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A B S T R A C T   

Vehicle-assisted monitoring is a promising alternative for rapid and low-cost bridge health monitoring compared 
to direct instrumentation of bridges. In recent years, centralized management systems for fleets of heavy vehicles 
have been adopted in transportation networks for logistics and other applications. These vehicles can be 
instrumented and easily integrated with the existing fleet management systems to provide information that can 
be used for bridge health monitoring. In this study, a numerical investigation is carried out to evaluate the 
feasibility of an indirect bridge monitoring system considering responses from several vehicles under operational 
conditions. The proposed method uses the vertical acceleration responses from a fleet of vehicles passing over a 
healthy bridge to train a deep autoencoder model (DAE) for bridge damage sensitive features. It is shown that the 
error in signal reconstruction from the trained DAE is sensitive to damage, when considering the distribution or 
results from several separate vehicle-crossing events. The bridge damage is quantified with a damage index based 
on the Kullback-Leibler divergence that evaluates the change in the distributions of the reconstruction errors. The 
performance of the proposed method is evaluated for two numerical scenarios of vehicle populations, for 
different damage cases including the effect of operational uncertainties (road profile, measurement noise, and 
variability in vehicle properties). The proposed method is also evaluated for more realistic multi-span continuous 
bridge for different damage cases in the presence of random traffic. The result show that the proposed method 
can detect damage under operational conditions and that it has the potential to become a new tool for cost- 
effective bridge health monitoring.   

1. Introduction 

The maintenance of ageing infrastructure is taking large parts of the 
total budget available to transport network owners. The continuously 
growing stock of bridges is getting old and many have exceeded their 
design service life. To ensure the safe operation of these bridges, 
monitoring and continuous assessment is essential. In recent years, 
structural health monitoring (SHM) strategies have evolved from 
manual inspection to sensors-based monitoring systems [1,2]. Sensor- 
based monitoring solutions require the direct installation of multiple 
sensing instruments on bridges and the analysis of the collected data [3]. 
The collected information from sensors is analysed through physics and/ 
or data-driven techniques to extract useful features[4]. 

Early damage detection is one of the core objective in SHM and to 
that purpose many vibration-based methods have been proposed [4,5]. 
The measured vibration responses are analysed with some signal pro
cessing method to provide the information about the structure and 

possible damage state. However, these methods generally require mul
tiple sensors installed on the bridge, which increases installation and 
maintenance costs of the monitoring system. In addition, it is chal
lenging to effectively utilize the large data sets generated daily for each 
bridge [6]. Because of these practical and economic considerations, the 
implementation of such systems is generally limited to a relatively small 
amount of long-span bridges [7]. 

As an alternative to traditional SHM methods, many studies have 
proposed indirect or ‘Drive-by’ methods. This idea utilizes the measured 
responses from a moving vehicle while traversing the bridge of interest. 
The method was initially proposed by Yang et al. [8] to identify the 
bridge’s natural frequencies. This method is a low-cost alternative to 
traditional monitoring methods because it removes the necessity for 
individual instrumentation of each bridge. Over the past decade, re
searchers have investigated and provided many solutions for different 
damage detection levels using the indirect method [9]. These methods 
are broadly categorized into two main groups: (1) modal-based; (2) non- 
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modal-based. 
The modal-based indirect method identifies the bridge modal prop

erties, which in turn can be used for damage detection [7,10]. Experi
mental validation of bridge frequency identification is done in [11] 
using instrumented trailer. Similarly, Yang et al. [12] and Zhu et al. [13] 
used empirical mode decomposition (EMD) and ensemble empirical 
mode decomposition (EEMD) for pre-processing the vehicle’s accelera
tion response to extract higher mode frequencies of a bridge. O’Brien 
et al. [14] and Kildashti et al. [15] used the EMD and corresponding 
intrinsic mode functions (IMFs) to define a damage indicator. Modal- 
based indirect methods have been also used for mode shape identifica
tion, which allowed the detection and localisation of damage by ana
lysing the mode shape curvature [16,17]. Yang et al. [18] proposed 
using the Hilbert amplitude of the acceleration response of passing ve
hicles to find bridge mode shapes. Likewise, Malekjafarian et al. [19] 
used the short-time frequency domain decomposition for bridge mode 
identification. Eshkevari et al. [20] proposed the novel pipeline methods 
together with EMD and structural identification using expectation 
maximization (STRIDEX) to identify mode shapes. Despite the ad
vancements in the modal-based method, there are still critical chal
lenges associated with it. Arguably, the main challenge is the need of low 
vehicle speeds in order to achieve sufficient resolution to accurately 
extract the modal parameters. Also, the performance of these methods is 
affected by the presence of the road profile and measurement noise. 

In contrast, several other indirect methods did not directly extract 
modal parameters. These non-modal-based methods, which mainly rely 
on signal processing and machine learning, have been proven effective 
in detecting and localising damage [21–28]. For instance, Zhang et al. 
[27] proposed the estimation of contact-point response to detect dam
age. The vehicle-bridge contact point was estimated using acceleration 
measured on a vehicle. Then an indicator based on the Hilbert instan
taneous amplitude was proposed for damage detection and localization. 
O’Brien et al. [21] effectively applied the moving force identification 
method for damage detection in a numerical study and verified it in an 
experimental investigation [29]. Both studies assume prior knowledge 
of the vehicle’s dynamic properties (masses and suspension stiffness and 
viscous damping). Additionally, several authors have used wavelet 
transform in indirect methods. McGetrick and Kim [30] proposed a 
damage indicator based on the coefficients from the continuous wavelet 
transform (CWT), which was capable of identifying different crack levels 
on a bridge. Similarly, Hester and González [31] use CWT with the 
Mexican Hat basis for the detection of cracks on the bridge. Liderman 
et al. [32] applied signal processing and principle component analysis 
(PCA) to diagnose numerically simulated damage. Liu et al. [33] pro
posed a nonlinear dimensionality reduction method for damage diag
nosis, studied it numerically for a single degree of freedom vehicle and 
verified it with laboratory experiments. Therefore, it is well acknowl
edged that these methods can perform well for damage detection and 
can be used to quantify the severity of the damage. However, their 
practical viability still requires significant physical insights for model 
and method selection. 

Despite the reported progress in indirect health monitoring, several 
challenges and limitations still exist for its practical implementation. 
Bridge damage detection is a task that requires several vehicle passages 
and most of the ‘Drive-by’ methods generally use a single specialized 
vehicle. Thus, arguably the main challenge in this scenario is that it is 
practically impossible to have the same vehicle with the same properties 
over an extended period of time. In addition, operational and environ
mental conditions also directly affect the damage diagnosis process. To 
address these issues multiple frequent runs are an alternative approach 
for bridge monitoring. Miyamoto et al. [34] proposed the idea of using a 
fleet of public transport buses to monitor short and medium span 
bridges. A damage indicator was developed based on the average 
characteristic deflection curve. The authors suggested that heavy vehicle 
responses can be a better option for damage detection because of high 
flexural stiffness of short and medium-span bridges. Mei et al. [25] used 

cepstrum analysis and PCA for damage detection from several vehicle- 
crossing events. Similarly, Malekjafarian et al. [26] and Locke et al. 
[35] proposed the idea of using artificial neural network (ANN) and 
deep learning respectively for damage detection using multiple vehicles 
measurement responses based on numerically generated vehicle-bridge 
interaction (VBI) data. In [26] the authors employed a two-stage 
approach using an ANN model and gaussian process (GP) to detect 
damage features from acceleration responses measured at the vehicles’ 
axles. The combination of ANN and statistical analysis proved to be 
successful in the detection of damage even in the presence of surface 
roughness and measurement noise. Locke et al. [35] further explored 
this idea to only use a single deep learning model for feature extraction 
and damage diagnosis while considering operational and environmental 
affect. The main drawback was that it required labelled data of damaged 
cases, which is not possible in a real case scenario. The above-mentioned 
methods demonstrated that multiple vehicle responses analysed with 
different tools (signal processing, ANN and/or statistical analysis) can be 
successfully employed in indirect SHM. However, generally these 
studies are based on numerical simulations of simple vehicle models 
(mainly quarter-car). Furthermore, these studies consider only a small 
variation in vehicle properties and limited effect of road profile 
roughness. 

On the other hand, recent developments in intelligent transportation 
systems has created the possibility to manage the information from 
multiple vehicles using a centralized system [36]. With progress in 
telemetric technology, the perspective of an on-board monitoring sys
tem for multiple vehicles managed via a centralized system opens new 
prospects for SHM. The multi-sensor (GPS, acceleration, speed, etc.) 
data from a fleet of vehicles can be remotely accessed regularly by 
system managers [37,38]. The big data that is collected from multiple 
vehicles can be further analysed and used for SHM. For big data analysis 
machine learning algorithms have proven to be a valuable tool to extract 
reliable information. Hinton and Salakhutdinov [39] introduced the 
idea of the deep learning (DL) model in machine learning to address the 
issue of gradient vanishing and convergence to local minima associated 
with shallow ANN architecture models. Since then deep neural networks 
have attracted attention in a wide range of applications, mainly in object 
recognition, speech recognition and natural language processing 
[40,41]. For SHM, DL models have been widely explored recently [42], 
where convolution neural networks (CNN) or recursive neural networks 
(RNN) are some of the DL algorithm types used. Abdeljaber et al. [43] 
proposed applying 1D CNN to extract structural damage features from 
the time histories of vibration responses. Similarly, Ni et al. [44] and 
Zhang et al. [45] used 1D CNN for data compression for anomaly 
detection in acceleration data for bridge health monitoring. Wang and 
Cha [46] and Shang et al. [47] used deep convolutional autoencoder to 
detect damage using directly measurements from the structure. For 
more details on recent advancements in vibration-based condition 
assessment, refer to [42,48], which provide a comprehensive review of 
DL and CNN applications in SHM. 

To address the challenges discussed earlier, we propose a bridge 
damage detection method considering the dynamic responses from a 
fleet of vehicles traversing the target bridge. The idea is explored 
numerically with a 5-axle truck model considering a range of vehicle 
properties and speeds, as well as, the presence of road profiles and 
measurement noise. An autoencoder based DL framework is trained to 
extract damage-sensitive features, where the inputs are the vehicles’ 
vertical accelerations while traversing the bridge. Once the model is 
trained it is used to predict subsequent vehicle responses. The difference 
between model-based and actual vehicle responses is the prediction 
error. A damage index is proposed based on the distance between the 
distributions of prediction errors. The numerical study evaluates the 
performance of the proposed method for a range of different damage 
scenarios. 

The remainder of the paper is organized as follows. Section 2 pro
vides an overview of the proposed methodology, including the 
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architecture of the deep neural network model and damage index. 
Section 3 presents the vehicle-bridge interaction model and details 
about the training of the deep learning model. Section 4 evaluates the 
performance of deep learning model. Section 5 provides the numerical 
validation of the proposed damaged detection approach. Section 6 
provides the validation of damage detection for multi-span continuous 
bride model. Section 7 discusses the practical considerations for real life 
application of the proposed method 

2. Proposed method 

The framework proposed in this paper for damage detection is 
mainly divided into three phases. The first phase involves the collection 
of vehicle information and responses (speed and vertical acceleration) 
from a number of vehicle-crossing events. The collected data is then used 
to train a deep autoencoder for damage sensitive features in the second 
phase. The autoencoder architecture is developed using 1D CNN and 
Long short-term memory (LSTM) recurrent neural network. In the third 
phase, the trained model is used to compute the reconstruction error for 
testing data. The KL (Kullback-Leibler) divergence-based damage index 
is proposed to assess the severity of the damage. Fig. 1 shows a 

schematic overview of the proposed framework. More details about the 
data collection, autoencoder, and damage index are discussed in sub
sequent sections. 

2.1. Data collection 

The proposed framework assumes that vehicle responses are 
measured using on-board systems, information that could be accessed 
remotely by a central fleet management system. Different sensor types 
could be used at different vehicle locations to measure a range of re
sponses. However, due to their low cost and ease of installation, this 
study assumes that accelerometers are installed on each passing vehi
cle’s tractor and trailer. Also, this study considers single- vehicle 
crossing events where the entry and exit times on the bridge are known. 

2.2. Deep autoencoder (DAE) 

Autoencoder is an unsupervised neural network model that is used 
for dimensionality reduction and feature extraction. The traditional 
architecture of autoencoder model is consists of an encoder and a 
decoder module, each with a single hidden layer. The encoder module 

Fig. 1. Overview of the proposed framework.  
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maps the input data x into arbitrary lower dimensional space h while the 
decoder modules reconstruct the original input using h as an output x̂. 
The transfer function of each module is expresses as follows: 

h = f (x) = Φ(Wx+ b) (1)  

x̂ = g(h) = Φ’(W’x+ b’) (2)  

where W,W’ and b, b’ are the weight matrices and bias vectors for 
encoder and decoder modules, while Φ,Φ’ are the activation functions 
of encoder and decoder, which are usually the nonlinear functions sig
moid or hyperbolic tangent. The autoencoder optimizes the learning pa
rameters W,W’, b, b’ using mean squared error as the loss function L 

between input and its reconstruction at the decoder’s output. 
In comparison to traditional autoencoders, deep autoencoders (DAE) 

contain more than one hidden layer (depending on the input data’s 
complexity) in the encoder and the decoder. The DAE model allows for 
the effective feature extraction through hierarchical nonlinear mapping 
via multiple hidden layers, resulting in a significant reduction of training 
dataset [46]. For a DAE model, the loss function can be expressed for an 
unlabelled dataset X = [x1, x2, x3,⋯xn] as follows: 

L = f (ϕ : X,X) =
1
n

∑N

i=1

(
1
2
||x̂i − xi||

2
)

+ λ(ϕ) (3)  

[
Wl, bl,W’

l , b’
l

]
= argmin

Wl ,bl ,W’
l ,b

’
l

f (ϕ : X,X);

l = 1, 2, 3,⋯
(4)  

Where subscript l is the number of hidden layers and λ is a regularization 
factor imposed at the weights of the specific layer to prevent overfitting. 

2.2.1. Network architecture for DAE 
Autoencoders have been used in literature, among other 

applications, for feature extraction and dimensionality reduction 
[49,50]. In the proposed framework, these functionalities are utilised to 
learn the compressed feature representation of multiple vehicles’ ac
celeration responses, which can further be used for robust damage 
detection. 

For feature extraction from time-series, recurrent neural network 
(RNN) and 1D convolutional neural network (1D CNN) are widely used. 
RNN is specifically designed for sequential data to extract and augment 
the time-dependent features. However, according to the existing in
vestigations, it is difficult to train RNN for long term sequences because 
of gradient vanishing during backpropagation [51]. To address this Long 
short-term memory (LSTM) is introduced [52]. LSTM is explicitly 
designed to avoid the long-term dependency problem because of its 
internal gates-like architecture that can be used to control the flow of 
information. LSTM has a threshold-based mechanism to fuse similar 
information and filter out redundant information. More details 
regarding LSTMs can be found in [52]. 

A CNN usually consists of a convolutional layer, pooling layer, and 
activation function. In the convolutional layer, the convolutional oper
ations are performed on the input by different convolutional filters, 
which essentially perform cross-correlation on multiple local regions of 
the input to extract low-level features from the raw response. The 
pooling layer aggregates the information from all local regions and 
downsamples the overall feature space. The pooling layer makes the 
learned feature robust and reduces the model’s number of parameters, 
resulting in a computationally efficient model. The activation function is 
applied for nonlinear transformation in each layer. 

DAE architecture is developed as shown in Fig. 2 to extract the 
compact hidden representation of the training dataset. The model can 
reconstruct the input data with high accuracy and is mostly sensitive to 
damage information. The hidden layers of the encoder have two levels. 
The first level includes multiple convolutional blocks, where each 
extract multiple local features from the input data and reduces the 

Fig. 2. Architecture of the proposed deep autoencoder model (DAE).  
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number of parameters by pooling layers. Here, the Leaky-ReLU activa
tion function is used. In this first level, the time-series response is 
reduced to a more compact representation of the most relevant features. 
The extracted features using convolutional blocks are strongly depen
dent upon each other. However, 1-D CNN did not able produce smooth 
and compact latent representation that can be applied for reconstruction 
of the original response. For a robust latent representation, learning 
feature’s temporal dependencies are crucial. A fully connected layer is 
normally used to simply combine the feature with its adjusted weight. 
However, in this case for smooth latent representation, the first level 
feature map is fed into a second-level LSTM layers for retaining the 
temporal dependencies of similar features which would further be used 
for extracting smooth latent space. Then the last LSTM layer is flattened 
and mapped to the bottleneck layer to obtain a fixed latent space rep
resentation. For the decoder, each convolutional block is comprised of 
deconvolutional layers followed by up-sampling and nonlinear activa
tion function Leaky-ReLU. The proposed architecture optimization of 
weight and bias parameters is done by an end-to-end method, in contrast 
to stepwise training of hidden layers, and staking of pre-trained layers 
for final fine-tuning. 

2.3. Damage index (DI) 

For damage detection and severity evaluation, the reconstruction 
loss is evaluated by the mean absolute error (MAE) using Eq. (5). The 
MAE calculates for each vehicle, the difference between the measured 
response and the reconstructed response estimated by the trained DAE 
model. 

MAE =
1
n
∑n

i=1
|x̂(ti) − x(ti)| (5)  

where x̂(ti) and x(ti) are the reconstructed and measured responses 
respectively at sample i for a total of n samples. 

When considering a fleet of vehicles, the MAE error significantly 
varies between crossing events because of the different vehicle proper
ties and speed. However, batches of these events result in distributions 
of MAE values that can be used to differentiate a healthy bridge (base
line) from a damaged one. It is possible to assess the bridge condition by 
evaluating the difference between MAE distributions from different 
batches. In this study, KL divergence is computed to quantify how 
different two distributions are [53]. The KL divergence is the method 
that comes from information theory and measures the information loss 
when a probability distribution p is used to approximate a distribution q. 

The general form of KL divergence is expressed as follows: 

DKL(p‖q) =
∫

x
plog

dp
dq

(6) 

In this paper the MAE distributions are assumed to follow the log- 
normal distribution for each batch of vehicles crossing the bridge. 
These distributions are defined in terms of their corresponding mean μ 
and standard deviation σfor the baseline condition (p0 = logN(x|μ0, σ0)) 
and for an unknown condition (q1 = logN(x|μ1, σ1)). By using the 
probability density functions definitions in Eq. (6) the KL divergence 
between two distributions can be written as: 

DKL(p0‖q1) = ln
[

σ1

σ0

]

+
1

2σ2
1

[(
σ2

1 − σ2
0

)
+(μ1 − μ0)

2] (7) 

One can see in Eq. (7) that the relationship between the distributions 
and KL divergence is exponential with a range of [0,∞]. To obtain a 
robust damage index (DI) the expression is transformed into a linearized 
relationship as Eq. (8) as proposed in [54]. From Eq. (8) it is clear that DI 
value depends upon the batch size of vehicles. If sufficient amount of 
vehicle-crossing data is available, this DI could be used for damage 
detection. This would be later illustrated with numerical results in 
Section 5. 

DI = ln[DKL(p0‖q1)+ e ] (8)  

where is e is Euler number. 

3. Numerical modelling 

This section presents the numerical model that simulates the re
sponses of a vehicle-bridge interaction system with road profile. The 
numerical model would be used to generate dataset for training and 
evaluation of DAE. This section also discusses the configuration and 
hyperparameters for DAE training used in this study. 

3.1. Vehicle-bridge interaction model 

Fig. 3 shows the vehicle-bridge system used for numerical simula
tions. The coupled system is modelled as a simply supported beam 
crossed by a 5-axle truck. 

3.1.1. Vehicle model 
The vehicle model consists of an articulated tractor-trailer configu

ration with two and three axles respectively. Fig. 3 shows that the tractor 

Fig. 3. Vehicle-bridge interaction model.  
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and trailer are represented as rigid bodies, whereas the axles are 
modelled as lumped masses. These bodies are interconnected with 
spring and dashpot systems representing the suspensions. The axle tyre 
is modelled as a single spring connecting the axle mass and road profile. 
The vehicle model has a total of 8 independent degrees of freedom 
(DOF’s): vertical displacements of five axles (ua,i), tractor’s vertical 
displacement (ub1) and pitch rotation (θb1), and pitch rotation (θb2) of 
the trailer. The trailer’s vertical displacement (ub2) can be expressed in 
terms of the other DOFs by the geometric relation given in Eq. (9) arising 
from the articulation between tractor and trailer. 

ub2 = ub1 +D1θb1 +D2θb2 (9) 

The equation of motion of the vehicle can be represented by: 

Mvüv +Cvu̇v +Kvuv = fv (10)  

where Mv, Cv, and Kv are the mass, damping and stiffness matrices of the 
vehicle respectively. The uv vector contains the displacements of all 
DOFs and fv is the external force applied to the vehicle system. The 
extended formulation can be found in [55]. The vehicle model assumes 
constant speed for each run. Table A1 in appendix provides the vehicle 
parameters adopted for the numerical studies. The values of the vehi
cles’ parameters are based on European 5-axle trucks, which are adopted 
from [56–58]. Reference [58] also provides the parameters for distri
butions (mean, standard deviation, minimum and maximum) that are 
the basis for generation of batch of vehicles used for Monte Carlo 
simulations. 

3.1.2. Bridge and road profile 
The bridge is modelled as a simply supported beam of 15m span 

length. Its section and material properties are: second moment of area I 
= 0.5273 m4, modulus of elasticity E = 3.5 × 1010 N/m2, and mass per 
unit length ρ = 28125 kg/m, deemed to represent a generic reinforced 
concrete highway bridge. A 2% damping is considered for all modes. The 
finite element model is discretised into 30 elements (each element 0.5 m 
length). The equation of motion of the bridge is described as follows: 

Mbüb +Cbu̇b +Kbub = fb (11)  

where Mb, Cb, and Kb are the global mass, damping and stiffness 
matrices of the bridge respectively and ub is the vector of nodal 
displacements. 

A road profile is also added to the bridge model. A 6 m wide carpet 
road profile of ISO class ‘A’ is generated as shown in Fig. 4. A 100 m 
approach distance is considered before entering the bridge to allow that 
traversing vehicles reach dynamic equilibrium. The transverse vehicle 
position on the road profile is randomly varied for each run following a 
normal distribution. A moving average filter of 0.24 m width is applied 
to the profile to represent the actual contact of a truck tyre [59] 

3.1.3. Vehicle-bridge interaction: 
The response of a vehicle traversing a bridge is characterised by the 

dynamic interaction between both systems. This vehicle-bridge inter

action is achieved by coupling the equations of motion of vehicle Eq. 
(10) and bridge Eq. (11). The final system of coupled equations of mo
tions can be expressed as: 

Mgüg +Cgu̇g +Kgug = fg (12)  

where Mg, Cg, and Kg are the time-varying system mass, damping and 
stiffness matrices respectively and u is the vector of combined bridge and 
vehicle displacements. ug = {ub, uv}. The vector fg contains the external 
forces applied to the coupled system [55]. To solve the coupled system, 
the equation of motions are integrated using Newmark-β scheme and 
solved iteratively to obtain the system responses, which has been 
implemented in MATLAB. More details of the coupling procedure and 
numerical solution can be found in [55,60]. 

3.2. Data generation and pre-processing 

Numerical evaluation of the proposed damage detection method is 
performed using simulated data generated by solving the vehicle-bridge 
interaction system presented in Section 3.1. In this study, two different 
scenarios are considered based on the degree of variation in vehicle 
properties.  

1. Scenario-1: The dataset is generated assuming that a fleet of similar 
vehicles is traversing the bridge. In this case, the variation in vehicle 
properties is considered in such a way that their standard deviation is 
small, while the geometry of the vehicles is identical. Variation in 
vehicle masses and suspension properties is applied to account for 
normal fluctuations in payload and to account for the inherent un
certainty of the reported vehicle properties.  

2. Scenario-2: This data represents a more generic scenario where the 
responses of different 5-axle trucks is considered. Compared to 
Scenario-1, the dataset is generated by randomly varying the vehicle 
properties with a larger standard deviation, while at the same time 
introducing also random variations in vehicle geometry, rendering 
different vehicles for each event. 

The particular vehicle properties and the statistical variability of the 
parameters (i.e. maximum, minimum, and standard deviation) for both 
scenarios are presented in Table A1 in the appendix. For both datasets, 
the vehicle properties are randomly sampled based on the given statis
tical variation within a Monte Carlo simulation. For each scenario, a 
batch of 1000 vehicle events are created. Each dataset contains the ve
hicle’s speed (v) and the vertical acceleration response from tractor (üb1) 
and trailer (üb2) with a sampling frequency of 500 Hz. The length of 
these signals is not uniform across the events in the datasets because of 
the varying vehicle’s speed. For DAE input, the acceleration signals of 
each event are resampled into the spatial domain by multiplying signal 
in time by the vehicle’s speed. Therefore, for each vehicle crossing the 
bridge of 15 m, 1500 samples are recorded. Therefore, the size of a 
dataset X, for either tractor (üb1) or trailer (üb2), is 1000 × 1500. Each 
dataset is normalized using Eq. (13) for better reconstruction perfor
mance of DAE[47]. 

Xn =
X − μX

σX
(13)  

where Xn is the normalized dataset, while μX and σX is the mean and 
standard deviation of the original data set X. 

3.3. Configuration of DAE 

The architecture of DAE is designed by using TensorFlow modules, 
and the implementation code is developed using python 3.7. The 
configuration of the autoencoder model was selected based on lowest 
reconstruction loss after an extensive trial and error process. The detail 
of different model configurations and parameters used in trial and error 

Fig. 4. Road profile of class A (according to ISO 8608).  
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process is summarized in Table 1. The final architecture’s encoder 
module includes an input layer, four convolutional blocks, two LSTM 
layers, and fully connected layers. Each convolutional block has a 1D 
convolutional layer and a max-pooling layer followed by Leaky-ReLU as 
an activation function. For the decoder module, the same number of 
convolutional blocks is used as in encoder but in the reverse direction. In 
the decoder module, a max-pooling layer is replaced with up-sampling 
layer and at the output layer linear activation function is used. For 
robust model performance and to avoid overfitting, a regularization 
term is used as an additional hyperparameter. The regularization term 
applies penalties on weight parameters of the layers. In the proposed 
model, L2 regularization is applied at the bottleneck layer with the value 
of 1 × 10− 4. The detailed architecture of the proposed DAE with 
different hyperparameters (activation function, filters and kernel size) is 

shown in Table 2. For evaluation of proposed method in subsequent 
sections same hyperparameters would be used for all scenarios. 

The learning and decay rates are set to 0.001 and 0.0001 respectively 
for model optimization and training, adaptive moment estimation 
(Adam) with a batch size of 64 samples is considered. For efficient 
training, early stopping criteria is added to the network, which stops the 
training when the model achieves the loss criteria of 1 × 10− 6 or 1500 
epochs. All models training and numerical computations are performed 
on a standard PC with Intel Core i9-10900 K CPUs with 64 GB RAM and 
NVIDIA GTX 2080Ti graphic card. 

4. Damage detection using DAE 

This section evaluates the DAE for damage detection using Scenario- 
1, in which the crossing event correspond to a fleet of similar vehicles as 
discussed in Section 3.2. For this demonstration, the DAE model is 
trained with the acceleration responses from the tractor of the vehicles 
(üb1). For training, the dataset is divided into 700 and 300 vehicle- 
crossing events for training and validation respectively. After training, 
the model achieves mean squared errors of 1.2908 × 10− 6 and 1.2119 ×
10− 6 for training and validation data. The total training time was 1 h and 
16 min. To demonstrate how the trained model can be used for damage 
detection, seven new datasets with different damage severities are 
generated for Scenario-1, in which the damage is modelled as a stiffness 
reduction of a single beam element. The details for the different damage 
cases (DC) are:  

• Baseline: Dataset with no damage  
• DC1: Dataset with 5% damage at midspan  
• DC2: Dataset with 10% damage at midspan  
• DC3: Dataset with 15% damage at midspan  
• DC4: Dataset with 20% damage at midspan  
• DC5: Dataset with 25% damage at midspan  
• DC6: Dataset with 30% damage at midspan 

To visualize the model’s reconstruction performance, two random 
cases are illustrated for the baseline data (undamaged bridge) and 

Table 1 
Different network architectures and hyper-parameters used for model selection.  

Architecture Latent size Activation function L2 regularization 

conv.-latent-conv. 
[{4,6,8}-1- {4,6,8}] 

{8,16,32,64} {tanh, ReLU, leaky- 
ReLU} 

{10− 2,10− 4,10− 6} 

conv.-LSTM-latent- 
conv. 
[{4,6,8}-{1,2,3}-1- 
{4,6,8}] 

{8,16,32,64} {tanh, ReLU, leaky- 
ReLU} 

{10− 2,10− 4,10− 6} 

*conv: convolutional block, LSTM: Long short-term memory layers. 

Table 2 
Architecture of proposed deep autoencoder.  

Layers Output shape Kernel size Activation 

Encoder    
Input (1500 × 1) – – 
Conv_1D (1500 × 256) 1 × 7 Leaky-ReLU 
Max-pooling (500 × 256) 1 × 7 – 
Conv_1D (500 × 128) 1 × 5 Leaky-ReLU 
Max-pooling (250 × 128) 1 × 5 – 
Conv_1D (125 × 64) 1 × 3 Leaky-ReLU 
Max-pooling (125 × 64) 1 × 3 – 
Conv_1D (125 × 32) 1 × 3 Leaky-ReLU 
LSTM (125 × 32) – Leaky-ReLU 
LSTM (125 × 32) – Leaky-ReLU 
Flattened (2000) – – 
Fully connected (16) – Leaky-ReLU  

Decoder    
Fully connected (4000) – Leaky-ReLU 
Reshape (125 × 32) – – 
Conv_1D (125 × 64) 1 × 3 Leaky-ReLU 
Up-sampling (250 × 64) 1 × 3 – 
Conv_1D (250 × 128) 1 × 3 Leaky-ReLU 
Up-sampling (500 × 128) 1 × 3 – 
Conv_1D (500 × 256) 1 × 3 Leaky-ReLU 
Up-sampling (1500 × 256) 1 × 3 – 
Output (1500 × 1) – Linear 

*Conv_1D: 1-Dimenasional convolutional layer, Leaky ReLU: Leaky-Retified 
linear unit, LSTM: Long short-term memory 

Fig. 5. Comparison of original and reconstructed vertical accelerations of two separate events for: (a) healthy and (b) damaged case.  

Fig. 6. Comparison of the difference between measured and reconstructed 
signals for three different vehicle-crossing events. 
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damage case (DC4). Fig. 5 shows the measured and predicted signals for 
two particular vehicle responses from different datasets. The trained 
DAE model is able to reconstruct the response for the healthy bridge case 
(Fig. 5(a)) with great accuracy, whereas for the damaged case (Fig. 5(b)) 
the match between measured and reconstructed signals is somewhat 
different. The proposed method exploits precisely this difference to 
detect damage. This reconstruction error shows large fluctuations be
tween individual events but remains approximately constant when 
larger populations of events are analysed statistically. 

To further quantify the loss in signal reconstruction, three particular 
vehicle-crossing events are investigated. The measured acceleration 
responses are compared to DAE’s reconstructed response in Fig. 6 that 
shows the difference between both. The errors for vehicles from the 
training dataset and baseline are very small and almost the same, while 
for a damaged case event, the model could not reconstruct the response 
with the same accuracy. The reason for the higher reconstruction loss is 
due to the damage in the bridge. Then, the dynamic behaviour of the 
bridge changes, which leads to inaccuracies in vehicle response recon
struction. Because the DAE is trained only for the healthy condition, the 
model cannot reconstruct the response accurately when data from a 

damaged case is used. 
The DAE model generalises the feature space into a continuous 

domain. This capability makes it possible to correctly predict the re
sponses of events with different vehicle properties and travelling at 
different speeds, while at the same time distinguish changing bridge 
conditions. This is achieved because the encoder module in the DAE 
compresses the input data and transforms it into a latent space that 
generalises the feature space. To visualise this capability of the DAE 
model, the t-Distributed Stochastic Neighbour Embedding (t-SNE) is 
applied, which is used to compare high-dimensional datasets [61]. Fig. 7 
shows a two-dimensional visualization of the feature space for the input 
data from three datasets (training, baseline, DC4). This confirms that the 
DAE model produces distinctive clusters for events with different dam
age conditions. 

The studied example shows that it is possible to distinguish the 
structural condition by evaluating the reconstruction error for batches of 
events. To further illustrate this idea, Fig. 8 shows the histogram of the 
reconstruction errors in terms of MAE (Eq. (5)). The figure directly 
compares the distribution of errors of the baseline dataset with the 
different damage cases considered in this study (DC1 to DC6). The re
sults show that as the damage increases, the mean absolute error dis
tribution changes compared to the baseline. In the proposed method, 
this variation in the statistical distribution of different bridge conditions 
is exploited for damage detection and severity quantification. 

In order to quantify the differences between batches of events, log- 
normal distributions are fitted to the histograms of mean absolute 
error. As shown in Fig. 8 the distribution of MAE is always positive, is 
skewed to the right and has a long tail because of outliers. The log- 
normal distribution has similar characteristics, namely a lower bound 
of zero and a positive skewness. Thus the log-normal distribution is 
deemed suitable for representation of the distribution of MAE. The 
statistical parameters of those fits are then used to define the damage 
index discussed in Section 2.3. Fig. 9 shows the fitted distributions to the 
results in Fig. 8. Each distribution has distinct statistical parameters (μ, 
σ) that are then used to compute the corresponding DI following Eq. (8). 

5. Performance of damage detection method 

This section evaluates the performance of the proposed damage 
detection method using vehicle responses for the two different scenarios 

Fig. 7. Feature space visualization using t-SNE on the encoder output.  

Fig. 8. Histogram of mean absolute error for batches of events for different bridge damage cases.  
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presented in Section 3.2. The analysis studies the sensitivity of the 
proposed damage index to damage severity and location. In addition, 
this section explores the influence of number of vehicles, their speeds 
and effect of measurement noise. 

5.1. Damage detection for Scenario-1 

This section illustrates how damage detection can be performed by 
using vehicle responses from a fleet of similar vehicles (Scenario-1) 
when there is a progressive bridge deterioration. This analysis assumes 
that for every given day, 300 vehicle-crossing events are available. The 
condition of the bridge is changed with increases of 5% damage severity 
every 20 days, starting from a perfectly healthy beam (baseline) until a 
30% stiffness reduction at midspan (DC6). For comparison, this scenario 
is studied for acceleration responses from the tractor (üb1) and the trailer 
(üb2). Two separate DAE models are trained with acceleration responses 
from both locations on the vehicles. 

Fig. 10 shows the damage index (DI) calculated using Eq. (8) for the 
discussed scenario. The DI values are distinctively different for different 
bridge conditions. In the case of the baseline, the magnitude of DI is 
small and close to zero. As the severity of the damage increases DI grows 
proportionally. The operational conditions and varying vehicle proper
ties affect the magnitude of DI, which result in daily variations. How
ever, for any given bridge condition the average value of the DI remains 
constant. The sensitivity of the index to the damage severity is clear, 
which allows the identification of damage even considering the daily 
dispersion in results. Therefore, it is evident that the proposed method 
can successfully be used to monitor the evolution in time of the condi
tion of a bridge. 

Fig. 10 also allows for a direct comparison of the damage detection 
method using signals from different locations in the vehicles. While the 
results in Fig. 10(a) come from the analysis of the vertical accelerations 
in the tractors, Fig. 10(b) shows the same analysis but based on the 
signals recorded on the trailers. Both sources of vehicle responses yield 
similar results in terms of sensitivity and variability of the DI. Therefore, 
in subsequent studies in this section only the tractor response (üb1) will 
be considered. 

5.1.1. Influence of the number of vehicles 
The robustness and accuracy of the proposed method depends on the 

number of vehicles considered for a given batch of events. The damage 
index (Eq. (8)) directly relates to the probability distribution of the 
reconstruction error (MAE). Errors for individual events usually 

Fig. 9. Comparison of log-normal distributions of reconstruction loss for 
different damage cases. 

Fig. 10. Evolution of daily damage index (300 events/day) during progressive 
bridge condition change (every 20 days), for Scenario-1. Solid line indicates 20- 
day average value, using signals from: (a) tractor response (b) trailer response. 

Fig. 11. Influence of batch size (number of vehicle-crossing events) in the 
calculation of the damage index. 
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fluctuate because of operational effects and varying vehicle properties, 
but the distribution of errors tends to a remain fixed. The character
ization of that distribution is more precise when larger the number of 
events considered in its calculation. As shown in Fig. 11, the damage 
index fluctuates quite significantly for small fleet sizes. However, with 
increasing number of vehicles, variations in DI decrease. This shows that 
for a sufficiently large fleet size, the effect of operational conditions can 
be reduced. In this study a batch size of 250 vehicle-crossing events are 
deemed appropriate because it results in sufficiently small variations in 
DI. 

5.1.2. Influence of location 
In practical cases, the location of damage can be anywhere along the 

bridge’s length and it has been often reported that it is difficult to detect 
damage close to the bridge’s supports under realistic vehicle and oper
ational conditions [7]. In vibration-based damage detection methods, 
the sensitivity to damage depends on the location. For instance, in the 
case of a damage close to the bridge support the variation in frequencies 
(mainly the lower frequencies) would be much less compared to the case 
with midspan damage. To detect the damage at different locations of the 
beam it is important to consider the full spectra of the signals. The 
proposed method considers time series responses, which include the 
complete frequency content, that enables the damage detection at 
different locations, to some extent. 

To illustrate the robustness and accuracy of the proposed method, 
damage identification is conducted for different beam damage locations. 
The trained model for Scenario-1 is considered with batch sizes of 250 
vehicle-crossing events. Fig. 12 shows the sensitivity of DI for damage 
cases at seven different locations along the beam. The variation in 
magnitude of the damage index for locations between L/4 and3L/4 is 
significant and comparable in order of magnitude to results at L/2. In 
case of locations closer to the supports (L/8 and 7L/8) the magnitude of 
damage index for low damage severity cases is not distinguishable. 
However, if larger batch sizes were considered the robustness of the 
method increases. Then it would be possible to consistently distinguish 
smaller variations of DI due to damages near the supports. 

5.1.3. Effect of vehicle speed 
In vehicle assisted damage assessment, speed and mass of traversing 

vehicle is critical in the presence of road surface. Previously published 
studies [7,27] have shown that vehicles with relatively small masses 
travelling at high speeds cannot detect damage with sufficient accuracy. 
This is mainly due to the short duration of the vehicle signals, hence a 
poor resolution in the frequency domain, but also due to low levels of 
bridge excitation and the presence of road profile. In lightweight vehi
cles at high speeds, the bridge response component is masked by the 
dynamic effects induced by the road profile. Compared to that, 

heavyweight vehicles can sufficiently excite the bridge and are therefore 
considered more suitable for indirect bridge monitoring [34]. However, 
the amount of dynamic interaction between vehicle and bridge depends 
on the traversing speed. To study the effect of vehicle speed, three 
different speed ranges are studied for Scenario-1. New datasets are 
generated with the same properties as shown in Table A1 of the ap
pendix except for the vehicle speeds. For each new dataset, the vehicle 
speeds are randomly sampled following normal distributions defined by 
the values provided in Table 3. Three DAE models are trained using 
tractor accelerations (üb1), one for each new dataset. The trained models 
have tested against the baseline and two damage cases (DC2 and DC4). 
To consider the uncertainty in operational conditions (number of vehi
cle’s, road profile etc) 20 randomly selected fleet size is considered from 
range of 200 to 400. 

Fig. 13 compares the damage index distributions for three damage 
cases (baseline, DC2 and DC4) for three speed ranges (using datasets V1, 
V2 and V3). The comparison is done using a box plot representation, 
which shows the 25th and 75th percentile values in a box together with 
the median value and indicates the maximum and minimum results of 
the DI distribution. The results in all speed ranges allow for the clear 
distinction between healthy and damaged cases. It also shows that at 
lower speed the performance of the trained model is less accurate than at 
higher speeds. The magnitude of the damage index for the baseline 
condition shows that at lower speeds the feature space is not well 
generalised for the damage-sensitive features, compared to higher 
speeds. The physical interpretation on why damage detection is more 
robust at higher speed might be in the relative magnitudes between 
static and dynamic components of the bridge response. At lower speeds 
the bridge behaviour captured by the vehicle response is dominated by 
the quasi-static component. Only a small proportion of energy is present 
at the bridge frequencies, which are therefore hardly captured by the 
passing vehicle. It is found the proposed damage detection method 
performs well using responses of vehicles travelling at normal opera
tional speeds. 

Fig. 12. Effect on damage index of different bridge damage locations (Sce
nario-1). 

Table 3 
Vehicle speed variability (in km/h).  

Dataset name Min. Max. Mean SD 

Dataset V1 25 40 36 7 
Dataset V2 40 70 55 7 
Dataset V3 70 120 90 7  

Fig. 13. Damage index performance comparison for different speed ranges.  
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5.1.4. Influence of measurement noise 
This section presents the sensitivity and performance of the proposed 

damage detection method to measurement noise. In order to analyse the 
effect of noise, two separate datasets of 1000 vehicle-crossing events are 
considered. Dataset N1 was formed by noise-free samples and dataset N2 
by adding normally distributed noise. Noise in acceleration response 
(üb1,noise) is defined according to Eq. (14), for an equivalent nose level 
Elevel. 

üb1,noise = üb1 + Elevel⋅Nnoise⋅σ(üb1) (14)  

where, Nnoise is a vector of standard normal distribution N(0, 1) and 
σ(üb1) is the standard deviation of the measured response. In dataset N2, 
the noise level for each event is randomly sampled for Elevel N(2.5, 0.5)
with value in the range [0, 5]. Both datasets (N1 and N2) are trained 
using the architecture and hyperparameters discussed in Section 3.3. 
The trained models are then tested for three damage conditions (base
line, DC2 and DC3) by including a variations in noise levels Elevel (noise- 
free or 0%, 1%, 2%, 3%, 4%, 5% and 6%). For each noise level to 
consider the statistical uncertainties because of operational variabilities 
20 repeated simulation are computed with randomly selected fleet size 
from range of 200 to 400. 

The noise sensitivity analysis of the proposed damage index (DI) for 
the two datasets is presented in Fig. 14. The results from both datasets 
clearly show that different levels of damages are separable even when 

including large noise magnitudes in the signals. For dataset N1, when 
the model is trained with noise-free samples and tested with different 
noise levels, DI increases linearly with the increase in noise level (Fig. 14 
(a)). It shows that the trained model starts overfitting with increases in 
noise and that variations in the noise level at baseline condition could be 
interpreted as damage. However, Fig. 14(b) shows the results of the 
same model but trained with dataset N2. The magnitude of DI for 
baseline condition remains approximately constant for a range of 
different noise levels compared to the noise-free model. The introduc
tion of noise levels during the training process helped the DAE model to 
generalise the latent feature for healthy conditions under uncertainty. 
From these results, it can be said that the introduction of uncertainty in 
the form of measurement noise during model training results in a more 
stable performance for the baseline condition. 

5.2. Damage detection for Scenario-2 

This section discusses the damage assessment performance of the 
proposed method for Scenario-2, i.e. a more challenging scenario that 
uses a broader range of vehicle properties (as described in Section 3.2). 
For Scenario-2, separate DAE models are trained for both tractor and 
trailer responses of the vehicles. The trained models are tested for the 
damage cases discussed in Section 4, with the only difference that each 

Fig. 14. Effect of measurement noise on the sensitivity of the damage index: (a) 
noise-free; (b) with noise. 

Fig. 15. Evolution of daily damage index (450 events/day) during progressive 
bridge condition change (every 30 days), for Scenario-2. Solid line indicates 30- 
day average value, using signals from: (a) tractor response (b) trailer response. 
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case is simulated for the dataset of Scenario-2. Because of the inherent 
broader variability of the vehicle properties, the damage detection 
method benefits of larger sets of data. This is why 450 vehicles/day and 
intervals of 30 days are considered to illustrate the performance of the 
method, where the damage intensity is increased in 5% increments after 
30 days. The results in terms of DI are shown in Fig. 15. 

It is evident from Fig. 15, when compared to Scenario-1, that the 
daily variation in DI and the magnitude of DI for baseline condition are 
much higher. The trained models cannot fully generalise the latent space 
for damage sensitive features to accommodate the large variation in 
vehicles properties. However, the average value after 30 days is more 
robust and can easily distinguish different damage cases. Furthermore, 
as can be observed in Fig. 15(a), the daily fluctuation in DI when using 
the tractor signals is much less than for the model using the trailer sig
nals Fig. 15(b). This significant difference between model results can be 
attributed to the inherent larger variability in properties of trailers. More 
in particular, trailers can vary considerably in dimensions, mass, and 
inertia properties, factors that have been accounted for during the 
random vehicle generation for Scenario-2. Therefore, the DAE model has 
more difficulties discerning damage sensitive features when using trailer 
responses, which in theory could be improved by increasing the number 
of events. 

5.2.1. Influence of location 
Finally, this section evaluates the sensitivity of the proposed method 

to damage location under the conditions of Scenario-2. Seven damage 
locations along the beam have been studied for different levels of 
damage severity. The trained model for tractor response is used with a 
batch size of 450 vehicles. Fig. 16 shows the damage index values for 
baseline condition and three damage cases (DC2, DC4, and DC 6). The 
magnitude of DI changes quite significantly for different locations. 
However, for a given damage location it is possible discern a healthy 
bridge (baseline) from a damaged one. The proposed method has clear 
damage detection capabilities, and since it is sensitive to damage loca
tion it could potentially be further developed to a damage localisation 

tool. 
In summary, it is shown that the proposed method can be used 

effectively for damage assessment using multiple vehicles responses. A 
DAE can be implemented that finds an adequate generalisation of the 
feature space together with damage sensitive features provided that 
enough data for training is available. 

6. Performance validation on multi-span bridge 

This section evaluates the performance of the proposed method 
simulating the behaviour of an existing multi-span continuous highway 
bridge. Furthermore, this study is extended to evaluate the effect of 
additional random traffic and its influence on the sensitivity of proposed 
damage index. 

6.1. Voigt Drive I-5 bridge 

The Voigt Drive I-5 bridge is located on the Eastern edge of the 
University of California, San Diego (UCSD). The four span reinforced 
concrete box girder structure is 89 m long and constitutes a typical large 
highway overpass. More details on the structure’s properties, di
mensions and configuration can be found in [62]. The bridge is modelled 
here as a multi-span continuous beam. The section properties of the 
beam are computed from the cross-section dimensions of the real bridge. 
The intermediate supports are modelled using vertical and rotational 
springs, as shown in Fig. 17. The values of the support springs are 
manually tunned to match the first three natural frequencies reported in 
[62]. 

Table 4 lists the final section and material properties and the first 
three natural frequencies of the model compared to the measured bridge 
frequencies. 

In line with the studies performed in previous sections, the finite 
element model of the bridge is made of 0.5 m long elements (178 ele
ments in total). A similar carpet road profile of class ‘A’ is included on 
bridge and vehicle’s path, with a 100 m approach distance (as discussed 
in section 3.1.2). The coupled vehicle-bridge interaction model is solved 
using Eq. (12) to extract vehicle body acceleration responses. 

Fig. 16. Effect on damage index for different location of the bridge (Sce
nario-2). 

Fig. 17. Model of Voigt Drive I-5 bridge with instrumented vehicle and random traffic.  

Table 4 
Bridge model properties and first three fundamental frequencies.  

Symbol Description Value 

L Total span length (m) 89 
E Young’s modulus (N/m2) 3.5 ⋅ 1010 

I Second moment of area (m4) 1.3427 
A Cross section area (m2) 5.6180 
ρ Mass per unit length (kg/m) 2500 
kr, (1,2,3) Rotational stiffness for supports (Nm/rad) 4.5 ⋅ 109 

kv, (1,2,3) Vertical stiffness for supports (N/m) 3.5 ⋅ 1010 

ζ Damping (%) 2 
f1,2,3 (model) First three calculated frequencies (Hz) [4.91, 6.54, 13.45] 
f1,2,3 [62] First three measured frequencies (Hz) [4.91, 6.53, 12.84]  
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6.2. Data generation and DAE training 

To examine the sensitivity of the proposed damage index on the 
multi-span continuous bridge, two new scenarios are studied. One sce
nario consists of single 5-axle truck crossing events, which is subse
quently referred to as ‘Without traffic’. On the other hand, the second 
new scenario includes additional random traffic on the bridge, which is 
termed ‘With traffic’. The dataset for both scenarios was generated by 
solving the vehicle-bridge interaction system presented in Section 3.1. 
For dataset generation the statistical variabilities of the 5-axle truck 
parameters remained the same as for Scenario-1 discussed in Section 
3.2. However, for modelling the additional random traffic on the bridge 
for the ‘With traffic’ scenario, two 2-axle vehicles are included in the 
crossing event as shown in Fig. 19. These additional vehicles are 
assigned randomly sampled properties within a Monte Carlo simulation, 
allowing the vehicles to enter randomly from either left or right side of 
the bridge. Additional details on the 2-axle vehicle model and their 
statistical variabilities are provided in Table A2 in the Appendix. 

For each new scenario batches, of 1000 vehicle events are created. 
Each dataset contains the vertical acceleration response from tractor 
(üb1) and vehicle speed (v) of the traversing 5-axle truck. Each dataset is 
resampled from time-domain to space-domain to compute fixed length 
vectors with 1500 samples. A random sampled noise level of 
Elevel N(2.5,0.5) with value in the range [0, 5] is added to the datasets 
using Eq. (14). The DAE model with the same configuration and 
hyperparameters as discussed in Section 3.3 is used to train the model 
for a healthy bridge condition. The datasets are divided into 700 and 300 
vehicle crossing events respectively for training and validation of the 
model. 

To investigate the performance of the DAE and the sensitivity of the 
damage index, five new damage cases are defined. The type of damage 
and their location of each damage case are:  

• Baseline: Healthy bridge  
• DC1: 30% mid-span stiffness reduction on span 1 (at 8.5 m of the 

bridge)  
• DC2: 30% mid-span stiffness reduction on span 2 (at 31 m of the 

bridge)  
• DC3: 30% rotational stiffness (kr,1) reduction at support 1  
• DC4: 30% rotational stiffness (kr,2) reduction at support 2 

6.3. Damage detection for multi-span bridge 

The five new damage cases are investigated for both new scenarios 
(‘Without traffic” and ‘With traffic’) to assess the performance of the 
proposed method. For each damage case, 20 repeated simulation are 
computed with randomly selected fleet sizes ranging from 400 to 500 
events. Then, as in Section 5, the distribution of the reconstruction loss is 
computed using Eq. (5) and the statistical parameters of fitted distri
butions are further used to compute the Damage index (DI) with Eq. (7). 

Fig. 18 shows the damage sensitivity analysis for both new scenarios 
and the five new damage cases for the multi-span continuous bridge. The 
results suggest that in both scenarios, there is a clear distinction between 
baseline and damage cases. However, it is also evident from the figure 
that for the scenario with additional random traffic the severity com
parison of different damage cases is relatively poor, compared to the 
scenario when no traffic is present on the bridge. This is because the 
trained model cannot fully generalise the latent space for damage sen
sitive features to accommodate the contribution of excitations from 
additional random traffic vehicles. However, broadly speaking this 
problem could be resolved by fine tuning the DAE model’s hyper
parameters and increasing the training dataset. Nevertheless, aside from 
the performance degradation of the method when considering addi
tional random traffic, the proposed method can clearly detect and 
quantify the severity of damages for the multi-span bridge model for all 
other cases. Therefore, the results suggest that the proposed method can 
be used for a wide range of structural configurations, making it a 
potentially useful approach for network-wide road bridge monitoring. 

7. Practical consideration for real-life application 

The method proposed in this paper may be useful to monitor bridges 
and assess their condition. The method relies on the fact that local 
damage, resulting in local bending stiffness reductions, directly affect 
the modal properties of the bridge. These variations can be identified 
from the vertical acceleration signals recorded by the on-board sensors 
of the traversing vehicles. However, it is impossible to identify these 
variations solely using signals from single events, due to the inherent 
fluctuations under operational conditions (e.g. vehicle velocity, road 
profile and signal noise). Instead, this study proposes the use of signals 
from a fleet of vehicles to capture the variations in bridge behaviour. The 
collected signals from multiple vehicles could then be used to extract the 
bridge dynamic features using DAE. 

However, there exist multiple challenges for the practical imple
mentation of the proposed method, including signal collection and 
synchronization, variable vehicle speed, threshold definition and other 
loads (wind, earthquake, temperature). Each of these challenges could 
potentially be adequately addressed by fully utilizing existing 
technologies. 

Arguably, the main challenge to apply the proposed method is the 
collection of the necessary signals and related crossing event informa
tion from passing vehicles. However, this is gradually becoming a real 
possibility considering the current trends in the transport industry. 
Modern trucks are getting an increasing number of built-in sensors, 
which could include (if not already) also sensors measuring the vertical 
acceleration of the tractor. While entry and exit times of the vehicle on 
the bridge can be determined via global positioning systems. Further
more, many truck vendors offer also comprehensive fleet management 
system solutions that could seamlessly accommodate the gathered in
formation. In turn, this information can be used to devise correction 
measures on operational conditions such as variable vehicle speed or 
individual truck mechanical properties. In such a near future scenario, a 
fleet of transport trucks that regularly roam the road network would 
provide a reliable and abundant source of information to put the pro
posed idea into practice. 

On the other hand, bridges are subjected not only to traffic loading 
but also to other types of actions. It is generally known that ambient 

Fig. 18. Damage index performance comparison for multi-span bridge 
considering without traffic and with traffic. 
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temperature fluctuations produce variations in the modal properties of 
bridges. Also, wind loading can be an important source of dynamic 
excitation, particularly on longer bridges. These effects could be 
compensated using dedicated sensors on the bridge to monitor these 
loads or utilizing the information available from nearby weather sta
tions. In case of seismic activity, the duration of this exceptional load is 
very short. Any vehicle crossing event during earthquake excitation 
could be discarded without affecting the overall performance of the 
proposed method. However, if some damage occurs as result of an 
earthquake, the proposed method could be used to detect that damage. 

Moreover, to implement a successful structural health monitoring 
system based on the proposed method, it is required to identify adequate 
thresholds for the damage index. The system has to identify potential 
damage occurrences while minimizing the number of false alarms. This 
challenge can be tackled using statistical techniques on the continuous 
stream of calculated damage indicators from each individual event. Over 
time, the study of statistical moments (mean and standard deviations) 
would provide indications of normal damage index values under oper
ational conditions. Then large deviations on the damage index would 
indicate significant variations in the structural behaviour that could be 
attributed to a possible damage. 

8. Conclusion 

This study proposed a damage assessment technique based on deep 
learning and a statistical distribution-based damage index. The sug
gested SHM method uses the acceleration responses from multiple 
traversing vehicles over the target bridge. The major challenge in 
damage detection using the response from several different vehicles is to 
generalise the relationship between vehicle responses and bridge dy
namics. To address this issue, this paper used deep autoencoders (DAE) 
architecture, considering multiple convolutional layers and LSTM layers 

for dimensionality reduction. The DAE is trained for healthy (or exist
ing) bridge conditions, which constructs a feature space that is sensitive 
to bridge dynamics and robust enough against measurement noise and 
operational conditions. Moreover, the errors between measured and 
reconstructed signals are characterized by distributions that are sensi
tive to bridge damage. The damage index based on the KL divergence of 
these distributions can be used for damage detection and severity 
quantification. 

The proposed method’s effectiveness is evaluated numerically with a 
5-axle truck vehicle model traversing a simply supported bridge and 
multi-span continuous bridge. Two scenarios are considered based on 
the level of variability in vehicle properties and operational conditions 
for simply supported beam model. Similarly, for multi-span bridge 
model, effect of random traffic is also considered. The results show that 
the outlined method is able to detect damage successfully, providing 
robust results under operational conditions (road profile, vehicle prop
erties variability and measurement noise). In conclusion, the proposed 
method has potential to become a practical tool as it removes the need of 
specialised vehicles for long-term bridge monitoring. Additionally, the 
proposed method can easily be integrated with an intelligent transport 
network and can be used as a cost-effective solution for bridge health 
monitoring. 
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Table A1 
5-axle truck model parameters.  

5-Axle-truck Scenario-1 Scenario-2 

Parameters Min. Max. Mean SD Min. Max. Mean SD 

Mass (kg)         
Tractor body mb1  2800 3400 3100 80 2500 4000 3200 250 
Trailor body mb2  15,000 25,000 20,000 1000 10,000 40,000 25,000 4500 
Tractor axles mu1,mu2  500 1000 750 30 300 1000 600 100 
Trailer axles mu3,mu4 ,mu5  800 1400 1100 50 600 1600 1100 100  

Moment of inertia (kg⋅m2)         
Tractor body Ib1  4250 5500 4875 50 4000 5800 4900 150 
Trailer body Ib2  112,000 135,000 123,000 2500 106,000 140,000 123,000 6000  

Viscous damping (N⋅s/m)         
Front suspensions Cs1,Cs2  1.0 ⋅ 104 8.0 ⋅ 104 4.0 ⋅ 104 0.5 ⋅ 104 1 ⋅ 104 12 ⋅ 104 6 ⋅ 104 2 ⋅ 104 

Rear suspensions Cs3 ,Cs4,Cs5  2 ⋅ 105 16 ⋅ 105 8 ⋅ 104 1 ⋅ 104 2 ⋅ 104 24 ⋅ 104 12 ⋅ 104 4 ⋅ 104  

Spring stiffness (N/m)         
Front suspensions Ks1,Ks2  4.0 ⋅ 106 8.0 ⋅ 106 6.0 ⋅ 106 0.5 ⋅ 106 1 ⋅ 106 12 ⋅ 106 6 ⋅ 106 1 ⋅ 106 

Rear suspensions Ks3,Ks4,Ks5  5.0 ⋅ 106 15 ⋅ 106 10 ⋅ 106 0.5 ⋅ 106 2.5 ⋅ 106 15.0 ⋅ 106 10.0 ⋅ 106 2.0 ⋅ 106 

Front tyre Kt1 ,Kt2  1.25 ⋅ 106 2.25 ⋅ 106 1.75 ⋅ 106 0.20 ⋅ 106 1.0 ⋅ 106 4.0 ⋅ 106 2.0 ⋅ 106 0.7 ⋅ 106 

Rear tyre Kt3 ,Kt4 ,Kt5  2.75 ⋅ 106 4.75 ⋅ 106 3.50 ⋅ 106 0.20 ⋅ 106 2.0 ⋅ 106 8.0 ⋅ 106 4.0 ⋅ 106 1.0 ⋅ 106  

Geometry (m)         
D1  – – 5 – 3.5 6.5 5.0 0.1 
D2  – – 4 – 3.0 5.0 4.0 0.02 
e1  – – − 1.09 – − 0.50 − 1.20 − 0.80 − 0.01 
e2  – – 3.5 – 3.00 4.00 3.50 0.05 
e3  – – 1.2 – – – 1.2 – 
e4  – – 2.2 – – – 2.2 – 
e5  – – 3.2 – – – 3.2 –  

Velocity (km/h)         
Velocity v  36 60 40 5 36 60 40 8  
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interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix 

Table A1 provides the model parameters with their statistical vari
ability for simulation of 5-axle truck as shown in Fig. 3. Monte Carlo 
simulation used the statistical variability of the parameter to generate 
the dataset for two scenarios. Table A2 provides the model parameters 
with their statistical variability of 2-axle vehicles as shown in Fig. 19, 
which are used in the ‘With traffic’ scenario in Section 6 

References 

[1] Jang S, Jo H, Cho S, Mechitov K, Rice JA, Sim S-H, et al. Structural health 
monitoring of a cable-stayed bridge using smart sensor technology: deployment 
and evaluation. Smart Struct Syst 2010;6:439–59. https://doi.org/10.12989/ 
sss.2010.6.5_6.439. 

[2] Spencer BF, Ruiz-Sandoval ME, Kurata N. Smart sensing technology: opportunities 
and challenges. Struct Control Health Monit 2004;11(4):349–68. https://doi.org/ 
10.1002/stc.48. 

[3] Spencer BF, Park J-W, Mechitov KA, Jo H, Agha G. Next Generation Wireless Smart 
Sensors Toward Sustainable Civil Infrastructure. Proc Eng 2017;171:5–13. https:// 
doi.org/10.1016/j.proeng.2017.01.304. 

[4] An Y, Chatzi E, Sim S-H, Laflamme S, Blachowski B, Ou J. Recent progress and 
future trends on damage identification methods for bridge structures. Struct 
Control Health Monitoring 2019;26(10). https://doi.org/10.1002/stc.2416. 

[5] Casas JR, Moughty JJ. Bridge Damage Detection Based on Vibration Data: Past and 
New Developments. Front Built Environ 2017;3. https://doi.org/10.3389/ 
fbuil.2017.00004. 

[6] Çelebi M. Real-Time Seismic Monitoring of the New Cape Girardeau Bridge and 
Preliminary Analyses of Recorded Data: An Overview. Earthquake Spectra 2006;22 
(3):609–30. https://doi.org/10.1193/1.2219107. 

[7] Yang YB, Wang Z-L, Shi K, Xu H, Wu YT. State-of-the-Art of Vehicle-Based Methods 
for Detecting Various Properties of Highway Bridges and Railway Tracks. Int J Str 
Stab Dyn 2020;20(13):2041004. https://doi.org/10.1142/S0219455420410047. 

[8] Yang Y-B, Lin CW, Yau JD. Extracting bridge frequencies from the dynamic 
response of a passing vehicle. J Sound Vib 2004;272(3-5):471–93. https://doi.org/ 
10.1016/S0022-460X(03)00378-X. 

[9] Malekjafarian A, McGetrick PJ, OBrien EJ. A Review of Indirect Bridge Monitoring 
Using Passing Vehicles. Shock Vib 2015;2015:1–16. https://doi.org/10.1155/ 
2015/286139. 

[10] Matarazzo TJ, Kondor D, Santi P, Milardo S, Eshkevari SS, Pakzad SN, et al. 
Crowdsourcing Bridge Vital Signs with Smartphone Vehicle Trips. ArXiv: 
201007026 [Physics]; 2020. 

[11] Lin CW, Yang YB. Use of a passing vehicle to scan the fundamental bridge 
frequencies: An experimental verification. Eng Struct 2005;27(13):1865–78. 
https://doi.org/10.1016/j.engstruct.2005.06.016. 

[12] Yang YB, Chang KC. Extracting the bridge frequencies indirectly from a passing 
vehicle: Parametric study. Eng Struct 2009;31(10):2448–59. https://doi.org/ 
10.1016/j.engstruct.2009.06.001. 

[13] Zhu L, Malekjafarian A. On the Use of Ensemble Empirical Mode Decomposition for 
the Identification of Bridge Frequency from the Responses Measured in a Passing 
Vehicle. Infrastructures 2019;4:32. https://doi.org/10.3390/ 
infrastructures4020032. 

[14] OBrien EJ, Malekjafarian A, González A. Application of empirical mode 
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