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Abstract: The whitefish industry generates a huge amount of rest raw material, which is currently 

wasted or underutilized in the production of low-value products such as animal feed. While fish 

muscle is the primary product of use for human consumption, rest raw material has great potential 

as a source of protein and bioactive peptides for the production of food ingredients and nutraceuti-

cals. Enzymatic hydrolysis is a biotechnological processing method that can be used to extract pro-

tein from fish rest raw material into a protein hydrolysate. This study aimed at investigating the 

functionality of ultrafiltration as an industrial processing method and its effect on the bioactivity of 

protein hydrolysates. Protein hydrolysates were produced by enzymatic hydrolysis of saithe (Pol-

lachius virens) head and backbone caught at two separate occasions to investigate the effect of sea-

sonal variations. Ultrafiltration effectively concentrated larger peptides (>4 kDa) and smaller pep-

tides (<4 kDa) in separate fractions, with a protein yield of 31% in the fraction <4 kDa. The unfiltered 

hydrolysate was found to have a higher antioxidative activity compared to the <4 kDa fraction in 

ABTS, FRAP, and ORAC assays. These results indicate that ultrafiltration does not effectively in-

crease bioactivity by concentrating small peptides and that bioactivity is dependent on several prop-

erties, including interaction with larger peptides. 

Keywords: fish rest raw material; protein; bioactive peptides; antioxidative peptides;  

biotechnological processing; enzymatic hydrolysis; ultrafiltration 

 

1. Introduction 

It is well documented that fish is an excellent source of several health-beneficial nu-

tritional components, such as polyunsaturated fatty acids and protein with a well-bal-

anced amino acid composition [1]. The consumption of pure muscle in the form of filet or 

processed fish products is the most common way of including fish protein as part of the 

human diet. In addition, niche products consisting of heads, roe, and liver are consumed 

in some countries, but fish rest raw material (RRM) is predominantly an underutilized 

resource. RRM can be defined as the parts of the fish that are not the primary product of 

use, which in most cases is the filet; RRM includes heads, backbones, and viscera [2]. Fish 

heads and backbones have a high protein content of 15–20% [3–6]. However, RRM needs 

to be processed in order to be suitable as food or food ingredients for human consumption 

due to the nature of its composition and appearance. Biotechnological processing by en-

zymatic hydrolysis can be used to extract proteins from the RRM by the hydrolytic activ-

ity of endogenous or commercial enzymes. The enzymatic activity results in solubilization 

of the proteins, which then are extracted as the main product of enzymatic hydrolysis: the 

fish protein hydrolysate (FPH). Hence, the processing of fish RRM enables a better utili-

zation of fish as a food resource, which is beneficial from both sustainability and a bioe-

conomical perspectives [7,8]. In addition to being an excellent source of amino acids for 
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human metabolism, fish RRM can be a source of bioactive peptides that are inactive as 

part of the native protein but can be released through a hydrolytic process [9]. Bioactive 

peptides are small molecules, ranging from three to 20 amino acids, with inherent health-

beneficial properties beyond that of normal nutrition [10,11]. Several studies have identi-

fied bioactive peptides in whitefish [12,13]. Cod protein hydrolysates have been found to 

possess both antioxidative and blood pressure reducing activities in vitro [14–18], while 

in vivo animal studies have been less conclusive [19]. 

Reactive oxygen species (ROS) are generated continuously and unavoidably through 

cellular respiration in our body and during lipid oxidation in foods and are therefore a 

cause of great concern both regarding human health and food stability. Oxidative stress, 

defined as an unbalance between ROS and endogenous antioxidants, has been linked to 

several adverse health effects and human diseases, and lipid oxidation in food can cause 

a reduction of shelf-life and nutritional value as well as unwanted changes to odor and 

texture [20,21]. Antioxidants are molecules capable of reducing oxidative stress and lipid 

oxidation in food by inhibiting oxidation [22]. These molecules are naturally occurring in 

living tissue, and both natural and synthetic antioxidants are used as additives in various 

foods. However, commonly used synthetic antioxidants, such as butylated hydroxyani-

sole (BHA) and butylated hydroxytoluene (BHT), have received negative attention due to 

the toxicity of these in high concentrations [22,23]. Thus, there is a strong interest in find-

ing natural alternatives of antioxidants for food purposes but also for the use as nutraceu-

ticals [20]. For any substance to act as an antioxidant, it must be able to neutralize ROS or 

other prooxidative components, thereby preventing them from causing oxidative damage 

in food systems or human tissue. This can be achieved by several mechanisms, including 

the scavenging of ROS and metal chelation [24]. In turn, ROS can be neutralized by hy-

drogen donation or electron transfer, which are abilities measured by the oxygen radical 

absorbance capacity (ORAC) and 2.2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 

diammonium salt (ABTS)/ferric-reducing antioxidant power (FRAP) assays, respectively. 

A combination of assays is preferred to analyze antioxidative activity, as the individual 

assays are limited by their specific conditions and the mechanisms they assess [22,24]. 

The Norwegian whitefish industry generates approximately 300,000 tons of RRM 

each year [2]. Improving the utilization of RRM is fundamental for making fisheries more 

sustainable to meet the UN Sustainable Development Goals (SDGs). Sustainable fisheries 

are crucial to improve the utilization of available food resources (SDG 12), reduce hunger 

and malnutrition by making available more healthy food (SDG 2), and prevent climate 

change (SDG 13) [25]. This study aimed at investigating the possibility of extracting and 

concentrating peptides from saithe (P. virens) RRM by enzymatic hydrolysis and mem-

brane ultrafiltration (UF). UF is a processing and refinement method that can be used to 

concentrate low molecular weight peptides of a hydrolysate, which could potentially in-

crease the bioactivity of this fraction [26–28]. Head and backbone from saithe caught at 

two separate occasions, to account for seasonal variation in spawning, were processed by 

enzymatic hydrolysis in bioreactors to extract proteins. The resulting saithe protein hy-

drolysates (SPH) were further fractionated using UF with a 4 kDa molecular weight cut-

off (MWCO) membrane to concentrate small peptides. The entire processing was con-

ducted in pilot scale to simulate an industrial process. As this study is part of a larger 

experimental design aiming to increase the utilization of saithe RRM, all experiments were 

conducted with a continuous focus on the adaptability of the process to industrial pro-

cessing lines. The potential for implementing enzymatic hydrolysis in the Norwegian 

whitefish industry was discussed by Hjellnes et al. [29]. UF applied in an industrial setting 

would entail extra cost and logistical challenges, which means that the value of the pro-

cessing product must be high to justify the cost–benefit balance. To the authors’ 

knowledge, few studies have investigated the effect of membrane filtration on the bioac-

tivity of whitefish hydrolysates [14–17], and most studies have focused on cod. Therefore, 

an investigation of intraspecies similarities between cod and saithe, as well as the potential 

effect of spawning on bioactivity, was of interest in this study. 
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2. Results and Discussion 

2.1. Membrane Filtration and Protein Flow 

Prior to filtration with 4 kDa molecular weight cut-off membrane (MWCO), 5 grams 

of SPH was dissolved in 500 mL of distilled water and filtrated through a ceramic mem-

brane with 150 kDa MWCO in order to remove high molecular weight peptides and un-

wanted compounds such as lipids. Such compounds could otherwise cause clogging and 

the formation of a dynamic cake on membranes with a lower MWCO, reducing the filtra-

tion efficiency [30]. The initial filtration distributed the protein content of SPH in a reten-

tate (R150) and a permeate (P150), containing peptides larger and smaller than 150 kDa, 

respectively. Ultrafiltration (UF) was subsequently performed on P150 using PESH mem-

branes with a MWCO of 4 kDa, creating a new retentate (R4, >4kDa) and permeate (P4, 

<4kDa). 

UF of the eight SPH from enzymatic hydrolysis of saithe heads (H) and backbone (B), 

in two bioreactors (I, II), from October (HOI, HOII, BOI, BOII) and January (HJI, HJII, BJI, 

BJII) resulted in a mass distribution presented in Figure 1. Filtration over 150 kDa MWCO 

ceramic membranes resulted in 1.42 ± 0.08 g SPH in R150 and 2.78 ± 0.05 g SPH in P150, 

which equals a protein yield of 56% in P150. The subsequent UF over 4 kDa cut-off PESH 

membranes resulted in 1.08 ± 0.08 g SPH in R4 and 1.56 ± 0.16 g in P4, which is equivalent 

to a protein yield of 31% of the initial 5 g of SPH in P4. The total protein loss from both 

filtrations was 19%. 

 

Figure 1. Mass distribution (n = 1) of saithe protein hydrolysates (SPH) before filtration and after filtration with 150 kDa 

cut-off ceramic membrane (retentate: R150, permeate: P150), and subsequently 4 kDa cut-off PESH membranes (retentate: 

R4, permeate: P4). Total mass of R150 and P150 (Total (150kDa)) and total mass of R150, R4, and P4 (Total (150 kDa + 4 

kDa) is included. SPH were obtained from the enzymatic hydrolysis of heads (H) and backbones (B), in two bioreactors 

(I, II), from saithe caught in October 2019 (HOI, HOII, BOI, BOII) and January 2020 (HJI, HJII, BJI, BJII). 

Based on an initial protein content of 16.3% and 19.2% in saithe head and backbone, 

respectively [3], enzymatic hydrolysis followed by UF over 150 kDa and 4 kDa MWCO 

membranes would give a processing protein flow, as presented in Figure 2. 

0

1

2

3

4

5

6

SP
H

 (
D

W
, g

) HOI

HOII

BOI

BOII

HJI

HJII

BJI

BJII



Catalysts 2021, 11, 1053 4 of 18 
 

 

 

Figure 2. Protein flow (g) from raw material to product after processing of 100 g minced saithe heads (left) and backbones 

(right) by enzymatic hydrolysis [3] and filtration with a 150 kDa cut-off ceramic membrane followed by a 4 kDa cut-off 

PESH membrane. *Calculated value. 

The processing of 100 g minced saithe heads and backbone yielded 5.1 g and 7.6 g 

protein in the hydrolysate, while 1.6 g and 2.4 g would end up in the P4, respectively. In 

an industrial processing line, where the goal is to obtain a pure protein fraction from fish 

RRM and isolating peptides with high bioactivity, SPH and P4 would be the main prod-

ucts of interest. This means that a large fraction of RRM protein would end up in the less 

regarded processing products. For the processing to be beneficial from an economic point 

of view, P4 would have to generate high incomes as specialized products for human con-

sumption. However, for the processing to be sustainable, it would also be very important 

to find areas of application for the sludge, R150, and R4. The sludge fraction could be used 

for gelatin extraction and animal feed production [31,32], while the functional character-

istics of the larger peptides in R150 and R4 could make them suitable as food ingredients 

with water-binding, emulsifying, and gelling properties [33]. It is also worth noting that 

it is not common practice to report protein yield of UF processing, which in the authors’ 

opinion is a highly relevant factor in evaluating the potential for industrialization. 

2.2. Amino Acid Composition 

The amino acid composition of RRM and SPH from enzymatic hydrolysis of heads 

(HOI, HOII) and backbones (BOI, BOII) from saithe captured in October 2019 and heads 

(HJI, HJII) and backbones (BJI, BJII) from saithe captured in January 2020 are presented in 

Table 1. Glu (7.73 ± 1.75–17.13 ± 1.06 g/100 g protein), Gly/Arg (5.03 ± 0.59–17.04 ± 0.26 

g/100 g protein), and Asp (5.34 ± 0.59–11.57 ± 0.73 g/100 g protein) were found to be the 

dominating amino acids in both RRM and SPH. Fish protein is known to have a high con-

tent of the essential amino acids Lys and Leu [13], which was also confirmed by this study, 
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where the Lys and Leu contents were found to be 5.03 ± 0.54–9.07 ± 0.59 g/100 g protein 

and 3.44 ± 0.38 g/100 g protein, respectively. These results are in correspondence with 

Farvin et al. [15], who found Gly, Glu, Lys, and Ala to be the predominant amino acids in 

commercial cod protein hydrolysates; Jensen et al. [34], who found Glu, Asp, Ala, Leu, 

and Lys to be the dominating amino acids of cod muscle; Girgih et al. [14], who found 

Glu/Gln, Asn/Asp, Arg, Lys, and Leu to be the dominating amino acids in cod backbone 

hydrolysate >1kDa; and Remme and Austnes [6], who found Asp, Glu, and Gly to be the 

dominating amino acids in cod head hydrolysates. 

Table 1. Total amino acid composition (g/100 g protein) in RRM and SPH obtained from enzymatic hydrolysis of heads 

(H) and backbones (B) in two bioreactors (I, II) from saithe caught in October 2019 (HOI, HOII, BOI, BOII) and January 

2020 (HJI, HJII, BJI, BJII) (x̅ ± SEM, n = 3). Essential [35] and hydrophobic [36] amino acids are indicated by e and h, 

respectively. 
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Spawning did not seem to have a significant effect on the amino acid composition of 

RRM nor SPH. However, backbone RRM was found to have a significantly higher content 

of Asp (F(1,10) = 14.03, p <0.05), Glu (F(1,10) = 6.06, p <0.05), Val (F(1,10) = 9.04, p <0.05), 

Ile (F(1,10) = 25.84, p <0.05), Leu (F(1,10) = 26.14, p <0.05), and Lys (F(1,10) = 13.67, p <0.05), 

and a significantly lower content of His (F(1,10) = 7.28, p <0.05) and Gly/Arg (F(1,10) = 

15.37, p <0.05), compared to head RRM. Most amino acids were also found to be prevalent 

in higher amounts in RRM compared to SPH. The largest difference between head RRM 

and backbone RRM was found for Ile and Leu, which is interesting from a nutritional 

perspective considering that both of there are essential hydrophobic amino acids [35,36]. 

A product higher in essential amino acids might be more attractive both as a food ingre-

dient and a nutraceutical. 

However, the difference in amino acid composition between head RRM and back-

bone RRM was not reflected in their respective SPH. The only detectable trend was SPH 

from backbone having a significantly lower content of Gly/Arg (F(1,22) = 24.09, p <0.05) 

compared to SPH from head. For the remaining amino acids, equal or higher amounts 

were found in SPH from head compared to SPH from backbone. However, the protein 

yield in SPH from backbone after enzymatic hydrolysis was found to be higher than in 

SPH from head [3]. This might indicate that hydrophobic amino acids, of which Ile, Leu, 

and Val were detected in higher amounts in backbone RRM, are harder to extract in the 

water-soluble phase during enzymatic hydrolysis. It is also evident from Table 1 that there 

are variations between the individual hydrolysates, indicating that it can be difficult to 

achieve a standardized processing outcome, which again might mask potential differ-

ences between SPH from head and backbone. 

Although the amount of Trp, Cys, and Pro could not be detected due to the analytical 

method used in this study, several of the other essential and conditionally essential amino 

acids were prevalent in RRM and SPH. This is especially relevant when considering the 

nutritional quality of a protein product. The protein efficiency ratio (PER) test is a method 

used to evaluate the quality of a protein source based on the weight gain of rats when fed 

a diet consisting of 10% of the evaluated protein [37]. However, calculations on relative 

quantities of specific amino acids, yielding a PER value, can be used as an estimator for 

protein quality. The calculated PER values for RRM (1.93–3.04) and SPH (1.31–1.53) are 

presented in Table 1. These results correspond to those of Šližytė et al. [37], who found 

PER values of 2.99 for cod muscle and 1.60–2.27 for hydrolysates from hydrolysis of cod 

backbone and viscera under similar conditions using Flavorzyme and Neutrase. PER val-

ues were found to be significantly (T(9) = 3.345, p =0 .05) higher for RRM compared to 

SPH, indicating that several essential amino acids end up in the sludge. This further sub-

stantiates the importance of investigating the possibility of using the sludge fraction as a 

source of nutrition as well. The sludge was found to be the fraction where the majority of 

the RRM dry matter ended after enzymatic hydrolysis [3]. Thus, finding areas of applica-

tion is important in order to minimize the amount of processing waste while simultane-

ously maximizing the value addition of the rest raw material. 

The amount of His was found to be 0.42 ± 0.14–1.07 ± 0.09 g/100 g protein in SPH. In 

addition to being an essential amino acid, His has been associated with antioxidative 

properties due to the ability of its imidazole to form complexes with several metal ions 

and scavenge ROS [38,39]. The metal ion-chelating abilities of His is, among other physi-

ological functions, important for the binding of iron in hemoglobin and myoglobin [38]. 

Trp and Gly, but also Cys, Ser (2.30 ± 0.53–4.98 ± 0.24g/100 g protein in SPH), Lys (5.03 ± 

0.54–6.57 ± 0.13 g/100 g protein in SPH), and Pro, have been shown to potentially inhibit 

oxidation [40]. Despite a relatively low His content, SPH are high in Gly/Arg (5.03 ± 0.59–

14.27 ± 0.53 g/100 g protein), Ser, and Lys and might thus be a source of bioactive peptides 

with antioxidative properties. Based on the higher content of Gly/Arg, SPH from head is 

likely to have better antioxidative properties compared to SPH from backbone. However, 

the antioxidative activity in peptides is not solely dependent on the specific amino acid 

present but also the sequence of their arrangement and the overall peptide composition 
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[21,41]. The overall hydrophobicity is also important for bioactive peptides to be able to 

exert their antioxidative activity by interacting with lipid systems in both our body and in 

foods [39]. Several hydrophobic amino acids were present in SPH, including Val (2.23 ± 

0.25–3.63 ± 0.15 g/100 g protein) and Leu (3.44 ± 0.38–4.90 ± 0.18 g/100 g protein). However, 

Leu was found to be one of the most prevalent free amino acids in SPH, which might 

negatively affect its contribution to antioxidative activity and reduce bioavailability [42]. 

In general, the amount of free amino acids in SPH was low, ranging from 42.78 to 69.50 

mg/g. This was expected, considering that both enzymes used for the enzymatic hydroly-

sis were endopeptidases, the low DH (14.8–18.1%) of SPH, and that head and backbone 

are RRM fractions with low endogenous enzyme activity [3]. 

2.3. Molecular Weight Distribution 

The molecular weight distribution of SPH and P4 from saithe head and backbone are 

presented in Figures 3–6. 

 

Figure 3. Chromatograms (mAU/min) from analysis of molecular weight distribution (x̅ ± SEM, n = 2) of saithe protein 

hydrolysates obtained from enzymatic hydrolysis of heads (H) and backbones (B), in two bioreactors (I, II), from saithe 

caught in October 2019 (HOI (blue), HOII (red), BOI (green), BOII (pink)) and January 2020 (HJI (beige), HJII (purple), BJI 

(dark green), BJII (turquoise)). 

 

Figure 4. Chromatograms (mAU/min) from analysis of molecular weight distribution (x̅ ± SEM, n = 2) of permeates (P4) 

after ultrafiltration (<4kDa) of saithe protein hydrolysates obtained from enzymatic hydrolysis of heads (H) and backbones 

(B), in two bioreactors (I, II), from saithe caught in October 2019 (HOI-P4 (blue), HOII-P4 (red), BOI-P4 (green), BOII-P4 

(pink)) and January 2020 (HJI-P4 (beige), HJII-P4 (purple), BJI-P4 (dark green), BJII-P4 (turquoise)). 
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Figure 5. Molecular weight distribution (x̅ ± SEM, n = 2) of saithe protein hydrolysates (SPH) (HOI, HOII, BOII, BOII) and 

their corresponding permeates (HOI-P4, HOII-P4, BOI-P4, BOII-P4) after ultrafiltration (<4kDa). SPH were obtained from 

enzymatic hydrolysis of heads (H) and backbones (B), in two bioreactors (I, II), from saithe caught in October 2019 (HOI, 

HOII, BOI, BOII). 

 

Figure 6. Molecular weight distribution (x̅ ± SEM, n = 2) of saithe protein hydrolysates (SPH) (HJI, HJII, BJII, BJII) and their 

corresponding permeates (HJI-P4, HJII-P4, BJI-P4, BJII-P4) after ultrafiltration (<4kDa). SPH were obtained from enzymatic 

hydrolysis of heads (H) and backbones (B), in two bioreactors (I, II), from saithe caught in January 2020 (HJI, HJII, BJI, 

BJII). 
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Spawning did not affect the molecular weight distribution of SPH and P4, and no 

difference was observed between SPH and P4 produced from head RRM compared to 

backbone RRM. SPH were found to have a significantly higher content of peptides in the 

size range 15–10 kDa, 10–5 kDa, 5–2 kDa, and 2–1 kDa, while P4 were found to have a 

significantly higher content of peptides in the size range 1–0.5 kDa, 0.5–0.2 kDa, and <0.2 

kDa. The largest difference was observed for the size ranges 10–5 kDa (T(30) = 12.58, p 

<0.05) and 5–2 kDa (T(30) = 14.71, p <0.05), where the SPH average was found to be 75.08 

mg/g and 123.04 mg/g, respectively. P4 were found to have on average 28.69 mg/g pep-

tides in the size range 10–5 kDa and 65.44 mg/g peptides in the size range 5–2 kDa. 

These results indicate that peptides >5 kDa to a large degree have been concentrated 

in R4 after UF, and that the majority of peptides in P4 have a molecular weight <4 kDa. 

However, the MWCO at 4 kDa is not clear cut, as is evident from the presence of peptides 

with molecular size 5–15 kDa in P4. This lack of a sharp separation of peptides during UF 

has also been demonstrated in other studies [15,16]. Chabeaud et al. [43,44] suggested po-

tential fouling, lowered flux and insufficient membrane cleaning to be reasons for the poor 

separation of peptides. In their studies on UF of fish protein hydrolysates, they found that 

peptides <0.5 kDa were better separated at lower concentrations of saithe protein hydrol-

ysate (30 g/L vs. 150 g/L) and lower pressure (1 bar vs. 5 bar). Thus, it is likely that param-

eters of UF can be adjusted in order to improve size-based separation of peptides. 

Of the total peptide content of SPH, 23.8–35.6% were found to have a molecular size 

<1 kDa. Combined with a relatively low DH and the low content of free amino acids, these 

results indicate that SPH contains considerable amounts of larger peptides [3]. A less ex-

tensive hydrolysis might be beneficial for obtaining SPH with desired functional charac-

teristics such as water binding, emulsification, and foaming [33,45,46]. SPH containing 

larger peptides might also be less bitter, considering that bitterness is mainly associated 

with low molecular weight peptides and hydrophobicity [6,11]. Sensory properties will in 

turn be decisive for consumer acceptance. Thus, size-based separation of peptides in SPH 

by UF has the potential to generate fractions with improved functional and sensory prop-

erties (R4 and R150) as well as fractions with increased bioactivity (P4). 

2.4. Antioxidative Activity 

The results from analysis of antioxidative activity in SPH, P4, R4 and R150 generated 

from enzymatic hydrolysis of saithe head (H) and backbone (B), and subsequent UF, is 

presented in Table 2. Three different in vitro assays were used to evaluate the antioxida-

tive activity of SPH and UF fractions: ABTS, FRAP, and ORAC. These assays measure the 

ability of bioactive peptides to neutralize ROS by electron transfer, reduce Fe3+, and neu-

tralize ROS by hydrogen transfer, respectively. A combination of assays is preferred, as 

each assay measures a specific type of antioxidative activity within the assay-specific con-

ditions and not the total antioxidative activity [24]. 

Table 2. Antioxidative activity (x̅ ± SEM, n = 12) of saithe protein hydrolysates (SPH), permeates (P4), and retentates (R4, 

R150) after membrane filtration with a 150 kDa cut-off ceramic membrane and 4 kDa cut-off PESH membrane. SPH were 

obtained from enzymatic hydrolysis of saithe heads (H) and backbones (B). Results from ABTS are given as µmol/g propyl 

gallate equivalents, FRAP, and ORAC are given as µmol/g Trolox equivalents. Results of Tukey`s post hoc grouping are 

indicated (H: h1–3, B: b1–3) for the individual analysis. 

Sample ABTS (µmol/g) FRAP (µmol/g) ORAC (µmol/g) 

Hydrolysate - - - 

H(SPH) 58.33 ± 0.64h3 5.16 ± 0.40h1 380.50 ± 36.12h1 

B(SPH) 63.57 ± 1.20b3 12.57 ± 0.40b2 557.22 ± 72.47b2 

Permeate - - - 

H(P4) 42.38 ± 0.64h1 8.06 ± 0.35h2 394.97 ± 12.50h1 

B(P4) 55.37 ± 1.15b1 10.70 ± 0.44b1 547.79 ± 42.45b2 

Retentate - - - 
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H(R4) 45.45 ± 0.94h2 7.58 ± 0.35h2  

B(R4) 59.72 ± 0.80b2 12.55 ± 0.28b2 354.39 ± 14.48b1 

H(R150) 42.23 ± 0.64h1 14.70 ± 0.55h3  

B(R150) 56.07 ± 0.66b1,b2 15.55 ± 0.56b3 331.12 ± 52.82b1 

Spawning was not found to affect the antioxidative activity of SPH, P4, R4, and R150, 

and thus, results are presented as average values for heads (H) and backbones (B) from 

October 2019 and January 2020 to include results of ANOVA and Tukey`s post hoc test 

(Table 2). SPH and UF fractions from backbone were found to have a significantly higher 

antioxidant activity compared to head measured by all assays (ABTS (T(93) = 9.23, p 

<0.05), FRAP (T(94) = 6.19, p <0.05), and ORAC (T(70) = 1.40, p <0.05). This indicates that 

more antioxidative peptides are released from backbone during enzymatic hydrolysis 

compared to heads, which is somewhat contradictory to the observed higher prevalence 

of amino acids with known antioxidative activity in SPH from head (Section 2.2). How-

ever, this confirms the assumption that amino acid composition cannot be used as the sole 

indicator of antioxidative activity. 

ABTS antioxidative activity was found to be significantly different between SPH and 

UF fraction for both head (F(3,43) = 111.75, p <0.05) and backbone (F(3,44) = 14.93, p <0.05). 

A Tukey post hoc test revealed that SPH had a significantly higher ABTS antioxidative 

activity compared to all other fractions. Both retentates (R4 and R150) from backbone SPH 

had significantly higher ABTS antioxidative activity compared to the permeate (P4), while 

no significant difference was observed between retentate R150 and permeate from head 

SPH. When measured by FRAP assay, a significant differences was observed between 

SPH and the UF fractions for both head (F(3,43) = 106.76, p <0.05) and backbone (F(3,44) = 

21.49, p <0.05). Retentate R150 had the significantly highest FRAP antioxidative activity in 

both head and backbone. Retentate R4 and the permeate were both significantly higher 

than SPH for head, while the permeate was found to have the significantly lowest activity 

measured by FRAP for backbone. Regarding ORAC antioxidative activity, significant dif-

ferences between fractions were observed only for backbone (F(3,44) = 5.88, p <0.05), 

where SPH and P4 were found to have a significantly higher ORAC antioxidative activity 

compared to R4 and R150. This suggests that small peptides are important for ORAC an-

tioxidative activity, but that a mixture of small and larger peptides are equally effective as 

the concentrated permeate. 

No correlation was found between the results obtained from ABTS, FRAP, and 

ORAC. SPH was found to have the highest antioxidative activity when measured by both 

ABTS and ORAC but among the lowest when measured by FRAP. FRAP and ABTS assay 

both evaluate the ability of an antioxidant to reduce an oxidant with a comparable redox 

potential, and therefore, these results might be more comparable than results from ORAC 

assay, which measures the ability of an antioxidant to neutralize peroxide radicals by hy-

drogen donation [14,24,47]. However, while ABTS and ORAC assays are carried out at 

neutral pH, the FRAP assay is conducted in acidic conditions, which could suppress the 

antioxidative activity of bioactive peptides due to protonation [24,48]. This could explain 

the lower antioxidative activity of SPH found in the FRAP assay compared to the ORAC 

and ABTS assay. However, the acidic condition of the FRAP assay could be relevant when 

considering the stability and bioavailability of antioxidative peptides in the human gas-

trointestinal system. An instability of bioactive peptides in acidic conditions could also 

explain why R150 showed the highest antioxidative activity in the FRAP assay, as this UF 

fraction consisted of larger peptides that are possibly more resistant to changes in pH. 

Another trend that can be observed from Table 2 is that the antioxidative activity of 

P4 was found to be equal to or lower than SPH, R4, and R150 in all three assays. These 

findings contradict what was the expected outcome of SPH processing. UF was applied 

to SPH with the intention of concentrating low molecular weight peptides, which are as-



Catalysts 2021, 11, 1053 12 of 18 
 

 

sociated with higher bioactivity. Under this assumption, the expected result for antioxi-

dative activity for UF fractions would be P4 >R4 >R150. SPH, having a smaller concentra-

tion of low molecular weight peptides relative to 4, would also be expected to exhibit 

lower bioactivity. Several studies on the UF of hydrolysates from various raw materials 

have confirmed this theory, including that of Farvin et al. [15], who found that applying 

UF to commercial cod hydrolysate significantly increased antioxidative activity. How-

ever, both Girgih et al. [14] and Picot et al. [16] found the unfractionated hydrolysate to 

have the highest antioxidative activity after UF of cod frame digests and commercial hy-

drolysates from cod and pollock skin, respectively. These studies both involved lower 

MWCO and lower molecular weight peptides, which indicates that further separation 

might not be effective for increasing bioactivity. This was further confirmed in this study 

by unpublished data on preliminary experiments with UF using 2 kDa MWCO mem-

branes on SPH. 

Regardless of the similar trends observed for SPH and UF fractions in this study, the 

measured antioxidative activity varies considerably among the assays. This inconsistency 

in the degree of antioxidative activity was also reported by Kristinova et al. [49] when 

comparing the results of Folin–Ciocalteu, DPPH, and ABTS assays, and it can be a result 

of limitations of the methodology of the assays as discussed above. Therefore, it can be 

challenging to compare results from various assays both within and among studies 

[22,24]. Furthermore, it is important to take into consideration that in vitro methods for 

assessing antioxidative activity cannot be directly extrapolated to functionality in food or 

the human body, as they do not consider intermolecular interaction, stability, or bioavail-

ability [20]. 

The use of UF processing in an industrial setting would require an investment in both 

expensive equipment and expertise. Based on published results, it is also questionable 

whether such processing is likely to yield a product with increased bioactivity that could 

target a high-value market, which would be necessary to cover the extra cost. However, 

further studies are needed to refine and adapt the UF process to fish protein hydrolysates. 

In the event of an adapted process, where the fractions generated can be utilized based on 

their specific functional properties, e.g., water binding, emulsification, foaming, etc. for 

retentates and bioactivity for permeates, it would be possible to optimize the utilization 

of fish RRM proteins. 

3. Materials and Methods 

3.1. Chemicals 

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), potassium persulfate, 

ferric chloride, 2,3,5-triphenyltetrazolium chloride (TPTZ), 2,2′-azobis-(isobuttersa 

ureamidin)-dihydroclorid) (AAPH), propyl gallate, Trolox, acetate, phosphate, hydro-

chloric acid, methanol, and ethanol (Merck Life Science AS, Oslo, Norway) were used for 

the experiments and chemical analysis. All chemicals were of analytical grade. 

3.2. Enzymatic Hydrolysis 

The experimental procedure was conducted as described by Hjellnes, Rustad, and 

Falch [3] following the factorial design illustrated in Figure 7. Saithe were caught in Trond-

heimsfjorden, Norway, at two separate occasions: pre-spawning saithe in October 2019 

(O) and spawning saithe in January 2020 (J). The fish was hand filleted, and the RRM was 

separated into three fractions: viscera (V), head (H), and backbone (B). Heads and back-

bones were used for further analysis. 

The enzymatic hydrolysis was conducted on 500 g of minced RRM mixed 1:1 with 

preheated water (50°) for 60 min at 50 °C, physiological pH (pH = 6.0), and with the addi-

tion of 0.1% (1:1) papain (from Carica papaya, 1.5–10 U/mg, EC 3.4.22.2, Merck Life Sci-

ence AS, Oslo, Norway) and bromelain (from Ananas comosus, 3 U/mg, EC 3.4.22.32, , 

Merck Life Science AS, Oslo, Norway) in bioreactors (Syrris Atlas, Model No. 2101000, 
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Nerliens Meszansky AS, Oslo, Norway) with thermostats (Huber Ministat 125, Nerliens 

Meszansky AS, Oslo, Norway). A total of four RRM combinations (HO, BO, HJ, BJ) were 

hydrolyzed in two parallels, as presented in Figure 7. The enzymatic reaction was termi-

nated by heat inactivation (>90 °C, 10 min), and the reaction mixture was transferred to 18 

centrifugal tubes (50 mL), centrifuged (10,900 × g, 10 min, 20 °C) and frozen (–20 °C). The 

resulting three fractions, oil, hydrolysate, and sludge, were separated using a scalpel on 

frozen sample. Saithe protein hydrolysates (SPH) were further freeze dried (Labconco 

FreeZone 12, Labcono Corporation, Kansas City, MO, USA, −50 °C, <13.3 Pa) and frozen 

at −40 °C until further processing. 

 

Figure 7. Schematic overview of the samples generated from (left), and the factorial design used for (right) enzymatic 

hydrolysis of saithe head and backbones from October 2019 (pre-spawned) and January 2020 (spawning) [3]. 

3.3. Membrane Ultrafiltration 

Membrane ultrafiltration (UF) was conducted using a pilot-scale system (MMS Mem-

brane Solution Triple System, DUE MILJØ AS, Halden, Norway) measuring 700 × 510 × 

510 mm. The system had an 800 mL feed tank and a hold-up volume of 50 mL. A single 

membrane cell and three serially coupled membranes cells, each with an individual area 

of 28 cm2, were used for the experiment. A ceramic membrane with a molecular weight 

cut-off (MWCO) of 150 kDa (Nadir®, MMS Nordic, Silkeborg, Denmark) was used for the 

single membrane cell, and PESH membranes (Nadir® UH004 p, MMS Nordic, Silkeborg, 

Denmark), with a thickness of 210–250 µm and a MWCO of 4 kDa, were used for the three 

serial coupled membranes. 

SPH were resuspended in distilled water to a concentration of 1% (10 g/L) and then 

filtered through the ceramic membrane under a pressure of 500 kPa (Flux: 50 L/m2h) at 

21°C until hold-up volume was reached. The filtration yielded two fractions: a retentate 

with peptides larger than 150 kDa (R150) and a permeate with peptides smaller than 150 

kDa (P150). P150 was subsequently filtrated through the PESH membranes (500 kPa, 21 

°C), which generated two new fractions: a retentate with peptides larger than 4 kDa (R4) 

and a permeate with peptides smaller than 4 kDa (P4). R150, R4, and P4 were freeze dried 

(Labcono FreeZone 12, −50 °C, <13.3 Pa) and frozen at −40°C until further analysis. An 

overview of the processing steps and generated products is presented in Figure 8. 
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Figure 8. Overview of the processing steps and products generated from capture, filleting, and enzymatic hydrolysis of 

saithe rest raw material [3] and two membrane filtrations of saithe protein hydrolysates. 

3.4. Dry Matter 

Dry matter was analyzed gravimetrically according to AOAC [50]. The samples were 

analyzed in triplicates. 
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3.5. Antioxidative Assays 

The antioxidative activity of saithe protein hydrolysates was analyzed by 2.2′-azino-

bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging 

activity, ferric-reducing antioxidant power (FRAP) assay, and oxygen radical absorbance 

capacity (ORAC) assay. ABTS was analyzed according to Re et al. [51] and Nenadis et al. 

[52] using propyl gallate as the reference compound [53]. FRAP was analyzed according 

to Benzie and Strain [54], and ORAC was analyzed according to Dávalos et al. [47] with 

previously described modifications [55] using Trolox as the reference compound. Values 

were reported as µmol/g propyl gallate equivalents and µmol/g Trolox equivalents, re-

spectively. The samples were analyzed in triplicate. 

3.6. Amino Acid Composition 

Total amino acid composition was analyzed according to Blackburn [56]. Samples 

equivalent to 50 mg protein were hydrolyzed with 1 mL 6 M HCl for 22 h at 105 °C. The 

samples were neutralized (pH = 6.5–7.5) with NaOH and filtered through Whatman GF/C 

filters (25 cm, GE Healthcare, Boston, MA, USA) using a vacuum pump (Heto MASTER 

JET, Heto Lab Equipment AS, Allerød, Denmark). Following dilution, the samples were 

filtered through 0.2 µM syringe filters (VWR International, Oslo, Norway). HPLC (Ulti-

mate 300 dionex, Nova-pak c184 µM 3.9 × 150 mm column, Thermo Fischer Scientific, 

Waltham, MA, USA) using a fluorescence detector (Rf 200) was performed by Siri Stav-

rum, NTNU. The samples were analyzed in triplicate. 

3.7. Protein Efficiency Ratio (PER) Value 

PER values were calculated as described by Šližytė et al. [37] using the following 

Equation (1): 

𝑃𝐸𝑅 = 0.08084[Σ𝐴𝐴7] − 0.1094  (1) 

where ΣAA7 = Thr + Val + Met + Ile + Leu + Phe + Lys. 

3.8. Molecular Weight Distribution 

The molecular weight distribution of SPH and P4 was analyzed by High-Perfor-

mance Liquid Chromatography (HPLC) by Innolipid AS. Samples were dissolved in dis-

tilled water (10 mg/mL) and filtered through a low-protein-binding microfilter (0.22 µm) 

to remove large peptides and proteins. The analysis was performed on a Superdex column 

using a wavelength of 214 nm and hydrolyzed albumin as standard. The samples were 

analyzed in duplicate. 

3.9. Statistical Analysis 

All statistical analysis was conducted in SPSS software (IBM SPSS Statistics 27, 2020, 

International Business Machines (IBM), Armonk, NY, USA). Analysis of variance 

(ANOVA) and T-test were used for the comparison of means for >3 and <3 parallels re-

spectively, assuming normal distribution and equal variance. Tukey’s post hoc test was 

used in combination with ANOVA to identify significant differences. Significance level 

was set to p <0.05. Results are reported as mean values (x̅) of [n] number of parallels ± 

standard error of the mean (SEM). 

4. Conclusions 

This study aimed at investigating the functionality of ultrafiltration (UF) as an indus-

trial processing method, and its effect on the bioactivity of saithe protein hydrolysates 

(SPH). An initial filtration was performed on SPH with a 150 kDa MWCO membrane, 

creating a retentate (R150, >150kDa) and a permeate (P150, <150 kDa). UF was subse-

quently performed on P150 using a 4 kDa MWCO membranes, creating a new retentate 

(R4, >4 kDa) and permeate (P4, <4 kDa). 
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UF effectively concentrated small peptides in P4. UF processing was expected to in-

crease the antioxidative activity of this peptide fraction, as small peptides have been asso-

ciated with bioactivity. However, unfiltered SPH was found to have a similar or even 

higher antioxidative activity compared to P4 measured by ABTS, FRAP, and ORAC as-

says. These results indicate that concentrating small peptides by UF does not effectively 

increase bioactivity, and that bioactivity is dependent on several properties, including in-

teraction with larger peptides. No correlation was observed between the results of ABTS, 

FRAP, and ORAC, and the measured antioxidative activity varied considerably among 

the assays. This indicates that it can be difficult to compare results among different assays 

both within and between studies. 

The main product of enzymatic hydrolysis is SPH, while P4 can be considered the 

main product of UF when the goal is to concentrate small peptides. However, during both 

processing methods, the majority of the protein content ends up in fractions other than 

the main products. This highlights the importance of finding areas of application for the 

sludge fraction from enzymatic hydrolysis and the retentates from UF in order to make 

food production more sustainable by improving the utilization of saithe rest raw material. 
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49. Kristinová, V.; Mozuraityte, R.; Storrø, I.; Rustad, T. Antioxidant Activity of Phenolic Acids in Lipid Oxidation Catalyzed by 

Different Prooxidants. J. Agric. Food Chem. 2009, 57, 10377–10385, doi:10.1021/jf901072t. 

50. AOAC. Association of Official Analytical Chemists. Official Methods Of Analysis, 15th ed.; AOAC Arlington, VA: Washington, DC, 

USA, 1990. 

51. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS 

radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237, doi:10.1016/s0891-5849(98)00315-3. 

52. Nenadis, N.; Wang, L.-F.; Tsimidou, M.; Zhang, H.-Y. Estimation of Scavenging Activity of Phenolic Compounds Using the 

ABTS•+Assay. J. Agric. Food Chem. 2004, 52, 4669–4674, doi:10.1021/jf0400056. 

53. Nenadis, N.; Lazaridou, A.O.; Tsimidou, M. Use of Reference Compounds in Antioxidant Activity Assessment. J. Agric. Food 

Chem. 2007, 55, 5452–5460, doi:10.1021/jf070473q. 

54. Benzie, I.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. 

Biochem. 1996, 239, 70–76, doi:10.1006/abio.1996.0292. 

55. Jensen, I.-J.; Abrahamsen, H.; Maehre, H.K.; Elvevoll, E.O. Changes in Antioxidative Capacity of Saithe (Pollachius virens) and 

Shrimp (Pandalus borealis) duringin VitroDigestion. J. Agric. Food Chem. 2009, 57, 10928–10932, doi:10.1021/jf9023849. 

56. Blackburn, S. Amino Acid Determination. Methods and Techniques; Edwars Arnold Ltd.: London, UK, 1968; p. 271. 


