of pore
spaces. Hence, SWCC is strongly affected by soil structure and texture, and other constituents
like organic matter etc. Modelling water distribution and flow in unsaturated soils requires an
understanding of SWCC, therefore it holds great importance in water management, and solute
and contaminant transport in the environment. Generally, SWCC is highly non-linear and is
quite difficult to obtain accurately. Because matric potential extends over several orders of
magnitude for the range of water contents commonly encountered in practical applications. It
is often plotted on a logarithmic scale. Figure 21 shows a general SWCC for sand, silt loam

32|Page

and clay, and it shows very clearly that there is a drop in matric potential with the increasing
particle size of the soil grains, i.e., decreasing capillary and adhesive forces.

10°

10*-
103 -
1021

101_

Matric potential (—-m)

100 4

101 4

102 - : r '
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Volumetric water content (m®m2)

Figure 21 - Typical soil-water characteristic curve for soils of different texture [9].

3.3 Soil Matric Potential or Pressure head ()

Matric potential is related to capillary and adsorptive forces acting between the three phases
i.e., solid, liquid and gas /70]. Capillary forces are generated due to the surface tension of water
making an angle of contact or the contact angle with the solid particles. It means that in the
non-wetting air phase, curved liquid-vapor interfaces (menisci) are formed within the porous
soil system. However, in addition to capillary forces soil also exhibit some adsorption forces.
In this process of adsorption soil particle is enveloped by a thin layer of water. In clayey soil it
is an important process, as clay has a smaller particle size, hence more surface area. In sandy
soil, adsorption is quite insignificant due to less surface area, and hence capillary effect
dominates. In general, however, matric potential is a combined effect of capillarity and surface
adsorption, and hence two cannot be considered separately.

3.4 Modelling SWCC

Measuring soil water characteristics is a very laborious and time-consuming task. 8 — 1 pairs
measured, are usually very fragmented and constitutes very few measurements over the
wetness range of interest. Therefore, for modelling and analysis purposes, and for
characterization and comparison between different soils and scenarios, it is quite common to
represent SWCC in a mathematical continuous form. Several approaches, ranging from
empirical parametric expressions to physically based models, with parameters derived from
measurable medium properties can be employed to represent a continuous SWCC.

One of the most effective and widely used parametric model for relating water content to matric
potential is called van Genuchten model ///] and is denoted as VG (17).

33|Page

m

9 =

6—-20 [1] an
=6, L1+ (ap)n

Where 6, and 6, are the residual and saturated water content, respectively. 1 is matric potential
or pressure head, and @, n and m are parameters directly dependent on the shape of 8 (1) curve.
A common simplification is to assume that m = 1 — 1/n. Thus, the parameters required for
estimation of the model are 8,., 85, a and n. 6, is sometimes known and easy to measure leaving
only the three unknown parameters 6,., « and n to be estimated from the experimental data in
many cases.

Following formulations from van Genuchten /0], [12] were used to calculate water content
(@), hydraulic conductivity (K), water storage coefficient (C), and effective water content

(Se).

So= [(18)
1+ (ayp)™
K = K,s05 (1 -(1- sel/m)m>2 (19)
g=p, +—s O (21)
[1+ (ap)m]™

Where, K; is the saturated hydraulic conductivity and S is the specific storage coefficient.

3.5 Soil type description

Data presented in the Table 2 has been used in the Python code vanGenuchten.py to produce
the values of Water Content (8), Hydraulic Conductivity (K), and Water Storage Coefficient
(C). Two standard soils have been used to do this analysis.

0, [m*m3] | 0 [m*m3] |a[m'] | n[] K [m/day] | S, [-]
Hygiene Sandstone 0.153 0.25 0.79 10.4 1.08 1E-06
SiltLoamGE3 0.131 0.396 0.423 2.06 0.0496 1E-06

Table 2 - Shows the description of the soil type used in this study.

e Hygiene Sandstone is a member of Pierre formation /73/. It is thick bedded and
frequently cross-bedded. Much of it is dark greenish grey and gritty. The remainder is
light grey. The whole is calcareous where fresh. It loses it’s lime in weathering, takes a
paler-greenish tint, and becomes friable. It frequently contains carbonaceous matter
resembling small sticks of wood turned to coal. It also contains fossils of invertebrates,
but its fauna is not yet known to be distinctive of this horizon. Figure 22 shows the
properties variation in hygiene sandstone with the change in pressure head 1.

34|Page

03 T

0.25 T

0.2 +

0.15 F

8 [mi.m3)

0.1 +

0.05 +

,_.
o

|

o

|

& A
|

A

|

™

o

0.2 +

0.15 +

0.1 +

ClmY]

0.05 +

K [m/day]
© o o B
£ @ o = N

S
o
!
T

o 4

-10 -8 -6 4 =
W [kPa]

Figure 22 - properties variation in hygiene sandstone with the change in pressure head .

e SiltLoamGE3 belongs from Touchet series. It consists of deep, moderately well
drained soils formed in recent alluvium on flood planes at elevations from 150 to 300
meters. It is typically found near Walla Walla River in Walla Walla County,
Washington USA. It contains 10 to 18 percent of clay particles and have moderate
permeability. Properties for this soil type is presented in the Figure 23 below.

35|Page

36|Page

0.45 T

0.4 4

0.35 4

0.05 4

-10

0.05 -

0.04 -

0.03 A

C[m1]

0.02 -

0.01 -

0.06 T

0.05 +

K [m/day]
- =
s &8 g

0.01 +

-10 -8 -6 -4 -2 0
Y [kPa]

Figure 23 - properties variation in SiltLoamGE3 with the change in pressure head y.

©
S 1 : : - : : : |
= 01 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.1+
6 [m3.m-3]
-Hygiene Sandstone SiltLoamGE3

Figure 24 - SWCC for Hygiene Sandstone and SiltLoamGE3

3.6 Data Generation

As mentioned in chapter 2, Long Short-Term Memory (LSTM) networks, is a machine learning
technique which is used to address time series problem or problems including sequential data.
Therefore, to use this technique in this thesis, infiltration problem was modelled as a problem
with sequential data and using a Python code RichardsEquationGenerator values of water
content (6), and pressure head (i) were calculated at every 5 cm depth and 150 times a day
for 10 days i.e., almost in every 10 minutes and was fed to the training algorithm. However,
just to keep the figures below comprehensive, it was reduced to 10 times a day for 10 days.
Moreover, it can be seen in the Figure 25, in the code snippet below, in line 148 infiltration
flux can be changed. With line 149, 150 and 151 boundary conditions can be altered. Lines 154
and 155 are used to define the grid in space, while, line 160 defines the grid in time. For analysis
purposes, two sets of data are created for each type of soil, one is with closed drainage and
another with open drainage condition.

psie=-z

psi=odeint(RichardsModel,psi®,t,args=(dz,n,p,vg,qTop,qBot,psiTop,psiBot),mxstep=5000008);

1
16
1

68print ("Model run successfully”)

Figure 25 - Shows the setup of the model in the Python code.

37|Page

Figure 26 shows the process of infiltration in HygieneSandstone with an influx of 0.01 m/day
with closed drainage. In Figure 26(b), it can be observed, in the beginning the pressure
distribution was hydrostatic, but as infiltration takes place it becomes constant to the depth, till
the water reaches i.e., around 3.5 meters. In Figure 26(a), discharge began to rise at around
60" observation, as soil approaches to its saturation value.

0.01
0.008 +
E 0.006
g
§ 0.004
0.002 +
0 t t + t t t T U t J
0 10 20 30 40 50 60 70 80 90 100
Time (n*" observation)
Rate of change in storage s Infiltration Discharge
(a)
5 1=
~
_
. ‘ %
~
-
=5 %
E 3 3 %
: ~
_
;. e
Q
1 1
0 0

s -4 =3 =2 =y 0 016 018 020 022 024
w[m] 6[-]
(b)

Figure 26 - Shows the infiltration process of Hygiene Sandstone without drainage.

38|Page

Similar to Figure 26, Figure 27 also shows the process of infiltration in Hygiene Sandstone
with an influx of 0.01 m/day but with open drainage. Therefore, this time In Figure 27(b), it
can be observed, in the beginning the pressure distribution was hydrostatic, but as infiltration
takes place it becomes constant to around -1.5 meters throughout the depth of the soil i.e., 5
meters. In Figure 27(a), we can observe that at the end, discharge becomes equal to the influx.
It is because of the open drainage condition.

0.01
0.008 +
™ 0.006 +
B
Y]
£
=
(=] (-
2 0.004
0.002
0 $ t t t + t + t ¥ {
0 10 20 30 40 50 60 70 80 a0 100
Time (n™" observation)
Rate of Change in Storage == Infiltration = == Discharge
(a)
S S
4 4
o |
£ 3
—
Lo
B
©
>
s 2
w
1 14
0 0 \

-5 -4 =3 =2 1 0 016 018 020 022 024
y[m] 6 [-]
(b)

Figure 27 - Shows the infiltration process of Hygiene Sandstone with open drainage.

39|Page

Figure 28 shows the process of infiltration in SiltLoamGE3 with an influx of 0.03 m/day with
closed drainage. In SiltLoamGE3 it was required to increase the influx as water penetration
was not very significant with an influx of 0.01 m/day. Initial pressure distribution was
hydrostatic in nature but, it can be observed in Figure 26 (b), that final pressure head is not
constant as in previous case with Hygiene Sandstone. Moreover, in Figure 28 (b) it can be
observed that, till around 85 time step, Rate of change of storage was equivalent to influx,
and discharge was equal to zero. That means, there is accumulation of water in the soil with
quite high build-up of pore water pressure. This can be a due to smaller particle size than that
of the previous cases.

0.03

e
0.025 +
0.02 +
o
E
g 0015
2
o
>
0.01 +
0.005 +
0 . . | e
0 20 40 60 80 100
time (n™ observation)
Rate of Change in Storage Infiltration = == Discharge
(a)
5 5
4 4
—
£ 3
—
c
L
.
©
>
% 2 2
1 1
0 0

5 -4 -3 =2 a1 0 0250 0275 0300 0325 0350 0375 0400
y[m] 6[-]
(b)

Figure 28 - Shows the infiltration process of SiltLoamGE3 without drainage.

40| Page

Figure 29 shows the process of infiltration for SiltLoamGE3 with an influx of 0.03 m/day with
open drainage. As in closed drainage, In Figure 28(b), it can be observed, in the beginning the
pressure distribution was hydrostatic, but as infiltration happens the final pressure head is not
constant, it changes. In the top part, final pressure increases, while in the bottom part it
decreases. The reason can be that as particle size decreases, adsorption forces start to dominate
the matric potential or pressure head instead of capillary forces, therefore it becomes more
unpredictable.

0.03

0.025 +

0.02 +

0.015 +

Volume [m?]

0.01 +

0.005 +

0 20 40 60 80 100
Time (nt™ observation)

Rate of Change in Storage Infiltration =~ == Discharge

(a)

Elevation [m]

- -4 -3 -2 -1 0 0250 0275 0300 0325 0350 0375 0400

Figure 29 - Shows the infiltration process of SiltLoamGE3 with open drainage.

41 |Page

Chapter 4
Modelling with Python Code

This chapter in the thesis is dedicated to explaining the Python code used to apply Long Short-
Term Memory (LSTM) Networks and Physics-Informed Neural Networks (PINNs) to the
dataset to mimic the infiltration process. All the work has been done in Python 3.6, using
Spyder from Anaconda. Anaconda is a free and open-source distribution, of the Python and R
programming language for scientific computing. Spyder is the scientific Python Development
Environment and it is a free Integrated Development Environment (IDE), that is included in
Anaconda.

In Data Science, while doing Machine Learning, a lot of libraries and packages are commonly
used. Those used in the thesis are as follows.

TensorFlow: It is a free and open-source software library for dataflow and
differentiable programming across a range of tasks. It is a symbolic math library and is
also used for machine learning applications such as neural networks.

Keras: It is an open-source neural network library written in Python. It is capable of
running on top of various libraries like TensorFlow, Microsoft Cognitive, Toolkit, R,
Theano or PlaidML. It is designed to enable fast experimentation with deep neural
networks, and it focuses on being user-friendly, modular and extensible.

NumPy: It is a fundamental package for scientific computing with Python. This library
adds support for large, multi-dimensional arrays and matrices, along with a large
collection of high-level mathematical functions to operate on these arrays.

Pandas: It is a software library written for Python. It is used for data manipulation and
analysis. In particular, it offers data structures and operations for manipulating
numerical tables and time series.

SciPy: It is a free and open-source Python library used for scientific and technical
computing. It contains modules for optimization, linear algebra, integration, special
functions, signal and image processing. It builds on NumPy array object and is part of
NumPy stack which includes tools like Matplotlib, pandas and SymPy and an
expanding set of scientific computing libraries. The whole NumPy stack has similar
users to MATLAB, GNU OCTAVE, and Scilab.

Matplotlib: Matplotlib is a plotting library for the Python programming language and
its numerical mathematics extension NumPy.

42| Page

4.1 Long Short-Term Memory (LSTM) or

prediction

Python code for LSTM was majorly divided in three parts as follows:

e Part 1: Data Pre-processing
e Part 2: Building the LSTM model

e Part 3: Making prediction and plotting

Time

series

In Part 1: Data Pre-processing (Figure 30), NumPy, pandas and Matplotlib libraries were
imported. Using pandas, training set was imported and stored in a variable dataset train. Here
training set includes the value of water content (0), at depths of 0.5 m, I m, 1.5 m, 2 m, 2.5
m, 3 m, 3.5m, 4 m, 4.5 m, 5 mover a period of 10 days. After that using feature scaling all the
data is scaled between 0 to 1 for more accurate predictions. Then the data is arranged in
timesteps. To understand this, Let’s assume there is following series called y.

y = {x1, %3, X3 e e X}

The data in this series is arranged in n timesteps and the whole dataset has m observation,
where (n < m). So, training set that will be fed to LSTM unit will be {x;, X3, X3« v . X},
and it will try to predict x,,,,, then the next training set will be {x, x3, X4 X4, } and it

will predict x;, 4 5.

8
9
1e
11 import numpy as np
12 import matplotlib.pyplot as plt
12 import pandas as pd
14
15
ledataset = pd.read_csv('HS_CD_theta_cyclic.csv"')
17
18
19training_set = dataset.iloc[:, :].values
20
21
22 from sklearn.preprocessing import MinMaxScaler
23sc = MinMaxScaler(feature range = (@, 1))
24training_set_scaled = sc.fit_transform(training set)
25

N NNN
P ® WoNHoNO

1train_len=3000
for i in range(mem, 4499):
X.append(training_set scaled[i-mem:i, :])

y.append(training_set_scaled[i, :])

X=np.array(X); y=np.array(y)

W wwwwuwwwww
WoONOTVphwmN

Figure 30 - Part 1: Data pre-processing

43| Page

X _train, y_train = np.array(X[@:train_len,:,:]), np.array(y[@:train_len,:])
X_test, y test = np.array(X[train_len:,:,:]), np.array(y[train_len:,:])

In Part 2: Building the LSTM model (Figure 31), some modules of Keras are imported. After
that, model is initialized, input layer has been defined in line 53. Then, several hidden layers
are defined a hidden layer is defined at line 78. Number of Neurons are introduced in every
layer, number of hidden layers and number of neurons in each layer can be changed to obtain
good results. Moreover, in line 81, the model is compiled using adam optimizer and a loss
function. Whereas, Adam optimizer is an optimizer that implements adam algorithm. It is
stochastic gradient descent method that is based on adaptive estimation of first and second
order moments. It is computationally efficient, occupies little memory, invariant to diagonal
rescaling of gradients, and is well suited for problems that are large in terms of data/parameters
[15]. In Figure 31, mean_square_error is used as a loss function, but other loss functions can
also be used for example mean_absolute error. At the end in line 84, number of epochs and
batch size is defined, that can also alter to improve the model performance. Moreover, batch
size is a number of samples processed before the model is updated. While the number of epochs
is the number of complete passes through the training dataset, the batch size should be more
than or equal to one and less than or equal to the number of samples in the dataset.

41’

42

43

44 from keras.models import Sequential

45 from keras.layers import Dense

46 from keras.layers import LSTM

47 from keras.layers import Dropout

48

49

S@regressor = Sequential()

51!

52,

53 regressor.add(LSTM(units = 58, return_sequences = True))
54 regressor.add(Dropout(9.2))

55

56

57 regressor.add(LSTM(units = 100, return_sequences
58 regressor.add(Dropout(0.2))

59

60

61regressor.add(LSTM(units = 100, return_sequences
62 regressor.add(Dropout(0.2))

63

64

65regressor.add(LSTM(units = 100 , return_sequences = True))

66 regressor.add(Dropout(0.2))

67

68

69 regressor.add(LSTM(units = 50 , return_sequences = True))

7@ regressor.add(Dropout(0.2))

7

72

73 regressor.add(LSTM(units = 5@))

74 regressor.add(Dropout(0.2))

75

76

74T

78 regressor.add(Dense(units = 9))

79

80

81lregressor.compile(optimizer = 'adam', loss = 'mean_squared_error')
82

83

84 regressor.fit(X_train, y_train, epochs = 1080, batch_size = 32)

True))

True))

Figure 31 - Part 2: Building the LSTM model

44 |Page

In the last part or Part 3: Making prediction and plotting, predict function is used to predict the
values using the model (Figure 32), and Matplotlib is used to plot the values real vs predicted
values.

98

99predicted _values_test = regressor.predict(X_ test)
1e6plt.plot(predicted_values_test,c='C@', label = 'Predicted Values')
101 plt.plot(y_test,c="C1',linestyle="--", label "Real Values')

102 plt.title(' Test dataset ')

183 plt.show()

104

185 predicted_values_train = regressor.predict(X_train)

106 plt.plot(predicted_values_train,c="C@', label = 'Predicted Values')
167 plt.plot(y_train,c='Cl1',linestyle="--"', label = 'Real Values')
108plt.title(' Training dataset ')

189 plt.show()

110

111 predicted values_test = regressor.predict(X)

112 plt.plot(predicted values test,c='C@', label = 'Predicted Values')
113plt.plot(y,c="Cl',linestyle="--"', label = 'Real Values')

114 plt.title(' Total Dataset ')

115 plt.show()

Figure 32 - Part 3: Making prediction and plotting

Same Python code is used to make prediction for Pressure Head (1) values, with data
arranged in same manner as water content ().

4.2 Physics-Informed Neural Network (PINN)

Physics-Informed Neural Networks have been applied on Richard’s equation to solve two kinds
of problems:

e Interpolation Problem
e Inference Problem

Originally, it was planned to solve a third type of problem including these two called Inverse
problem. But due to the lack of time it wasn’t completed. In order to solve these problems,
Richard’s equation was converted into a loss function, which can be used by PINN. To do this,
we can use equation (16).

6 0 oY
5~ w5 W)
This equation can be reformulated as follows:

06 0y _ 0K () dp

0%y? 9K()
ﬁﬁ_ 0z 62+K(¢) +

0z 0z

45|Page

where, C(y) = —, is a water storage function:

lP _ 0K oy 0%? 0K®@)
0z £+K(¢) 0z + 0z

The derivative of K (1) with respect to 1 is evaluated as follows:

CW ¢

o _ oK@ ooy MY OK() oY

CW)5 oy 970z T W)=, oy 0z

Then, the Loss function for the training of the Neural Network is then defined as:

0 0K oY o 0%Y? 0K 0
F=can - afp"”)a—"”a—"”— ke - afp‘/’)a—fﬂ 22)

In both type of problems, most of the libraries used were same as were in LSTM except
TensorFlow and scipy.io, and the Keras wasn’t imported in this code. In both of the problems,
a class called PhysicsInformedNN was formed. In that class, lower and upper bound values,

values of hydraulic conductivity(K), water storage constant (C), analytically calculated value

K@)
of o
argument. The list layers included the number of neurons in each layer. The process in that
class is explained step wise as follows:

, a list called layers, and the grid in space and time as values of (x, t) was passed as an

1. A Neural Network was set up which takes input as x and t and tires to give an output.

2. This output is then used to find the differential terms in the loss function.

3. Then the interpolated values of (K), (C), and 2 are put together with the differential
terms in the loss function.

4. After this process is repeated to minimize the loss function.

In interpolation problem the values of (x, t), provided to the program were randomly from all
over the domain, and using interpolation function to interpolate the values of

(K),(C),and 9K

wlll) program gave a coloured contour map for the whole domain. In inference

problem, boundary values of (x, t) were provided to the program and it gave a coloured domain
for all the whole domain.

46 |Page

Chapter 5
Results & Discussions

In this chapter, results from LSTM and PINN are presented and discussed. Python codes
implementing LSTM and PINN were run several times with different configurations to
optimize the model.

5.1 LSTM

For LSTM four datasets were chosen to implement the algorithm and was studied under
different configurations.

e Water Content (6) dataset for Hygiene Sandstone with Closed Drainage
e Water Content (6) dataset for Hygiene Sandstone with Open Drainage
e Water Content (8) dataset for SiltLoamGE3 with Closed Drainage

e Water Content (0) dataset for SiltLoamGE3 with Open Drainage

Four more datasets were produced with pressure head values () in Hygiene Sandstone and
SiltLoamGE3 each with open and closed drainage conditions. These were produced to verify
the results obtained from water content (6) datasets. LSTM was applied on all four
Water Content (8) datasets and the performance of the model was studied by changing
number of layers in the model, number of neurons in each layer, number of epochs and the size
of training set for the model. Table 3 below shows the specifics of the standard initial model.
This model was kept as a reference to compare with the other configurations of the model.

Number of layers 4
Number of Neurons in each layer 50
Number of Epochs 50
Length of training set 700

Table 3 - Specification of Reference model for each dataset

In first variation, number of neurons were fixed at 50, Number of epochs were fixed at 50,
length of training set was 700, and three scenarios were tested with number of layers as 3,4 and

47| Page

6 respectively. Since, feature scaling was applied to the dataset, all the values were squashed
between zero to one. Therefore, all the predicted values are also between zero and one. In
Figure 33, each red line in the graphs shows the water content build up at certain depth, and
green lines are the predicted values on the same depths. In Figure 33, (a), (b) and (c) are results
of water content in Hygiene Sandstone with closed drainage, and (d), (e) and (f) are the results
of water content in SiltLoamGE3 with closed drainage. In all the graphs in Figure 33, it can be
observed very clearly that the model is not able to predict for the last four lines i.e., after time
step 700.

In Figure 34, graphs (a), (b) and (c) shows the water content in Hygiene Sandstone with open
drainage, while (d), (e) and (f) shows the same in SiltLoamGE3 with open drainage. In Figure
34, too it can be observed pretty clearly that the model fails to predict the values of water
content after time step 700. Apart from that no major trend can be observed in the results.
Sometimes predicted values exceeds the range of 0 to 1, but that is because the limit is not
applied to the predictions, it exceeds because it tries to follow the trend.

Prediction Range
Prediction Range

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Time steps Time steps

Predicted Valges ~ e=eeee Actual Values Predicted Values

(a) (d)

------- Actual Values

-

-

o
o

2

EY
3
Y

Prediction Range

o
IS
'

Prediction Range
o
s

o
N

o
o

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Time steps Time steps

------- Actual Values Predicted Values ==-===- Actual Values

Predicted Values

(b) (e)

-

o
o

o
@

o
»

Prediction Range
Prediction Range

[
N

o

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Time steps Time steps

------- Actual Values

Predicted Values Actual Values Predicted Values

(© U]

Figure 33 - Shows the result of LSTM for Hygiene Sandstone with closed drainage (a) — 3 layers, (b) — 4 layers and (c) — 6
layers. (d) — 3 layers, (e) — 4 layers, and (f) — 6 layers shows the results for SiltLoamGE3 with closed drainage.

48| Page

o4
3

Prediction Range
o
o

Time steps

....... Actual Values Predicted Values

(a)

Prediction Range

N - |

[e

[} 200 400 600 800 1000
Time steps

------- Actual Values Predicted Values

(b)

Prediction Range
° o °
- o L

o
~

o

Time steps

....... Actual Values
(c)

Predicted Values

Prediction Range

Prediction Range

Prediction Range

b <1 ‘"‘\\._»"_w_ A .
D e W, A

St

T = Al
200 400 600 800 1000 1200 1401
Time steps

....... Actual Values Predicted Values

(d)

Time steps

....... Actual Values Predicted Values

(e)

Time steps

....... Actual Values Predicted Values

(U]

Figure 34 - Shows the result of LSTM for Hygiene Sandstone with open drainage (a) — 3 layers, (b) — 4 layers and (c) — 6
layers. (d) — 3 layers, (e) — 4 layers, and (f) — 6 layers shows the results for SiltLoamGE3 with open drainage.

In second variation, number of neurons in each layer was varied, while keeping number of
layers, number of epochs and length of training set as fixed. In this case, three scenarios were
tested with 30, 40 and 50 neurons in each layer and the results were presented in Figure 35 and
Figure 36. Figure 35, (a), (b) and (c) are results of water content in Hygiene Sandstone with
closed drainage, and (d), (e) and (f) are the results of water content in SiltLoamGE3 with closed
drainage. Similarly, Figure 36, (a), (b) and (c) are results of water content in Hygiene
Sandstone with open drainage, and (d), (e) and (f) are the results of water content in
SiltLoamGE3 with open drainage. Again, just like Figure 33 and 34, In Figure 35 and 36 same
patterns are observed, that the model is not able to predict for the last four lines i.e., after time
step 700. This suggests that neither widening nor deepening the network is effective, in order

to improve the model performance.

49| Page

Prediction Range

08 +
o O
w0
5
0.6 1 =
s
S
04 1 §
[
02§
0 T 1
[} 1200 1400 0 200 400 600 800 1000 1200 1400
Time steps
------- Actual Values Predicted Values
(d)
3 ey
o 8 @
2 2
e e
T 06 1+
S §
g g
Toat 3
a a
02
0
o 1200 1400
Time steps Time steps
===eees Actual Values Predicted Values ameaees Actual Values Predicted Values
(b)
(e)
1
3 08
§ %
k: €
T 06 H 3
S { s
S i F3
3 oe i 3
g H g
H a
i
02 H
H
H
H i
é / i
o 200 400 600 800 1000 1200 1400
Time steps Time steps
------- Actual Values ——— Predicted Values

Predicted Values

------- Actual Values
(c)

Figure 35 - Shows the result of LSTM for Hygiene Sandstone with closed drainage (a) — 30 neurons, (b) — 40 neurons and
(c) — 50 neurons. (d) — 30 neurons, (e) — 40 neurons, and (f) — 50 neurons show the results for SiltLoamGE3 with closed

drainage.

-
1 —
7 7
|
08 b /
& { &
5 H H 5
5 { ! &
o 1 H
= 06 - { H e
S H s
B H ! k]
= i]
T 04 - i | o
H H
P
i
02 i ."‘
H H
H /
[7
0 200 400 600 800 o 200 400 600 800 1000 1200 1400
Time steps Time steps
_______ Actual Values Predicted Values ======= Actual Values Predicted Values
(a) (d)

50| Page

Prediction Range

+ +
1000 1200 1400 0 200 400 600 800 1000 1200 1400
Time steps Time steps

Predicted Values ======- Actual Values —— Predicted Values

(b) (e)

o
o

Prediction Range
Prediction Range
S
o

14
Y

0.2

Time steps

Predicted Values S i Nl

(c) ()

Figure 36 - Shows the result of LSTM for Hygiene Sandstone with open drainage (a) — 30 neurons, (b) — 40 neurons and (c)
— 50 neurons. (d) — 30 neurons, (e) — 40 neurons, and (f) — 50 neurons show the results for SiltLoamGE3 with open
drainage.

For third variation, number of epochs was changed from 50 to 100, while keeping number of
layers, number of neurons in each layer and length of the training set was kept constant. This
type of variation is supposed to reveal if the original model is overfitting the dataset or
underfitting it. But as seen in Figure 37 and Figure 38, increasing the number of epochs, too
doesn’t bring any significant change in the results.

The last type of variation that is studied in this thesis is changing the length of training set.
While, in this type number of layers, number of neurons in the layers and number of epochs
are kept constant. Figure 39, (a), (b) and (c) are results of water content in Hygiene Sandstone
with closed drainage, and (d), (e) and (f) are the results of water content in SiltLoamGE3 with
closed drainage. While, Figure 39 (a) shows the result with 700 datapoints as training set, (b)
shows 1000 and (c) shows 1500 datapoints as training set in Hygiene Sandstone with closed
drainage. Similarly, Figure 39 (d) shows the result with 700 datapoints as training set, (e)
shows 1000 and (f) shows 1500 datapoints as training set in SiltLoamGE3 with closed drainage.
Moreover, Figure 40, shows the similar observations for open drainage condition in Hygiene
Sandstone and SiltLoamGE3.

S51|Page

Prediction Range

1
0.8 -
]
o
c
&
06 =
L=
g
0.4 E
o
0.2 +
6 =
0 200 400 600 800 1000 1200 1400 o 200 400 600 800 1000 1200 1400
Time steps Time steps
===-=--- Actual Values Predicted Values ======= Actual Values Predicted Values
(a) (c)
14
7
0.8 + !
g H @
[H o
= i c
& i 3
H
T 0.6 1 H =
2 i k-]
5 i ke
T 04 : B
(% H a
!
i
0.2 A I:
H
{
0
0 200 400 600 800 1000 1200 1400
Time steps Time steps
Predicted Values

Predicted Values - Actual Values

== Actual Values

(b) (d)

Figure 37 - Shows the result of LSTM for Hygiene Sandstone with closed drainage (a) — 50 epochs and (b) — 100 epochs. (c)
— 50 epochs and (d) — 100 epochs show the results for SiltLoamGE3 with closed drainage.

1
0.8
Q LA
& &
& 2 06
g s
s B
2 5
@ B oa
a a
02
o
0 200 400 600 800 1000 1200 1400
Time steps Time steps
““““ Actual Values Predicted Values -----=- Actual Values Predicted Values
(@) (c)
14
\ o 08 B N
p = 2
® { 2 N 7
@ i o 7 2, &
< i -4 06 4 P
5 i 5
g i | ki
ki i i P 04 1
a i H a
} i
oo
H H
H H 0.2
H ! /
li_ i 7
¥ 0 i i
[200 400 600 800 1000 1200 1400 0 200 400
Time steps Time steps
"""" AEUS| Values PrEGIEIS Values -=----- Actual Values Predicted Values
(d)

(b)

Figure 38 - Shows the result of LSTM for Hygiene Sandstone with open drainage (a) — 50 epochs and (b) — 100 epochs. (c) —
50 epochs and (d) — 100 epochs show the results for SiltLoamGE3 with open drainage.

52|Page

In Figure 39 and Figure 40, it can very well be noticed, that with the increase in the length of
training set, performance of the model increases quite a lot. This can be explained by taking a
careful look on the dataset. At every depth water content is taking quite a steep and sudden
jump at a certain point in time. Therefore, the model gives good prediction till the point in time,
it was trained for. Because, for all the other depths which didn’t made the jump yet, were more
or less constant. Hence constant prediction for those depths. Figure 41 shows the result for
pressure head () datasets, which are produced with 1500 datapoints as training set, 4 hidden
layers and 50 neurons in each layer. Therefore, verifying the results produced in Figure 39 and

40 are valid for pressure head too.

T e 1 reE
t" "r ==
o 08 f ! Iy L 08
& i ®
5 £]
% 06 1 H i T 06
s i H S
g ol b=t
8 o4 | P £ os
& H i a
H H
p H i
0.2 H H i 02
i H H H
1 i H i g
j H i P
b | i -
0 t t T f . T 1 o 1= T t T T T 1
0 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
Time steps Time steps
——————— Actual Values Predicted Values ------- Actual Values Predicted Values
(a) (d)
14 5l
L 08 0.8
oo @
5 3
= g
0.6 <
s T o
2 £
E<} =
3 04 T 04
e =
|
02 4 0.2 ¥
!
0 . ; g + + + { . et . : = ; ;
0 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
Time steps Time steps.
Actual Values Predicted Values e Actual Values Predicted Values
(b)
© &
@ &
& &
o« <
5 2
g 5
E @
2 a
o
200 400 600 800 1000 1200 1400

1000 1200 1400

Time steps

Predicted Values

------- Actual Values

Time steps

Actual Values

(f)

Predicted Values

(c)

Figure 39 - Shows the result of LSTM for Hygiene Sandstone with closed drainage (a) — 700 length of training set, (b) —
1000 length of training set and (c) — 1500 length of training set. (d) — 700 length of training set, (e) — 1000 length of training
set, and (f)

53| Page

Prediction Range
Prediction Range

Time steps Time steps

Predicted Values ~ ameee. Actual Values Predicted Values

------- Actual Values
(d)
(a)

Prediction Range

Time steps Time steps

Predicted Values =======Actual Values Predicted Values

....... Actual Values
(b)
(e)

Prediction Range
Prediction Range

Time steps Time steps

------- Actual Values Predicted Values

Predicted Values

=== Actual Values
(c) (f)
Figure 40 - Shows the result of LSTM for Hygiene Sandstone with open drainage (a) — 700 length of training set, (b) — 1000

length of training set and (c) — 1500 length of training set. (d) — 700 length of training set, (e) — 1000 length of training set,
and (f) — 1500 length of training set show the results for SiltLoamGE3 with open drainage.

Prediction Range
Prediction Range

1200 1400

Time steps Time steps

Predicted Values

Predicted Valuges ~ =e=———— Actual Values

(a) (b)

....... Actual Values

54|Page

0.8 1

Prediction Range

0 200

y u
400 600 800 1000

Time steps

=== Actual Values

(c)

+
1200

Predicted Values

1400

Prediction Range

-

o
®

o
o

o
IS

600 800 1000 1200 1400

Time steps

400

Predicted Values

(d)

------- Actual Values

Figure 41 - Shows the results for pressure head with length of training dataset = 1500, number of layers = 4, number of
neurons in each layer 50 and number of epochs = 50. (a) Hygiene Sandstone Closed drainage (b) Hygiene Sandstone open
drainage (c) SiltLoamGE3 Closed drainage and (d) SiltLoamGE3 open drainage.

5.2 PINN

This section describes the results of the application of Physics — Informed Neural Networks on
Richard’s equation. This was done in two ways. In First application, collocation points were
spread in the whole domain and this was called an Interpolation problem. Because at these
collocation points values of Hydraulic conductivity, water content and water storage constant
were provided. Using these, neural network was supposed to find the solution of Richards
equation in the whole domain. This required to interpolate these properties in the domain. In
the second application, these collocation points were provided on the boundary of the domain.
Therefore, neural network was supposed to find the solution of Richard’s Equation in the whole
domain, but this time it was called as an Inference problem.

Figure 42 summarizes the result for Richards equation for interpolation problem. Specifically,
given a set of 500 collocation points i.e., N, and are randomly distributed all around the
domain. Solution of Richard’s equation was found by training a 6 layered deep neural network
with 20 neurons in each layer. This configuration resulted in lowest loss value i.e.,
2.266936 x 10~*. Other configurations of the model were tried with different number of
collocation points, number of layers and number of neurons in each layer, loss values of these
are presented in Table 4, Table 5 and Table 6 below. Moreover, it’s important to note that none
other significant trends can be observed in the Table 4, 5 and 6, except finding a best
configuration with almost hit and trial like technique.

55|Page

u(t, z)
3 - = x = —
-4 i SR 1 a;:u *’ * x:" :;at*‘*a % “"x"" f::‘ " ”’;x :*1: " 0
b a1 x *‘ux ¥ * !ﬁ. "
2 e 1
=
1 -2
—3
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
¢ * Data (500 points)
t=1 E—2 t=23
-3 —3 -3
" A & 2 w2
5 i &=
F 14 1 S e
0 - . 0 -1 ’ 0 - .
0 2 0 2 0 2
X €T X

— Fxact = = DPrediction

Figure 42 - Top: Predicted Solution for u (x, t) along with the training data Nu = 500. Bottom: Comparison of the predicted

and exact solution corresponding to the three temporal snapshots depicted by the white vertical lines in the top panel.

Neurons
Layers
10 20 30 40 50
2 4.90E-04 8.79E-04 1.67E-03 6.16E-04 1.10E-03
4 6.20E-04 7.87E-04 8.51E-04 1.75E-03 5.54E-04
6 9.63E-04 3.72E-04 5.01E-04 6.70E-04 1.26E-03
8 3.32E-03 2.14E-03 1.77E-03 3.72E-03 7.63E-04
10 7.86E-03 2.88E-03 1.84E-02 3.20E-03 1.06E-03
Table 4 - Collocation points, Nu = 200
Neurons
Layers
10 20 30 40 50
2 1.46E-03 1.03E-03 1.80E-03 1.80E-03 1.35E-03
4 2.00E-03 2.21E-03 9.70E-04 3.20E-03 1.90E-03
6 2.11E-03 2.27E-04 1.02E-03 2.91E-03 1.89E-03
8 2.80E-03 1.84E-03 2.01E-03 1.99E-03 1.87E-03
10 2.55E-03 5.78E-03 8.82E-04 3.48E-03 3.33E-03
Table 5 - Collocation Points, N, = 500
Neurons
Layers
10 20 30 40 50
2 2.01E-03 2.59E-03 1.02E-03 2.20E-03 1.39E-03
4 1.74E-03 1.16E-03 6.50E-04 2.78E-03 1.31E-03
6 7.54E-04 1.21E-03 1.40E-03 1.29E-03 2.95E-03
8 1.09E-03 2.01E-03 3.94E-03 5.11E-03 7.35E-04
10 1.61E-03 6.59E-03 4.56E-03 4.91E-03 1.06E-02

56| Page

Table 6 - Collocation Points, N, = 700

Result for the inference problem is summarized in Figure 43. It is generated with Ny, = 100 and
Nt = 4000, with a two layers deep neural network with 20 neurons in each layer. This set of
100 datapoints is randomly distributed initial and boundary data. The top panel of Figure 54
shows the predicted spatio-temporal solution of Richard’s equation, along with the location of
initial and boundary data. With this configuration an error of 5.081357 x 10~2 is reported.

To further analyse the performance of this method, some parametric study was done to quantify
its predictive accuracy for different number of training and collocation points, for different
neural network architectures. Table 7 reports the resulting error for different number of initial
and boundary training data N, and different collocation points Nr. While keeping the two layers
deep neural network with 20 neurons in each layer constant. Though lowest error was
encountered with Ny = 100 and N = 4000, but some results with lower loss were also found
with N¢= 10000. Furthermore, Table 8 shows the resulting error for different number of hidden
layers, and different number of neurons per layer, while the total number of training and
collocation points is kept fixed to Nu = 100 and Nf = 4000. It is to be expected that as the
number of layers and neurons is increased (hence the capacity of the neural network to
approximate more complex functions), the predictive accuracy of the network should increase
but unfortunately a pattern like this isn’t visible in this case.

Data (100 points)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t
t=1 fi=s2 t=3
—3 —3 —3
T2 N | T2 ~ T2
< = =
= 14 = 1A = 14
O-I T 0-| T 0-| T
0 2 0 2 0 2
X T x
— Pxact == = Prediction

Figure 43 - Richard's Equation: Top: Predicted solution u (x, t) along with the initial and boundary training data. Bottom:
Comparison of the predicted and exact solution corresponding to the three temporal snapshots depicted by the white vertical
lines in the top panel. Error for this case was 5.081357x10°.

57|Page

Nt

Nu 2000 4000 6000 8000 10000
20 1.28E-01 1.62E-01 2.11E-01 1.52E-01 1.24E-01
40 1.17E-01 9.70E-02 9.32E-02 9.62E-02 1.30E-01
60 1.67E-01 1.24E-01 2.25E-01 9.82E-02 6.48E-02
80 1.37E-01 1.19E-01 1.90E-01 1.35E-01 1.86E-01
100 1.36E-01 5.66E-02 1.06E-01 7.03E-02 8.46E-02
200 1.24E-01 7.29E-02 9.48E-02 1.11E-01 6.81E-02

Table 7 - Richards Equation: Error between the predicted and the exact solution u (x, t) for different number of initial and
boundary training data N., and different number of collocation points Ny. Here the network architecture is fixed to 2 layers
with 20 neurons per hidden layer.

Neurons
Layers
10 20 30 40 50
2 1.43E-01 5.08E-02 1.29E-01 9.45E-02 1.90E-01
4 1.01E-01 1.04E-01 1.30E-01 9.86E-02 1.65E-01
6 2.36E-01 1.10E-01 1.37E-01 1.07E-01 1.49E-01
8 2.52E-01 1.04E-01 2.65E-01 1.25E-01 7.27E-02

Table 8 - Richards Equation: Error between predicted and the exact solution u (x, t) for different number of hidden layers
and different number of neurons per layer. Here the total number of training and collocation points is fixed to Nu = 100 and
Nr= 4000, respectively.

5.3 Discussion

Throughout this chapter results from LSTM and PINN are presented. In case of LSTM, using
a Python code RichardsEquationGenerator.py, four separate datasets of water content (6), in
Hygiene Sandstone and SiltLoamGE3, with open and closed drainage conditions each were
generated. In each dataset, value of water content was calculated using
RichardsEquationGenerator.py, in 10 points in space along a depth of 0 to 5 meters with an
equal interval of 0.5 meters. Both materials were subjected to an influx of 0.01 m/day of water,
and water content was calculated in approximately every 10 minutes for 10 days, at every
datapoint. Therefore, for each point in space there were 1500 sequential values of water
content.

These sequential datasets were fed to LSTM, a part of it was used as training set and rest of it
was used for testing the prediction. After varying number of layers, number of neurons in each
layer and epochs, only parameter to which the model seems to improve was change in the
length of training set Figure 39 and Figure 40. This behaviour of LSTM can be attributed to
the fact, that Richard’s equation is highly non-linear, and the data needed to train the LSTM
was not quite sufficient. Since the model was trained in time and it was not interacting with
different depths, it is safe to assume that model didn’t understand when to make the transition
from 0 to 1. Hence, if the model was trained till 700 timesteps, during prediction it successfully
predicted the transition for the depths it was already trained for. Since, there was no learning
between different depths, it didn’t knew when the transition happens for rest of the depths.
Hence, the model predicted constant or close to zero values for rest of the depths.

If the dataset consisted of several cycles of wetting and drying, instead of just wetting, LSTM
would have performed better. Model would have learnt more about the wetting and drying

58| Page

characteristics of the material with certain amount of flow. Alternatively, using spatio —
temporal LSTM or ST-LSTM, this dataset can be trained in space and time //4/, hence better
prediction.

In case of Physics-Informed Neural Network or PINN, Richard’s equation was modelled as an
optimization problem and was solved using neural networks. This was done by setting a neural
network u (x, ¢). It takes x and ¢ as inputs and give out a value u. Now, this u is used to find
differential terms in the Richard’s equation, by differentiating w.r.# x and ¢, using automatic
differentiation. Then, rest of the values of Hydraulic conductivity K, and water storage constant
C, were provided, and then the loss function was calculated Equation (22). This process was
repeated, in order to minimize the loss function.

Results produced with PINN for Interpolation problem were quite good, as the error was quite
low i.e., 2.266936 x 10~*. However, in inference problem error was quite high i.e., in the
magnitude of 1072, Although there is good reason to believe that on further probing in terms of
different combinations of Ny and Nr values with deeper neural network architecture, one may
arrive at a lower error in inference problem i.e., in magnitude of 10~ or 10, Moreover, key
strength of physics informed neural networks is believed to be quite accurate and data efficient
as the underlying physical law is encoded in the neural networks /75/. Hence, this technique is
different from usual neural network technique and makes use of known physical knowledge
along with high computational power of neural networks.

Furthermore, LSTM is quite good and effective but for sequential and time series data. For
solving ordinary differential equations or partial differential equations, which is often the case
in science and engineering problem physics informed neural networks can perform better.

59| Page

Chapter 6
Conclusions

This thesis explored the idea of applying machine learning to infiltration process in a soil.
Machine learning techniques used in the process were vastly different in terms of working and
nature from each other. First technique used in this thesis is called Long Short-Term Memory
(LSTM). This technique specializes in sequential or time series data. Therefore, this technique
is particularly good in predicting stock prices, weather patterns etc i.e., with sequential data.
Hence, values of water content (6), and pressure head () in both the materials were arranged
in sequential manner with 1500 datapoints at 10 different depths. Since, there was no learning
between points at different depths, LSTM model treated sequential data in all the depths as
totally different series. Therefore, in the result obtained model gave good prediction for those
depths which transitioned from unsaturated to saturated phase within the training set.

The second technique used is called Physics-informed neural networks (PINN). Whereas,
LSTM was a very traditional Machine learning technique in which there are well defined
training and testing sets, in PINN, there were no strictly defined training or testing sets. In this
technique, the underlying physical law, in our case Richard’s equation itself was encoded in
the neural network. Therefore, collocation points inside the domain are used to train the
algorithm, then solution of the differential equation was predicted for the whole domain. And
collocation points can be any number of points chosen from the domain that can be used to
train the algorithm. This technique gave quite good result, in case of interpolation problem it
gave an error of 2.266936 X 10™*, while in case of inference problem it gave quite high error
in magnitude of 102. This high error in inference problem can most likely be lowered by
increasing the number of datapoints i.e., Nu and Ny, and deepening and widening the neural
network. If not then, this is a convergence and generalization problem of neural network i.e.,
the minimizer or set of values that minimizes the loss function found by neural network doesn’t
match the exact solution of the equation //6]. Further work can be done in this direction, to
investigate.

Moreover, for this thesis PINN proved to be a much better method to mimic infiltration, as it
can encode Richard’s equation in neural network. Due to lack of time PINN wasn’t modelled
to produce a SWCC graph, but an inverse problem using PINN can definitely be modelled to
produce one. In this type of problem model will be predicting the values of water content and
pressure head and hence producing SWCC.

PINN is more suitable for this problem than LSTM because ultimately it can be developed to
produce SWCC (though might need to figure out how to specify the material in the program),

60| Page

but for LSTM we need to have a lot of sequential data to model and feed to the algorithm. And
it would be very specific for the case. Moreover, PINN can be used much more widely in
geotechnical engineering or engineering applications in general, due to the abundance of
ordinary and partial differential equations.

There are still many questions that need to be addressed regarding PINN’s convergence to the
solution and generalization of the data. However, there is good reason to believe that PINN is
a big step forward in the direction of automation to solve ODE and PDE, using theory driven
data science. As this kind of approach allows to use the knowledge of scientific laws combined
with the computational power of neural networks.

61| Page

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

D. Porebska, C. Stawinski, K. Lamorski, and R. T. Walczak, “Relationship between van
Genuchten’s parameters of the retention curve equation and physical properties of soil
solid phase,” Int. Agrophysics, vol. 20, no. 2, pp. 153-159, 2006.

N. Yousefpour and S. Fallah, “Application of Machine Learning in Geotechnics,” no.
August, pp. 14, 2018.

N. S. Juwaied, “Applications of artificial intelligence in geotechnical engineering,”
ARPN J. Eng. Appl. Sci., vol. 13, no. 8, pp. 27642785, 2018.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol.
9, no. 8, pp. 1735-1780, 1997, doi: 10.1162/neco.1997.9.8.1735.

T. J. Sejnowski, P. S. Churchland, and J. A. Movshon, “Putting big data to good use in
neuroscience,” Nature Neuroscience. 2014, doi: 10.1038/nn.3839.

Nature, “Big data - Science in the petabyte era,” Nature, 2008.

A. Karpatne et al., “Theory-guided data science: A new paradigm for scientific
discovery from data,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 10, pp. 2318-2331,
2017, doi: 10.1109/TKDE.2017.2720168.

A. W. Trask, Deep Learning: grokking. 2016.

M. Tuller and D. Or, “Water Retention and Characteristic Curve,” Encycl. Soils
Environ., vol. 4, no. January 2004, pp. 278-289, 2004, doi: 10.1016/B0-12-348530-
4/00376-3.

M. Tuller and D. Or, “Hydraulic conductivity of variably saturated porous media: Film
and corner flow in angular pore space,” Water Resour. Res., vol. 37, no. 5, pp. 1257—
1276, 2001, doi: 10.1029/2000WR900328.

M. T. van Genuchten, “A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils,” Soil Sci. Soc. Am. J., 1980, doi:
10.2136/sss2j1980.03615995004400050002x.

L. A. Richards, “Capillary conduction of liquids through porous mediums,” J. Appl.
Phys., 1931, doi: 10.1063/1.1745010.

N. M. Fenneman, Geology of the Boulder District, Colorado, vol. Chapter 3. 1905.

Q. Tang, M. Yang, and Y. Yang, “ST-LSTM: A Deep Learning Approach Combined
Spatio-Temporal Features for Short-Term Forecast in Rail Transit,” J. Adv. Transp., vol.
2019, 2019, doi: 10.1155/2019/8392592.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations,” J. Comput. Phys., vol. 378, pp. 686—707, 2019, doi:
10.1016/.jcp.2018.10.045.

Y. Shin, J. Darbon, and G. E. Karniadakis, “On the Convergence and generalization of
Physics Informed Neural Networks,” vol. 02912, pp. 1-29, 2020, [Online]. Available:
http://arxiv.org/abs/2004.01806.

62| Page

Appendix 1

1. “vanGenuchten.py” — Sourced from “https://github.com/amireson/RichardsEquation”

g
g

10+

11

12 import numpy as np

13

14 def thetaFun(psi,pars):

15 if psi»>=0.:

i6 Se = 1.

17 else:

18 Se=(1+abs(psi*pars['alpha’'])**pars['n'])**(-pars['m'])
19 return pars['thetaR']+(pars['thetaS’']-pars['thetaR’'])*Se
28

21 thetaFun=np.vectorize(thetaFun)

22

23 def CFun(psi,pars):

24 if psir»=e.:

25 Se=1.

26 else:

27 Se=(1+abs(psi*pars['alpha'])**pars['n'])**(-pars['m'])
28 dSedh=pars['alpha']*pars['m']/(1-pars['m'])*Se**(1/pars['m'])*(1-Se**(1/pars['m"']))**pars['m"']
29 return Se*pars['Ss']+(pars['thetaS’']-pars['thetaR’'])*dSedh
3e

31CFun = np.vectorize(CFun)

32

33 def KFun(psi,pars):

34 if psi»=0.:

35 Se=1.

36 else:

37 Se=(1l+abs(psi*pars['alpha’])**pars['n'])**(-pars['m'])
38 return pars['Ks']*Se**pars['neta’']*(1-(1-Se**(1/pars['m']))**pars['m'])**2
39

48 KFun = np.vectorize(KFun)

41

42 def setpars()

432 pars={}

44 pars['thetaR']=float(raw_input("“thetaR o
45 pars['thetaS']=float(raw_input("“thetas
46 pars['alpha']=float(raw_input("alpha = "))
47 pars['n']=float{raw_input("n = "))

48 pars['m']=1-1/pars['n']

49 pars['Ks']=float(raw_input("Ks = "))

58 pars['neta']=float(raw_input("neta = "))
51 pars['Ss']=float(raw_input("Ss = "))

52 return pars

53

54 def PlotProps(pars):

55 import numpy as np

56 import pylab as pl

57 import vanGenuchten as vg

58 psi=np.linspace(-18,2,2088)

52 pl.figure

66 pl.subplot(3,1,1)

61 pl.plot(psi,vg.thetaFun(psi,pars))
62 pl.ylabel(r'$\theta(\psi) [-1%")
63 pl.subplot(3,1,2)

64 pl.plot(psi,vg.CFun(psi,pars))
65 pl.ylabel(r'$c(\psi) [1/m]$"')

66 pl.subplot(3,1,3)

67 pl.plot(psi,vg.KFun(psi,pars))
68 pl.xlabel(r'$\psi [m]$')

69 pl.ylabel(r'$K(\psi) [m/d]$')

70 f

63|Page

Tt

72 def HygieneSandstone():
72 pars={}

74 pars['thetaR']=0.153

75 pars['thetas']=0.25

76 pars['alpha']=0.79

77 pars['n']=1e.4

78 pars['m']=1-1/pars['n']
79 pars['Ks']=1.e8

80 pars['neta’']=0.5

81 pars['Ss']=0.000001

82 return pars

83
24 def SiltLoamGE3():
85 pars={}

86 pars['thetaR']=0.131

87 pars['thetas']=0.3%96
88 pars['alpha']=0.423

89 pars['n']=2.06

%@ pars['m']=1-1/pars['n']
91 pars['Ks']=0.04%6

92 pars['neta’']=0.5

92 pars['Ss']=6.600001

94 return pars

2. RichardsEquationgenerator.py — Sourced from
“https://github.com/amireson/RichardsEquation”

B4 L : 1

S from matplotlib import pyplot as pl

1@ import numpy as np

11

12 #] f

13 import vanGenuchten as vg

14

15 4

16 from scipy.interpolate import interpild
17 from scipy.integrate import odeint

18

19

28 p=vg.HygieneSandstone()

21

22 #

23 #

24

25

26

27 def RichardsModel(psi,t,dz,n,p,vg,qTop,qBot,psiTop,psiBot):
28

29

30 C=vg.CFun(psi,p)

33

32 t

33 g=np.zeros(n+l)

34

35 . i i

36 if gTop == []:

37 KTop=vg.KFun(np.zeros(1l)+psiTop,p)

38 qln]=-KTop*((psiTop-psi[n-1])/dz*2+1)
39 else:

40 qln]=qTop

41

42 ; -

43 if gBot == []:

44 if psiBot == []:

45 : 7

46 KBot=vg.KFun(np.zeros(1l)+psi[@e],p)
47 q[@]=-KBot

64|Page

48 else:

49
58 KBot=vg.KFun(np.zeros(1l)+psiBot,p)
51 q[e]=-KBot*((psi[@]-psiBot)/dz*2+1.8)
52 else:
53 I
54 q[e]=gBot
55
56 : . Ao e
57 i=np.arange(@,n-1)
58 Knodes=vg.KFun(psi,p)
59 Kmid=(Knodes[i+1]+Knodes[i])/2.@
60
61 j=np.arange(1,n)
62 q[jl=-Kmid*((psi[i+1]-psi[i])/dz+1.0)
63
64
65
66 :
67 i=np.arange(9,n)
68 dpsidt=(-(q[i+1]-q[i])/dz)/C
69
76 return dpsidt
72
73
74
75
76

77 def RichardsModelTransient(psi,t,dz,n,p,vg,qTfun,qBot,psiTop,psiBot):
78

79 i r 1

80 C=vg.CFun(psi,p)

81

82 7 -

83 g=np.zeros(n+1)

84

85 if t>1e@:

86 q[n]=qTfun(1ee)

87 else:

88 q[n]l=qTfun(t)

89

20 ¢

91 if gBot == []:

92 if psiBot == []:

93 E 1 :

94 KBot=vg.KFun(np.zeros(1l)+psi[@],p)
95 g[@e]=-KBot

96 else:

97 .

98 KBot=vg.KFun(np.zeros(1)+psiBot,p)
99 q[@]=-KBot*((psi[@]-psiBot)/dz*2+1.8)
168 else:

101

192 q[@]=qBot

103

184

105 i=np.arange(@,n-1)

106 Knodes=vg.KFun(psi,p)

107 Kmid=(Knodes[i+1]+Knodes[i])/2.®@

188

109 j=np.arange(1,n)

118 g[j]=-Kmid*((psi[i+1]-psi[i])/dz+1.0)
111

all [

113 i=np.arange(@,n)

114 dpsidt=(-(q[i+1]-q[i])/dz)/C

115

116 return dpsidt

65|Page

118 psi = np.linspace(-10,1)

119 theta = vg.thetaFun(psi,p)

128 C=vg.CFun(psi,p)

121 K=vg.KFun(psi,p)

122

123 pl.rcParams['figure.figsize'] = (5.0, 10.89)
124 pl.subplot(311)

125 pl.plot(psi,theta)

126 pl.ylabel(r'θ', fontsize=28)
127 pl.subplot(312)

128 pl.plot(psi,C)

129 pl.ylabel(r'C',fontsize=28)

138 pl.subplot(313)

131 pl.plot(psi,K)

132 pl.ylabel(r'K', fontsize=20)

133 pl.xlabel(r'ψ', fontsize=28)

134

135

136 2

137 gTop=-0.001
138 gBot=[]

139 psiTop=[]

148 psiBot=[]

141

142 # L

143 dz=0.85

144 ProfileDepth=5 #

145 z=np.arange(dz/2.@ ProflleDepth dz)
146n=z,size

147

148 # 7

149t = np.linspace(®©,16,1508)

15e

151 #

152 psi@=-z

53

154

155 psi=odeint(RichardsModel,psi®@,t,args=(dz,n,p,vg,qTop,qBot,psiTop,psiBot),mxstep=5000000);
156

157 print ("Model run successfully")

159 #

160

161 #

162 theta=vg. thetaFun(p51,p)

163

164

165 S=theta. sum(axls 1)*dz

166

167

168 dS=np. zeros(s 51ze)

162dS[1:]=np.diff(s)/(t[1]-t[e])

17e

171 #

172if qTop == []:

173 KTop=vg.KFun(np.zeros(1l)+psiTop,p)
174 qI=-KTop*((psiTop-psi[:,n-1])/dz*2+1)
175 else:

176 qI=np.zeros(t.size)+qTop

177

178 # 7

1791if gBot == []:

18@ if psiBot == []:

181 ;

182 KBot=vg.KFun(psi[:,@],p)

183 qb=-KBot

184 else:

185 ype 1 J

186 KBot=vg.KFun(np.zeros(1l)+psiBot,p)
187 gD=-KBot*((psi[:,@]-psiBot)/dz*2+1.0)
188 else:

189 gD=np.zeros(t.size)+gBot

198

151!

152 pl. rcParams[figure.figsize'] = (10.0, 10.0)
193 for i in range(©,t.size-1):

194 pl.subplot(121)
195 pl.plot(psi[i,:],z)
196 pl.subplot(122)

197 pl.plot(theta[i,:],z)

66| Page

159 #

16@

161 # - :

162 theta=vg.thetaFun(psi,p)
163

164 # ey ? "
165 S=theta.sum(axis=1)*dz
166

167 # t

168 dS=np.zeros(S.size)
169ds[1:]=np.diff(s)/(t[1]-t[e])

17@

171 7])

1721if qTop == []:

173 KTop=vg.KFun(np.zeros(1l)+psiTop,p)

174 gI=-KTop*((psiTop-psi[:,n-1])/dz*2+1)
175 else:

176 gI=np.zeros(t.size)+qTop

177

1784 : sche

1791if gqBot == []:

180 if psiBot == []:

181 ; B :

182 KBot=vg.KFun(psi[:,@],p)

183 gD=-KBot

184 else:

185 t 1

186 KBot=vg.KFun(np.zeros(1)+psiBot,p)
187 gD=-KBot*((psi[:,@]-psiBot)/dz*2+1.8)
188 else:

189 gD=np.zeros(t.size)+qBot

1%@

191 !

192 pl.rcParams['figure.figsize'] = (1.8, 18.8)
193 for i in range(e,t.size-1):

194 pl.subplot(121)

195 pl.plot(psi[i,:],z)
196 pl.subplot(122)

197 pl.plot(theta[i,:],z)
198

199 pl.subplot(121)

2668 pl.ylabel('Elevation [m]',fontsize=28)
201 pl.xlabel(r'ψ [m]',fontsize=28)
202 pl.subplot(122)

203 pl.xlabel(r'θ [-]',fontsize=28)
204

285 ?

206dt = t[2]-t[1]

207 pl.plot(t,dS,label="Rate of change in storage')
208

2e9 pl.plot(t,-qI,label="Infiltration")
21epl.plot(t,-qD,label="Discharge')
211pl.legend(loc="Upper Left")
212pl.ylim((e,e.02))

213

214 t=np.arange(©,101,1)

215 qT=np.zeros(len(t))-0.01

216 print(qT)

3. Code for LSTM - Figure 30, 31 & 32.

67|Page

4. PINN - code for Interpolation problem (Integrated — as values of K, C and 6 were
calculated in the code)

8 import sys

9 sys.path.insert(®, '../../Utilities/')
10

11 import tensorflow as tf

12 import numpy as np

13 import matplotlib.pyplot as plt

14 import scipy.io

15 from scipy.interpolate import griddata
16 from plotting import newfig, savefig
17 from mpl_toolkits.axes_gridl import make_axes_locatable
18 import matplotlib.gridspec as gridspec
19 from scipy.interpolate import interpld
20 import time

21

22 np.random.seed(1234)

23 tf.set_random_seed(1234)

24

25 def thetaFun(psi,pars):

26 if psi»=e.:

27 Se = 1.

28 else:

29 Se=(1+abs(psi*pars['alpha'])**pars['n'])**(-pars['m'])
30 return pars['thetaR']+(pars['thetaS']-pars['thetaR'])*se
31

32 thetaFun=np.vectorize(thetaFun)

33

34 def CFun(psi,pars):

35 if psi»=e.:

36 Se=1.

37 else:

38 Se=(l+abs(psi*pars['alpha'])**pars['n'])**(-pars['m'])
39 dSedh=pars['alpha’]*pars['m']/(1-pars['m'])*Se**(1/pars['m'])*(1-Se**(1/pars['m']))**pars['m']
40 return Se*pars['Ss']+(pars['thetaS']-pars['thetaR'])*dSedh
41

42 CFun = np.vectorize(CFun)
43

44 def KFun(psi,pars):

45 if psi>=e.:

46 Se=1.

47 else:

48 Se=(l+abs(psi*pars['alpha'])**pars['n'])**(-pars['m'])

49 return pars['Ks']*Se**pars['neta’']*(1-(1-Se**(1/pars['m']))**pars['m'])**2
58

51KFun = np.vectorize(KFun)

52

53 from sympy import symbols, diff

54psi, alpha, n, m, neta, Ks = symbols ('psi alpha n m neta Ks', real = True)

55 f=Ks*((1+abs(psi*alpha)**n)**(-m))**neta*(1-(1-((1l+abs(psi*alpha)**n)**(m))**(1/m))**m)**2
56 dkdp=diff(f,psi)

58 def dKdpFun(psi,pars):

59 alpha = float()

60 n = float()

61 m = float()

62 neta = float()

63 Ks = float()

64 alpha = pars['alpha']
65 n = pars['n"]

66 m = pars['m"]

67 neta = pars['neta']
68 Ks = pars['Ks']

69 dKdp = float()

7@ return dKdp

7a |

72 dKdpFun = np.vectorize(dKdpFun)

68| Page

74 def setpars():

75 pars={}

76 pars['thetaR']=float(raw_input("thetaR =YY
77 pars['thetasS']=float(raw_input("thetas)
78 pars['alpha']=float(raw_input("alpha = "))
79 pars['n']=float(raw_input("n = "))

80 pars['m']=1-1/pars['n']

81 pars['Ks']=float(raw_input("Ks = "))

82 pars['neta']=float(raw_input("neta = "))
83 pars['Ss']=float(raw_input("Ss = "))

g4 return pars

85

86 def PlotProps(pars):

87 psi=np.linspace(-10,2,200)

88 plt.figure

89 plt.subplot(3,1,1)

se plt.plot(psi,thetaFun(psi,pars))

91 plt.ylabel(r'$\theta(\psi) [-]%$")

92 plt.subplot(3,1,2)

S3 plt.plot(psi,CFun(psi,pars))

94 plt.ylabel(r'$C(\psi) [1/m]$")

95 plt.subplot(3,1,3)

96 plt.plot(psi,KFun(psi,pars))

97 plt.xlabel(r'$\psi [m]$')

98 plt.ylabel(r'$K(\psi) [m/d]$')

99 #pl.: v(

188

101 def HygieneSandstone():

182 pars={}

183 pars['thetaR']=0.153

184 pars['thetaS']=0.25

185 pars['alpha']=0.79

186 pars['n']=10.4

187 pars['m']=1-1/pars['n']

188 pars['Ks']=1.e8

189 pars['neta’']=0.5

11@ pars['Ss']=0.000001

111 return pars

112

112 p=HygieneSandstone()

114

115 class PhysicsInformedNN:

116 # Initi L Z € 1=

117 def __init__ (self, X, u, layers, lb, ub, fK, fdKdp, fC):
118

119 self.1lb = 1b

12e self.ub = ub

121

122 self.x = X[:,08:1]

123 self.€® = X[:;1:2]

124 self.u = u

125

126 self.layers = layers

127

128 : 1Ltia !

129 self.weights, self.biases = self.initialize_NN(layers)
138

131 :) ¢ , 1D

132 self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
T25 log_device_placement=True))

69|Page

135 !
136 self.fK = fK

137 self.fdKdp = fdKdp

138 self.fC = fC

139

148 self.x_tf = tf.placeholder(tf.flecat32, shape=[None, self.x.shape[1]])

141 self.t_tf = tf.placeholder(tf.float32, shape=[None, self.t.shape[1]])

142 self.u_tf = tf.placeholder(tf.float32, shape=[None, self.u.shape[1]])

143

144 self.u_pred = self.net_u(self.x_tf, self.t_tf)

145 self.f_pred = self.net_f(self.x_tf, self.t_tf)

146

147 self.loss = tf.reduce_mean(@.9*tf.square(self.u_tf - self.u_pred)) + \

148 8.1*tf.reduce_mean(tf.square(self.f_pred))

149

158 self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss,

151 method = 'L-BFGS-B',

152 options = {'maxiter': 5e6e@,
153 ‘maxfun’': 5eeee,
154 ‘maxcor': 50,
155 'maxls': 5@,
156 'ftol' : 1.8 * np.finfo(float).eps})
157

158 self.optimizer_Adam = tf.train.AdamOptimizer()

159 self.train_op_Adam = self.optimizer_Adam.minimize(self.loss)

160

161 init = tf.global_variables_initializer()

162 self.sess.run(init)

163

164 def initialize_NN(self, layers):

165 weights = []

166 biases = []

167 num_layers = len(layers)

168 for 1 in range(@,num_layers-1)

169 W = self.xavier_init(size=[layers[1l], layers[1+1]])

170 b = tf.Variable(tf.zeros([1,layers[1+1]], dtype=tf.float32), dtype=tf.float32)
171 weights.append (W)

172 biases.append(b)

173 return weights, biases

174

175 def xavier_init(self, size):

176 in_dim = size[®]

177 out_dim = size[1]

178 xavier_stddev = np.sqrt(2/(in_dim + out_dim))

179 return tf.variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32)
180

181 def neural_net(self, X, weights, biases):

182 num_layers = len(weights) + 1

183

184 H = 2.0%(X - self.lb)/(self.ub - self.1lb) - 1.0

185 for 1 in range(®,num_layers-2):

186 W = weights[1]

187 b = biases[1]

188 H = tf.tanh(tf.add(tf.matmul(H, W), b))

189 W = weights[-1]

190 b = biases[-1]

191 Y = tf.add(tf.matmul(H, W), b)

192 return Y

194 def net_u(self, x, t):

195 u = self.neural_net(tf.concat([x,t],1), self.weights, self.biases)
196 return u

197

198 def net_f(self, x, t):

199 u = self.net_u(x,t)

2ee

201

202 def fn(m):

203 fK = self.fK

204 return fK(m).astype(np.float32)
205 o i

206 K_u= tf.py func(fn, [u], tf.float32)
287

208 def fnl(m):

289 fdKdp = self.fdKdp

218 return fdKdp(m).astype(np.float32)
211

242 def fn2(m):

213 fC = self.fC

214 return fC(m).astype(np.float32)
215

70| Page

216 K_u= tf.py_func(fn, [u], tf.float32)

217 dkdp = tf.py_func(fni, [u], tf.float32)

218 C = tf.py_func(fn2, [u], tf.float32)

219

220 u_t = tf.gradients(u, t)[e]

221 u_x = tf.gradients(u, x)[@]

222 u_xx = tf.gradients(u_x, x)[e]

223

224 f = C*u_t- dKdp*u_x*u_x -K_u*u_xx - dKdp*u_x

225

226 return f

227

228 def callback(self, loss):

229 print('Loss: %e' % (loss))

238

254,

237 def train(self, nIter):

233 tf dict = {self:x tf: self:x; self:t tFf: self.t; self:u tf: self:u}
234

235 start_time = time.time()

236 for it in range(nlIter):

237 self.sess.run(self.train_op_Adam, tf_dict)

238

239 - 2

240 if it % 18 == @:

241 elapsed = time.time() - start_time

242 loss_value = self.sess.run(self.loss, tf_dict)
243 f_value = self.sess.run(tf.reduce_mean(tf.square(self.f_pred)))
244 prant("It; %d, Loss; %.3e, Time: %.2F, ¥: %.3e” %
245 (it, loss_value, elapsed, f_value))

246 start_time = time.time()

247

248 self.optimizer.minimize(self.sess,

249 feed_dict = tf_dict,

258 fetches = [self.loss],

251 loss_callback = self.callback)
252

253

254 def predict(self, X_star):

255

256 tf dict = {selfx. tF: X.star[:,;08:1]; self:t. tf: X star[::T:21}
257

258 u_star self.sess.run(self.u_pred, tf dict)

259 £ star self.sess.run(self.f_pred, tf dict)
268

261 return u_star, f_star

2641if __name__ == "__main__":

265

266 N_u = 5@8@

267 layers = [2, 2@, 2, 20, 2@, 20, 20, 1]

268

269 data = scipy.io.loadmat('../Data/datad.mat")
270

271 t = data['t'].flatten()[:,None]

272 x = data['x'].flatten()[:,None]

273 Exact = np.real(data['utot']).T

274

275 psi = np.reshape(np.linspace(-10,e,16600), 1eeee)

276 K = np.reshape(KFun(psi,p), 1eeee)

277 C = np.reshape(CFun(psi,p), 1e608)

278 dKdp = np.reshape(dKdpFun(psi,p), 16088)

279

280

281 fK=interpld(psi,K,bounds_error=False,fill_value=(K[®],K[-1]))
282 fdKdp=interpld(psi,dKdp,bounds_error=False,fill value=(dKdp[@],dKdp[-1]1))
283 fC=interpld(psi,C,bounds_error=False,fill_value=(C[©],C[-1]))

71| Page

285 X, T = np.meshgrid(x,t)

2886

287 X_star = np.hstack((X.flatten()[:,None], T.flatten()[:,Nonel))
288 u_star = Exact.flatten()[:,None]

289

290 #

291 l1b = X_star.min(8)

292 ub = X_star.max(@)

293

294

295

297 noise = 8.0

298

299 idx = np.random.choice(X_star.shape[®], N_u, replace=False)
300

3e1 X_u_train = X_star[idx,:]

302 u_train = u_star[idx,:]

383

384 model = PhysicsInformedNN(X_ u_train, u_train, layers, 1lb, ub, fK, fdKdp, fC)
385 model.train(e)

3086

307 u_pred, f_pred = model.predict(X_star)

388

2e9 error_u = np.linalg.norm(u_star-u_pred,2)/np.linalg.norm(u_star,2)
318

311 U pred = griddata(X_star, u_pred.flatten(), (X, T), method='cubic')
312

313

314

315

316

317 fig, ax = newfig(l.e, 1.4)

318 ax.axis('off")

319

321 gs® = gridspec.GridSpec(1, 2)

322 gs@.update(top=1-8.96, bottom=1-1.8/3.8+6.86, left=0.15, right=0.85, wspace=8)
323 ax = plt.subplot(gse[:, :1)

324

325 h = ax.imshow(U_pred.T, interpolation='nearest', cmap='bur’,
326 extent=[t.min(), t.max(), x.min(), x.max()],

327 origin="'lower', aspect='auto')

328 divider = make_axes_locatable(ax)

329 cax = divider.append_axes("right", size="5%", pad=6.85)

33e fig.colorbar(h, cax=cax)

332 ax.plot(X_u_train[:,1], X_u_train[:,e], 'kx', label = 'Data (%d points)' % (u_train.shape[@]), markersize = 2, clip_on = False)
igi line = np.linspace(x.min(), x.max(), 2)[:,None]

335 ax.plot(t[5@]*np.ones((2,1)), line, 'w-', linewidth = 1)

336 ax.plot(t[16@]*np.ones((2,1)), line, 'w-', linewidth = 1)

337 ax.plot(t[156]*np.ones((2,1)), line, 'w-', linewidth = 1)

;z: ax.set_xlabel('$t3$')

340 ax.set_ylabel('$x3')

341 ax.legend(loc="upper center', bbox_to_anchor=(1.0, -0.125), ncol=5, frameon=False)

342 ax.set_title('$u(t,x)$’, fontsize = 10)

944

345

346 gs2 = gridspec.GridSpec(1l, 3)
347 gs2.update(top=1-1.6/3.6-6.1, bottom=1.6-2.6/3.06, left=6.1, right=6.9, wspace=6.5)

348

349 ax = plt.subplot(gs2[®e, @])

350 ax.plot(x,Exact[50,:], 'b-', linewidth = 2, label = 'Exact')

351 ax.plot(x,U_pred[56,:], 'r--', linewidth = 2, label = 'Prediction')
352 ax.set_xlabel('x')

353 ax.set_ylabel('$u(t,x)$')

354 ax.set_title('$t = 1%', fontsize = 10)

355 ax.axis('square’)

356 ax.set_xlim([-©.1,3.1])

357 ax.set_ylim([©6.1,-3.1])

72| Page

358 ax = plt.subplot(gs2[e, 1])

360 ax.plot(x,Exact[1ee,:], 'b-', linewidth = 2, label = 'Exact')

361 ax.plot(x,U_pred[1€0,:], 'r--', linewidth = 2, label = 'Prediction')
362 ax.set_xlabel('$x%"')

363 ax.set_ylabel('$u(t,x)$")

364 ax.axis('square')

365 ax.set_xlim([-8.1,3.1])

366 ax.set_ylim([©.1,-3.1])

367 ax.set_title('$t = 2%, fontsize = 18)

368 ax.legend(loc="upper center', bbox_to_anchor=(6.5, -8.35), ncol=5, frameon=False)
369

37e ax = plt.subplot(gs2[e, 2])

371 ax.plot(x,Exact[15@,:], 'b-', linewidth = 2, label = 'Exact')

372 ax.plot(x,U_pred[150,:], 'r--', linewidth = 2, label = 'Prediction’')

373 ax.set_xlabel('$x%")
374 ax.set_ylabel('$u(t,x)$")

375 ax.axis('square')

376 ax.set_xlim([-8.1,3.1])

377 ax.set_ylim([©.1,-3.1])

378 ax.set_title('$t = 3%', fontsize = 18)

379

388 fig.savefig(r'C:\Users\saket\.spyder-py3\Trial runs\data\Interpolation_Result.png',dpi=1260)

5. PINN — code for Inference

12 import tensorflow as tf
13 #1imy of pro

14 import numpy as np

15 import matplotlib.pyplot as plt

16 import scipy.io

17 from scipy.interpolate import griddata

18 from pyDOE import lhs

19 from plotting import newfig, savefig

26 from mpl_toolkits.mplot3d import Axes3D

21 import time

22 import matplotlib.gridspec as gridspec

23 from mpl_toolkits.axes_gridl import make_axes_locatable
24 from scipy.interpolate import interpild

25

26 np.random.seed(1234)

27 tf.set_random_seed(1234)

28

29 class PhysicsInformedNN:

30 [-

31 def __init__(self, X_u, u, X_f, layers, 1lb, ub, nu, fK, fdKdp, fC):
32

33 self.1b = 1b

34 self.ub = ub

35

36 self.x.u=X.u[:,0:1]
37 self.t.u =X ul:,1:2]
38 self.x_f = X_f[:,0:1]
39 self . Fi= Xoklaa02]
49 self.u = u

41

42 self.layers = layers
43 self.nu = nu

44

45 self.fK = fK

46 self.fdKdp = fdKdp

47 self.fc = fC

48

49

58 self.weights, self.biases = self.initialize_NN(layers)

73| Page

52

53 self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
54

55 log_device_placement=True))
56

57 self.x_u_tf = tf.placeholder(tf.float32, shape=[None, self.x_u.shape[1]])
58 self.t_u_tf = tf.placeholder(tf.float32, shape=[None, self.t_u.shape[1]])
59

60 self.u_tf = tf.placeholder(tf.float32, shape=[None, self.u.shape[1]])

61 self.x_f_tf = tf.placeholder(tf.float32, shape=[None, self.x_f.shape[1]])
62 self.t_f_tf = tf.placeholder(tf.float32, shape=[None, self.t_f.shape[1]])
63

64 self.u_pred = self.net_u(self.x_u_tf, self.t_u_tf)

65 self.f_pred = self.net_f(self.x_f_tf, self.t_f_tf)

66

7 self.loss = tf.reduce_mean(@.5*tf.square(self.u_tf - self.u_pred)) + \

68 8.5*tf.reduce_mean(tf.square(self.f_pred))

69
70 self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss,
71 method = ‘L-BFGS-B',
72 options = {'maxiter': 50000,
73 ‘maxfun': 50000,
74 ‘maxcor': 50,
75 ‘maxls': 5@,
76 'ftol' : 1.0 * np.finfo(float).eps})
78 init = tf.global_variables_initializer()

79 self.sess.run(init)

80

81 def initialize NN(self, layers):

82 weights = []

83 biases = []

84 num_layers = len(layers)

85

86 for 1 in range(@,num_layers-1):

87 W = self.xavier_init(size=[layers[1], layers[1l+1]])

88 b = tf.variable(tf.zeros([1,layers[1+1]], dtype=tf.float32), dtype=tf.float32)
89 weights.append (W)

=l] biases.append(b)

91 return weights, biases

92

93 def xavier_init(self, size):

94 in_dim = size[@]

95 out_dim = size[1]

96 xavier_stddev = np.sqrt(2/(in_dim + out_dim))

97 return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32)
98

99 def neural_net(self, X, weights, biases):

100 num_layers = len(weights) + 1

101 H = 2.0%(X - self.lb)/(self.ub - self.1lb)

182

1e3 for 1 in range(@,num_layers-2):

104 W = weights[1l]

105 b = biases[l]

1086 H = tf.tanh(tf.add(tf.matmul(H, W), b))

107 W = weights[-1]

1e8 b = biases[-1]

1e9 Y = tf.add(tf.matmul(H, W), b)

110 return Y

111

112 def net_u(self, x, t):

113 u = self.neural_net(tf.concat([x,t],1), self.weights, self.biases)
114 return u

115

116 def net_f(self, x,t):

117 u = self.net_u(x,t)

118

119

120 def fn(m):

121 K = .self.FK

122 return fK(m).astype(np.float32)

123

124

125 K_u= tf.py_func(fn, [u], tf.float32)

126

127 def fnl(m):

128 fdkdp = self.fdKdp

129 return fdKdp(m).astype(np.float32)

138

127 def fn2(m):

132 fC = .self.¥C

23 return fC(m).astype(np.float32)

134

74| Page

135 K_u= tf.py_func(fn, [u], tf.float32)

136 dKdp = tf.py_func(fnl, [u], tf.float32)
137 C = tf.py_func(fn2, [u], tf.float32)

138
139
140
141
142
143
144
145
146 , 2]
tf.gradients(u, t)[e]

tf.gradients(u, x)[@]

xx = tf.gradients(u_x, x)[®©]

L;_ =
148 u_x =
149 u_
151 f = C*u_t- dKdp*u_x*u_x -K_u*u_xx - dKdp*u_x
153 return f

155 def callback(self, loss):
156 print('Loss:', loss)

158 def train(self):
159 tf dict = {self.x u_tf: self.x_u, self.t_u_tf: self.t_u, self.u_tf: self.u,
1608 self.x_f_tf: self.x f, self.t_f_tf: self.t_f}

162 self.optimizer.minimize(self.sess,

163 feed_dict = tf_dict,

164 fetches = [self.loss],

165 loss_callback = self.callback)

166

167 def predict(self, X_star)

168 u_star = self.sess.run(self.u_pred, {self.x_u_tf: X_star[:,e:1], self.t u_tf: X_star[:,1:2]})
169 f_star = self.sess.run(self.f_pred, {self.x f tf: X _star[:,e:1], self.t_f_tf: X_star[:,1:2]})
17@ return u_star, f_star

172if _ _name__ == "__main__
173

174 I :

175 noise = 9.0

176 nu=0.000826284608175498463
177

178 N_u
179 N_f
18e

181 layers = [2, 20, 20, 1]

182

183 data = scipy.io.loadmat('../Data/datad.mat"')

184 t = data['t'].flatten()[:,None]

185 x = data['x'].flatten()[:,None]

186 Exact = np.real(data['utot']).T

187

189 psi = np.reshape(data['psi'], (len(data['psi'])))

198 K = np.reshape(data['K'], (len(data['K'])))

191 C = np.reshape(data['C'], (len(data['C'])))

192 dKdp = np.reshape(data['dkdp'], (len(data['dKdp']l)))

193

194 ¢ Esto : : e

195 fK=interpld(psi,K,bounds_error=False,fill_value=(K[@],K[-1]))

196 fdKdp=interpld(psi,dKdp,bounds_error=False,fill_value=(dKdp[@],dKdp[-1]))
197 fC=interpld(psi,C,bounds_error=False,fill_value=(C[©],C[-1]))

198

199 X, T = np.meshgrid(x,t)

208 X_star = np.hstack((X.flatten()[:,None], T.flatten()[:,None]))

= 1ee
4000

201 u_star = Exact.flatten()[:,None]
282
204 1b = X_star.min(®)

205 ub

X_star.max(8)

75| Page

2087 xx1 = np.hstack((X[©:1,:].T, T[©:1,:]1.T))
208 uul = Exact[e:1,:].T

2e8 xx2 = np.hstack((X[:,0:1], T[:,8:1]))

218 uu2 = Exact[:,8:1]

213 xx%3 = np.hstack((X[:,=1:], Tlz,=1:1))

212 uu3 = Exact[:,-1:]

213

214 u_train np.vstack([xx1, xx2, xx3])

X_ i =

215 X_f_train = 1b + (ub-1b)*1lhs(2, N_F)
X =
u,

216 f_train np.vstack((X_f_train, X_u_train))

217 _train = np.vstack([uul, uu2, uu3])

218

219 idx = np.random.choice(X_u_train.shape[@], N_u, replace=False)
220 X_u_train = X_u_train[idx, :]

221 u_train = u_train[idx,:]

222

223 model = PhysicsInformedNN(X_u_train, u_train, X_f_train, layers, lb, ub, nu, fK, fdKdp, fC)
224

225 start_time = time.time()

226 model.train()

227 elapsed = time.time() - start_time

228 print('Training time: %.4f' % (elapsed))

229

230 u_pred, f_pred = model.predict(X_star)

231

232 error_u = np.linalg.norm(u_star-u_pred,2)/np.linalg.norm(u_star,2)
233 print('Error u: %e' % (error_u))

234

235

236 U _pred = griddata(X_star, u_pred.flatten(), (X, T), method='cubic")
237 Error = np.abs(Exact - U_pred)

245

246

247

248

249 fig, ax = newfig(1l.e, 1.1)

250 ax.axis('off')

251

252

253

254 gs® = gridspec.GridSpec(1, 2)

255 gs0.update(top=1-0.06, bottom=1-1/3, left=0.15, right=0.85, wspace=0)
256 ax = plt.subplot(gse[:, :])

ii; h = ax.imshow(U_pred.T, interpolation='nearest', cmap='bur',

259 extent=[t.min(), t.max(), x.min(), x.max()],

260 origin="'lower', aspect='auto')

261 divider = make_axes_locatable(ax)

262 cax = divider.append_axes('right", size="5%", pad=0.05)

263 fig.colorbar(h, cax=cax)

2:; ax.plot(X_u_train[:,1], X u_train[:,@], 'kx', label = 'Data (%d points)' % |(u_train.shape[@]), markersize = 4, clip_on = False)
267 line = np.linspace(x.min(), x.max(), 2)[:,None]

268 ax.plot(t[56]*np.ones((2,1)), line, 'w-', linewidth = 1)

269 ax.plot(t[1e8]*np.ones((2,1)), line, 'w-', linewidth = 1)

27e ax.plot(t[15@]*np.ones((2,1)), line, 'w-', linewidth = 1)

271 ax.set_xlabel('t')

272 ax.set_ylabel('$x%")

273 ax.legend(frameon=False, loc = 'best’)

274 ax.set_title('$u(t,x)$', fontsize = 10)

275

276

277

278 gsl = gridspec.GridSpec(1, 3)

279 gsl.update(top=1-1/3, bottom=@, left=e.1, right=0.9, wspace=0.5)
280

281 ax = plt.subplot(gsl[e, ©])

282 ax.plot(x,Exact[50,:], 'b-', linewidth = 2, label = 'Exact')

283 ax.plot(x,U_pred[506,:], 'r--', linewidth = 2, label = 'Prediction’)
284 ax.set_xlabel('$x%")

285 ax.set_ylabel('$u(t,x)$")

286 ax.set_title('$t = 1%', fontsize = 10)

287 ax.axis('square')

288 ax.set_xlim([-©.1,3.1])

289 ax.set_ylim([©.1,-3.1])

76 |Page

291
292
293
2594
295
296
297
298
299
300
301
302
3e3
304
385
3086
307
388
3e9
310
311
312

77| Page

ax

ax

ax

ax

ax

ax

ax
ax

ax

ax

.plot(x,Exact[1e0,:], 'b-', linewidth =
.plot(x,U_pred[1@8,:], 'r--', linewidth
ax.
.set_ylabel('$u(t,x)$")
ax.
.set_xlim([-8.1,3.1])
ax.
ax.

.plot(x,Exact[150@,:], 'b-', linewidth
ax.
.set_xlabel('$x%")
ax.
ax.
ax.
ax.
.set_title('$t = 3%', fontsize = 18)

= plt.subplot(gsi[e, 1])

2, label = 'Exact')

= 2, label = 'Prediction')
set_xlabel('$x%")

axis('square')

set_ylim([©.1,-3.1])
set_title('$t = 2%', fontsize = 10)

.legend(loc="upper center', bbox_to_anchor=(@.5, -8.35), ncol=5, frameon=False)

= plt.subplot(gsi[e, 2])

= 2, label = 'Exact')
plot(x,U_pred[150,:], 'r--', linewidth = 2, label = 'Prediction')
set_ylabel('$u(t,x)$')
axis('square')
set_xlim([-©.1,3.1])
set_ylim([®.1,-3.1])

fig.savefig(r'C:\Users\saket\.spyder-py3\Trial runs\data\Inference.png',dpi=668)

®NTNU

Norwegian University of DIGITAL®
Science and Technology -

