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Abstract

In-situ measurements of a wall’s acoustic properties at low frequencies are a re-
latively unexplored topic. In this thesis, two measurement methods have been
explored and tested. Microphone and loudspeaker positions are used to approach
plane wave propagation at low frequencies. Then the absorption coefficient is es-
timated from the standing wave ratio between two opposing walls or through
the modal reverberation time. A least-squares-fit model has also been established
to counter the spatial resolution of the standing wave patterns measured. Unfor-
tunately, the absorption coefficient obtained through the least-squares-fit model
was very different from the ones calculated through the two measurements men-
tioned. Although the estimated absorption coefficients from the different meas-
urement methods are of similar magnitudes, there is no way of knowing whether
the measurement values are correct. In order to determine the validity of the
measurements, further research is needed.
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Sammendrag

In-situ målinger av en veggs akustiske egenskaper ved lave frekvenser er et re-
lativt uutforsket emne. I denne oppgaven har to målemetoder blitt utforsket og
testet. Posisjonene til mikrofon og høyttaler er brukt til å tilnærme seg planbølge-
forplantning ved lave frekvenser langs én akse i rommet. Absorpsjonskoeffisien-
ten er da både beregnet fra det stående bølgeforholdet, og fra den modale et-
terklangstiden. En minste kvadraters metode har også blitt brukt i forsøk på å
motvirke den lave romlige oppløsningen til de målte stående bølgene. Absorpsjon-
skoeffisienten beregnet via minste kvadraters metoden har uheldigvis hatt veldig
forskjellige verdier fra de andre to nevnte målemetodene. Selv om verdiene fra de
to førstnevnte metodene i seg selv har verdier av liknende størrelsesorden, så har
man ikke kunnet si noe om hvor korrekte verdiene er. For å kunne vurdere dette,
må målemetodene utforskes videre.
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Chapter 1

Introduction

1.1 Motivation

In small music rehearsal rooms, having a smooth frequency response is essen-
tial so that different tones are evenly supported by the room [1]. The density of
natural frequencies is lower in small rooms in the lower frequencies, and it be-
comes vital that the natural room modes are evenly spaced out to have a smooth
frequency response. The shape of normal modes and corresponding natural fre-
quencies are well known for shoebox-shaped rooms with rigid walls. However,
when one or more walls have a complex impedance deviating substantially from
a rigid wall, these parameters change and become harder to predict. A complex
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Figure 1.1: Example of how a purely imaginary impedance can shift the phase of
the reflected wave.

wall impedance may not only introduce absorption at the wall, but it can intro-
duce a phase shift of the reflection, moving the pressure maximum from the wall

1



2 HKRB: In-situ absorption coefficient measurements

to somewhere in front of the wall. Figure 1.1 illustrates how a purely complex
impedance would cause a phase shift and move the pressure maximum into the
room. The wavelength of that particular room resonance has thus become shorter.
The impedance of these walls at lower frequencies would need to be estimated to
predict the room’s behavior better.

1.2 Background

In 1992, R. Walker tried to predict the frequency response in a room but concluded
that the frequency error in the room’s resonances became too significant at a given
frequency due to the unknown wall impedance. In 1944, P. M. Morse and R. H.
Bolt [2] stated that as the impedance varies with frequency, the boundary condi-
tions will be different for each standing wave in the room, and thus not form an
orthogonal set of characteristic functions. Thus the usual methods of predicting
the room response cannot be used. They also stated that the wavenumber and
attenuation parameters have to be solved experimentally for impedance bound-
ary conditions. Today there are efficient ways of determining these parameters
numerically [3], and information about the impedance of the wall can easier be
used to estimate natural frequencies in the room. A company called Microflown
has developed an in-situ technique and a probe to measure the acoustic absorption
[4], reflection, or impedance of a material. These properties can be determined
at both normal and oblique angles, but unfortunately, the method is only usable
between 300 Hz and 10 kHz.

1.3 Problem description

The Microflown method cannot be used at lower frequencies, and the usual meth-
ods of measuring the impedance of a surface are carried out in either an imped-
ance tube, [5][6], or in a reverberation chamber [7], which becomes impractical
at low frequencies and are irrelevant for in-situ situations. Thus, other ways of
determining the acoustic properties of a room’s walls need to be discovered. A.
Celestinos and S. B. Nielsen [8] showed that a plane wave could be created in a
room by clever positioning of source and receiver. The impedance tube method ap-
proaches plane wave propagation by using a tube where the cross-section is small
compared to the length of the tube. Thus, using a similar method to Celestinos
and Nielsen, an attempt to approach a plane wave has been made. The impedance
tube methods might be applicable by approaching a plane wave along one axis
in a room. In an attempt to measure the impedance of the walls in an arbitrary
shoebox-shaped room, clever loudspeaker and microphone positions have been
used to isolate axial modes to approach a plane wave by preventing waves from
traveling in any other direction within the same frequency range. This method
could then make the room behave like a large impedance tube for the lowest
axial modes. Clever source and receiver positions have been used to measure dif-
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ferent modal reverberation times and standing wave patterns in the rooms. The
modal reverberation time has been used to obtain a modal absorption coefficient
for a wall, although it cannot obtain the wall impedance. The measurement of
the standing waves has been used to estimate the complex reflection factor at
the modal center frequencies, which can be converted to either wall impedance
or absorption coefficient. Furthermore, a least-squares-fit model of the measured
standing wave is created to see if the results can be enhanced. As the absorp-
tion coefficient is the only common parameter, this parameter will be compared
between the different methods to discuss how well these experimental measure-
ment techniques work.

1.4 Outline

The theory relevant to this thesis will be laid out in Chapter 2, which includes
how the absorption coefficient can be calculated from the two different measure-
ment methods, how to calculate a least-squares-fit model of the standing wave and
how to estimate the wall’s impedance at low frequencies. In Chapter 3, the meas-
urement setup and the measurement procedure is described. Also, the rooms are
thoroughly described, and some of the post-processing is explained. The results of
the measurements through post-processing and calculations made from the col-
lected data are then examined in Chapter 4. The different frequency responses,
the standing wave patterns measured and modeled, the decay curves and their
parameters, and the estimated absorption coefficients are shown in this chapter.
The results obtained by different methods are then compared and discussed in
Chapter 5 before the conclusive remarks are drawn in Chapter 6.





Chapter 2

Theory

In this chapter, the theory behind both the measurement methods and calcula-
tions performed are presented. Firstly the room acoustic parameters that were
attempted measured and their relationship is presented. These parameters in-
volve the surface impedance, reflection factor, and absorption coefficient. A sim-
plified method of estimating the wall properties based on the wall construction
is presented too. Then, the methods used to estimate the wall parameters off the
measured impulse responses rely heavily on plane wave propagation. How plane
wave propagation within a limited frequency range has been approached, and the
method for doing so is also explained in this chapter and how the plane wave’s
standing wave pattern can determine a wall’s properties. A numerical method for
determining the least-squares-fit coefficients for a one-dimensional plane wave
equation to fit the measured pattern is also presented. The idea is that the least-
squares-fit model might compensate for the spatial resolution of the measured
standing wave pattern and artifacts caused by energy propagating in different
directions than normal to the opposing surfaces. The second method presented is
trying to measure the absorption coefficient of the surfaces through its relationship
with modal reverberation time. The method of obtaining the modal reverberation
time and its use to calculate the absorption coefficient is explained in this chapter.

2.1 Impedance, reflection and absorption

The surface impedance Z is a complex ratio between the sound pressure p and
the particle velocity normal to a surface vn [2].

Z=
�

p
vn

�

sur f ace
(2.1)

The particle velocity is caused by vibrations in the wall or by air moving into pores
in the wall. If the wall impedance has a real part, energy will be absorbed. If the
wall impedance is purely imaginary, it only causes a phase shift in the wave’s
reflection. For more convenient expressions, the normalized specific acoustic im-

5



6 HKRB: In-situ absorption coefficient measurements

pedance on the wall will be used, which is the wall impedance divided by the
characteristic impedance of air [9], ζ= Z/ρ0c.

If an incident plane sound wave hits a wall with a normalized specific acoustic
impedance ζ, the ratio between the amplitude of the incoming sound wave and
the reflected one is given as:

r=
ζcosθ − 1

ζcosθ + 1
(2.2)

where θ is the incident angle of the sound wave. The amount of energy lost upon
reflection is given by the absorption coefficient:

α= 1− |r|2 (2.3)

2.2 Impedance of a finite plate

As there is little to no information available about impedance measurement at
low frequencies, it becomes harder to evaluate the results of the measurements.
Thus, estimation of the surfaces’ impedance and absorption coefficient could help
evaluate the measured values.
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Figure 2.1: Transmission loss versus frequency for a thin panel. Figure inspired
by Figure 9.15 in [10].

At lower frequencies, below the critical frequency, a thin panel acts as one
moving mass [10]. The critical frequency is given as:

fc =
c2
0

2πh

√

√12(1−σ2)ρm

E
(2.4)

where
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c0 is the speed of sound in air, in meters per second;

h is the thickness of the material, in meters;

σ is the Poisson’s ratio of the material;

ρm is the mass density of the material, in kilograms per cubic meter;

E is the material’s Young’s modulus, in Pascal.

The mass density, Poisson’s ratio, and Young’s modulus for glass and gypsum can
be found in Table 2.1.

At an even lower frequency, the natural frequency of the first fundamental
structural mode is found. Around and below this frequency, the impedance is
dominated by the plate’s stiffness, and boundary connections [11]. This funda-
mental frequency is given by equation Equation 2.5, which are valid for a plate
surrounded by an infinite baffle [12].

f11 =
c2
0

4 fc

�

�

1
lx

�2

+

�

1
l y

�2�

(2.5)

where lx and l y is the plate dimensions, excluding its thickness.
As only sound waves with normal incidence on the surfaces will be considered,

the wall impedance below the critical frequency is given as by Equation 2.6, where
the real part works as damping in a mass-spring system.

Zw = jωm

�

1−
�

f11

f

�2�

+ηωm (2.6)

where

ω= 2π f is the angular frequency, in radians;

m= ρmh is the surface mass density, in kilograms per square meter;

η= ηtot is the loss factor.

The loss factor describes the energy losses in vibrations and is dependent on
quite a few parameters. The contribution to the total loss factor ηtot , comes from
internal losses ηint , boundary losses ηborder , and radiation losses ηrad , as de-
scribed in [11]. The internal losses, which are nearly frequency independent, are
caused by sound energy converted to heat energy. The internal losses for glass
and gypsum are listed in Table 2.1. The radiation losses are caused by sound ra-
diated from the plate, and the boundary losses are sound energy transferred to
connected structures. The total loss factor is then given as:

ηtot = ηint +ηborder +ηrad = ηint +
Uc0α

π2S
( f · fc)

−1/2 +
2ρ0c0

ωm
σres (2.7)

where



8 HKRB: In-situ absorption coefficient measurements

U is the perimeter of the plate, in meters;

S is the surface area of the plate, in square meters;

αs is the average structural absorption coefficient along the boundary;

σrad is the resonant radiation efficiency.

Table 2.1: Properties of glass and gypsum. Data taken from Table 3.1 in [13].
Poisson’s ratio of glass taken from [14].

Density E-modulus Loss factor
Material kg/m3 109Pa Poisson’s ratio ηint · 10−3

Glass 2500 60 ∼0.2 0.6-2.0
Gypsum plate 800-900 4.1 ∼0.3 10-15

2.3 Natural frequencies in cuboids with rigid surfaces.

Although the low-frequency behavior of non-rigid walls is of interest, the easier
and well-known solutions for a room with rigid surfaces are helpful. These can be
used to find the approximate location of the natural frequencies and reveal which
modes are adjacent in the frequency domain.

Helmholtz equation as seen in Equation 2.8, is a time-independent form of
the wave equation which relates sound pressure in space. A time-harmonic factor
e jωt has been assumed.

∇2p+ k2p= 0 (2.8)

where ∇2 is the laplace operator, k = ω
c is the wavenumber and p is the sound

pressure. The general solution to the Helmholtz equation in a cuboid cavity with
rigid boundaries is a summation of characteristic equations:

p(x , y, z) =
∑

nx

∑

ny

∑

nz

pnx ny nz
(x , y, z) (2.9)

Each characteristic equation is then given as:

pnx ny nz
(x , y, z) = Anx ny nz

ψnx ny nz
= Anx ny nz

cos(kx x)cos(ky y)cos(kzz) (2.10)

where Almn is the comlex amplitude of the mode function, x , y and z are cartesian
coordinates and the constants kx , ky and kz are given by Equation 2.11. The time
harmonic factor e jωt has been left out of Equation 2.10 for simplicity.

kx =
nxπ

Lx
nx = 0, 1,2,3, ...

ky =
nyπ

L y
ny = 0, 1,2, 3, ... (2.11)

kz =
nzπ

Lz
nz = 0,1, 2,3, ...
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where nz , ny and nz is number of nodal planes perpendicular to each axis, and
Lx , L y and Lz is the length of each dimension of the cuboid.

The expected modal frequencies in a rigid cuboid, which is the center fre-
quency of the respective mode function, is then given by the following equation:

fn =
c0

2

√

√

√

�

nx

Lx

�2

+

�

ny

L y

�2

+
�

nz

Lz

�2

(2.12)

It is also possible to calculate the transfer function of the room between two
points, e.g. a source and receiver. This is quite useful in combination with Equa-
tion 2.12 such that the measured frequency response in a room can be compared
to calculations, which in turn can help identifying the different resonance frequen-
cies in a room. The transfer function is taken from [15] and looks as follows:

pω(x , y, z) =
jU(ω)c2

0ωρ0

V

∑

n

1
εn

ψn(x , y, z)ψn(x0, y0, z0)
ω2 −ω2

n − 2 jδnωn
(2.13)

where

n is unique combinations of nx , ny and nz;

ψn is the mode shape function, found through Equation 2.10;

(x , y, z) is the coordinates of the source;

(x0, y0, z0) is the coordinates of the receiver;

U(ω) is the volume velocity of the sound source;

δn =
2.2π
Tn

is the modal damping based on the modal reverberation time;

ωn is the angular natural frequency of mode n;

εn is a mode normalization factor, which is equal to 1/2 for axial
modes, 1/4 for tangential modes and 1/8 for oblique modes.

2.4 Standing wave pattern

At the frequencies given by Equation 2.12, a standing wave pattern is formed in-
side the room. Figure 2.2 displays how the absolute sound pressure for the first
five axial modes between two rigid surfaces. An axial mode will only have a non-
zero values for one of nx , ny , and nz . The nodes are then the points of maximum
destructive interference, which in the case of two opposing rigid walls, the sound
pressure would be zero. These occur when the respective cosine term in Equa-
tion 2.10 goes to zero. If a point source is positioned in one of these nodes, the
source can not excite the respective modes. The same goes for a point receiver. If
it is placed exactly in a node, it will not receive any signal for the given frequency.
In a three-dimensional case, these nodal points become nodal planes normal to
the respective axis.
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Standing wave pattern of the first 5 axial modes.
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Figure 2.2: Standing wave pattern of the first five axial modes between two rigid
surfaces.

2.5 Plane wave approach

The sound propagation needs to be as close to plane wave propagation as pos-
sible to justify the methods used to estimate the wall’s properties. As described in
[8], a plane wave can be simulated by only exiting the axial modes in one direc-
tion, within a limited frequency range. Although it is optimistic making the other
modes cease to exist, it is possible to reduce several modes’ amplitude severely.
This reduction can be achieved by positioning the source and receiver along an
intersection between two perpendicular nodal planes, suppressing any mode with
a pressure node on this intersection.

An example of such source and receiver positions can be seen in Figure 2.3. A
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Source position Receiver position

Ly/2 Ly/4

Lz/2
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di

re
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Figure 2.3: Position of source and receiver at intersection between nodal lines
for a (nx ,1,1) mode (left), and a (nx ,2,2) mode (right).

loudspeaker is placed in (L y/2, Lz/2), preventing any mode containing ny or nz
equal an odd number from being excited. It is also possible to see in Figure 2.2
that the first, third, and fifth modes all have nodes at the halfway point between
two walls. A receiver positioned in (L y/4, Lz/4) would prevent any mode with ny
or nz equal to two. In a rigid cuboid room with a point source and point receiver,
a configuration like in Figure 2.3 would then isolate the first few axial modes in
the x-direction.

It is still important to realize that the wavelength and locations of pressure
nodes may change if the wall has a complex impedance. The node located in the
room’s center for odd modes may also move if opposing walls have unequal imped-
ance. Thus, in a room with unknown impedance at the walls, these nodal points
must be discovered experimentally, although they are expected to be somewhere
near the theoretical location in an equivalent rigid room.

2.6 Standing wave ratio

The method of obtaining the reflection factor, absorption coefficient, and surface
impedance from the standing wave ratio is adapted from the standing wave ra-
tio method for impedance tube measurements [5]. This method relies on only a
plane incident wave and a plane reflected wave. Thus, in this case, it will only be
used where the measured standing wave ratio takes the appropriate shape, which
would be close to Figure 2.2. The standing wave ratio, which is the ratio between
the maximum and the minimum pressure of a standing wave, is given as:

s =
|pmax |
|pmin|

(2.14)
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where

|pmax | is the first pressure maximum, moving away from the surface;

|pmin| is the first pressure minimum, moving away from the surface.

The modulus of the reflection factor is then given as:

|Rp|=
s− 1
s+ 1

(2.15)

The phase angle of the reflection factor is then given as:

φ = π(
4xmin,1

λ1
− 1) (2.16)

where xmin,1 is the coordinate of the first pressure minimum when moving away
from the surface of interest.

The wavelength of that particular frequency is then either found by the rela-
tion λ0 = c0/ f or by the distance between two neighboring pressure minima:

λ0 = 2(xmin,2 − xmin,1) (2.17)

After converting the reflection factor from a polar to a complex value, it can
then be used with both Equation 2.3 to find the absorption coefficient and with
Equation 2.2 to find the normalized specific impedance of the wall at normal
incidence.

2.7 Modelling the standing wave

Although it might be enough to input the measurement data directly into the
Equation 2.14-2.17, the measured data is prone to the spacing between each mi-
crophone position and sound energy propagating in non-axial directions. The mi-
crophone positions used will not necessarily be positioned in a pressure minimums
exact location, and the standing wave ratio calculated from the measured values
might be inaccurate. A least-squares-fit plane wave will be modeled based on the
measurement data to attempt to be less susceptible to such errors.

The general solution to the wave equation in one dimension is given as:

p(x , t) = (Ae− jkx +Be jkx)e jωt (2.18)

where A and B are the complex amplitudes of two plane waves traveling in oppos-
ite directions along the x-axis. This expression can be used to model the measured
standing wave pattern, that is, if the measured data reassembles a standing wave
pattern in the first place. Due to the measurement equipment used, the initial time
delay of the measured signal’s direct sound is lost, and the only valuable meas-
ured data is |pmeasured |. The expression needs to be altered as the amplitude B can
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not be recovered. The square pressure can then be modeled using the following
expression:

|p(x)model |2 = |A|2(1+ |Rp|2 + 2Rpcos[2kx +φ]) (2.19)

where

Rp = B/A is the reflection factor;

φ = ar g(Rp) is the phase angle of the reflection factor;

k is the wavenumber.

The best-fitting values to Equation 2.19 for a given frequency is then found us-
ing a fminsearch algorithm in Matlab, which is based on the Nelder-Mead simplex
algorithm [16], which in this case solves for the lowest possible value of ε2:

ε2 =
∑

�

|pmodel |2 − |pmeasurement |2
�

(2.20)

The algorithm needs an initial guess of each value as its starting point. These
initial guesses will be based off Equations 2.15, 2.16 and 2.19, and give the fol-
lowing three equations:

|A|2ini t ial guess =
|p(x)max ,measurement |2

(1+ |Rp|ini t ial guess)2
(2.21)

|Rp|ini t ial guess =
s− 1
s+ 1

(2.22)

φini t ial guess = 2kxmin,1 −π (2.23)

The fminsearch algorithm then finds the values of |A|2, |Rp| and φ that returns
the lowest values for ε2. In other words, a least-mean-squares solution to Equa-
tion 2.19, which models the measured standing wave pattern. The process then
needs to be repeated for all frequencies of interest.

2.8 Absorption coefficient from modal reverberation time

In order to measure the modal reverberation times in a room, the mode of in-
terest needs to be isolated as much as possible so that no other mode influences
the reverberation time obtained. It can be isolated by combining the source and
receiver’s clever positioning and fitting bandpass filters.

The source and receiver positioning will be by the same principles as in sec-
tion 2.5, as it is the axial modes that are of interest. However, in this case, the goal
is to isolate a single mode, and the source and receiver must account for all three
dimensions when placed to reduce the influence of even more modes. Although
usually, rooms do not have rigid walls, Equation 2.12 can help determine which
room modes which will be in the vicinity to each other in the frequency domain.
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Example of how a room mode can be isolated
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Figure 2.4: Example of how a room mode can be isolated through source and
receiver positioning as well as bandpass filtering.

Table 2.2: Expected modal frequencies in the rooms studied.

Room A Room B Room C
nx ny nz fn nx ny nz fn nx ny nz fn
1 0 0 27.2 Hz 1 0 0 49.0 Hz 0 0 1 50.4 Hz
0 1 0 27.9 Hz 0 0 1 50.4 Hz 1 0 0 58.5 Hz
1 1 0 39.0 Hz 1 0 1 70.3 Hz 0 1 0 74.6 Hz
0 0 1 50.4 Hz 0 1 0 78.3 Hz 1 0 1 77.3 Hz
2 0 0 54.4 Hz 1 1 0 92.4 Hz 0 1 1 90.0 Hz
0 2 0 55.8 Hz 0 1 1 93.1 Hz 1 1 0 94.8 Hz
1 0 1 57.3 Hz 2 0 0 98.0 Hz 0 0 2 100.9 Hz
0 1 1 57.6 Hz 0 0 2 100.9 Hz 1 1 1 107.4 Hz
2 1 0 61.2 Hz 1 1 1 105.3 Hz 1 0 2 116.6 Hz
1 2 0 62.1 Hz 2 0 1 110.2 Hz 2 0 0 117.1 Hz
1 1 1 63.7 Hz 1 0 2 112.2 Hz 0 1 2 125.4 Hz
2 0 1 74.2 Hz 2 1 0 125.4 Hz 2 0 1 127.5 Hz
0 2 1 75.2 Hz 0 1 2 127.7 Hz 1 1 2 138.4 Hz
2 2 0 77.9 Hz 2 1 1 135.2 Hz 2 1 0 138.8 Hz
2 1 1 79.3 Hz 1 1 2 136.8 Hz 2 1 1 147.7 Hz
1 2 1 80.0 Hz 2 0 2 140.6 Hz 0 2 0 149.1 Hz
3 0 0 81.7 Hz 3 0 0 147.0 Hz 0 0 3 151.3 Hz
0 3 0 83.7 Hz 0 0 3 151.3 Hz 2 0 2 154.5 Hz
3 1 0 86.3 Hz 3 0 1 155.4 Hz 0 2 1 157.4 Hz
1 3 0 88.0 Hz 0 2 0 156.6 Hz 1 2 0 160.2 Hz
2 2 1 92.8 Hz 1 0 3 159.1 Hz 1 0 3 162.2 Hz
3 0 1 96.0 Hz 2 1 2 161.0 Hz 1 2 1 168.0 Hz
0 3 1 97.7 Hz 1 2 0 164.1 Hz 0 1 3 168.7 Hz
3 2 0 98.9 Hz 0 2 1 164.6 Hz 2 1 2 171.6 Hz
2 3 0 99.8 Hz 3 1 0 166.6 Hz 3 0 0 175.6 Hz

When trying to isolate a mode, i.e., mode (nx , ny , nz) = (2,0,0), the nearby
modes in the frequency domain need to be canceled to the best extent. The modal
shape function for a given source or receiver position in a rigid room is given by
Equation 2.10. The source or receiver needs to be positioned in one of the room’s
pressure nodes, such that one of the cosines becomes 0, which suppresses the
mode. For instance, to cancel a (1,0,0) mode, either the source or receiver needs to
be positioned along x = lx/2. In other words, a source placed in the exact center
of the room will cancel all modes containing any odd mode number. However,
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in a more realistic room where the walls have a complex impedance, the nodes
may have shifted slightly. Thus a few measurements are needed to find the actual
nodal lines in the room. Then using the information gathered from Table 2.2,
Equation 2.10 and the position of the modal lines found experimentally, several
nearby modes might be canceled. The used source and receiver positioning will
be presented in the next chapter.

After the influence of the nearby modes is reduced, a bandpass filter can be ap-
plied to reduce the influence from room modes further away in terms of frequency.
The bandwidth of the filter should not be too narrow, as the reverberation time of
the filter itself can influence the results, according to [17]. The article also states
that using a reverse filtering technique can reduce the filter’s distortion imposed
on the signal. Reverse filtering can be achieved as easily as flipping the impulse
response backward before convolving it with the filter, then flipping it back after-
ward. A bandpass filter’s bandwidth is then acceptable if it fulfills the equality:

B · T60 > 4 (2.24)

where B is the filter’s bandwidth in hertz and T60 is the reverberation time. The
effect the transducer positioning and the bandpass filter can have on the signal is
illustrated in Figure 2.4. The impulse response should then ideally only oscillate
with one frequency as seen in Figure 2.5.
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10-3 Impulse response after source/receiver positioning and bandpass filtering

Figure 2.5: Example of how the impulse response may look after one mode is
isolated.

After the bandpass filter has been applied, a mode of interest would ideally
be the only thing left in the impulse response. The next step to obtain the modal
reverberation time is to calculate the energy decay curve. The method used to
obtain a decay curve is taken from [18] and is based on backward integration of
a truncated squared impulse response.

As shown in Figure 2.6, the impulse response vanishes into background noise
at some point, and this background noise is unwanted during the backward integ-
ration. It is suggested to start the backward integration from the point where the
impulse response is 10 dB above the noise floor [18]. In Figure 2.6, that would be
where the dashed blue line is 10 dB above the dashed pink line. The energy decay
curve is then obtained by backward integration according to Equation 2.25.
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Filtered impulse response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

sample number 10
5

-120

-100

-80

-60

-40

-20

0
A

m
p
lit

u
d
e
 [
d
B

]

Figure 2.6: A filtered impulse response where the slope of the squared impulse
response is illustrated by the dashed blue line, and the mean background noise
level is illustrated by the pink line.

E(t) =

∫ t

t1

p2(τ)d(−τ) (2.25)

where t1 is the point in time where the squared impulse response is 10 dB above
the noise floor.
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Figure 2.7: Decay curve of a backwards integrated impulse response with and
without truncation. The dashed lines marks the levels -5, -25 and -35 dB.

The energy decay curve obtained from the impulse response in Figure 2.6 can
be seen in Figure 2.7 on a logarithmic y-axis. The orange line shows what happens
if the backward integration starts at the end of the impulse response instead of at
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t1. The noise becomes part of the integration and conceals parts of the decay. On
the other hand, as can be seen in Figure 2.7, the decay curve from the truncated
impulse response rolls off before it has decayed by 60 dB. Thus linear regression
must be applied to compensate for the truncation effect. A straight least-squares
fit line is calculated from all points between where the decay curve has dropped 5
dB and 25 or 35 dB. These are the evaluation ranges for the reverberation times
T20 and T30, and are illustrated in Figure 2.8. The reverberation time is then the
time it takes the least-squares fit line to decrease by 60 dB.
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Figure 2.8: Decay curve with evaluation range for T20 and T30

As a single normal mode in the room should have an exponential decay rate,
it is expected that the decay curve with a logarithmic y-axis is straight. Decay
curves are not necessarily as linear as in Figure 2.7, and the linearity of the decay
curve needs to be established. The degree of non-linearity, ξ, describes the decay
curve’s deviation from the least-squares fit line in per mille [19]. A deviation of
more than 10‰ indicates that the decay curve is far from straight within the
evaluation range. The degree of non-linearity is given as:

ξ= 1000(1− r2) (2.26)

where r is the correlation coefficient, which is given as:

r2 =

n
∑

i=1

(L̂i − L̄)2

n
∑

i=1

(Li − L̄)2
(2.27)

where

Li is the level of the decay curve, in decibels;

L̄ is the mean level of all samples within the evaluation range, in decibels;
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L̂i is the level of the linear regression, in decibels;

i is the sample number within the evaluation range;

After obtaining the modal reverberation time, the absorption coefficient of
the surfaces involved can be determined. The relationship between the modal
reverberation time Tn and absorption coefficients of each surface [20] is given
by Equation 2.28. The expression is based on the fact that a standing wave of an
oblique mode in a cuboid room can be split into eight plane waves.

Tn =
55.3 · V · fn

−c2
·
�

nx

lx
Sx ln((1−αx1)(1−αx2))

+
ny

l y
Sy ln((1−αy1)(1−αy2)) (2.28)

+
nz

lz
Sz ln((1−αz1)(1−αz2))

�−1

where

Tn is the modal reverberation time, in seconds;

V = lx l y lz is the room volume, in cubic meters;

Sx = l y lz is the surface area of walls parallel to the x-axis, in square meters;

Sy = lx lz is the surface area of walls parallel to the y-axis, in square meters;

Sz = lx l y is the surface area of walls parallel to the z-axis, in square meters;

lx , l y & lz is the length of each dimension of the room, in meters;

αx1 & αx2 is the absorption coefficients of the walls parallell to the x-axis;

αy1 & αy2 is the absorption coefficients of the walls parallell to the y-axis;

αz1 & αz2 is the absorption coefficients of the walls parallell to the z-axis;
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Method

A series of impulse response measurements were carried out to obtain informa-
tion about a room’s absorption coefficient or specific acoustic impedance. The first
approach is based on suppressing several room modes by positioning the micro-
phone and loudspeaker on the respective nodes. Such positioning, together with
some post-processing, as explained in section 2.8, can be used to isolate a single
room mode. From such measurement, the modal reverberation time can be cal-
culated and used to determine the absorption coefficients of the walls. A second
approach is to record impulse responses in many points along two horizontal dir-
ections in the room while placing the microphone and loudspeaker by section 2.5.
The amplitude of the corresponding frequency responses can then be analyzed at
the room’s resonance frequencies. The standing wave pattern revealed can then
be used to determine the properties of a wall.

This chapter explains the measurement and post-processing methods used,
including information about the three rooms where the measurements were taken
and the measurement equipment. Furthermore, the signal processing performed
on-site to help find the better source and receiver position for the measurements
are explained.

3.1 Room description

The three rooms examined are all located on the same floor in the same building,
and the rooms’ boundaries are of similar construction. Common for all the rooms
is that the concrete floor is covered in a wall-to-wall carpet.

Room A is a large conference room and is symmetrical along one axis. The
two walls at y = 0 and y = L y are identical floor-to-ceiling glass walls. The
laminated glass panes are 6.36 mm thick, 1.48 m wide, and either 0.6 or 1.97 m
high. These glass panes are mounted in metal frames stretching from the floor to
the suspended ceiling. There is also a wooden door with a hardened glass window
mounted on each of these two walls. The wall at x = Lx is made of concrete, with
unknown thickness, stretching from the concrete floor to the concrete ceiling. The
wall at x = 0 is a double-leafed light wall, which stops at the suspended ceiling.

19
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(a) Room A (b) Room B (c) Room C

Figure 3.1: The three meeting rooms measured.

Each leaf comprises two 12.5 mm thick gypsum plates, with a 70 mm gap filled
with mineral wool. The two wall leaves are connected with metal studs, places 60
cm apart. The suspended ceiling, in this case, is about 10 cm thick and is made
up of a combination of mineral wool and gypsum board. The cavity between the
suspended ceiling and the concrete ceiling above is isolated from neighboring
rooms and hallways, with gypsum double-wall construction.

Room B is a smaller meeting room, as can be seen in Table 3.1. It has three
walls made of gypsum system walls, and the remaining long wall, positioned along
y = 0 is made up of big sheets of glass and a wooden door, like in-room A. The
system walls are also double leafed with double gypsum plates on each side of
the mineral wool-filled gap. The gap is 67.5 cm deep, and the metal studs are
separated by 90 cm. The suspended ceiling in this room is only 40 mm thick, with
a 1.25 cm thick gypsum plated glued on top. The cavity above is shared with the
remainder of the fifth floor.

Room C is also a smaller meeting room, where all the boundaries have identical
construction to room B. The wall at y = 0 is made of laminated glass sheets and
a wooden door, and the opposing wall is made of only sheets of laminated glass.
The two remaining walls are gypsum system walls of the same type as in room B.

Before measurement was conducted in any room, some preparatory work was
done to assess the theoretical natural frequencies and optimal loudspeaker and
source locations. Finally, the rooms were emptied of furniture before the meas-
urements began. Inside room A, one table and chair remained with the operator
in the room during these measurements. For rooms B and C, the operator left the
room while recording the impulse responses.
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Table 3.1: Room specifications.

Room Lx L y Lz V Ceiling
A 6.3 m 6.15 m 3.4 m 131.7 m3 2.7 m
B 3.5 m 2.2 m 3.4 m 26.2 m3 2.7 m
C 2.9 m 2.3 m 3.4 m 22.7 m3 2.7 m
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Figure 3.2: Predicted natural frequencies and frequency response compared to
the measured corner to corner frequency response. The impact the loudspeaker
has on the measured response have been reduced through division in the fre-
quency domain.

3.2 Preparatory work

Some calculations were made to understand what room mode caused what reson-
ance in the global frequency responses measured initially. The dimensions listed
in Table 3.1 were used with Equation 2.12 and 2.13, to both predict the natural
frequencies and the global frequency response of a rigid room with similar dimen-
sions. Thus, the calculations were made with the source and receiver in a corner
each. An example of such prediction compared to a corner to corner measurement
can be seen in Figure 3.2.

The measurements done to measure the modal reverberation time in the room
required a unique combination of microphone and loudspeaker position for each
measurement taken. The calculated modal frequencies and the respective mode
number, seen in Table 2.2 were used to examine modes adjacent to the one to be
measured. That way, the microphone, and loudspeaker could be positioned such
that these nearby modes were reduced substantially in amplitude. However, these
positions in the table are based on the location of nodal planes in rigid rooms, and
the actual locations had to be discovered experimentally in the actual room.
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3.3 Measurements

3.3.1 Measurement setup

All measurements have been done using the Odeon measurement system, using
an exponential sine sweep between 22 Hz and 16000 Hz. The input and output
level differed between each series of measurements but was kept constant inside
each series. Odeon does not keep the time delay before the direct sound from
the source reaches the receiver and instead keeps the impulse response from a
predetermined time before the direct sound arrives. This so-called silence before
time was set to 0.1 seconds. The silence after time, which contains the tail of the
impulse response and the background noise, was set to 3 seconds.

Computer

Audio Interface Microphone power
supply

Figure 3.3: Block diagram of how the measurement equipment is connected.

The sound source used was a spherically radiating loudspeaker prototype from
Odeon, connected directly to the laptop running the measurement software by
Bluetooth. The loudspeaker can be seen in Figure 3.8, and its frequency response
for low frequencies can be seen in Figure 3.9. A measurement microphone was
then connected to the computer through an amplifier and an audio interface. The
complete equipment list can be seen in Table A.1 and is illustrated in Figure 3.3.

3.3.2 Standing wave measurement

Initially, an impulse response with the source and the microphone each their
corner was taken to obtain the room’s global frequency response. The global fre-
quency response was in turn used with calculation to identify the different room
modes within the frequency response, as shown in Figure 3.2. To be able to isol-
ate the lowest few axial modes in the x-direction, the loudspeaker were placed
in (Lx ,L y/2,Lz/2) to cancel modes with nx = 1 or nz = 1, which have been il-
lustrated in Figure 2.3. As the nodal lines usually are not precisely where they
would be in a room with rigid walls, the loudspeaker was moved slightly around
this point, recording a series of impulse responses to find the position suppress-
ing unwanted modes better. The microphone was then placed in (0,L y/4,Lz/4) to
cancel the normal modes with nx = 2 or nz = 2. The microphone was also offset
to the location where it best suppressed the unwanted normal modes.

After the best source and receiver position for the y- and z-dimensions had
been determined, the microphone path had to be marked. A measurement tape
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Figure 3.4: Illustration of loudspeaker and microphone positions in room A when
measuring the standing wave patterns between the wall in x=0 and x=Lx . The
microphone’s acoustic center was moved along the black line.

was placed along the floor in the x-direction at the same y-coordinate as the mi-
crophone. While the microphone stand’s height was kept constant, impulse re-
sponse measurements were taken along the x-dimension. By moving the stand
along with the measurement tape, it was possible to keep an even spacing, which
has also been illustrated in Figure 3.4. Inside room A, which was bigger than
the other rooms, an interval of 10 cm between each measurement was used. In
the two other rooms, an interval of 5 cm was used. These measurements along
the x-dimensions were then used to display the standing wave pattern to identify
the nodal lines along the y-dimension to find the ideal source and receiver posi-
tion along this dimension. The same measurement procedure was then performed
along the y-dimension.

3.3.3 Modal reverberation time measurement

The standing wave patterns obtained from the two previous measurements were
used to identify the location of nodal planes in both the x- and y-direction. The
nodal planes in the z-direction were assumed equal to a rigid room, as the floor
and ceiling were made of concrete. A few more measurements were taken to dial
in on the source and receiver position giving better mode cancellation at those
locations. Strings were then used to mark where the nodal planes intersected the
floor. This were done along the experimentally found nodes equivalent to Lx/2,
Lx/4 and Lx/6 and L y/2, L y/4 and L y/6. These lines are illustrated in Figures
3.5, 3.6 and 3.7. The different intersections of the nodal planes mark optimal
source and receiver positions that reduce the influence of respective modes in
two orthogonal directions. Then, the loudspeaker and microphone stands were
elevated to match a desired nodal plane perpendicular on the z-axis, like shown
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Figure 3.5: Pressure nodes discovered experimentally in room A.

in Figure 3.8. Thus, the acoustic center of the loudspeaker would usually be placed
in either Lz/2 or Lz/4.

The source and receiver position could then be used to isolate specific room
modes within a frequency response when combined with a bandpass filter. The
source and receiver position can reduce the influence of modes that are close
in frequency to the one wished to capture. The best location for the source and
receiver has been decided by using Table 2.2 together with the actual nodal planes
of the room. Different combinations of source and receiver positions have been
used to record the impulse response of the lowest 2-3 axial modes in the x- and
y-direction. For room B, only the first mode along the y-axis was recorded. The
microphone and loudspeaker positions used to record these impulse responses are
listed in Table A.2.
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Figure 3.6: Pressure nodes discovered experimentally in room B.
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Figure 3.7: Pressure nodes discovered experimentally in room C.
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Figure 3.8: Source placed on an intersection between three nodal planes, as the
acoustic center of the speaker is placed at a fourth of the room’s height.

3.4 Post-processing

In order to import, process, do calculations and draw plots based on the impulse
responses, Matlab has been the only tool used. There have been recorded between
110 and 130 impulse responses in the three rooms containing information about
the standing wave pattern in two orthogonal directions in each room. There have
also been recorded between 4 and 6 impulse responses to estimate the modal
reverberation time. Before any results can be obtained, these impulse responses
need to be read.

3.4.1 Treatment of impulse responses

As mentioned earlier, Odeon’s measurement system does not keep any informa-
tion about the time delay between the moment the loudspeaker emits the signal
and when the microphone receives it. Also, all impulse responses are saved as
wave files which means the signal is normalized to 1. However, Odeon saves an
attenuation factor within the header of the file. As a wave file is written in a four-
character code, the twelfth set of four bytes contains the attenuation factor. After
an impulse response has been divided by this factor, the original amplitude of the
signal is recovered.

After the original amplitude of the impulse response has been recovered, it
can be transformed to the frequency domain. Firstly, the impulse response is trun-
cated at 0.8 times the reverberation time in the room. Odeon has calculated the
reverberation time from all the impulse responses recorded in each room. Ideally,
a truncation would happen 10 dB above the noise floor in the impulse response,
but manually inspecting several hundred impulse responses is not feasible. Thus
this simplified way of deciding where to truncate the impulse response has been
used. A discrete Fourier transform is then done using Matlab’s fast Fourier trans-
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form (FFT) algorithm. The FFT size has been set to 218 to obtain a high-resolution
frequency response in the lower frequencies.
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Figure 3.9: Frequency response of the loudspeaker and an arbitrary room, show-
ing the effect the loudspeaker response have on the room’s frequency response.

Finally, the loudspeaker’s effect on the frequency response has been reduced.
Odeon provided an averaged impulse response of the loudspeaker, recorded in an
anechoic chamber to make this possible. The loudspeaker’s impulse response has
been truncated after 7000 samples, and Fourier transformed the same way as the
room’s impulse response. The room’s frequency response is then divided with the
loudspeakers frequency response, and thus the influence from the loudspeaker on
the measurements has been reduced.

3.4.2 Isolating single room modes

During the measurements, the source and receiver positions were used to reduce
room modes nearby the room mode, which was to be measured. The procedure
described above has been used to obtain the frequency responses of these meas-
urements. Although the nearby modes have been reduced, modes further away
are still present. Bandpass filters were used to counter this. The bandpass filters’
center frequency was set to a frequency close to the peak of the mode wanted
isolated. The relation in Equation 2.24 was attempted fulfilled when picking filter
bandwidth to avoid introducing reverberation times from the filters. The back-
ward filtering technique described in section 2.8 was also used. In Figure 3.10,
an example frequency response before a bandpass filter is applied can be seen, as
well as the frequency response of the bandpass filter that is to be applied.
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Figure 3.10: Example of how the frequency response of a measurement of a
single mode looks, and the frequency response of the filter designed to completely
isolate it.



Chapter 4

Results

In this chapter, both the intermediate and final results are presented, including
the global frequency response in the three rooms, where all the room resonances
should be enabled. The global frequency responses are presented with the pre-
dicted global frequency response and predicted location of the normal frequen-
cies in the room. The frequency responses obtained from both the standing wave
measurement and the modal reverberation time are also shown. Here the fre-
quency response of the bandpass filters used with the modal reverberation time
measurements also is displayed.

Then, the standing wave pattern and a least-squares-fit model of the measured
pattern are created and plotted for the first two or three axial room modes in
two horizontal directions in each room. The standing wave patterns have been
used to calculate the respective surfaces’ complex reflection factor and absorption
coefficient. The absorption coefficient has also been calculated from the modal
reverberation time, and the decay curve of the axial room modes is presented
together with the respective reverberation time and absorption coefficient. Finally,
the predicted absorption coefficient for a single wall with the same dimension and
materials as the wall segments in the real rooms is also shown.

The theory and methods used to obtain these results are also described, with
references to the theory and method chapter. The results will be compared and
evaluated in the next chapter.

4.1 Global frequency responses

The global frequency responses were obtained through the corner to corner meas-
urements in the three different rooms. The frequency response of the room after
dividing by the frequency response of the loudspeaker is shown in Figures 4.1-4.3.
The predicted frequency response for an equivalent-sized cuboid room with rigid
walls has been calculated from Equation 2.13, by inserting the room’s dimensions
and reverberation time. In this case, the room’s reverberation time at the 125 Hz
octave band, found in section A.3, has been used. The natural frequencies estim-
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Figure 4.1: Global frequency response measured and predicted frequency re-
sponse in room A, measured from corner to corner.
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Figure 4.2: Global frequency response measured and predicted frequency re-
sponse in room B, measured from corner to corner.

ated for the rigid room have also been calculated through Equation 2.12 and are
displayed as vertical black dashed lines, with the mode numbers attached.

4.2 Standing wave ratio methods

4.2.1 Transfer functions

The frequency response of each microphone position taken along one of the room’s
dimensions is shown in Figures 4.4-4.6. The loudspeaker’s influence has been re-
moved from all the measurements, and the original amplitude has been restored
as explained in subsection 3.4.1. Each plot includes frequency responses from all
points measured along the same room axis. The x-axis corresponds to the room’s
length, and the y-axis corresponds to the room’s width. The microphone and loud-
speaker positions are thoroughly described in subsection 3.3.2. When comparing
Figures 4.1-4.3 to Figures 4.4-4.6, it can be seen that most room resonances in
the low frequencies have been suppressed, and mostly the axial room modes are
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Figure 4.3: Global frequency response measured and predicted frequency re-
sponse in room C, measured from corner to corner.

left.

Figure 4.4: Frequency response along X- and Y-axis of room A. The black dashed
lines marks theoretical natural frequencies with rigid surfaces and the black solid
line marks their actual locations in the real room.
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Figure 4.5: Frequency response along X- and Y-axis of room B.

Figure 4.6: Frequency response along X- an Y-axis of room C.
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4.2.2 Standing wave ratio

The standing wave pattern is obtained by inspecting the measured frequency re-
sponses, in Figures 4.4-4.6, at one of the room’s resonance frequencies. The cen-
ter frequencies of these resonances are easily found by inspecting the frequency
responses shown in Figures 4.4-4.6, as indicated by solid vertical lines. The stand-
ing wave pattern is shown in Figures 4.7-4.14, together with the least-squares-fit
model. The least-squares-fit model is calculated through the method described in
section 2.7 by evaluating the values of the points marked with red circles in Fig-
ures 4.7-4.14. It can be seen in Figure 4.9 that the sound pressure close to the
walls deviates from an interference pattern caused by two plane waves traveling
in the opposite direction of each other. Thus the points closest to the boundaries
are left out when calculating the least-squares-fit model.
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Figure 4.7: Measured and modelled standing wave, mode (1,0,0) and (0,1,0) in
room A.
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Figure 4.8: Measured and modelled standing wave, mode (2,0,0) and (0,2,0) in
room A.
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Figure 4.9: Measured and modelled standing wave, mode (3,0,0) and (0,3,0) in
room A.
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Figure 4.10: Measured and modelled standing wave, mode (1,0,0) and (0,1,0)
in room B.
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Figure 4.11: Measured and modelled standing wave, mode (2,0,0) and (0,2,0)
in room B.
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Figure 4.12: Measured and modelled standing wave, mode (3,0,0) in room B.
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Figure 4.13: Measured and modelled standing wave, mode (1,0,0) and (0,1,0)
in room C.
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Figure 4.14: Measured and modelled standing wave, mode (2,0,0) and (0,2,0)
in room C.
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4.3 Modal reverberation time method

4.3.1 Transfer functions

The frequency responses of the measurements, described in subsection 3.3.3, is
shown in the Figures 4.15-4.17. The loudspeaker’s response has been divided from
all the recorded frequency responses. In addition, the natural frequency for the
equivalent rigid room, the actual resonance frequency, and the frequency response
of the bandpass filter isolating the room mode is shown too. The natural frequen-
cies of an equal-sized rigid room are calculated through Equation 2.12, and the
actual ones have been found through inspecting the frequency responses recor-
ded. The filter’s frequency response was obtained by running a unit pulse through
the filter and taking a DFT of the output. As described in section 2.8, the band-
width of the bandpass filter has been attempted to be as narrow as needed while
not distorting the impulse responses of the room modes. The bandpass filter’s cen-
ter frequencies have also been offset to the mode’s center frequency in some cases
to avoid interference from other modes.
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Figure 4.15: Frequency responses of modes in room A. The black dashed lines
marks theoretical natural frequencies with rigid surfaces and the black solid lines
marks their actual locations in the real room.
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Frequency responses with source and receiver position cancelling in room B
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Figure 4.16: Frequency responses of modes in room B.

Frequency responses with source and receiver position cancelling in room C
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Figure 4.17: Frequency responses of modes in room C.
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4.3.2 Decay curves and absorption coefficient of axial room modes

A straight decay curve is needed to obtain a modal reverberation time. A decay
curve of a single room mode is obtained by backward integration of the band-
pass filtered impulse responses. The frequency response of the signal before fil-
tering can be seen in Figures 4.15-4.17 together with the frequency response of
the bandpass filter used on the impulse response. As the source and receiver po-
sitions reduce the influence of other normal modes in the immediate vicinity and
the bandpass filter reduces the influence of more distant normal modes, this im-
pulse response will ideally contain information from a single normal mode. How
the room mode is isolated is also illustrated in Figure 2.4. The decay curve of the
different normal modes in the three rooms is shown in Figures 4.18-4.20.

Decay curves and parmeters for room A
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Figure 4.18: Decay curve, modal reverberation time, mean absorption coefficient
and linearity ratio of normal modes in room A.

As the decay curve alone is prone to the truncation effect, a straight least-
squares-fit line is calculated. All values between the two red circles marked on
the decay curves are used to calculate the coefficients for the regression line. This
region is also known as the T20 evaluation range between -5 and -25 dB compared
to the initial value of the decay curve.

The time it takes this least-squares-fit line, the black dashed line, to go from 0
to -60 dB is then the modal reverberation time. The degree of non-linearity is then
calculated through Equation 2.26, and would ideally be less than 10‰. At last,
the mean absorption coefficient of the two parallel walls, which the respective
normal mode interacts with, is obtained through Equation 2.28.
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Decay curves and parmeters for room B

0 0.5 1 1.5 2

Samples 10
4

-60

-40

-20

0

[d
B

]

100 mode, 52.8 Hz, T
20

 = 0.359, 
m

 = 0.345, and  = 4.26

0 0.5 1 1.5 2

Samples 10
4

-60

-40

-20

0

[d
B

]

010 mode, 82.4 Hz, T
20

 = 0.349, 
m

 = 0.233, and  = 7.24

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Samples

-60

-40

-20

0

[d
B

]

200 mode, 102.0 Hz, T
20

 = 0.092, 
m

 = 0.797, and  = 6.62

0 0.5 1 1.5 2 2.5

Samples 10
4

-60

-40

-20

0

[d
B

]

300 mode, 150.0 Hz, T
20

 = 0.494, 
m

 = 0.253, and  = 13.4

Figure 4.19: Decay curve, modal reverberation time, mean absorption coefficient
and linearity ratio of normal modes in room B.

Figure 4.20: Decay curve, modal reverberation time, mean absorption coefficient
and linearity ratio of normal modes in room C.
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4.4 Comparison of absorption coefficients

The standing wave ratio is used to determine the wall impedance, reflection factor,
and absorption coefficient. The first pressure minimum and first pressure max-
imum when moving away from the wall at x=0 or y=0 is used to calculate the
standing wave ratio s, through Equation 2.14. The first maximum is close to the
opposite wall in the special case of the (1,0,0) and (0,1,0) modes. Thus, the pres-
sure maximum close to the opposite wall is used. Then to estimate the speed of
sound in the rooms, Equation 2.17 is used with the location of the first two pres-
sure minima in Figure 4.9, moving away from the wall in x or y equal to 0. The
speed of sound using the measured data is c = 339 m/s, and the speed of sound
through the least-squares-fit model is c = 341 m/s. The modulus and phase angle
of the reflection coefficient can then be calculated through Equation 2.15 and
2.16 respectively. The modulus of the reflection factor can be directly used with
Equation 2.3 to obtain the absorption coefficient. After converting the reflection
factor from polar to complex numbers, the specific impedance of the wall can be
obtained through Equation 2.1. The standing wave ratio, reflection factor, absorp-
tion coefficient, and characteristic wall impedance of different axial modes in the
three rooms can be seen in Table A.3 based on the measurements, and in Table A.4
based off the least-squares-fit model.

At last, some quality criteria have to be set in both cases. The criteria for the
standing wave method are that the measured standing wave has to look like an
interference pattern between two plane waves. The absorption coefficients in Fig-
ure 4.21, marked by circles, are from the standing wave method, and the points
that meet the criteria are enlarged. For the least-squares-fit model, marked with
plus symbols, no data points have been enlarged due to the general deviation from
all other estimation methods.

The absorption coefficients calculated through modal reverberation time must
meet two quality criteria. The first is the degree of non-linearity, ξ, which must
be less than 10‰. The second is that the product of the filter bandwidth and
reverberation time must be more than four. The values for these parameters can
be seen in Table 4.1, as well as if they meet all criteria, denoted by OK, or denoted
by the criteria they break if that is the case.

Table 4.1: Quality criterias for modal reverberation time.

Room A B C
Mode 100 200 300 010 020 030 100 200 300 100 200 300 010 020
ξ [‰] 5.82 3.03 3.24 15.1 0.51 1.46 4.26 6.62 13.4 3.77 0.997 1.88 5.35 10.1
B [Hz] 14.03 12.23 9.25 13.8 13.2 9.71 24.76 23.16 34.27 28.51 13.63 10.1 18.15 17.82
T [s] 1.3 1.21 0.894 0.467 1.49 0.856 0.359 0.092 0.494 0.363 0.522 0.431 0.286 0.383
B · T 18.24 14.80 8.27 6.44 19.67 8.31 8.89 2.13 16.93 10.35 7.11 4.35 5.19 6.83
Verdict OK OK OK ξ OK OK OK B · T ξ OK OK OK OK ξ
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Absorption Coefficient
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Figure 4.21: Absorption coefficients estimated through the different methods.
Data points that meets the quality criteria are enlarged.

4.5 Predicted absorption coefficients

Predictions of the wall properties have been made to have ground to evaluate the
measured absorption coefficient. The predictions carry huge uncertainties due to
simplifications, and variable values assumed. The first simplification to the prob-
lem is treating the gypsum walls as single-leaf walls instead of double-leaf with a
mineral wool-filled cavity. Then only the wall segment between two studs will be
considered. This segment corresponds to a 25 mm thick, 60 cm wide, and 270 cm
tall wall segment for room A. For rooms B and C, the width is 90 cm instead due
to the longer stud distance of the system wall.

As details about the wall constructions are known, the different wall segments’
critical frequency and fundamental structural resonance frequency can be estim-
ated. By using data from Table 2.1, which can be used to calculate the critical
frequency through (2.4). As the gypsum wall segment is 25 mm thick but made of
two 12.5 mm gypsum plates that are not glued together, the critical frequency is
calculated for a 12.5 mm thick plate. The laminated glass sheets are 8.36 mm thick
for room A and 6.36 mm thick for rooms B and C. Then, the frequency of the fun-
damental structural mode can be calculated for each plate. The dimension of the
wall segment and its critical frequency is used to find the fundamental frequency
through Equation 2.5. These sizes of each segment can be seen in are described in
section 3.1. The wall segments close to the wall boundary, which could be shorter,
have been neglected.

Finally, the wall impedance and absorption coefficients can be estimated. How-
ever, some variables have been set to reasonable values, as either not enough
information is available to calculate the real values or the process is too com-
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plicated. This simplification is again one of the reasons that these estimates will
carry significant uncertainties. The first of these values is the structural absorption
coefficients, αs, which will be set to 0.1 for all wall segments. The second is the
resonant radiation efficiency, σres which has been set to 1.

The total loss factor is then calculated through Equation 2.7, where the initial
loss factor ηint for each material was found through Table 2.1, the perimeter and
surface area of the plates have been calculated from the plate dimensions, and the
critical frequency was calculated earlier in this section. The total loss factor, mass,
and fundamental structural frequency of the wall segment can then be inserted
into Equation 2.6 to estimate the wall impedance. The normalized specific im-
pedance, ζ= Z/ρ0c0 can in turn be used with Equation 2.2 and 2.3 to obtain the
absorption coefficient. The absorption coefficients for the different wall segments
can be seen in Figure 4.22-4.26.
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Figure 4.22: Estimation of absorption coefficient for 25 mm thick, 60 cm wide
and 270 cm tall gypsum wall segment in room A.
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Figure 4.23: Estimation of absorption coefficient for 25 mm thick, 90 cm wide
and 270 cm tall gypsum wall segment in rooms B and C.
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 from 8.36mm thick glass panes, room A
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Figure 4.24: Estimation of absorption coefficient for 8.36 mm thick glass wall
segment in room A.

 from 6.36mm thick glass panes, room B
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Figure 4.25: Estimation of absorption coefficient for 6.36 mm thick glass wall
segment in room B.

 from 6.36mm thick glass panes, room C

20 40 60 80 100 120 140 160 180 200

Frequency [Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.97m x 0.91m glass

0.60m x 0.91m glass

0.83m x 0.58m glass

Axial modes location

Figure 4.26: Estimation of absorption coefficient for 6.36 mm thick glass wall
segment in room C.
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Discussion

5.1 Measurements

5.1.1 Equipment and software

Most of the equipment used has been relatively standard, except for the loud-
speaker. The loudspeaker, a prototype of an omnidirectional loudspeaker in de-
velopment at Odeon, has had a significantly smooth frequency response within the
frequency range used. As can be seen in Figure 3.9, it is smooth down to about
50 Hz before it starts rolling off. Its small size has made it relatively easy to ac-
curately place the loudspeaker, which has been helpful when pressure nodes have
been located experimentally. The downside is that the loudspeaker is wireless
and connected via Bluetooth technology to the measurement system. Although
this causes no problems measuring most room acoustic parameters, recording the
time delay between the source and receiver is impossible.

Odeon measurement systems have been used to record and save impulse re-
sponses. This software is great for statistical analysis of multiple impulse responses
and calculating room acoustic parameters like reverberation time, early decay
time, speech transmission index, and so on. Although it only supports saving im-
pulse responses as wave files, which normalizes the amplitude of the signal, it
counteracts this by saving the attenuation factor into the header of the sound file
so that the amplitude can be restored. On the other hand, the software does not
keep information about the time delay between the source and receiver. It removes
the beginning of the impulse response and only keeps the impulse response from
a predetermined time before the direct sound. Thus the phase information of the
signal is lost, and only the magnitude of the transfer function is available. These
complications with the time delay caused by the loudspeaker and software have
excluded specific post-processing methods, which will be discussed later. Another
challenge the measurement software provides is navigating the impulse response
on-site. It is not easy to zoom in and out and navigate around the impulse re-
sponse recorded. Thus, it becomes much more difficult quality checking the im-
pulse responses, e.g., making sure the direct sound is well defined after recording
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a measurement.

5.1.2 Measurement method

Besides the challenges imposed by the measurement system, the type of rooms
used has certainly not been ideal. In-situ low-frequency measurements of absorp-
tion coefficient and wall impedance is a fairly unexplored area, and although
many real rooms have suspended ceilings, it imposes uncertainties. It becomes
even more challenging when the space above the suspended ceilings is shared
with other rooms. The suspended ceiling is most likely effectively transparent at
very low frequencies but might not be for higher frequencies. As can be seen in
Figures 4.1-4.3, the (0,0,1) mode is heavily damped and cannot be located, and
the (0,0,2) mode is not possible to identify either. Thus, even if the virtual height
of the room would change at a frequency, the vertical modes are heavily damped
and have not been expected to impact the results much. However, the significance
of complications caused by the common volume above the suspended ceiling in
rooms B and C are unknown.

Executing the measurements went without any significant complications. As
mentioned, the loudspeaker had a small footprint compared to other omnidirec-
tional loudspeakers, which made it easier to place it close to the actual pressure
nodes. The most time-efficient way of doing the measurement was to start re-
cording impulse responses along a line normal to two opposing walls of the same
material, as explained in subsection 3.3.2. This way, the first node line would be
in the dead center, and the loudspeaker placement went quite quickly. The micro-
phone placement still took a few attempts to optimize for each room, as this nodal
line often had been shifted ever so slightly compared to the calculations based on
rigid walls. Then the standing wave patterns at the first three axial modes ob-
tained by this measurement could be used to reveal the nodal lines perpendicular
to the ones already used. As the last two walls did not have the same construc-
tion, this reduced the time used to locate these pressure nodes drastically. After
standing wave patterns were obtained in both the x- and y-directions, these could
be used to identify the nodal lines shown in ??. Thus, initially revealing the stand-
ing wave pattern of the first axial modes helped the modal reverberation time
measurements to go quickly.

5.2 Standing wave ratio method

The method of measuring the absorption coefficient of a wall, through the stand-
ing wave pattern of plane waves in the room, has been to some extent adapted
from the impedance tube method [5]. The key differences are that a room is used
instead with mode canceling through the transducer positions, a stationary mi-
crophone instead of a moving one, and using a logarithmic sweep signal instead
of a sinusoidal signal with a constant frequency. Together these differences make
it much more bothersome to locate the exact positions of the pressure minima.
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Other modes within the same frequency range must be reduced sufficiently in
amplitude, and the sound field recorded must behave as a plane wave for the
axial modes examined to get results that can be assumed reliable. Furthermore,
the resolution of the measurements must be high enough to capture the extrema
of the standing wave pattern. Also, this measurement method was not intended
for low frequencies, and in the case of fundamental modes like (0,1,0), the first
pressure maximum when moving away from the wall that is attempted measured
is close to the opposing wall. As seen in several cases, the pressure amplitude is
often raised close to the walls, affecting the value for the absorption coefficient.
The impact the increased amplitude close to the walls may have on the results is
discussed later on.

By comparing the frequency responses in Figure 4.4-4.6 with the global fre-
quency response of the room in Figure 4.1 it is possible to see to what degree
the unwanted modes have been reduced. The three first axial modes in room A
are the only three prominent peaks below 100 Hz, and most other modes are
sufficiently reduced. In rooms B and C, which are smaller rooms, there are other
prominent peaks from the frequency responses measured along the y-axis of the
rooms. Another thing to notice is the small peak to the left of the (0,1,0) mode in
Figure 4.5. This peak might indicate that the suspended ceiling acts as the room
boundary already at this frequency, and it is the (0,0,1) mode observed. If the
suspended ceiling is reflective at this frequency, the loudspeaker is positioned too
high to suppress the (0,0,1) mode. However, the axial modes in the z-direction
are substantially damped and do not cause trouble by themselves. On the other
hand, tangential modes might be an issue. It may be tangential modes that ap-
pear as peaks in between the first three axial modes in Figure 4.5 and 4.6, which
may cause unwanted energy at the frequency of the axial modes that are being
examined.

Another thing to notice is that the third axial mode has become harder to
capture as the room size has decreased. The (3,0,0) mode was visible in room
B, where the room’s length is 3.5 meters, while this mode in room C was not
recognizable. The (0,3,0) mode has not been captured in both the smaller rooms,
as it could not be found by inspecting the wave pattern between the walls.

Furthermore, it becomes apparent that the axial modes in Figure 4.4-4.5 are
not harmonics of each other as one would expect from Equation 2.12. The dashed
lines represent the theoretical natural frequencies if the walls had rigid bound-
aries, and it seems like the measured resonances in the room are consistently
higher. This frequency shift is likely caused by a complex impedance on the wall
where the reactance of the wall imposes a phase shift, virtually moving the room
boundary into the room, which increases the natural frequency of the respect-
ive room mode. This frequency error is more significant for the lowest frequency
and is expected to become negligible for higher frequencies where the wall would
act more like rigid boundaries. The fact that the frequency spacing between the
lowest axial modes varies further emphasizes how the theory for rigid boundary
cuboids is invalid in an actual room at low frequencies.
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As mentioned, only the absolute value of the uncalibrated sound pressure has
been used due to the absence of phase information for the complex signal. The
absolute sound pressure at the resonance frequencies recorded across the two
horizontal directions marked with solid lines in Figure 4.4-4.6 has been identified
as the first axial modes in the respective direction. Most of these patterns have
taken on the shape of an interference pattern between an incident plane wave
and a reflected one, as seen in Figure 4.7-4.14.

Furthermore, it seems that the reflected wave has been victim to a phase shift
in some cases, e.g., mode (0,2,0) in room B as seen in Figure 4.11. The phase
shift indicates that the impedance at that surface has a reactive part. In Table A.3,
the (0,2,0) mode in room B has a more significant imaginary part in the reflection
factor compared to the other modes in room B, which also would be a result of the
phase shift. Moreover, for most modes with two or more nodes, it can be seen that
the different minima within the same standing wave pattern have different values.
These variations indicate a resistive part in the impedance as well, as described in
[9, p. 74]. On the other hand, as already mentioned, there might be energy leakage
from nearby modes which have not been sufficiently dampened, contributing to
the spatial variations in amplitude. However, any wave pattern with an apparent
symmetry between the two walls and no sudden jumps in amplitude has been
deemed to sufficiently reassemble a standing wave pattern.

The least-squares-fit model has been implemented to compensate for both the
resolution caused by the microphone spacing and deviations from a standing wave
pattern. With few exceptions like Figure 4.10 and 4.11, the model have matched
the measured values well. However, in several cases, the minima of the model
end up much closer to zero than the measured values. This deviance causes the
standing wave ratio to grow substantially and will cause major differences in the
calculated wall characteristics, although the standing wave pattern matches the
measured one well. The relationships between the modeled standing wave, which
fit the measured data well, and the wall properties need to be studied further, as
discussed further in section 5.5.

5.3 Modal reverberation time method

Measuring the reverberation time of individual modes has been based on some-
what the same principle as the standing wave method described. A room mode
has been attempted isolated by suppressing other room modes in its spectral vi-
cinity. The advantage of using the modal reverberation time is that it is less prone
to other modes not being dampened enough, as long as it is possible to measure a
sufficient amount of exponential decay of the particular mode. The disadvantage
of using this method is that only the mean absorption coefficient of the two oppos-
ing walls is obtainable. That means if two walls facing each other have unknown
impedances different from each other, it will not be possible to determine how
much each wall contributes to the absorption of the room mode.

The first step in having this method work was to dampen modes nearby the
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mode wanted to be measured. As can be seen in room A in Figure 4.15, the tar-
geted modes are several decibels above anything else in their immediate spectral
vicinity. Compared to the method described in [21], degenerate modes are not a
problem when using transducer placement to reduce the closest modes, as the de-
generate mode can be suppressed. In contrast to the two other rooms, the (1,0,0)
and (0,1,0) modes in room B are the only ones that stand out in Figure 4.16. The
(2,0,0) mode can seem to have extensive bandwidth and weak amplitude, but the
(3,0,0) mode cannot be distinguished from the other modes. Both rooms B and
C have a much shorter reverberation time at low frequencies than room A, which
may have caused more dampened modes. Room B and C are also much smaller
in volume than room A, causing the first axial modes to lay much higher in fre-
quency. The same standing wave pattern becomes forced to exist over a shorter
room dimension, causing the pressure nodes to become narrower. The narrower
pressure node makes potential errors caused by transducer positioning to become
more probable. Thus, more careful microphone and loudspeaker positioning may
better the results.

A few criteria have to be met to evaluate the quality of the different decay
curves as good enough. The first one is that the room mode must be distinguish-
able from the rest of the frequency response, which is true for all but the (3,0,0)
mode in room B. The second criterion is that the decay must be exponential, which
will be assumed true if the degree of non-linearity, ξ, is less than 10‰, as ex-
plained in section 2.8. This leaves out mode (0,1,0) in room A, mode (3,0,0) in
room B, and mode (0,2,0) in room C. The last criterion is that the product of the
filter bandwidth and the modal reverberation time must be greater than four and
is true for all but the (2,0,0) mode in room B. However, a too narrow filter band-
width may only extend the reverberation time, and it can still be assumed that the
reverberation time is short for this particular mode. The room modes which have
not been mentioned out meet all three criteria.

5.4 Absorption coefficients

In Figure 4.21, the absorption coefficient values of good quality have been en-
larged, leaving measured values of poor quality easy to filter out visually. None of
the values calculated through the least-squares fit model was enlarged due to the
significant deviation between these values and the absorption coefficient estim-
ated through the standing wave measurement or through the modal reverberation
time measurements. Then, only considering the enlarged markers, the absorption
coefficient calculated from the different methods can seem to follow a trend.

When comparing the estimated absorption coefficients of the gypsum walls,
shown in Figure 4.21, with the values estimated through the wall impedance
model for a 25 mm thick gypsum wall, in Figure 4.24 and 4.23, it is apparent
that the first-mentioned values are way higher. Although the simplified wall im-
pedance model carries considerable uncertainty, the difference between it and the
estimations based on measurements gives reason to believe that the values estim-
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ated through the standing wave ratios and modal reverberation times might be
falsely high.

When comparing the absorption coefficient estimated from the standing wave
method and modal reverberation time method for the glass panels to the estim-
ations in Figure 4.24-4.26, it seems that the values from the wall impedance
method are significantly lower again. The increased absorption at the different
plates’ structural fundamental frequency for the wall impedance model is also
worth noting. These might be contributing to locally increased absorption when
the frequency of the room mode coincides with the plates’ fundamental frequen-
cies. For example, it seems that for room C that the (1,0,0) mode is victim to two
plates’ fundamental frequency. Nevertheless, the estimated absorption coefficient
from the mode, as seen in Equation 2.3 is similar to other modes close in fre-
quency, making it hard to say whether or not the fundamental plate frequencies
impact.

Unfortunately, attempts at finding literature on measurements of low-frequency
wall properties have gone unsuccessful. As mentioned in the introduction, the Mi-
croflown sensor only works above 300 Hz, measurements in an impedance tube
[5][6] would require a very long tube, and the reverberation room method would
require an impractically large facility. Furthermore, a lab measurement would not
account for the structural modes in the plate as the test sample would be smal-
ler than an in-situ situation, and how the boundaries of the plate interact with
connected structures would not be accounted for either. Thus it becomes hard to
conclude whether the measurement techniques work or not, as there is no refer-
ence for comparing them. Moreover, as the estimations based on the two different
measurement techniques are of similar magnitudes but are still so different from
the estimation from the wall impedance predictions, it is difficult to say anything
about how realistic the estimated absorption coefficients are.

5.5 Further work

As mentioned, in-situ measurements of acoustic wall properties at low frequencies
are unexplored, and the validity of this report’s results is unknown. On the other
hand, it should provide good motivation for further exploration of this topic. Thus,
a suggestion for further research of in-situ measurement of low-frequency wall
properties will be suggested.

First of all, the measurement methods need validation. A suggestion to de-
termine how well the measurement methods work is to build a smaller scale model
room. By decreasing the room dimensions, the first room modes will be moved
higher up in the frequency range and can thus be compared to data obtained by
known methods, like the impedance tube method, two-microphone method, or
a pu-sensor like the one mentioned from Microflown. A challenge that must be
overcome using a much smaller room is that the pressure nodes at the first room
modes will be narrower due to the smaller room dimensions. Thus accurate trans-
ducer placement becomes even more difficult. Nevertheless, if the method works
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in such a small room, it is believable that it will work in a regular room.
A second suggestion is to use a measurement system that includes the time

delay between the sound source and sound receiver and the non-normalized sig-
nal amplitude in the recorded impulse response. This way, the complex values of
the discrete Fourier transform of the signal will be correct and correlated. Thus,
instead of trying to make a least-squares-fit model for the Equation 2.19, a pseudo-
inverse can be used to obtain the complex amplitudes, A and B of the two planes
waves in Equation 2.18. Furthermore, the correct complex transfer function will
allow attempts at obtaining the acoustic wall properties through the transfer func-
tion method for impedance tubes [6].

A more comprehensive way of determining the wall properties is to use exper-
imental modal analysis like in, e.g., [22]. The modal parameters like resonance
frequencies, damping ratios, and mode shapes are estimated from the measured
frequency response recorded at many evenly spaced locations throughout the cav-
ity. There is also possible to implement a finite element model, like in [23], using
the measured boundary conditions and see if the standing wave pattern predicted
by the finite element model looks anything like the measured one.





Chapter 6

Conclusion

The absorption coefficients of the walls in three different meeting rooms have been
attempted estimated through two different measurement methods. Both methods
focus on the center frequencies of the different axial modes within the rooms
by approaching plane wave propagation through transducer positioning at the
respective frequencies. Some values for the absorption coefficients have been ob-
tained, but it is not easy to know whether the values are reliable or not.

The first method used the uncalibrated sound pressure measured in many
points between two parallel walls to examine the standing wave pattern at the
axial modes. Although this type of measurement is more tedious due to the num-
ber of measurements needed, it can also return much more information. Not only
does it return the complex reflection factor for normal incidence of the wall, which
can be converted to both the wall impedance and absorption coefficient. It also
works when the opposing walls are of different constructions. One significant chal-
lenge with this method is the low spatial resolution of the measured standing
waves’ minima. A least-squares-fit model was used to counter this, but although
the model fitted the measured standing wave pattern, the absorption coefficient
estimated from the measured pattern was most similar to those estimated through
the modal reverberation time method or the standing wave method.

The second method uses the modal reverberation time. The modal reverbera-
tion time was obtained by placing the transducers in different pressure nodes and
applying bandpass filters to isolate the modes. In most cases, it is assumed that
the modal reverberation time has been successfully measured, as the mode stands
out in the frequency response and the decay rate is exponential. Thus, the modal
reverberation time is converted into the mean absorption coefficient of the walls
interacting with the plane wave. That means that the method only is helpful if
the opposing walls are of the same construction or if one of them can be assumed
rigid.

The absorption coefficients estimated through the measurement methods seem
to have similar trends as a function of frequency, even though they seem to carry
some uncertainty. The absorption coefficient estimated through the measurements
is also higher than expected compared to a simplified estimation of the wall im-
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pedance. This difference reinforces the need for further investigation of the meas-
urement methods. It has been suggested to repeat the experiment with a scale
model, such that the first room modes have a higher frequency. Other possibilities
are experimental mode analysis or estimations based on a finite element model.
This way, known and tested methods can determine the absorption coefficient,
and the validity of these measurement methods can be established.
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Appendix A

Supplementary Material

A.1 Equipment list

Table A.1: Equipment list for all measurements

Description Manufacturer Model Serial
Omnidirectional loudspeaker Odeon Prototype Unknown
Microphone power supply Norsonic 336 Unknown
Audio Interface Behringer UCA202 Unknown
Microphone Norsonic 1220 19998
Pre-amplifier Norsonic 1201 14324
Microphone cable 20m Norsonic P1408A 140-B
Stand Unknown Unknown Unknown
Stand Manfrotto MS0490A Unknown
RCA-BCN cable 1m Unknown Unknown Unknown
Computer running Odeon Dell Unknown MCO-3861
Odeon combined, v.16 Odeon Unknown Unknown
Laser measuring tool Bosch DLE30 #1
Measurement tape Unknown Unknown Unknown
String Unknown Unknown Unknown
Glass Measurement Gauge Merlin Lazer Unknown Unknown
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58 HKRB: In-situ absorption coefficient measurements

A.2 Modal reverberation time measurement positions

Table A.2: Coordinate of source and receiver during modal reverberation time
measurement.

Source Receiver
Room Mode X Y Z X Y Z

A

100 1.5 m 3.07 m 1.7 m 5.2 m 1.55 m 0.85
200 3.2 m 3.07 m 1.7 m 5.2 m 1.55 m 0.85 m
300 1.5 m 3.07 m 1.7 m 0.75 m 1.55 m 0.85 m
010 3.2 m 5.05 m 1.7 m 1.5 m 5.05 m 0.85 m
020 3.2 m 3.07 m 1.7 m 1.5 m 5.05 m 0.85 m
030 3.2 m 5.05 m 1.7 m 1.5 m 0.78 m 0.85 m

B

100 0.95 m 1.1 m 1.7 m 2.9 m 0.55 m 0.85 m
200 1.75 m 1.1 m 1.7 m 2.9 m 0.55 m 0.85 m
300 0.95 m 1.1 m 1.7 m 0.95 m 0.55 m 0.85 m
010 1.75 m 0.55 m 1.7 m 2.9 m 0.55 m 0.85 m

C

100 0.75 m 1.15 m 1.7 m 2.55 m 0.6 m 0.85 m
200 1.5 m 1.15 m 1.7 m 2.55 m 0.6 m 0.85 m
300 0.75 m 1.15 m 1.7 m 1.5 m 0.6 m 0.85 m
010 1.5 m 0.6 m 1.7 m 0.75 m 1.15 m 0.85 m
020 1.5 m 1.15 m 1.7 m 0.75 m 1.15 m 0.85 m

A.3 Reverberation times from Odeon
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Figure A.1: Reverberation time T20 and standard deviation in room A.
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Figure A.2: Degree of non-linear decay, ξ, for T20 in room A.
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Figure A.3: Curvature of the decay rate in room A.

10
2

10
3

10
4

Frequency

0

0.5

1

1.5

S
e
c
o
n
d
s

T20 in room B

Figure A.4: Reverberation time T20 and standard deviation in room B.
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Figure A.5: Degree of non-linear decay, ξ, for T20 in room B.
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Figure A.6: Curvature of the decay rate in room B.
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Figure A.7: Reverberation time T20 and standard deviation in room C.
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Figure A.8: Degree of non-linear decay, ξ, for T20 in room C.
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Figure A.9: Curvature of the decay rate in room C.
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A.4 Standing wave ratio results

Table A.3: Reflection coefficient, characteristic impedance and absorption coeffi-
cient calculated through standing wave method.

Room Mode Frequency Standing wave ratio Reflection factor Characteristic impedance Absorption coefficient

A

100 28.1 Hz 15.62 0.864+i0.166 4.913+i7.207 0.226
200 54.8 Hz 14.45 0.867-i0.084 9.754-i6.747 0.242
300 82.1 Hz 4.26 0.607+i0.126 3.615+i1.474 0.616
010 29.6 Hz 8.83 0.663+i0.441 1.19+i2.864 0.366
020 57.0 Hz 17.58 0.867+i0.210 3.312+6.814 0.204
030 85.1 Hz 4.47 0.601+i0.203 2.978+i2.027 0.598

B

100 52.8 Hz 7.30 0.729+i0.211 3.597+i3.580 0.424
200 102.0 Hz 10.73 0.802+i0.213 3.689+i5.033 0.312
300 150.0 Hz 10.48 0.815+i0.158 5.223+i5.191 0.318
010 82.4 Hz 10.34 0.804+i0.177 4.627+i5.088 0.322
020 160.0 Hz 10.92 0.762+i0.335 1.815+i3.961 0.307

C

100 61.7 Hz 9.02 0.768+i0.223 3.410+i4.302 0.359
200 118.0 Hz 19.02 0.844+i0.313 1.548+i5.111 0.190
010 78.7 Hz 10.20 0.803+i0.172 4.752+i5.036 0.325
020 154.0 Hz 3.48 0.554-i0.002 3.481-i0.021 0.693

Table A.4: Reflection coefficient, characteristic impedance and absorption coeffi-
cient calculated through standing wave method.

Room Mode Frequency Standing wave ratio Reflection factor Characteristic impedance Absorption coefficient

A

100 28.1 Hz 391.23 0.965+i0.242 0.170+i8.100 0.010
200 54.8 Hz 9.43 0.808-i0.008 9.404-i0.460 0.347
300 82.1 Hz 3.18 0.519+i0.050 3.116+i0.431 0.728
010 29.6 Hz 14.01 0.741+i0.450 0.921+i3.334 0.249
020 57.0 Hz 14.32 0.856+i0.154 5.474+i6.913 0.244
030 85.1 Hz 5.09 0.629+i0.236 2.834+i2.441 0.549

B

100 52.8 Hz 295.75 0.873+i0.474 0.056+i3.932 0.013
200 102.0 Hz 217.32 0.970+i0.201 0.440+i9.713 0.018
300 150.0 Hz 6.60 0.717+i0.169 4.213+i3.116 0.457
010 82.4 Hz 283.79 0.987+i0.108 1.194+i18.340 0.014
020 160.0 Hz 4.88 0.622+i0.219 2.964+i2.297 0.565

C

100 61.7 Hz 16.13 0.840+i0.274 2.181+i5.437 0.220
200 118.0 Hz 281.22 0.937+i0.329 0.126+i5.854 0.014
010 78.7 Hz 160.12 0.921+i0.356 0.186+i5.357 0.0247
020 154.0 Hz 2.70 0.439-i0.137 2.362-i0.823 0.789



Appendix B

Matlab code

Code listing B.1: WavToPf.m

1 function Pf= WavToPf(file,Nfft,RT,delay)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % OUTPUTS:
4 % Pf: Uncalibrated sound pressure in the frequency domain
5 % INPUTS:
6 % file: path to impulseresponse of a room in .wav format
7 % Nfft: Size of the DFT
8 % maxf: maximum frequency concidered
9 % RT: Reverberation time

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 [y,fs] = audioread(file); % Importing impulse response signal as a vector, ...

and its sampling frequency
12 scale = odeonAttuFactor(file);
13 y = y./scale;
14 if nargin>5
15 y = cat(1,zeros(delay,1),y);
16 end
17 fvec(:,1) = fs*(0:(Nfft/2-1))/Nfft; % Makingg frequency vector
18 Y = fft(y(1:RT*fs*0.8),Nfft,1); % DFT of the impulse response, truncation ...

is based on the reverberation time
19 y_LSP = audioread('0-180_averageTimeDomain.wav'); % importing impulse ...

response of the loudspeaker measurement
20 Y_LSP = fft(y_LSP(1:7000),Nfft,1); % DFT of a reference measurement of the ...

loudspeaker, truncated to remove noise
21 Pf = Y./Y_LSP;
22 Pf = Pf(1:Nfft/2);
23 end

Code listing B.2: odeonAttuFactor.m

1 function AttuFactor = odeonAttuFactor(filename)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This function returns the attenuation factor, that odeon has multiplied
4 % the impulse response by to make its maximum value equal to 1. By dividing
5 % by the obtained attenuation factor, the original amplitude of the
6 % impulseresponse is restored.
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7 fid = fopen(filename, 'r','l'); %Opens file
8 data = fread(fid,40,'uint'); %Imports data
9 ddata = dec2hex(data(12)); %Converts the data to hexadecimal

10 AttuFactor = (typecast(uint32(hex2dec(ddata)),'single')); %Converts the ...
hexadecimal to the attenuation factor

11 fclose(fid); %closes the file
12 end

Code listing B.3: modalsum_rigidroom2.m

1 function [pressure,nmodes,resfreqs] = ...
modalsum_rigidroom2(source,receiver,freqvec,roomsize,T60,rhoair,cair,safetyfactor)

2 % This function calculates the sound pressure in a room, caused by a point ...
source,

3 % as calculated by a modal sum. A harmonic source is assumed with the volume
4 % acceleration 1 m/s^2.
5 %
6 % Input parameters:
7 % source A vector, [xs,ys,zs], giving the position of the ...

source in meters.
8 % receiver A vector, [xr,yr,zr], giving the position of the ...

receiver in meters.
9 % freqvec A vector, size [1,nfreqs], with the frequency values ...

of the source signal in Hz.
10 % roomsize A vector, [lx,ly,lz], giving the room dimensions in meters.
11 % T60 The reverberation time of the room. A constant value ...

for all frequencies
12 % is assumed.
13 % rhoair The density of air.
14 % cair The speed of sound in air.
15 % safetyfactor (optional) The ratio between the lowest missed mode ...

resonance frequency and
16 % the highest frequency of interest. Default value: 1.2.
17 %
18 % Output parameters:
19 % pressure A vector, size [1,nfreqs], with the complex amplitudes ...

of the sound pressure
20 % for the nfreqs frequency values of the frequency.
21 % nmodes The number of modes that were used.
22 % resfreqs The resonance frequencies of the used modes.
23 %
24 % Peter Svensson, 15 Sept. 2018 [peter.svensson@ntnu.no]
25 %
26 % [pressure,nmodes,resfreqs] = ...

modalsum_rigidroom2(source,receiver,freqvec,roomsize,T60,rhoair,cair,safetyfactor);
27
28 % Diary:
29 % 020405 First version
30 % 020408 Added damping
31 % 5 Feb. 2016 Added the modeamplitudes as output parameter
32 % 15 Sep. 2018 Added comments, and made the safetyfactor an optional
33 % parameter
34
35 if nargin < 8
36 safetyfactor = 1.2;
37 end
38
39 % Enforce the freqvec to be a horizontal vector since that fits with the matrix
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40 % we want to construct further below (of size [nmodes,nfreqs])
41 freqvec = freqvec(:).';
42
43 nfreqs = length(freqvec);
44 maxfreq = max(freqvec);
45
46 %-----------------------------------------------------------------
47 % Construct a matrix [nmodes,3] of all mode numbers, combinations
48 % of integers [0,1,2,...].
49 %
50 % To get absolutely all modes with a resonance frequency which is
51 % lower than a certain value (the frequency times the safetyfactor),
52 % we must find the maximum integer in the three directions.
53
54 % Find the highest possible mode number in each direction.
55
56 nxmax = ceil(2*roomsize(1)*maxfreq*safetyfactor/cair)+1;
57 nymax = ceil(2*roomsize(2)*maxfreq*safetyfactor/cair)+1;
58 nzmax = ceil(2*roomsize(3)*maxfreq*safetyfactor/cair)+1;
59
60 nmodes = nxmax*nymax*nzmax;
61
62 % Construct first repeated vectors for the x and y directions
63 % The function meshgrid gives matrices that we convert to vertical vectors
64
65 nxymodes = nxmax*nymax;
66 [vecx,vecy] = meshgrid([0:nxmax-1].',[0:nymax-1].');
67 vecx = reshape(vecx,nxymodes,1);
68 vecy = reshape(vecy,nxymodes,1);
69
70 % Now we repeat the matrix [vecx vecy] (with two columns) nzmax times in
71 % the vertical direction...
72
73 qvec = repmat([vecx vecy],nzmax,1);
74
75 % ...and add a third column where the z-mode number is added.
76 % We first make a horizontal vector of 0,1,2,....,
77 % then we repeat that row nxymax times,
78 % and finally reshape it into a vertical vector which has the same length
79 % as the qvec matrix, so we append the qvec matrix with thirdcolumn
80
81 thirdcolumn = [0:nzmax-1];
82 thirdcolumn = repmat(thirdcolumn,nxymodes,1);
83 thirdcolumn = reshape(thirdcolumn,nmodes,1);
84
85 qvec = [qvec,thirdcolumn];
86
87 % qvec should now be a matrix like this (if nymax = 3)
88 % qvec = [0 0 0;0 1 0;0 2 0;0 3 0;1 1 0;1 2 0;1 3 0; etc]
89
90 % Now we have all modes with a resonance frequency below
91 % max(freqvec)*safetyfactor but we want to keep only those that
92 % have a resonance frequency below max(freqvec)*safetyfactor.
93
94 % So, we calculate the resonance frequency of all the modes.
95 % It can be done in a single line
96
97 resfreqs = cair/2*sqrt( sum(((qvec./roomsize(ones(nmodes,1),:)).^2).') ).';
98
99 ivec = find(resfreqs <= maxfreq*safetyfactor);
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100 qvec = qvec(ivec,:);
101 resfreqs = resfreqs(ivec);
102 clear ivec
103
104 % Update the number of modes that have been kept
105 nmodes = size(qvec,1);
106
107 %------------------------------------------------------------------
108 % Calculate the mode functions' values for the source and receiver
109
110 modeamp = cos(qvec(:,1)*pi*source(1)/roomsize(1)) ...

.*cos(qvec(:,2)*pi*source(2)/roomsize(2)) ...

.*cos(qvec(:,3)*pi*source(3)/roomsize(3));
111
112 % The mode amplitude also has a factor which depends on how many of the three
113 % integers are zero.
114
115 modescalefactor = sign(qvec)+1;
116 modescalefactor = prod(modescalefactor.').';
117 modeamp = modeamp.*modescalefactor;
118
119 % Now modeamp is a vector of size [modeamp,1]
120
121 %------------------------------------------------------------------
122 % We expand the modeamp vector into a matrix of size [nmodes,nfreqs] by
123 % including the frequency-dependent part of the mode amplitude.
124
125 delta = 3*log(10)/T60;
126
127 if nfreqs > 1
128 onesvec2 = ones(1,nfreqs);
129
130 modeamp = modeamp(:,onesvec2)./(resfreqs(:,onesvec2).^2 - ...

freqvec(ones(nmodes,1),:).^2 + ...
1i*2*delta*resfreqs(:,onesvec2)/2/pi );

131 modefunctionval = cos(qvec(:,1)*pi*receiver(1)/roomsize(1)) ...
.*cos(qvec(:,2)*pi*receiver(2)/roomsize(2)) ...
.*cos(qvec(:,3)*pi*receiver(3)/roomsize(3));

132 modeamp = modeamp.*modefunctionval(:,onesvec2);
133
134 if nmodes > 1
135 pressure = sum( modeamp );
136 else
137 pressure = modeamp;
138 end
139 else
140
141 modeamp = modeamp./(resfreqs.^2 - freqvec.^2 + 1i*2*delta*resfreqs/2/pi);
142 modeamp = modeamp.*cos(qvec(:,1)*pi*receiver(1)/roomsize(1)) ...

.*cos(qvec(:,2)*pi*receiver(2)/roomsize(2)) ...

.*cos(qvec(:,3)*pi*receiver(3)/roomsize(3));
143 if nmodes > 1
144 pressure = sum( modeamp );
145 else
146 pressure = modeamp;
147 end
148
149 end
150
151 % Since we summed over all the modes above, pressure is a vector of size
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152 % [1,nfreqs]. We multiply with the scale factor which is usually written
153 % outside the modal sum expression.
154
155 pressure = 1i*2*pi*freqvec.*pressure*rhoair*cair^2/prod(roomsize)/4/pi^2;

Code listing B.4: Shoeboxfreq.m

1 function [resfreqs,FSI] = Shoeboxfreq(roomsize,freqvec,cair);
2
3 % THE FOLLOWING PART IS COPYIED FROM modalsum_rigidroom2.m by Peter
4 % Svennson:
5 safetyfactor = 1.2;
6 freqvec = freqvec(:).';
7 maxfreq = max(freqvec);
8 nxMax = ceil(2*roomsize(1)*maxfreq*safetyfactor/cair)+1;
9 nyMax = ceil(2*roomsize(2)*maxfreq*safetyfactor/cair)+1;

10 nzMax = ceil(2*roomsize(3)*maxfreq*safetyfactor/cair)+1;
11 nmodes = nxMax*nyMax*nzMax;
12 nfreqs = length(freqvec);
13 nxymodes = nxMax*nyMax;
14 [vecx,vecy] = meshgrid([0:nxMax-1].',[0:nyMax-1].');
15 vecx = reshape(vecx,nxymodes,1);
16 vecy = reshape(vecy,nxymodes,1);
17 qvec = repmat([vecx vecy],nzMax,1);
18 thirdcolumn = [0:nzMax-1];
19 thirdcolumn = repmat(thirdcolumn,nxymodes,1);
20 thirdcolumn = reshape(thirdcolumn,nmodes,1);
21 qvec = [qvec,thirdcolumn];
22 resfreqs(:,1) = cair/2*sqrt( ...

sum(((qvec./roomsize(ones(nmodes,1),:)).^2).') ).';
23 resfreqs = [resfreqs,qvec];
24
25 % THE FOLLOWING PART IS ADDED TO CALCULATE THE FREQUENCY SPACING INDEX FROM
26 % THE NATURAL FREQUENCIES CALCULATED ABOVE.
27 [~,idf] = sort(resfreqs,1);
28 resfreqs25 = resfreqs(idf(2:26),:);
29
30 avg_freq_space = (resfreqs25(end,1)-resfreqs25(1,1))/(size(resfreqs25,1)-1);
31 freq_space = resfreqs25(2:end,1) - resfreqs25(1:end-1,1);
32 FSI = (1/(resfreqs25(end,1)-resfreqs25(1,1))) * ...

sum((freq_space.^2)/avg_freq_space);

Code listing B.5: RoomPrepA.m

1 close all
2 clear
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This script plots predicted frequency response for a rigid room,
5 % predicted natural frequencies and the measured frequency from corner to
6 % corner in room A.
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %% Parameters:
9 Lx = 6.3;

10 Ly = 6.15;
11 Lz = 3.4;
12 T = 1;
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13 c = 339;
14 Nfft = 2^18;
15 FS = 44100;
16 maxfreq = 200;
17 minfreq = 20;
18 %% Calculatinng eigenfrequencies and predicted FR
19 dims = [Lx Ly Lz];
20 fvec(:,1) = FS*(0:(Nfft/2-1))/Nfft;
21 ivf = find(fvec < maxfreq);
22 eigenfreqs = Shoeboxfreq(dims,fvec(ivf),c);
23 [~,idf] = sort(eigenfreqs,1);
24 eigenfreqs = eigenfreqs(idf,:);
25 p = modalsum_rigidroom2([0 0 0],dims,fvec(ivf),dims,T,1.19,c);
26 L = 20*log10(abs(p));
27 L_room2 = WavToSPL('Pilot/Impulse response ...

file.ImpRespFile2.wav',Nfft,FS,maxfreq,T);
28
29 %% Plotting
30 figure()
31 plot(fvec(ivf),L(ivf)-40,'-b','Linewidth',1)
32 hold on
33 %plot(fvec(ivf),L_room(ivf),'-k','Linewidth',1)
34 plot(fvec(ivf),L_room2(ivf),'-k','Linewidth',2)
35 toffset = 2;
36 for i = 2:25
37 xline(eigenfreqs(i,1),'--k','LineWidth',0.5)
38 txtin = ...

['\leftarrow(',num2str(eigenfreqs(i,2)),',',num2str(eigenfreqs(i,3)),',',num2str(eigenfreqs(i,4)),')'];
39 text(eigenfreqs(i,1),-18+abs(toffset),txtin,'VerticalAlignment','bottom','Color','r','FontSize',12,'FontWeight','bold')
40 H=findobj(gca,'Type','text');
41 set(H,'Rotation',0)
42 if rem(toffset,10)==0
43 toffset = 2;
44 else
45 toffset = (toffset+2);
46 end
47 end
48 hold off
49 title('Predicted and measured corner to corner frequency response in Room A')
50 xlabel('Frequency [Hz]')
51 ylabel('[dB]')
52 legend({'Predicted frequency response','Measured corner to corner ...

response'},'Location','best')
53 set(gca, 'fontsize', 15)
54 xlim([20 120])
55 ylim([-20 25])
56 set(gca, 'fontsize', 16)

Code listing B.6: RoomPrepB.m

1 close all
2 clear
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This script plots predicted frequency response for a rigid room,
5 % predicted natural frequencies and the measured frequency from corner to
6 % corner in room B.
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %% Parameters:
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9 Lx = 3.5;
10 Ly = 2.2;
11 Lz = 3.4;
12 T = 0.5;
13 c = 339;
14 Nfft = 2^18;
15 FS = 44100;
16 maxfreq = 200;
17 minfreq = 20;
18 %% Calculatinng eigenfrequencies and predicted FR
19 dims = [Lx Ly Lz];
20 fvec(:,1) = FS*(0:(Nfft/2-1))/Nfft;
21 ivf = find(fvec < maxfreq);
22 eigenfreqs = Shoeboxfreq(dims,fvec(ivf),c);
23 [~,idf] = sort(eigenfreqs,1);
24 eigenfreqs = eigenfreqs(idf,:);
25 p = modalsum_rigidroom2([0 0 0],dims,fvec(ivf),dims,T,1.19,c);
26 L = 20*log10(abs(p));
27 L_room2 = WavToSPL('B524/TEsts/CornerCorner.wav',Nfft,FS,maxfreq,T);
28
29 %% Plotting
30 figure()
31 plot(fvec(ivf),L(ivf)-50,'-b','Linewidth',1)
32 hold on
33 plot(fvec(ivf),L_room2(ivf),'-k','Linewidth',2)
34 toffset = 2;
35 for i = 2:25
36 xline(eigenfreqs(i,1),'--k','LineWidth',0.5)
37 txtin = ...

['\leftarrow(',num2str(eigenfreqs(i,2)),',',num2str(eigenfreqs(i,3)),',',num2str(eigenfreqs(i,4)),')'];
38 text(eigenfreqs(i,1),-15+abs(toffset),txtin,'VerticalAlignment','bottom','Color','r','FontSize',12,'FontWeight','bold')
39 H=findobj(gca,'Type','text');
40 set(H,'Rotation',0)
41 if rem(toffset,10)==0
42 toffset = 2;
43 else
44 toffset = (toffset+2);
45 end
46 end
47 hold off
48 title('Predicted and measured corner to corner frequency response in Room B')
49 xlabel('Frequency [Hz]')
50 ylabel('[dB]')
51 legend({'Predicted frequency response','Measured corner to corner ...

response'},'Location','best')
52 set(gca, 'fontsize', 15)
53 xlim([20 200])
54 ylim([-15 20])

Code listing B.7: RoomPrepC.m

1 close all
2 clear
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This script plots predicted frequency response for a rigid room,
5 % predicted natural frequencies and the measured frequency from corner to
6 % corner in room C.
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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8 %% Parameters:
9 Lx = 3.05;

10 Ly = 2.2;
11 Lz = 3.4;
12 T = 0.5;
13 c = 339;
14 Nfft = 2^18;
15 FS = 44100;
16 maxfreq = 200;
17 minfreq = 20;
18 %% Calculatinng eigenfrequencies and predicted FR
19 dims = [Lx Ly Lz];
20 fvec(:,1) = FS*(0:(Nfft/2-1))/Nfft;
21 ivf = find(fvec < maxfreq);
22 eigenfreqs = Shoeboxfreq(dims,fvec(ivf),c);
23 [~,idf] = sort(eigenfreqs,1);
24 eigenfreqs = eigenfreqs(idf,:);
25 p = modalsum_rigidroom2([0 0 0],dims,fvec(ivf),dims,T,1.19,c);
26 L = 20*log10(abs(p));
27 L_room2 = WavToSPL('B553/Test/CornerCorner.wav',Nfft,FS,maxfreq,T);
28
29 %% Plotting
30 figure()
31 plot(fvec(ivf),L(ivf)-56,'-b','Linewidth',1)
32 hold on
33 plot(fvec(ivf),L_room2(ivf),'-k','Linewidth',2)
34 toffset = 2;
35 for i = 2:25
36 xline(eigenfreqs(i,1),'--k','LineWidth',0.5)
37 txtin = ...

['\leftarrow(',num2str(eigenfreqs(i,2)),',',num2str(eigenfreqs(i,3)),',',num2str(eigenfreqs(i,4)),')'];
38 text(eigenfreqs(i,1),-18+abs(toffset),txtin,'VerticalAlignment','bottom','Color','r','FontSize',12,'FontWeight','bold')
39 H=findobj(gca,'Type','text');
40 set(H,'Rotation',0)
41 if rem(toffset,10)==0
42 toffset = 2;
43 else
44 toffset = (toffset+2);
45 end
46 end
47 hold off
48 title('Predicted and measured corner to corner frequency response in Room C')
49 xlabel('Frequency [Hz]')
50 ylabel('[dB]')
51 legend({'Predicted frequency response','Measured corner to corner ...

response'},'Location','best')
52 set(gca, 'fontsize', 15)
53 xlim([20 180])
54 ylim([-20 15])

Code listing B.8: Room.m

1 classdef Room < handle
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This class calculates imports the impulse responses of the respective
4 % room and calculates a least-squares-fit model to it. It requires the
5 % files to lay in a folder path equal to "\<Room name>\LineX\" or
6 % "\<Room name>\LineY\" with filenames "Impulse response
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7 % file.ImpRespFile0", where the number 0 would be the impulse response
8 % measured closest to the wall in question.
9 %

10 % Functions:
11 % inputvals: Prompts the user to input the room variables in command
12 % window
13 % fill: Imports data from impulse responses and performs all
14 % calculations.
15 % plotpressure: Plots the standing wave pattern by pressure.
16 % plotpressuresquare : Plots the standing wave pattern by square
17 % pressure.
18 % plotlevel: Plots the standing wave pattern by level
19 %
20 %
21 % Author : Henrik K. R. Berg
22 % E-mail : hkrb94@gmail.com
23 properties
24 Roomname
25 dim
26 T
27 Xvec
28 Yvec
29 ivX
30 ivY
31 Nfft
32 Rp_x
33 Rp_y
34 Zs_x
35 Zs_y
36 ivf
37 modenumber
38 modefreq
39 Xmodefreq
40 Ymodefreq
41 end
42 properties (Hidden)
43 fvec
44 fs %Schroeder frequency
45 px %pressure along xaxis
46 py %pressure along yaxis
47 px_model %pressure least-squares-fit model along xaxis
48 py_model %pressure least-squares-fit model along yaxis
49 c %sound of speed
50 Xhd %Vector for rooms x dimension in high res
51 Yhd %Vector for rooms x dimension in high res
52 end
53 methods
54 function obj = inputvals(obj)
55 obj.Roomname = convertCharsToStrings(input('Input room name: ...

','s'));
56 L_x = input('Input length L_x: ');
57 L_y = input('Input length L_y: ');
58 L_z = input('Input length L_z: ');
59 obj.dim = [L_x,L_y,L_z];
60 obj.T = input('Input reverberation time: ');
61 obj.Nfft = input('Input number of FFT points: ');
62 Xvec(:,1) = input(['Declare X-vector from 0 to ...

',num2str(-L_x,3),': ']);
63 obj.Xvec = Xvec;
64 Yvec(:,1) = input(['Declare Y-vector from 0 to ...
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',num2str(-L_y,3),': ']);
65 obj.Yvec = Yvec;
66 return;
67 end
68 function obj = fill(obj)
69 obj.fvec(1:obj.Nfft/2,1) = 44100*(0:(obj.Nfft/2-1))/obj.Nfft;
70 obj.c = 340;
71 obj.Xhd(:,1) = obj.Xvec(1):-0.01:obj.Xvec(end);
72 obj.Yhd(:,1) = obj.Yvec(1):-0.01:obj.Yvec(end);
73 %% Schroeder frequency
74 if numel(obj.T) == 1 && numel(obj.dim) == 3;
75 obj.fs = 2000*sqrt(obj.T/prod(obj.dim));
76 obj.ivf = find(obj.fvec <obj.fs);
77 else
78 disp("Missing reverberation time T and/or room dimensions ...

dim [Lx, Ly, Lz].")
79 end
80 %% Importing wav files
81 if isstring(obj.Roomname)==1
82 Xdir = dir(strcat(obj.Roomname,"/LineX/*.wav"));
83 obj.px = zeros(numel(Xdir),obj.Nfft/2);
84 Ydir = dir(strcat(obj.Roomname,'/LineY/*.wav'));
85 obj.py = zeros(numel(Ydir),obj.Nfft/2);
86 for i =0:1:numel(Xdir)-1
87 obj.px(i+1,:) = ...

WavToPf(strcat(obj.Roomname,['/LineX/Impulse ...
response ...
file.ImpRespFile',num2str(i),'.wav']),obj.Nfft,obj.T);

88 end
89 for i = 0:1:numel(Ydir)-1
90 obj.py(i+1,:) = ...

WavToPf(strcat(obj.Roomname,['/LineY/Impulse ...
response ...
file.ImpRespFile',num2str(i),'.wav']),obj.Nfft,obj.T);

91 end
92 else
93 disp("Missing Roomname.")
94 end
95 %% Calculating a mimimum error model for pressure in X and Y ...

directions
96 [obj.px_model,obj.py_model,obj.Zs_x,obj.Zs_y,obj.Rp_x,obj.Rp_y] ...

= Fminsearch(obj.px,obj.py,obj.Xvec,obj.Yvec, ...
obj.Xhd,obj.Yhd,obj.ivX,obj.ivY,obj.fvec,obj.fs);

97 %% Natural frequencies for rigid room
98 eigenfreqs = Shoeboxfreq(obj.dim,obj.fvec(obj.ivf),obj.c);
99 [~,idf] = sort(eigenfreqs,1);

100 eigenfreqs = eigenfreqs(idf,:);
101 obj.modenumber = ...

[num2str(eigenfreqs(:,2),1),num2str(eigenfreqs(:,3),1), ...
num2str(eigenfreqs(:,4),1)];

102 obj.modefreq = eigenfreqs(:,1);
103 for i = 1:1:4
104 obj.Xmodefreq(i,1) = ...

obj.modefreq(find(eigenfreqs(:,2)==i,1,'first'));
105 obj.Ymodefreq(i,1) = ...

obj.modefreq(find(eigenfreqs(:,3)==i,1,'first'));
106 end
107 end
108 %% Plotting functions
109 function obj = plotpressure(obj)
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110 figure(1)
111 sgtitle(['Frequency pattern in frequency and 2 dimensions from ...

room ',obj.Roomname,'Left click to pick frequency. ...
Right-click to stop.'])

112 subplot(2,2,1)
113 plot(obj.fvec(obj.ivf),20*log10(abs(obj.px(:,obj.ivf))));
114 for i = 1:numel(obj.Xmodefreq)
115 xline(obj.Xmodefreq(i,1))
116 end
117 title('Pressure in the X-direction in by frequency'), ...

xlabel('Frequency [Hz]'),ylabel('[dB]');
118 xlim([20 obj.fs])
119 set(gca, 'fontsize', 18)
120 subplot(2,2,3)
121 plot(obj.fvec(obj.ivf),20*log10(abs(obj.py(:,obj.ivf))));
122 for i = 1:numel(obj.Ymodefreq)
123 xline(obj.Ymodefreq(i,1))
124 end
125 xlim([20 obj.fs])
126 title('Pressure in the Y-direction in by frequency'), ...

xlabel('Frequency [Hz]'),ylabel('[dB]');
127 set(gca, 'fontsize', 18)
128 btn = 0;
129 while btn ~= 3
130 [pos,~,btn] = ginput(1);
131 freq = interp1(obj.fvec,obj.fvec,pos,'nearest');
132 freqid = find(obj.fvec == freq);
133 figure(1)
134 subplot(2,2,2)
135 plot(obj.Xvec,(abs(obj.px(:,freqid))), ...

obj.Xhd,obj.px_model(:,freqid))
136 xlim([obj.Xvec(end) obj.Xvec(1)])
137 title(['Pressure in X-direction at f = ',num2str(freq,3),' ...

Hz']),xlabel('Meters'),ylabel('Amplitude'), ...
legend({'p_{x-dir,measured}','p_{x-dir,estimated}'}, ...
'Location','best')

138 subplot(2,2,4)
139 plot(obj.Yvec,(abs(obj.py(:,freqid))), ...

obj.Yhd,obj.py_model(:,freqid))
140 xlim([obj.Yvec(end) obj.Yvec(1)])
141 title(['Pressure in Y-direction at f = ',num2str(freq,3),' ...

Hz']),xlabel('Meters'),ylabel('Amplitude'), ...
legend({'p_{x-dir,measured}','p_{x-dir,estimated}'}, ...
'Location','best')

142 end
143
144 end
145 function obj = plotpressuresquare(obj)
146 figure(1)
147 sgtitle(['Frequency pattern in frequency and 2 dimensions from ...

room ',obj.Roomname,'Left click to pick frequency. ...
Right-click to stop.'])

148 subplot(2,2,1)
149 plot(obj.fvec(obj.ivf),20*log10(abs(obj.px(:,obj.ivf))));
150 for i = 1:numel(obj.Xmodefreq)
151 xline(obj.Xmodefreq(i,1))
152 end
153 title('Pressure in the X-direction in by ...

frequency'),xlabel('Frequency [Hz]'),ylabel('[dB]');
154 xlim([20 obj.fs])
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155 set(gca, 'fontsize', 18)
156 subplot(2,2,3)
157 plot(obj.fvec(obj.ivf),20*log10(abs(obj.py(:,obj.ivf))));
158 for i = 1:numel(obj.Ymodefreq)
159 xline(obj.Ymodefreq(i,1))
160 end
161 xlim([20 obj.fs])
162 title('Pressure in the Y-direction in by ...

frequency'),xlabel('Frequency [Hz]'),ylabel('[dB]');
163 set(gca, 'fontsize', 18)
164 btn = 0;
165 while btn ~= 3
166 [pos,~,btn] = ginput(1);
167 freq = interp1(obj.fvec,obj.fvec,pos,'nearest');
168 freqid = find(obj.fvec == freq);
169 figure(1)
170 subplot(2,2,2)
171 plot(obj.Xvec,(abs(obj.px(:,freqid))).^2, ...

obj.Xhd,obj.px_model(:,freqid).^2)
172 xlim([obj.Xvec(end) obj.Xvec(1)])
173 title(['Pressure in X-direction at f = ',num2str(freq,3),' ...

Hz']),xlabel('Meters'),ylabel('Amplitude'), ...
legend({'p_{x-dir,measured}^2','p_{x-dir,estimated}^2'}, ...
'Location','best')

174 subplot(2,2,4)
175 plot(obj.Yvec,(abs(obj.py(:,freqid))).^2, ...

obj.Yhd,obj.py_model(:,freqid).^2)
176 xlim([obj.Yvec(end) obj.Yvec(1)])
177 title(['Pressure in Y-direction at f = ',num2str(freq,3),' ...

Hz']),xlabel('Meters'),ylabel('Amplitude'), ...
legend({'p_{x-dir,measured}^2','p_{x-dir,estimated}^2'}, ...
'Location','best')

178 end
179 end
180 function obj = plotlevel(obj)
181 figure(1)
182 sgtitle(['Frequency pattern in frequency and 2 dimensions from ...

room ',obj.Roomname,'Left click to pick frequency. ...
Right-click to stop.'])

183 subplot(2,2,1)
184 plot(obj.fvec(obj.ivf),20*log10(abs(obj.px(:,obj.ivf))));
185 for i = 1:numel(obj.Xmodefreq)
186 xline(obj.Xmodefreq(i,1))
187 end
188 title('Pressure in the X-direction in by ...

frequency'),xlabel('Frequency [Hz]'),ylabel('[dB]');
189 xlim([20 obj.fs])
190 set(gca, 'fontsize', 18)
191 subplot(2,2,3)
192 plot(obj.fvec(obj.ivf),20*log10(abs(obj.py(:,obj.ivf))));
193 for i = 1:numel(obj.Ymodefreq)
194 xline(obj.Ymodefreq(i,1))
195 end
196 xlim([20 obj.fs])
197 title('Pressure in the Y-direction in by ...

frequency'),xlabel('Frequency [Hz]'),ylabel('[dB]');
198 set(gca, 'fontsize', 18)
199 btn = 0;
200 while btn ~= 3
201 [pos,~,btn] = ginput(1);
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202 freq = interp1(obj.fvec,obj.fvec,pos,'nearest');
203 freqid = find(obj.fvec == freq);
204 figure(1)
205 subplot(2,2,2)
206 plot(obj.Xvec,20*log10(abs(obj.px(:,freqid))), ...

obj.Xhd,20*log10(obj.px_model(:,freqid)))
207 xlim([obj.Xvec(end) obj.Xvec(1)])
208 title(['Sound level in X-direction at f = ...

',num2str(freq,3),' ...
Hz']),xlabel('Meters'),ylabel('Amplitude'), ...
legend({'L_{p,x-dir,measured}','L_{p,x-dir,estimated}'}, ...
'Location','best')

209 set(gca, 'fontsize', 18)
210 subplot(2,2,4)
211 plot(obj.Yvec,20*log10(abs(obj.py(:,freqid))), ...

obj.Yhd,20*log10(obj.py_model(:,freqid)))
212 xlim([obj.Yvec(end) obj.Yvec(1)])
213 title(['Sound level in Y-direction at f = ...

',num2str(freq,3),' ...
Hz']),xlabel('Meters'),ylabel('Amplitude'), ...
legend({'L_{p,x-dir,measured}','L_{p,x-dir,estimated}'}, ...
'Location','best')

214 set(gca, 'fontsize', 18)
215 end
216 end
217 function obj = plotimpedance(obj)
218 figure(2)
219 sgtitle('Specific impedance of walls')
220 subplot(1,2,1)
221 plot(obj.fvec(obj.ivf),real(obj.Zs_x),imag(obj.Zs_x))
222 title('At X = 0'),xlabel('Frequency ...

[Hz]'),ylabel('Z_s'),legend({'Real','Imag'},'Location','best')
223 set(gca, 'fontsize', 18)
224 ylim([-20 20])
225 subplot(1,2,2)
226 plot(obj.fvec(obj.ivf),real(obj.Zs_y),imag(obj.Zs_y))
227 title('At Y = 0'),xlabel('Frequency ...

[Hz]'),ylabel('Z_s'),legend({'Real','Imag'},'Location','best')
228 set(gca, 'fontsize', 18)
229 ylim([-20 20])
230 end
231 function obj = plotreflection(obj)
232 figure(2)
233 sgtitle('Complex reflection factor of walls')
234 subplot(1,2,1)
235 plot(obj.fvec(obj.ivf),real(obj.Rp_x),obj.fvec(obj.ivf),imag(obj.Rp_x))
236 title('At X = 0'),xlabel('Frequency ...

[Hz]'),ylabel('R_p'),legend({'Real','Imag'},'Location','best')
237 set(gca, 'fontsize', 18)
238 ylim([0 2])
239 subplot(1,2,2)
240 plot(obj.fvec(obj.ivf),real(obj.Rp_y),obj.fvec(obj.ivf),imag(obj.Rp_y))
241 title('At Y = 0'),xlabel('Frequency ...

[Hz]'),ylabel('R_p'),legend({'Real','Imag'},'Location','best')
242 set(gca, 'fontsize', 18)
243 ylim([0 2])
244 end
245 function obj = plotabsreflection(obj)
246 figure(2)
247 sgtitle('Complex reflection factor of walls')
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248 subplot(1,2,1)
249 plot(obj.fvec(obj.ivf),abs(obj.Rp_x))
250 title('At X = 0'),xlabel('Frequency [Hz]'),ylabel('|R_p|'),
251 set(gca, 'fontsize', 18)
252 ylim([0 2])
253 subplot(1,2,2)
254 plot(obj.fvec(obj.ivf),abs(obj.Rp_y))
255 title('At Y = 0'),xlabel('Frequency [Hz]'),ylabel('|R_p|'),
256 set(gca, 'fontsize', 18)
257 ylim([0 2])
258 end
259 end
260 end

Code listing B.9: Fminsearch.m

1 function [px_model,py_model,Zs_x,Zs_y,Rp_x,Rp_y] = ...
Fminsearch(px,py,Xvec,Yvec,Xhd,Yhd,ivX,ivY,fvec,fschroeder)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This function calculate the least-squares-fit model of the standing wave
4 % pattern measured from many positions along two dimensions of a room.
5 % INPUTS:
6 % px : 2D array of frequency responses along x-axis
7 % py : 2D array of frequency responses along y-axis
8 % Xvec : Position vector of all microphone positions ...

along x-axis
9 % Yvec : Position vector of all microphone positions ...

along y-axis
10 % Xhd : Output spatial resolution of the model for x-axis
11 % Yhd : Output spatial resolution of the model for y-axis
12 % ivX : Index vector of mic positions to use for x-axis
13 % ivY : Index vector of mic positions to use for y-axis
14 % fvec : frequency vector
15 % fschroeder : max frequency that will be modelled.
16 % OUTPUTS:
17 % px_model : Modelled standing wave pattern along x-axis
18 % py_model : Modelled standing wave pattern along y-axis
19 % Zs_x : Calculated specific acoustic impedance in x=0
20 % Zs_y : Calculated specific acoustic impedance in y=0
21 % Rp_x : Calculated reflection factor in x=0
22 % Rp_y : Calculated reflection factor in y=0
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 c=342;
25 ivf = find(fvec < fschroeder);
26 kvec = fvec*2*pi/c;
27 for i= 1:numel(fvec(ivf))
28 ii = 1;
29 options = optimset('fminsearch');
30 options.MaxFunEvals = 10000000;
31 options.MaxIter = 100000;
32
33 % Inital guesses for y-axis measurements
34 maxmin_ini = max(abs(py(ivY,i)).^2)/min(abs(py(ivY,i)).^2);
35 absRp_ini = (sqrt(maxmin_ini)-1)/(sqrt(maxmin_ini)+1);
36 absAsquare_ini = max(abs(py(ivY,i)).^2)/(1+absRp_ini)^2;
37 phi_ini = 2*kvec(i)*Yvec(find(py(ivY,i).^2 == min(py(ivY,i).^2)))-pi;
38 val_guess = double([absAsquare_ini absRp_ini phi_ini]);
39 % Finding best fitting coefficients
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40 val = fminsearch(@(vals) ...
findpsquare(vals,py(ivY,i),kvec(i),Yvec(ivY)),val_guess,options);

41 % Results for y-axis at frequency index i
42 absPysquare(i,:) = val(1)*(1+val(2)^2+2*val(2)*cos(2*kvec(i)*Yhd(:)+val(3)));
43 absRpy(i,1) = val(2);
44 Rpyangle(i,1) = val(3);
45 % Inital guesses for x-axis measurements
46 maxmin_ini = max(abs(px(ivX,i)).^2)/min(abs(px(ivX,i)).^2);
47 absRp_ini = (sqrt(maxmin_ini)-1)/(sqrt(maxmin_ini)+1);
48 absAsquare_ini = max(abs(px(ivX,i)).^2)/(1+absRp_ini)^2;
49 phi_ini = 2*kvec(i)*Xvec(find(px(ivX,i).^2 == min(px(ivX,i).^2)))-pi;
50 val_guess = double([absAsquare_ini absRp_ini phi_ini]);
51 % Finding best fitting coefficients
52 val = fminsearch(@(vals) ...

findpsquare(vals,px(ivX,i),kvec(i),Xvec(ivX)),val_guess,options);
53 % Results for x-axis at frequency index i
54 absPxsquare(i,:) = val(1)*(1+val(2)^2+2*val(2)*cos(2*kvec(i)*Xhd(:)+val(3)));
55 absRpx(i,1) = val(2);
56 Rpxangle(i,1) = val(3);
57 end
58 Rp_x = (absRpx.*cos(Rpxangle) + 1i*absRpx.*sin(Rpxangle)).';
59 Rp_y = (absRpy.*cos(Rpyangle) + 1i*absRpy.*sin(Rpyangle)).';
60 Zs_x = ((1 + Rp_x) ./ (1-Rp_x));
61 Zs_y = ((1 + Rp_y) ./ (1-Rp_y));
62 px_model = sqrt(absPxsquare).';
63 py_model = sqrt(absPysquare).';
64 end

Code listing B.10: findpsquare.m

1 function [epsilonsquare] = findpsquare(val,py,k,x)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Function calculating epsilon squared between model and measurement.
4 % This is the function that is minimized in order to find the
5 % least-squares-fit model of the standing wave
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 absAsquare = val(1);
8 absRp = val(2);
9 phi = val(3);

10 psquare_model = (absAsquare*(1+absRp^2+2*absRp*cos(2*k*x+phi)));
11 psquare_measurement = abs(py(:)).^2;
12 epsilonsquare = sum((psquare_model-psquare_measurement).^2);
13 end

Code listing B.11: initrooms.m

1 close all
2 clear
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This script initiate the room objects in the same way they were used in
5 % the thesis.
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 RoomA = Room;
8 RoomA.Roomname = "C510";
9 RoomA.dim = [6.3,6.15,3.4];

10 RoomA.T = 1.2;
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11 RoomA.Xvec(:,1) = [0:-0.1:-6.3];
12 RoomA.Yvec(:,1) = [0:-0.1:-6.0 -6.15];
13 RoomA.Nfft = 2^18;
14 RoomA.ivX = [6:30 32:57];
15 RoomA.ivY = [6:56];
16
17 RoomB = Room;
18 RoomB.Roomname = "B524";
19 RoomB.dim = [3.5,2.2,3.4];
20 RoomB.T = 0.5;
21 RoomB.Xvec(:,1) = [0:-0.05:-3.5];
22 RoomB.Yvec(:,1) = [0:-0.05:-2.2];
23 RoomB.Nfft = 2^18;
24 RoomB.ivX = [11:61];
25 RoomB.ivY = [6:40];
26
27 RoomC = Room;
28 RoomC.Roomname = "B553";
29 RoomC.dim = [3.05,2.3,3.4];
30 RoomC.T = 0.5;
31 RoomC.Xvec(:,1) = [0:-0.05:-3.05];
32 RoomC.Yvec(:,1) = [0:-0.05:-2.3];
33 RoomC.Nfft = 2^18;
34 RoomC.ivX = [6:57];
35 RoomC.ivY = [6:41];
36
37 RoomA.fill;
38 RoomB.fill;
39 RoomC.fill;
40
41 save("RoomA.mat","RoomA");
42 save("RoomB.mat","RoomB");
43 save("RoomC.mat","RoomC");

Code listing B.12: PLOTS.m

1 close all
2 clear
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This script loads the room objects and plots their frequency responses
5 % and the standing wave pattern for the first 2-3 axial modes in both the
6 % X- and the Y-directions.
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 load('RoomA.mat')
9 load('RoomB.mat')

10 load('RoomC.mat')
11 AresX = [28.1 54.8 82.1]; % Discorvered resonance in X-direction in room A
12 AresY = [29.6 57 84.8]; % Discorvered resonance in Y-direction in room A
13 BresX = [52.8 102 150]; % Discorvered resonance in X-direction in room B
14 BresY = [82.4 160]; % Discorvered resonance in Y-direction in room B
15 CresX = [61.7 118]; % Discorvered resonance in X-direction in room C
16 CresY = [78.7 154]; % Discorvered resonance in Y-direction in room C
17 ivAX = [1:30 32:41 43:64]; % Indexvector leaving bad IRs in room A's ...

X-direction out of the plots.
18 %% Frequency response
19 figure()
20 sgtitle('Room A')
21 subplot(2,1,1)
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22 plot(RoomA.fvec(RoomA.ivf),20*log10(abs(RoomA.px(ivAX,RoomA.ivf))))
23 for i=1:3
24 xline(RoomA.Xmodefreq(i),'--k')
25 xline(AresX(i),'-k')
26 text(AresX(i),-50,['\leftarrow ...

',num2str(i),'00'],'FontSize',11,'FontWeight','bold')
27 end
28 title('Frequency response along X-axis')
29 xlabel('Frequency [Hz]')
30 ylabel('Amplitude [dB]')
31 xlim([20 RoomA.fs])
32 set(gca, 'fontsize', 14)
33 subplot(2,1,2)
34 plot(RoomA.fvec(RoomA.ivf),20*log10(abs(RoomA.py(:,RoomA.ivf))))
35 for i=1:3
36 xline(RoomA.Ymodefreq(i),'--k')
37 xline(AresY(i),'-k')
38 text(AresY(i),-50,['\leftarrow ...

0',num2str(i),'0'],'FontSize',11,'FontWeight','bold')
39 end
40 title('Frequency response along Y-axis')
41 xlabel('Frequency [Hz]')
42 ylabel('Amplitude [dB]')
43 set(gca, 'fontsize', 14)
44 xlim([20 RoomA.fs])
45
46 figure()
47 sgtitle('Room B')
48 subplot(2,1,1)
49 plot(RoomB.fvec(RoomB.ivf),20*log10(abs(RoomB.px(:,RoomB.ivf))))
50 for i=1:3
51 xline(RoomB.Xmodefreq(i),'--k')
52 xline(BresX(i),'-k')
53 text(BresX(i),-50,['\leftarrow ...

',num2str(i),'00'],'FontSize',11,'FontWeight','bold')
54 end
55 title('Frequency response along X-axis')
56 xlabel('Frequency [Hz]')
57 ylabel('Amplitude [dB]')
58 xlim([20 RoomB.fs])
59 set(gca, 'fontsize', 14)
60 subplot(2,1,2)
61 plot(RoomB.fvec(RoomB.ivf),20*log10(abs(RoomB.py(:,RoomB.ivf))))
62 for i=1:2
63 xline(RoomB.Ymodefreq(i),'--k')
64 xline(BresY(i),'-k')
65 text(BresY(i),-50,['\leftarrow ...

0',num2str(i),'0'],'FontSize',11,'FontWeight','bold')
66 end
67 title('Frequency response along Y-axis')
68 xlabel('Frequency [Hz]')
69 ylabel('Amplitude [dB]')
70 set(gca, 'fontsize', 14)
71 xlim([20 RoomB.fs])
72
73 figure()
74 sgtitle('Room C')
75 subplot(2,1,1)
76 plot(RoomC.fvec(RoomC.ivf),20*log10(abs(RoomC.px(:,RoomC.ivf))))
77 for i=1:2
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78 xline(RoomC.Xmodefreq(i),'--k')
79 xline(CresX(i),'-k')
80 text(CresX(i),-50,['\leftarrow ...

',num2str(i),'00'],'FontSize',11,'FontWeight','bold')
81 end
82 title('Frequency response along X-axis')
83 xlabel('Frequency [Hz]')
84 ylabel('Amplitude [dB]')
85 xlim([20 RoomC.fs])
86 set(gca, 'fontsize', 14)
87 subplot(2,1,2)
88 plot(RoomC.fvec(RoomC.ivf),20*log10(abs(RoomC.py(:,RoomC.ivf))))
89 for i=1:2
90 xline(RoomC.Ymodefreq(i),'--k')
91 xline(CresY(i),'-k')
92 text(CresY(i),-50,['\leftarrow ...

0',num2str(i),'0'],'FontSize',11,'FontWeight','bold')
93 end
94 title('Frequency response along Y-axis')
95 xlabel('Frequency [Hz]')
96 ylabel('Amplitude [dB]')
97 set(gca, 'fontsize', 14)
98 xlim([20 RoomC.fs])
99

100 %% Room A Spatial response
101 figure()
102 set(gcf,'position',[0,0,1800,600])
103 sgtitle('Room A, mode 100 & 010')
104 subplot(1,2,1)
105 plot(RoomA.Xvec(ivAX),abs(RoomA.px(ivAX,168)),'-k', ...

RoomA.Xvec(RoomA.ivX),abs(RoomA.px(RoomA.ivX,168)),'or', ...
RoomA.Xhd,RoomA.px_model(:,168),'-b')

106 title('Sound pressure along X-axis at f = 28.1 Hz')
107 xlabel('Distance from reflecting surface [m]')
108 ylabel('|p(\omega)|')
109 legend('Measured points','Points used in the model','Least-squares-fit model')
110 xlim([RoomA.Xvec(end) 0])
111 set(gca, 'fontsize', 14)
112 subplot(1,2,2)
113 plot(RoomA.Yvec,abs(RoomA.py(:,177)),'-k', ...

RoomA.Yvec(RoomA.ivY),abs(RoomA.py(RoomA.ivY,177)),'or', ...
RoomA.Yhd,RoomA.py_model(:,177),'-b')

114 title('Sound pressure along Y-axis at f = 29.6 Hz')
115 xlabel('Distance from reflecting surface [m]')
116 ylabel('|p(\omega)|')
117 set(gca, 'fontsize', 14)
118 xlim([RoomA.Yvec(end) 0])
119
120 figure()
121 set(gcf,'position',[0,0,1800,600])
122 sgtitle('Room A, mode 200 & 020')
123 subplot(1,2,1)
124 plot(RoomA.Xvec(ivAX),abs(RoomA.px(ivAX,327)),'-k', ...

RoomA.Xvec(RoomA.ivX),abs(RoomA.px(RoomA.ivX,327)),'or', ...
RoomA.Xhd,RoomA.px_model(:,327),'-b')

125 title('Sound pressure along X-axis at f = 54.8 Hz')
126 xlabel('Distance from reflecting surface [m]')
127 ylabel('|p(\omega)|')
128 xlim([RoomA.Xvec(end) 0])
129 set(gca, 'fontsize', 14)
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130 subplot(1,2,2)
131 plot(RoomA.Yvec,abs(RoomA.py(:,340)),'-k', ...

RoomA.Yvec(RoomA.ivY),abs(RoomA.py(RoomA.ivY,340)),'or', ...
RoomA.Yhd,RoomA.py_model(:,340),'-b')

132 title('Sound pressure along Y-axis at f = 57.0 Hz')
133 xlabel('Distance from reflecting surface [m]')
134 ylabel('|p(\omega)|')
135 set(gca, 'fontsize', 14)
136 xlim([RoomA.Yvec(end) 0])
137
138 figure()
139 set(gcf,'position',[0,0,1800,600])
140 sgtitle('Room A, mode 300 & 030')
141 subplot(1,2,1)
142 plot(RoomA.Xvec(ivAX),abs(RoomA.px(ivAX,483)),'-k', ...

RoomA.Xvec(RoomA.ivX),abs(RoomA.px(RoomA.ivX,483)),'or', ...
RoomA.Xhd,RoomA.px_model(:,483),'-b')

143 title('Sound pressure along X-axis at f = 82.1 Hz')
144 xlabel('Distance from reflecting surface [m]')
145 ylabel('|p(\omega)|')
146 xlim([RoomA.Xvec(end) 0])
147 set(gca, 'fontsize', 14)
148 subplot(1,2,2)
149 plot(RoomA.Yvec,abs(RoomA.py(:,505)),'-k', ...

RoomA.Yvec(RoomA.ivY),abs(RoomA.py(RoomA.ivY,505)),'or', ...
RoomA.Yhd,RoomA.py_model(:,505),'-b')

150 title('Sound pressure along Y-axis at f = 84.8 Hz')
151 xlabel('Distance from reflecting surface [m]')
152 ylabel('|p(\omega)|')
153 set(gca, 'fontsize', 14)
154 xlim([RoomA.Yvec(end) 0])
155
156 %% Room B
157 figure()
158 set(gcf,'position',[0,0,1800,600])
159 sgtitle('Room B, mode 100 & 010')
160 subplot(1,2,1)
161 plot(RoomB.Xvec,abs(RoomB.px(:,315)),'-k', ...

RoomB.Xvec(RoomB.ivX),abs(RoomB.px(RoomB.ivX,315)),'or', ...
RoomB.Xhd,RoomB.px_model(:,315),'-b')

162 title('Sound pressure along X-axis at f = 52.8 Hz')
163 xlabel('Distance from reflecting surface [m]')
164 ylabel('|p(\omega)|')
165 xlim([RoomB.Xvec(end) 0])
166 set(gca, 'fontsize', 14)
167 subplot(1,2,2)
168 plot(RoomB.Yvec,abs(RoomB.py(:,491)),'-k', ...

RoomB.Yvec(RoomB.ivY),abs(RoomB.py(RoomB.ivY,491)),'or', ...
RoomB.Yhd,RoomB.py_model(:,491),'-b')

169 title('Sound pressure along Y-axis at f = 82.4 Hz')
170 xlabel('Distance from reflecting surface [m]')
171 ylabel('|p(\omega)|')
172 set(gca, 'fontsize', 14)
173 xlim([RoomB.Yvec(end) 0])
174
175 figure()
176 set(gcf,'position',[0,0,1800,600])
177 sgtitle('Room B, mode 200 & 020')
178 subplot(1,2,1)
179 plot(RoomB.Xvec,abs(RoomB.px(:,607)),'-k', ...
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RoomB.Xvec(RoomB.ivX),abs(RoomB.px(RoomB.ivX,607)),'or', ...
RoomB.Xhd,RoomB.px_model(:,607),'-b')

180 title('Sound pressure along X-axis at f = 102.0 Hz')
181 xlabel('Distance from reflecting surface [m]')
182 ylabel('|p(\omega)|')
183 xlim([RoomB.Xvec(end) 0])
184 set(gca, 'fontsize', 14)
185 subplot(1,2,2)
186 plot(RoomB.Yvec,abs(RoomB.py(:,952)),'-k', ...

RoomB.Yvec(RoomB.ivY),abs(RoomB.py(RoomB.ivY,952)),'or', ...
RoomB.Yhd,RoomB.py_model(:,952),'-b')

187 title('Sound pressure along Y-axis at f = 160.0 Hz')
188 xlabel('Distance from reflecting surface [m]')
189 ylabel('|p(\omega)|')
190 set(gca, 'fontsize', 14)
191 xlim([RoomB.Yvec(end) 0])
192
193 figure()
194 set(gcf,'position',[0,0,1800,600])
195 sgtitle('Room B, mode 300')
196 subplot(1,2,1)
197 plot(RoomB.Xvec,abs(RoomB.px(:,893)),'-k', ...

RoomB.Xvec(RoomB.ivX),abs(RoomB.px(RoomB.ivX,893)),'or', ...
RoomB.Xhd,RoomB.px_model(:,893),'-b')

198 title('Sound pressure along X-axis at f = 150.0 Hz')
199 xlabel('Distance from reflecting surface [m]')
200 ylabel('|p(\omega)|')
201 xlim([RoomB.Xvec(end) 0])
202 set(gca, 'fontsize', 14)
203 % subplot(1,2,2)
204 % plot(RoomB.Yvec,abs(RoomB.py(:,505)),'-k', ...

RoomB.Yvec(RoomB.ivY),abs(RoomB.py(RoomB.ivY,505)),'or', ...
RoomB.Yhd,RoomB.py_model(:,505),'--b')

205 % title('Sound pressure along Y-axis in X = and Z =')
206 % xlabel('Distance from reflecting surface]')
207 % ylabel('|p(\omega)|')
208 % set(gca, 'fontsize', 14)
209 % xlim([RoomB.Yvec(end) 0])
210
211 %% Room C
212 figure()
213 set(gcf,'position',[0,0,1800,600])
214 sgtitle('Room C, mode 100 & 010')
215 subplot(1,2,1)
216 plot(RoomC.Xvec,abs(RoomC.px(:,368)),'-k', ...

RoomC.Xvec(RoomC.ivX),abs(RoomC.px(RoomC.ivX,368)),'or', ...
RoomC.Xhd,RoomC.px_model(:,368),'-b')

217 title('Sound pressure along X-axis at f = 61.7 Hz')
218 xlabel('Distance from reflecting surface [m]')
219 ylabel('|p(\omega)|')
220 xlim([RoomC.Xvec(end) 0])
221 set(gca, 'fontsize', 14)
222 subplot(1,2,2)
223 plot(RoomC.Yvec,abs(RoomC.py(:,469)),'-k', ...

RoomC.Yvec(RoomC.ivY),abs(RoomC.py(RoomC.ivY,469)),'or', ...
RoomC.Yhd,RoomC.py_model(:,469),'--b')

224 title('Sound pressure along Y-axis at f = 78.7 Hz')
225 xlabel('Distance from reflecting surface [m]')
226 ylabel('|p(\omega)|')
227 set(gca, 'fontsize', 14)
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228 xlim([RoomC.Yvec(end) 0])
229
230 figure()
231 set(gcf,'position',[0,0,1800,600])
232 sgtitle('Room C, mode 200 & 020')
233 subplot(1,2,1)
234 plot(RoomC.Xvec,abs(RoomC.px(:,703)),'-k', ...

RoomC.Xvec(RoomC.ivX),abs(RoomC.px(RoomC.ivX,703)),'or', ...
RoomC.Xhd,RoomC.px_model(:,703),'-b')

235 title('Sound pressure along X-axis at f = 118.0 Hz')
236 xlabel('Distance from reflecting surface [m]')
237 ylabel('|p(\omega)|')
238 xlim([RoomC.Xvec(end) 0])
239 set(gca, 'fontsize', 14)
240 subplot(1,2,2)
241 plot(RoomC.Yvec,abs(RoomC.py(:,917)),'-k', ...

RoomC.Yvec(RoomC.ivY),abs(RoomC.py(RoomC.ivY,917)),'or', ...
RoomC.Yhd,RoomC.py_model(:,917),'-b')

242 title('Sound pressure along Y-axis at f = 154.0 Hz')
243 xlabel('Distance from reflecting surface [m]')
244 ylabel('|p(\omega)|')
245 set(gca, 'fontsize', 14)
246 xlim([RoomC.Yvec(end) 0])

Code listing B.13: ModalT_C510.m

1 %% Init
2 clear
3 close all
4
5 Lx = 6.3; % Length
6 Ly = 6.15; % Width
7 Lz = 3.4; % Height
8 T = 1.2; % Reverberation time at low frequencies
9 c = 340; % speed of air in the room

10 Nfft = 2^19; % FFT Size
11 FS = 44100; % Samplerate
12 maxfreq = 120; % maximum frequency plotted
13 minfreq = 20; % minimum frequency plotted
14 dims = [Lx Ly Lz];
15 fvec(:,1) = FS*(0:(Nfft/2-1))/Nfft; % Frequency vector
16 tvec(:,1) = (1:1*44101)/44100; % Time vector for 1 second
17 ivf = find(fvec < maxfreq); % frequency index
18 eigenfreqs = Shoeboxfreq(dims,fvec(ivf),c);
19 [~,idf] = sort(eigenfreqs,1);
20 eigenfreqs = eigenfreqs(idf,:); % sorted natural frequency for rigid walls
21 dirac = [1; zeros(136709,1)]; % unit pulse
22 AresX = [28.1 54.8 82.1]; % First axial modal frequencies observed for the ...

X axis
23 AresY = [29.6 57 84.8]; % First axial modal frequencies observed for the X axis
24 %% The following section imports the impulse responses
25 %% LSP
26 yLSP = audioread('0-180_averageTimeDomain.wav');
27 YLSP = fft(yLSP(1:7000),Nfft,1);
28 %% 100
29 y100 = audioread('Modaletterklang/100.wav');
30 Y100 = fft(y100(1:T*100000),Nfft,1)./YLSP;
31 %% 010
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32
33 y010 = audioread('Modaletterklang/010.wav');
34 Y010 = fft(y010(1:T*100000),Nfft,1)./YLSP;
35 %% 110
36 y110_0 = audioread('Modaletterklang/110(0.0).wav');
37 y110_1 = audioread('Modaletterklang/110(Ly.Lx).wav');
38
39 y110 = y110_0-y110_1;
40 Y110 = fft(y110(1:T*100000),Nfft,1)./YLSP;
41 %% 001
42 y001 = audioread('Modaletterklang/001.wav');
43 Y001 = fft(y001(1:T*100000),Nfft,1)./YLSP;
44 %% 200
45 y200 = audioread('Modaletterklang/200.wav');
46 Y200 = fft(y200(1:T*100000),Nfft,1)./YLSP;
47 %% 020
48 y020 = audioread('Modaletterklang/020.wav');
49 Y020 = fft(y020(1:T*100000),Nfft,1)./YLSP;
50 %% 101
51 y101 = audioread('Modaletterklang/101.wav');
52 Y101 = fft(y101(1:T*100000),Nfft,1)./YLSP;
53 %% 011
54 y011 = audioread('Modaletterklang/011.wav');
55 Y011 = fft(y011(1:T*100000),Nfft,1)./YLSP;
56 %% 210
57 y210_0 = audioread('Modaletterklang/210(0).wav');
58 y210_1 = audioread('Modaletterklang/210(Ly).wav');
59
60 y210 = y210_0 - y210_1;
61 Y210 = fft(y210(1:T*100000),Nfft,1)./YLSP;
62 %% 120
63 y120_0 = audioread('Modaletterklang/120(0).wav');
64 y120_1 = audioread('Modaletterklang/120(Lx).wav');
65
66 y120 = y120_0 + y120_1;
67 Y120 = fft(y120(1:T*100000),Nfft,1)./YLSP;
68 %% 111
69 y111 = audioread('Modaletterklang/111.wav');
70 Y111 = fft(y111(1:T*50000),Nfft,1)./YLSP;
71 %% 201
72 y201 = audioread('Modaletterklang/201.wav');
73 Y201 = fft(y201(1:T*100000),Nfft,1)./YLSP;
74 %% 021
75 y021 = audioread('Modaletterklang/021.wav');
76 Y021 = fft(y021(1:T*100000),Nfft,1)./YLSP;
77 %% 220
78 y220 = audioread('Modaletterklang/220.wav');
79 Y220 = fft(y220(1:T*100000),Nfft,1)./YLSP;
80 %% 211
81 y211 = audioread('Modaletterklang/211.wav');
82 Y211 = fft(y211(1:T*100000),Nfft,1)./YLSP;
83 %% 121
84 y121 = audioread('Modaletterklang/121.wav');
85 Y121 = fft(y121(1:T*100000),Nfft,1)./YLSP;
86 %% 300
87 y300 = audioread('Modaletterklang/300.wav');
88 Y300 = fft(y300(1:T*100000),Nfft,1)./YLSP;
89 %% 030
90 y030 = audioread('Modaletterklang/030.wav');
91 Y030 = fft(y030(1:T*100000),Nfft,1)./YLSP;
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92 %% 310
93 y310_0 = audioread('Modaletterklang/310(0).wav');
94 y310_1 = audioread('Modaletterklang/310(Ly).wav');
95
96 y310 = y310_0 + y310_1;
97 Y310 = fft(y310(1:T*100000),Nfft,1)./YLSP;
98 %% 130
99 y130_0 = audioread('Modaletterklang/130(0).wav');

100 y130_1 = audioread('Modaletterklang/130(Lx).wav');
101
102 y130 = y130_0 - y130_1;
103 Y130 = fft(y130(1:T*100000),Nfft,1)./YLSP;
104 %% 221
105 y221 = audioread('Modaletterklang/221.wav');
106 Y221 = fft(y221(1:T*100000),Nfft,1)./YLSP;
107 %% 301
108 y301 = audioread('Modaletterklang/301.wav');
109 Y301 = fft(y301(1:T*100000),Nfft,1)./YLSP;
110 %% 031
111 y031 = audioread('Modaletterklang/031.wav');
112 Y031 = fft(y031(1:T*100000),Nfft,1)./YLSP;
113 %% 320
114 y320 = audioread('Modaletterklang/320.wav');
115 Y320 = fft(y320(1:T*100000),Nfft,1)./YLSP;
116 %% 311
117 y311 = audioread('Modaletterklang/311.wav');
118 Y311 = fft(y311(1:T*100000),Nfft,1)./YLSP;
119 %% 002
120 y002 = audioread('Modaletterklang/002.wav');
121 Y002 = fft(y002(1:T*100000),Nfft,1)./YLSP;
122 %% The following sections backwards filter the IRs before they are ...

backwards integrated. Then a least-squares line is calculated and all ...
the parameters are calculated. Like T_modal, Xi, and alpha.

123 %% 100 filtering
124 octfilt100 = octaveFilter(30.1,'2/3 octave');
125 filter100 = octfilt100(dirac);
126 y100filt = flip(octfilt100(flip(y100)));
127 Y100filter = fft(filter100,Nfft);
128 y100filt = y100filt(1:35000);
129 D100 = 10*log10(flip(cumsum(flip(y100filt.^2))));
130 D100 = D100-max(D100);
131 idD100 = find(D100 <= -5 & D100 >= -25);
132 p100 = polyfit(tvec(idD100),D100(idD100),1);
133 R100 = polyval(p100,tvec);
134 T100 = 60/(R100(1)-R100(end));
135 rsq100 = (sum((R100(idD100)-mean(D100(idD100))).^2)) / ...

(sum((D100(idD100)-mean(D100(idD100))).^2));
136 nonlin100 = 1000*(1-rsq100);
137 alphax100 = 55.3*Lx^2*28.1/(-c^2*1*T100);
138 alpham100 = 1-exp(alphax100);
139 Y100filt = fft(y100filt,Nfft,1);
140 %% 010 filtering
141 octfilt010 = octaveFilter(29.6,'2/3 octave');
142 filter010 = octfilt010(dirac);
143 y010filt = flip(octfilt010(flip(y010)));
144 Y010filter = fft(filter010,Nfft);
145 y010filt = y010filt(1:16000);
146 D010 = 10*log10(flip(cumsum(flip(y010filt.^2))));
147 D010 = D010-max(D010);
148 idD010 = find(D010 <= -5 & D010 >= -25);



86 HKRB: In-situ absorption coefficient measurements

149 p010 = polyfit(tvec(idD010),D010(idD010),1);
150 R010 = polyval(p010,tvec);
151 T010 = 60/(R010(1)-R010(end));
152 rsq010 = (sum((R010(idD010)-mean(D010(idD010))).^2)) / ...

(sum((D010(idD010)-mean(D010(idD010))).^2));
153 nonlin010 = 1000*(1-rsq010);
154 alphax010 = 55.3*Ly^2*29.6/(-c^2*1*T010);
155 alpham010 = 1-sqrt(exp(alphax010));
156 Y010filt = fft(y010filt,Nfft,1);
157
158 %% 200 filtering
159 octfilt200 = octaveFilter(52.8,'1/3 octave');
160 filter200 = octfilt200(dirac);
161 y200filt = flip(octfilt200(flip(y200)));
162 Y200filter = fft(filter200,Nfft);
163 y200filt = y200filt(1:40000);
164 D200 = 10*log10(flip(cumsum(flip(y200filt.^2))));
165 D200 = D200-max(D200);
166 idD200 = find(D200 <= -5 & D200 >= -25);
167 p200 = polyfit(tvec(idD200),D200(idD200),1);
168 R200 = polyval(p200,tvec);
169 T200 = 60/(R200(1)-R200(end));
170 rsq200 = (sum((R200(idD200)-mean(D200(idD200))).^2)) / ...

(sum((D200(idD200)-mean(D200(idD200))).^2));
171 nonlin200 = 1000*(1-rsq200);
172 alphax200 = 55.3*Lx^2*54.8/(-c^2*2*T200);
173 alpham200 = 1-exp(alphax200);
174 Y200filt = fft(y200filt,Nfft,1);
175 %% 020 filtering
176 octfilt020 = octaveFilter(57,'1/3 octave');
177 filter020 = octfilt020(dirac);
178 y020filt = flip(octfilt020(flip(y020)));
179 Y020filter = fft(filter020,Nfft);
180 y020filt = y020filt(1:41000);
181 D020 = 10*log10(flip(cumsum(flip(y020filt.^2))));
182 D020 = D020-max(D020);
183 idD020 = find(D020 <= -5 & D020 >= -25);
184 p020 = polyfit(tvec(idD020),D020(idD020),1);
185 R020 = polyval(p020,tvec);
186 T020 = 60/(R020(1)-R020(end));
187 rsq020 = (sum((R020(idD020)-mean(D020(idD020))).^2)) / ...

(sum((D020(idD020)-mean(D020(idD020))).^2));
188 nonlin020 = 1000*(1-rsq020);
189 alphax020 = 55.3*Ly^2*57/(-c^2*2*T020);
190 alpham020 = 1-sqrt(exp(alphax020));
191 Y020filt = fft(y020filt,Nfft,1);
192 %% 300 filtering 82.1Hz
193 octfilt300 = octaveFilter(80,'1/6 octave');
194 filter300 = octfilt300(dirac);
195 y300filt = flip(octfilt300(flip(y300)));
196 Y300filter = fft(filter300,Nfft);
197 y300filt = y300filt(1:40000);
198 D300 = 10*log10(flip(cumsum(flip(y300filt.^2))));
199 D300 = D300 - max(D300);
200 idD300 = find(D300 <= -5 & D300 >= -25);
201 p300 = polyfit(tvec(idD300),D300(idD300),1);
202 R300 = polyval(p300,tvec);
203 T300 = 60/(R300(1)-R300(end));
204 rsq300 = (sum((R300(idD300)-mean(D300(idD300))).^2)) / ...

(sum((D300(idD300)-mean(D300(idD300))).^2));
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205 nonlin300 = 1000*(1-rsq300);
206 alphax300 = 55.3*Lx^2*82.1/(-c^2*3*T300);
207 alpham300 = 1-exp(alphax300);
208 Y300filt = fft(y300filt,Nfft,1);
209 %% 030 filtering
210 octfilt030 = octaveFilter(84,'1/6 octave');
211 filter030 = octfilt030(dirac);
212 y030filt = flip(octfilt030(flip(y030)));
213 Y030filter = fft(filter030,Nfft);
214 y030filt = y030filt(1:24000);
215 D030 = 10*log10(flip(cumsum(flip(y030filt.^2))));
216 D030 = D030 - max(D030);
217 idD030 = find(D030 <= -5 & D030 >= -25);
218 p030 = polyfit(tvec(idD030),D030(idD030),1);
219 R030 = polyval(p030,tvec);
220 T030 = 60/(R030(1)-R030(end));
221 rsq030 = (sum((R030(idD030)-mean(D030(idD030))).^2)) / ...

(sum((D030(idD030)-mean(D030(idD030))).^2));
222 nonlin030 = 1000*(1-rsq030);
223 alphax030 = 55.3*Ly^2*84.8/(-c^2*3*T030);
224 alpham030 = 1-sqrt(exp(alphax030));
225 Y030filt = fft(y030filt,Nfft,1);
226 %% Plot decay curve lowest 7 modes
227 figure()
228 sgtitle('Decay curves and parmeters for room A','FontSize',18)
229 subplot(3,2,1),plot(D100),title(['100 mode, 28.1 Hz, T_{20} = ...

',num2str(T100,3),', \alpha_m = ',num2str(alpham100,3),', and \xi = ...
',num2str(nonlin100,3)]),hold on,plot(R100,'--k'),plot([idD100(1) ...
idD100(end)],D100([idD100(1) idD100(end)]),'or'),hold off,ylim([-60 ...
0]),xlabel('Samples'),ylabel('[dB]'),set(gca, 'fontsize', 15)

230 subplot(3,2,2),plot(D010),title(['010 mode, 29.6 Hz, T_{20} = ...
',num2str(T010,3),', \alpha_m = ',num2str(alpham010,3),', and \xi = ...
',num2str(nonlin010,3)]),hold on,plot(R010,'--k'),plot([idD010(1) ...
idD010(end)],D010([idD010(1) idD010(end)]),'or'),hold off,ylim([-60 ...
0]),xlabel('Samples'),ylabel('[dB]'),set(gca, 'fontsize', 15)

231 subplot(3,2,3),plot(D200),title(['200 mode, 54.8 Hz, T_{20} = ...
',num2str(T200,3),', \alpha_m = ',num2str(alpham200,3),', and \xi = ...
',num2str(nonlin200,3)]),hold on,plot(R200,'--k'),plot([idD200(1) ...
idD200(end)],D200([idD200(1) idD200(end)]),'or'),hold off,ylim([-60 ...
0]),xlabel('Samples'),ylabel('[dB]'),set(gca, 'fontsize', 15)

232 subplot(3,2,4),plot(D020),title(['020 mode, 57.0 Hz, T_{20} = ...
',num2str(T020,3),', \alpha_m = ',num2str(alpham020,3),', and \xi = ...
',num2str(nonlin020,3)]),hold on,plot(R020,'--k'),plot([idD020(1) ...
idD020(end)],D020([idD020(1) idD020(end)]),'or'),hold off,ylim([-60 ...
0]),xlabel('Samples'),ylabel('[dB]'),set(gca, 'fontsize', 15)

233 subplot(3,2,5),plot(D300),title(['300 mode, 82.1 Hz, T_{20} = ...
',num2str(T300,3),', \alpha_m = ',num2str(alpham300,3),', and \xi = ...
',num2str(nonlin300,3)]),hold on,plot(R300,'--k'),plot([idD300(1) ...
idD300(end)],D300([idD300(1) idD300(end)]),'or'),hold off,ylim([-60 ...
0]),xlabel('Samples'),ylabel('[dB]'),set(gca, 'fontsize', 15)

234 subplot(3,2,6),plot(D030),title(['030 mode, 85.1 Hz, T_{20} = ...
',num2str(T030,3),', \alpha_m = ',num2str(alpham030,3),', and \xi = ...
',num2str(nonlin030,3)]),hold on,plot(R030,'--k'),plot([idD030(1) ...
idD030(end)],D030([idD030(1) idD030(end)]),'or'),hold off,ylim([-60 ...
0]),xlabel('Samples'),ylabel('[dB]'),set(gca, 'fontsize', 15)

235 set(gca, 'fontsize', 18)
236 %% Plot in frequency
237 figure()
238 sgtitle('Frequency responses with source and receiver position cancelling ...

in room A','FontSize',18)
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239 subplot(3,2,1)
240 plot(fvec(ivf),20*log10(abs(Y100(ivf))),fvec(ivf),20*log10(abs(Y100filter(ivf))))
241 title('100 mode, 28.1 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 15)
242 xline(eigenfreqs(2,1),'--k')
243 xline(AresX(1))
244 ylim([-40 35])
245 legend({'Room''s frequency response','Filter''s frequency response','Rigid ...

room''s natural frequency'},'Location','best','FontSize',16)
246 xlim([minfreq maxfreq])
247 subplot(3,2,2)
248 plot(fvec(ivf),20*log10(abs(Y010(ivf))),fvec(ivf),20*log10(abs(Y010filter(ivf))))
249 title('010 mode, 29.6 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 15)
250 xline(eigenfreqs(3,1),'--k')
251 xline(AresY(1))
252 ylim([-40 35])
253 xlim([minfreq maxfreq])
254
255 subplot(3,2,3)
256 plot(fvec(ivf),20*log10(abs(Y200(ivf))),fvec(ivf),20*log10(abs(Y200filter(ivf))))
257 title('200 mode, 54.8 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 15)
258 xline(eigenfreqs(6,1),'--k')
259 xline(AresX(2))
260 ylim([-40 35])
261 xlim([minfreq maxfreq])
262 subplot(3,2,4)
263 plot(fvec(ivf),20*log10(abs(Y020(ivf))),fvec(ivf),20*log10(abs(Y020filter(ivf))))
264 title('020 mode, 57.0 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 15)
265 xline(eigenfreqs(7,1),'--k')
266 xline(AresY(2))
267 ylim([-40 35])
268 xlim([minfreq maxfreq])
269
270 subplot(3,2,5)
271 plot(fvec(ivf),20*log10(abs(Y300(ivf))),fvec(ivf),20*log10(abs(Y300filter(ivf))))
272 title('300 mode, 82.1 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 15)
273 xline(eigenfreqs(18,1),'--k')
274 xline(AresX(3))
275 ylim([-40 35])
276 xlim([minfreq maxfreq])
277 subplot(3,2,6)
278 plot(fvec(ivf),20*log10(abs(Y030(ivf))),fvec(ivf),20*log10(abs(Y030filter(ivf))))
279 title('030 mode, 85.1 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 15)
280 xline(eigenfreqs(19,1),'--k')
281 xline(AresY(3))
282 ylim([-40 35])
283 xlim([minfreq maxfreq])

Code listing B.14: ModalT_B524.m

1 clear
2 close all
3
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4 Lx = 3.5; % Length
5 Ly = 2.3; % Width
6 Lz = 3.4; % Height
7 T = 0.5; % Reverberation time at low frequencies
8 c = 340; % speed of air in the room
9 Nfft = 2^19; % FFT Size

10 FS = 44100; % Samplerate
11 maxfreq = 200; % max frequency plotted
12 minfreq = 20; % min frequency plotted
13 dims = [Lx Ly Lz];
14 fvec(:,1) = FS*(0:(Nfft/2-1))/Nfft; % frequency vecotr
15 tvec(:,1) = (1:1*44101)/44100; % time vector for 1 second
16 ivf = find(fvec < maxfreq); % frequency index vector
17 eigenfreqs = Shoeboxfreq(dims,fvec(ivf),c);
18 [~,idf] = sort(eigenfreqs,1);
19 eigenfreqs = eigenfreqs(idf,:); %Sorted natural frequencies for hard walls
20 dirac = [1; zeros(136709,1)]; %unit pulse
21 BresX = [52.8 102 150]; % First axial modal frequencies observed for the X axis
22 BresY = [82.4 160]; % First axial modal frequencies observed for the Y axis
23 %% The following section imports the impulse responses
24 %% LSP
25 yLSP = audioread('0-180_averageTimeDomain.wav');
26 YLSP = fft(yLSP(1:7000),Nfft,1);
27 %% 100
28 y100 = audioread('B524/ModalT/100.wav');
29 Y100 = fft(y100(1:T*100000),Nfft,1)./YLSP;
30 %% 200
31 y200 = audioread('B524/ModalT/200.wav');
32 Y200 = fft(y200(1:T*100000),Nfft,1)./YLSP;
33 %% 300
34 y300 = audioread('B524/ModalT/300.wav');
35 Y300 = fft(y300(1:T*100000),Nfft,1)./YLSP;
36 %% 010
37 y010 = audioread('B524/ModalT/010.wav');
38 Y010 = fft(y010(1:T*100000),Nfft,1)./YLSP;
39 %% The following sections backwards filter the IRs before they are ...

backwards integrated. Then a least-squares line is calculated and all ...
the parameters are calculated. Like T_modal, Xi, and alpha.

40 %% 100 filtering
41 octfilt100 = octaveFilter(53.1,'2/3 octave');
42 filter100 = octfilt100(dirac);
43 y100filt = flip(octfilt100(flip(y100)));
44 Y100filter = fft(filter100,Nfft);
45 y100filt = y100filt(1:16500);
46 D100 = 10*log10(flip(cumsum(flip(y100filt.^2))));
47 D100 = D100-max(D100);
48 idD100 = find(D100 <= -5 & D100 >= -25);
49 p100 = polyfit(tvec(idD100),D100(idD100),1);
50 R100 = polyval(p100,tvec);
51 T100 = 60/(R100(1)-R100(end));
52 rsq100 = (sum((R100(idD100)-mean(D100(idD100))).^2)) / ...

(sum((D100(idD100)-mean(D100(idD100))).^2));
53 nonlin100 = 1000*(1-rsq100);
54 alphax100 = 55.3*Lx^2*52.8/(-c^2*1*T100);
55 alpham100 = 1-sqrt(exp(alphax100));
56 Y100filt = fft(y100filt,Nfft,1);
57 %% 200 filtering
58 octfilt200 = octaveFilter(100,'1/3 octave');
59 filter200 = octfilt200(dirac);
60 y200filt = flip(octfilt200(flip(y200)));
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61 Y200filter = fft(filter200,Nfft);
62 y200filt = y200filt(1:7000);
63 D200 = 10*log10(flip(cumsum(flip(y200filt.^2))));
64 D200 = D200-max(D200);
65 idD200 = find(D200 <= -5 & D200 >= -25);
66 p200 = polyfit(tvec(idD200),D200(idD200),1);
67 R200 = polyval(p200,tvec);
68 T200 = 60/(R200(1)-R200(end));
69 rsq200 = (sum((R200(idD200)-mean(D200(idD200))).^2)) / ...

(sum((D200(idD200)-mean(D200(idD200))).^2));
70 nonlin200 = 1000*(1-rsq200);
71 alphax200 = 55.3*Lx^2*102/(-c^2*2*T200);
72 alpham200 = 1-sqrt(exp(alphax200));
73 Y200filt = fft(y200filt,Nfft,1);
74 %% 300 filtering 154 Hz
75 octfilt300 = octaveFilter(148,'1/3 octave');
76 filter300 = octfilt300(dirac);
77 y300filt = flip(octfilt300(flip(y300)));
78 Y300filter = fft(filter300,Nfft);
79 y300filt = y300filt(1:19000);
80 D300 = 10*log10(flip(cumsum(flip(y300filt.^2))));
81 D300 = D300 - max(D300);
82 idD300 = find(D300 <= -5 & D300 >= -25);
83 p300 = polyfit(tvec(idD300),D300(idD300),1);
84 R300 = polyval(p300,tvec);
85 T300 = 60/(R300(1)-R300(end));
86 rsq300 = (sum((R300(idD300)-mean(D300(idD300))).^2)) / ...

(sum((D300(idD300)-mean(D300(idD300))).^2));
87 nonlin300 = 1000*(1-rsq300);
88 alphax300 = 55.3*Lx^2*150/(-c^2*3*T300);
89 alpham300 = 1-sqrt(exp(alphax300));
90 Y300filt = fft(y300filt,Nfft,1);
91 %% 010 filtering
92 octfilt010 = octaveFilter(82.6,'1/3 octave');
93 filter010 = octfilt010(dirac);
94 y010filt = flip(octfilt010(flip(y010)));
95 Y010filter = fft(filter010,Nfft);
96 y010filt = y010filt(1:16000);
97 D010 = 10*log10(flip(cumsum(flip(y010filt.^2))));
98 D010 = D010-max(D010);
99 idD010 = find(D010 <= -5 & D010 >= -25);

100 p010 = polyfit(tvec(idD010),D010(idD010),1);
101 R010 = polyval(p010,tvec);
102 T010 = 60/(R010(1)-R010(end));
103 rsq010 = (sum((R010(idD010)-mean(D010(idD010))).^2)) / ...

(sum((D010(idD010)-mean(D010(idD010))).^2));
104 nonlin010 = 1000*(1-rsq010);
105 alpham010 = 1-exp(13.8*Ly/(-c*T010));
106 Y010filt = fft(y010filt,Nfft,1);
107 %% Plot decay curve lowest 7 modes
108 figure()
109 sgtitle('Decay curves and parmeters for room B','FontSize',18)
110 subplot(3,2,1),plot(D100),title(['100 mode, 52.8 Hz, T_{20} = ...

',num2str(T100,3),', \alpha_m = ',num2str(alpham100,3),', and \xi = ...
',num2str(nonlin100,3)]),xlabel('Samples'),ylabel('[dB]'),hold ...
on,plot(R100,'--k'),plot([idD100(1) idD100(end)],D100([idD100(1) ...
idD100(end)]),'or'),hold off,ylim([-60 ...
0]),xlabel('Samples'),ylabel('[dB]'),set(gca, 'fontsize', 15)

111 subplot(3,2,2),plot(D010),title(['010 mode, 82.4 Hz, T_{20} = ...
',num2str(T010,3),', \alpha_m = ',num2str(alpham010,3),', and \xi = ...
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',num2str(nonlin010,3)]),xlabel('Samples'),ylabel('[dB]'),hold ...
on,plot(R010,'--k'),plot([idD010(1) idD010(end)],D010([idD010(1) ...
idD010(end)]),'or'),hold off,ylim([-60 ...
0]),xlabel('Samples'),ylabel('[dB]'),set(gca, 'fontsize', 15)

112 subplot(3,2,3),plot(D200),title(['200 mode, 102.0 Hz, T_{20} = ...
',num2str(T200,3),', \alpha_m = ',num2str(alpham200,3),', and \xi = ...
',num2str(nonlin200,3)]),xlabel('Samples'),ylabel('[dB]'),hold ...
on,plot(R200,'--k'),plot([idD200(1) idD200(end)],D200([idD200(1) ...
idD200(end)]),'or'),hold off,ylim([-60 ...
0]),xlabel('Samples'),ylabel('[dB]'),set(gca, 'fontsize', 15)

113 subplot(3,2,5),plot(D300),title(['300 mode, 150.0 Hz, T_{20} = ...
',num2str(T300,3),', \alpha_m = ',num2str(alpham300,3),', and \xi = ...
',num2str(nonlin300,3)]),xlabel('Samples'),ylabel('[dB]'),hold ...
on,plot(R300,'--k'),plot([idD300(1) idD300(end)],D300([idD300(1) ...
idD300(end)]),'or'),hold off,ylim([-60 ...
0]),xlabel('Samples'),ylabel('[dB]'),set(gca, 'fontsize', 15)

114 set(gca, 'fontsize', 18)
115 %% Plot in frequency
116 figure()
117 sgtitle('Frequency responses with source and receiver position cancelling ...

in room B','FontSize',18)
118 subplot(3,2,1)
119 plot(fvec(ivf),20*log10(abs(Y100(ivf))),fvec(ivf),20*log10(abs(Y100filter(ivf))))
120 title('100 mode, 52.8 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 15)
121 xline(eigenfreqs(2,1),'--k')
122 xline(BresX(1))
123 %legend({'Room''s frequency response','Filter''s frequency ...

response','Rigid room''s natural frequency'},'Location','best')
124 ylim([-40 30])
125 xlim([minfreq maxfreq])
126 subplot(3,2,2)
127 plot(fvec(ivf),20*log10(abs(Y010(ivf))),fvec(ivf),20*log10(abs(Y010filter(ivf))))
128 title('010 mode, 82.4 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 15)
129 xline(eigenfreqs(5,1),'--k')
130 xline(BresY(1))
131 ylim([-40 30])
132 xlim([minfreq maxfreq])
133 subplot(3,2,3)
134 plot(fvec(ivf),20*log10(abs(Y200(ivf))),fvec(ivf),20*log10(abs(Y200filter(ivf))))
135 title('200 mode, 102.0 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 15)
136 xline(eigenfreqs(8,1),'--k')
137 xline(BresX(2))
138 ylim([-40 30])
139 xlim([minfreq maxfreq])
140 subplot(3,2,5)
141 plot(fvec(ivf),20*log10(abs(Y300(ivf))),fvec(ivf),20*log10(abs(Y300filter(ivf))))
142 title('300 mode, 150.0 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 15)
143 xline(eigenfreqs(18,1),'--k')
144 xline(BresX(3))
145 ylim([-40 30])
146 xlim([minfreq maxfreq])

Code listing B.15: ModalT_B553.m
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1 clear
2 close all
3
4 Lx = 3.05; %Length
5 Ly = 2.3; %Width
6 Lz = 3.4; %Height
7 T = 0.5; % Reverberation time at low frequencies
8 c = 340; % speed of air in the room
9 Nfft = 2^19; % FFT Size

10 FS = 44100; % Samplerate
11 maxfreq = 200; % max frequency plotted
12 minfreq = 20; % min frequency plotted
13 dims = [Lx Ly Lz];
14 fvec(:,1) = FS*(0:(Nfft/2-1))/Nfft; % frequency vecotr
15 tvec(:,1) = (1:1*44101)/44100; % time vector for 1 second
16 ivf = find(fvec < maxfreq); % frequency index vectoreigenfreqs = ...

Shoeboxfreq(dims,fvec(ivf),c);
17 eigenfreqs = Shoeboxfreq(dims,fvec(ivf),c);
18 [~,idf] = sort(eigenfreqs,1);
19 eigenfreqs = eigenfreqs(idf,:);
20 dirac = [1; zeros(136709,1)]; %unit pulse
21 CresX = [61.7 118 174.5];% First axial modal frequencies observed for the ...

X axis
22 CresY = [78.7 154];% First axial modal frequencies observed for the Y axis
23 %% The following section imports the impulse responses
24 %% LSP
25 yLSP = audioread('0-180_averageTimeDomain.wav');
26 YLSP = fft(yLSP(1:7000),Nfft,1);
27 %% 100
28 y100 = audioread('B553/ModalT/100.wav');
29 Y100 = fft(y100(1:T*100000),Nfft,1)./YLSP;
30 %% 200
31 y200 = audioread('B553/ModalT/200.wav');
32 Y200 = fft(y200(1:T*100000),Nfft,1)./YLSP;
33 %% 300
34 y300 = audioread('B553/ModalT/300.wav');
35 Y300 = fft(y300(1:T*100000),Nfft,1)./YLSP;
36 %% 010
37 y010 = audioread('B553/ModalT/010.wav');
38 Y010 = fft(y010(1:T*100000),Nfft,1)./YLSP;
39 %% 020
40 y020 = audioread('B553/ModalT/020.wav');
41 Y020 = fft(y020(1:T*100000),Nfft,1)./YLSP;
42 %% The following sections backwards filter the IRs before they are ...

backwards integrated. Then a least-squares line is calculated and all ...
the parameters are calculated. Like T_modal, Xi, and alpha.

43 %% 100 filtering
44 octfilt100 = octaveFilter(61.15,'2/3 octave');
45 filter100 = octfilt100(dirac);
46 y100filt = octfilt100(y100);
47 Y100filter = fft(filter100,Nfft);
48 y100filt = y100filt(1:16000);
49 D100 = 10*log10(flip(cumsum(flip(y100filt.^2))));
50 D100 = D100-max(D100);
51 idD100 = find(D100 <= -5 & D100 >= -25);
52 p100 = polyfit(tvec(idD100),D100(idD100),1);
53 R100 = polyval(p100,tvec);
54 T100 = 60/(R100(1)-R100(end));
55 rsq100 = (sum((R100(idD100)-mean(D100(idD100))).^2)) / ...

(sum((D100(idD100)-mean(D100(idD100))).^2));
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56 nonlin100 = 1000*(1-rsq100);
57 alphax100 = 55.3*Lx^2*61.7/(-c^2*1*T100);
58 alpham100 = 1-sqrt(exp(alphax100));
59 Y100filt = fft(y100filt,Nfft,1);
60 %% 200 filtering
61 octfilt200 = octaveFilter(117.9,'1/6 octave');
62 filter200 = octfilt200(dirac);
63 y200filt = flip(octfilt200(flip(y200)));
64 Y200filter = fft(filter200,Nfft);
65 y200filt = y200filt(1:24000);
66 D200 = 10*log10(flip(cumsum(flip(y200filt.^2))));
67 D200 = D200-max(D200);
68 idD200 = find(D200 <= -5 & D200 >= -25);
69 p200 = polyfit(tvec(idD200),D200(idD200),1);
70 R200 = polyval(p200,tvec);
71 T200 = 60/(R200(1)-R200(end));
72 rsq200 = (sum((R200(idD200)-mean(D200(idD200))).^2)) / ...

(sum((D200(idD200)-mean(D200(idD200))).^2));
73 nonlin200 = 1000*(1-rsq200);
74 alphax200 = 55.3*Lx^2*118/(-c^2*2*T200);
75 alpham200 = 1-sqrt(exp(alphax200));
76 Y200filt = fft(y200filt,Nfft,1);
77 %% 300 filtering
78 octfilt300 = octaveFilter(174.4,'1/12 octave');
79 filter300 = octfilt300(dirac);
80 y300filt = flip(octfilt300(flip(y300)));
81 Y300filter = fft(filter300,Nfft);
82 y300filt = y300filt(1:19000);
83 D300 = 10*log10(flip(cumsum(flip(y300filt.^2))));
84 D300filter = 10*log10(flip(cumsum(flip(filter300.^2))));
85 D300 = D300 - max(D300);
86 idD300 = find(D300 <= -5 & D300 >= -25);
87 p300 = polyfit(tvec(idD300),D300(idD300),1);
88 R300 = polyval(p300,tvec);
89 T300 = 60/(R300(1)-R300(end));
90 rsq300 = (sum((R300(idD300)-mean(D300(idD300))).^2)) / ...

(sum((D300(idD300)-mean(D300(idD300))).^2));
91 nonlin300 = 1000*(1-rsq300);
92 alphax300 = 55.3*Lx^2*174.5/(-c^2*3*T300);
93 alpham300 = 1-sqrt(exp(alphax300));
94 Y300filt = fft(y300filt,Nfft,1);
95 %% 010 filtering
96 octfilt010 = octaveFilter(78.4,'1/3 octave');
97 filter010 = octfilt010(dirac);
98 y010filt = flip(octfilt010(flip(y010)));
99 Y010filter = fft(filter010,Nfft);

100 y010filt = y010filt(1:14000);
101 D010 = 10*log10(flip(cumsum(flip(y010filt.^2))));
102 D010 = D010-max(D010);
103 idD010 = find(D010 <= -5 & D010 >= -25);
104 p010 = polyfit(tvec(idD010),D010(idD010),1);
105 R010 = polyval(p010,tvec);
106 T010 = 60/(R010(1)-R010(end));
107 rsq010 = (sum((R010(idD010)-mean(D010(idD010))).^2)) / ...

(sum((D010(idD010)-mean(D010(idD010))).^2));
108 nonlin010 = 1000*(1-rsq010);
109 alphax010 = 55.3*Ly^2*78.7/(-c^2*1*T010);
110 alpham010 = 1-sqrt(exp(alphax010));
111 Y010filt = fft(y010filt,Nfft,1);
112 %% 020 filtering
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113 octfilt020 = octaveFilter(154.2,'1/6 octave');
114 filter020 = octfilt020(dirac);
115 y020filt = octfilt020(y020);
116 Y020filter = fft(filter020,Nfft);
117 y020filt = y020filt(1:20000);
118 D020 = 10*log10(flip(cumsum(flip(y020filt.^2))));
119 D020 = D020-max(D020);
120 idD020 = find(D020 <= -5 & D020 >= -25);
121 p020 = polyfit(tvec(idD020),D020(idD020),1);
122 R020 = polyval(p020,tvec);
123 T020 = 60/(R020(1)-R020(end));
124 rsq020 = (sum((R020(idD020)-mean(D020(idD020))).^2)) / ...

(sum((D020(idD020)-mean(D020(idD020))).^2));
125 nonlin020 = 1000*(1-rsq020);
126 alphax020 = 55.3*Ly^2*154/(-c^2*2*T020);
127 alpham020 = 1-sqrt(exp(alphax020));
128 Y020filt = fft(y020filt,Nfft,1);
129 %% Plot decay curve lowest 7 modes
130 figure()
131 sgtitle('Decay curves and parmeters for room C','FontSize',18)
132 subplot(3,2,1),plot(D100),title(['100 mode, 61.7 Hz, T_{20} = ...

',num2str(T100,3),', \alpha_m = ',num2str(alpham100,3),', and \xi = ...
',num2str(nonlin100,3)]),xlabel('Samples'),ylabel('[dB]'),hold ...
on,plot(R100,'--k'),plot([idD100(1) idD100(end)],D100([idD100(1) ...
idD100(end)]),'or'),hold off,ylim([-60 0]),set(gca, 'fontsize', 17)

133 subplot(3,2,2),plot(D010),title(['010 mode, 78.7 Hz, T_{20} = ...
',num2str(T010,3),', \alpha_m = ',num2str(alpham010,3),', and \xi = ...
',num2str(nonlin010,3)]),xlabel('Samples'),ylabel('[dB]'),hold ...
on,plot(R010,'--k'),plot([idD010(1) idD010(end)],D010([idD010(1) ...
idD010(end)]),'or'),hold off,ylim([-60 0]),set(gca, 'fontsize', 17)

134 subplot(3,2,3),plot(D200),title(['200 mode, 118.0 Hz, T_{20} = ...
',num2str(T200,3),', \alpha_m = ',num2str(alpham200,3),', and \xi = ...
',num2str(nonlin200,3)]),xlabel('Samples'),ylabel('[dB]'),hold ...
on,plot(R200,'--k'),plot([idD200(1) idD200(end)],D200([idD200(1) ...
idD200(end)]),'or'),hold off,ylim([-60 0]),set(gca, 'fontsize', 17)

135 subplot(3,2,4),plot(D020),title(['020 mode, 154.0 Hz, T_{20} = ...
',num2str(T020,3),', \alpha_m = ',num2str(alpham020,3),', and \xi = ...
',num2str(nonlin020,3)]),xlabel('Samples'),ylabel('[dB]'),hold ...
on,plot(R020,'--k'),plot([idD020(1) idD020(end)],D020([idD020(1) ...
idD020(end)]),'or'),hold off,ylim([-60 0]),set(gca, 'fontsize', 17)

136 subplot(3,2,5),plot(D300),title(['300 mode, 174.5 Hz, T_{20} = ...
',num2str(T300,3),', \alpha_m = ',num2str(alpham300,3),', and \xi = ...
',num2str(nonlin300,3)]),xlabel('Samples'),ylabel('[dB]'),hold ...
on,plot(R300,'--k'),plot([idD300(1) idD300(end)],D300([idD300(1) ...
idD300(end)]),'or'),hold off,ylim([-60 0]),set(gca, 'fontsize', 17)

137 %% Plot in frequency
138 figure()
139 sgtitle('Frequency responses with source and receiver position cancelling ...

in room C','FontSize',18)
140 subplot(3,2,1)
141 plot(fvec(ivf),20*log10(abs(Y100(ivf))),fvec(ivf),20*log10(abs(Y100filter(ivf))))
142 title('100 mode, 61.7 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 18)
143 xline(eigenfreqs(3,1),'--k')
144 xline(CresX(1))
145 %legend({'Room''s frequency response','Filter''s frequency ...

response','Rigid room''s natural frequency'},'Location','best')
146 ylim([-40 30])
147 xlim([minfreq maxfreq])
148 subplot(3,2,2)
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149 plot(fvec(ivf),20*log10(abs(Y010(ivf))),fvec(ivf),20*log10(abs(Y010filter(ivf))))
150 title('010 mode, 78.7 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 18)
151 xline(eigenfreqs(4,1),'--k')
152 xline(CresY(1))
153 ylim([-40 30])
154 xlim([minfreq maxfreq])
155 subplot(3,2,3)
156 plot(fvec(ivf),20*log10(abs(Y200(ivf))),fvec(ivf),20*log10(abs(Y200filter(ivf))))
157 title('200 mode, 118.0 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 18)
158 xline(eigenfreqs(10,1),'--k')
159 xline(CresX(2))
160 ylim([-40 30])
161 xlim([minfreq maxfreq])
162 subplot(3,2,4)
163 plot(fvec(ivf),20*log10(abs(Y020(ivf))),fvec(ivf),20*log10(abs(Y020filter(ivf))))
164 title('020 mode, 154.0 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 18)
165 xline(eigenfreqs(17,1),'--k')
166 xline(CresY(2))
167 ylim([-40 30])
168 xlim([minfreq maxfreq])
169 subplot(3,2,5)
170 plot(fvec(ivf),20*log10(abs(Y300(ivf))),fvec(ivf),20*log10(abs(Y300filter(ivf))))
171 title('300 mode, 174.5 Hz'),xlabel('Frequency ...

[Hz]'),ylabel('[dB]'),set(gca, 'fontsize', 18)
172 xline(eigenfreqs(25,1),'--k')
173 xline(CresX(3))
174 ylim([-40 30])
175 xlim([minfreq maxfreq])

Code listing B.16: absorptions.m

1 %% init
2 clear
3 close all
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 % This script plots all the estimated absorption coefficients.
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 %% vars
8 Nfft = 2^18;
9 FS = 44100;

10 fvec(:,1) = FS*(0:(Nfft/2-1))/Nfft;
11 omega = 2*pi*fvec;
12 c0 = 339;
13
14 % Absorption coefficient of walls mostly constructed in glass
15 glass.RoomAalpha = [0.366 0.204 0.557];
16 glass.RoomAalphaM = [0.249 0.244 0.549];
17 glass.RoomAalphaTmBad = [0.421, -1, -1];
18 glass.RoomAalphaTm = [-1 0.152 0.247];
19 glass.RoomAivf = [177 340 505];
20 glass.RoomBalpha = [0.322 0.307];
21 glass.RoomBalphaM = [0.014 0.565];
22 glass.RoomBivf = [491 952];
23 glass.RoomCalpha = [0.359 0.190 -1];
24 glass.RoomCalphaM = [0.212 0.014 -1];
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25 glass.RoomCalphaTm = [0.315 0.223 0.26];
26 glass.RoomCivf = [368 703 2076];
27
28 % Absorption coefficient of gypsum walls.
29 gypsium.RoomAalpha = [0.226 0.242 -1];
30 gypsium.RoomAalphaBad = [-1 -1 0.616];
31 gypsium.RoomAalphaM = [0.01 0.347 0.728];
32 gypsium.RoomAalphaTm = [0.337 0.349 0.441];
33 gypsium.RoomAivf = [168 327 483];
34 gypsium.RoomBalpha = [0.424 0.312 0.312];
35 gypsium.RoomBalphaM = [0.013 0.018 0.457];
36 gypsium.RoomBalphaTmBad = [-1 0.797 0.253];
37 gypsium.RoomBalphaTm = [0.359 -1 -1];
38 gypsium.RoomBivf = [315 607 893];
39 gypsium.RoomCalpha = [0.325 -1];
40 gypsium.RoomCalphaBad = [-1 0.693];
41 gypsium.RoomCalphaM = [0.025 0.789];
42 gypsium.RoomCalphaTmBad = [-1 0.225];
43 gypsium.RoomCalphaTm = [0.294 -1];
44 gypsium.RoomCivf = [469 917];
45
46 figure()
47 sgtitle('Absorption Coefficient')
48 subplot(1,2,2)
49 hold on
50 plot(fvec(glass.RoomAivf),glass.RoomAalpha,'ob','DisplayName','Room A, ...

standing wave method','MarkerSize',15)
51 plot(fvec(glass.RoomAivf),glass.RoomAalphaM,'+b','DisplayName','Room A, ...

standing wave model','MarkerSize',5)
52 plot(fvec(glass.RoomAivf),glass.RoomAalphaTm,'*b','DisplayName','Room A, ...

modal reverberation time method','MarkerSize',15)
53 plot(fvec(glass.RoomAivf),glass.RoomAalphaTmBad,'*b','HandleVisibility','off','MarkerSize',5)
54 plot(fvec(glass.RoomBivf),glass.RoomBalpha,'om','DisplayName','Room B, ...

standing wave method','MarkerSize',15)
55 plot(fvec(glass.RoomBivf),glass.RoomBalphaM,'+m','DisplayName','Room B, ...

standing wave model','MarkerSize',5)
56 plot(fvec(glass.RoomCivf),glass.RoomCalpha,'or','DisplayName','Room C, ...

standing wave method','MarkerSize',15)
57 plot(fvec(glass.RoomCivf),glass.RoomCalphaM,'+r','DisplayName','Room C, ...

standing wave model','MarkerSize',5)
58 plot(fvec(glass.RoomCivf),glass.RoomCalphaTm,'*r','DisplayName','Room C, ...

modal reverberation time method','MarkerSize',15)
59 hold off
60 title('Glass wall'),xlabel('Frequency [Hz]')
61 xlim([20 200])
62 ylim([0 1])
63 set(gca, 'fontsize', 18)
64 grid minor
65
66 subplot(1,2,1)
67 hold on
68 plot(fvec(gypsium.RoomAivf),gypsium.RoomAalpha,'ob','DisplayName','Room A, ...

standing wave method','MarkerSize',15)
69 plot(fvec(gypsium.RoomAivf),gypsium.RoomAalphaBad,'ob','HandleVisibility','off','MarkerSize',5)
70 plot(fvec(gypsium.RoomAivf),gypsium.RoomAalphaM,'+b','DisplayName','Room ...

A, standing wave model','MarkerSize',5)
71 plot(fvec(gypsium.RoomAivf),gypsium.RoomAalphaTm,'*b','DisplayName','Room ...

A, modal reverberation time method','MarkerSize',15)
72 plot(fvec(gypsium.RoomBivf),gypsium.RoomBalpha,'om','DisplayName','Room B, ...

standing wave method','MarkerSize',15)
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73 plot(fvec(gypsium.RoomBivf),gypsium.RoomBalphaM,'+m','DisplayName','Room ...
B, standing wave model','MarkerSize',5)

74 plot(fvec(gypsium.RoomBivf),gypsium.RoomBalphaTm,'*m','DisplayName','Room ...
B, modal reverberation time method','MarkerSize',15)

75 plot(fvec(gypsium.RoomBivf),gypsium.RoomBalphaTmBad,'*m','HandleVisibility','off','MarkerSize',5)
76 plot(fvec(gypsium.RoomCivf),gypsium.RoomCalpha,'or','DisplayName','Room C, ...

standing wave method','MarkerSize',15)
77 plot(fvec(gypsium.RoomCivf),gypsium.RoomCalphaBad,'or','HandleVisibility','off','MarkerSize',5)
78 plot(fvec(gypsium.RoomCivf),gypsium.RoomCalphaM,'+r','DisplayName','Room ...

C, standing wave model','MarkerSize',5)
79 plot(fvec(gypsium.RoomCivf),gypsium.RoomCalphaTm,'*r','DisplayName','Room ...

C, modal reverberation time method','MarkerSize',15)
80 plot(fvec(gypsium.RoomCivf),gypsium.RoomCalphaTmBad,'*r','HandleVisibility','off','MarkerSize',5)
81 hold off
82 title('Gypsum wall'),xlabel('Frequency [Hz]')
83 legend('Location','best')
84 xlim([20 200])
85 ylim([0 1])
86 set(gca, 'fontsize', 18)
87 grid minor

Code listing B.17: wall.m

1 classdef wall < handle
2 % This script calculates the rough estimate for the wall impedance and
3 % absorption coefficient at low frequencies.
4 % FUNCTIONS:
5 % wall: Calculates the plate's parameters based off the material ...

type, its
6 % thickness and the dimensions of the plate.
7 %
8 % Author : Henrik K. R. Berg
9 % E-mail : hkrb94@gmail.com

10
11 properties
12 type % material type
13 rho % density
14 lx % width of plate
15 ly % height of plate
16 h % thickness of plate
17 m % mass of plate
18 poirat % Poisson's ratio
19 loss % Total lossfactor
20 intloss % Initial loss factor
21 E % Young's modulus
22 B % Bending Stiffness
23 fc % Critical frequency
24 c0 = 340; % Speed of air in the room
25 f11 % Fundmental structural mode of the room
26 alpha % Absorption coefficient of the wall
27 salpha = 0.1 % Assumed structural absorption coefficient of edge ...

conncetions
28 Zm % Wall impedance
29 Rp % Reflection factor
30 fvec = 44100*(0:((2^18)/2-1))/(2^18); % Frequency vector with Nfft ...

= 2^18
31 end
32 methods
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33 function obj = wall(material,h,lx,ly) %constructor
34 if isa(material,'char')
35 material = convertCharsToStrings(material);
36 elseif isnumeric(material)
37 disp('*****************************************************************************')
38 disp('Please enter type of material in lower case letters: ...

valid inputs are:')
39 disp('''glass''')
40 disp('''gypsum''')
41 disp('*****************************************************************************')
42 return
43 elseif isa(material,'string')
44 else
45 disp('*****************************************************************************')
46 disp('Please enter type of material in lower case letters: ...

valid inputs are')
47 disp('''glass''')
48 disp('''gypsum''')
49 disp('*****************************************************************************')
50 return
51 end
52 if material == "glass"
53 obj.type = "glass";
54 obj.rho = 2500;
55 obj.E = 60*10^9;
56 obj.poirat = 0.2;
57 obj.intloss = 0.002;
58 elseif material == "gypsum"
59 obj.type = "gypsum";
60 obj.rho = 900;
61 obj.E = 4.1*10^9;
62 obj.poirat = 0.3;
63 obj.intloss = 0.015;
64 end
65 obj.lx = lx;
66 obj.ly = ly;
67 obj.h = h;
68 obj.m = obj.rho*obj.h;
69 if material == "gypsum"
70 obj.B = obj.E*0.0125^3/(12*(1-obj.poirat^2));
71 obj.fc = obj.c0^2/(2*pi)*sqrt((obj.rho*0.0125)/obj.B);
72 else
73 obj.B = obj.E*obj.h^3/(12*(1-obj.poirat^2));
74 obj.fc = obj.c0^2/(2*pi)*sqrt(obj.m/obj.B);
75 end
76 omega = 2*pi*obj.fvec;
77 obj.loss = obj.intloss + ...

((2*obj.lx+2*obj.ly)*obj.c0*obj.salpha)/(pi^2*obj.lx*obj.ly) ...
* (obj.fvec*obj.fc).^(-1/2)+(2*1.19*obj.c0)./(omega*obj.m);

78 obj.f11 = obj.c0^2/(4*obj.fc)*((1/obj.lx)^2+(1/obj.ly)^2);
79 obj.Zm = ...

1i*omega*obj.m.*(1-(obj.f11./obj.fvec).^2)+obj.loss.*omega*obj.m;
80 obj.Rp = ((obj.Zm/408)-1)./((obj.Zm/408)+1);
81 obj.alpha = 1-abs(obj.Rp).^2;
82 end
83
84 function vals = fn(obj,nx,ny)
85 vals = obj.c0^2/(4*obj.fc)*((nx/obj.lx)^2+(ny/obj.ly)^2);
86 disp(['f(nx,ny) = ',num2str(vals),' Hz'])
87 end
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88 end
89 end

Code listing B.18: WallPlots.m

1 clear
2 close all
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % This script plots the rough estimates of the different plate's absorption
5 % coefficients. It calls the class "wall" to return objects containing the
6 % parameters.
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8
9 Gypsum60 = wall("gypsum",0.025,2.7,0.6);

10 Gypsum90 = wall("gypsum",0.025,2.7,0.9);
11 Glass1_48 = wall("glass",0.00636,1.97,1.48);
12 Glass0_91 = wall("glass",0.00636,1.97,0.915);
13 thickGlass1_48 = wall("glass",0.00836,1.97,1.48);
14 thicksmallglass1_48 = wall("glass",0.00636,0.603,1.48);
15 smallglass1_48 = wall("glass",0.00636,0.603,1.48);
16 smallglass0_91 = wall("glass",0.00636,0.603,0.915);
17 overdoorglass = wall("glass",0.00636,0.83,0.58);
18 thickoverdoorglass = wall("glass",0.00636,0.83,0.58);
19
20 fvec = Gypsum60.fvec;
21 ivf = fvec<200 & fvec>20;
22
23 AresX = [28.1 54.8 82.1];
24 AresY = [29.6 57 84.8];
25 BresX = [52.8 102 150];
26 BresY = [82.4 160];
27 CresX = [61.7 118];
28 CresY = [78.7 154];
29
30 %%
31 figure()
32 set(gcf,'position',[0,0,1800,600])
33 sgtitle('\alpha from 25mm thick gypsum wall')
34 plot(fvec(ivf),Gypsum60.alpha(ivf),'DisplayName','Room A, 60 cm stud distance')
35 hold on
36 xline(28.1,'-k','DisplayName','Axial modes location')
37 xline(54.8,'HandleVisibility','off')
38 xline(82.1,'HandleVisibility','off')
39 hold off
40 legend
41 ylim([0 1])
42 xlabel('Frequency [Hz]')
43 set(gca, 'fontsize', 14)
44 grid minor
45 figure()
46 set(gcf,'position',[0,0,1800,600])
47 sgtitle('\alpha from 25mm thick gypsum wall')
48 hold on
49 plot(fvec(ivf),Gypsum90.alpha(ivf),'DisplayName','Room B & C, 90 cm stud ...

distance')
50 xline(52.8,'-k','DisplayName','Axial modes location, Room B')
51 xline(102,'HandleVisibility','off')
52 xline(150,'HandleVisibility','off')
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53 xline(78.7,'-b','DisplayName','Axial modes location, Room C')
54 xline(154,'-b','HandleVisibility','off')
55 hold off
56 legend
57 ylim([0 1])
58 xlabel('Frequency [Hz]')
59 set(gca, 'fontsize', 14)
60 grid minor
61 figure()
62 set(gcf,'position',[0,0,1800,600])
63 sgtitle('\alpha from 6.36mm thick glass panes, room B')
64 plot(fvec(ivf),Glass1_48.alpha(ivf),'DisplayName','1.97m x 1.48m glass')
65 hold on
66 plot(fvec(ivf),smallglass1_48.alpha(ivf),'DisplayName','0.60m x 1.48m glass')
67 plot(fvec(ivf),overdoorglass.alpha(ivf),'DisplayName','0.83m x 0.58m glass')
68 xline(82.4,'-k','DisplayName','Axial modes location')
69 xline(160,'HandleVisibility','off')
70 hold off
71 legend
72 ylim([0 1])
73 xlabel('Frequency [Hz]')
74 set(gca, 'fontsize', 14)
75 grid minor
76 figure()
77 set(gcf,'position',[0,0,1800,600])
78 sgtitle('\alpha from 8.36mm thick glass panes, room A')
79 plot(fvec(ivf),thickGlass1_48.alpha(ivf),'DisplayName','1.97m x 1.48m glass')
80 hold on
81 plot(fvec(ivf),thicksmallglass1_48.alpha(ivf),'DisplayName','0.60m x 1.48m ...

glass')
82 plot(fvec(ivf),thickoverdoorglass.alpha(ivf),'DisplayName','0.83m x 0.58m ...

glass')
83 xline(29.6,'-k','DisplayName','Axial modes location')
84 xline(57,'HandleVisibility','off')
85 xline(85.1,'HandleVisibility','off')
86 hold off
87 legend
88 ylim([0 1])
89 xlabel('Frequency [Hz]')
90 set(gca, 'fontsize', 14)
91 grid minor
92 figure()
93 set(gcf,'position',[0,0,1800,600])
94 sgtitle('\alpha from 6.36mm thick glass panes, room C')
95 plot(fvec(ivf),Glass0_91.alpha(ivf),'DisplayName','1.97m x 0.91m glass')
96 hold on
97 plot(fvec(ivf),smallglass0_91.alpha(ivf),'DisplayName','0.60m x 0.91m glass')
98 plot(fvec(ivf),overdoorglass.alpha(ivf),'DisplayName','0.83m x 0.58m glass')
99 xline(61.7,'-k','DisplayName','Axial modes location')

100 xline(118,'HandleVisibility','off')
101 xline(174.5,'HandleVisibility','off')
102 hold off
103 legend
104 ylim([0 1])
105 xlabel('Frequency [Hz]')
106 set(gca, 'fontsize', 14)
107 grid minor
108 % figure()
109 % figure()
110 % figure()
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