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Abstract

Foundations are designed to take loads from the superstructure and convey it to the soil under-
neath. The foundation system has to be designed with a certain safety factor, so the foundation
can withstand the applied load(s) without failure in the ground. Various solutions for the bear-
ing capacity problem have been developed using statics. The main goal of these methods is to
find the maximum magnitude of external loads that soil mass can take without failure. This type
of analysis is called limit equilibrium methods and is comprised of two bounds, upper bound
which tries to reach the exact solution from above and the other one is called lower bound which
tries to reach the answer from below.

Using limit analysis solutions and statics, solutions have been developed for solving prob-
lems in geotechnical engineering. These solutions are used in standard geotechnical engineer-
ing practice. The solution for undrained analysis and weightless soil for a shallow, strip footing
without embedment, is derived and it is well known to be the exact solution. When it comes to
the effect of weight of soil, the effect of footing shape and embedment on the bearing capacity,
the hand-derived formulas assume a priori statements in solving the problems, and then derive
a solution which is not necessarily correct.

A new type of numerical analysis, namely numerical limit analysis has been developed,
which uses finite element discretization to approximate the problem and solve it to obtain the
upper and lower limit to the exerted load(s). In this work, this tool will be used to run simula-
tions to check the validity of the current methods, and develop factors and expressions for the
effect of soil weight, as well as developing depth, inclination, and shape factors.

This thesis is proposing a new expression for bearing capacity factor Nγ under inclined
loading. This new expression is compared to some of the experimental works by some other
researchers. Furthermore, it proposes a new shape factor, depth factor, and strength anisotropy
factor for bearing capacity of undrained soils. Moreover, a macro model is proposed for a
special case of a shallow foundation with suction beneath the footing.
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Chapter 1
Introduction

1.1 Background

Foundations are structures that the superstructure is designed to rest on. A foundation has to
be designed to withstand the loading of the superstructure and it has to settle in an acceptable
range, so the superstructure can maintain its serviceability. These two limit designs are usually
called ultimate limit state and serviceability limit state, respectively. The first limit state will
ensure that failure of foundation will be avoided, with a certain safety factor, and the second
limit ensures that a tolerable settlement will occur.

The first set of problems can be called stability problem and the second one can be called
elasticity problem. These two sets of problems are treated differently and somewhat unrelated.
Stability problems includes problems such as earth pressure, slope stability, and bearing capac-
ity.

Various solutions for these types of problems have been developed using statics and assum-
ing a predetermined failure surface and assuming soil mass to be in the state of failure. This
type of analysis is called limit equilibrium method. The main goal of this method is to find
the maximum magnitude of external loads that a body of material can take without the ground
beneath the footing going to failure.

The plasticity theorem lays the foundation to find bounds of exact collapse load without
constructing an incremental load-deformation analysis. For this purpose, there are two types
of analyses, namely lower bound analysis, or static approach, and upper bound analysis, or
dynamic approach. Lower bound limit analysis tries to approach the “real answer” from below,
by increasing the admissible load and the upper bound limit analysis is trying to approach it
from above by decreasing the admissible load. If these two answers converge, the real answer
will be obtained.
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There are solutions developed by plasticity theorem for effect of cohesion and surcharge on
bearing capacity. There are no rigorous lower and upper bound solutions available for effect of
soil density, shape and inclination factor. This thesis is trying to address these issues.

1.2 Motivation

Bearing capacity equation is partly developed by using limit state solutions and statics. Using
the superposition method, bearing capacity is assumed to be the sum of three components af-
fecting it, namely cohesion, overburden and weight component, which are a function of friction
angle and foundation base roughness.

The solution for undrained analysis and weightless drained soil for a shallow, strip footing
without embedment has a rigorous solution. This is not the case for effect of weight of soil,
effect of footing shape and embedment on the bearing capacity. Hand-derived formulas assume
a priori statements in solving the problems, where the failure mode and failure line is assumed
beforehand and the mathematical foundations builds upon a set of assumptions. This means
that the derived solutions are not necessarily exact.

A new type of numerical analysis, namely numerical limit analysis has been developed
(Lyamin and Sloan [2002a], Lyamin and Sloan [2002b] and Krabbenhøft and Damkilde [2003])
which uses finite element discretization to approximate the problem and solve it to obtain the
upper and lower limit to the exerted load(s). These methods find an upper and lower limit to
an external load without running the whole load-deformation curve. This type of analysis gives
the chance to develop rigorous lower/upper bound solutions for some of the problems which are
hard to derive in closed form solutions.

In this thesis, the main motivation is to use this finite element limit analysis tool to derive
rigorous solutions for the effect of soil weight, shape and inclination factors.

1.3 Objectives

1. Presenting the current methods for calculating bearing capacity of shallow foundations.

2. Running simulations to check the validity and precision of the program.

3. Constructing a bearing factor for effect of soil weight

4. Running simulations to construct shape, depth and inclination factors for undrained anal-
ysis

5. Running simulations to construct shape and inclination factors for drained analysis

6. Comparison of the results with current methods

2
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7. Comparison of the results with experimental data

1.4 Limitations

In this work, associated flow rule is assumed for a considerable part of the work. Every classical
solution (Terzaghi et al. [1996], Meyerhof [1951], Janbu [1976], and many others) assume
associated flow for solving bearing capacity, even though it is not mentioned explicitly. In
addition, footings have been assumed to be rough throughout this thesis.

1.5 Approach

Throughout this thesis, it has been a goal to compartmentalize each of the contributing factors
in bearing capacity in a way that they would not affect each other and would not contribute at
the same time. This was done, for instance, by not giving any weight or cohesion to the soil
when the surcharge effect was being investigated. It can then be assured that each contributing
factor is depicted correctly in bearing capacity equations.

1.6 Structure of the thesis

The main body of this thesis is structured as follows:

• Chapter 1 - Introduction

◦ In this chapter, a background to the general scheme of work is presented. Motiva-
tion, objective, and limitation of the work have also been presented.

• Chapter 2 - Bearing Capacity in Classical Soil Mechanics

◦ In this chapter, a literature study of available methods for calculating bearing capac-
ity of a shallow foundation will be given.

• Chapter 3 - Bearing Capacity in Ponderable Soils

◦ In this chapter, a literature study of available equations available for calculating
bearing capacity factor, Nγ will be given.

• Chapter 4 - Methods

◦ Here, an introduction to the theoretical foundation of limit analysis, FELA and the
program used in this thesis will be given.

• Chapter 5 - Numerical Limit Analysis in Tresca soil are presented.
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◦ Here, 8 cases of analysis which were run on Tresca soil are presented.

• Chapter 6 - Numerical Limit Analysis in MC Soil

◦ Here, 5 cases of analysis which were run on Mohr-Coulomb soil.

• Chapter 7 - Comparison of Numerical and Experimental Results

◦ Here, some experimental results are compared to the proposed equation for Nγ.

• Chapter 8 - Summary and Discussion

◦ Here, a summary and discussion of the results will be presented. Some recommen-
dations for further work is given as well.

There are four attachments to this thesis, which are the following:

• Appendix A - Acronyms

◦ In this appendix, a list of acronyms are summarized.

• Appendix B - Introduction to OptumG2

◦ In this appendix, an introduction to OptumG2 will be given.

• Appendix C Matlab Codes

◦ In this appendix, the Matlab codes used to run Optum via Matlab API are given.

• Appendix D Results

◦ A series of Excel worksheets with the results of simulations are given.
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Chapter 2
Bearing Capacity in Classical Soil Mechanics

2.1 Introduction

One of the important tasks of a geotechnical engineer is designing foundations that a super-
structure can stand on. This foundation has to be designed to withstand the loading of the
superstructure and it has to give serviceability. This means that the design of the foundation
has to avoid failure of foundation with a certain safety factor and it should result in a tolerable
settlement. Finding the maximum load which causes failure in soil mass is the goal of the first
type of analysis.

Studying a simple case of a footing with a centric vertical load on a homogeneous soil, Vesić
[1973] stated that the failure of a foundation is a shear failure of the soil which the foundation
rests on. The work categorized three principal modes of failure which happens under a shallow
foundation, which are:

• general shear failure • local shear failure • punching shear failure

According to Vesić [1973], the general shear failure has a well-defined failure line from
edges of the footing down to the soil mass and up to the surface with a spiral (see Figure 2.1a).
“Curve 1” shows the load-displacement curve of the soil as loads increases to an ultimate load.
This mode of failure shows a clear collapse point. Ultimate bearing capacity of a foundation is
the maximum load the ground under a foundation can sustain without failing.

Local shear failure is a failure pattern similar to general shear failure except failure zones
just beneath the foundation are developed (see 2.1b).

The punching failure shows a reaction which does not cause movement of soil on the sides of
foundation. Failure involves both compression and failure of soil mass beneath the foundation
(see Figure 2.1c).

5



Chapter 2. Bearing Capacity in Classical Soil Mechanics

Figure 2.1: Principal modes of bearing capacity failure (from Rao [2010])

The failure point, generally, is defined as a point where the load-displacement curve first
reaches a steady, maximum value (Vesić [1973]). This can be seen for general stress failure
where there is a clear maximum point. For the other failure modes, the failure point can be
defined as the point where the deformations are unacceptable (qu in the figure).

2.2 Bearing capacity theories

There have been several works published which have tried to solve the problem of bearing
capacity. Laboratory experiments that have tried to find the ultimate bearing capacity suffer
from the shortcoming of difficulty of selecting a representative friction angle for comparison
between laboratory experiments and theoretical models (especially for friction angles greater
than 30°). Discussions associated with selecting a representative friction angles will come later.
In this chapter, a couple of these will be mentioned and their assumption and the results will be
shown.
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2.2.1 Plasticity bearing capacity theory by Prandtl and Reissner

Classical plasticity theory assumes that a bearing capacity problem is comprised of rigid-plastic
soil which shows no deformation before failure and a plastic flow with constant stress after
failure point (Prandtl [1921]). This theory predicts the general stress failure (failure mode a
in Figure 2.1). Prandtl [1921] develops the theory for a rectangular foundation with width B
and length L resting, with an overburden of D (see Figure 2.2a), on a soil which is perfectly
plastic with the Mohr-Coulomb failure criterion (see Figure 2.2b). The method tries to find the
maximum allowed vertical stress (see Figure 2.2c).

Figure 2.2: Bearing capacity failure and relevant zones (from Prandtl [1921])

Prandtl [1921] made the following simplifications to the solve the bearing capacity problem:

• Effect of failure line which goes through overburden is neglected (along bc in Figure
2.2a).

• Shear resistance along the soil and foundation is neglected (shear resistance along ad in
Figure 2.2a)

• Shear resistance between the overburden and the soil beneath the foundation (along ab in
Figure 2.2a) is neglected.

• The length of the foundation, L, is assumed to be large in comparison to the width of
foundation, B, or B/L<0.2 in more mathematical terms. For B/L>0.2 and different shapes,
some factors have to be introduced.
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Prandtl [1921] and Reissner [1924] then solves the problem seen in Figure 2.2c by theory of
plasticity. He categorized the failure zones into three failure zones (see 2.2c). Zone I is com-
monly known as active Rankine zone, zone II as radial Prandtl zone and Zone III as passive
Rankine zone. The active Rankine zone pushes the radial Prandtl zone sideways and that zone
pushes the passive Rankine zone upward. The AC line is inclined at 45°+ ϕ/2 and the DE line
is inclined at 45°− ϕ/2 . The shape of the zone II depends on the friction angle, ϕ and the
following ratio: γB

q . For γB
q = 0 (weightless soil) the curve becomes a logarithmic spiral. The

curve becomes circular for total stress soil model where ϕ = 0°. Prandtl [1921] and Reissner
[1924] formulate the bearing capacity for a weightless soil as follows:

qul t = c ·Nc +q ·Nq (2.1)

Where Nc and Nq are dimensionless bearing capacity factors. They are defined as:

Nq = tan2(
π

2
+ ϕ

2
) ·eπ·tanϕ

Nc =(Nq −1) · cotϕ
(2.2)

Figure 2.3 shows the variation of these two factors with change of friction angle, ϕ.
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Figure 2.3: Variation of dimensionless bearing capacity factor, Nc and Nq with friction angle

The solution proposed by Prandtl [1921] and later by Reissner [1924] is based on the slip-line
method where the basic differential equation of the slip-line network is applied to the problem
(Manoharan and Dasgupta [1995]).
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2.2.2 Terzaghi’s bearing capacity theory

Terzaghi used the superposition method to solve the bearing capacity problem for a rigid, strip
footing on a homogeneous soil. The main idea of this method is to find the contribution of
each of the parameters which can affect the bearing capacity (cohesion, overburden and soil
weight, and friction angle) by expressing them in form of dimensionless bearing capacity fac-
tors, namely Nc , Nq , and Nγ, with which he used the limit equilibrium method to calculate
them. Davis and Booker [1971] have investigated the theoretical justification of the superposi-
tion method suggested by Terzaghi and their work concludes that even though this method is
not rigorous, it leads to a conservative design, i.e. a design on the safe side.

The proposed failure mechanism by Terzaghi is shown in Figure 2.4. It is based on the limit
equilibrium method where a critical surface is found from different shapes.

Figure 2.4: Geometry used in Terzaghi method (from Coduto [2001]).

Terzaghi’s solution divides the problem into three zones:

• Wedge zone (abd): This an elastic zone beneath the foundation, inclination of lines bc
and ad is equal to the friction angle, ϕ.

• Lower Shear Surface (ade): this is the same as Prandtl radial shear zone.

• Passive zone (aef): this is the passive Rankine zone where the slip lines comes out of the
soils surface with 45°+ ϕ

2

These geometrical shapes are chosen on physical grounds (Hjiaj et al. [2005]) and the equilib-
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rium is enforced at the global level and the stress distribution outside the failure surface is not
considered.

The ultimate bearing capacity can be obtained by finding the passive force required to cause
failure along line bdef (see Figure 2.4). The ultimate bearing capacity is a function of overbur-
den pressure, p’=γ ·D, cohesion, c, unit weight of soil, γ, and friction angle, ϕ.The complete
derivation of the formulas can be found in Coduto [2001] and Terzaghi et al. [1996]. Terzaghi
gives the following equation for ultimate bearing capacity:

qul t = Nc · c +Nq ·p ′+ 1

2
·Nγ ·γ ·B (2.3)

Where the Nq , Nc and Nγ are defined as:

Nq = e2·( 3π
4 −ϕ

2 )·tanϕ

2 · cos2(45+ ϕ
2

)

Nc = (Nq −1) · cotϕ

Nγ =1

2
·Kpγ tan2ϕ− tanϕ

2

(2.4)

Terzaghi never gave the formula used to calculate Kpγ; hence the only way to calculate Nγ is
by using the figures. In addition, Kumbhojkar [1993] tried to repeat Terzaghi’s work and he
got similar results for friction angles upwards to 39 ° but not for friction angles larger than that.
Figure 2.5 shows how values of dimensionless bearing capacity factors change depending on
friction angle.

Figure 2.5: Values of dimensionless bearing capacity factors with varying friction angles, ϕ
(from Terzaghi et al. [1996]).
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It should be noted that Terzaghi et al. [1996] suggested factors and constants for other forms
of foundations apart from the strip foundation. Equation 2.5 is the bearing capacity for a foun-
dation with a square form and Equation 2.6 shows it for a foundation with a circular form. For
these two forms, B is the width of the square and the diameter of the circle, subsequently.

qul t = 1.3 ·Nc · c +Nq p ′+0.4 ·Nγ ·γ ·B (2.5)

qul t = 1.3 ·Nc · c +Nq p ′+0.3 ·Nγ ·γ ·B (2.6)

As can be seen, for non-strip footings, the cohesion term increases by 30%, while the overbur-
den component does not change, but the weight component decreases by 20% for square form
and by 40% for circular footing.

2.2.3 Meyerhof’s bearing capacity theory

By using the limit equilibrium method, Meyerhof [1951] developed a solution for shallow and
deep foundations with rough soil-solid interfaces. Figure 2.6 shows the failure surface assumed
by Meyerhof [1951].

Figure 2.6: Plastic zones for a rough shallow strip foundation in Meyehof’s bearing capacity
theory (from Das [2017]).

The triangular wedge abc acts elastically, zone bcd is logsprial shear zone, and triangle bde
is a mixed shear zone. Unlike Terzaghi and Prandtl, Meyerhof’s free surface has both normal
stress and shear stresses, marked as p0 and s0 in Figure 2.6. By using the superposition method,
the ultimate bearing capacity is defined the same as Terzaghi et al. [1996] method has suggested
(see Equation 2.3). Derived formulas for dimensionless bearing capacity factors are different
from the previous two papers. These factors now also depend on the foundations roughness.
Nγ is derived by trial and error, but the other factors are found analytically. Derivation of the

11
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formulas can be found in Das [2017], but the formulas are as follows:

Nq = (1+ si nϕ) ·e 2θ tanϕ

1− si nϕ · si n(2η+ϕ)

Nc = (Nq −1) · cotϕ

Nγ =
4 ·Pp · si n(45+ ϕ

2 )

γ ·B 2
− 1

2
tan(45+ ϕ

2
)

(2.7)

where θ and η are a function of degree of mobilization of shear strength, m, and the angle
between the exit point of the failure line (point e in the Figure 2.6) and the horizontal line. For
no mobilization of shear stress, m=0, we have:

η= 45°− ϕ

2
and θ = 90°+β

and for a full mobilization of shear stress, m=1, we have:

η= 0 and θ = 135°+β− ϕ

2

By varying these two parameters, dimensionless factors are shown in Figure 2.7.

Figure 2.7: Meyerhofs bearing capacity factors (from Meyerhof [1951])

For the special case of no overburden, the equations will be simplified to the following:

Nq = 1+ si nϕ

1− si nϕ
e π·tanϕ

Nc = (Nq −1) · cotϕ

Nγ = (Nq −1) · tan(1.4 ·ϕ)

(2.8)

12
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Equations for Nq and Nc are similar to the one developed by Terzaghi et al. [1996] and Prandtl
[1921].

Meyerhof [1963] finds the partly theoretical and partly semi-empirical solution for the cir-
cular and rectangular foundations. The dimensionless bearing capacity factor for the strip,
circular, and rectangular are drawn in Figure 2.8.

Figure 2.8: Dimensionless bearing capacity factors for strip, square and pile foundation (from
Meyerhof [1963])

Alternatively, we can expand the ultimate bearing capacity formula to:

qul t = sc ·Nc · c + sq ·Nq ·p ′+ 1

2
· sγ ·Nγ ·γ ·B (2.9)

where shape factor, sq , sc and sγ are defined as follows:

sc = 1+0.2 · tan2(
π

2
+ ϕ

2
) · B

L
(2.10)

sq = sγ = 1 when ϕ= 0° (2.11)

sq = sγ = 1+0.1 · tan2(
π

2
+ φ

2
) · B

L
when ϕ≥ 10°

Meyerhof [1963] states that for friction angles higher than 30°, laboratory experiments show
smaller Nγ for strip foundations in comparison to circular and square foundations. The opposite

13
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is true for bearing capacity theory where strip foundations always have a higher value than
circular and square foundations in cohesionless soil. Meyerhof [1963] states that the effect of
intermediate principal stress leads to this discrepancy and he suggests using the triaxial test
to obtain strength parameters for circular and square footings and a plane strain compression
test to obtain the parameters for strip footings. He proposes the following formula to find the
friction angle which should be used in the calculation of finding bearing capacity:

ϕ= (1.1−0.1 · B

L
) ·ϕt (2.12)

where ϕ is the friction angle suggested to use and ϕt is the friction angle interpreted from
triaxial tests.

2.2.4 Conclusion

In most geotechnical practices concerning bearing capacity problems, and its application on
practical engineering problems, the following is generally accepted:

1. The superposition method (see Section 2.2.2), which sums up bearing capacity as a sum
of three elements, namely cohesion, overburden and weight of soil (Equation 2.3)

2. The failure surface and its geometry, seen in Figure 2.9, which is a modified version of
Terzaghi’s model after experimental results

3. The dimensionless bearing capacity factors, Nq and Nc , which are derived by Prandtl
[1921] and Reissner [1924] and confirmed by Meyerhof [1951].

Figure 2.9: Modified Terzaghi’s failure surface after laboratory tests (from Das [2017])

The only reason for the lack of one unified theory for ultimate bearing capacity is the lack
of a closed-form solution for dimensionless bearing capacity, Nγ. This is the only variable
that causes the difference between the different proposed solutions and formulas available in
the literature. Up until now, two theories have been discussed as proposed solutions for Nγ,
which are graphically presented in Figure 2.10. Some of the most well-known proposals for
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Figure 2.10: Graphical Representation of Nγ proposed by Terzaghi and Meyerhof

determining Nγ will be presented in Chapter 3.
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Chapter 3
Bearing Capacity in Ponderable Soils

In this chapter, the effect of soil density on the bearing capacity, which is expressed by the
bearing capacity factor Nγ, will be explored in the classical soil mechanics. As mentioned in
Chapter 2, previous researchers, namely Golder et al. [1941] and Meyerhof [1951], have found
an exact solution for the effect of cohesion and overburden on the ultimate bearing capacity.
There is a lack of closed-form solutions for the effect of soil density, which has brought about
the development of several methods and theories that have attempted to solve this problem.
Figure 3.1 shows the range of Nγ calculated by different methods for friction angle ϕ=30°. The
methods are color sorted into 7 categories:

• Limit Equilibrium

• Finite difference/finite element

• Method of characteristics

• Finite element limit analysis

• Ordinary differential equation

• Formulas

• Upper bound solutions

• Exact solution (Martin [2004])

The proposed value for Nγ by these different methods ranges from 13 to almost 25, even
though the exact solution is around 15. It should be noted that most of these formulas overesti-
mate the factor which means they are on the unsafe side.

Das [2017] states the primary reason for the development of several theories for finding Nγ

and their inability to correlate with laboratory experiments lies in the difficulty of the selection
of friction angle. The friction angle of soil depends on intermediate principal stress and the
natural anisotropy of soil means that selection of representative friction angle is not easy (more
about this in Chapter 7).

According to Loukidis and Salgado [2009] another reason for various expressions of Nγ can
be related to the different assumptions of failure, geometry and mechanisms below the footing
base (active or rigid wedge).
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Figure 3.1: Nγ for ϕ=30° by various authors (redrawn after Martin [2005])

In the following sections, some of the proposed solutions for the bearing capacity factor,
Nγ, will be explored.

3.1 Brinch-Hansen’s bearing capacity formula

Hansen [1961] proposes a modification to Terzaghi’s bearing capacity formula by adding shape
factors,s, depth factors, d, and inclination factors, i. The equation then becomes:

qul t = sc ·dc · ic ·Nc · c + sq ·dq · iq ·Nq ·p ′+ 1

2
· sγ ·dγ · iγ ·Nγ ·γ ·B (3.1)

According to Hansen [1961], Nγ is found by Lundgren-Mortensen rupture for vertical loading
(see Figure 3.2):

Nγ = 1.5 · (Nq −1) · tanϕ (3.2)

Figure 3.3 shows the dimensionless bearing capacity factors used by Hansen [1970].

Hansen [1961] used the following shape factors, which are based on the experiments done
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Figure 3.2: Lundgren-Mortensen failure mechanism used for calculation of Nγ (from Hansen
[1970])
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Figure 3.3: Dimensionless bearing capacity factors as a function of friction angle (adapted from
Hansen [1970])

by de Beer [1970]:

sc = 1+ Nq

Nc
· B

L

sq = 1+ si nϕ · B

L

sγ = 1−0.4 · B

L

(3.3)

Hansen [1961] described the depth factor for a foundation with a embedment of D f as follow
for D f /B ≤ 1:

dc = dq −
1−dq

Nq · tanϕ

dq = 1+2 · tanϕ · (1− sinϕ)2 · D f

B
dγ = 1

(3.4)
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and following factors for D f /B > 1:

dc = 1+0.4 ·arctan(
D f

B
)

dq = 1+2 · tanϕ(1− sinϕ)2 ·arctan(
D f

B
)

dγ = 1

(3.5)

3.2 Proposed solution by Vesic

By using the theory of plasticity, Vesić [1973] divided the bearing capacity problem into three
zones, active Rankine, radial Prandtl zone, and passive Rankine zones. Vesic states that the
shape of the failure line is confirmed experimentally by de Beer [1970]. Based on the result of
experiments, Vesić [1973] proposes the following formula for calculation of Nγ:

Nγ = 2 · (Nq +1) · tanϕ (3.6)

According to Das [2017], this proposed solution has error not exceeding 5% for friction angle
between 20° and 40° compared to the exact solution. He proposes following shape factors for a
rectangular foundation:

sc =1+ B

L
· Nq

Nc

sq =1+ tanϕ · B

L

sγ =1−0.4 · B

L

(3.7)

and the following shape factors are for circular and square-shaped foundations:

sc =1+ Nq

Nc

sq =1+ tanϕ

sγ =0.6

(3.8)

Vesić [1973] uses the same depth factor as Hansen [1961].

3.3 Solution proposed by Janbu

This solution was developed by Janbu [1976] and was later further developed to the current
version (outlined in Grande et al. [2016]). This method solves the bearing capacity problem for
a so-called effective stress analysis (a-ϕ analysis) and a total stress analysis (Su analysis). Here,
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we will look at two cases where loading is centric and inclined on a-ϕ and Su basis.

3.3.1 effective stress analysis

In this method, instead of having inclination factors, a roughness ratio is defined. Roughness
ratio for an effective stress analysis is:

r = τh

σ′
v · tanϕ

(3.9)

Incorporating inclined load into the bearing capacity formulation means that the direction of
principal stress is tilted from vertical stress by an angle, called ω, which is defined as:

w = tan−1( fw · tanαc+) (3.10)

where:
fw = 1

r

(
1−

√
1− r 2

)
(3.11)

and
tanαc+ = tanϕ+

√
1+ tan2ϕ (3.12)

Opening of the Prandtl zone will become π/2 - ω. The roughness ratio will affect the active
Rankine zone as well. The stress field for this bearing capacity problem is shown in Figure 3.4.

Figure 3.4: Stress field for a centric, inclined load in an effective stress analysis (from Grande
et al. [2016])

The general bearing capacity for a weightless soil is defined as:

σ′
v = Nq · (p ′+a)−a (3.13)

where the Nq is defined as:

Nq = (1+ f 2
w ) ·N+

1+ f 2
w ·N+

·e(π−2ω)·tanϕ (3.14)
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where N+ is defined as:

N+ = 1+ sinϕ

1− sinϕ
(3.15)

This means that Nq is a function of friction angle, ϕ and roughness ratio, r. The diagram of
different Nq for different values of roughness and friction angle is shown in Figure 3.5.

Figure 3.5: Bearing Capacity factor, Nq diagram (from Grande et al. [2016])

For taking into account the weight of the soil, the method of characteristics is used. Accord-
ing to this method, foundation pressure is increasing almost linearly from the outer foundation
point with 2γNγ. For solving the problem, foundation pressure is assumed in a triangular stress
distribution (see Figure 3.6).

Figure 3.6: Geometry used in the method of characteristics (from Grande et al. [2016])

By defining an equivalent depth, z0 at 80% of maximum depth, a dimensionless foundation
width, B0 is calculated which is used for the bearing capacity factor, Nγ. Figure 3.7 shows how
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the reference depth is located in the geometry of the bearing capacity problem.

Figure 3.7: Assumption of geometry and reference depth, z0 (from Grande et al. [2016])

Here, reference depth is defined as:

d0 = sin(αc+−ω) ·e(αc+−ω)·tanϕ · 1

1.25 · (2− r )
(3.16)

Reference depth, z0 is related to bearing capacity factor, Nγ by:

d0 = 1

2
· Nγ

(Nq −1)
(3.17)

Hence, the main equation for calculation of bearing capacity becomes:

σ′
v = (Nq −1) · (p ′+a)+ 1

2
·γ ·Nγ ·B0 (3.18)

Figure 3.8 shows values of Nγ for different roughness ratio and friction angles. Grande et al.
[2016] state that the weight element of bearing capacity reduces by about 30% for non-strip
vertical loading. The authors suggest using conservative Nγ for non-strip loading. Grande et al.
[2016] states that it is not recommended to correct for depth factors in effective stress analysis.

3.3.2 Total stress analysis

This is a specific case of the effective stress analysis where friction angle is zero and the cohe-
sion is equal to shear strength, Su . Figure 3.9 shows the stress field for a centric, inclined load
on a soil with total stress behavior. Here, the bearing capacity will be defined as:

σv = Nc ·Su +p (3.19)

where bearing capacity factor, Nc is defined as:

Nc = 1+π− sin−1 r +
√

1− r 2 (3.20)
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Figure 3.8: Bearing capacity factor, Nγ, chart for inclined loading ( from Grande et al. [2016])

Roughness ratio, r, now is defined as the ratio of horizontal stress to shear strength:

r = τh

Su
(3.21)

Grande et al. [2016] state that shape factor for total stress analyses is corrected by following
relationship:

Nc, quadr ati c = (1+0.2 · (1− r )) ·Nc, str i p = (1+ f A) ·Nc, str i p (3.22)

Grande et al. [2016] state the following depth factor:

Nc, D = (1+ fD ) ·Nc, shal low (3.23)

where the correction factor, fD comes from Figure 3.11.

3.4 Michalowski’s bearing capacity proposals

By the using tkinematical approach of upper bound limit analysis, Michalowski [1997] found
a solution for solving Nγ. According to Michalowski [1997], apart from weightless soil, the
rigid-block mechanism does not follow the exact geometry proposed by Prandtl [1921]. This is
since Nc and Nq does not follow the proposed formulas when γ 6= 0. By correlating the bearing
capacity to dimensionless coefficients, namely c

γ·B and q
γ·B , Michalowski [1997] suggested the
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Figure 3.9: Stress field for a centric, inclined load in a total stress analysis ( from Grande et al.
[2016])

following formula for Nγ which only depends on friction angle:

Nγ =e 0.66+5.11·tanϕ∗ · tanϕ∗ (r oug h f ooti ng s)

Nγ =e 5.1·tanϕ∗ · tanϕ∗ (smooth f ooti ng s)
(3.24)

where tanϕ∗ is defined to take into account for non-associating flow:

tanϕ∗ = cosψ · si nϕ

1− si nψ · si nϕ
(3.25)

In this equation, ψ is the dilation angle and ϕ is the friction angle. A graphical representation
of the dimensionless bearing factor, namely Nγ, can be seen in Figure 3.12. The figure shows
how Nγ would differ between a smooth and rough footing. It also shows the significance of the
dilation angle, ψ in the proposal of Michalowski [1997].

3.5 Martin’s bearing capacity

When considering the self-weight of soil, the stress characteristics field is not necessarily kine-
matically admissible and it is not necessarily possible to extend the stress field outside of the
plastic zones (Frydman and Burd [1997]). This means that solutions obtained by this method
are not necessarily exact or even lower bound to the exact solution (Frydman and Burd [1997]).
A further complication is the assumption of rough footing which according to Martin [2005]
and Frydman and Burd [1997], “the precise nature of the boundary condition that should be
applied at the base of footing is not clear”.

When considering the weight of soil, shear strength is going to increase with depth, hence
any velocity discontinuity which were assumed to be straight in Prandtl [1921] theories, are
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Figure 3.10: Bearing Capacity factor, Nc diagram Grande et al. [2016]

now curved and their model can not feature the exact solution. According to Martin [2005],
most methods assume a a priori failure geometry and try to find a stress field which can lead to
failure. This assumption is not necessarily correct. Instead, Martin [2005] builds a stress field
and a velocity field associated with it and tries to match these two. Figure 3.13 shows what
these two fields look like.

By integrating the traction on the boundary beneath the footing, and calculation of internal
and external work rates in the velocity field, lower bound and upper bound answers can be
obtained for the bearing capacity problem. By performing a series of more accurate analyses,
by having finer mesh and lower allowable error, these two answers can get close to each other.
The author then assumes a cohesionless soil and finds the bearing capacity factor, Nγ by:

Nγ = lim
γB/q→∞

2Qu/γB 2 (3.26)

Martin [2004] details how a couple of iterations were used to converge upper and lower bound
solutions to get Nγ factors with 4 digit precision. Figure 3.14 shows bearing capacity calculated
by Martin [2004] for footing with different smoothness.

Martin [2005] assumed the following in his work:

• Plane strain situation

• Associated flow rule, ψ=ϕ
• centric vertical loading
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Figure 3.11: Correction for depth factor for total stress analysis ( from Grande et al. [2016])

3.5.0.1 Solution proposed by geotechnical engineering group of University of Newcastle

Hjiaj et al. [2005] build his method on two previous works; first by using mathematical founda-
tions laid by Lyamin and Sloan [2002a] which finds a lower bound solution by using the finite
element method, the second work is the upper bound method described by Lyamin and Sloan
[2002b]. Hjiaj et al. [2005] ran upper bound and lower bound analyses to get a lower bound
and upper bound bearing capacity. These analyses were find-tuned by using finer mesh until
relative error (the difference between lower bound and the average) becomes sufficiently small.

Hjiaj et al. [2005] states that a slip method will yield an upper bound solution if a kinemat-
ically admissible velocity field can be yielded by the integration of stress-strain equations for
soil mass. If the same stress field can be extended to the soil mass inside the failure line in a way
that boundary conditions, equilibrium equations and yield conditions of the soil are satisfied,
then the same solution is also a lower bound and hence, the exact solution (the approach taken
by Martin [2004]).

Hjiaj et al. [2005] ran analyses for different friction angles and then assigned averages of
Lower and upper bound results to each friction angle. They proposed the following fitting
formula for predicting Nγ for rough foundations:

Nγ = eπ+3π2 tanϕ · tan
2π
3 ϕ (3.27)

The authors stated that this formula has a maximum error of ± 3.42 %. This formula matches
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Figure 3.12: Graphical representation of Nγ proposed by Michalowski [1997]

Figure 3.13: Stress and velocity field generated by ABC program (from Martin [2005])

quite well with the factors proposed by Martin [2004] as well. The bearing capacity factors, Nγ,
predicted by Equation 3.27 have a maximum 2% difference from Martin [2004] results, which
means the equation is sufficiently exact to be used. The authors also ran the same simulation
with a smooth foundation and found roughness factor, β, which is defined as:

β=
N smooth
γ

N r oug h
γ

(3.28)

Table 3.1 shows the calculated β factors. It can be seen that for most realistic friction angles,
namely between 20 ° and 45 °, the β factor is about 0.5 which is in agreement with the value
suggested by Meyerhof [1951].
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Figure 3.14: Graphical representation of proposed bearing capacity factors by Martin [2004]

Figure 3.15: An example of meshing and boundary condition for a upper bound analysis (from
Hjiaj et al. [2005])

3.5.0.2 Loukidis and Salgado’s bearing capacity proposals

By using finite element code SNAC, Loukidis and Salgado [2009] performed analyzes using the
elastic-perfectly plastic Mohr-Coulomb model and investigated the effect of dilatancy angle on
bearing capacity and tried to find Nγ, Nq and shape factors for circular footings.

The authors used the pair of dilatancy angles and friction angles seen in Table 3.2 to test
the effect of the dilancy factor in calculating bearing capacity. As stated in Nordal [2016], by
introducing non-associated flow rule to an MC model, the solution can not reach a defined,
constant maximum load.

Figure 3.16 shows how maximum shear strain increments align with the collapse mecha-
nism suggested by Martin [2004]. For associated flow cases in both weightless and ponderable
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Table 3.1: Roughness factor, β calculated for different friction angles (from Hjiaj et al. [2005])

ϕ 5 ° 10 ° 15 ° 20 ° 25 ° 30 ° 35 ° 40 ° 45 °
β 0.76 0.65 0.6 0.56 0.54 0.53 0.52 0.51 0.51

Table 3.2: Sets of dilancy angles and friction angles used in analyses Loukidis and Salgado
[2009]

Friction angle, ϕ °
Dilatancy angle, ψ °
Set 1 Set 2 Set 3 Set 4

30 30 10 2 -
35 35 15 6 2
40 40 20 12 6
45 45 25 18 12

soil the two mechanisms align perfectly (Bearing capacity program ABC uses associated flow
rule). Further, the authors run these two sets of analyses (weightless soil with surcharge, and,

(a) Weightless soil (b) Ponderable soil (no surcharge)

Figure 3.16: Maximum shear strain increments compared to the collapse mechanism (dashed
lines) by Martin [2004] (from Loukidis and Salgado [2009])

ponderable soil without surcharge) and they found the bearing capacity factors, namely Nq and
Nγ. Those factors were compared to their exact values (see Figure 3.17). The figures show
the case of ψ = ϕ is very close to their exact solution. Loukidis and Salgado [2009] suggest
following formula for calculating Nq in materials with non-associated flow behavior:

Nq = 1+ sinϕ

1− sinϕ
·e F (ϕ,ψ)·π·tanϕ (3.29)

where:
F (ϕ,ψ) = 1− tanϕ

(
tan

(
0.8 · (ϕ−ψ)

))2.5
(3.30)

30



Chapter 3. Bearing Capacity in Ponderable Soils

(a) bearing capacity factor Nq (b) bearing capacity factor Nγ

Figure 3.17: Comparison of results of bearing capacity factors obtained by Loukidis and Sal-
gado [2009] and other works (from Loukidis and Salgado [2009])

The authors make a similar formula for predicting Nγ:

Nγ = tan(1.34 ·ϕ) ·
(1+ sinϕ

1− sinϕ
·e F (ϕ,ψ)·π·tanϕ−1

)
(3.31)

The authors run their analyses for circular foundations as well for computing shape factors.
They proposed the following formulas for shape factors:

sci r cul ar
γ = 1+

(
0.26 · 1+ sinϕ

1− sinϕ
−0.73

)
(3.32)

sci r cul ar
q = 1+2.9 · tan2ϕ (3.33)

sγ shows acceptable error margin (at most 2%) but this is not the same case for sq which has a
maximum 9% error margin. In reality, bearing capacity of square or circular footing is smaller
than the strip footing (no embedment), however, the theoretical solution shows the opposite.
This is because the friction angle is lower in a circular/square loading where the loading is
closer to triaxial loading. Meyerhof [1951] suggests using a 10% higher friction angle for strip
footing (when the friction angle is interpreted from triaxial tests (more on this in Chapter 7).

3.6 Eurocode Design Methods

Norsk Standard [2016], annex D suggests following relations for finding bearing capacity in
both total and effective stress analysis:
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3.6.1 Total stress

The proposed equation for calculating bearing capacity on a total stress basis is:

σv = (π+2) ·bc ·Sc · ic ·Su +p (3.34)

Where bc is the factor to take into account inclination of footing to the horizontal (α) and it is
defined as:

bc = 1− 2 ·α
π+2

(3.35)

and shape factors are defined as:

sc=1+0.2 · B

L
r ect ang ul ar f ooti ng (3.35a)

sc=1.2 squar e or ci r cul ar f ooti ng (3.35b)

and inclination factor caused by a horizontal load of H, on footing with area A:

ic = 1

2
·
(
1+

√
1− H

A ·Su

)
(3.36)

3.6.2 Effective stress

The following equation is proposed for calculating bearing capacity in effective stress:

qul t = sc ·bc · ic ·Nc · c + sq ·bq · iq ·Nq ·p ′+ 1

2
· sγ ·bγ · iγ ·Nγ ·γ ·B (3.37)

where bearing capacity factors are defined as:

Nq =eπ tanϕ tan2(45+ϕ /2)

Nc =(Nq −1) ·cotϕ

Nγ =2 · (Nq −1) · tanϕ wher e δ ≥ ϕ/2 (r oug h base)

(3.38)

The factors for taking inclination of the foundation base into account are defined as follow:

bq = bγ =(1−α · tanϕ)2

bc =bq −
1−bq

Nc · tanϕ

(3.39)
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and shape factors of overburden constituent, sq , are defined as follows:

sq =1+ B

L
· sinϕ r ect ang ul ar f ooti ng (3.39a)

sq =1+ sinϕ squar e andci r cul ar f ooti ng (3.39b)

(3.40)

and shape factors of density constituents, sγ, are defined as follows:

sγ =1−0.3 · B

L
r ect ang ul ar f ooti ng (3.40a)

sγ =0.7 squar e and ci r cul ar f ooti ng (3.41)

(3.41a)

and shape factors of cohesion constituents for all shapes:

sc =
sq ·Nq −1

Nq −1
(3.42)

and finally, inclination factors are defined as (H is the horizontal load):

ic =iq −
1− iq

Nc · tanϕ

iq =
(
1− H

V + A · c ·cotϕ

)m

iγ =
(
1− H

V + A · c ·cotϕ

)m+1

(3.43)

where:

m =2+B/L

1+B/L
H i n the di r ect i on o f B (3.43a)

m =2+L/B

1+L/B
H i n the di r ect i on o f L (3.43b)

3.7 Conclusion

It should be noted that the solution presented by Martin [2004], which gives the most precise
solution of Nγ, will be called exact solution from now on.
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Chapter 4
Methods

4.1 Introduction

The limit analysis is a tool that can give a rigorous solution for simple geotechnical problems.
By discretization of the problem domain by use of the finite element, it is possible to use the
plasticity theorem to solve more complex geotechnical problems. Finite element limit analysis
(FELA) is a newly developed method that finds the lower and upper bound solution by using
optimization techniques. This method is executed by increasing external load(s) or reducing
material strength (c-ϕ analysis) up until the failure point. This chapter will explain the funda-
mentals of this method, which is the foundation of this thesis.

4.2 Limit analysis

In classical soil mechanics, the soil is assumed to be perfectly elastic-rigid plastic, which means
soil’s state of failure is independent of loading history. With this assumption, the focus will
be on the way the structure, in or on soil, might collapse. The goal is to find a factor of ex-
ternal load(s) that if exerted on the structure, the soil under or around it can fail. Plasticity
theorems help us to find bounds of exact collapse load without constructing an incremental
load-deformation analysis. For this purpose, two theorems famously referred to as lower bound
theorem, or static approach, and upper bound theorem, or kinematic approach, are being used.
The purpose of limit analysis is to find the set of two loads, namely F k

c and F s
c , which satisfies

the upper and lower bound theorems, for a case with known boundary conditions and a soil
mass with given strength parameters, Huang and Yu [2017].

The solution obtained by the lower bound theorem is always on the lower bound if it is not
equal to the exact solution. This gives the advantage of always being on the safe side. On the
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contrary, the solution obtained by the upper bound theorem is always on the upper bound side
of the exact solution, if not equal to the exactly correct solution. This means that the theorem
gives an unsafe estimate of the collapse load. If the gap between the two solutions obtained
by upper and lower bound gets smaller, it means that the two solutions are getting closer to
the exact solution. The average of the two solutions usually gives a good estimate of the exact
solution. The goal of refining the solution is always to close this so-called gap between upper
and lower solution, Huang and Yu [2017].

4.2.1 Lower Bound Theorem

In the classical soil mechanics, for applying the theorem of lower-bound, a statically admissible
stress field has to be defined which is in equilibrium with the external loads applied on bound-
aries. These stress fields have to not violate the yield conditions. Thus the collapse cannot
occur.

The lower-bound theorem states the following (from Drucker and Prager [1952]):

“If all changes in geometry occurring during collapse are neglected, a statically admissible
collapse load, F s

c , is always less than or equal to the exact collapse load Fc (i.e., F s
c ≤ Fc). The

equality sign is valid only when the statically admissible stress field is the true stress field. In
other words, the load derived from a statically admissible stress field, F s

c , is a lower bound of
the true collapse load, Fc .”

4.2.2 Upper Bound Theorem

For this theorem to be admissible, assumed plastic mechanics has to be compatible. Then, this
theorem states that if the rate of work caused by external loads is equal to the rate of internal
dissipation of energy, then structure collapses.

In other words, The upper bound theorem states the following (from Drucker and Prager
[1952]):

“If all changes in geometry occurring during collapse are neglected, a kinematically admis-
sible collapse load, F k

c , is always greater than or equal to the exact collapse load Fc (F k
c ≥ Fc).

The equality sign is valid only when the kinematically admissible velocity field is the true ve-
locity field. In other words, the load derived from a kinematically admissible velocity field, F k

c ,
is an upper bound on the true collapse load factor.”
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4.3 Finite element limit analysis

4.3.1 Utilized program

In this thesis, Optum G2, for two-dimensional-analyses, and Optum G3, for three dimensional
analyses, was used.

4.3.2 Philosophy

As discussed, the main goal of limit analysis is to find the maximum magnitude of external
loads that a soil body can take without leading to structure failure. Finite element limit analysis
finds lower and upper bound multiplier of collapse load. Lower bound limit analysis tries to
approach the “real answer” from below by increasing the admissible load, and the upper bound
limit analysis is trying to approach it from above, by decreasing the admissible load. This
concept is depicted in Figure 4.1.

Exact

load

Displacement

Upper Bound

Lower Bound

(a) Coarse Meshing

Exact

load

Displacement

Upper Bound

Lower Bound

(b) Fine Meshing

Figure 4.1: Upper and Lower Bound Solution in comparison to exact solution

Throughout this thesis, results of the lower and upper bound will be compared to each other
by comparing the error of the results. For cases where there is a rigorous theoretical solution,
absolute relative error is used, which is equal to:

η= xupper−lower bound − xexact

xexact
·100% (4.1)

For the cases where there are no theoretical solutions, the absolute relative error is found as:

η= xupper−l ower bound − xaver ag e

xaver ag e
·100% (4.2)

where xaver ag e is the average of upper and lower bound solutions.
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4.4 Theory behind finite element limit analysis

In this section, a quick introduction to the theory behind FELA will be given. Krabbenhøft
et al. [2016d] explains the foundation and theory of the program in detail and the purpose of
this chapter is not to give a full account of the theory but to give a summary of it.

4.4.1 Governing Equations

The foundation of the method builds up on formulating equations for perfectly rigid materials.
Rigid materials do not deform until the yield point where they show unlimited plastic deforma-
tion. The governing equation for this type of materials uses velocity (deformation rate).

In a statistic problem setting, the problem in hand has a geometry like this:

Figure 4.2: A solid with volume of V and boundary of S (sum of supported boundary, Su and
boundary subjected to traction, Sσ) (from Krabbenhøft et al. [2016d])

static equilibrium (shown here for two-dimensional plane strain) has to be satisfied:

∂σx

∂x
+ ∂τx y

∂y
+bx = 0

∂σy

∂y
+ ∂τx y

∂x
+by = 0

(4.3)

or in matrix form:
∇Tσ+b= 0 i n V (4.4)

here b = (bx ,by )T is the body force and ∇T is defined as:

∇T =
∣∣∣∣∣∂/∂x 0 0 ∂/∂y

0 ∂/∂y 0 ∂/∂x

∣∣∣∣∣ (4.5)
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The boundary condition can be expressed as follows:

nxσx +nyτx y =αtx + tsx

nyσy +nxτx y =αty + tsy

(4.6)

where α is a load multiplier, ts is external load due to steady-state pore pressure, and tx and ty

are the components of the traction in x and y direction and n = (nx , ny )T is the outward normal
force on the boundary in the x and y direction. This equation can be written in short form as:

PTσ=αt on Sσ (4.7)

where:

PT =
∣∣∣∣∣nx 0 ny

0 ny nx

∣∣∣∣∣ (4.8)

and yield condition has to be satisfied:

F (σ) ≤ 0 (4.9)

By linearization, the yield condition can be written as:

F T −k + s = 0, s ≥ 0 (4.10)

Total strain is sum of plastic strain and elastic strain:

ε= εe +εp (4.11)

where εe is the elastic strain and εp is the plastic strain. Elastic strain is equal to:

εe =Cσ (4.12)

where C is an elastic compliance modulus. Then, the flow rule states:

ε̇p = λ̇∂G

∂σ
wher e λ̇≥ 0 (4.13)

where ε̇p is the plastic strain rate and λ̇ is plastic multiplier and G is a flow potential. Plastic
strains occur when F(σ) = 0, i.e. when soil is at collapse point. In other words, yielding
condition has to be satisfied for yielding to happen:

λ̇F (σ) = 0 (4.14)

Assuming strains are small enough, velocity field can be derived as:

ε̇p =∇u̇ (4.15)

39



Chapter 4. Methods

By Combining two equations, we have:

∇u̇ = λ̇∂G

∂σ
(4.16)

If a model has hardening mechanisms, it can be modelled by assuming some variables, here:
κ = (κ1, ... ,κn)T . The elastic domain is then given by:

F (σ,κ) ≤ 0 (4.17)

and here F(σ,κ) = 0 defines yield surface. Hardening rule is defined as:

κ̇= λ̇h(σ,κ) (4.18)

where h = (h1, ..., hn)T are hardening functions. Hardening happens when λ̇> 0.

Summary

The governing equations can be expressed as follows:

ε̇=Cσ̇+ λ̇∇σG(σ,κ)

κ̇= λ̇h(σ,κ)

F (σ,κ) ≤ 0, λ̇F (σ,κ) = 0, λ̇≥ 0

(4.19)

where ∇σG is equal to ∂G /∂σ.

4.4.2 Principle of virtual work

The principle of virtual work can be expressed as:∫
V
σT∇udV −

∫
V

bT udV −
∫

s
(t + t s)T udS = 0 (4.20)

where u satisfies kinematic boundary conditions.

4.4.3 Complete Solution for Limit analysis

As it is done in many hand calculations of the upper bound method, Optum assumes a soil
collapses when some magnitude of strain (shear strain) happens in the soil body.
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4.4.3.1 Lower bound principle

It is possible to state the governing equations in terms of lower principles, here the goal is to
maximize α subjected to:

∇Tσ+b= 0 i n V

PTσ=αt on Sσ

F T −k + s = 0, s ≥ 0

(4.21)

This solution finds the collapse multiplier by finding a stress field that satisfies the equilibrium
and boundary condition without trying to find an optimal solution.

As mentioned in Section 4.2.1, a geometry with perfectly plastic materials will collapse if a
stress field can be found which can satisfy the following conditions:

• The equilibrium equations

• The boundary condition

• The yield condition

The external loads which are part of a stress field are a lower bound to the load(s) which causes
collapse in soil mass.

4.4.3.2 Upper bound principle

Upper bound problems can be expressed as an optimization problem where the goal is to mini-
mize the following: ∫

V
kT λ̇dV −

∫
V

bT u̇dV +
∫

S
t T

s u̇dS (4.22)

subjecting to the following equations:

∇u̇ = F λ̇, λ̇≥ 0∫
Sσ

t T u̇dS = 1
(4.23)

This solution tries to find a solution for flow rule by postulating a compatible velocity field. The
multiplier, α, is found based on the internal rate of work.

In other words, if a ratio of internal to external work equal or higher than the ratio that
failure can be found, by satisfying the following requirements, the upper bound solution will be
achieved:

• The strain-displacement relations

• The associated flow rule
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• The displacement boundary condition

What is meant by the associated flow rule here (Equation 4.11), is a rule which relates the
normal strain and shear strains at failure point to the failure envelope via a normality rule.

4.4.3.3 Adaptive meshing

Throughout this thesis, adaptive meshing is used to get more precise results. The idea is to run
an analysis first with a homogeneous meshing size all over the soil media, then based on the
results of that simulation, generate a denser and finer mesh alongside the area with high shear
dissipation. This iterative process generally results in a more precise solution than the normal
meshing (Krabbenhøft et al. [2016d]).

4.4.3.4 Effect of flow rule

The associated flow rule has a considerable effect on how soil will deform but much less im-
portance on the ultimate strength. “Limit Analysis” in the programs always assumes associ-
ated flow rule and the non-associated flow rule can be used in “Elastoplastic” and “Multiplier
Elastoplastic” but not in the limit analysis. Davis [1968] suggests following friction angles and
cohesion to be used when one is using a calculation method which assumes associated flow, like
limit analysis in Optum G2:

cD = c

ωD

ϕD = arctan
tanϕ

ωD

(4.24)

where:
ωD = 1− sinϕsinψ

cosϕcosψ
(4.25)

By using these formulas, it is possible to correct for the effect of dilatancy angle.

4.4.4 Available type of element

There are 6 types of elements available in Optum. Here follows a short description, which is
depicted in Figure 4.3. More details are available in Krabbenhøft et al. [2016d].
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(a) Lower (b) Upper (c) 6-node Gauss

(d) 15-node Gauss (e) 3-node Gauss (f) 6-node Lagrange

Figure 4.3: Available elements in Optum G2, from Krabbenhøft et al. [2016d] (Displacement
node: ◦ Stress node: � Integration point: ×)

Following is an overview of elements available in the program:

1. Lower: This type of elements are used for rigorous lower bound. They uses a linear
interpolation of stress and there are statically admissible stress discontinuities between
elements (Lyamin and Sloan [2002a]).

2. Upper: This type of elements are used in rigorous upper bound. They uses linear in-
terpolation of stresses and quadratic interpolation of displacement (Lyamin and Sloan
[2002b]).

3. 6-node Gauss: This type of element, although not rigorous, converges from above. It uses
linear interpolation of stress and quadratic interpolation of displacements.

4. 15-node Gauss: This type of element, although not rigorous, converges from above. It
uses a cubic interpolation of stresses and 15 interpolation point for displacement.

5. 3-node Gauss: This type of element produces rigorous upper bound and may lead to a
better result than an upper element type for highly confined problems.

6. 6-node Lagrange: This type of element produces better results than a 6-node Gauss ele-
ment. It uses linear interpolation of stresses and quadratic interpolation of displacement.

4.5 User Interface

A short summary of user interface, different available features and their function are summa-
rized in Appendix B (for more see Krabbenhøft et al. [2016a] and Krabbenhøft et al. [2016b]).
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Chapter 5
Numerical Limit Analysis in Tresca Soil

In this chapter, 8 cases of bearing capacity problems with the Tresca soil model will be inves-
tigated. The analyses are run with two-dimensional and three-dimensional versions of Optum
and Matlab. For case 3 onward, more than a dozen analyses were done by utilizing the com-
putational unit of Optum without interacting with the graphical user interface. This is done by
running Optum by using Matlab API. The idea is to run Optum via the command prompt, get
the results of the analysis, and update a soil parameter or geometry on a loop. By this automa-
tion, hundreds of analyses can be done with the help of MATLAB and the results can be fetched
at the end. The codes used for this are summarized in Appendix C.

5.1 Case 1: Vertical Loading of Tresca Soil

In this case, the ultimate limit bearing capacity will be investigated for a Tresca soil under plane
strain situation with vertical and centric loading with no overburden pressure.

5.1.1 Theoretical Solution

As shown in Section 3.3, there is an exact solution for a vertical, centric loading on a soil mass
with the Tresca model. For this type of loading, the ultimate limit bearing capacity can be
defined by:

σv = Nc ·Su +p (5.1)

where p is overburden pressure, Su is the undrained shear strength and Nc is a bearing capacity
factor which is defined in Equation 3.20. The famous solution of Nc is equal to 2+π for a
vertical loading.
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5.1.2 Computation Results of OptumG2 Runs

In this case, a bearing capacity problem was run on a soil in which the Tresca model was
assigned. The model was run for a different number of meshes, with and without adaptive
meshes.

5.1.2.1 Geometry and Meshing

Figure 5.1 shows the geometry and the meshing used for this case with three different numbers
of elements. Soil body has 10 m width and 4 m height and there is a rigid foundation with 1 m
width resting on it.

(a) Geometry (b) Case 1 with 500 triangular element

(c) Case 1 with 2000 triangular element (d) Case 1 with 10 000 triangular element

Figure 5.1: Geometry and meshing of case 1

Two types of meshing were used, namely conventional meshing and adaptive meshing.
Adaptive meshing tries to put more refined elements where it is needed. Figure 5.2 shows
how the adaptive mesh is putting denser and smaller elements where the shear dissipation has
higher values.

5.1.2.2 Results for regular meshing

Figure 5.3 shows normalized ultimate load (ultimate load divided by undrained shear strength)
obtained for the different number of triangular elements. Both lower bound and upper bound
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(a) Case 1 with 500 triangular element (b) Case 1 with 2000 triangular element

Figure 5.2: Case 1 with 3 iterations of adaptive meshing controlled by shear dissipation

simulations were run and their average is shown as well. Besides, the figure shows how the
absolute relative error is decreasing by increasing the number of triangular elements.

500
1000

2000
3000

5000
7500

10000
15000

25000
50000

100000

Number of triangular elements

0

1

2

3

4

5

6

7

N
o

rm
a

liz
e

d
 N

c
, 

(q
/S

u
)

Lower Bound Upper Bound

Average of Bounds Exact Solution

(a) Normalized ultimate load

500
1000

2000
3000

5000
7500

10000
15000

25000
50000

100000

Number of triangular elements

-20

-15

-10

-5

0

5

10

15

20

25

30

A
b

s
o

lu
te

 R
e

la
ti
v
e

 E
rr

o
r 

[%
]

Lower Bound Upper Bound

Exact Solution

(b) Absolute relative error

Figure 5.3: Results for regular meshing (without adaptive meshing) for different number of
triangular meshes

The figure shows how the gap between upper and lower bound closes as meshing gets more
refined. Closing this gap gives more precision to the simulation.

5.1.2.3 Results for meshing with adaptive meshing

Figure 5.4 shows the obtained normalized ultimate load for the different number of triangular
elements. As earlier, results of the lower bound, upper bound, and their averages with the
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absolute relative error is shown. It can be seen that absolute relative error is significantly lower
and it reduces to small amounts by increasing the element number.
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Figure 5.4: Results for regular meshing (without adaptive meshing) for different number of
triangular meshes

Figure 5.5 shows how the failure envelope developed by the theoretical solutions in Section
3.3 fits well with obtained results by the program. Furthermore, the figure shows how adaptive
meshing refines meshing along the failure line.

5.1.2.4 Comparison of results

Figure 5.6 shows a comparison of results from regular meshing and adaptive meshing. It shows
how the average of lower and upper bound reduces from regular meshing to adaptive meshing
for the same number of elements.

Bearing capacity problems are usually less computationally demanding, but for a more com-
plicated problem, the importance of the distribution of elements is even higher. This simple case
shows how putting the elements in the right place, even when the number of meshes is not sig-
nificant, can reduce the calculation error effectively.
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Figure 5.5: Comparison of failure envelope developed by theoretical solutions and obtained
results
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Figure 5.6: Comparing the average of lower bound and upper bound between regular meshing
and adaptive meshing
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5.2 Case 2: Vertical Loading of a circular foundation on a
Tresca Soil

In this case, the ultimate limit bearing capacity of circular footings will be investigated for a
Tresca soil with vertical and centric loading with no overburden pressure. For this case, both
three dimensional and two-dimensional versions of the program is going to be used.

5.2.1 Theoretical Solution

The solution for a circular foundation with centric loading on soil with the Tresca model is quite
similar to the plane strain case. Ultimate limit bearing capacity can be defined as:

σv = Nc ·Su +p (5.2)

Cox et al. [1961] calculated bearing capacity factor Nc , for a circular foundation by using the
method of characteristics, giving it an exact solution of 6.05. Another solution suggested by
Meyerhof [1963] suggests another solution, where the Nc is equal to 6.18, or roughly to 3+π.
Other solutions based on numerical analyses, such as Gourvenec and Randolph [2003], have
suggested a bearing capacity factor equal to 6.05.

5.2.2 Computation Results of OptumG2 Runs

In this case, bearing capacity of a circular foundation on a Tresca soil was computed. The two-
dimensional version of the Optum, with axisymmetry, will be used. 5 runs, with a different
number of elements, were used to run lower and upper bound analyses.

5.2.2.1 Geometry and Meshing

Figure 5.7 shows the geometry and meshing for this case for a special case with 10.000 elements
using regular meshing and meshing with 3 iterations of adaptive meshing. Soil body has 3 m
width and 3 m height and there is a rigid foundation resting on it with 1 m radius.

5.2.2.2 Results for regular meshing

Figure 5.8 shows normalized bearing capacity factor, Nc , obtained for a different number of
triangular elements. By increasing the number of elements, the average of two bounds is getting
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(a) Geometry (b) Regular meshing (c) adaptive meshing

Figure 5.7: Geometry and meshing of case 2

close to the exact solution. The figure also shows how the absolute relative error is decreasing
with increasing the number of triangular elements.
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Figure 5.8: Results for regular meshing (without adaptive meshing) for different number of
triangular elements

5.2.2.3 Results for meshing with adaptive meshing

Figure 5.9 shows the calculated bearing capacity factor for a different number of triangular
elements with 3 iterative adaptive meshing. It can be seen than the solution is getting closer to
6.03, rather than 6.05. Furthermore, it can be seen that absolute relative error is significantly
lower in comparison to regular meshing and the error reduces to a small amount by increasing
the number of used elements.
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Figure 5.9: Results for case 2 with adaptive meshing for different number of triangular elements

5.2.2.4 Comparison of results

Figure 5.10 shows how the average of lower and upper bounds changes by increasing the num-
ber of elements, for both regular meshing and adaptive meshing. Most importantly, the figure
shows how the error is decreasing by increasing the number of elements. It also shows how the
adaptive meshing is giving lower error than regular meshing for every number of elements.

5.2.3 Computation Results of OptumG3 Runs

Bearing capacity of a circular foundation on a Tresca soil was analyzed using the three-dimensional
version of Optum. Three types of meshing, namely lower, upper, and mixed, was used to run
the analyses. The mixed element type is a mixture of lower and upper element types, so the
average of bounds is the average of lower and upper bounds, while the mixed solution is going
to be reported separately. As the two-dimensional problem, a total of 5 sets of analyses, with
a different number of elements, was computed. As the problem is symmetrical, only 1/4 of the
problem was modeled.

5.2.3.1 Geometry and Meshing

Figure 5.11 shows the geometry and meshing used for this case. A soil body with dimensions
of 4×4×4 (B ×H ×L) was used where a foundation with 1 m diameter and 1 m height is resting
on the soil mass.
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Figure 5.10: Comparing the average of lower bound and upper bound between regular meshing
and adaptive meshing

The figure also shows how 10.000 elements are distributed for regular meshing and adaptive
meshing.

5.2.3.2 Results for regular meshing

Figure 5.12 shows the results of the analyses for regular meshing with OptumG3 with a different
number of elements. It can be seen that results are getting closer as the number of the elements
increasing, but the precision of the simulation does not increase to the level of the 2D version.

5.2.3.3 Results for meshing with adaptive meshing

Figure 5.13 shows the results of the analyses for the case where three iterations of adaptive
meshing were used. The number of meshes was kept constant while through adaptive meshing
their size and place would vary in the area with high shear dissipation.

It can be seen that by increasing the number of elements, results are getting closer to 6.08,
rather than 6.05. The error of simulation is shown as well. Increasing the number of elements
generally decreases the error, but it is not able to lower it to below 1%, as was seen in the 2D
version.
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(a) Geometry (b) Regular meshing (c) Adaptive meshing

Figure 5.11: Geometry and meshing of case 1 (10.000 triangular elements)
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Figure 5.12: Results for regular meshing for different number of triangular elements

5.2.4 Comparison of results

Figure 5.14 shows a comparison of the results obtained from 2D and 3D analyses with adaptive
meshing. Average of lower and upper bound for both 2D and 3D versions, alongside results of
mixed solutions from 3D analyses are reported.

It can be seen that the results of the 3D analyses are generally reporting higher bearing
capacity than the exact solution while the 2D version is doing the opposite. Furthermore, for 3D
results, the mixed solution is overestimating the bearing capacity in comparison to the average
of lower and upper bounds.
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Figure 5.13: Results of analyses with adaptive meshing for a different number of elements
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Figure 5.14: Comparing the results between 2D and 3D analyses (adaptive meshing)
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5.3 Case 3: Combined Horizontal and Vertical loading on
Tresca Soil

In this case, the ultimate limit bearing capacity of Tresca soil with inclined loading and over-
burden pressure equal to p=20 kPa will be investigated.

5.3.1 Theoretical Solution

As explained in subsection 3.3, bearing capacity factor, Nc , can be calculated based on the
roughness ratio. The exact solution for a combined horizontal and vertical loading is shown in
Figure 5.15.
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Figure 5.15: Exact solution for combined loading in Tresca Model (for p=20 kPa)

5.3.2 Computation Results of OptumG2 Runs

In this case, two sets of computations, with and without adaptive meshing, were computed.
Each set of analyzes is comprised of 96 single runs. Roughness ratio, ratio of horizontal stress
to vertical stress, was increased incrementally from 0 to 0.95, with 0.01 increments and the
result of each of these ratios are recorded.
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5.3.2.1 Geometry and Meshing

Figure 5.16 shows the geometry and meshing generated by the program. The meshing shown
in the figure is the case with three iterative meshings. The soil body has an overburden pressure

(a) Geometry (b) Meshing

Figure 5.16: Geometry and meshing of Case 3

equal to 20 kPa. Furthermore, the soil body has 30 m width, 9 m height and a footing 3 m in
width is resting on it. 5.000 triangular elements were used for this case.

Figure 5.17 shows a comparison between the failure surface suggested by Janbu and the one
suggested by the program. The agreement between the numerical results and the theoretical
ones can be observed for r≤0.95. For ratios higher than this, the error of computation goes up,
which can be due to of numerical difficulties.
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Figure 5.17: Comparison of failure envelope suggested by theoretical and numerical solutions

Furthermore, the figure shows how the failure envelope starts to incline to one side as the
roughness ratio increases from zero to higher values.

5.3.2.2 Results for regular meshing

Figure 5.18 shows the lower and upper bound results, and their average against the exact theo-
retical solution. The error of each of these bounds and their average is drawn as well.
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Figure 5.18: Result of computations for meshing with 5000 triangular meshes

This set of runs show that regular meshing is overshooting and the results are higher than
the exact solution.

5.3.2.3 Results for meshing with adaptive meshing

In this set of runs, everything was the same except for the meshing type. This gives more
precision to the simulation. Figure 5.19 shows the results of the simulations.

The absolute relative error is under 1%. This is an acceptable error and shows robustness,
and accuracy, and precision of the solution/program.
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Figure 5.19: Result of computations for adaptive meshing with 5000 triangles
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5.4 Case 4: Vertical loading on Tresca soil with Embedment

In this case, the ultimate bearing capacity of Tresca soil with different embedments will be
investigated. The soil is weightless to eliminate the surcharge effect.

5.4.1 Theoretical Solution

There is no rigorous solution for the effect of embedment on undrained analyses. There are
however some solutions suggested by different authors. As mentioned in Section 2.2.3, Mey-
erhof [1951] suggested a linear depth factor for cohesion. The embedment factor suggested by
Hansen [1970] is summarized in Section 3.1, which is simplified to the following formula for a
special case (undrained case, ϕ=0):

1+0.4 · d

B
f or

d

B
≤ 1

1+0.4 ·arctan
d

B
f or

d

B
≥ 1

(5.3)

Gourvenec and Barnett [2011] has proposed the following relationship for a homogeneous soil:

dc = 1+0.8890 · d

B
−0.2194 · d

B
(5.4)

None of these solutions are an exact solution, so there is no reference results that the simulation
can be compared to.

5.4.2 Computational Results of OptumG2

For this case, upper and lower bound analyses with adaptive meshing and a fixed number of
triangular elements (25.000) were used. The ratio of depth to width (D /B ) was increased from
0 to 25 with 0.2 increments, totaling 126 pairs of analyses.

5.4.2.1 Geometry and Meshing

Figure 5.20 shows the geometry of the problem. Soil body is 20 m wide and 9 m tall. There is
a rigid foundation column which is 0.2 m wide and has varying height, which changes as the
ratio of D /B changes. There is a loading surface acting at the bottom of the foundation.

It was assumed no tension alongside vertical walls of the foundation to eliminate the effects
of the friction between the wall and soil. Figure 5.20 also shows the meshing and failure line
for D /B =25. It can be seen that the failure surface comes out to the soils surface in a semi-arc
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(a) geometry (b) Meshing

Figure 5.20: Geometry and meshing for Case 4 (D /B =25)

direction.

5.4.2.2 Results for Adaptive Meshing

Figure 5.21 shows the results of the simulations. Results are shown as a normalized bearing
capacity, which is the ultimate bearing capacity divided by undrained shear strength, Su . Lower
bound and upper bound numerical analyses are done by using the geometry described previ-
ously. The absolute relative error is the error calculated as mentioned in Section 4.3.2.
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Figure 5.21: Results of computation for adaptive meshing with 25.000 meshes

Based on the results of these simulations, a new formula is proposed for depth factor for
D /B in a range of 0 ≤D /B ≤ 25. The depth factor, dc is Incorporated in the bearing capacity
formula as follows:

σv = dc ·Nc ·Su +p (5.5)

The proposed formula for depth factor was found by using the Curve Fitting tool in MATLAB
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by fitting the formula to the average of lower and upper bounds. The fitting has a coefficient of
determination, R, equal to 0.9996, SSE equal to 0.0065, RMSE equal to 0.0057, and a maximum
relative error of 0.1% compared to the average of bounds. The equation is as follows:

dc = exp

(
0.3654 · (D /B )1.224

D /B +0.7743

)
(5.6)

The new formula corresponds well with simulation results and its relative position to lower and
upper bounds, as shown in Figure 5.22. Results are plotted with dots and the figure shows how
tightly packed the results are.
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Figure 5.22: Proposed formula compared to Simulation of results

Figure 5.23 displays a comparison of this formula and previous methods, namely formulas
suggested by Meyerhof [1951], Hansen [1970], and Gourvenec and Barnett [2011].

The figure shows the incapability of the previous works with the lower and upper bound
solution and their considerable difference. The formula suggested by Meyerhof [1951] gives
the worst results and the other formulas are underestimating for some depth to width ratio
and overestimating for some others. Underestimating is not in itself a bad thing since this
factor increases the ultimate bearing capacity, the problem, of course, is in overestimating which
causes reporting more bearing capacity than what the soil can actually tolerate.

62



Chapter 5. Numerical Limit Analysis in Tresca Soil

0 1 2 3 4 5

depth to width ratio [ ]

1

1.1

1.2

1.3

1.4

1.5

1.6

D
e

p
th

 f
a

c
to

r,
 d

c
 [

 ]

This study Gourvenec 2011

Meyerhof 1951 Brinch Hansen 1970

Figure 5.23: Comparison of proposed formula and previous works
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5.5 Case 5: Vertical loading on Tresca soil with different foot-
ing shape

In this case, ultimate bearing capacity of rectangular foundations on Tresca soil will be investi-
gated.

5.5.1 Theoretical Solution

There is no rigorous lower and upper bound solution for the effect of footing shape on undrained
soil. Several authors have suggested the following formula for shape factor in undrained soils:

sc = 1+F · B

L
(5.7)

Meyerhof [1963] and Grande et al. [2016] has suggested F=0.2 and Vesić [1973] and Hansen
[1961] have suggested F = 1

Nc
. Gourvenec et al. [2006] has suggested the following formula

based on results of finite element analyses:

sc = 1+0.214 · B

L
−0.067 · B

L
2 (5.8)

5.5.2 Computational Results of OptumG3

In this case, three types of meshes, namely lower, upper, and mixed, were used in the 3D version
of Optum to run the analyses. Foundation width (B) to length (L) ratio, from here on B

L , was
increased incrementally from 1 to 10, with 0.5 increments, totaling to 21 analyses. 1/4 of the
problem was modeled for reducing computation cost/time.

5.5.2.1 Geometry and Meshing

Figure 5.24 shows the geometry and meshing used for this case. A soil body with dimensions
of 6×15×5 (B×L×H) was used where a 1 m tall foundation with 1 m width and varying length,
changing as the ratio of B

L changes, is resting on the soil mass. The figure also shows the
meshing used for this case (B

L =1). Adaptive meshing with a start number of elements equal to
10.000 building up to 25.000 with 3 iterative adaptive meshing was used.
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(a) Geometry (b) Meshing

Figure 5.24: Geometry and meshing for Case 5 (B
L =1)

5.5.2.2 Results for Adaptive Meshing

Figure 5.25 shows the results of the simulation for different shape ratios. The average of the
lower and upper bounds is also depicted alongside the results of mixed meshing. As can be
seen, the mixed mesh gives quite similar results to the average of two bounds. The absolute
relative error is somewhat higher than before, and this is mainly because of the complexity of
3D analyses. A new formula is suggested to represent the effect of the foundation shape ratios.
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Figure 5.25: Results of simulation for case 5

The formula is correlated to the average of two bounds. The correlation has an R of 0.9961,
SSE of 4.5 ·10−5 and RMSE of 0.0016. The formula is as follows:

sc = 1+0.1262 · L

B

−0.6165

(5.9)

For rectangular shaped foundations, the bearing capacity can be given as follows:

σv = sc ·Nc ·Su +q (5.10)
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The formula matches well with the results, as can be seen in Figure 5.26.
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Figure 5.26: Geometry and meshing for Case 5 (B
L =1)

Figure 5.27 shows a comparison of previously proposed formulas, mentioned in the theo-
retical solution, and the proposed formula in this thesis.
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Figure 5.27: Comparison of proposed relation and other authors

It can be seen that the other relations for sc are overestimating the factor for lower ratios and
underestimating it for larger ratios.
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5.6 Case 6 : Inclined loading on Tresca soil with different
footing shape

In this case, the ultimate bearing capacity of rectangular foundations with an inclined load on
Tresca soil will be investigated.

5.6.1 Theoretical Solution

There is no rigorous theoretical solution proposed for inclined loading on a rectangular foun-
dation. Grande et al. [2016] suggest the following formula for the inclined loading of square
foundations:

Nc, squar e = (1+0.2 · (1− r )) ·Nc (5.11)

where the Nc is following the equation given in Section 3.3. This shape factor was shown in the
previous case to overestimate the shape effect for lower L/B factor and underestimate for higher
ratios.

5.6.2 Computational Results of OptumG3

For this case, inclined loading of a foundation with 5 different L/B ratios was analyzed using
lower, upper, and mixed meshing type. Inclined loading on a foundation with L/B ratio equal
to 1, 2, 3, 4, and 10 was analyzed, where the load inclination angle (V/H ratio) was increased
incrementally from vertical (0°) to 20° degrees with 1° increment.

5.6.2.1 Geometry and Meshing

Figure 5.28 shows the geometry and meshing for a special ratio of L/B =4. Besides, the figure
shows how the elements are denser around the failure line, which is depicted by the shear
dissipation counters. Soil body has a dimension of 7×7×5 (B×L×H). The foundation element,
which was resting in the middle, was varying for different L/B ratios. Adaptive meshing with a
start element of 10.000 building up to 25.000 with three iterative adaptive meshings were used
for analyses.

5.6.2.2 Results for Adaptive Meshing

Figure 5.29 shows the results of simulations for the mentioned L/B ratios. The figure shows
the results of three types of meshing, in addition to the average of the lower and upper bound.
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(a) Geometry (b) Meshing (c) Shear dissipation

Figure 5.28: Geometry and meshing for L/B =4 and inclined load of H /V =tan(16°) (25.000
triangular elements)

Plane strain Nc is plotted as a reference. The figure also shows the absolute relative error of the
analyses, which is varying between 0 to 12%. As mentioned in the previous case, the error does
not drop to a very small amount as it does for two-dimensional analyses.

In the previous case, Equation 5.9 was proposed to represent the shape factor for rectangular
foundations under vertical loading. This formula should be able to be combined with the Nc

formula proposed by Grande et al. [2016]. This combination is resulting in slightly conservative
value predictions, as can be seen in Figure 5.30. The idea is to extend the Equation 5.9, in a way
to include the effect of inclination of the load. The new equation is extended to the following:

sc =
(
1+0.1262 · L

B

−0.6165)
· [1.0 ·exp(0.1 · r )+0.0001 ·exp(6.5 · r )

]
(5.12)

This formula is able to show a better correlation with the average of lower and upper bounds.
The correlation for different L/B ratios can be seen in Figure 5.31.
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Figure 5.29: Results of analyses for case 6
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Figure 5.30: Comparison of average of lower and upper bounds of inclined loading with com-
bination of Nc formula and Equation 5.9
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Figure 5.31: Comparison of average of lower and upper bounds of inclined loading with com-
bination of Nc formula and Equation 5.12
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5.7 case 7: Vertical loading on Tresca soil with increasing
Strength

In this case, the ultimate bearing capacity of Tresca soil with linearly increasing strength with
depth will be investigated.

5.7.1 Proposed Solution by other authors

By using the theory of plasticity, Davis and Booker [1973] have developed lower and upper
bound solutions for bearing capacity of a foundation with geometry and shear strength hetero-
geneity shown in Figure 5.32.

Su,m

k
1

Su,0

B or D

Figure 5.32: Variation of shear strength with depth (redrawn from Davis and Booker [1973])

The proposed formula is as follows:

σv = F ·
(

Nc ·Su,0 + k ·B

4
·Su,0

)
(5.13)

where F is the correction factor, which is depicted in Figure 5.33 for rough footing, called Fs ,
and for smooth footing, Fr .

5.7.2 Computational Results of OptumG2

For this case, lower and upper bound analyses with adaptive meshing were used. A dimension-
less ratio, κ is used to show the strength heterogeneity, which is described as follows:

κ= k ·B

Su,0
(5.14)
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Figure 5.33: Correction factor for smooth footing, Fs , and rough footing, Fr (Davis and Booker
[1973])

κ was increased incrementally from 0 to 20, with 0.1 increments. κ would not increase to such
a large value in practice, but larger ratios were examined on a theoretical basis, to get a curve to
compare to the Davis and Booker [1973] work.

5.7.2.1 Geometry and Meshing

Figure 5.34 shows the geometry of the problem. Soil body has 10 m width and 4 m height.
There is a 1m wide rigid shell foundation resting on the top of the foundation. A start mesh
equal to 10.000 building up to 25.000 was used in this case. Meshing for a case of k·B

Su
)=5 is

shown.

(a) Geometry (b) Meshing

Figure 5.34: Geometry and meshing for case 7

5.7.2.2 Results for Adaptive Meshing

Figure 5.35 shows the results of the simulations. Lower and upper bound numerical analyses
are computed as well as the average of two bounds. Furthermore, the absolute relative error
is shown to illustrate robustness of the analyses. Based on the results of these simulations, a
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Figure 5.35: Results of computations for 3 iterative adaptive meshing

formula can be proposed for FR for varying κ ratios. This formula will be compatible with
how Davis and Booker [1973] have formulated their equation (see Equation 5.13). By using
Equation 5.13, an equation for FR is proposed. The proposed formula is:

FR = 1239 ·κ+2181

κ2 +655.5 ·κ+2147
(5.15)

The fitting has an adjusted coefficient of determination, R equal to 0.9996; error sum of squares,
SSE equal to 0.0014, and root mean square error, RMSE, equal to 0.0036. Figure 5.36 shows
how the proposed equation compares to the computation results. Figure 5.37 shows a compari-
son between the proposed equation, Equation 4.11, and the FR suggested by Davis and Booker
[1973]. There is a good correlation between theses two correlation factors up til κ ratios of 8.
After that, the correlation factor proposed by Davis and Booker [1973] is overestimating the
factor.

5.7.3 Computation Results for inclined loading

As stated in Equation 5.13, the ultimate bearing capacity is proposed as a function of Nc , which
in itself is a function of the roughness ratio. In this part, it was intended to see behavior of
soil under an inclined load on a soil with linearly increasing strength with depth. Geometry
and meshing are as before. κ was increased incrementally from 0 to 5, with 0.1 increments for
two roughness ratios, r=0.2 and r=0.4. As before, both lower and upper bound was run to get a
correct picture of the problem.

73



Chapter 5. Numerical Limit Analysis in Tresca Soil

0 5 10 15 20

 [ ]

1

1.25

1.5

1.75

2

F
r [

 ]

Lower Bound Upper Bound

Average Formula

Figure 5.36: Proposed formula compared to the simulation results

5.7.3.1 Results of simulations

Figure 5.38 shows the results of the lower and upper bound analyses for the mentioned rough-
ness ratios. Besides, it shows how Equation 5.13, combined with the suggested correlation
factor in Equation 5.15, compares to the simulation results (named Fr formula in the legend).
As can be seen, the formula is slightly overestimating for roughness ratio of 0.2, but it is clearly
over the upper bound solution for roughness ration of 0.4. This is most probably because of
how Davis and Booker [1973] have set up their equations, where Nc , which is a function of
roughness is summed with k

4 and then multiplied with FR . This means that Nc is being added
with something which is not a function of roughness ratio. As the roughness ratio varies, the
Nc changes accordingly, but not k

4 . The Equation 5.13 combined with Equation 5.15 is a good
predictor for vertical loads, but the following set up is a better solution for inclined loading,
where the bearing capacity can be defined as:

σv = F ′
R ·Nc ·Su,0 (5.16)

where F ′
R is defined as:

F ′
R = 1−0.719 ·κ1.021 +κ0.9506 (5.17)

This formula can be seen in Figure 5.38 (F ′
r formula in the legend). It can be seen that it has a

better correlation with the simulation results.
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Figure 5.37: Proposed formula compared to the FR proposed by Davis and Booker [1973]
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Figure 5.38: Comparison of proposed formula to the results of computation of inclined loading
on the soil with increasing strength with depth
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5.8 Case 8: Combined HMV loading on Tresca soil (full ten-
sion)

In this case, the ultimate bearing capacity of Tresca soil with combined horizontal, vertical and
moment loading will be investigated. It will be assumed full shear strength under the planar
surface, which is the situation for a foundation with suction beneath the foundation. This can
be the case for a skirted foundation.

5.8.1 Theoretical Solution

There is no rigorous solution for this type of loading, however, there are some solutions pro-
posed by different authors, as some of the solutions mentioned by Randolph and Gourvenec
[2011].

Case 3 was a specific example of this case, where the moment was zero. By adding moment
as a third axis, a comprehensive failure surface can be found. For this case, soil can fail under
any type of combination of horizontal, vertical, and moment loading. The idea is to find a failure
surface that can represent this 3D surface.

5.8.2 Computational Results

Loading of a shallow foundation with horizontal, vertical, and moment components will result
in complex stress paths and changes in the soil. Interaction of these three components, horizon-
tal, vertical, and moment loading components has to be taken to account explicitly, rather than
using factors. Sign convention shown in Figure 5.39 is assumed in this case.

H

V
Mreference point

B or D

Figure 5.39: A conventional loading for a shallow foundation (redrawn from Randolph and
Gourvenec [2011])

The analyses were run in a way to represent the failure surface which is composed of ver-
tical, horizontal, and moment loads using the 2D version of the program. By keeping one of
these loads, namely vertical, horizontal, and moment, at a constant level, analyses were done
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by changing the other two loads. This creates a sort of a cross-section which cuts through each
of these three axes. Then several unique loading paths were run to get a picture of the failure
surface of each cross-section. This leads to three types of cross-sections, namely H-M, M-V,
and H-V. Table 5.1 shows an overview of the cross-sections which passes through axes. Each
of these are on a fixed ratio of that load to maximum allowed load.

Table 5.1: Analysis types run with Optum

cross-sections through H, M and V axis
H/Hul t 0 0.25 0.5 0.75 0.9 0.95
M/Mul t 0 0.25 0.5 0.75 0.9 0.95
V /Vul t 0 0.25 0.5 0.75 0.9 0.95

It is assumed that Mul t is 0.69 times Su . The exact multiplier is slightly higher, but whenever
the term Mul t is used, it means 0.69 ·Su .

5.8.2.1 Geometry and Meshing

Figure 5.40 shows the geometry and meshing of the problem. Soil body is 10 m wide and 4 m
tall. There is a rigid shell element with 1 m width resting on top of the soil mass. There is a con-
stant load acting over the whole shell and a multiplier load is acting with varying inclination on
the center of the shell. The figure shows a special case of the loading path, where H/Hul t =25%
and M /V =

p
3.

(a) Geometry (b) Meshing

Figure 5.40: Geometry and meshing for a specific loading path (H/Hul t =25%, M /V =
p

3)

For this case, lower and upper bound analyses with adaptive meshing were run with Op-
tumG2. Meshing for this case was generated with a start number of elements equal to 5.000 and
building up to 25.000 through 3 adaptive iterations. A total of 181 pair of loading were done
for each cross-section.
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5.8.2.2 Results for Adaptive Meshing

As stated in Table 5.1, three types of cross-sections across failure surfaces were drawn, where
while one of three loading types (vertical loading, horizontal loading and moment) is being
fixed, the other two were changed to get different loading paths, hereby called H-M, M-V, and
H-V spaces. The results of lower and upper bound analyses for H-M, M-V, and H-V spaces are
shown in Figure 5.41, Figure 5.42 and Figure 5.43, subsequently. Error of computation are not
depicted here, but it is varying from 1% to 7%.
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Figure 5.41: Results of lower and upper bound analyses for H-M space

It can be observed that when signs of the moment and horizontal loading are not the same,
they are working against each other and the soil mass is able to take higher values of the moment
and/or horizontal load than the situation where their signs are the same. This can be seen clearly
in Figure 5.41. The failure line grows outward when the signs are not the same.

In H-M space, it can be seen how the maximum moment increases as the horizontal load is
a counteracting moment, which means increasing moment capacity. This can be very clearly
seen in low V /Vul t ratios and the effect of horizontal stress dampens as this ratio increases.

In H-V space, as the moment is increasing, horizontal stress in which the foundation would
slide across the soil surface (sliding failure) is decreasing. It can be seen that the failure line
when M/Mul t =25% is relatively similar in shape to case with no moment. Increasing of mo-
ment consequently decreases the vertical loading capacity as well. On the other side of the
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Figure 5.42: Results of lower and upper bound analyses for M-V space

chart, where horizontal stress is negative, soil mass is able to sustain higher amounts of hori-
zontal stress and the failure line outgrows in comparison to the right side.

To show a continuous and coherent view of these cross-sections, the average of two bounds
are drawn for each of the ratios in each of three spaces. This can be seen in Figure 5.44. These
figures show clearly how the failure surface changes and shrinks as the ratio of the constant load
increases.

5.8.2.3 Macro Model

The idea of the cross-sections is, as said, to find distributed points on the failure surface in a
way that a clear and representative picture of failure surface can be constructed. Figure 5.45
shows how these three cross-sections are in a 3D space. There are 3258 points overall and they
show the average of lower and upper bound analyses. It can be seen how tightly the points are
in a 3D space.

It has already shown how the idea of the roughness ratio can produce an exact solution.
Furthermore, the roughness ratio takes into account the sliding failure by putting an upper bound
to allowed horizontal stress and acts as an automatic check for sliding failure. This concept will
be used to compose the macro model.
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Figure 5.43: Results of lower and upper bound analyses for H-V space

The idea of composing a macro model is to propose a formula which can represent the
failure surface, as it is visualized in Figure 5.45. The macro model was attempted built on the
same premises as the solution proposed by Grande et al. [2016]. A macro model is found which
represents acceptably the first quadrant (right side) of the failure surface, where horizontal stress
and moment have similar signs. The model is defined as follow:

σv,max = 1+π−arcsinr +
√

1− r 2 − (1−τh)1.9 ·m0.62 (5.18)

where:
τh = H

Su
m = M

Su
r = τh +1−τmax (5.19)

Maximum allowed horizontal stress, τmax , is a function of the applied moment and is defined
as follows:

τmax = exp(a ·m) ·cos(b ·m)− c ·exp(d ·m) (5.20)

where coefficients are as follows:

a = 0.0691 b = 1.768 c = 0.00152 d = 7.864 (5.21)

The macro model can represent the right side of the problem relatively well. Figure 5.46 shows
how the model is able to do this. The model, however, is underestimating the left side the of
curve, but it is still on the safe side.
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Figure 5.44: Cross-sections
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(a) forward view (b) backward view

Figure 5.45: Three dimensional representation of the executed analyses

(a) forward view (b) backward view

Figure 5.46: Three dimensional representation of the macro model with executed analyses
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Chapter 6
Numerical Limit Analysis in MC Soil

In this chapter, 5 different cases of bearing capacity using Mohr-Coulomb soil will be inves-
tigated. The analyses are run with two-dimensional and three-dimensional versions of Optum
and Matlab. For all of the cases, more than a dozen analyses were done by utilizing the com-
putational unit of Optum without interacting with the graphical user interface. This is done by
running Optum by using Matlab API. The codes used for this are summarized in Appendix C.

6.1 Case 1: Vertical loading on Weightless MC soil

In this case, the ultimate limit bearing capacity of a weightless soil under plane strain situation
with overburden pressure equal to 20 kPa, and attraction, a=0 kPa, and varying friction angles
will be investigated.

6.1.1 Theoretical Solution

As shown in Section 2.2, a bearing capacity formula for a weightless soil with vertical load is
equal to:

qul t . = Nq · (p ′+a)−a (6.1)

where p’ is the effective overburden pressure and Nq is equal to:

Nq = 1+ si nϕ

1− si nϕ
·eπ·tanϕ (6.2)

For this case, where p’=20 kPa, ultimate limit bearing capacity is shown for varying friction
angles, ϕ in Figure 6.1.
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Figure 6.1: Exact Solution for ultimate limit bearing capacity for a weightless soil with p’= 20
kPa

6.1.2 Computation Results of OptumG2 Runs

For this case, two sets of computations, with and without adaptive mesh, with a 10.000 triangu-
lar elements were run. Friction angle was increased incrementally from 15° to 45°, with 0.25°
increments and the result of lower and upper simulations for each of these angles were recorded.

6.1.2.1 Geometry and Meshing

Figure 6.2 shows the geometry and meshing generated by the program. The figure also depicts
adaptive meshing for two friction angles. By using the adaptive meshing, the program generates
finer meshing along wherever shear dissipation is high. It can be seen that when ϕ=45°, the
failure line penetrates deeper than for case of ϕ=25°.

The soil body has 30 m width, 6 m height and a footing 1 m in width is resting on it. There
is an overburden pressure equal to 20 kPa on each side of the foundation.

Figure 6.3, shows how the failure mechanism predicted by the program is corresponding to
the failure surface suggested by Janbu (see Section 3.3 and Grande et al. [2016]). It should be
noted that the failure surface penetrates deeper as the friction angle increases. It should also
be noted that since the area covered by shear band increases as the friction angle increases, the
shear dissipation for ϕ= 45° has lower accuracy.
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(a) Geometry (b) Meshing with 10k triangular elements

(c) Adaptive meshing for ϕ= 25° (d) Adaptive meshing for ϕ= 45°

Figure 6.2: Geometry and meshing of case 1
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Figure 6.3: Comparison of failure envelope developed by theoretical solutions and obtained
results

6.1.2.2 Results for regular meshing

In this set of runs, ultimate limit bearing capacity was computed by running both lower and
upper bound analyses for friction angles between 15° and 45°. Result can be seen in Figure 6.4.
The exact solution, depicted in Figure 6.1, is drawn as well for comparison. The Figure also
depicts the average of two bounds.

It also depicts the absolute relative error of lower bound, upper bound, and their average
with regarding the exact solution. The error of analysis increases by increasing friction angle in
general but the error of lower bound analysis increases sharper than upper bound analysis.

6.1.2.3 Results for meshing with adaptive meshing

In this set of runs everything was unchanged, except adaptive meshes that were used using three
iterative adaptive meshings. The results of this set of simulations can be seen in Figure 6.5. The
results of lower/upper bound and their average are shown. Just like before, error increases by
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Figure 6.4: Result of computations for meshing with 10k triangular meshes
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Figure 6.5: Result of computations for meshing with 10k adaptive triangular meshes

the increase of friction angle. The error of the average of two bounds is maximum 1%, which
is acceptable.
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6.2 Case 2: Combined Horizontal and Vertical loading on
weightless MC soil

In this case, an inclined, centric load with different inclination was applied on a footing under
a plane strain situation to find the ultimate limit bearing capacity of a weightless soil with
overburden pressure equal to 20 kPa, and attraction, a=0 kPa and varying friction angle.

6.2.1 Theoretical Solution

As shown in Section 3.3, the bearing capacity formula for a weightless soil with centric, inclined
load is equal to:

qul t . = Nq ·p ′ (6.3)

where bearing capacity factor, Nq can be calculated from Equation 3.14. As shown in Section
3.3, the proposed formulas for bearing capacity factor uses the idea of a roughness ratio. For a
MC soil, it is defined as:

r = τh

σv · tanϕ
(6.4)

Bearing capacity factor, Nq , is shown for varying roughness ratios in Figure 6.6.
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Figure 6.6: Exact Solution of Nq for different roughness ratio, r (redrawn after Grande et al.
[2016])
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6.2.2 Computation Results of OptumG2 Runs

For this case, the bearing capacity for 4 sets of different roughness ratios, namely r=0, r=0.2,
r=0.6, and r=0.95, with 10.000 adaptive meshes were computed. Each set of analyzes is com-
prised of 60 single runs (upper bound analyses and lower bound analyses). The friction angle
was increased from 15° to 45°, with a 0.5° increment, and the result of each of these angles
were recorded.

6.2.2.1 Geometry and Meshing

Figure 6.7 shows the geometry and meshing generated by the program. The figure also depicts
adaptive meshing for three combinations of friction angles and roughness ratios.

(a) Geometry (b) adaptive meshing for ϕ= 45° and r=0.95

(c) Adaptive meshing for ϕ= 45° and r=0.3 (d) Adaptive meshing for ϕ= 25° and r=0.3

Figure 6.7: Geometry and meshing of case 2

The soil body, in this case, is 30 m width, 6 m height and a foundation with 1 m width
is resting on it while an overburden pressure equal to 20 kPa is resting on the soil adjacent to
the foundations. The inclination of the load changes with the friction angle to keep a constant
roughness ratio.

Figure 6.8, shows how a failure envelope changes by change of roughness ratio. Failure
surface suggested by Janbu is drawn on the figures as well, to show how the failure mechanism
predicted by the program is corresponding with the theoretical solution.

6.2.2.2 Results for meshing with adaptive meshing

Nq was calculated from the result of simulating four different roughness ratios. Figure 6.9
shows the bearing capacity factor, Nq , computed for roughness ratio, r=0.2. Both lower bound
and upper bound are drawn a well. The absolute error is drawn and shows a maximum 4% for
both bounds and error of less than 1% for the average of two bounds.
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Figure 6.8: Comparison of failure envelope developed by theoretical solutions and obtained
results for ϕ= 45°

Figure 6.10a shows the roughness ratio, Nq versus tanϕ for all four roughness ratios. The
dotted line is the lower bound simulation, the dash-dot line is the upper bound simulation and
the solid line is the exact solution as discussed previously (see Section 3.3). Finally, Figure
6.10b shows the error of the average of lower and upper bound for these 4 roughness ratios.
It can be seen that the error is generally under 1% which is generally acceptable. It should be
noted that r=0.95 is the highest roughness ratio which was possible to use with reasonable error
margins.
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Figure 6.9: Results of computation for roughness ratio r=0.2
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Figure 6.10: Results of adaptive meshing for different roughness ratios
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6.3 Case 3: Vertical loading on ponderable MC soil

In this case, it is attempted to calculate the ultimate limit bearing capacity under a plane-strain
situation on a soil without overburden pressure, and attraction, a=0 kPa, unit weight, γ=20 kN

m3

and varying friction angles.

6.3.1 Theoretical Solution

As discussed in Chapter 2, bearing capacity for a ponderable soil (γ 6= 0), without overburden
pressure and attraction, under a vertical centric loading is equal to:

qul t =
1

2
·Nγ ·γ ·B (6.5)

The solution developed by Martin [2004] gives an exact solution for Nγ, and it will be referred
to as the exact solution (seen in Figure 6.11).
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Figure 6.11: Exact solution for ultimate limit bearing capacity (redrawn form Martin [2004])

6.3.2 Computation Results of OptumG2 Runs

For this case, two sets of computations, with and without adaptive mesh, with a 10.000 trian-
gular elements were run. Each set of analyzes is comprised of 121 single runs (upper bound
analyses and lower bound analyses). The friction angle was increased incrementally from 15°
to 45° with 0.25° increments and the result of each of these angles were recorded.
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6.3.2.1 Geometry and Meshing

Figure 6.12 shows the geometry and meshing generated by the program. The figure also depicts
adaptive meshing for ϕ=45°. Same as with case 3, as friction angle increases, the failure line
penetrates deeper. Soil body has 30 m width, 6 m height, without overburden pressure and a

(a) Geometry (b) Shear dissipation with adaptive meshing

Figure 6.12: Geometry and meshing of case 3

foundation with 1 m width is resting on it.

6.3.2.2 Results for regular meshing

In this set of runs, bearing capacity was computed by running both lower and upper bound
analyses for friction angles between 15° and 45°. Figure 6.13 shows the relationship between
friction angle and ultimate limit bearing capacity for this case. The average of lower and upper
bounds is depicted as well as the solution developed by Martin [2004], which is the exact
solution. The figure also depicts the error of lower and upper bounds and their average, with
varying friction angles. The error of analysis increases by increasing friction angle in general,
but the error of the average of two bounds decreases. This is because of how the error of lower
bound solutions are increasing more and this is pushing the average closer to the exact solution.

6.3.2.3 Results for meshing with adaptive meshing

In this set of runs, everything was unchanged except adaptive meshing was used. The results
of this set of simulations can be seen in Figure 6.14. Absolute relative error increases by the
increase of friction angle. Absolute relative error of the average of two bounds is around 2% to
7%, which can get better by using more refined meshing and/or by using mesh fans.

As can be seen in the figure, the result of the lower bound is showing scattering behavior
and this is because of numerical difficulties near the corner of foundation and soil.
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Figure 6.13: Result of computations for meshing with 10k triangular elements

6.3.2.4 Comparison of results

Average of upper bound and lower bound can give a good estimate of the real answer. The
average of two bounds for regular meshing and adaptive meshing are calculated and the results
can be seen in Figure 6.15.

The figure also shows the error of each of these meshings. Adaptive meshing is generally
predicting a more accurate result. However, the error of regular meshing is lower than adaptive
meshing after a point which is a coincidence, especially considering a larger gap between the
lower bound and upper bound for the case of regular meshing.
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Figure 6.14: Result of computations for adaptive meshing with 10k elements
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Figure 6.15: Comparison of average of two bound for regular meshing vs adaptive meshing
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6.4 Case 4: Vertical loading of a circular foundation on pon-
derable MC soil

In this case, the ultimate limit bearing capacity of a ponderable, cohesionless soil with varying
friction angles under a circular footing will be investigated.

6.4.1 Theoretical Solution

There is no rigorous solution for the shape factor of circular foundations. There are, however,
some solutions suggested by some authors, which are mentioned in Chapter 3. The solution
proposed by Meyerhof [1963] is as follows:

sγ = 1+0.1tan2
(π

2
+ ϕ

2

)
(6.6)

This shape factor is over 1. On the other hand, Vesić [1973] suggests a shape factor equal to
sγ=0.6, and Norsk Standard [2016] suggests a factor equal to 0.7. This contrasting incompati-
bility will be discussed in Chapter 8.

6.4.2 Computation Results of OptumG2 Runs

For this case, bearing capacity of circular foundation was computed for a ponderable, cohe-
sionless soil with varying friction angles. The two-dimensional version of the Optum, by using
axisymmetry, was used to run lower and upper bound analyses. The friction angle was increased
incrementally from 15° to 45°, with 0.5° increments, totaling 61 analyses.

6.4.2.1 Geometry and Meshing

Figure 6.16 shows the geometry and meshing used in this case. The soil body has 18 m width
and 6 m height. There is a foundation with a 0.5 m radius resting on the top of the soil mass.
45.000 triangular elements were rearranged through 3 iterations of adaptive meshing for this
case. Meshing for a special case of ϕ= 45° is shown in the figure.

6.4.2.2 Results of simulation with adaptive meshing

Figure 6.17 shows the results of the simulations for this case. Bearing capacity factor, Nγ, was
calculated as

qu

0.5 ·γ ·B
(6.7)
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(a) Geometry (b) Meshing

Figure 6.16: Geometry and meshing for circular foundation on a MC soil with ϕ= 45° (45.000
triangular elements)

The figure shows a plot of Nγ versus tanϕ to illustrate the effect of increasing friction angle.
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Figure 6.17: Results of computation for case 4 using axisymmetry in OptumG2

The figure also shows the absolute relative error of the analyses. Since there is no exact
solution, the absolute relative error was calculated as mentioned in Section 4.3.2.

6.4.3 Computation Results of OptumG3 Runs

For this case, bearing capacity of a circular foundation resting on a cohesionless, ponderable
MC soil was analyzed using lower, upper, and mixed element type. By using the Mohr-Coulomb
soil model, the bearing capacity of the soil was computed by using the three-dimensional ver-
sion of Optum. The friction angle was increased incrementally from 15° to 45°, with a 1° in-
crement, totaling 31 analyses. Only 1/4 of the problem was modeled for reducing computation
cost/time.

96



Chapter 6. Numerical Limit Analysis in MC Soil

6.4.3.1 Geometry and Meshing

Figure 6.18 shows the geometry and meshing used for this case. A soil body with dimensions
of 10×10×6 (B×L×H) was used where a foundation with 1 m radius is resting on the soil mass.

(a) Geometry (b) Meshing (c) Shear dissipation

Figure 6.18: Geometry and meshing for circular foundation on a MC soil with ϕ= 30° (25.000
triangular elements)

The case shown in Figure 6.18 is for a soil mass with ϕ = 30°. Adaptive meshing with
25.000 elements was used. Elements were rearranged through 3 iterative adaptive meshing for
decreasing the so-called gap between lower and upper bound analyses (see 4.3.2).Three types
of elements, namely lower, upper, and mixed type of meshing were used in this case.

6.4.3.2 Results of simulation with adaptive meshing

Figure 6.19 shows the results of simulation. Bearing capacity factor, Nγ, is calculated as de-
scribed in the 2D subsection. The figure shows the results of computation for different friction
angles.

The figure also depicts the absolute relative error of the lower/upper solution. It can be seen
that absolute relative error increases dramatically as the friction angle increases. The error for
3D analysis is generally higher than the similar simulation with the two-dimensional version of
Optum.

6.4.4 Comparison of results

Based on the simulation results, it is possible to propose a formula for Nγ. The average of
lower and upper bound simulation from the two-dimensional simulations were used to form a
new formula. The data point of average of lower and upper bounds can be described with the
following formula (for the interval of 15° to 45°):

Nγ = exp (9.254 · tanϕ0.7893 −3.242) (6.8)

This formula gives a maximum 1.4 % absolute relative error, which is satisfactory.
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Figure 6.19: Results of computation for case 4 using OptumG3

Figure 6.20 shows a comparison between the results of two-dimensional and three-dimensional
analyses with the proposed formula.
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Figure 6.20: Comparison of proposed formula and the results of computation for case 4

The figure also shows the comparison in a normalized plot, where the Nγ calculated from
the simulation is divided by the Nγ proposed by Equation 6.8. It can be seen that the simulation
results of three-dimensional modeling are less precise than two-dimensional modeling.
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6.5 Case 5: Combined Horizontal and Vertical loading on
ponderable MC soil

In this case, the objective is to find the bearing capacity factor, Nγ, under inclined loading for
different inclinations. Ultimate limit bearing capacity is computed for an inclined load on soil
without overburden pressure, q=0, and no attraction, a=0 kPa, and with unit weight, γ=20 kN

m3 ,
and varying friction angle. The analyses were run under a plane strain situation.

6.5.1 Theoretical Solution

As discussed in Chapter 2, bearing capacity for a ponderable soil, without overburden pressure
and attraction, under an inclined centric loading is equal to:

qul t =
1

2
· iγ ·Nγ ·γ ·B (6.9)

As discussed in Section 3.5, the solution developed by Martin [2004] gives exact answers for
Nγ for vertical loading. This solution will be a guide in this chapter to see how accurate the cal-
culated Nγ is. The solution developed by Janbu [1976] for Nγ under inclined loading, described
in Section 3.3, defines Nγ as a function of roughness ratio, r, instead of using inclination factor,
ic . Janbu [1976] uses the roughness ratio for developing a solution for Nq as well and as seen
in Section 6.2, this solution gives similar results to the simulation results, which means it is the
exact solution. The idea of roughness ratio will be used here as well to represent the inclined
loading instead of the inclination factor. Roughness ratio, r is defined as:

r = τh

σ′
v · tanϕ

6.5.2 Computation Results of OptumG2 Runs

For this case, lower bound and upper bound simulations were run for roughness ratio from 0
to 0.8 with 0.1 interval (9 unique values of r). For each of these 9 roughness ratios, friction
angle was increased incrementally from 15° to 45° with 0.5° increments (totaling 549 unique
analyses).

6.5.2.1 Geometry and Meshing

The soil body, in this case, has 20 m width, 6 m height, without overburden pressure and a
foundation with 1 m width is resting on it. A start element of 50.000 building up to 150.000
through three iterative adaptive meshing was used in this case. Fan mesh is used on two edges
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of the foundation for increasing the accuracy of the simulation. Figure 6.21 shows the geometry
and meshing generated by the program.

(a) Geometry (b) Meshing and mesh figuration for r=0.25

Figure 6.21: Geometry and meshing of case 5 (ϕ=45° and r=0.8)

Figure 6.22 shows a zoomed view of the generated meshing for a special case of r=0.2. The
figure shows how fine the meshing is. Although it is not shown here, the elements along the
failure line were as small as 1 mm.

(a) Geometry with mesh fan in corners (b) Meshing and mesh figuration

Figure 6.22: Geometry and meshing for ϕ=45° and r=0.25

6.5.2.2 Simulation results (vertical loading)

As seen in Section 6.3, the case for vertical loading on ponderable soil, the model was able to
find relatively good results with comparison to the exact solution, which is the solution proposed
by Martin [2004]. For the previous case, Section 6.3, the absolute relative error for the average
of two bounds is between 0-4%. To reduce the error to less than 2%, the number of meshes were
increased as well as utilizing a mesh fan in this case. The solution proposed by Martin [2004]
for bearing capacity factor, Nγ, was used to assess the special case of r=0 or vertical loading.
Figure 6.23 shows the results for r=0. The absolute relative error for the average of bounds is
less than 2%.

Average of two bounds and solution proposed by Martin [2005] can be described with the
following formula (for the interval of 10° to 60°):

Nγ = exp
(
8.822 · tanϕ0.7002 −3.335

)
(6.10)

This formula has a R equal to 0.9999, RMSE equal to 0.0309 and SSE equal to 0.0448.
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Figure 6.23: Result of computations for vertical centric loading

6.5.2.3 Simulation results (inclined loading)

Figure 6.24 shows the results of the simulation for the 9 different roughness ratios. For each of
these ratios, Nγ of different friction angles is plotted. It can be seen that lower and upper bound
results are relatively close to each other.

Figure 6.25 shows the calculated absolute relative error of the simulations, as described in
Section 4.3.2, for different roughness ratios. The error is usually around 1.5%, but it occasion-
ally goes above 2% for higher roughness ratios.

The average of lower/upper bounds for 5 roughness ratios with 0.2 intervals is shown in
Figure 6.26. The average of two bounds is drawn as to not overcrowd the figure. This figure is
similar to the one drawn by Janbu [1976].

Based on the average of two bounds, it has been attempted to find a formula for Nγ which
would be a function of roughness ratio and friction angle. By using the Curve Fitting Tool
in Matlab, a polynomial curve was fitted to simulation results. This fitting has a coefficient
of determination, R, equal to 1.000; error sum of squares, SSE, equal to 0.008314, root mean
square error, RMSE, equal to 0.003927.

The equation is as follows:

ln Nγ = 12.68 · tanϕ+0.3546 · r −6.968 · tanϕ2 −2.419 · tanϕ · r −0.02937 · r 2

+2.522 · tanϕ3 −1.569 · tanϕ2 · r −1.05 · tanϕ · r 2 −0.838 · r 3 −2.78 (6.11)

The formula with the simulation results is shown in Figure 6.27. As can be seen, the formula
matches quite well with simulation results.
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Figure 6.24: Lower/upper bound simulation results for case 5
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Figure 6.25: Absolute relative error of simulation of case 5
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Figure 6.26: Bearing capacity factor, Nγ calculated from average of lower and upper bounds
for different roughness ratios

(a) tanϕ− r −Nγ plot

(b) Absolute relative error

Figure 6.27: New formula for bearing capacity factor, Nγ in 3D
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Figure 6.28: Comparison between bearing capacity factor, Nγ predicted by Equation 6.11 and
Diagram proposed by Janbu (from Aabøe et al. [2018], redrawn from Janbu [1976])

The formula fits well with the simulation results. Figure 6.27b shows the absolute relative
error in 3D and 2D. As can be seen, the error is not exceeding 2% and hardly 1%.

6.5.2.4 Comparison of results with Janbu’s method

As discussed in Chapter 3, classical methods generally overestimate the value of Nγ, which is
also the case for the solution proposed by Janbu [1976]. The computed results in this thesis
are quite different from the values of Nγ which Janbu’s method proposes (see Section 3.3).
Figure 6.28 shows the values of predicted Nγ by Janbu and the OptumG2 simulation results for
different roughness ratios. The diagram presented by Janbu [1976] is drawn in the background
of the plot (shown by black lines and their associated roughness ratio beside them). The solution
proposed by Janbu is overestimating the Nγ for roughness ratio 0 up to 0.6. As the roughness
ratio increases, Janbu’s solution starts underestimating the bearing capacity factor.
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6.5.2.5 Presentation of Results in H-V plot

It is possible to plot vertical bearing capacity in horizontal stress-vertical bearing capacity fig-
ures (H-V plots), as some authors like Hanna and Meyerhof [1981] have done. This can be
achieved by changing the roughness ratio from 0 to an allowed maximum value. Then, by using
Equation 6.11 and Equation 3.14, Nγ and Nq can be found and subsequently allowable vertical
bearing capacity for each roughness ratio can be calculated as:

σ′
v = Nq · (p ′+a)+0.5 ·Nγ ·γ′ ·B0 −a (6.12)

Horizontal stress, τh , for each roughness ratio is equal to:

τh = r · tanϕ ·σ′
v (6.13)

An H-V plot can be drawn by plotting σ′
v and τh for every roughness ratios (like Figure

6.29).
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Figure 6.29: H-V plot for three different friction angles

Figure 6.29 shows an H-V plot for three different friction angles for a foundation with no
attraction and overburden pressure and a foundation width equal to 1 m and soil density equal
to 20 kN

m3 .
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Chapter 7
Comparison of Numerical and Experimental
Results

7.1 Introduction

There is not an agreement on the value of bearing capacity factor Nγ, as discussed in the pre-
vious chapters. Several authors have done laboratory experiments to determine the Nγ. In this
chapter, some of these laboratory experiments are compared to the numerical solution detailed
in the previous chapter. Before this, selection of friction angle, which is an important issue, will
be discussed.

7.2 Selection of Friction angle

Friction angle is assumed to be a constant parameter of soil mass throughout this thesis. This
parameter, however, is a construction of how the soil sample is being tested. Several authors,
such as Kulhawy and Mayne [1990] and Lade and Duncan [1973], have reported results of
laboratory testings where the friction angle is not constant. Friction angle is usually interpreted
from a triaxial test where the intermediate and minor stresses are equal. Under true triaxial tests,
types of tests where intermediate and minor principal stress are not necessarily the same, the
interpreted friction angle can vary from the one interpreted from triaxial tests. Concept of Lode
angle is being used to show the influence of intermediate principal stress, which is defined as
(from Lade [2016]):

b = σ2 −σ3

σ1 −σ3
(7.1)

The effect of intermediate stress on the interpreted friction angle is seen in both clay and sand.
Figure 7.1 shows results of true triaxial testing done by Lade and Duncan [1973]. The inter-
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preted friction angle increase as the value of b moves from b=0, triaxial compressive testing,
toward plane strain before decreasing again for b=1, triaxial extension testing. The laboratory
tests are done using both loose and dense sand samples. Furthermore, the figure depicts failure
surfaces on an octahedral plane of three principal stresses, which depicts that Mohr-Coulomb
failure criteria is not capturing intermediate stress effect.

(a) friction angle, ϕ vs. Lode angle, b

(b) Failure surface (octahedral plane)

Figure 7.1: Results from cubical triaxial testing with different intermediate principal stress on
Monterey No. 0 sand (from Lade [2016], redrawn from Lade and Duncan [1973])

A similar phenomenon is observed for clay in the work of Lade and Musante [1978]. The
results of this work are shown in Figure 7.2.

Hansen [1961] has mentioned a series of plate loading tests for soil with different interpreted
friction angles from triaxial tests. Since the bearing capacity factor of the overburden effect, Nq

has a theoretical and rigorous solution, the results can be used for comparison. Figure 7.3
shows how using friction angles from triaxial testing, the theoretical Nq (orange line) is lower
than the measured values. By using a factor 1.18 for the friction angle, it is possible to get a
more realistic agreement. Hansen [1961] concludes that a 10% increase in friction angle under
plane strain loading from the measured friction angle from the triaxial test is common practice
in Denmark (ϕps = 1.1 ·ϕtr ).

Similarly, Meyerhof [1963] suggested a 10% increase in the friction angle from triaxial
loading to plane strain loading. The friction angle of plane strains is suggested to be:

ϕps =
(
1.1−0.1 · B

L

)
·ϕtr (7.2)

108



Chapter 7. Comparison of Numerical and Experimental Results

Figure 7.2: Results from cubical triaxial testing with different intermediate principal stress on
remolded Grundite clay (from Lade [2016], redrawn from Lade and Musante [1978])

7.3 Comparison of numerical results of Nγ with experimental
results

In this section, experimental results for measuring Nγ will be compared to the Equation 6.11,
i.e. the numerical simulations.

7.3.1 Work of Hanna and Meyerhof, 1981

Hanna and Meyerhof [1981] run laboratory experiments to determine the bearing capacity of
two types of sand samples. The experiments were run using a rectangular foundation with 5 cm
width under the plane-strain condition with different loading inclinations. They used to run the
experiments on the same sand with two levels of relative density, namely loose sand and dense
sand. The article states that friction angle under plane strain loading for loose and dense sand is
equal to 34° and 47.5°, respectively. Relative density for loose and dense sand was measured to
be 0.22 and 0.69, respectively. The used soil was described as "well-graded medium to coarse
angular silica sand". The minimum and maximum density of the used soil was not mentioned by
Hanna and Meyerhof [1981]. However, Ameratunga et al. [2015] states that for a "well-graded
sub-angular sand" the typical values for emax and emi n are equal to 0.7 and 0.35, respectively.
This means that dry density of loose and dense sand is 16.05 kN

m3 and 21.83 kN
m3 , respectively.

By having soil parameters, bearing capacity for these two types of sand can be found based
on the formula proposed for Nγ, Equation 6.11. Since this equation is for friction angles of
15°≤ϕ≤45°, a lower and upper bound analysis was run for dense sand where ϕ= 47.5°. Figure
7.4 shows a comparison of the numerical results and laboratory measured values of vertical
limit stress, σv , versus horizontal limit stress, τh . It can be seen that the results for dense sand
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Figure 7.3: Comparison of plate loading tests with computed bearing capacity factor, Nq using
friction angle interpreted from different testing methods (redrawn from Hansen [1961])

is corresponding better with the proposed formula than loose sand.

It should be noted that a source of uncertainty is the unit weight of the soil. The proposed
formula is underestimating the allowed loading for dense sand, but overestimate it for non-
vertical loading of loose sand.

7.3.2 Work of Ticof, 1977

Ticof [1978] ran laboratory experiments using a sandbox to determine failure surface under
inclined loads. The experiments used plane-strain loading by using a footing with a width equal
to 76.2 mm (3 in.). Leighton Buzzard sand was used in these experiments with relative density,
DR equal to 85%. Unfortunately, Ticof [1978] did not mention other properties of the sand,
but since the used sand is a standard sand, there are some publications, such as Cavallaro et al.
[2001], which have measured them. Cavallaro et al. [2001] have done a series of laboratory
experiments on this sand and a summary of some of the results are summarized in Table 7.1.

By using these values, we can conclude that the sand used by Ticof [1978] had a dry unit
weight of 17.44 kN /m3 and a friction angle of 48.6°. Ticof [1978] has found the ultimate failure
load for different load inclinations. He has summarized the results of his work in a normalised
σv /σv,max vs τh/σv,max plot. Figure 7.5 shows how the measurement of ultimate limit failure
for different inclinations in Ticof [1978] compares to the simulation results for ϕ=48.6°(it is
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Figure 7.4: Comparison of laboratory tests of plane strain loading and proposed formula, Equa-
tion 6.11 (partially redrawn from Hanna and Meyerhof [1981])

Table 7.1: Some of geotechnical parameters of Leighton Buzzard sand reported by Cavallaro
et al. [2001]

Parameter sign value Unit
Maximum dry density γdr y,max 17.94 [kN /m3]
Minimum dry density γdr y,mi n 15.06 [kN /m3]

Specific Gravity Gs 2.679 [ ]
Friction angle ϕt x = 0.238 ·DR +28.4 [°]

out of range of Equation 6.11). Since the σv,max is not mentioned by Ticof [1978], it was not
possible to check the Nγ value. Therefore, the figure is not showing the laboratory results in a
non-normalized plot.

7.3.3 Work of Yamaguchi and coauthors, 1976

Yamaguchi et al. [1976] have measured the bearing capacity of a dense sand under plane-strain
conditions with different foundation widths using centrifuge testing. The main objective of this
work was to study the foundation width effect on the measured Nγ. Yamaguchi et al. [1976]
used different accelerations, namely 10, 20, and 40g to model the different foundation widths.
They used Toyoura sand and documented the physical properties of the used sand. Table 7.2
summarizes a list of properties of the used sand.
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Figure 7.5: Comparison of laboratory tests of plane strain loading and proposed formula, Equa-
tion 6.11 (partially redrawn from Hanna and Meyerhof [1981])

Yamaguchi et al. [1976] have reported observed Nγ for different foundation width. Their
theory is that for bigger foundation footings, mean normal stress along the failure line increases,
which consequently decreases friction angle. Figure 7.6 shows the observed laboratory results
of Nγ by authors and a comparison with the proposed formula for Nγ (Equation 6.10). Since
the Mohr-Coulomb model used in this thesis does not take this size-effect into account, the
proposed formula is showing a constant Nγ for different foundation sizes. It can be seen that
the formula is doing a better job predicting Nγ for higher foundation width, but not for the
smaller foundations.

Table 7.2: Some of geotechnical parameters of Toyoura sand reported by Yamaguchi et al.
[1976]

Parameter sign value Unit
Maximum porosity nmax 49.9% [ ]
Minimum porosity nmi n 37.9% [ ]

Relative density DR 87.0% [ ]
Average unit weight γ 15.69 [kN /m3]

Specific Gravity Gs 2.66 [ ]
Friction angle, plane strain ϕps 46 [°]

Friction angle, triaxial ϕt x 41 [°]
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Figure 7.6: Comparison of laboratory experiments and Nγ formula (Equation 6.10) (partially
redrawn from Yamaguchi et al. [1976])

7.3.4 Work of Aiban and Znidarcic 1995

Aiban and Znidarčić [1995] have studied the bearing capacity of sand under plane-strain condi-
tions with centrifuge modeling. They used fine silica sand with a relative density of 88%. The
experiments were done in a 15g centrifuge using a foundation with a width equal to 38 mm,
which represents a prototype of a 1.14 m foundation. A friction angle of 42° was measured
through three triaxial tests. The unit weight of the soil is not mentioned by the authors. How-
ever, Ghayoomi et al. [2017] state that for standard F-75 sand, minimum and maximum dry unit
for this sand is 14.69 kN

m3 and 17.8 kN
m3 , respectively. This means that the dry unit weight of the

soil is equal to 17.44 kN
m3 .

Since the authors have only measured the triaxial friction angle, not the plane strain tri-
axial friction angle, the ultimate bearing capacity is computed for two cases, one case where
plane strain friction angle, ϕps , is equal to triaxial friction angle, ϕt x , and one case where
ϕps=1.07·ϕt x .

Figure 7.7a shows the load-displacement curve from experiments. As discussed previously,
the limit analysis only gives the limit load, not the load-deformation curve. Calculated ultimate
bearing capacity is shown for two friction angles. Figure 7.7b shows the measured and calcu-
lated bearing capacity for different load inclinations. As can be seen, the Equation 6.11 is not
showing a similar behavior as the measured laboratory results. This can be due to how the load-
ing was done. Instead of applying an inclined load, the authors applied a constant horizontal
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load on the footing and then applied a vertical load until it failed.
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Figure 7.7: Comparison of results of centrifuge testing and proposed formula, Equation 6.11
(partially redrawn from Aiban and Znidarčić [1995])

The authors have attempted to measure the Nq by giving the foundation some overburden.
This method of measuring Nq means that the failure line can go through the overburden, which
is not the same assumption made in classical bearing capacity theories (see Chapter 2). Aiban
and Znidarčić [1995] have measured significantly higher Nq values than what theories have
suggested and this is mainly because of this effect.

7.3.5 Work of Leshchinsky and Marcozzi 1990

Leshchinsky and Marcozzi [1990] have done laboratory experiments using a sandbox to find
bearing capacity factor Nγ for a flexible and rigid foundation. They used a soft geotextile
wrapped sand under the foundation to simulate the flexible foundation. Two foundation types,
one with 50 mm and one with 38.1 mm width was used, which totals 4 types of tests. The
authors used Ottawa dry sand in their experiments. The properties of the sand reported by the
authors are summarized in Table 7.3.

Figure 7.8 shows a comparison of the measured Nγ with the proposed formula, Equation
6.11. Nγ is shown for two friction angles, one for friction angle of triaxial and one for plane
strain friction angle. It can be seen that the friction angle of plane strain is corresponding better
with the laboratory results.
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Table 7.3: Some of geotechnical parameters of Ottawa sand reported by Leshchinsky and Mar-
cozzi [1990]

Parameter sign value Unit
Relative density DR 70% [ ]

Maximum density γdr y,mi n 15.2 [kN /m3]
Minimum density γdr y,max 17.2 [kN /m3]
Specific Gravity Gs 2.67 [ ]

Friction angle, plane strain ϕps 44 [°]
Friction angle, triaxial ϕt x 37 [°]
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Figure 7.8: Comparison of results of laboratory testing and proposed formula, Equation 6.11
(partially redrawn from Leshchinsky and Marcozzi [1990])
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Summary and Discussion

8.1 Discussion

Here, a summary and discussion of the work will be presented.

8.1.1 Superposition

Classical soil mechanics have suggested that the bearing capacity of the soil is comprised of
three components, namely cohesion, surcharge, and soil density. The contribution of each of
these three components can be analyzed individually and summed up to get the total bearing
capacity (superposition theory according to Terzaghi et al. [1996]). This assumption is, how-
ever, quite conservative. This can be shown with an example where bearing capacity can be
calculated with bearing capacity equations and finite element modeling. Since bearing capacity
factors for each of these three components, cohesion, surcharge, and soil density are calcu-
lated/verified beforehand, hand calculation with formulas has to give the same results as the
numerical solution.

Bearing capacity of a soil mass under vertical loading and no overburden with soil parame-
ters and geometry given in Table 8.1 will be investigated.

Table 8.1: Soil parameters and geometry

Parameter Foundation width surcharge cohesion friction angle Soil density
Symbol B q c ϕ γ

Unit [m] [kPa] [kPa] [°] [kN /m3]
Value 1 20 5 30 20

Bearing capacity of an MC soil under a vertical load, as mentioned in previous chapters, is
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as follows:
σ′

v = (Nq −1) · (p ′+a)+ 1

2
·γ ·Nγ ·B0 (8.1)

where the bearing capacity factors, Nq , and Nγ are defined in Equation 3.14 and Equation 6.10,
respectively. Bearing capacity for the geometry and soil parameters mentioned in Table 8.1 are:

sinϕ=0.5 tanϕ= 0.577

Nq =1+ si nϕ

1− si nϕ
·eπ·tanϕ = 1+0.5

1−0.5
·eπ·0.577 = 18.40

Nγ =exp
(
8.222 · tanϕ0.7002 −3.335

)= exp
(
8.222 ·0.5770.7002 −3.335

)= 14.44

σ′
v =(18.40−1) · (20+ 5

0.577
)+ 1

2
·20 ·14.44 ·1 = 643.18kPa

Numerical simulation shows something quite different. Table 8.2 shows the results of numerical
simulation for the given geometry and soil parameters (Table 8.1).

Table 8.2: Results of numerical simulation

Lower Bound Upper Bound Average Error
Unit kPa kPa kPa %
Value 749.4 784.5 766.95 2.3

The numerical simulation is showing a 19% increase in comparison to the formulas. As
shown before, each bearing capacity factor is calculated/verified to be the exact solution, but
when they are summed up as suggested by superposition theory, the results do not necessarily
match. This can partly be explained by how failure surfaces and bearing capacity factors are
constructed. Classical soil mechanics divides bearing capacity into three components, cohe-
sion, surcharge, and soil weight. Failure surface and bearing capacity factors were verified/con-
structed under pure conditions, where each of these three components were present, one at a
time. Failure surfaces can be drawn for the geometry shown in Table 8.1 for each of the three
components individually (see Figure 8.1a). This shows that these three failure lines are not co-
inciding, where the failure line from the cohesion effect is the smallest and surcharge is largest.
When a soil/geometry is modeled where these three components are acting at the same time,
a new failure line, which is an amalgamation of these three lines, can be observed (see Figure
8.1b).

The failure line from Figure 8.1b is not coinciding with any of the three failure lines in
Figure 8.1a. The 19% difference between the bearing capacity calculated from the formula and
the numerical solution (Table 8.2) can be explained with this difference in failure lines. The
failure line in Figure 8.1b is about 15% smaller than the failure line for the surcharge effect.
This reduces the bearing capacity but the failure line for cohesion and soil weight (from Figure
8.1a) is quite smaller than the failure line in Figure 8.1b. This means that the failure line in
Figure 8.1b is penetrating deeper and this increases the bearing capacity significantly. This
phenomenon is believed to be the reason for the 19% difference between the formula and the
the numerical solution.
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Figure 8.1: Failure line for the example in Table 8.1

8.1.2 Undrained analysis

A total of 8 cases with different geometry and loading was investigated in Chapter 5. A sum-
mary and discussion will be presented here.

Case 1 was the vertical loading of a Tresca soil under plane-strain situation. The numerical
solution was quite close to the theoretical solution (2+pi ). The idea here was to showcase the
robustness of the program and adaptive meshing.

Case 2 was the vertical loading of a circular foundation on a Tresca soil. The theoretical
solution for Nc is 6.05. Analyses with the 2D program and axisymmetry showed that results
are converging rather toward 6.03. On the other hand, analyses with the 3D program were
converging toward 6.08. Even though the difference is less than 1%, this is believed to be
caused by a difference in mesh refinement between two cases. This author believes that 6.03 is
a better value based on the refinement of 2D analyses.

Case 3 was inclined loading of a Tresca soil under plane-strain situation. Equation 3.20
seems to correspond fairly well with numerical solutions for bearing capacity factor, Nc . The
analyses were done with and without adaptive meshing to show the robustness of this type of
meshing. Later in case 5, the inclined loading of rectangular footings was investigated but not
circular footings.

In case 4, the embedment effect for a foundation on a Tresca soil was investigated for depth
to width ratio up to 25. However, the results did not reach a plateau. Grande et al. [2016]
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mentioned that for a deep foundation Nc reaches Nc=2 ·π+2. Shallow foundation with high
depth to width ratios is not something used in practical engineering. This thesis did not go into
detail on the deep foundation and its bearing capacity. It was decided to limit the scope of the
thesis to the shallow foundation.

A depth factor, dc , was suggested to represent the results of the simulations. The proposed
depth factor, Equation 5.6, is showing different results than some of the formulas suggested
in the literature. This can be in explained, in part, by how previous authors have set up their
formulas. This author believes that the effect of surcharge and skin resistance should not be
taken into account when one sets up the depth factor. This is an unknown part of the previous
works. Hence, this is a potential source of difference.

In case 5, shape effect for rectangular footings under vertical loads were investigated. With
use of the 3D version of Optum, vertical bearing capacity of foundations with different width
to length ratios were investigated. A shape factor, sc was suggested based on the results of the
simulations.

Following that, in case 6, bearing capacity of inclined loading of rectangular foundations
with different width to length ratios were analyzed. The idea was to find out if combining shape
factor and Nc for inclined loading is able to produce sufficient results. It was observed that the
shape factor has to be a function roughness ratio as well. Based on the analyses of inclined
loading of rectangular foundations, the shape factor was updated in way in which it can capture
the simulation results.

In the next case, case 7, the ultimate bearing capacity of Tresca soil with linearly increasing
strength with depth was investigated. Similar results with the solution suggested by Davis
and Booker [1973] were obtained for vertical loading. For inclined loading, it was argued
and concluded that the way Davis and Booker [1973] set up their bearing capacity formula
is introducing error to the bearing capacity formula. It is concluded to formulate the bearing
capacity formula for undrained analysis in the following manner:

σv = dc · sc ·F ′
R ·Nc ·Su +p (8.2)

where dc is depth factor (Equation 5.6), sc is shape factor (Equation 5.12), F ′
R is strength

anisotropy factor (Equation 5.16), Nc is bearing capacity factor (Equation 3.20) and p is sur-
charge.

Finally, in case 8, a macro model was proposed for a special case of shallow foundations
with suction beneath the foundation (as a case for skirted foundations). The macro model was
built on the theoretical foundation outlined in Section 3.3. Several hundreds of simulations,
with relevant spatial distribution, were run to find a representative failure surface. This surface
was used to find the macro model. The model is using the idea of roughness ratio, but with a
difference where it is also a function of applied moment. The influence of the moment reduces
the amount of horizontal stress soil can take. The macro model is constructed to represent
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the first quadrant, where vertical, horizontal and moment are all positive. The macro model is
outlined in Equation 5.18.

8.1.3 Selection of representative undrained shear strength

Clay usually displays a shear strength heterogeneity where shear strength can change based
on the direction of sampling. This heterogeneity is usually expressed as three values of shear
strength, namely active, direct, and passive shear strength. Representative shear strength can be
expressed as:

Su = Su,A +Su,P +Su,D

3
(8.3)

where Su,A, Su,P and Su,P are active, direct and passive shear strength, respectively. This idea
was checked for a couple of shear strength values and it was seen to produce relatively good
results. It was decided not to analyze this further in this thesis.

8.1.4 Drained analysis

In case 1, vertical, centric loading of a foundation on weightless soil with plane-strain condition
was investigated. It shows how numerical simulations are corresponding quite well with the
theoretical solution. Besides, robustness and effectiveness of adaptive meshing was shown here
for a cohesionless, weightless, frictional material.

Further, inclined, centric loading of a foundation on a weightless soil with plane-strain con-
dition was investigated. The idea of roughness ratio for developing a theoretical solution for
Nq was tested here. Results shows how the Janbu’s solution is corresponding for four different
roughness ratios. It was decided not to check other ratios as these four ratios were represen-
tative enough of possible spectrum of roughness ratios. This case showed the robustness and
usefulness of the roughness ratio, which acts as an internal check for sliding.

Although the solution proposed by Martin [2005] is the exact solution for Nγ, it has not
received the acknowledgment it deserves. In case 3, vertical loading of shallow foundation
on ponderable soil (γ 6= 0) was investigated with plane-strain conditions and it is shown that
numerical solutions are giving similar results to the solution proposed by Martin [2005]. These
analyses were done with and without adaptive meshing. The difference and error between these
two meshing types were more pronounced for cohesionless soil. Hence, it is suggested to use
finer meshing for modeling of frictional soil. Later in case 5, vertical loading was computed
with a higher number of elements to decrease the error. Based on the results of simulations
and the results from Martin [2005], Equation 6.10 was suggested which can represent Nγ for
friction angles between 10° and 60°.

In the next case, case 4, bearing capacity factor, Nγ, was computed for a circular foundation.
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Analyses were done using axisymmetry in the 2D program, and 3D program. It was decided to
use the results of the 2D program since it had a lower error in comparison to 3D results. Based
on the results, Equation 6.8 was proposed which gives Nγ values for friction angles between
15° and 45°.

As seen in Chapter 7, the selection of a representative friction angle is not as easy as it seems
to be. For a strip footing, the friction angle that should be used is the plane-strain friction angle.
A representative friction angle for the circular and rectangular foundation is more complicated.
Directly beneath the foundation, the stress condition is similar to triaxial testing, while around
that, there is a complicated stress distribution that is closer to the non-triaxial friction angle.
Hence, it can be argued both ways which friction angle, triaxial or plane-strain, should be used
as the input friction angle. Either way, a correction factor has to be introduced to the bearing
capacity. This factor has to be greater than 1 (like Meyerhof [1963]) if the triaxial friction angle
is intended to be used and should be lower than 1 (like Norsk Standard [2016] and Vesić [1973])
if non-triaxial friction angle is intended to be used. This explains this obvious dichotomy.

A conservative way of constructing the shape factor, sγ, for circular foundation is to use the
following methodology:

sγ =
Nγ, ci r cul ar (ϕ=ϕt x)

Nγ, ps (ϕ=ϕps)
(8.4)

where Nγ, ci r cul ar , and Nγ, ps is summarized by Equation 6.8 and Equation 6.11, respectively.
Based on this formula, it is possible to construct a shape factor for circular foundations. This
is shown in Figure 8.2 for three different ϕps

ϕt x
ratios. As seen in Chapter 7, this ratio can vary

based on the soil type.
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Figure 8.2: Shape factor, sγ for circular foundations

A shape factor equal to 0.6, suggested by Vesić [1973], seems a better choice. However, it
should be noted that this gives a somewhat conservative solution since a uniform friction angle is
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being selected rather than considering the effect of stress distribution on the friction angle. One
way to solve this is to use a soil model which assigns triaxial friction angles for stress conditions
similar to triaxial testing and assign non-triaxial friction angles to other stress conditions. FASD
soil model (Friction Angle Stress State Dependent) tries to do this (see Krabbenhøft [2020]).
This model was not used in this thesis, but it is recommended to be utilized in future research
works for development of a more precise shape factor.

Finally, in case 5, it was attempted to create a Nγ chart which can predict Nγ for different
friction angles and roughness ratio in the same manner as Nq chart (see Figure 3.5). Nγ was
computed for friction angles from 15° to 45° for 9 different roughness ratios ( from r=0 to
r=0.8). Based on the results of more than 500 simulations, a new formula, Equation 6.11, is
suggested which predicts Nγ for the mentioned intervals.

The formula is compared to the Nγ chart proposed by Janbu [1976], which is used in com-
mon geotechnical practice in Norway. Janbu [1976] predicts higher Nγ values for the most
friction angles but not for low friction angles and higher roughness ratios.

8.1.5 Selection of friction angle

In Chapter 7, a comparison of the proposed formula for Nγ and experimental results is pre-
sented. There is a disagreement between the results of different experimental work. Since
shortcoming(s) and possible source(s) of error are not mentioned in any of these works, it was
hard to find a way to dismiss the ones which might not be accurate. The proposed formula for
Nγ is compared to some of these experimental works. Numerical simulations are showing some
agreement with the experimental results. This author believes that more experimental work has
to be done to fill the void.

8.1.6 Roughness ratio

Throughout this thesis, the roughness ratio was used to represent the inclination of the load,
instead of using inclination factors. Roughness ratio, even though it is a theoretical ratio, can
help for a better set up of bearing capacity formulas. Since roughness ratio can not exceed
1,0 theoretically, it acts as a upper bound for sliding failure. Although the allowed roughness
ratio is theoretically 1.0, Norwegian practice sets a lower maximum allowed roughness ratio for
different soil types (see Table 8.3). In procedures set up by some of the researchers, where they
use inclination factors, one has to check for the sliding failure separately. Hence, the idea of the
roughness ratio was preferred and is suggested to be used.

For weightless soil and cohesive soil, it has been shown that the failure line suggested and
outlined in Grande et al. [2016] is corresponding with the FELA analyses. This author en-
courages practitioners in the field of geotechnical engineering to draw failure lines when they
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Table 8.3: Maximum allowed roughness ratio in Norwegian practice (from Aabøe et al. [2018])

Horizontal terrain Sloping terrain
r soil type r soil type

≥ 0.9 frictional materials ≥ 0.8 frictional materials
≥ 0.8 cohesive materials ≥ 0.7 cohesive materials

design bearing capacity, especially for inclined loading. For maximum allowed roughness ratios
in cohesive soils, 0.8, penetration of the failure line for undrained analysis is relatively shallow
(maximum penetration depth is 0.32 times width).

8.1.7 Adaptive meshing

The robustness of adaptive meshing was shown in case 1 to 3 in Chapter 5 and cases 1 and
3 in Chapter 6. It was observed that the absolute relative error of simulation results dropped
significantly for the same number of elements when adaptive meshing was used. The author
suggests using this tool when it is available. This idea of using finer meshing where shear
dissipation is high can be reproduced artificially. One can run the FEA with relatively coarse
meshing, and after observing the results and observing where the failure goes, one can try to
introduce finer mesh along the failure line.

8.1.8 Shortcomings and simplifications

The most important shortcoming in all of the cases in Chapter 6 is the fact that associated flow
was used. This assumption is not necessarily correct, but as discussed in Chapter 2 and 3, this
assumption is made implicitly in all of the classical bearing capacity theories.

8.2 Recommendations for Further Work

Recommendation for further work are summarized as follow:

• Developing a new theory for representing the interaction of cohesion, surcharge and soil
weight (replacing superposition theory)

• Development of a macro model to include soil heterogeneity

• Development of a macro model for shallow foundation without tension beneath the foun-
dation sole

• Development of Nq and Nγ bearing capacity for the circular and rectangular foundation
with FASD soil model
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• Investigation of the effect of dilation angle on Nq and Nγ

• Laboratory experiments for Nγ (vertical and inclined)

• Introducing spatial heterogeneity to the bearing capacity formulas

• Including soil-structure interface roughness
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Acronyms

MC Mohr-Coulomb

FEA Finite Element Analysis

FEM Finite Element Methods

NTNU Norwegian University of Science and Technology

ODE Ordinary Differential Equitation

FD/FE Finite Difference / Finite Element

FELA Finite Element limit analysis

SSE Error sum of squares

RMSE Root mean square error
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Appendix B
Introduction to OptumG2

B.1 Introduction

OptumG2 is a finite element program for geotechnical boundary value problems. The program
has some features very similar to widely available programs, but it has some unique features
as well. It can run traditional incremental elastoplastic analysis, seepage, and consolidation.
Moreover, it is capable of computing limit load, upper bound, and lower bound to the limit load,
without having to run an incremental elastoplastic loading. This method, known as numerical
limit analysis, is executed by increasing external load(s) or reducing material strength (c-ϕ
analysis) up until failure point. The limit analysis is the unique feature of this program which
separates the program from other programs.

B.1.1 Starting interface

OptumG2 has a user-friendly interface. A full-screen view of the program upon start can be
seen in Figure B.1. The different components of the program are named in the figure.

Program has following ribbons:

• Geometry

• Materials

• Features

• Results

These ribbons are shown in the Figure B.2, Figure B.3, Figure B.4 and Figure B.5, respec-
tively.

Concisely, the geometry of the problem in hand is going to be drawn in Geometry ribbon,
then in Material ribbon, the desired material model will be assigned to the drawn geometries.
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Figure B.1: A full screen view of OptumG2 graphic interface

Figure B.2: Geometry ribbon in OptumG2

In the Features ribbon, features such as load, plate, and alike can be assigned to the drawn
geometry and the Results ribbon shows the results of the calculation. In the stage manager, it is
possible to create and manage the different stages of the simulation.

In the following subsection, each of these ribbons and what they do will be explained.

B.1.2 Geometry

In this ribbon, one can start drawing the desired geometry of a boundary value problem. Fol-
lowing options are available for drawing the desired geometry:

• Points

• Lines

• Arc

• Circle

• Rectangle

There is also the option of importing DXF for drawing the geometry. It is also possible
to import a picture with a specifying height and width for drawing geometry from that. The
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Figure B.3: Material ribbon in OptumG2

Figure B.4: Features ribbon in OptumG2

program can do both plane strain analysis and axisymmetry analysis and this can be specified
in this ribbon.

B.1.3 Features

Loads, boundary condition and structural elements are placed in “Features” ribbon. Each of
these can be applied to any line (or point) upon clicking on the line and clicking on the desired
item. In the “Features” ribbon, following features can be seen:

• Flow BC

• Consolidation BC

• Support

• Loads

• Anchors

• Structural

• Mesh

• Other

Features such as support, loads, and others which are relevant here will be explained.

B.1.3.1 Support

This category contains the following features:

• Full: This option constrains displacement in all directions along the selected line.

• Normal: Displacement normal to the selected line is assigned to zero.

• Tangential: Displacements along the line is set to zero.

• Standard fixities: This option applies “Normal support” to all vertical lines and “Full
support” to horizontal lines.

• Plate BC: This feature assigns vertical, horizontal, and moment fixities to a given point.
Displacement can be either fixed, free, or have a given value.
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Figure B.5: Results ribbon in OptumG2

Line support (Normal, Tangential, Full) functions also as an impermeable boundary. It is
recommended to use Standard fixities for usual boundary value problems, such as the one used
in this study.

B.1.3.2 Loads

OptumG2 has six different features which can be categorized into two categories: Fixed loads
(shown in green) and Multiplier loads (shown in red). Multiplier loads have significance in the
Limit Analysis where they are magnified to reach a limit load. The Fixed load exerts a fixed
load in all types of analyses. Three types of load within each of these two categories are as
follows:

• Concentrated load (kN /m): This a point load that can be applied only to plated and
geogrids.

• distributed load (kN /m2): these are line loads that can be applied to any line.

• Body load (kN /m3 or ×g ): This type of load can be applied to solids and plates. It can
be given as a force (in kN /m3) or a fraction of the unit weight (a multiplication of ×g )
of the solid which is applying to.

Figure B.6 is showing these three different loading types. These loads can be given magni-
tude and direction. It is possible to use the local coordinate system or one can decide to use the
global coordinate system.

Apart from magnitude and direction, “Load Type” and “Load Category” is assigned to all
loads. By assigning different “Design Approaches” to the running stage, different partial factors
can be assigned to material parameters and loads in Limit Analysis and Strength Reduction
analyses. These partial factors are predefined for each design approach. They can be assigned
through Project/Design Approach. The window of Design Approach can be seen in Figure B.7.

By using the user-defined option of “User X”, one can implement, for example, the Norwe-
gian standard (seen in Table B.1).
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Figure B.6: Different load types: Concentrated load (A), Body load (B), Distributed load (C).

Table B.1: Partial factor used in design approaches common in Norway

Parameter symbol
Factors

method 2 method 3

Permanent Action (G)
Unfavorable γG 1,35 1,35/1,0 1

Favorable γG , f av 1,0 1,0

Variable Action (Q)
Unfavorable γQ 1,5 1,5/1,3

Favorable - - -
Shearing Resistance (t anφ) γφ 1,0 1,25

Effective cohesion (c’) γc ′ 1,0 1,25
Undrained Shear Strength (Su) γSu 1,0 1,4

Weigth Density γγ 1,0 1,0
Resistance Factor γR varies 2 1,0

1 Note that in method 3, the first factor is applied to structural loads and second one to
geotechnical loads.
2 This factor varies based on the installation method and loading. See Table NA.A.6

to NA.A.8 in the National Annex of Eurocode 7: Geotechnical Design, NS-EN 1997-
1+A1:2013+NA:2016.

B.1.3.3 Structural

This category has the following features:

• Plates: These are beam elements which are used to model thin structural elements such
as sheet piles. Possible material sets available will be presented later.

• Geogrid: This type of truss elements are used to model geogrids and grouted anchors.
Possible material sets for modeling av geogrids will be presented later.

• Pile Row: Special elements for accounting for three-dimensionality of the problem.

• Nail Row: This is a similar feature to the Pile Row, but instead of the pile, the nails are
defined.
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Figure B.7: Design approaches and the their partial factors.

• Shear Joint: These are interface elements to model internal discontinuities in the soil or
interface between two solid domain. Soil Models can be assigned to them.

B.1.3.4 Mesh

The mesh category contains two features:

• Mesh Fan: These features can be applied to points that creates a fan of elements around
the point (as seen in Figure B.8).

• Mesh Size: This feature can be applied to any type of geometry where mesh size can be
specified beforehand.

(a) Mesh fan and mesh size feature (b) Resulting meshing

Figure B.8: Applying mesh size and mesh fan to a direct footing
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B.1.3.5 Other

This category contains two features:

• Result Point: This feature logs the results in a given point for plotting purposes later.

• Result Section: This feature acts like a virtual plate where the sectional forces on this
plate are calculated and can be plotted.

B.1.4 Stage Manager

In this window, it is possible to manage and run the different stages of analysis (see Figure
B.9). The upper part of the window shows different stages and what kind of ascribed analyses
to them. The lower half of the window contains the setting of the selected stage. In between
these two, control buttons are located which one can add, remove, move, and run the selected
analysis.

Figure B.9: A view of the stage manager window

Here, one can create different analysis types for different stages. The available analyses are:

• Mesh: a meshing of the boundary value problem would be generated.

• Seepage: a seepage analysis with the assigned seepage boundaries would be performed.

135



Chapter B. Introduction to OptumG2

• Initial stress: this step tries to satisfy equilibrium, boundary condition, and yield condition
by distributing the stresses in the soil mass. Fixed loads are processed, but not multiplier
loads.

• Elastic: yield condition or any form of restriction on stress development is ignored. Fixed
loads are processed, but not multiplier loads.

• Limit Analysis: it is a rapid check of stability of the boundary value problem without
having to run a step by step load-deformation analysis. Multiplier loads get a factor until
the structure goes to failure.

• Strength reduction: By reducing soil parameters, this type of analysis finds the strength
necessary to find the have failure with given load(s).

• Elastoplastic: This one is like an elastoplastic analysis of common FE programs.

• Multiplier elastoplastic: This one is a combination of limit analysis and elastoplastic
analysis. Here, the maximum multiplier found by running incremental loading.

• Consolidation: Consolidation analysis similar to common FE programs.

In the “setting” window, it is possible to assign element type and the number of elements
desired elements. It is possible to use “mesh adaptivity” as well. The mathematical foundation
of this feature is explained in Lyamin et al. [2005], but in essence, this feature tries to increase
mesh refinement by a control mechanism, shear dissipation, for example. Figure 5.5 shows an
example of how this mechanics works.

B.2 Material Models

The materials available in Optum G2 can be assigned to six different categories of elements:

• Solids: Solid materials such as soil, rock and concrete and interfaces between materials

• Fluids: for modeling of fluids

• plates: for modeling of steel structures

• : Geogrids: for modeling of geogrids

• Connectors: for modeling of fixed-end anchors and plate to plate connectors

• Hinges: for modeling of hinges

A full description of the models and how they behave and the parameter used in each model
is described in detail in Krabbenhøft et al. [2016c]. In this work, solids are used more often and
will be discussed. Following materials are available in Optum G2 for solids:
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• Rigid

• Linear Elastic

• Mohr-Coulomb

• Drucker-Prager

• Tresca

• Anisotropic Undrained Shear (AUS)

• Hoek-Brown

• GSK

• Bolton

• Modified Cam Clay

• Hardening Mohr-Coulomb

In this work, rigid, linear elastic, Mohr-Coulomb, and Tresca model were used more often.
A description and the relevant features of these models will be discussed and presented in the
following subsections.

B.2.1 General Model

Every material can be assigned three type of drainage modes, namely:

• Drained • Drained/undrained • Non-porous

By choosing “Drained/undrained” type and choosing “short term” analysis in stage manager,
it is possible to run undrained analysis.

B.2.2 Rigid

This type of material describes a perfectly rigid material without any limitation on strength.

B.2.3 Linear elastic

Linear elastic materials follow Hooke’s law, which defines an indefinitely strong material with
a linear relationship between the strain and the effective stress. In the program, it is possible to
use two sets of parameters for deformation modulus:

• Set A:

• Young’s modulus, E [MPa]

• Poisson’s ratio []

• Set B:

• Bulk modulus, K [MPa]

• Shear modulus,G [MPa]
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B.2.4 Mohr-Coulomb

Mohr-Coulomb model used in the program follows the conventional MC model, such a de-
scribed in Nordal [2016]. The model follows an elastic deformation model and yield function
defined by friction angle and cohesion. The model supports the non-associated flow rule as
well.

B.2.4.1 Stiffness

Stiffness parameters which can be used in MC model can be categorised into:

• Linear isotropic elasticity

• Linear anisotropic elasticity

• Nonlinear isotropic elasticity

The linear options are the same as described in Subsection B.2.3. The nonlinear option can
act like the hardening model and is a confining pressure-dependent elastic modulus.

B.2.4.2 Yield function

Yield function for the Mohr-Coulomb is defined as:

F = (σ′
1 +a)−N · (σ′

3 +a) (B.1)

where the inclination, N, is equal to:

N = 1+ si nϕ

1− si nϕ
(B.2)

where attraction, a, is equal to a = c
t anϕ .

B.2.4.3 Flow Rule

There is two options available for flow rule:
• Associated • Non-associated

For associated flow, yield function is also the flow potential. The flow potential for non-
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associated option is defined as:

G = (σ′
1 +a)−N f · (σ′

3 +a) (B.3)

where the inclination, N f , is equal to:

N f =
1+ si nψ

1− si nψ
(B.4)

Flow rule is defined by the dilation angle, ψ. Besides, there is possible to set volumetric
and shear dilation caps such that the dilation angle becomes zero after a predefined strain (more
details in Krabbenhøft et al. [2016c]).

B.2.5 Tresca

The Tresca model is one of the simple and known models used in geotechnical engineering.
The model utilized in the Optum G2 follows the basic theoretical principles of, as mention, for
example, in Grande et al. [2016].

B.2.5.1 Stiffness

The model operates with a set of simple undrained elastic parameters, namely Eu or G .

B.2.5.2 Yield function

Yield function for Tresca model is defined as:

F = |σ1 −σ3|−2 ·Su (B.5)
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Matlab Codes

A Matlab code used for running the OptumG2 automatically and changing desired soil param-
eter. The code assigns a numeric value to a parameter, and runs the OptumG2 and fetches the
result of the simulation. The code is as follow:

1 %OptmG2 via Matlab

2 inputfile = ’Vertical.g2x’; %your file

3 runfile = [inputfile(1:length(inputfile)-8) ’RUN.g2x’];

4 runcommand = [’optumg2cmd ’ runfile ’ /log:logfile.m/echo’];

5

6 var(1) = ’aaa’; %your first variable

7 varr(1) = ’bbb’; %your second variable

8

9 %friction angle changing from 15 to 45

10 phi =15:0.5:45;

11 tan_phi=tand(phi);

12

13 % for roughness ratio, r, find the appropriate tau_h/Sigma’_v:

14 r=0.2;

15 tS=(r*tan_phi);

16

17 for i = 1:length(phi)

18 oldstr = var(1);

19 oldstr2 = varr(1);

20 newstr = tS(i);

21 newstr2= phi(i);

22 oldfile = inputfile;

23 newfile = runfile;

24 newfile2 = runfile;

25 replacestr(oldstr,newstr,oldfile,newfile);

26 replacestr(oldstr2,newstr2,newfile,newfile2);

27 dos(runcommand);

28 res = resread(’COLLAPSE MULTIPLIER = ’,’logfile.m’);

29 UB(i) = res;

30 end;
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Replacing function is as follow:

1 %function replacestr(oldstr,newstr,file,newfile)

2

3 function replacestr(oldstr,newstr,oldfile,newfile)

4

5 if isstr(newstr) == 0

6 newstr = num2str(newstr);

7 end;

8 A = fileread(oldfile);

9 I = strfind(A,oldstr);

10

11 for i = 1:length(I)

12 I = strfind(A,oldstr);

13 Ib = I(1);

14 Ie = Ib+length(oldstr);

15 B = [A(1:Ib-1) newstr A(Ie:length(A))];

16 A = B;

17 end;

18

19 fid = fopen(newfile,’w’);

20 fwrite(fid,A);

21 fclose(fid);
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Reading function is as follow:

1

2 %function R = resread(str,file)

3

4 function R = resread(str,file)

5 R = [];

6

7 A = fileread(file);

8 I = strfind(A,str);

9

10 a = ’’;

11 for i = 1:length(I)

12 for j = 1:100

13 a(j) = A(I(i)+length(str)+j-1);

14 if length(str2num(a(j)))==0 & a(j)~=’.’ & a(j)~=’-’

15 if a(j)~=’+’ & a(j)~=’E’ & a(j)~=’e’ %& a(j)~=’ ’

16 R(i,1) = str2num(a(1:j-1));

17 a = ’’;

18 break

19 end;

20 end;

21 end;

22 end;
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Another Matlab code was used for running the OptumG3 graphical interface automatically.
The code assigns a numeric value to a parameter, either in the soil body or in the geometry, and
runs the OptumG3 and fetches the result of the simulation. The code is as follow:

1 %OptmG3 via Matlab %

2

3 %inclined loads

4 tetta=0:1:20;

5 h=sind(tetta);

6 v=cosd(tetta);

7

8 for int=1:length(v)

9

10 % calling OptumG3

11 OptumG3;

12 import OptumG3.NetRemoteClient.Remote.*
13 G3 = G3Client();

14 G3.Reset();

15

16 %add domain

17 s1 = G3.CreateBox(G3.Axis(-3, 1, 0, 0, 0, 1), 7, 3, 5);

18 s2 = G3.CreateBox(G3.Axis(-1.5, 0, 0, 0, 0, 1), 4, 1, 5);

19 s3 = G3.CreateBox(G3.Axis(2.5, 0, 0, 0, 0, 1), 1.5, 1, 5);

20 s4 = G3.CreateBox(G3.Axis(-3, 0, 0, 0, 0, 1), 1.5, 1, 5);

21 s5 = G3.CreateBox(G3.Axis(-3, -3, 0, 0, 0, 1), 7, 3, 5);

22 %partitioning

23 G3.Partition(G3.NewShapeCollection().Added(s1).Added(s2).Added(s3).Added(s4

).Added(s5));

24

25 %create material

26 %Shell material - rigid

27 shellmat = G3.CreateMaterial(MaterialCategory.Shells,’RigidShell’);

28 %set properties

29 ps = G3.NewPropertyCollection()...

30 .Added(’Type’, ’Shell’)...

31 .Added(’ContinuumModel’,ContinuumModel.Rigid)...

32 .Added(’Color’, G3.Color(0, 0, 250));

33 G3.SetMaterialProperties(shellmat, ps)

34

35 %create material

36 %undrained clay

37 solidmat1 = G3.CreateMaterial(MaterialCategory.Solids,’Clay’);

38 %set properties

39 ps = G3.NewPropertyCollection()...

40 .Added(’Type’, ’Tresca’)...

41 .Added(’cu’, G3.MakeValueParameter(100))...

42 .Added(’Color’, G3.Color(250, 100, 0));

43 G3.SetMaterialProperties(solidmat1, ps)

44

45

46 %adding material to the shell element
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47 selection = G3.Selection(G3.BoundBox(0.5,0.5,4,0.1,0.1,2), ShapeKind.Face);

48 features = G3.NewFeatureCollection();

49

50 for i = 0:selection.Count()-1

51 features.Add(G3.MakeShell(selection.At(i), shellmat));

52 end

53

54 G3.CreateFeatures(features);

55 %reset feature container

56

57 % adding material to the soil body

58 selection = G3.Selection(G3.BoundBox(-4,-4,0,8,8,5), ShapeKind.Solid);

59 features = G3.NewFeatureCollection();

60

61 %add material to feature container

62 for i=0:selection.Count-1

63 features.Add(G3.MakeSolid(selection.At(i), solidmat1));

64 end

65

66 G3.CreateFeatures(features);

67 features = G3.NewFeatureCollection();

68

69

70 % creating the inclined load

71 selection = G3.Selection(G3.BoundBox(0.5,0.5,5,-0.1,-0.1,-1), ShapeKind.

Face);

72 load = G3.MakeLoad(selection.At(0), LoadOption.Multiplier, 0, h(int), -v(

int));

73 G3.CreateFeature(load);

74

75 % Stage settings

76 ps = G3.NewPropertyCollection()...

77 .Added(’AnalysisType’, AnalysisType.LimitAnalysis)...

78 .Added(’FEType’, FEType.Mixed)...

79 .Added(’Name’, ’LA01’)...

80 .Added(’TargetElements’,25000)...

81 .Added(’StartElements’,10000)...

82 .Added(’UseAdaptivity’,YesNo.Yes)...

83 .Added(’AdaptivitySteps’,3);

84 G3.SetStageProperties(ps);

85

86 % standard fixities

87 G3.CreateStandardFixities();

88

89 file = ’C:\Users\HR\Documents\optumG3\without-results.g3x’;

90

91 % saving

92 G3.SaveProject(file);

93

94 % Run analysis

95 result = G3.RunAnalysis();
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96

97 file = ’C:\Users\HR\Documents\personal\optmG3\with-results.g3x’;

98

99 %saving

100 G3.SaveProject(file);

101

102

103 % Print result

104 for i=0:result.StageResults.Count-1

105 it = result.StageResults.At(i);

106 disp([’Stage: ’, char(it.Stage.Name),’, Status: ’, char(it.

AnalysisStatus)])

107 for j=0:it.CriticalValue.Count-1

108 it_j = it.CriticalValue.At(j);

109 disp([char(it_j.Name),’: ’,num2str(it_j.Value), ’ ’, char(it_j.

Units)]);

110 end

111 end

112

113 it_j.Value

114 LA(int) =ans;

115

116 end

117

118 LA=LA’;
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