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FEEDBACK LINEARIZATION CONTROL FOR SYSTEMS WITH

MISMATCHED UNCERTAINTIES VIA DISTURBANCE OBSERVERS
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ABSTRACT

This paper focuses on a novel feedback linearization control

(FLC) law based on a self-learning disturbance observer (SLDO) to

counteract mismatched uncertainties. The FLC based on BNDO (FLC-

BNDO) demonstrates robust control performance only against mismatched

time-invariant uncertainties while the FLC based on SLDO (FLC-SLDO)

demonstrates robust control performance against mismatched time-invariant

and -varying uncertainties, and both of them maintain the nominal control

performance in the absence of mismatched uncertainties. In the estimation

scheme for the SLDO, the BNDO is used to provide a conventional estimation

law, which is used as being the learning error for the type-2 neuro-fuzzy system

(T2NFS), and T2NFS learns mismatched uncertainties. Thus, the T2NFS takes

the overall control of the estimation signal entirely in a very short time

and gives unbiased estimation results for the disturbance. A novel learning

algorithm established on sliding mode control theory is derived for an interval

type-2 fuzzy logic system. The stability of the overall system is proven for a

second-order nonlinear system with mismatched uncertainties. The simulation

results show that the FLC-SLDO demonstrates better control performance than

the traditional FLC, FLC with an integral action (FLC-I) and FLC-BNDO.

Key Words: Disturbance observer, feedback linearization control, mis-

matched uncertainty, uncertain systems.

I. INTRODUCTION

Uncertainties, e.g., unmodelled dynamics, param-

eter variations, and disturbances, are inevitable in real-

time applications [1]. Since control performance is

violated by these uncertainties, disturbance attenuation

has a major influence on control system design [2–

5]. Therefore, control algorithms based on disturbance

observers have been developed to counteract uncer-

tainties in systems [6–8]. In this approach, the main

idea is to merge all uncertainties into one term and
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to add the estimated value of the disturbance by a

disturbance observer into a control law that is derived

for a disturbance-free model. This control structure

was successfully applied in many applications, such

as reusable launch vehicles [9], direct drive motors

[10], robot manipulators [11, 12], ball mill grinding

circuits [13], pulse width modulated inverter [14],

inverted pendulum [15], nonuniform wind turbine tower

[16], uninterruptible power supplies [17] and dynamic

positioning system of ships [18]. Moreover, many

controllers, such as adaptive fuzzy-neural control [19]

and sliding mode control (SMC) [15, 20], have been

designed based on disturbance observers.

Uncertainties can be broadly categorized into two

groups: matched and mismatched uncertainties [21].

Disturbance and control input appear in the same

channel in the former case while they appear in

different channels in the later case [22, 23]. In control
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of systems with matched uncertainties, there exist

many successful applications. The reason is that since

the control input is in the same channel with the

disturbance, only estimated disturbance value is added

into the traditional control law. However, traditional

control methods based on a disturbance observer fail to

drive states of systems with mismatched uncertainties

to the desired equilibrium point so that there is a

necessity to derive novel control laws [24]. The first

solution is to add an integral action to control laws to

remove steady-state error [25]. This results in robust

control performance against mismatched time-invariant

uncertainties but may violate the nominal performance

in the absence of the mismatched. The other solution is

to derive novel control laws. For example, a novel SMC

method has been proposed in [20] by proposing a new

sliding surface for a second-order nonlinear systems

with mismatched uncertainties. The simulation results

show that the proposed control method provides robust

control performance against mismatched uncertainties

and also maintains the nominal performance in the

absence of mismatched uncertainties.

Another novel SMC method for nth order

nonlinear systems with mismatched uncertainties in

[24], both the memoryless and memory-based integral

sliding surfaces and integral sliding-mode controllers

for continuous-time linear systems with mismatched

uncertainties in [26], a back-stepping control method

for nonlinear systems with mismatched uncertainties

in [27], and H∞ controller based on a nonlinear DO

in [28] have been developed recently. Moreover, a

comprehensive study of disturbance observer-based

control methods has been given in [29].

In disturbance observer based control approach,

uncertainties are represented as a parameter in system

models, and thus online parameter estimation methods

are required. There are nonlinear state and parameter

estimation methods, such as particle filtering method

and extended Kalman filter [30–33]. However, it has

been reported that the former one becomes practically

unsolvable in real-time for a large number of variables

while the latter one is not a good candidate in case

of having strong non-linearities [34, 35]. Neuro-fuzzy

structures with SMC theory-based learning algorithms

have been employed for control and identification

purposes in feedback-error learning (FEL) scheme [36–

40]. In this scheme, a conventional controller works

in parallel with a neuro-fuzzy controller in which the

output of the conventional controller is used as the

learning error to train the neuro-fuzzy controller [41].

After a very short time, the neuro-fuzzy controller

takes the overall control signal while the conventional

controller converges to zero. Moreover, SMC theory-

based learning algorithms ensure robustness and faster

convergence rate than the traditional learning methods

due to the computational simplicity. Motivated by these

facts, an FEL estimation scheme is proposed in this

study due to the computational simplicity and learning

capability.

The main contributions of this paper beyond

the existing state-of-the-art are as follows. First, a

novel feedback linearization control (FLC) law based

on a self-learning DO (SLDO) is developed against

mismatched invariant and varying uncertainties, and

the stability of the overall system is proven by

taking the SLDO dynamics into account. Second,

the SLDO is designed in FEL scheme in which the

conventional estimation law and type-2 neuro-fuzzy

structure (T2NFS) work in parallel while the former

one is used as the learning error for the T2NFS. Thus,

the FEL algorithm is employed to develop an observer

for the first time. Third, novel SMC theory-based

learning rules are proposed for the tuning of the T2NFS.

In addition to the stability of the training algorithm,

the stability of the SLDO is proven with Lyapunov

stability analysis. To the best knowledge of the authors,

this is also the first-time such a stability analysis is

ever proven. Fourth, type-2 fuzzy logic systems are

examined under noisy conditions, and computationally

efficient disturbance observers are developed.

The paper consists of five sections: The problem

formulation is given in Section II. The novel FLC law

based on the SLDO is formulated, and the stability

of the overall system is proven in Section III. The

simulation results are presented in Section IV. Finally,

a brief conclusion is given in Section V.

II. Problem Formulation

A second-order nonlinear system with mismatched

uncertainties is written in the following form:

ẋ1 = x2 +d

ẋ2 = a(x)+b(x)u

y = x1 (1)

where x1 and x2 denote the states, u denotes the control

input, d denotes the disturbance, y denotes the output,

a(x) and b(x) denote the nonlinear system dynamics.

2.1. Traditional FLC

The traditional FLC law is written as follows:

u =−b−1(x)
(

a(x)+ k1x1 + k2x2

)
(2)
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where k1,k2 denote the coefficients of the controller and

they are positive, i.e., k1,k2 > 0.

If the control law in (2) is applied to the system

with mismatched uncertainties in (1), the closed-loop

dynamics are obtained as follows:

ẍ1 + k2ẋ1 + k1x1 = k2d + ḋ (3)

Remark 1 Equation (3) shows that the state cannot be

driven the desired equilibrium point under the control

law proposed in (2). This implies why the FLC is

sensitive to mismatched uncertainties.

2.2. FLC with Integral Action

An integral action is added to the control law in

order to make the system robust against mismatched

uncertainties. The FLC with an integral action (FLC-I)

is formulated as follows:

u =−b−1(x)
(

a(x)+ k1x1 + k2x2 + ki

∫ t

0
x1 dt

)
(4)

where ki denotes the coefficient for the integral action

and it is positive, i.e., ki > 0.

If the control law in (4) is applied to the system

with mismatched uncertainties in (1), the closed-loop

dynamics are obtained as follows:

...
x 1 + k2ẍ1 + k1ẋ1 + kiẋ1 = k2ḋ + d̈ (5)

This implies that if the disturbance has a steady-state

value, i.e., ḋ = d̈ = 0, the state can be driven to the

desired equilibrium point.

Remark 2 Equation (5) shows that if disturbance has

a steady-state value, i.e., ḋ = d̈ = 0, the FLC-I is robust

to mismatched time-invariant uncertainties and thus the

steady-state error is eliminated. However, adding an

integral action can result in a worse performance than

the nominal performance obtained by the FLC in the

absence of mismatched uncertainties.

2.3. FLC for Mismatched Time-Invariant

Uncertainties

2.3.1. Basic Nonlinear Disturbance Observer

The second-order nonlinear system with mis-

matched uncertainties in (1) can be re-written in the

following form:

ẋ = g1(x)+g2(x)u+ zd

y = x1 (6)

where x = [x1,x2]
T denotes the state vector, u denotes

the control input, d denotes the disturbance, y denotes

the output, g1(x) = [x2,a(x)]
T and g2(x) = [0,b(x)]T

denote the nonlinear system dynamics, and z = [1,0]T

denotes the disturbance coefficient vector.

The BNDO has been proposed in [42–44] for

uncertainty problem to estimate the disturbance as

follows:

ṗ = −lzp− l
(

zlx+g1(x)+g2(x)u
)

d̂BN = p+ lx (7)

where d̂BN denotes the disturbance estimation, p and

l = [ l1, l2 ] denote the internal state and observer

gain vector of the BNDO, respectively.

The time-derivative of the disturbance estimation

is derived from (7) as follows:

˙̂
dBN = lz ed (8)

where ed = d− d̂BN denotes the estimation error for the

disturbance. Since z = [ 1 0 ]T in (1), it is obtained

as follows:
˙̂

dBN = l1ed (9)

The error dynamics of the BNDO are obtained by

adding the disturbance rate ḋ into (8) as:

ėd + l1ed = ḋ (10)

Assumption 1 The time-derivative of the disturbance

is bounded and has a steady-state value, i.e., lim
t→∞

ḋ(t) =

0.

If Assumption 1 is satisfied, then (10) is obtained

as follows:

ėd + l1ed = 0 (11)

Lemma 1 [42]: If l1 is positive, i.e., l1 > 0, the

error dynamics of the BNDO in (11) converge to zero

exponentially.

Lemma 1 implies that the estimated disturbance

by the BNDO can track the actual disturbance of the

system in (1) exponentially if the disturbance has a

steady-state value.

2.3.2. Controller Design

A novel FLC law based on the BNDO to handle

mismatched time-invariant uncertainties as shown in

Fig. 1 is formulated as follows:

u =−b−1(x)
(

a(x)+ k1x1 + k2(x2 + d̂BN)
)

(12)
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Fig. 1. The diagram of the disturbance observer (DO)

If the aforementioned control law in (12) is applied to

the second-order nonlinear system in (1), the closed-

loop dynamics are obtained as

ẍ1 + k2ẋ1 + k1x1 = k2ed + ḋ (13)

If Assumption 1 is satisfied, the closed-loop

dynamics are obtained as follows:

ẍ1 + k2ẋ1 + k1x1 = k2ed (14)

Lemma 2 [45]: If a nonlinear system ẋ = F(x,u)
is input-state stable and lim

t→∞
u(t) = 0, then the state

lim
t→∞

x(t) = 0.

The closed-loop dynamics in (14) are stable if the

coefficients are positive, i.e., k1,k2 > 0. As indicated in

Lemma 2, if the input satisfies lim
t→∞

ed(t) = 0, then the

state satisfies lim
t→∞

x1(t) = 0.

The closed-loop error dynamics in (11) and (14)

are combined as follows:

ėd + l1ed = 0

ẍ1 + k2ẋ1 + k1x1 = k2ed (15)

The closed-loop error dynamics are globally exponen-

tially stable under the given condition k1,k2, l1 > 0 and

the states satisfy lim
t→∞

x1(t) = 0 and lim
t→∞

ed(t) = 0. This

implies that the states can be driven to the desired

equilibrium point.

Remark 3 The FLC based on the BNDO (FLC-BNDO)

is robust to mismatched time-invariant uncertainties. If

there exists no disturbance, the FLC-BNDO maintains

the nominal control performance as distinct from the

FLC-I.

Remark 4 If the time-derivative of the disturbance

ḋ is time-varying, the error dynamics of the BNDO

cannot converge to zero. Therefore, there exists always a

difference between the estimated and true values of the

disturbance so that the FLC-BNDO cannot be robust to

mismatched time-varying uncertainties.
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Fig. 2. The diagram of the self-learning disturbance observer (SLDO)

III. NEW FLC FOR MISMATCHED

TIME-VARVARYING UNCERTAINTIES

3.1. Self-Learning Disturbance Observer

An SLDO is developed in this section due to the

fact that the BNDO (7) cannot estimate time-varying

disturbances as stated in Remark 4. In this investigation,

feedback-error learning (FEL) scheme in which the

conventional estimation law works in parallel with a

T2NFS is proposed as the diagram of the SLDO is

illustrated in Fig 2. The new estimation law is proposed

as follows:

τ = τc − τn (16)

where τc and τn denote respectively the outputs

of the conventional estimation law and T2NFS. A

conventional proportional-derivative estimation law in

FEL scheme is used to guarantee the global asymptotic

stability of the SLDO in a compact space. The input to

FEL algorithm is the output of the BNDO and the time-

derivative of its output
˙̂

dBN is equal to the multiplication

of the disturbance estimation error and the observer gain

of the BNDO as can be seen from (9). Therefore, the

conventional estimation law is formulated as follows:

τc =
˙̂

dBN +η ¨̂
dBN (17)

where η is the coefficient and positive, i.e., η > 0, and

dBN is the output of the BNDO.

3.1.1. Type-2 Neuro-Fuzzy Structure

An interval type-2 Takagi-Sugeno-Kang fuzzy if-

then rule Ri j is written as:

Ri j : If ξ1 is 1̃i and ξ2 is 2̃ j, then fi j = ϒi j (18)

where ξ1 =
˙̂

dBN and ξ2 =
¨̂

dBN denote the inputs while 1̃i

and 2̃ j denote type-2 fuzzy sets for inputs. The function
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fi j is the output of the rules and the total number of the

rules are equal to K = I×J in which I and J are the total

number of the inputs.

The upper and lower Gaussian membership

functions for type-2 fuzzy logic systems are written as

follows:

µ
1i
(ξ1) = exp

(
−

(
ξ1 − c1i

σ 1i

)2
)

(19)

µ1i(ξ1) = exp

(
−

(
ξ1 − c1i

σ 1i

)2
)

(20)

µ
2 j
(ξ2) = exp

(
−

(
ξ2 − c2 j

σ 2 j

)2
)

(21)

µ2 j(ξ2) = exp

(
−

(
ξ2 − c2 j

σ 2 j

)2
)

(22)

where c,c,σ ,σ denote respectively the lower and upper

mean, and the lower and upper standard deviation of the

membership functions. These parameters are adjustable

for the T2NFS in which the standard deviations are

positive, i.e., σ ,σ > 0.

The lower and upper membership functions µ and

µ are determined for every signal. Then, the firing

strength of rules are calculated as follows:

wi j = µ
1i
(ξ1)µ2 j

(ξ2), wi j = µ1i(ξ1)µ2 j(ξ2) (23)

The output of the every fuzzy rule is a linear

function fi j formulated in (18). The output of the

network is formulated below:

τn = q
I

∑
i=1

J

∑
j=1

fi jw̃i j +(1−q)
I

∑
i=1

J

∑
j=1

fi jw̃i j (24)

where w̃i j and w̃i j are the normalized firing strengths of

the lower and upper output signals of the neuron i j are

written as follows:

w̃i j =
wi j

∑I
i=1 ∑J

j=1 wi j

, w̃i j =
wi j

∑I
i=1 ∑J

j=1 wi j

(25)

The design parameter q weights the participation of the

lower and upper firing levels and is generally set to

0.5. In this paper, it is formulated as a time-varying

parameter in the next subsection.

The vectors are defined as::

W̃ = [w̃11 w̃12 . . .w̃21 . . .w̃i j . . .w̃IJ ]
T

W̃ = [w̃11 w̃12 . . .w̃21 . . .w̃i j . . .w̃IJ ]
T

F = [ f11 f12 . . . f21 . . . fi j . . . fIJ ]

where these normalized firing strengths are between 0

and 1, i.e., 0 < w̃i j ≤ 1 and 0 < w̃i j ≤ 1. In addition,

∑I
i=1 ∑J

j=1 w̃i j = 1 and ∑I
i=1 ∑J

j=1 w̃i j = 1.

3.1.2. SMC Theory-based Learning Algorithm

In FEL algorithm, the output of the conventional

estimation law τc must converge to zero while T2NFS

is learning; therefore, the proposed sliding surface s

for the learning algorithm contains the conventional

estimation law and is formulated as follows:

s = τc +
¨̂

dBN

l1
(26)

where s is used as the learning error to train the learning

algorithm.

Novel adaptation rules for the T2NFS parameters

are proposed in this investigation by the following

equations:

ċ1i = ċ1i = ξ̇1 +ξ1αsgn (s) (27)

ċ2 j = ċ2 j = ξ̇2 +ξ2αsgn (s) (28)

σ̇ 1i =−
σ 1i

ξ1 − c1i

(
ξ1 +

(σ 1i)
2

ξ1 − c1i

)
αsgn (s) (29)

σ̇ 1i =−
σ 1i

ξ1 − c1i

(
ξ1 +

(σ 1i)
2

ξ1 − c1i

)
αsgn (s) (30)

σ̇2 j =−
σ 2 j

ξ2 − c2 j

(
ξ2 +

(σ 2 j)
2

ξ2 − c2 j

)
αsgn(s) (31)

σ̇2 j =−
σ 2 j

ξ2 − c2 j

(
ξ2 +

(σ 2 j)
2

ξ2 − c2 j

)
αsgn(s) (32)

ḟi j =−
qw̃i j +(1−q)w̃i j

(qW̃+(1−q)W̃)T (qW̃+(1−q)W̃)
αsgn(s)

(33)

q̇ =−
1

F(W̃−W̃)T
αsgn(s) (34)

where α is the learning rate and positive, i.e., α > 0.

Theorem 1 (Stability of the learning algorithm) If

adaptations rules are proposed as in (27)-(34) and the

learning rate α is large enough, i.e., α > τ̇∗ |τc+ėd |+|ėd |
|τc+ėd |−|ėd |

where τ̇∗ is the upper bound of τ̇ , this ensures that τc

will converge to zero in finite time for a given arbitrary

initial condition τc(0).
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Proof 1 The Lyapunov function is written as follows:

V =
1

2
τ2

c (35)

By taking the time-derivative of the Lyapunov function

in (35), it is obtained as

V̇ = τcτ̇c (36)

If the time-derivative of the conventional estimation law

τ̇c is derived from (16) and then is inserted into the

equation above:

V̇ = τc(τ̇n + τ̇) (37)

The calculation of τ̇n in (70) is inserted into (37), it is

obtained as follows:

V̇ = τc

(
−2αsgn(s)+ τ̇

)
(38)

The sliding surface in (26) is inserted into the

aforementioned equation

V̇ = τc

(
−2αsgn

(
τc +

¨̂
dBN

l1

)
+ τ̇

)
(39)

It is obtained considering (9) as follows:

V̇ = τc

(
−2αsgn(τc + ėd)+ τ̇

)

=
(

τc + ėd

)(
−2αsgn(τc + ėd)+ τ̇

)

−ėd

(
−2αsgn(τc + ėd)+ τ̇

)
(40)

If it is assumed that τ̇ is upper bounded by τ̇∗, (40)

is obtained as follows:

V̇ < | τc + ėd | (−2α + τ̇∗)+ | ėd | (2α + τ̇∗)

< −2α
(
| τc + ėd | − | ėd |

)

+τ̇∗
(
| τc + ėd |+ | ėd |

)

< −2α + τ̇∗ | τc + ėd |+ | ėd |

| τc + ėd | − | ėd |
(41)

As stated in Theorem 1, if the learning rate α is

large enough, i.e., α > τ̇∗ |τc+ėd |+|ėd |
|τc+ėd |−|ėd |

, then the time-

derivative of the Lyapunov function is negative, i.e.,

V̇ < 0, so that the SMC theory-based learning algorithm

is globally asymptotically stable and τc will converge to

zero in finite time.

3.1.3. Stability of SLDO

The proposed SLDO law in (16) is re-written

taking (17) into account as follows:

τ = ˙̂
dBN +η ¨̂

dBN − τn (42)

The error dynamics for the SLDO are obtained by

adding the actual disturbance rate ḋ into the estimated

disturbance rate in (42) and considering the dynamics

of the time-derivative of the estimated disturbance by

BNDO in (8) and τ = ˙̂
dSL:

ḋ − ˙̂
dSL = − ˙̂

dBN −η ¨̂
dBN + τn+ ḋ

ėd = −l1ed −η l1ėd + τn+ ḋ (43)

By taking the time-derivative of (43), it is obtained

as follows:

ëd =
−l1ėd + τ̇n+ d̈

1+η l1
(44)

As calculated in Appendix, τ̇n =−2αsgn(s) is inserted

into (44);

ëd =
−l1ėd −2αsgn(s)+ d̈

1+η l1
(45)

If τc in (17) is inserted into (26), the sliding surface

is obtained as follows:

s
(

˙̂
dBN,

¨̂
dBN

)
= (η +

1

l1
) ¨̂
dBN + ˙̂

dBN (46)

Theorem 2 (Stabiltiy of the SLDO) The estimation

law in (16) is employed as a DO, the closed-loop error

dynamics for the SLDO are asymptotically stable if

the learning rate of the T2NFS α is large enough, i.e.,

α > d̈∗ where the acceleration of the actual disturbance

d̈ is upper bounded by d̈∗.

Proof 2 The Lyapunov function is written as follows:

V =
1

2
s2 (47)

By taking the time-derivative of the Lyapunov function

above, it is obtained as

V̇ = sṡ (48)

If the time-derivative of the sliding surface in (46) is

inserted into the aforementioned equation, it is obtained

as follows:

V̇ = s
(...

d̂ BN(η +
1

l1
)+ ¨̂

dBN

)
(49)
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The aforementioned equation is obtained considering

(9)

V̇ = s
(

ëd(η l1 +1)+ l1ėd

)
(50)

(45) is inserted into (50), it is obtained as follows:

V̇ = s
(
(
−l1ėd −2αsgn(s)+ d̈

1+η l1
)(η l1 +1)+ l1ėd

)
(51)

If it is assumed that d̈ is upper bounded by d̈∗:

V̇ <| s | (−2α + d̈∗) (52)

As stated in Theorem 2, if the learning rate α
is large enough, i.e., α > d̈∗, then the time-derivative

of the Lyapunov function is negative, i.e., V̇ < 0, so

that the SLDO is globally asymptotically stable. This

purports that the closed-loop error dynamics for the

SLDO converge to zero.

3.2. Controller Design

A novel control law based on the SLDO by taking

the estimated values of the disturbance and disturbance

rate into account are given as follows:

u =−b−1(x)
(

a(x)+ k1x1 + k2(x2 + d̂SL)+
˙̂

dSL

)
(53)

If the aforementioned control law in (53) is applied to

the second-order nonlinear system in (1), the closed-

loop dynamics are obtained as

ẍ1 + k2ẋ1 + k1x1 = k2ed + ėd (54)

where ed and ėd denote the estimation errors for the

disturbance and disturbance rate, respetively.

As stated in Theorem 2, ed can converge to zero

and the closed-loop error dynamics (54) is stable if the

coefficients are positive, i.e., k1,k2 > 0. Therefore, since

the input satisfies lim
t→∞

ed(t) = 0 and the state satisfies

lim
t→∞

x1(t) = 0 as stated in Lemma 2. This implies that

the states can be driven to the desired equilibrium point

asymptotically under the control law in (53) based on

the SLDO.

Remark 5 The FLC based on the SLDO (FLC-SLDO)

is robust to mismatched time-varying uncertainties and

maintains the nominal control performance in case of

no disturbance.

IV. SIMULATION STUDIES

The controllers designed in this paper are applied

to a second-order nonlinear system which is formulated

as follows

ẋ1 = x2 +d

ẋ2 = −x1 − x2 +0.3cos(x1)+ ex1 +u (55)

where a(x) =−x1−x2+0.3cos(x1)+ex1 , b(x) = 1 and

z = [1,0]T as can be seen from (1).

SMC theory suffers from high-frequency oscilla-

tions called chattering because of the discontinuous

term. Several approaches have been suggested to avoid

chattering. One of the popular ways is to replace the

sign function by an approximate sgn(s) = s/(|s|+ δ ),
which mimics a high gain control [46]. In this paper, the

sgn functions are replaced by the following equation to

decrease the chattering effect:

sgn(s) :=
s

| s |+0.05
(56)

The initial conditions on the states are set to x(0) =
[1,1]T . The coefficients of the FLCs are respectively

set to k1 = 3, k2 = 5 and ki = 3. The observer gain

of the DO is set to l = [l1, l2] = [5,0], the coefficient

η in (17) is set to η = 10 and the learning rate α
of the SLDO is set to 0.03. The initial condition on

the parameter q is set to 0.5. In order to evaluate

different controllers in the absence and presence of the

mismatched uncertainties, there exists no disturbance

imposed on the system at t = 0 − 20 second, a step

external disturbance d = 0.5 is imposed on the system

at t = 20− 40 second and a multi-sinusoidal external

disturbance d = 0.25 + 0.15 × (sin(0.5t) + sin(1.5t))
is imposed on the system at t = 40 − 60 second. The

sampling time for all the simulations in this study is

set to 0.001 second while the number of membership

functions are selected as I = J = 3.

The responses of the states x1,x2 are respectively

shown in Figs. 3(a)-3(b). In the absence of mismatched

uncertainties, all FLCs ensure the nominal control

performance while FLC-I cannot give the nominal

control performance due to the integral action as

stated in Remark 2. The integral action causes large

overshoot, rise time and settling time. In the presence

of mismatched time-invariant uncertainties, the FLC-I,

FLC-BNDO, and FLC-SLDO ensure the robust control

performance while the traditional FLC is sensitive

to mismatched uncertainties as stated in Remark 1.

Moreover, the FLC-SLDO gives less rise time, settling

time and overshoot than the FLC-I and FLC-BNDO.
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After t = 40 second, a time-varying disturbance is

imposed on the system to evaluate controllers against

mismatched time-varying uncertainties. As seen, only

the FLC-SLDO gives robust control performance while

other controllers fail to drive the states to the desired

equilibrium point.

The control signals are shown in Fig. 3(c), and

the actual and estimated disturbances are shown in

Fig. 3(d). The BNDO can estimate only time-invariant

disturbances while the SLDO can estimate both time-

invariant and time-varying disturbances. Moreover, the

SLDO reaches the true disturbance value faster than the

BNDO in the presence of time-invariant disturbances.

Thanks to learning by the T2NFS, the T2NFS can take

the overall control of the estimation signal while the

conventional estimation signal τc converges to zero in

finite time as shown in Fig 3(e). Thus, the T2NFS

becomes the leading estimation signal after a short time-

period in the SLDO. The adaptation of the parameter

q is shown in Fig. 3(f). Thanks to the adaptation

rule in (34), it is adjusted throughout the simulations.

Moreover, the phase portraits for all controllers are

shown in Figs. 4(a)-4(c). The states driven to the desired

equilibrium point can be seen.

Type-2 fuzzy membership functions are used in the

proposed SLDO structure. It is feasible to downgrade

them to type-1 counterparts by equalizing the upper

and lower values of parameters in (27)-(32). It is

reported that since type-2 fuzzy logic systems have

more degrees of freedom than type-1 counterparts, they

have the capability of dealing with noisy measurements

and uncertainties more adequately [47–49]. For this

purpose, in order to compare the performance of T2NFS

with its type-1 counterpart under noisy conditions, the

outputs of the systems are measured with different noise

levels SNR. The mean squared errors of disturbance

estimation for the different noise levels are given in

Table 1. As can be seen from this table, the T2NFS

gives a smaller error than that of the type-1 neuro-

fuzzy structure, and the performance of T2NFS is more

remarkable while the noise level is high.

Table 1. Mean Squared Error.

20 (dB) 40 (dB) 80 (dB)

Type-1 NFS 0.6084 0.0133 0.0016

Type-2 NFS 0.5542 0.0129 0.0016

Performance % 8.90 % 3.76 % 0

V. CONCLUSION and FUTURE WORK

5.1. Conclusion

In this paper, the FLC-SLDO has been investigated

to eliminate mismatched uncertainties on the system

and to obtain robust control performance. The simula-

tion results show that FLC-BNDO gives robust control

performance against only mismatched time-invariant

uncertainties. The stability of the training algorithm of

the SLDO and the stability of the FLC-SLDO have

been proven, and the simulation results show that

FLC-SLDO gives robust control performance against

mismatched time-varying uncertainties. Additionally,

the FLC-SLDO gives less rise time, settling time

and overshoot than the FLC-BNDO in the presence

of mismatched time-invariant uncertainties, and they

maintain the nominal control performance in the

absence of mismatched uncertainties. Thanks to the

T2NFS, the T2NFS working in parallel with the

conventional estimation law in FEL scheme can

estimate time-varying disturbances as distinct from the

BNDO, and cope with uncertainties better than its

type-1 counterpart under noisy conditions. The SMC-

theory based learning algorithm requires significantly

less computation time than the traditional ones, e.g.,

gradient descent and evolutionary training algorithms;

therefore, the SLDO is computationally an efficient

disturbance observer.

5.2. Future Work

The proposed method with its stability analysis

is valid for only a second-order nonlinear system

with mismatched uncertainties. As a future work, the

extension of the SLDO and FLC law for nth order

nonlinear systems with mismatched uncertainties are

some interesting topics to be investigated.

APPENDIX

Calculation of τ̇n

By taking the time-derivative of the lower and

upper Gaussian membership functions in (19)-(22), the

following equations are obtained as:

µ̇
1i
(x1) =−2N1iṄ1iµ1i

(ξ1), (57)

µ̇1i(x1) =−2N1iṄ1iµ1i(ξ1) (58)

µ̇
2 j
(x2) =−2N2 jṄ2 jµ2 j

(ξ2) (59)

µ̇2 j(x2) =−2N2 jṄ2 jµ2 j(ξ2) (60)
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where

N1i =
(ξ1 − c1i

σ 1i

)
, N1i =

(ξ1 − c1i

σ1i

)
, (61)

N2 j =
(ξ2 − c2 j

σ2 j

)
, N2 j =

(ξ2 − c2 j

σ 2 j

)
(62)

Ṅ1i =
(ξ̇1 − ċ1i)σ 1i − (ξ1 − c1i)σ̇ 1i

σ 2
1i

(63)

Ṅ1i =
(ξ̇1 − ċ1i)σ 1i − (ξ1 − c1i)σ̇ 1i

σ 2
1i

(64)

Ṅ2i =
(ξ̇2 − ċ2i)σ 2i − (ξ2 − c2i)σ̇ 2i

σ 2
2i

(65)

Ṅ2i =
(ξ̇2 − ċ2i)σ 2i − (ξ2 − c2i)σ̇ 2i

σ 2
2i

(66)

By taking the time-derivative of the normalized

firing strengths of the lower output signal in (25), the

following equation is obtained:

˙̃wi j =−w̃i jKi j + w̃i j

I

∑
i=1

J

∑
j=1

w̃i jKi j

˙̃
wi j =−w̃i jKi j + w̃i j

I

∑
i=1

J

∑
j=1

w̃i jKi j (67)

where

Ki j = 2
(

N1iṄ1i +N2 jṄ2 j

)
= 4αsgn(s)

Ki j = 2
(

N1iṄ1i +N2 jṄ2 j

)
= 4αsgn(s)

The time-derivative of (24) is obtained to find τ̇n as

follows:

τ̇n = q
I

∑
i=1

J

∑
j=1

( ḟi jw̃i j + fi j
˙̃wi j)

+(1−q)
I

∑
i=1

J

∑
j=1

( ḟi jw̃i j + fi j
˙̃
wi j)

+q̇
I

∑
i=1

J

∑
j=1

fi jw̃i j − q̇
I

∑
i=1

J

∑
j=1

fi jw̃i j (68)

If (67) is inserted to the aforementioned equation:

τ̇n = q
I

∑
i=1

J

∑
j=1

((
− w̃i jKi j + w̃i j

I

∑
i=1

J

∑
j=1

w̃i jKi j

)
fi j

+w̃i j ḟi j

)
+(1−q)

I

∑
i=1

J

∑
j=1

((
− w̃i jKi j

+w̃i j

I

∑
i=1

J

∑
j=1

w̃i jKi j

)
fi j + w̃i j ḟi j

)

+q̇
I

∑
i=1

J

∑
j=1

fi j(w̃i j − w̃i j)

= q
I

∑
i=1

J

∑
j=1

4αsgn(s)

((
− w̃i j + w̃i j

I

∑
i=1

J

∑
j=1

w̃i j

)
fi j

+w̃i j ḟi j

)
+(1−q)

I

∑
i=1

J

∑
j=1

4αsgn(s)

((
− w̃i j

+w̃i j

I

∑
i=1

J

∑
j=1

w̃i j

)
fi j + w̃i j ḟi j

)

+q̇
I

∑
i=1

J

∑
j=1

fi j(w̃i j − w̃i j) (69)

Since ∑I
i=1 ∑J

j=1 w̃i j = 1 and ∑I
i=1 ∑J

j=1 w̃i j = 1, the

aforementioned equation becomes by using (33) and

(34) as follows:

τ̇n =
I

∑
i=1

J

∑
j=1

(
qw̃i j ḟi j +(1−q)w̃i j ḟi j

)
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+q̇
I

∑
i=1

J

∑
j=1

fi j(w̃i j − w̃i j)

=

(
q

I

∑
i=1

J

∑
j=1

w̃i j +(1−q)
I

∑
i=1

J

∑
j=1

w̃i j

)
ḟi j

+q̇
I

∑
i=1

J

∑
j=1

fi j(w̃i j − w̃i j)

= −2αsgn(s) (70)
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