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We present direct numerical simulation of a mechanism for creating longitudinal vor-
tices in pipe flow, compared with a model theory. By furnishing the pipe wall with a
pattern of crossing waves, secondary flow in the form of streamwise vortex pairs is cre-
ated. The mechanism, ‘CL1’, is kinematic and known from oceanography as a driver
of Langmuir circulation. CL1 is strongest when the ‘wall wave’ vectors make an acute
angle with the axis, ϕ = 10◦ - 20◦, changes sign near 45◦ and is weak and of opposite
sign beyond this angle. A competing, dynamic mechanism driving secondary flow in the
opposite sense is also observed, created by the azimuthally varying friction. Whereas at
smaller angles ‘CL1’ prevails, the dynamic effect dominates when ϕ & 45◦, reversing the
flow. Curiously, the circulation strength is a faster–than–linearly increasing function of
Reynolds number for small ϕ.

We explore an analogy with Prandtl’s secondary motion of the second kind in turbu-
lence. A transport equation for average streamwise vorticity is derived, and we analyse
it for three different crossing angles, ϕ = 18.6◦, 45◦ and 60◦. Mean-vorticity production
is organised in a ring-like structure with the two rings contributing to rotating flow in
opposite senses. For the larger ϕ the inner ring decides the main swirling motion, whereas
for ϕ = 18.6◦ outer–ring production dominates. For the larger angles the outer ring is
mainly driven by advection of vorticity and the inner by deformation (stretching) whereas
for ϕ = 18.6◦ both contribute approximately equally to production in the outer ring.

1. Introduction

Secondary mean motion in the form of coherent streamwise vortices has often been
employed to favourably manipulate pipe flow and wall-bounded flows. Approaches to flow
control based directly or indirectly on the creation of streamwise vortices in wall-bounded
flow, are many and varied especially for transitional and turbulent flow, including both
active and passive schemes.

In this study we consider a mechanism for creating streamwise vortices in pipe flow.
While the mechanism is laminar in nature and we study it as such, is reason to believe
that it is active also in turbulent wall–bounded flows over egg–carton–like roughness
(Bhaganagar et al. 2004; Chan et al. 2018). This possibility is a strong additional moti-
vation because of the potential benefits observed from deliberately introducing vortices
into such flows. Streamwise vortices generated by means of carefully designed roughness
elements was shown by Fransson et al. (2006) to delay transition to turbulence, and ac-
tively introducing vortices was shown to favourably redistribute turbulence (Willis et al.
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2010) or suppress it altogether (Kühnen et al. 2018). Active methods implemented ex-
perimentally include cross-flow jets (Iuso et al. 2002), blowing and suction (Segawa et al.
2007; Lieu et al. 2010) and individually rotating wall segments (Auteri et al. 2010). A
common denominator in all these approaches is the search for ways to reduce boundary
layer skin friction.

The use of specially designed wall roughness elements is a well established idea for the
manipulation of boundary layer flows. Vortical secondary flow has been shown in a num-
ber of studies to result from spanwise intermittent roughness patches (Anderson et al.
2015; Willingham et al. 2014) and streamwise aligned obstacles (Yang & Anderson 2018;
Vanderwel & Ganapathisubramani 2015; Kevin et al. 2017; Sirovich & Karlsson 1997).
Anderson et al. (2015) later demonstrated that these structures are related to Prandtl’s
secondary flow of the second kind, driven by spatial gradients in the Reynolds-stress com-
ponents. Furthermore, several studies show that intentionally imposed near–wall streaks
and vortices can stabilise the overall flow regime and delay or prevent transition into
turbulence (Du & Karniadakis 2000; Cossu & Brandt 2002, 2004; Fransson et al. 2005,
2006; Pujals et al. 2010a,b). Most directly related to the current study, Chan et al.
(2015, 2018) studied pipe flow by way of direct numerical simulation (DNS) wherein an
‘egg–carton’ structured wall roughness was introduced composed of sine waves crossing
at right angles, a special case of the geometry considered in the present paper. These
authors also report secondary motion in the form of vortices in the time-averaged flow,
oriented perpendicular to the mean flow.

Bhaganagar et al. (2004) considered wall-bounded turbulent flow with egg–carton type
roughness from a crossing wave pattern, comparing it to a smooth wall. While secondary
flows were not studied explicitly, varying the crossing angle and steepness of the waves
was found to affect the the outer boundary layer even though the roughness elements did
not extend beyond the viscous sub-layer, an indication that coherent motions at a much
larger scale were occurring. A somewhat similar study of turbulent flow over a pyramidal
pattern by Hong et al. (2011) showed a mechanism where roughness-size vortices were
created then lifted into the bulk. The fact that their roughness was contained within
the laminar sub–layer makes us conjecture that the mechanism studied by Akselsen &
Ellingsen (2020) and herein, though laminar in nature, has relevance for turbulent flows,
particulary the debate whether and how the outer part of a boundary layer is affected
by the detailed morphology of the wall roughness (Bhaganagar 2008; Antonia & Djenidi
2010).

All of the above mentioned secondary flows induced by wall topography or roughness,
however, are driven by essentially dynamic mechanisms relying on gradients in viscous
stress. In contrast, we here consider a passive mechanism for vortex generation which
is of kinematic origin and a close analogy of a mechanism for Langmuir circulation, a
phenomenon known from a traditionally disparate branch of fluid mechanics: Oceano-
graphic flow. Langmuir circulation is a motion in the form of long streamwise and evenly
spaced vortices just beneath the surface of oceans or lakes (Leibovich 1983). The vortices
are often clearly visible as ‘windrows’ — near-parallel lines of debris or foam gathering
in the downwelling regions between vortices (Langmuir 1938). There are two principal
mechanisms by which Langmuir circulation is created of which we make deliberate use
of the one often referred to as ‘CL1’ in honour of the pioneering theory of Craik & Lei-
bovich (1976). The motion is driven by a resonant interaction between sub-surface shear
currents and plane waves crossing at an oblique angle, both typically generated by the
wind. This interaction was suggested as a Langmuir flow mechanism by Craik (1970),
and works by twisting spanwise vorticity already present in the ambient shear flow into
the streamwise direction via the wave–induced Stokes drift; see (Leibovich 1983). In our
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case the near–surface shear layer is replaced by boundary layer shear, and surface waves
by a wavy wall of the same crossing–wave or ‘egg–carton’ pattern.

To uncover the nature of the Langmuir vortices we consider only laminar flow. Their
stability, prevalence and effects in turbulent pipe flow remains an open and potentially
important question for the future, yet our study does shed a modicum of light on that
question. When the Navier–Stokes equations are averaged over one streamwise period
of our geometry, a form identical to the Reynolds–averaged Navier–Stokes equations in
streamwise–uniform geometry is obtained, except that the averaging operator is different.
Averaged pairs of streamwise-oscillating velocity components are then analoguous to
Reynolds stresses. These drive the Langmuir mechanism and a competing dynamic drag
mechanism of mean vortical flow. The analogy is closely related to the double–averaging
concept of Nikora et al. (2007), whereby temporal/ensemble averaging is supplemented
by spatial averages over volumes, areas or distances. We explore this concept further in
Section 5.

Creating vortices in laminar flow is of considerable interest in itself for the purpose of
mixing in microfluidic channels. The use of imprinted wall features for passive mixing is
a long–established method in microfluidic flow systems Ward & Fan (2015), for instance
the use of oblique ridges to twist and fold the flow has been highly impactful (Stroock
et al. 2002). Vortical motion can greatly enhance heat transfer, important e.g. for direct
liquid cooling of high power density electronic devices; secondary flow (Dean vortices)
generated by guiding fluid through wavy microchannels (e.g. Sui et al. 2010) is a popular
method for efficient mixing with low pressure drop penalty. Laminar flow in a pipe
somewhat resembling the m = 2 case of our geometry was analysed for its heat transfer
properties by Chen et al. (2006) and Sajadi et al. (2016), but without reporting details
of the velocity field. At an altogether different scale, attached Langmuir vortices (of the
‘CL2’ kind) appear near suspended microalgal farms, driven by waves interacting with the
periodic current due to the row–structure of canopy elements; the vortices are presumed
to be beneficial for nutrient distribution (Yan et al. 2021).

The mechanisms here considered are superficially similar to, but distinct from, sev-
eral phenomena which have received attention in recent turbulence literature. A theory
for an instability in Couette flow in a channel with periodically modulated walls in the
streamwise directions was recently derived by Hall (2020), in turn related to one pre-
viously analysed by Floryan (2002, 2003, 2015) and Cabal et al. (2002). Unlike ‘CL1’
this is an instability rather than a directly driven secondary flow, occuring beyond a
critical Reynolds number depending on wall corrugations, and the geometry of these
studies varies in the streamwise, but not spanwise directions. Several studies see stream-
wise streaks from purely spanwise boundary modulations (e.g., Colombini & Parker 1995;
Willingham et al. 2014; Anderson et al. 2015; Hwang & Lee 2018) whose relation to our
study we discuss in Section 4.1.4. In simulation, Schmid & Henningson (1992) found
that transition to turbulence was much accelerated through the growth of streamwise
vortices when a pair of finite–amplitude oblique waves were initially imposed. The link
to our work is not obvious, yet we note that the presently reported mechanism is due
to interactions of pairs rather than triads of wave modes. Riblets, for instance V–shaped
(Walsh 1983) or biomimetic imitating inter alia birds and sharks (e.g. Chen et al. (2014)
and Bechert et al. (2000), respectively) have been demonstrated to reduce viscous drag
in turbulent boundary layer flows and, like other laterally inhomogeneous roughness ge-
ometries, also exhibit large secondary motion in the form of streamwise rolls (Kevin et al.
2019). The strong ejections due to fluid being forced upwards where the yawed riblets
converge, however, set this flow somewhat apart.

The outline of the paper is as follows. We begin in Section 2 with a model theory
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Figure 1. a) Pipe geometry for m = 3, κ = 5; crestlines (dash-dot) and saddle–point lines
(dash) are shown; b) Geometry and parameters used in section 2.

for the Langmuir-type vortical motion, along with, in Section 3, theoretical predictions
pertinent to our numerical investigation, which follows in Section 4. A discussion of the
analogy to Prandtl’s second mechanism of secondary motion in turbulence follows in
Section 5 before Conclusions. Some additional theory of initial vortex growth is found
in an appendix, and a collection of results of all simulated cases is provided as online
supplementary material.

2. Model theory for creation of Langmuir–type vortices

We construct a simplified theory of perturbations, revealing the origin of Langmuir-
type vortices. Our geometry is illustrated in Figure 1a consisting of an infinitely long
circular pipe whose walls are augmented by the addition of a pattern of crossing waves.
The steepness of these ‘wall waves’ measured in the streamwise direction is presumed
to be small: ε = ka � 1 where a is the waves’ amplitude and k their streamwise wave
number. The amplitude is also presumed much smaller than the radius, a/R � 1. We
proceed in increasing orders of a assuming a basic flow of parabolic Poiseuille form with
centreline velocity U0.

We first non-dimensionalise using pipe radius R and U0 of the basic flow:

(r, z, a) 7→ (r, z, a)R, k 7→ k R−1, t 7→ tR/U0, p 7→ p ρU2
0 , u 7→ uU0, (2.1)

where u here denotes any measure of fluid velocity, ρ is the fluid density, and p the
pressure perturbation on top of the constant pressure gradient driving the mean flow.
We ignore gravity throughout. The bounding surface is now perturbed slightly and is
found at r = 1 + η(z, θ) where |η| ∼ a� 1.

We write the resulting three-dimensional velocity field as

utot(r, θ, z, t) = U(r)ez + u(r, θ, z, t) (2.2)

where U(r) is the known unperturbed streamwise velocity—the velocity field which we
would observe were the pipe a smooth cylinder—and u = (ur, uθ, uz) is a small velocity
perturbation due to the wall undulations. Subscript ‘tot’ ’denotes ‘total’. The Navier–
Stokes and continuity equations and their boundary conditions at the wall read

∂tu + (utot · ∇)utot +∇p = Re−1∇2u

∇ · u = 0

}
; 0 ≤ r ≤ 1 + η(θ, z), (2.3a)

utot · ∇η = ur

[viscous wall condition]

}
; r = 1 + η(θ, z), (2.3b)
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where we define the Reynolds number as Re = DUavg/ν where Uavg is average velocity,
D = 2R diameter, and ν the kinematic viscosity. The viscous wall boundary condition
is treated differently at linear and second order as explained below. In the theory we use
the approximate Re = RU0/ν since the flow is assumed similar to normal Poiseuille flow
for which Uavg = 1

2U0. Solutions must be smooth at r = 0, and the basic flow is assumed
to satisfy equations of motion.

Viscosity is treated in a somewhat indirect manner; it manifests primarily in the
‘zeroth–order’ profile of the unperturbed current, U(r), which satisfies no–slip boundary
conditions at r = 1 and provides the O(1) azimuthal vorticity created by wall friction.

Next, the linear–order solution is found. Rather than attempt to solve an Orr–Sommerfeld-
like equation in cylindrical geometry satisfying the no-slip condition at the wavy wall
(which, even if we could, would likely be too involved to be instructive) we make use
of a simple model in the vein of Craik (1970) which captures the kinematics of how
streamlines near the wall are displaced by the wavy pattern. Noticing that the wave–like
first–order perturbation velocities are stable also in the absence of viscosity when η is
small, and may be assumed virtually unaffected by viscosity (this no longer holds as η
increases as we shall see), they approximately solve a steady inviscid and linearised form
of (2.3), except that an appropriate wall boundary condition must be devised.

We assume that the boundary flow creates a displacement thickness ∼ δ∗ near the
undulating wall and that the physical pipe wall is at r = 1+δ∗+η(θ, z). Next we impose
free slip boundary conditions at a displaced boundary r = 1 + η(θ, z) — see figure 1b.
Hence the shape η which we specify does not quite equal the wall shape in simulations,
yet while direct quantitative comparison is not possible, this model makes for a simple
theory which is able to elucidate the nature of the Langmuir mechanism.

Lowercase variables, which are small, are assumed to be steady and inviscid, and we
expand them in powers of a (formally identical to an expansion in the steepness parameter
ε) according to

q(r, θ, z) = 1
2q1(r) exp(imθ + ikz) + c.c.+O(ε2) harmonics, (2.4)

where q is any small field quantity and subscript ‘1’ denotes the linear solution. The
governing linearised Euler and continuity equations (2.3a) now read

ikUur,1 = −p′1 (2.5a)

ikUuθ,1 = −(im/r)p1 (2.5b)

ikUuz,1 + U ′ur,1 = −ikp1 (2.5c)

(rur,1)′ + imuθ,1 + ikruz,1 = 0. (2.5d)

Here m and k are real constants, the former an integer, which we will soon identify as
the azimuthal and streamwise wavelengths of the imposed crossing wall waves. Primes (’)
denote the derivative with respect to r. We eliminate velocity components from (2.5) and
obtain a Rayleigh–like boundary value problem for the first–order perturbation pressure
p1,

p′′1 +

(
1

r
− 2

U ′

U

)
p′1 −

(
m2

r2
+ k2

)
p1 = 0 (2.6a)

p1(0) = p′1(0) = 0; p′1(1) = [kU(1)]2η. (2.6b)

Boundary conditions for p1 were found from (2.3b) using (2.5a). p1(r) is found numerically
from (2.6) using a standard ODE solver.

Armed with the linear order solution we proceed to the second order in η. Although
the formalism is different due to cylindrical rather than planar geometry, the procedure
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is similar in outline to that of Akselsen & Ellingsen (2020), hence the presentation here is
comparatively briefer. Assume boundary undulations composed of two crossing sinusoidal
waves directed symmetrically about the streamwise direction z:

η =
a

4

[
ei(kz+mθ) + ei(kz−mθ) + c.c.

]
= a cos(kz) cos(mθ). (2.7)

We impose axial wave number k > 0 and the integer azimuthal wave number m > 1
(the case m = 0 corresponds to alternating axisymmetric contractions and expansions,
considered e.g. by Hsu & Kennedy (1971); Mahmud et al. (2001); Nishimura et al. (2003)
and Jane (2018), and would not trigger the CL1 mechanism). The first-order wave modes
involved each have amplitudes a/4 and the four wave vectors (±k,±m) (signs varied
individually). Second order harmonics, in turn, are of the same mathematical form with
wave vectors which are sums of pairs of these, thus being of four different types with
wave vectors ±2(k,m), (0, 0), (±2k, 0) and (0,±2m). The three first types remain of
order a2 and can be neglected, whereas we retain the last type of harmonic, which turns
out to be resonant with a wave vector modulus 2m, and grows linearly with time as a2t
until further development is checked by viscous damping (the resonant, linearly growing
solution is given in appendix A; an extensive discussion for the planar sibling system, see
Akselsen & Ellingsen (2020)). The resonance will manifest in the formation of µ = 2m
pairs of streamwise vortices as sketched in Figure 1a. All second order fields henceforth
are understood to be of form q̆2(r, θ, z, t) = q̆(r, t) exp(iµθ) with q̆ ∈ {ŭr, ŭθ, ŭz, p̆}; note
that these are independent of z, and hence constitute secondary motion in the (r, θ)
plane. The second–order Navier–Stokes and continuity equations then read

Dŭr +
2iµ

r2Re
ŭθ + ∂rp̆ =− (u1 · ∇)ur,1, (2.8a)

Dŭθ −
2iµ

r2Re
ŭr +

iµ

r
p̆ =− (u1 · ∇)uθ,1, (2.8b)

Dŭz + U ′(r)ŭr −
1

r2Re
ŭz =− (u1 · ∇)uz,1, (2.8c)

(rŭr)
′ + iµŭθ =0. (2.8d)

Here, D = ∂t −Re−1[∂2r + r−1∂r − r−2(1 + µ2)].

We find it most convenient now to work with the radial velocity component. Upon
eliminating the second order axial and azimuthal velocities and pressure one retrieves an
inhomogeneous Orr–Sommerfeld-type equation

1

r2
∂r {rD [∂r(rŭr)]} −

µ2

r2

(
D − 4

r2Re

)
ŭr = R(r); (2.9)

R(r) = 8
( m

rkU

)2U ′
U

[(
k2 − m2

r2

)
p21 + (p′1)2

]
(2.10)

for the radial second order velocity ŭr(r, t). Note that R and ŭr are proportional to a2.

Equation (2.9) permits fairly simple analytical solutions in the two opposite cases of
transient inviscid flow (Re−1 = 0) and stationary viscous flow (∂t · → 0) representing
onset and ultimate stages of vortex development, respectively. We consider here only the
latter which will inform the steady–state reached in simulations. For completeness, the
solution for initial growth rate is presented in an appendix.
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Assuming a steady state with finite Re, (2.9) has solution

ŭr(r) =
r3Re

8µ

∑
s=±1

{ ∑
σ=±1

1

σ + sµ

∫ r

1

dρ
(ρ
r

)s+σµ+3

R(ρ)

−
∫ 0

1

dρ

[
1

1 + sµ
+
sr2µ

ρ1+s

(
1− ρ2 − 1− ρ2 + s(1 + ρ2)

2(1− sµ)

)](ρ
r

)s+µ+3

R(ρ)

}
(2.11)

where no-slip boundary conditions at the wall are imposed. The streamwise velocity is

ŭz(r) =
Re

2µ

∑
s=±1

s

(∫ 0

1

dρ
ρµ

rsµ
−
∫ r

1

dρ
ρsµ

rsµ

)
ρU ′(ρ)ŭr(ρ). (2.12)

Thus the radial and streamwise velocity perturbations scale as Re and Re2, respectively.
Assuming U ′(r) < 0, ŭr and ŭz are of a sign, so the secondary motion accelerates the
mean flow in areas where the circulation jets towards the wall, and vice versa.

The second-order vortical motion being independent of z we introduce a stream func-
tion ψ whose contours are streamlines. By definition ŭr = r−1∂θψ and ŭθ = −∂rψ. In
terms of the stream function amplitude ψ̆(r) = 2rŭr/µ we find

ψ(θ, r) = ψ̆(r) sin(µθ), uz(θ, r) = 2 ŭz(r) cos(µθ) (2.13)

from which uθ can be inferred if required.

3. Theoretical predictions

While the theory in section 2 is simplistic and captures only one of the causes of
secondary flow, its predictions are instructive and will inform our DNS study below. We
consider only m1 ≤ 3 below; higher values create more and smaller vortices closer to the
wall but there is no indication of further change of behaviour.

Assume a laminar bulk flow profile of Poiseuille type,

U(r) = 1− r2/(1 + δ∗)2 (3.1)

stretched a displacement length δ∗ beyond the pipe radius as sketched in figure 1b.
Henceforth we use the term crestline to denote a curve following the wall at constant
polar angle θ = nπ/m, n = 0, ..., 2m− 1, running over the maxima of crests and troughs,
and saddlepoint line for the nearly straight line following the wall midway between these.
Streamlines close to crestlines have the largest undulations in wall–attached flow.

A key parameter is the angle ϕ = arctan(m/k) between the streamwise and azimuthal
wavenumbers of the wall undulation which we refer to as the crossing angle. We let
0 ≤ ϕ ≤ 90◦. We shall refer to geometries ϕ < 45◦, = 45◦ and > 45◦ as contracted,
regular and protracted egg carton patterns, respectively. The theoretical dependence of
circulation strength on ϕ is investigated in Figure 2 where the wave vector modulus
κ = (k2 +m2)1/2 is kept constant at three different values while ϕ changes.

Figure 2a shows the steady–state circulation strength, represented by the extremum of
ψ/Re a2 along a ray at θ = π/4m running approximately through the centre of the ‘first’
vortex. The integer m can only take values 1, 2, ...,floor(κ), shown with vertical lines
labelled with corresponding azimuthal wavenumber m. Corresponding pipe patterns are
shown in Figure 2e. The volume flow rate through a vortex cross-section is proportional
to max|ψ|, and the sign of ψ shows the rotational direction: relative to the pipe wall
ψ > 0 indicates flow towards crestlines and away from saddle–point lines, and vice versa.
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Figure 2. Theoretical predictions. (a) Circulation intensity for fixed κ = (k2 + m2)1/2 as
function of phase angle ϕ; δ∗ = 0.05. Only design configurations for which m is an integer are
realisable; these are marked with dashed vertical lines where m values are marked as integers.
(b-d): Streamlines in the cross-flow plane for m ∈ {1, 2, 3} and κ = π, which are contours of ψ.
Velocity field vectors are shown for m = 1 whereas arrows in (c,d) merely indicate flow direction.
Circulation intensity may be inferred from (a) considering κ = π. Pipe cross section outlines
are shown at the crests/troughs of the wavy pattern (z = λ/4 and 3λ/4 with λ = 2π/k).
Colours illustrate the value of ψ with light (dark) being positive (negative). (e): Pipe design
configurations corresponding to the dashed vertical lines in panel a; 45◦ is marked with a solid
vertical line.

Several observations are made. The circulation intensity is relatively insensitive to
wavenumber amplitude κ but highly sensitive to ϕ. The Langmuir driving mechanism
is very weak near ϕ = 45◦, the only angle previously investigated for pipe flow to our
knowledge, and ψ changes sign near this angle. (We note in passing that the secondary
flow observed in turbulent pipe flow at ϕ = 45◦ by Chan et al. (2018), corresponded
to negative ψ. ) Moreover, the intensity of the ‘reversed’ Langmuir rotation at ϕ > 45◦

is considerably weaker than that predicted for smaller angles ϕ . 30◦. We note with
interest, and for future reference, that the swirling changes sign close to the pipe wall for
ϕ = 45◦, 60◦ and Reτ = 40, 60.

Figure 2b–d shows streamlines ψ = const of the flow averaged over an axial wall
wavelength, for the three possible angles when κ = π. Notice again the reversal of rotation
direction for m = 3 where the pattern is protracted.

4. Simulations

We proceed now to study the real flow in the wavy pipe geometry using DNS, focussing
on the effects of wave crossing angle ϕ, Reynolds number and topography amplitude. Fur-
ther plots and figures for all simulation cases may be found in Supplementary Materials.
Velocities are in units of the mean centreline velocity for each case.

The numerical simulations were conducted using NEK5000, a high-fidelity spectral
element code (Fischer et al. 2008). Each computational domain contains 1280 macro
lements with 10 macro elements in the streamwise direction. The nodes inside of the
element are distributed using the Gauss—Lobatto-–Legendre (GLL) points and a poly-
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Figure 3. Simulation results, a = 0.05, κ = π and m = 1. Reτ is the same along the first
three rows, and ϕ is the same along the first three columns, as indicated. (a-c,e-g,i-k): Black

curves are contours of ψ́/(Rea2) indicating streamlines, arrows indicate flow direction; colour
contours show deviation of uz,tot from Poiseuille flow as defined in equation (4.5). (d,h,l,m-o):

plots of ψ́/(Rea2) along the ray θ = π/4. A common legend applies to all plots where ϕ varies
at constant Reτ (d,h,l), and vice versa (m-o).

nomial order of 7 is used, resulting in approximately 655 360 grid points in total. The
grid points on the no-slip, impermeable wall of the pipe conforms to the roughness to-
pography, the domain length equal to one roughness period and the ends of the pipe are
periodic. The 3rd order time-stepping scheme and the PN − PN−2 method introduced
by Maday & Patera (1989) was used for the simulations. A constant pressure gradient
is used to drive the flow and the simulations were run with a constant timestep ranging
dt+ = t U2

τ /ν = 10−4 to 2 × 10−4 (Uτ =
√
τw/ρ is the friction velocity, τw the mean

wall shear stress) to ensure that the Courant number is less than 1. The simulations
were initialised with a laminar smooth–wall flow and were run for a duration of at least
t+ = 1600 where the flow has converged to a steady state. The grid points on the no–slip,
impermeable wall of the pipe conforms to the roughness topography and the ends of the
pipe are periodic. A domain length study was conducted for ϕ = 18.6 with a = 0.05 at
Reτ = 80 and no changes to the steady-state flow was observed when the length of the
pipe was increased by 6 and 10 times. In simulations the phase of the surface deformation
is such that η(θ, z) = a sin(kz) sin(mθ).
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One primary observation we make through a broad parameter study in this section is
that a competition occurs between two effects, both of which driving secondary motion,
directed oppositely. One is a dynamic effect due to increased wall shear stress where the
roughness is increased near crestlines, the other is the kinematic Langmuir circulation
effect, CL1. The former causes secondary flow in the negative sense as defined, the latter
drives positive-sense rotations for ϕ . 30◦ where it is strongest in accordance with theory.

It is highly useful for our further analysis to introduce streamwise–averaged quantities.
Noting that our flow is steady and periodic with streamwise period (or wavelength)
λ = 2π/k we define the averaging operator

(· · · ) =
1

λ

∫ λ

0

(· · · )dz. (4.1)

Based on the principle of volume flux, a measure of circulation strength in the simulated
flows is found as the approximate stream function amplitude ψ along a radial line of
constant polar angle θ = θ0 running through, or nearly through, the centre of a vortex.
We choose θ0 = π/4m as in the previous Section, and define

ψ́(r; θ0) =

∫ r

0

dρ uθ(θ0, ρ). (4.2)

4.1. Parameter studies

The dependence of the circulation strength on crossing angle ϕ and Re is studied in
Figure 3; rows 1-3 have constant Reτ , columns 1-3 have constant ϕ. All graphs are of
ψ́/Re a2. Note that in all plots of quantities averaged over a streamwise wave period,
linear effects of wall undulations vanish and only contributions from (even) higher-orders
remain.

We investigate three different crossing angles, ϕ = 18.6◦, 45◦ and 60◦. According to
theory, Langmuir motion should be strongest and positive for the first angle, and much
weaker for the two latter; see figure 2b. Indeed, the most striking feature in figure 3 is
arguably that the smallest angle shows positive circulation (first column: a,f,k), the other
two negative (second and third columns: b,c,g,h,l,m). However, unlike in the theoretical
graph of the Langmuir effect alone, figure 2, the oppositely directed circulation at 45◦

and 60◦ is not weak, but of comparable magnitude as for 18.6◦, evidence of another
mechanism at play. We propose that there is a dynamic, viscosity–driven forcing of neg-
ative circulation present due to the azimuthally varying roughness producing alternating
regions of higher and lower momentum as observed by Chan et al. (2018), which depends
only weakly on ϕ. The competing Langmuir effect is significant only for the smallest
angle. Indeed, in all simulations, the flows at 45◦ and 60◦ are highly similar, whereas
18.6◦ flow is strikingly different (see also supplementary material).

4.1.1. Sensitivity to Reynolds numbers and crossing angle ϕ.

We define Reτ = UτR/ν and Re = UavgD/ν where Uavg is total flow rate divided by
πR2. For Poiseuille flow, Re = 1

2Re
2
τ .

Figure 3 shows simulation results for a = 0.05 and m = 1, varying ϕ along rows and
Reτ , along columns. Three different topography angles ϕ = 18.6◦, 45.0◦ and 60.0◦ —
contracted, regular and protracted egg carton, respectively — are shown, and three differ-
ent Reτ = 40, 60, 80. All panels show values of ψ̃(r, π/4m)/(Rea2) either as contours or
graphs. The highest Reynolds number based on average velocity achieved in the reported
simulations is 2751. A simulation at Reτ = 100 became turbulent (not included since the
grid used herein is too coarse to properly capture turbulent flow). Our simulations are
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not sufficient to draw confident conclusions about stability in each case, which remains
a question for the future.

Studying the bottom row of Figure 3, we observe that the expected scaling ψ ∝ Re is
reasonably well satisfied throughout the laminar regime for regular and protracted egg
carton, whereas for the contracted egg carton the scaling is far more imperfect. In fact,
for ϕ = 18.6◦, ψ increases faster than linearly with Re, a curious observation we discuss
further in section 4.1.3. The departure from the scaling predicted by inviscid theory can
be traced back to a greater deviation between the theoretical, inviscid first-order velocity
field and that from simulations, an indication that viscous effects in the boundary layer
influence the results considerably in a non-trivial way, more strongly for the contracted
pattern. A partial explanation is that, for one and the same κ, smaller ϕ corresponds
to higher steepness ε = κa(1 − sin2 ϕ)1/2, and higher–order non–linear effects manifest
more easily. We subject this curious observation to closer scrutiny in section 4.1.3.

It is instructive to regard the pressure field across the pipe section when averaged
along a streamwise wavelength so that linear order perturbations vanish leaving a mean
pressure deviation able to drive steady secondary motion. Compare the pressure fields
in Figure 4e,f and l wherein ϕ = 45◦, 60◦ and 18.6◦, respectively, for a = 0.05. The flow
and pressure perturbations for the two former are similar: high pressure regions above
crestlines push the flow away from the wall there, driving vortices in the negative sense.
This might intuitively be expected since the flow suffers higher friction here than along
the straighter saddlepoint lines. The pressure field for 18.6◦ on the other hand shows
the opposite: low-pressure regions above crestlines attract the secondary flow setting up
positive–sense vortices.

Our suggested interpretation is as we began to argue above: The dynamic friction
mechanism evident in Figure 4e,f will be present for all three values of ϕ in roughly equal
measure; the strong similarity between Figures 4b and c indicates that it varies little with
ϕ so long as the flow does not separate. On the other hand, the Langmuir mechanism is
far stronger for ϕ = 18.6◦ than for the two higher values (see Figure 2a), and therefore
‘wins’ the competition there.

4.1.2. Sensitivity to amplitude.

Interestingly, when increasing the amplitude a, circulation reversal is observed for
ϕ = 18.6◦. We again propose an explanation in terms of the two competing mechanisms
for secondary flow. In Figure 4a we plot the scaled circulation strength ψ̃/Re a2 in the
protracted egg–carton geometry for increasing amplitudes up to a = 0.2. The predicted
∼ a2 scaling is accurate for moderate amplitudes a ≤ 0.05, but beyond this point a
dramatic reduction occurs, and as a & 0.1 the direction of rotation reverses with |ψ̃|/a2
eventually reaching comparable values.

We find the reason to be the onset of flow separation affecting the two mechanisms
differently. The Langmuir swirling is driven by the kinematic sinusoidal deflection of
streamlines; once the flow separates in the troughs, streamlines no longer follow the wall’s
shape (see Figure 4h-j) and a further increase in a does not further increase the ‘effective
amplitude’ of the streamline undulations. For ϕ = 45◦ and 60◦ the wall undulations are
less steep in the streamwise direction and the flow does not separate, retaining the ∼ a2
scaling.

4.1.3. Circulaton strength vs increased drag

It is of interest to compare the strength of circulation to the increased pressure loss
from making the wall surface wavy. Let Uavg be the average velocity, equal to the net
volume flow rate divided by cross-section area. Using the definition of the Darcy friction
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Figure 5. Maximum circulation strength plotted against increase in friction factor (i.e., in-
creased head loss) in percent. a) Comparison of three different crossing angles for m = 1, a = 0.05
— corresponding values of Reτ are indicated for each marker (common for overlapping markers);
b) same cases as in panel a, but with Reynolds number as abscissa; c) increasing amplitude for
Reτ = 40 and m = 1.

factor f = (2gD/U2
avg)hL, hL being the head loss per streamwise wavelength related to

τw by hL = 2τ/ρgR (dimensional units, g is gravitational acceleration), gives

f =
32Re2τ
Re2

(4.3)

having used Reτ = (R/ν)
√
τ/ρ and Re = UavgD/ν. We will compare with Poiseuille

flow with the same Reynolds number,

UP(r) = 2Uavg(1− r2) (4.4)

for which it is readily shown that Re2P = 1
2Re

2
τ and fP = 64/Re. The relative increase in

friction coefficient is thus ( 1
2Re

2
τ −Re)/Re which we plot in % as abscissa in figure 5.

A particularly striking observation can be made from figure 5a, where three different
crossing angles ϕ are compared for a = 0.05 and m = 1. For each angle, each marker
corresponds to a different Reτ = 40, 60, 80 increasing from left to right; for ϕ = 18.6◦ also
Reτ = 20 is included. The points are too few to fully determine scaling, yet it appears
that whereas for the two larger angles where CL1 is weak the scaled circulation strength
max(|ψ́|)/Re saturates to a constant value, indicating that absolute circulation strength
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increases as ∼ Re throughout the laminar regime. For the smallest angle with strong
Langmuir forcing, however, circulation strength increases faster than ∼ Re, something
which becomes even clearer when plotted against Re as in figure 5b (The faster-than
linear scaling was already observed in figure 3m ).

The non-monotonous dependence of circulation strength on amplitude previously dis-
cussed in section 4.1.2 is illustrated once more in the scatterplot of figure 5c.

4.1.4. High– and low–momentum channels

High-momentum paths (HMP) and low momentum paths (LMP) are conspicuous in
figure 3 where colour contours of

uz(r, θ) = uz,tot(r, θ)− UP(r) (4.5)

are shown. Here UP(r) = 2Uavg(1 − r2) is a Poiseuille flow of the same volume flux as
the simulated flow. Both for ϕ = 45◦ and 60◦ the intuitively expected behaviour is seen:
lower (higher) momentum resides over crestlines (saddlepoint lines) where the roughness
is highest (lowest). At 18.6◦ the picture is opposite, yet a telling observation is made in
figure 3a: in a thin layer over the crestline wall a strong velocity deficit from increased
friction is in fact present, but is soon overtaken by CL1 away from the wall (in panels
f,k the layer is so thin as to fall outside the plotted area). This is another indication that
the two effects are simultanesouly present and competing. In all cases we note that the
rotating motion is directed away from the wall where there is a low–momentum path,
and vice versa.

In studies of turbulence over spanwise varying roughness of different kinds, secondary
motion has also consistently been directed away from the wall over LMPs and vice versa
irrespective of the kind of roughness (e.g. Anderson et al. 2015; Willingham et al. 2014;
Hwang & Lee 2018; Vanderwel & Ganapathisubramani 2015; Chan et al. 2018; Chung
et al. 2018). Colombini & Parker (1995) show that the situation is more subtle when a
free surface is present, and Stroh et al. (2020) found a richer pattern of secondary motion
when spanwise roughness variations do not create a clear distinction between the two.
While we should be careful not to infer too much from turbulent mean flow to the present
laminar case, it is consistent with our observations. [We bear in mind the related, but not
identical, rule of thumb due to Hinze (1967) that secondary flow is directed out of (into)
areas with net production (dissipation) of turbulent kinetic energy, by which Hwang &
Lee (2018) explain the apparent inconsistency in the sense of rotation of secondary flows
between different types of roughness, compared to, e.g., Wang & Cheng (2006).]

The direction of swirling for our laminar case is indicated by the streamwise averaged
equation of motion. Into the z–component of the Navier–Stokes equation (2.3a) we insert
uz,tot = UP(r) + uz. We use rectangular co–ordinates, but notice that (u∂x + v∂y)UP =
urU

′
P(r) = −4Uavgrur. Ordering in powers of a, applying streamwise averaging (4.1) and

neglecting terms of O(a2) yields

−2Re rur = ∇2uz (4.6)

Near a high–momentum path where uz has a maximum, ∇2uz < 0 and hence ur > 0,
and for a low–momentum path the opposite is true, thus flow is towards the wall near a
high–momentum path and vice versa. We note from the presence of Re that this O(a)
mechanism depends on the presence of viscosity.

We can already see that the direction of secondary flow, upwards from crestlines and
down towards saddlepoint lines, when Langmuir driving is weak (e.g. for ϕ = 45◦ and
60◦) is not surprising: fluid paths going over crests and troughs suffer higher friction
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than the nearly straight saddlepoint streamlines, giving rise to a low momentum channel
pushing the flow towards the centre.

5. Analogy of secondary flow in turbulence

Prandtl (1952) famously divided secondary flow in turbulence into two categories,
now referred to as Prandtl’s secondary flow of the first and second kind, respectively.
The former stems from inviscid skewing of the mean flow, typically from the flow being
guided by a curved surface; the second kind is driven by the inhomogeneity of Reynolds
stresses.

It is commonly stated that Prandtl’s secondary flow of the second part has no coun-
terpart in laminar flow (e.g. Bradshaw 1987, p. 54). We argue that this might be open to
discussion since we shall see that in streamwise–periodic flow a close analogy is achieved
when Reynolds averaging replaced by streamwise averaging, equation (4.1).

The velocity and vorticity fields may be divided into a mean and an oscillating part

u = u + ũ; ω = ω + ω̃; (5.1)

with u = (ur, uθ, uz) or (u, v, w), and ω = ∇ × u = (ωr, ωθ, ωz) or (ωx, ωy, ωz), with
accents as appropriate.

Let ϑ denote any field quantity henceforth. Note the relations

ϑ̃ =0; (5.2a)

∂zϑ =0; (5.2b)

∂iϑ =∂iϑ, (5.2c)

where i ∈ {x, y} or {r, θ}.
For simplicity we work first in rectangular co–ordinates; the direction of mean flow

remains z. Consider the streamwise component of the vorticity equation. Exactly follow-
ing the procedure of, e.g., Anderson et al. (2015) but for the definition of the averaging
operator, one finds (with ∇2

⊥ = ∂2x + ∂2y)

(u∂x + v∂y)ωz = ωx∂xw + ωy∂yw + (∂2y − ∂2x)Rxy + ∂x∂y(Rxx −Ryy) + ν∇2
⊥ωz (5.3)

where we define the undulation stress

Rxx = ũũ; Ryy = ṽṽ; Rxy = ũṽ. (5.4)

Replacing streamwise averaging with Reynolds averaging, equation (5.3) is a classic one
(Bradshaw 1987). The undulation stresses are analogous to what in turbulence is often
dubbed dispersive stress (Raupach & Shaw 1982) arising from spatial correlation of time–
averaged quantities; we eschew this term to avoid any confusion with dispersion of surface
waves, featuring in the literature on Langmuir circulations.

In a turbulent flow, the first two terms on the right–hand side of (5.3) would correspond
to Prandtl’s first kind of secondary flow. These add to zero in streamwise–periodic flow
which is obvious once we note that ωx = ∂yw and ωy = −∂xw.

We are left with the terms involving the undulation stresses, which may be written in
the following two forms

(u∂x + v∂y)ωz =Snorm + Sshear + ν∇2
⊥ωz (5.5a)

=Sdef + Sadv + ν∇2
⊥ωz. (5.5b)
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Figure 6. Mean transport of streamwise–averaged vorticity, (u · ∇)ωz, for a = 0.05,m = 1 and
Reτ = 40. Dashed curves indicate the inner and outer circles of vorticity production, marked
with a circle and square, respectively.

with

Snorm =∂x∂y(Rxx −Ryy); Sshear = (∂2y − ∂2x)Rxy; (5.6a)

Sdef =(ω̃ · ∇)w̃ = 1
2Snorm + Sshear + ∂xũ∂xṽ − ∂y ṽ∂yũ

= 1
2Snorm + ∂yũ∂y ṽ − ∂xṽ∂xũ; (5.6b)

Sadv =− (ũ · ∇)ω̃z = 1
2Snorm − ∂xũ∂xṽ + ∂y ṽ∂yũ. (5.6c)

We let the total mean vorticity production be

Sprod = Snorm + Sshear = Sdef + Sadv. (5.7)

The form (5.5a) is the standard in the turbulence literature, and has the advantage
of highlighting the asymmetry of Rij under x ↔ y as the explicit cause of streamwise
vortices, due to normal and shear stresses, respectively. While a natural choice in wall
and channel type geometries, in our present case we find a physical interpretation of the
individual terms less obvious. Going to cylindrical co-ordinates mixes the roles of normal
and shear stresses: by expressing u, v in terms of ur, vr and θ one finds,

Rxx −Ryy = 2Rrθ sin 2θ; Rxy = −2Rrθ cos 2θ + 1
2 (Rrr −Rθθ) sin 2θ (5.8)

with Rrr = ũ2r, Rθθ = ũ2θ and Rrθ = ũrũθ. Some light might be shed from recasting
the full analysis in cylindrical coordinates, but we choose instead to analyse vorticity
transport in terms of (5.5b), the form favoured by Nikitin et al. (2019).

The form (5.5b) is advantageous in that the two production terms Sdef and Sshear

are independent of choice of co-ordinate system. Physically they correpond, respectively,
to production of streamwise–average vorticity by periodic deformation and advection of
vorticity, respectively.

To proceed, we expand all terms in equation (5.5) in a Fourier–Bessel series

F (r, θ) = f0(r) + f2(r) sin(2mθ) + f4(r) sin(4mθ) + ... (5.9)

(cosine terms are zero, and odd terms are prohibited by symmetry) where F is any
term and f0, f2, f4... are functions. The sin(±4m1θ) terms largely determine the swirling
motion for reasons we now explain.

The mean transport of streamwise–averaged vorticity, (u · ∇)ωz, is shown in figure 6
for the three different crossing angles, with a = 0.05,m = 1 and Reτ = 40. We see that
in all cases the amplitude is similar, in the order of 10−5 in these cases, and the leading
contribution is ∝ sin(4mθ). We observe that the significant transport of mean streamwise



17
'
 =

 6
0
±

'
 =

 4
5
±

'
 =

 1
8
.6
±

£10¡3

8

-8

-4

0

4

£10¡3

8

-8

-4

0

4

£10¡3

8

-8

-4

0

4

£10¡3

8

-8

-4

0

4

£10¡3

8

-8

-4

0

4

£10¡3

8

-8

-4

0

4

Viscous term
Sum Sprod

Vorticity deformationVorticity advection

Figure 7. Terms on the right–hand–side of (5.5). Each row corresponds to a case in figure 6
with ϕ as indicated.

vorticity is organised in a pattern of concentric rings. Consider the two innermost rings in
all figures (a thin ring very near the edge is also manifest which does not appear to affect
the streamwise–averaged flow perceptibly so we shall ignore this fact). In figure 6 we have
indicated the inner and outer rings with a circle and square, respectively. For the two
larger angles the two rings have similar amplitudes and comparison with the streamlines
in figure 3a–c shows that the extrema of (u · ∇)ωz correspond to oppositely directed
rotating motion, that due to the inner ring in the form of elongated streamlineloops
confined to an area close to the wall. The larger mean–flow paths correspond to maxima
in the inner ring. In comparison the outer ring in the ϕ = 18.6◦ case is similar to the
other two cases but for being slightly shifted away from the axis, but strikingly the inner
ring is much weaker than the outer, allowing the vortices created by vorticity production
in the outer ring to reach into the bulk flow causing mean rotation in the opposite sense.
Apparently the presence of Langmuir forcing, instead of adding another source of vorticity
production effects a partial cancellation of net inner–ring mean–vorticity production, a
conclusion which is surprising to us and should be further investigated in the future.

To continue we analyse the production contributions due to undulatory motion and
the viscous diffusion of average streamwise vorticity. In figure 7 we have calculated and
visualised the terms on the right–hand side of (5.5b) in full. Comparing with figure 6 we
observe that the magnitude of the right–hand terms individually are more than two orders
of magnitude larger than those on the left–hand side; the vast majority of mean vorticity
production Sprod is cancelled by viscous diffusion ν∇2

⊥ωz. The dominant contribution in
all panels of 7 is ∝ sin(2mθ), with higher harmonics only small corrections, and this term
cancels in sum, we conjecture, exactly (numerically its amplitude is consistently beneath
the level of numerical noise).
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Figure 8. Same as in figure 7, but the terms ∝ sin(4mθ) only.

Now, it can be observed from the streamwise-averaged flow patterns that the left–
hand side of (5.5) varies no more slowly than ∼ sin(±4mθ) as a function of θ. This is
in fact a necessity given the observed mean flow patterns in figures 3 and 4 (and all
other simulation cases; see Supplementary materials) as we now argue. For concreteness,
take the m = 1 cases in figure 3 as example. Note that the streamlines are all closed
within single quadrants of the cross-section, and consider that the cumulated (integrated)
production and diffusion of mean vorticity around a closed streamline must be zero. Since
only the f4-term and higher take both signs inside a single quadrant, periodicity demands
f0 = f2 = 0 for the left-hand side of equation (5.5), and hence also for the full right–
hand side, as a whole. The argument trivially extends to m1 > 1, where the same is also
invariably observed. We conjecture that the exact cancellation of sin(2mθ) terms can be
proved in general, but consistent observation in both theory and simulation is sufficient
for our purposes.

Since the dominant sin(2mθ)-mode does not contribute to the net production of mean
vorticity, considerably improved clarity is achieved by subtracting it in our plots. Noting
that higher harmonics beyond f4 make up only a small correction, we retain only the f4
term which is the main driver of vortical motion. Using

f4(r) =
2

π

∫ π

0

dθ′ F (r, θ′) sin(4mθ′), (5.10)

and plot the same production and diffusion terms again, in figure 8. We still observe that
the majority of production is cancelled by viscous diffusion — the amplitudes in figure 8
are an order of magnitudes higher than those of figure 6. As previously we again observe
that for the same a,m and Reτ the results for 45◦ and 60◦ are highly similar (but for an
overall factor in figure 8) while the 18.6◦ is qualitatively different.
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Figure 8 tells an interesting story. Consider first 45◦ and 60◦. Strong production in the
outer ring is due to average advecton of undulating vorticity, most of which is cancelled
by the viscous term. A smaller production in the inner ring due to vorticity deforma-
tion is evident in figure 6 for these two angles, and these are not cancelled by viscous
diffusion. The indication is that although weak compared to advection production, due
to cancellations this inner–ring production nevertheless drives the prevailing secondary
motion evident in streamline plots e.g. in figure 3 (note the difference in scale between
figures 6 and 8).

The picture for 18.6◦ is strikingly different. Here the outer–ring production has the op-
posite sign, and contributions from advection and deformation are roughly equal, in con-
trast to the larger angles for which deformation contributes negligibly to the outer–ring
production. Crucially, in the inner–ring, oppositely directed production from deformation
is far weaker for 18.6◦, invisible at this scale.

Naturally we have limited basis to predict the extent to which these observations
carry over to turbulent flow. An indication that analoguous flow modifications would
remain, however, is that the production terms on the right–hand side of the turbulent
equivalent of equation (5.5) (with averaging now taken to mean Reynolds averages) are
confined to the roughness sublayer where the flow is not strongly turbulent (Anderson
et al. 2015), yet the resulting vortices themselves span much of the boundary layer when
the roughness is regular in the spanwise direction (Willingham et al. 2014; Vanderwel &
Ganapathisubramani 2015). This is a question for future study.

6. Summary

By furnishing the walls of a pipe flow with a pattern of crossing waves, longitudinal
vortices can be made by design through a passive kinematic mechanism of Langmuir
circulation, ‘CL1’, which functions by redirecting the vorticity inherently present in the
main flow. The dependence of the vortical secondary motion on Reynolds number Re,
wave crossing angle ϕ and amplitude a was studied with direct numerical simulation
throughout the laminar regime, and analysed with a simple theoretical model. The CL1
forcing scales as Rea2 for small a, is strongest for ϕ . 30◦ (‘contracted egg carton’),
changes sign in the vicinity of 45◦ and is typically oppositely directed and much weaker
for ϕ & 45◦ (‘protracted egg carton’). Simulations show how secondary vortices in the
opposite sense also appear, driven by a dynamic mechanism due to differences in wall
friction over the wall’s crests/troughs vs saddle-points, a mechanism which is present at
all ϕ. The two effects compete, with CL1 prevailing at small ϕ ∼ 10 − 20◦ where it is
strongest, above which the direction of swirling is reversed.

When CL1 is negligible, circulation strength scales proportional to Re as would be
expected. Curiously, for ϕ = 18.6◦ where CL1 is strong, circulation increases significantly
faster than ∼ Re.

Increasing the wall-wave amplitude of the contracted pattern also causes flow reversal,
which we attribute to the weakening of CL1 driving due to flow separation.

An analogy exists between streamwise–averaged flow in periodic laminar flow and
Prandtl’s secondary motion of the second kind in turbulence. In both cases, a transport
equation for average streamwise vorticity ωz is used, and we analyse the source and sink
terms and their effect on vortical motion for three different crossing angles, ϕ = 18.6◦, 45◦

and 60◦ for a = 0.05, Reτ = 40. Again the picture is strikingly different for the smallest
angle, where Langmuir forcing is strong, to the two larger where it plays a negligible
role. In all cases the transport of ωz is organised in a ring–like structure with extrema in
the two rings contributing to swirling flow in opposite senses. For the larger angles the
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inner ring decides the main swirling motion. For ϕ = 18.6◦ however, the production in
the inner ring is far weaker than that in the outer, with vortical motion due to outer–
ring production prevailing, resulting in flow in the opposite sense. For the larger angles
the outer ring (closest to the pipe wall) is mainly driven by advection of vorticity and
the inner by deformation (stretching). For ϕ = 18.6◦ on the other hand, advection and
deformation terms contribute approximately equally to production in the outer ring, with
the same sign. In all cases the vast majority of production of mean streamwise vorticity
is balanced by viscous diffusion, with net production two orders of magnitude smaller
than the individual contributions from vorticity advection and deformation.

The effect of imposing the CL1 mechanism in a turbulent pipe flow remains an open
question for the future. From our observations we conjecture that it could relate to the
previous observation by Bhaganagar et al. (2004) that the crossing angle of small–scale
egg–carton rougness has marked effects extending into the outer turbulent boundary
layer.
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AHA and SÅE were funded by the Research Council of Norway (programme FRINATEK),
grant number 249740. Supercomputer resources provided by the University of Melbourne
and UNINETT Sigma2 — the National Infrastructure for High Performance Computing
and Data Storage in Norway, project number NN9654K. We benefited from discussions
with Prof Bruno Eckhardt. Declaration of Interests: The authors report no conflict of
interest.

Appendix A. Initial growth rate of Langmuir vortices

The Orr–Sommerfeld-type boundary value problem, equation (2.9), permits an ana-
lytical solution describing the initial growth of Langmuir vortices, when the latter are
assumed to be inviscid at early times. By setting Re−1 = 0 one obtains solution

ur(r, t) =
rt

2µ

∑
s=±1

s

(∫ 0

1

dρ
ρµ

rsµ
−
∫ r

1

dρ
ρsµ

rsµ

)
ρ2

r2
R(ρ), (A 1)

where R(r) is given in (2.10). The axial velocity component is

uz(r, t) = − 1
2 tU

′(r)ur(r, t) ∝ a2t2. (A 2)

Thus, ur and uθ grow linearly in time whereas uz grows quadratically.
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Figure 9. Initial growth rate compared to final steady–state solution. a) Initial growth rate,
inviscid, b) Ultimate, steady–state solution, c) streamlines.

A qualitative comparison between solutions of initial growth rate and ultimate state
of the CL1-driven vortices is shown in Figure 9. Figure 9a shows the dependence on
crossing angle ϕ for fixed κ; compare with steady–state which is the same as Figure 2a.
Streamlines (contours of ψ(r, θ)) are shown in Figure 9c. The second, fourth and sixth
panel from the left, labelled ‘steady state’ are the same as Figures 2b-d. Notably, vortices
move away from the wall after creation before reacing steady state. The same trend was
seen theoretically also for flow over a flat plate by Akselsen & Ellingsen (2020).
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24 S. Å. Ellingsen, A. H. Akselsen and L. Chan

Wang, Zhi-Qian & Cheng, Nian-Sheng 2006 Time-mean structure of secondary flows in open
channel with longitudinal bedforms. Advances in water resources 29 (11), 1634–1649.

Ward, Kevin & Fan, Z Hugh 2015 Mixing in microfluidic devices and enhancement methods.
Journal of Micromechanics and Microengineering 25 (9), 094001.

Willingham, D., Anderson, W., Christensen, K. T. & Barros, J. M. 2014 Turbulent
boundary layer flow over transverse aerodynamic roughness transitions: Induced mixing
and flow characterization. Physics of Fluids 26, 025111.

Willis, A. P., Hwang, Y. & Cossu, C. 2010 Optimally amplified large-scale streaks and drag
reduction in turbulent pipe flow. Phys. Rev. E 82, 036321.

Yan, Chao, McWilliams, James C & Chamecki, Marcelo 2021 Generation of attached
Langmuir circulations by a suspended macroalgal farm. Journal of Fluid Mechanics 915.

Yang, J. & Anderson, W. 2018 Numerical study of turbulent channel flow over surfaces with
variable spanwise heterogeneities: Topographically-driven secondary flows affect outer-layer
similarity of turbulent length scales. Flow, Turbulence and Combustion 100, 1–17.


