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Abstract

Due to global efforts to combat climate change, renewable energy is currently seeing a boom in

growth, with wind energy leading the way. Electric power generation from wind energy is different

compared to that from conventional sources, due to the intermittent nature of the wind speed.

Therefore, the operating characteristics of the wind energy facilities have a different impact on the

reliability of the power system compared to that of conventional sources. The rapid development

of wind energy installations can lead to increased pressure on electric power utilities. This thesis

identifies and develops methods to evaluate and quantify the impact of significant wind power

penetration on the reliability of composite power systems through probabilistic Monte Carlo

Simulation methods.

Two fundamental Monte Carlo Simulation methods, the Sequential State Transition method, and the

Non-sequential State Sampling method, are selected to include wind power penetration in composite

system reliability assessment. Two different wind speed models, the auto-regressive moving average

(ARMA) wind model and the Weibull distribution-based wind model, are included and compared in

the composite system reliability assessment. The wind power modelling considerations are selected

through an extensive literature review, which examines the state-of-the-art on the main topic of

the thesis. The developed methods are applied to a DC-based contingency solver and an AC-based

contingency solver for composite system state evaluation. The developed in-house software tools are

tested on standard test systems suited for composite power system reliability evaluation through

appropriate probabilistic indices and compared with selected corresponding benchmark results from

the literature.

The thesis applies different wind speed regimes to case studies and compares the impact on the

reliability of the system delivery points and the overall systems. Wind speed correlation between

multiple wind sites is identified as an important parameter in the wind modelling process and

is included in the wind speed models. The priority order load curtailment philosophy is used to

control the load curtailments at the system delivery points. It is observed that the characteristics of

the wind speed regime, transmission network, degree of wind speed correlation, and choice of load

curtailment philosophy have a significant impact on the reliability of power systems with significant

wind power penetration.
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Sammendrag

Grunnet globale tiltak for å bremse klimaendringene har andelen installasjoner av fornybare

energikilder i verden økt kraftig, med vindkraft som den ledende energikilden. Den leverte elektriske

kraften fra vindkraftanlegg er svært annerledes fra tradisjonelle energikilder, grunnet de periodiske

og tilfeldige egenskapene til vind. Derfor har driftsegenskapene til vindkraftanlegg en annen in-

nvirkning p̊a p̊aliteligheten til kraftsystemer, sammenlignet med tradisjonelle energikilder. Den

raske utviklingen av vindkraftinstallasjoner kan føre til et økende press for kraftselskaper. Denne

avhandlingen identifiserer og utvikler metoder for å evaluere og beregne p̊aliteligheten til sam-

mensatte kraftsystemer som inkluderer kraftproduksjon og overføringsnettet, gjennom Monte Carlo

simuleringsteknikker.

To grunnleggende Monte Carlo simuleringsteknikker, den sekvensielle teknikken state transition

og den ikke-sekvensielle teknikken state sampling, er valgt til å inkludere vindkraft i sammensatte

kraftsystemanalyser. To ulike vindhastighetsmodeller, basert p̊a autoregressiv-glidende gjennoms-

nittsmodell og Weibullfordelingen er utviklet og sammenlignet i analysen. Betraktninger i forhold til

modellerigen av vindkraft er nøye utvalgt gjennom en grundig litteraturstudie, som undersøker ulike

metoder og tilnærminger i litteraturen. De utviklede metodene er anvendt p̊a systemtilstandana-

lyser basert p̊a DC lastflyt og AC lastflyt, tilpasset sammensatte kraftsystemer. De utviklede

programmene er testet p̊a standardiserte testsystemer som er tilpasset sammensatte kraftsystmer,

og sammenlignet med tilsvarende resultater fra andre studier.

Avhandlingen anvender ulike vindhastighetsregimer i ulike analyser, og sammenligner p̊avirkningen

p̊a p̊aliteligheten til lastpunkter og hele systemer sett under ett. Korrelasjon mellom vindhastigheter

fra ulike lokasjoner er identifisert som en viktig parameter i vindmodelleringen, og inkluderes i

vindhastighetsmodellene. Lastreduksjonen i systemene kontrolleres ved å rangere lastpunktene

etter en prioritetsliste. Det er observert at karakteristikken til vindhastighetregimene, graden av

korrelasjon mellom vindhastighetene og valg av lastreduksjonsmetode har en betydelig innvirkning

p̊a p̊aliteligheten til kraftsystemer med en betydelig andel vindkraft.
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1 Introduction

1.1 Background

Wind power is regarded as an important alternative to conventional electric power generating

sources as it is a clean and renewable source of energy. Wind energy technologies have been

developed rapidly, and are regarded as one of the lowest-priced renewable energy technologies.

Wind power has a vital role to play in achieving a rapid reduction in emissions of greenhouse gases

to zero on a net basis over the coming decades, in line with the United Nations energy-related

Sustainable Development Goals, including the climate goal of the Paris Agreement. To meet the

long-term goals of the Paris Agreement, the share of Renewable Energy Sources (RES) in the

world’s primary energy supply must be raised to at least 65% by 2050 [1]. Wind power and solar

energy are currently the fastest growing energy sources in the world, and are expected to play a

vital role in the energy mix of the future. The onshore and offshore wind power generation in the

Sustainable Development Scenario, developed by the International Energy Agency, is illustrated in

Figure 1.1 and Figure 1.2.

Figure 1.1: TWh Onshore wind power generation in the Sustainable Development Scenario,

2000-2030 [2]

Figure 1.2: TWh Offshore wind power generation in the Sustainable Development Scenario,

2000-2030 [2]
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Due to the intermittent nature of wind power, this rapid development leads to increased pressure

on electric power utilities worldwide, as end-users expect the energy supply to be continuously

available. Power System Operators need to quantify the impacts of the large increase in wind power

on the reliability of the power systems, balancing reliability and costs.

Historically, composite power system reliability management has been relying on deterministic

techniques, which are unable to capture the random nature of power systems. With increased

generation from intermittent energy sources, the need for new techniques has increased further.

Probabilistic methods have been highly developed and can provide relevant information about the

behaviour of a system. Probabilistic techniques can be divided into analytical and simulation-based

methods. The analytical models usually have to simplify the problems, and thus become inaccurate

when the systems increase in size. Complex system effects and processes can be included to a higher

degree in simulation-based methods. The simulation methods are usually based on Monte Carlo

Simulation (MCS).

1.2 Scope

The thesis is a continuation of a specialisation project undertaken during Autumn 2020, where

the main focus was to gain an understanding of the fundamental concepts in analytical power

system reliability assessment (without wind), and further extend the concepts to include wind-power

considerations and MCS. Based on this work, the thesis work conducted during Spring 2021 has

the following main objective:

• Create a comprehensive framework for assessing the reliability of a composite power system

that contains significant wind penetration, through MCS. Select/identify/create a suitable

methodology for the PSR assessment, which will enable the quantification of the system

reliability with the help of appropriate indices. Create in-house software tools for obtaining

these reliability indices.

Reliability refers to its adequacy aspect.

The focus of the development of the scripts has been on the integration of new models and methods,

and not every aspect of MCS such as variance reduction methods or computational efficiency, has

been covered.

1.3 Thesis Contribution

The thesis is an addition to the computational tools in the ongoing project of building a compre-

hensive framework for conducting PSR assessment at the Department of Electric Power Engineering

at NTNU. The objective is to evaluate the impact of integrating wind power on the reliability of

composite power systems. The reliability metric Expected Energy Not Served (EENS) is selected

as the most appropriate metric to quantify the impact of integrating wind power in composite

system analysis by using MCS. The developed MCS scripts build on the composite adequacy studies

presented in the Master’s thesis [3] from the Department of Electric Power Engineering at NTNU.

A literature review of wind power considerations in composite power system reliability assessment

is included in the thesis. Wind speed models based on ARMA and the Weibull distribution are

developed and included in the modelling. The developed MCS scripts for wind sampling from the

Weibull distribution are an extension of the scripts presented in [4]. Wind speed correlation is

included in the developed wind speed models. The modelling of the wind turbine generator output
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power is based on existing methods in the literature. The power system adequacy assessment is

conducted by using Sequential and Non-sequential MCS techniques: the State Transition and State

Sampling approaches. The conceptual background and applications of the concepts are presented

and illustrated. The propositions made in this thesis are tested on three test systems: the RBTS,

the MRBTS and the RTS. Real-life wind data from Ørland, Norway was adapted to obtain results

in the case study. Existing wind data in the literature, from Canada, is also adapted to obtain

results as the basis for validation.

The developed algorithm has both AC- and DC-optimal power flow options. The AC-based

contingency solver is utilised for the MRBTS-Swift Current Case Study. All other case studies

utilise the DC-based contingency solver, due to shorter computational time. The simulations were

“capped” at 1000 simulation years for the State Sampling approach, and 7500 simulation years

for the State Transition approach. Computational efficiency, accuracy and precision of the MCS

approach have not been examined in the thesis.

The existing in-house MATLAB scripts have been extended to include the integration of significant

wind power in composite systems, as presented in this thesis. MATLAB scripts that utilise the

State Sampling and State Transition MCS techniques, ARMA- and Weibull distribution wind speed

models, including wind speed correlation between multiple wind sites, and AC- and DC- load flows

have been developed. The goal with the scripts was not to provide optimised scripts, but scripts

that did a good basic job of obtaining reliability indices. All the developed scripts are released for

further research and educational use at the Department of Electric Power Engineering at NTNU.

1.4 Thesis Structure

Chapter 1 - Introduction: provides the motivation, background, scope and contributions of the

thesis.

Chapter 2 - Conceptual Background and Literature Review: presents the essential concepts of

power system reliability (adequacy), a detailed literature review and the fundamental concepts

required for executing the objectives of the thesis. The essential concepts include an introduction

to reliability indices, MCS methods and composite system adequacy considerations. The literature

review presents state-of-the-art methods and considerations related to the thesis work. Based on

the conducted literature review, the selected fundamental methods for executing the objectives of

the wind-related topics are presented.

For establishing narrative clarity and with an aim to make this thesis a complete and independent

unit in and of itself, much of the content from chapter 2 is a replication of the specialisation project

work, with suitable extensions where deemed necessary.

Chapter 3 - Methodological approach: presents an explanation of the proposed composite system

assessment algorithms used for the implementation of MATLAB scripts in the thesis work, and

highlights the unique contributions. A simple example illustrates the methodology.

Chapter 4 - Case Studies and Results: applies the developed scripts to different test systems.

Presents and discusses various cases and methods for integrating wind power into power systems,

including relevant sensitivity analyses and benchmark comparisons.

Chapter 5 - Conclusion and Future Work: summarises the results and work in the thesis and

suggests future work.
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2 Conceptual Background and Literature Review

2.1 Basics of Power System Reliability

This chapter addresses the fundamental aspects and concepts of PSR. To gain a thorough under-

standing of the field, the chapter examines elements of generation adequacy assessment before

expanding to the more complex composite adequacy assessment. The chapter illustrates some of the

concepts and indices analytically before these are included in Monte Carlo Simulation approaches.

2.1.1 Defining Power System Reliability

Power System Reliability has a wide range of meaning; various definitions exist. In a general sense,

power system reliability concerns a system’s ability to perform its function. It is often referred to

as the probability of satisfactory provision of power and energy to meet load demand, as well as

the ability to withstand disturbances. The power delivered to consumers must be within accepted

standards and in the amount desired. The degree of reliability may be measured by the frequency,

duration, and magnitude of adverse effects on consumer service [5].

To obtain a more concise picture, power system reliability can be divided into two basic aspects

which are used for reliability assessment: adequacy and security [6].

2.1.1.1 Adequacy

Adequacy is the ability of the power system to supply the aggregate electric power and energy

requirements of the customer at all times, taking into account scheduled and unscheduled outages of

system components. The adequacy aspect includes facilities required for the generation of sufficient

energy as well as facilities required for transport of the energy to the consumer load points. It is

associated with static conditions, which implies that it does not include dynamic and transient

disturbances.

2.1.1.2 Security

Security is the ability of the power system to withstand sudden disturbances such as electric short

circuits or non-anticipated loss of system components. It is associated with dynamic conditions

which may result in dynamic, transient or voltage instability of the system. An assessment typically

examines whether a system can stay within its stability limits during a transient event.

Figure 2.1: Division of reliability
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In this thesis, power system reliability will refer to the adequacy aspect.

2.1.2 Hierarchical Levels

Electric power systems are immensely complex and large. Even high-tech computers cannot analyse

a power system as a single entity in a completely realistic manner. Therefore, the system is divided

into three distinguished subsystems that can be analysed separately. The concept of hierarchical

levels has been developed to obtain a consistent means of identifying these subsystems [7]. The

hierarchical levels consist of the generation system, transmission system and distribution system.

2.1.2.1 HL-I: Generation System

Hierarchical level 1 includes only the generation system. The total system generation is examined

and compared to the total system load. The transmission system and the ability to move the

generated energy to the system load points is not taken into account for this type of study.

2.1.2.2 HL-II: Composite System

Hierarchical level 2 includes both the generation system and the transmission system, often referred

to as the bulk power system, or composite system. This study considers the ability of the system

to provide sufficient supply to the system load points by including the network topology of the

transmission system. Therefore, an assessment at HL-II is more complex than an assessment at

HL-I, as it includes more parameters, such as limits for the power transmission, or voltage limits

of the load buses. An HL-II assessment usually requires that some sort of load flow analysis is

conducted. An HL-II assessment can be used to assess the adequacy of an existing or proposed

system including the impact of various reinforcement alternatives at both the generation and

transmission levels. Both individual bus indices and system indices may be evaluated. The system

indices provide an assessment of the overall adequacy, while the individual bus indices provide the

effect at individual buses [6].

2.1.2.3 HL-III: Whole Power System

Hierarchical level 3 includes the distribution facilities in addition to the two other systems which

are included in HL-II studies. HL-III studies create large-scale models for most practical systems,

and are therefore more complex to conduct [8]. This challenge may be overcome by performing

isolated studies on the distribution system alone [9].

2.1.3 Evaluating the Adequacy Aspect of Power System Reliability

The adequacy of a system is evaluated by comparing a representation of a system to a criterion. The

representation consists of a suitable index that quantifies the performance of the system. A variety

of indices can be applied to assess the adequacy contribution of a system. Reliability evaluation can

be done by deterministic and probabilistic methods. Deterministic indicators measure the historical

performance of the power system, while probabilistic indicators forecast the performance of the

power system over time [10]. The most common deterministic indices are the reserve margin and the

largest set in the system. Deterministic methods do not account for the stochastic nature of system

behaviour. As the share of renewable energy has increased and the demand side flexibility has
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Figure 2.2: Hierarchical levels in power system reliability studies

increased, the probabilistic methods have prevailed as the most recognised and accurate methods.

The deterministic methods will therefore not be emphasised in the thesis.

The probabilistic methods are divided into analytical and simulation-based methods. The analytical

approach applies mathematical models and direct numerical calculation for reliability indices.

The simulation-based approach utilises Monte Carlo Simulation. The advantage of the analytical

approach is that the calculation time can be short compared to the simulation approach. The

disadvantage with the analytical approach is that it simplifies the examined system in order to fit

the analytical system model. This lowers the accuracy of the result. Therefore, as a system grows

and becomes more complex, the simulation model becomes more advantageous.

2.1.3.1 Loss of Load Events

The most common probabilistic indices used today within the adequacy domain of PSR are related

to loss of load events within power systems. For HL-I, this is associated with the insufficient

generation, while HL-II also includes insufficient transfer capability. A generation model and a load

model are needed to create a probabilistic risk model for an HL-I model. For an HL-II model, a

network model is also needed. The results of LOL-indices are dependent on the chosen load model,

and must be interpreted differently for each load model.

2.1.4 The Load Model

The load model is a representation of the system load demand and its variation in time. It is a

prediction of the future load which is based on historical data. The time period is divided into

increments of equal duration. Each increment consists of a load value. The Constant Yearly Peak

Load (CYPL) model represents the entire year as one load increment equal to the annual peak

load. In other words, the maximum load for the year is modelled to last for the entire year. The

advantage of this model is that it gives a short computational time. However, it can give a very

inaccurate and pessimistic result [11].

The Daily Peak Load (DPL) model represents the entire year as 365 load increments with a load

equal to the daily peak load. In other words, the maximum load for each day is modelled to last

for the entire day. Compared to the CYPL, this model gives a more accurate result. The drawback

is that the computational time increases.
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Lastly, the Hourly Peak Load (HPL) model represents the entire year as 8760 load increments with

a load equal to the hourly peak load. The maximum load for each hour is modelled to last for the

entire hour [12]. This model gives the most accurate representation of the system load demand and

its variation. At the same time, the computational time increases compared to the DPL and CYPL.

A visualisation of the load variation for one week is provided in Figure 2.3. Note that the YPL is

given for a different week than the one which is being presented.

Figure 2.3: Illustration of the load models for a particular week

2.1.5 The Generation System Model

2.1.5.1 Forced Outage Rate

To represent the generation system in a realistic manner, an expression of the state of each generation

unit is needed. A basic parameter used to do this is the probability of finding the unit on forced

outage at some distant time in the future [13]. During the forced outage, the unit is unavailable

and not performing its required function. It is classified to be in a “down”-state. FOR is the ratio

of two time values, as illustrated in Equation 2.1.

FOR = U =
λ

λ+ µ
=

MTTR

MTTF +MTTR
=
MTTR

T

=

∑
[down time]∑

[down time] +
∑

[up time]

(2.1)

• λ = expected failure rate

• µ = expected repair rate

• MTTF = mean time to failure = 1/λ

• MTTR = mean time to repair = 1/µ

• T = cycle time
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This model is directly applicable to a unit that is either operating or forced out of service. Scheduled

outages must be considered separately. The model is associated with the two-state model consisting

of a unit “up”- or “down”-state. Other multi-state models consisting of states such as “reserve

shutdown” and “forced out but not needed” states can be represented as a Markov process. The

reader is referred to [14] for elaboration on this.

2.1.5.2 COPT

For the loss of load approach, a basic, analytical generation model is known as the Capacity Outage

Probability Table (COPT). It is a table that contains the possible outage states of the assessed

generation system. Each of these outage states is represented by a cumulative probability of having

an outage greater than, or equal to, the given number of MWs on outage(xj), P (X ≥ xj). This is

illustrated in Equation 2.2.

P (X ≥ xj) =

C∑
X=xj

p(X) (2.2)

where:

p(X) = The individual probability

C = The total installed capacity in the system

The individual probability in a COPT is the probability of exactly the indicated amount of capacity

being out of service. Note that the individual probability associated with an outage state can be

the sum of several system configurations that results in the same amount of capacity outage. The

COPT is constructed by adding the generators one by one, convolving the capacity states of each

unit with the outage states already added to the COPT [12]. A recursive algorithm can be utilised

for this, as illustrated in Equation 2.3, assuming some units are added to the COPT already.

Pnew(X ≥ xj) = (1− FOR) · P old(X ≥ xj) + FOR · P old(X ≥ xj − g) (2.3)

where:

pnew(X) = The new discrete cumulative probability probability distribution

FOR = Forced Outage Rate

g = Capacity

The calculation of the COPT by using the individual probabilities of a simple 3-unit system, shown

in Table 2.1, is provided for clarification.

Table 2.1: Simplified 3-unit example system units

Unit capacity Unit FOR

3 MW 0.02

3 MW 0.02

5 MW 0.02

A FOR of 0.02, yields an Availability of 0.98. First consider the probabilities of outages for the two

3MW-units, while the 5MW unit is out of service, as illustrated in Table 2.2.
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Table 2.2: Simplified 3-unit example system. The two 3MW units are in service

Capacity out of service Probability

0 MW p(x) = (0.98)(0.98) =0.9604

3 MW p(x) = (0.98)(0.02)+(0.98)(0.02) = 0.0392

6 MW p(x) = (0.02)(0.02) = 0.0004

Now consider that the 5MW unit is in service (A = 0.98). The probabilities are given in Table 2.3.

Table 2.3: Simplified 3-unit example system. The 5MW unit is in service.

Capacity out of service Probability

0+0 MW p(x) = (0.9604)(0.98) =0.941192

3+0 MW p(x) = (0.0392)(0.98) = 0.038416

6+0 MW p(x) = (0.0004)(0.98) = 0.000392

If the 5MW-unit, however, is out of service, the probabilities are illustrated in Table 2.4.

Table 2.4: Simplified 3-unit example system. The 5MW unit is on outage

Capacity out of service Probability

0+5=5 MW p(x) = (0.9604)(0.02) =0.019208

3+5=8 MW p(x) = (0.0392)(0.02) = 0.000784

6+5=11 MW p(x) = (0.0004)(0.02) = 0.000008

Finally, these scenarios are combined to form the COPT, as illustrated in Table 2.5.

Table 2.5: COPT for the simplified 3-unit example system.

State (j) Capacity out of service, xj Individual probability Cumulative probability

1 0 MW 0.941192 l.000000

2 3 MW 0.038416 0.058808

3 5 MW 0.019208 0.020392

4 6 MW 0.000392 0.001184

5 8 MW 0.000784 0.000792

6 11 MW 0.000008 0.000008

2.1.6 Reliability Indices

2.1.6.1 Loss of Load Probability - LOLP

As the name implies, this probabilistic index displays the probability of a LOL situation for a

certain time period. The load demand may exceed the available capacity for different reasons such

as generation unit outages or an unexpected increase in demand. To calculate LOLP analytically,

the load model is compared to the generation model (COPT). The LOLP-value in time increment t

is mathematically represented as shown in Equation 2.4, where X is the capacity outage, C is the

installed capacity of the system that is not on scheduled outage and Lt is the load at a specific

time increment.

LOLPt = P (Lt > C −X) = P (X > C − Lt) (2.4)
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Here, P (Lt > C −X) is the probability of demand exceeding the available capacity, while P (X >

C − Lt) is the probability of having an outage capacity that is larger than the installed capacity

minus the load at that particular time increment. It should be noted that these are the same.

2.1.6.2 Loss of Load Expectation - LOLE

LOLE is one of the most used indices by power system planners and operators. LOLE displays the

expected number of days or hours on which a load loss or deficiency will occur. It can be viewed as

an extension of LOLP, as LOLE calculations consist of the summation of all LOLPt values over a

time period. It should be noted that this is only possible if the time increment is equal to one day

for the DPL-model, and one hour for the HPL-model.

During off-peak load periods and times when there is excess generating capacity available, LOLE-

values will typically be zero. Non-zero values occur during peak periods and near-peak periods,

or during periods that large amounts of capacity are undergoing scheduled maintenance and is,

therefore, unable to provide capacity [15]. It does not indicate the severity of the deficiency

and neither does it indicate the frequency nor the duration of loss of load [9]. A mathematical

representation is presented in Equation 2.5 and Equation 2.6, where LOLE is calculated in terms of

days/year using a DPL model and hours/year using an HPL model.

LOLE =

365∑
t=1

P (X > C − L)∆T [
days

year
] (2.5)

LOLE =

8760∑
t=1

P (X > C − L)∆T [
hours

year
] (2.6)

• P(X > C - L) = Probability that the peak load will not be met

• ∆T = Time period for which a given peak load exists

• C = Total installed generation capacity in the system not on outage

• L = System load for a given time

LOLE analysis is used to determine the level of installed generation that is needed to achieve a

given level of resource adequacy. In North America, this level of adequacy has traditionally been 0.1

day/year, but different regions or different entities can choose the appropriate target [15]. For this

given level of adequacy, a DPL-model was utilised. This index can not be converted to hours/year

since a different load model has been used. According to [16] the European reliability regulation is

not uniform, and some countries do not have any reliability standards at all. LOLE-standards for

certain European countries are presented in Table 2.6. As seen from the unit of measurement, an

HPL-model has been used for these countries.

2.1.6.3 Expected Energy Not Served - EENS

A shortcoming of LOLE is that it does not take into account the severity of an outage. LOLE

only denotes the expected average number of days or hours per year during which the system is

being on outages. A system with a deficit of 5MW can have the same LOLP as a system with a

deficit of 500MW. If the periods of deficits are equal, the systems also achieve the same LOLE.
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Table 2.6: Reliability standards in European countries [16]

LOLE [hr/yr]

Belgium 3

France 3

Great Britain 3

Ireland 8

The Netherlands 4

EENS overcomes this weakness in the LOLE index by including the size of the capacity deficit. It

expresses the amount of electricity demand, measured in MWh, that is expected not to be met by

generation in a given time period. The index is obtained by summing all the capacity outage states

that give a capacity deficit and a summation over all the time increments. Usually, this is all hours

in a year. This is illustrated in Equation 2.7.

EENS =

t=8760∑
t=1

C∑
Xj=C−Lt

[xj − (C − Lt)] · p(X = xj)[MWh/year] (2.7)

• p(X = xj) is the probability of having a specific number of MW on outage

• xj − (C − Lt) is the energy that is curtailed at that specific number of MW outage capacity.

A simple example is provided for clarification. Assuming the generation model is presented by the

COPT presented in Table 2.5. A single time increment where Lt = 7MW is considered. Four out

of the six outage states cause a capacity deficit, as illustrated in Table 2.7.

Table 2.7: Calculation of EENS for a simplified system

State

(j)

Capacity

out., xj

Individual

probability

Cumulative

probability

Capacity deficit

[xj - (C-Lt)]

Ej

1 0 MW 0.941192 1.000000 0 0

2 3 MW 0.038416 0.058808 0 0

3 5 MW 0.019208 0.020392 1 1 · 0.019208 = 0.019208

4 6 MW 0.000392 0.001184 2 2 · 0.000392 = 0.000784

5 8 MW 0.000784 0.000792 4 4 · 0.000784 = 0.003136

6 11 MW 0.000008 0.000008 7 7 · 0.000008 = 0.000056

By using Equation 2.7, the EENS is calculated as EENS = 0.019208 + 0.000784 + 0.003136 +

0.000056 = 0.023184 MWh/hour, assuming the duration of the time increments is one hour. If

this calculation is done for 8760 hourly time increments in a year, the EENS can be expressed as

MWh/year.
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2.1.7 Monte Carlo Simulation in Power System Reliability

In the previous sections, analytical approaches for how to calculate different metrics have been

presented. As a system grows in complexity, finding analytical approaches to solving the system

becomes more and more cumbersome, and calls for alternative methods. HL-II and HL-III systems

are part of this category, systems that are often too complex to be analysed analytically. Monte

Carlo Simulation (MCS) is a stochastic simulation utilising random numbers and can be used to

solve both deterministic and stochastic problems [6]. When applied in PSR, MCS is used to sample

the states of the components in the system. It is usual to represent the system as a vector of

component states S, as shown in Equation 2.8. For an HL-I study, component states sampled are

the generators, while an HL-II study will also include the states of the transmission components.

S = {S1, S2, ...Sm} (2.8)

When a system state is obtained, the total capacity not on outage can simply be calculated by

Equation 2.9.

C =

m∑
i=1

xiCi,rated (2.9)

Where C is the total available capacity for the whole system, m is the total number of generators,

Ci,rated is the rated capacity for component i and xi is a number in the range [0,1] denoting how

much of the rated capacity is available for component i. In a two-state representation xi = 1 for

the up-state and xi = 0 for the down-state.

In PSR, MCS is often categorised into two main categories, Sequential and Non-sequential methods.

A Sequential method implies that the next calculated state depends on the previous state. This is

also called chronological MCS. A Non-sequential MCS method does not take into account previous

states.

There exist three main simulation approaches when using MCS for PSR [6], the State Sampling

approach, the State Duration approach and the State Transition approach. These three methods

will be introduced.

2.1.7.1 State Sampling Approach

In this approach, every component in the system is represented with a state variable. For simplicity,

only the up-and down-state will be considered, but the method can be extended to account for

component representations with more than two states. Assume the i-th component has state

variable Si and a distribution of how likely the component is to be in the up-or down-state. Then

Si can be represented as:

Si =

{
Up state if Ui ≥ pi,down
Down state if Ui < pu,down

where pi,down is the probability of component i to be in the down state, and Ui is a randomly

uniformly distributed variable in the range [0, 1].

In a two-state representation of each component, where the component is either in the up-or

down-state, the FOR value will be a natural choice for the probability of the down-state. When
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determining the system state, for each component in the system, a random uniformly distributed

variable U between [0,1] will be generated, and used to determine the state of each component.

Based on the state representation, the capacity on outage can be calculated according to Equation 2.9.

The reliability indices can then be calculated according to the hierarchical level of the study.

This approach is Non-sequential, as it does not take into account previous states when determining

the next state. As a consequence, frequency indices cannot be calculated.

2.1.7.2 State Sampling Example

For a given system that consists of five generating units with a capacity of 40 MW and a FOR of

0.01, one state of the system is sampled using the State Sampling approach. As the system consists

of five units, a vector of five uniformly distributed random variables in the range [0,1] is generated,

as illustrated in Equation 2.10.

R =
(

0.7223 0.3422 0.9549 0.0043 0.2984
)

(2.10)

The system matrix S is then found by comparing the elements of R against the FOR value of the

generators. The resulting system matrix is then given by Equation 2.11 (where 0 indicates the

up-state).

S =
(

0 0 0 1 0
)

(2.11)

Employing Equation 2.9 yields that this state has a capacity not on outage of 160 MW, and a

capacity on outage of 40 MW.

2.1.7.3 State Duration Approach

Instead of focusing on the chance of a given component to be in a state at one time, the state

duration approach rather looks at the state duration distribution functions. When looking at a

component with two states, the distributions are operating and repair. In this example, these are

assumed exponentially distributed, but can follow any distribution.

Due to the exponential distribution, the time each component stays in one state is given by

Equation 2.12. The equation is found by using the inverse transform method (described by [6]) on

the cumulative probability function of an exponential distribution.

TTTF,i = − 1

λi
lnUi (2.12)

TTTR,i = − 1

µi
lnUi (2.13)

Where TTTF,i is the time to failure, TTTR,i is the time to repair, λi is the failure rate and µi is the

repair rate. Ui is a randomly uniformly distributed variable in the range [0, 1].

The state duration approach is conducted according to these steps:

• Determine the initial state for each component. According to [6] setting each component to

the up (success) state is a normal assumption.
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• For each component, determine the time it stays in the initial state, and record it. Then

determine how long it takes for the component to change state again. Repeat this process

until the chronological component state is found for the wanted observing time.

• Combine the individual component chronological state to obtain the total system chronological

state. An illustration of this is shown in Figure 2.4.

• From the chronological state the system state vector S can be found for a given time, and

used to calculate the wanted reliability indices.

One important thing to note is that when a component is in the down-state, the next time constant

is found from the Time-to-Repair distribution, while in the up-state the next time constant is found

from the Time-to-Fail distribution. Due to this dependency on the current state for determining

the time to the next state, this approach is a Sequential Monte Carlo Method.

Figure 2.4: A visualisation of the state duration approach on a three-generator HL-I system.

In Figure 2.4, each generator has the same generation capacity of 25 MW and is either in the up-or

down-state. The chronological data from each component is added for the whole system giving

rise to the system generation data. It should be noted that the state distributions in the figure are

unrealistic for real generators and only used to visualise the concept.

Since the state duration method is a Sequential method, it allows for the calculation of frequency

indices. The state duration method is more computationally intensive compared to both the State

Sampling and State Transition approach.
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2.1.7.4 State Transition Approach

In this approach, the focus is on how the whole system transitions from one state to another, instead

of how each component individually transitions. Only the main points of the proof are discussed.

This section is based upon [6]; the reader is encouraged to see [6] for a more thorough proof of the

approach.

For this approach, all the system components are assumed to follow an exponential distribution.

Assume a state S consisting of m components, each with a transition rate λi. It should be noted

that in this section, λ can refer to both failure rate and repair rate. By the assumption that all

components are exponentially distributed, the transition rate for the whole system (λ) with a given

system state is given by the sum of all the components’ transition rate and is also exponentially

distributed.

λ =

m∑
i=1

λi (2.14)

The system transfers from one state to the next when any one component transitions. As such, the

random time to transition, T , for the whole system can be expressed as in Equation 2.15.

T = min{Ti} (2.15)

The time between transitions can be sampled from equation Equation 2.16, which follows from T

being exponentially distributed.

T = − 1∑m
i=1 λi

lnU (2.16)

It can be shown that since Ti and T follow exponential distributions, the probability for the

transition from the current state due to a change in state at component j is given by Equation 2.17

[6].

Pj = P (Tj = t0/T = t0) =
λj∑m
i=1 λi

(2.17)

m∑
j=1

Pj = 1 (2.18)

• Pj is the probability that the next component to change is component j

• t0 is the time at which the change occurs

• λj is the transition rate for component j

•
∑m
i=1 λi is the transition rate for the system.

• P (Tj = t0/T = t0) is the probability that the transition in component j coincides with the

transition of the whole system, which equates to Pj

Due to the results arrived at in Equation 2.17, sampling the next system state becomes rather

simple. A random variable U in the interval of [0,1] can be generated, and the probabilities from
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Figure 2.5: Visualisation of how the next state in the State Transition approach is obtained.

Equation 2.17 will give intervals for each component. When U is in the interval for component

j, this implies that the system state transitions due to a transition in component j. Figure 2.5

visualises this process. In this illustration U falls in the interval for Pj , indicating that state Pj is

the next state for the system.

As in the state duration approach, once a component transition, the λi for that component must

be updated before the next state calculation is done.

The step-for-step approach is then:

1. Determine the initial state S0 for the system, usually, this is the up-state for all components.

2. Determine and record the time to the next system state by generating a random variable U1

and using Equation 2.16.

3. Determine and record the next system state by generating a random uniformly distributed

variable U2 in the range [0,1] and use Equation 2.17.

4. Update λj for the component that transitioned.

5. Repeat from the second step until the wanted observing time is found.

6. Extract the system states and use that to calculate the wanted reliability indices.

A benefit of this approach is that it is a Sequential approach, allowing frequency indices to be

obtained. It is also less computationally expensive compared to the state duration approach, since

it needs to generate fewer random variables and store less information. A disadvantage of this

approach is that Equation 2.17 requires T and Tj to be exponentially distributed, and as such this

becomes a requirement for the method. However, this is a normal assumption in PSR studies [6].

2.1.7.5 State Transition Example

For a system with five generators of 40 MW, an expected failure rate of 2 and a repair rate of 100,

the two next system states and the duration to those states using State Transition are obtained.

The system state is set to S0 =
(

0 0 0 0 0
)

. The λ values for the components for state S0 are

given in the first column in Table 2.9. It can be observed that for this system state, the next states

intervals, used to determine which component transitions, are given by Equation 2.19 (following

from Equation 2.17).

R =
(

0.2 0.4 0.6 0.8 1
)

(2.19)
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Table 2.8: The randomly generated variables for the State Transition example.

State 0 State 1

U1 0.4256 0.9721

U2 0.1890 0.7269

The randomly generated variables are given in Table 2.8.

Using λsys = 10 and U1 = 0.4256 in Equation 2.16, the time until next transition was found to be

T0 = 0.0854 (years). From U2 = 0.1890 and Equation 2.19, gen. 1 is found to transition.

Table 2.9: λ values for the State Transition example.

Component λ State 0 [incidents/year] λ State 1 [incidents/year]

Gen 1 2 100

Gen 2 2 2

Gen 3 2 2

Gen 4 2 2

Gen 5 2 2

Sys 10 108

This gives system state S1 =
(

1 0 0 0 0
)

. The λ values for S1 are found in the second column

of Table 2.9. This gives the intervals shown in Equation 2.20 for the next State Transition.

R =
(

0.9259 0.9444 0.9630 0.9815 1
)

(2.20)

The time to the next transition is found by using λsys = 108 and U1 = 0.9721, which yields

T1 = 0.00026. From U2 = 0.7269 and Equation 2.20, gen. 1 is found to transition. This gives the

system state S2 =
(

0 0 0 0 0
)

.

The results from this example are summarised in Table 2.10.

Table 2.10: The resulting states and durations for the State Transition example.

i = 0 i = 1 i = 2

Sn

(
0 0 0 0 0

) (
1 0 0 0 0

) (
0 0 0 0 0

)
Tn [years] 0.0854 0.00026

2.1.7.6 Reliability Indices Using MCS

As MCS is a stochastic and not an analytical approach, it is impossible to arrive at a definite

answer. Instead, the MCS is run for many simulated years, and the indices for each year are stored.

From this, the mean and variance of the results can be calculated, by use of Equation 2.21 and

Equation 2.22.

E[x] = x̄ =
1

N

N∑
i=1

xi (2.21)

V ar[x] = σ2 =
1

N − 1

N∑
i=1

(xi − x̄)2 (2.22)
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By the law of large numbers, as the number of sampled years increases to infinity, the mean and

variance of the MCS approach the true expectation value µx and true variance σx for the system,

as shown in Equation 2.23. Therefore, the mean of the yearly indices is used to calculate the MCS

indices. The resulting equation for LOLE and EENS is shown in Equation 2.24 and Equation 2.25,

following from Equation 2.21 combined with Equation 2.6 and Equation 2.7 respectively.

lim
N→∞

x̄ = µx (2.23)

LOLEMCS =

N∑
i=1

(
M∑
j=1

xj ·∆t)

N
(2.24)

EENSMCS =

N∑
i=1

(
M∑
j=1

xj · Cj ·∆t)

N
(2.25)

• N is the number of years simulated.

• M is the number of time steps per year, this is usually 364 if the timescale is days per year,

or 8736 if the time scale is hours per year.

• xj is a variable that is either 0 or 1 and represents if a LOL situation occurred at a time step

j.

• ∆t is the time increment per step, either 1 hour or 1 day.

• Cj is the severity of the outage in MW.

As it is practically impossible to run an infinite amount of simulations, it is impossible to attain the

true indices with 100 % certainty. It is however possible to calculate the possible error of the indices.

By the central limit theorem, the calculated mean values from the MCS generates a population that

follows a normal distribution. This distribution is given as N (E[x̄], V ar[x̄]). The expectancy-value

of the average (E[x̄] = x̄) is just the average, and the variance becomes V ar[x̄] = σ2/N . As can be

observed, the variance of this normal distribution decreases with N . In other words, the obtained

average will be increasingly more likely to be located close to the true mean as N increases. Due

to this, the variance of this distribution is often used to determine the accuracy of a MCS [3], see

Equation 2.26.

V ar[x̄] =
1

N(N − 1)

N∑
i=1

(xi − x̄)2 (2.26)

2.1.7.7 Reliability Index Example

A 5-generator system where each generator has a capacity of 40 MW and a constant yearly peak

load of 130 MW is considered. Based on the simulated states, as seen in Table 2.11, the LOLE and

EENS indices are obtained. The states are only simulated once per year.

The average value for LOLE and EENS is found as seen in Equation 2.27 and Equation 2.28.

LOLE =
0 · 4 + 1 · 4

8
= 0.5[years/year] (2.27)
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Table 2.11: MCS data for reliability index calculation.

Simulation year nr System State Vector LOL [year] ENS [MWh]

1
(

0 0 0 0 0
)

0 0

2
(

1 0 1 0 0
)

1 87 360

3
(

0 0 0 1 0
)

0 0

4
(

0 1 1 1 0
)

1 436 800

5
(

1 0 1 0 0
)

1 87 360

6
(

0 0 0 0 0
)

0 0

7
(

1 0 0 0 1
)

1 87 360

8
(

0 0 0 1 0
)

0 0

EENS =
0 · 4 + 87360 · 3 + 436800 · 1

8
= 87450[MWh/year] (2.28)

The corresponding standard deviation is found by taking the root of the obtained results from

Equation 2.26. The standard deviation of the LOLE- and EENS indices are shown in Equation 2.29

and Equation 2.30

SDLOLE = 0.267[years/year] (2.29)

SDEENS = 52207[MWh/year] (2.30)

2.1.8 Composite System Adequacy

As previously explained, HL-II, or composite system PSR studies include the transmission system in

addition to the generation system. This means that not only does the available generation capacity

need to fulfil the load, but the limitations of the transmission system need to be included. Therefore,

to conduct HL-II studies, some sort of load flow analysis is needed. The load flow analysis can

be both DC-based and AC-based. An AC-based model has higher accuracy, but requires longer

computational time. The DC-based model is a simplified model compared to the AC-model, but

requires less computational time. In addition to the data required in HL-I studies, network data

must be supplied as input. Since the systems become much larger and complex for assessment at

HL-II compared to assessment at HL-I, the simulation-based approach is often preferred over the

analytical approach. Through MCS sampling, the system state at a specific time can be obtained

and handed to the contingency solver, based on either AC-load flow analysis or DC-load flow

analysis. The two most popularly used MCS methods for composite systems are the State Sampling

method and the State Transition method [17]. Therefore, these methods will be emphasised. For

both methods, network topology, impedances and current limits of the lines must be supplied to

the MCS sampling and evaluation step, in addition to the generation data.

The additional elements for the HL-II algorithm, compared to the HL-I algorithm will be highlighted

in this section, focus is on the theoretical basis for the algorithms. The explanation and presentation

of matter on composite power system reliability in this Chapter are based on our understanding of

the work of Laengen [3], and is a condensed paraphrasing of some work presented in his thesis.
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2.1.9 Additional MCS Sampling and Data

Depending on the type of load flow study to be conducted, different data will be required. Since

the DC-based approach is a simplification of the AC-based approach, the necessary data for an

AC-based approach will be emphasised more.

2.1.9.1 Generator Data

Compared to an HL-I assessment, the generation model for the AC-based approach also has to take

into account the reactive power capabilities of the generators. The input data for the generation

model are illustrated in Table 2.12. A DC-based approach does not consider the reactive power,

and would therefore disregard the reactive power limits.

Table 2.12: Input data for the generation model. State Sampling MCS AC-based approach

Generator Capacity Bus Reactive min Reactive max FOR

1 Pcap,1 N1 Qmin,1 Qmax,1 FOR1

...
...

...
...

...
...

n Pcap,n Nn Qmin,n Qmax,n FORn

As explained in the preceding section, the State Transition utilises TTF and TTR instead of FOR.

The generator data required for the State Transition AC-based contingency solver is therefore given

by Table 2.12 with the FOR-column replaced by the respective TTFs and TTRs.

2.1.9.2 Line Data

For the MCS sampling in an HL-II assessment, the states of the lines need to be sampled as well.

To include the transmission system in the assessment, the network data is represented as illustrated

in Table 2.13 for the AC-analysis, using the State Sampling approach. For the DC analysis, the

resistance and susceptance are excluded. If the State Transition approach is utilised, the FOR

column is replaced by the respective TTFs and TTRs.

Table 2.13: Input data for the AC-based contingency solver. State Sampling MCS.

Line From Bus To Bus FOR R [p.u] X [p.u]
Half of shunt

susceptance [p.u]

Current

limit [p.u]

1 1 2 FOR1 R12 X12 y10 Ilim,1
...

...
...

...
...

...
...

...

n k l FORn Rkl Xkl yk0 Ilim,n

2.1.9.3 Bus Data

In addition to these parameters, specific bus data for the system is required. The specific bus data

concerns the allocation of loads in the system and the cost of load curtailment at each bus. Also,

the minimum and maximum voltage magnitude limits of the buses need to be included. For the

DC analysis, the voltage magnitudes would not be included, as these are assumed to be equal to 1

p.u. The bus data for the AC analysis is presented in Table 2.14.
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Table 2.14: Bus data for the AC based approach.

Bus Share of load Curtailment cost [$/KWh] Vmin [p.u] Vmax [p.u]

1 Load1 Cost1 Vmin,1 Vmax,1
...

...
...

...
...

n Loadn Costn Vmin,n Vmax,n

2.1.9.4 Selection of System States

Each component in the composite system can be categorised by a binary value [0,1], representing

its state. If the component state is 0, the component is in its normal state. If the component state

is 1, the component is in a contingency state due to component outage(s). States of the generators

and lines are given as two vectors. For a system with n generators, and m lines, the vector of the

generator states are illustrated in Equation 2.31, and the line states are illustrated in Equation 2.32

[3].

Pg = [X1, ... , Xn]T (2.31)

L = [X1, ... , Xm]T (2.32)

To represent each bus in a system, the generation state vector given in Equation 2.31 and the

rated capacity of each bus is combined to form the generation capacity matrix. For an AC-based

approach, the matrix gives the active power, reactive minimum and reactive maximum capabilities

of the buses in the system. The generation capacity matrix for a system with k buses is illustrated

in Equation 2.33.

Glim,AC =


Pcap,1 Qmin,1 Qmax,1

...
...

...

Pcap,k Qmin,k Qmax,k

 (2.33)

For a DC-based approach, the reactive capabilities in Equation 2.33 are excluded, and the generation

capacity matrix becomes a vector as illustrated in Equation 2.34.

Glim,DC = [Pcap,1 , ... , Pcap,k]> (2.34)

Similar to the generation capacity matrix, a matrix that represents the load requirement among

the buses is needed. The load requirement for a system with k buses, using an AC-based approach

is given by Equation 2.35.

Sload,AC =


Pload,1 Qload,1

...
...

Pload,k Qload,k

 (2.35)

For a DC-based approach, the load requirement matrix becomes a vector, as illustrated in Equa-

tion 2.36.

Sload,DC = [Pload,1 , ... , Pload,k]> (2.36)
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2.1.9.5 Isolated Buses

For the State Sampling and State Transition approaches, multiple lines can be on outage simultan-

eously. Parts of the system being assessed might therefore become islanded. The algorithm must

have a way to solve this event, to make sure the load flow problem is solvable. A step-for-step guide

to handle the possibility of isolated buses is proposed in [17].

2.1.10 AC-Based Load Flow Analysis

The classic load flow problem considers four variables at each bus, i, of a power system:

• Pi - Active power injection

• Qi - Reactive power injection

• Vi - Voltage magnitude

• θi - Voltage angle

The load flow equations are given as illustrated below.

Pi =

N∑
j=1

|Yij ||Vi||Vj |cos(θi − θj − δij) (2.37)

Qi =

N∑
j=1

|Yij ||Vi||Vj |sin(θi − θj − δij) (2.38)

• Yij - Mutual admittance, equal to the negative sum of the admittances between bus i and j

• N - Number of system buses

Since each bus has four variables, n buses have 4n variables in total. To solve the load flow equations,

two of the four variables for each bus have to be specified prior to the assessment. For PQ-buses,

or load buses, Pi and Qi are known, while for PV-buses, or generator buses, Pi and Vi are known.

Vi and δi must be specified for one bus in the system, and this bus is called the slack bus. The

slack bus adjusts the power balance of the whole system.

2.1.11 DC-Based Load Flow Analysis

DCLF is a method that gives estimations of power flows on AC systems. The method simplifies the

non-linear AC model to a linear form through the following assumptions:

• Line resistances (active power losses) are negligible, R<<X

• Voltage angle differences are assumed to be small, sin(θ) = θ and cos(θ) = 1

• Magnitudes of bus voltages are set to 1 p.u.
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The AC load flow equations Equation 2.37, Equation 2.38 are now only represented by Equation 2.39

since only active power flows are considered.

Pi =

k∑
j=1

Bijδij where δij = δi − δj (2.39)

• Bij - Mutual susceptance, the imaginary part of Yij .

• Bij = bij = − 1
Xij

. Bii = −
∑k
j=1,j 6=i bij

As in AC power flow, one of the buses needs to be defined as the slack bus. It is assumed that the

slack bus compensates the system by either generating or consuming power, such that the total

power equals zero (
∑n
i=1 Pi =

∑
Pgen −

∑
Pload = 0). This gives rise to Equation 2.40

Pslack =

n∑
i=1,i6=slack

Pi (2.40)

By grouping all the mutual susceptances into a matrix, see Equation 2.41, the DC power flow

equations can be written on matrix form, as in Equation 2.42.

B =


B11 B11 · · · B1n

B21 B22 · · · B2n

...

Bn1 Bn2 · · · Bnn

 (2.41)

δ = (B)−1P (2.42)

Where:

P =


P1

P2

...

Pn

 ,δ =


δ1
δ2
...

δn

 (2.43)

It should be noted that in 2.41, the elements of the columns and rows corresponding to the slack bus

need to be zero. This is due to the aforementioned characteristics of the slack bus, as it compensates

for the rest of the system.

The power flow between two buses in a DC system can be expressed as seen in Equation 2.44.

Pij =
δi − δj
Xij

(2.44)

Where Pij is the power flow on the line between bus i and j, δi is the angle at the corresponding

bus and Xij is the line reactance for the lines between bus i and j.

By use of Equation 2.42, the power flow on the lines can be expressed as in Equation 2.45.

Pij =
xi1 − xj1
Xij

P1 +
xi2 − xj2
Xij

P2 + · · ·+ xin − xjn
Xij

Pn (2.45)
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Introducing the distribution factors into the equations, the line flows can further be represented as

in Equation 2.46.

Pij = aij,1P1 + aij,2P2 + · · ·+ aij,nPn (2.46)

A sensitivity matrix of each of the distribution factors, A, can then be assembled. The line flows T

are given by Equation 2.47.

T = AP (2.47)

P = P gen +CP − P load (2.48)

P can be represented as in Equation 2.48. P gen is a column vector of all generation, CP is the

column vector of load curtailment and P load is the column vector of the load. Since the Pgen

cannot increase above the maximum capacity available at a bus, and Pload is set for a given time,

the introduced CP allows the equation to be solved for cases where available generation is lower

than the load, by introducing load curtailing.

2.1.12 DC Optimisation Problem Formulation

An optimisation problem formulation can be defined for the system, as seen in 2.49. The formulation

is found by the following criteria:

• Minimise load curtailment, a load curtailment of 0 means there is no loss-of-load.

• Active power consumption and generation must be equal,
∑
P = 0, see Equation 2.48.

• The power flows on the lines must stay within the rated values for the lines.

• The generation at each bus cannot exceed its maximum capacity, nor be negative.

• The load curtailment at each bus cannot exceed the load at that bus, nor be negative.

min c>curtail ·CP + c>reschedule · P gen; (2.49)

subject to

n∑
i=1

Pgen,i +

n∑
i=1

CP,i =

n∑
i=1

Pload,i (2.50)

|[A] · [P ]| ≤ Tmax (2.51)

0 ≤ P gen ≤ P gen,max (2.52)

0 ≤ CP ≤ P load (2.53)

• ccurtail: Cost column vector the load curtailment.

• CP : column vector of load curtailment.

• creschedule: Cost column vector for the generation.

• P gen: column vector of generation.
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• Pgen,i: generation at bus i.

• CP,i: load curtailment at bus i.

• Pload,i: load at bus i.

• A: matrix of distribution factors.

• P : column vector of total power as described by Equation 2.48.

• Tmax: column vector of line transfer limits.

• P gen,max: column vector of maximum generation limits.

• P load: column vector of loads.

By passing the problem to an optimisation problem solver, it can be determined if and where load

curtailment arise, and by extension if a LOL situation has arisen.

2.1.13 AC Optimisation Problem Formulation

The first thing to consider when performing AC OPF is which network model to use for the system.

There exist two main methods, the branch and the injection method [17]. This thesis will proceed

to present the injection based OPF method. How to attain the network model is explained in

[17]. The model has the corresponding active and reactive power equations as already presented in

Equation 2.37 and Equation 2.38.

As an AC system considers reactive power, a reactive load curtailment CQ is introduced, defined

similarly to the active load curtailment CP . This gives rise to Equation 2.54.

Q = Qgen +CQ −Qload (2.54)

Compared to DC, when using AC in an optimal power flow solver, there are more limits to consider.

The following is a definition for an AC OPF minimisation problem for use in HL-II PSR.

• Minimise active and reactive load curtailment, a load curtailment of 0 means there is no

loss-of-load.

• Active and Reactive power consumption and generation must be equal,
∑
P = 0 and

∑
Q = 0,

see Equation 2.48 and Equation 2.54.

• The current flows on the lines must stay within the rated values for the lines.

• The active power generation at each bus cannot exceed its maximum capacity, nor be negative.

• The reactive power generation must stay within their given limits.

• The active load curtailment at each bus cannot exceed the active load at that bus, nor be

negative. The same is true for the reactive load curtailment.

• The voltage at each bus must stay within their given limits.
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When looking at line overloading, in the AC case the maximum current is considered rather than

the transferred power as in DC. The absolute value of the line current is given by 2.55.

|Iij | = |Vi − Vj ||yij | (2.55)

Where Iij is the current flowing from bus i to bus j, Vi is the voltage phasor at bus i, Vj is the

voltage phasor at bus j and yij is the admittance for the line.

Different variables can be considered when looking at what to minimise in the objective function.

These are called the decision variables. Reference [17] suggests using a vector W as defined in

Equation 2.56, where the decision variables are active and reactive power, active and reactive load

curtailment, bus voltage, and bus angle. It is also mentioned by [17] that other decision variables

can be included.

W = Pgen,1 · · ·Qgen,1 · · ·CP,1 · · ·CQ,1 · · ·V1 · · · δ1 · · · (2.56)

An optimisation problem can then be defined as in Equation 2.57.

min k> ·W ; (2.57)

subject to P gen +CP − P load − P (V , δ) = 0 (2.58)

Qgen +CQ −Qload −Q(V , δ) = 0 (2.59)

|I| ≤ |Imax| (2.60)

0 ≤ P gen ≤ P gen,max (2.61)

Qgen,min ≤ Qgen ≤ Qgen,max (2.62)

0 ≤ CP ≤ P load (2.63)

0 ≤ CQ ≤ Qload (2.64)

V min ≤ V ≤ V max (2.65)

− π ≤ δ ≤ π (2.66)

H load ·CP −CQ = 0 (2.67)

• k: Cost column vector corresponding to the elements of W .

• W : column vector of decision variables to minimize.

• P gen: column vector of active generation.

• CP : column vector of active load curtailment.

• P load: column vector of active load.

• P (V , δ): column vector of active power injection calculated from Equation 2.37.

• Qgen: column vector of reactive generation.

• CQ: column vector of reactive load curtailment.

• Qload: column vector of reactive load.

• Q(V , δ): column vector of reactive power injection calculated from Equation 2.38.

• I: column vector of line currents.
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• Imax: column vector of maximum line currents.

• P gen,max: column vector of maximum generation limits.

• Qgen,max: column vector of maximum reactive power generation.

• Qgen,min: column vector of minimum reactive power generation.

• V max: column vector of maximum bus voltage.

• V min: column vector of minimum bus voltage.

• H load: a column vector of relation between active and reactive load.

Equation 2.67 is added to ensure the load at a bus maintains the same power factor if load

curtailment arises [17].

By passing the problem to a non-linear optimisation problem solver, it can be determined if and

where load curtailment arise, and by extension if a LOL situation has arisen.

2.1.14 General Approach

By combining the elements presented in the preceding chapters, a general approach to conduct

HL-II analysis can be formulated.

In Figure 2.6, a flowchart for determining Loss-of-Load situations in HL-II is presented, but will

be more thoroughly explained in the following section. It is important to note that this approach

assumes that the state to be investigated is already sampled, as shown in section 2.1.9.4.

The first check which is done is to ascertain if the given system state S is a contingency case. By

definition, a contingency case is a system representation where one or more components are on

outage. If the current system state is a contingent system state, contingency analysis is conducted.

Contingency analysis is the use of an AC load flow solver, as detailed in section 2.1.10, or DC load

flow solver, as detailed in section 2.1.11. When the contingency analysis is finished, the line loading

needs to be checked. If one or more lines carry more power than their rating, a rescheduling of

power generation is conducted. This is done by the use of an optimisation problem solver, with the

formulations for the optimisation problems as defined in section 2.1.12 for DC or section 2.1.13 for

AC.

If there is a load curtailment after the generation rescheduling, then the current system state is a

Loss-of-Load situation.
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Figure 2.6: A flowchart representing how to determine if a state in a HL-II analysis is a

Loss-of-Load (LOL) situation, based on the methodology presented in [6].
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2.2 Literature Review and State-of-the-Art

As the interest and need for more large-scale WECS installations have increased, several different

methods for PSR assessment with significant wind power penetration have been developed. A vast

amount of literature exists on the assessment of PSR for cases with wind penetration. There are

many considerations that have to be considered when integrating WECS, since they behave very

differently from conventional generating units. One of the challenges for assessment with wind

energy penetration is to provide an accurate representation of the variability and intermittency of

the WTG power output. Many different indices, approaches and methods exist for PSR assessment,

but there is no established methodological approach. This can make it confusing to find the optimal

approaches. Naturally, there exists more literature for reliability at HL-I, compared to the more

complex HL-II. Probabilistic reliability assessment is usually divided between two main approaches:

analytical and Monte Carlo Simulation methods [14, 18]. The difference lies in how the contingencies

are selected. In analytical methods, like the contingency enumeration approach, the contingencies

are first selected by screening techniques and then based upon a failure criteria. Monte Carlo

Simulations select the contingency based upon random sampling [14]. Hybrid models have also

been constructed [19, 20].

2.2.1 The Need for New Reliability Criteria and the GARPUR Project

Historically in Europe, composite power system reliability management has been relying on the

deterministic N-1 criterion. This criterion requires that the system should be able to withstand, at

all times, an unexpected failure or outage of a system component in such a way that the system is

capable of accommodating the new operational situation without violating its limits. Today, the

increasing uncertainty of generation due to intermittent energy sources, and the growing complexity

of the pan-European power system, further the need for new reliability criteria. Reliability criteria

that show a better balance between reliability and costs [21]. The N-1 criterion is becoming

increasingly expensive, which also means more expensive electricity for consumers. Besides, the

probabilities of occurrence of single-component failure events are usually ignored, and multiple

component failures are excluded from consideration in the N-1 criterion. It is difficult to deal with

all the uncertainty factors using deterministic methods, including uncertainties in load forecast

and the location of the future generation [18]. New approaches which can take advantage of new

possibilities such as demand flexibility, energy storage and advanced grid monitoring could allow

the power system to operate closer to its optimum. The GARPUR project, a 4-year EU project

coordinated by SINTEF Energy Research with a budget of approximately 10.9 million euro, has

developed a new methodology that allows TSOs to assess the probability and consequences of

failures in their power system, expressed as the potential cost of power interruptions to consumers

[21].
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Figure 2.7: The GARPUR Partners, consisting of 7 European Transmission System Operators,

along with 12 universities and research centres [21]

2.2.2 The Well-Being Analysis - Combining Deterministic and Probabilistic Methods

The basic probabilistic techniques, as presented in section 2.1, are quite widely utilised in the actual

generation planning area. However, for transmission planning, most utilities currently utilise the

deterministic N-1 criterion approach due to its complexity [22]. The well-being analysis, illustrated

in Figure 2.8, was developed to create a bridge between the deterministic and probabilistic methods

and create an effective framework for adequacy assessment [22–26].

Figure 2.8: The system well-being analysis model

The well-being analysis method consists of system operating states which are categorised as being

either healthy, marginal or at-risk. A system operating in the healthy state yields that it has enough

capacity reserve to meet a deterministic criterion, like the loss of the largest online generating unit.

The marginal state yields that the system is not in any trouble, but does not have sufficient margin

to meet the predefined deterministic criterion. Lastly, the at-risk state yields that the load exceeds

the available capacity. This state is equal to the LOLP, explained in section 2.1. The well-being

indices are given as probabilities, frequencies, and durations of the healthy, marginal and risk states.

The system well-being analysis has been used for assessment with wind penetration, such as in [23,

25]. The analysis can give an extended viewpoint of the effects of adding WTGs to a system, due

to the different system operating states. References [26, 27] provide more details of the system

well-being analysis methodology.
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2.2.3 Concerns Related to Wind Power

According to [10], modelling considerations concerned with topics such as protection systems,

cascading, weather effects and remedial control actions are well covered in the literature. Renewables

and market modelling, however, is not. Renewable generation, and wind, in particular, is an emerging

issue as it presents operational and transmission planning challenges. Correlations of wind energy

output across geographically separated sites can cause significant changes in power flow and

corresponding challenges in voltage control, line congestion and frequency regulation. Tools that

allow consideration of stochastic variables to assess such impacts are needed [28]. In general, MCS

is the most recognised probabilistic approach at HL-II with significant wind penetration, due to the

immense complexity for HL-II systems. Another important aspect is that it is difficult to build

analytical models of wind farms considering wind power correlation [29].

Another issue with wind energy is that the fuel source is not transportable, so the developer

needs to be able to make an economic case for investing in generating facilities at the site of

the energy source, with the ability to transmit the power electrically to load centres. In most

regions, the ideal locations for wind plants are often both remote from load centres and from major

transmission corridors. As a result, many transmission owners are facing challenges in trying to

justify transmission investments in the face of uncertain generation commitment [28].

2.2.4 The Concept of Capacity Credit

To quantify the impact of wind penetration on the reliability of the power systems, the concept

of capacity credit is often utilised [4, 11, 30]. Capacity Credit, or Capacity Value, is a value that

quantifies how much new generation contributes to the reliability of a system. Effective Load

Carrying Capability (ELCC) is the preferred CC index since it is an independent value with only

load and generation as input [11]. It is used as the standard measure in evaluating the contribution

of intermittent generation, providing the additional load to the system while keeping the same

LOLE level of the system [30]. The ELCC of new wind power generation is often computed by

using the multi-state unit representation of the wind plant, and includes the wind generation in a

COPT calculation [11]. A major concern associated with this approach is the loss of information

on wind speed correlation and correlation between load and wind [30]. ELCC is a measure of

the generation system reliability (HL-I), and cannot be directly integrated into composite power

systems [31]. To get an evaluation of the adequacy of a composite system, both load point indices

and system indices are needed. The most common single index in composite adequacy assessment

is the EENS. The EENS combines the frequency and magnitude of outages into one single index.

The EENS can be combined with an appropriate interrupted energy assessment rate (IEAR) to

estimate the customer outage costs at a load point or for the overall system [14]. Various other

indices also exist, which can be specific for both load points or the entire system.

2.2.5 Wind Power Considerations

There is no consensus on how to treat wind power in composite adequacy evaluations [31]. Due to

its intermittent nature, the wind power must be treated very differently compared to conventional

generators. No other energy source used on a large scale has intermittency as significant as the wind

[32]. Considerable work has been done on developing methods for generating capacity adequacy

evaluations and reliability assessment of conventional generating systems incorporating wind power

[4, 11, 33–37]. However, most studies focus on HL-I. Relatively little work has been done on the

integration of wind power in composite generation and transmission system reliability analysis

[31, 38]. An applicable model for wind power needs to be able to incorporate the randomness
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and the intermittent characteristics of the wind speed for any wind unit. Probabilistic reliability

techniques are able to do this [39]. Some of the models seen in the literature are: utilising the

observed wind speed data directly, mean observed wind speed, ARMA model, normal distribution,

Markov models and the multi-state WECS model. The modelling of wind power can be divided

between the modelling of the wind speed and the modelling of the WTG output power.

Figure 2.9: Typical uncertainties in power systems [40]

2.2.6 The Wind Speed

The power produced by a WTG at a particular site is highly dependent on the wind regime at that

location. Wind speed can be modelled in a number of ways in power system reliability evaluation

[41]. Some models contain much more information than other models and therefore have the

potential to provide more accurate adequacy assessment [42]. The observed wind speed method

uses an observed hourly wind speed data set repetitively in the reliability evaluation sequential

simulation process. Typically, the hourly wind speed data then lasts for one year. If the mean of

the observed wind speed is to be used, there must be existing wind speed data for several years.

The mean for each hour is then calculated based on different annual wind speed data sets. The

hourly mean wind speed is then used repetitively in the sequential simulation process [4].

According to [25], observed wind speed data cannot fully represent the wind speed variations from

year to year. Using mean values, the reliability indices can be lower than those obtained using other

models if the mean wind speed is close to the rated wind speed, and higher than those obtained

using other models if the mean wind speed is much lower than the rated wind speed. A reason for

this can be the nonlinear shape of the WTG power curve. The ARMA method, which uses the

autoregressive moving average (ARMA) model to predict wind speeds, is based on the observed

wind speed data and incorporates the yearly wind speed variations. If only a small number of

years of data are used, the formed ARMA model tends to produce reliability indices that are closer

to those obtained based on a large number of years of data [25]. According to [25], the ARMA

model “provides a more comprehensive representation of wind speeds” and is more suitable for the

Sequential MCS. Drawbacks of the ARMA model involve heavy computation overhead and large

amounts of data are required for training the ARMA parameters [40].

Wind speed can also be simulated using a normal distribution approach. Weibull distributions

are often used to characterise wind speed distributions [4, 43, 44]. This statistical tool expresses

how often winds of different speeds will be observed at a location with a certain average (mean)

wind speed. From given data sets, parameters describing the distributions of wind speeds can be

extracted. It is generally agreed that the Weibull probability density function adequately represents

the wind speed probability distribution for most sampling times [45]. By using the inverse transform



2.2 Literature Review and State-of-the-Art 33

method, an algorithm can generate Weibull distribution random variates. This method is able to

model the random behaviour of the wind speed [46]. A drawback with this approach is that, unlike

the ARMA model, the autocorrelation between the wind speed at a particular and the previous

hours is not considered. Therefore, yearly wind speed variations are not incorporated.

There also exist some new, interesting methods which are being developed to model the wind

speed, like the Artificial Neural Network (ANN) [47, 48]. AI methods are promising alternatives to

predict wind speed and to understand the wind behaviour for a region. This computational tool

consists of simple parallel elements known as neurons, which consist of connected input, output

and hidden layers. Each neurone in the input layer represents a unique attribute in the data set,

like wind speed, earth temperature, relative humidity and elevation [48]. By using concepts of AI,

a training process is executed, which obtains the weights of each connection between the layers and

the neurons threshold value [47].

Figure 2.10: Simplified, illustrative layout of an ANN model [48]

Another promising tool to forecast the wind speed is the Wind Power Scenario Tree Tool [24, 49].

Reference [49] claims that the reliability of systems with high wind penetrations is impacted by

the uncertainty associated with wind forecasting error. To solve this, the authors came up with

a tool to examine the impact of wind forecast error statistics on unit commitment for high wind

penetration test systems. A detailed representation of the tool is given in [49].

2.2.7 The Wind Turbine Generator

The WTG power curve can be used directly to calculate the output power when the wind speed is

given. The power curve is dependent on different quantities, and can vary between different types

of WTGs. This approach can involve much calculation, due to the non-linear relationship between

wind speed and output power. It is the most popular approach for the Sequential MCS when wind

speed is sampled chronologically.

A capacity outage probability table of a WTG can be created by applying the hourly wind speed

to the power curve. Output states for a WTG are then defined as segments of the rated power, and

the total number of times that the wind speed results in a power output falling within one of the

output states is calculated. The probability of each state is then determined by dividing the total

number of occurrences for each output state by the total number of data points.

A multi-state WECS model is often utilised when wind power is to be included in a calculation

process using an analytical technique or a Non-sequential Monte Carlo approach [41, 42]. One

method to obtain a multi-state WECS model is to use some sort of hourly wind speed data to

obtain the probability density of the wind for different wind speeds. This can subsequently be

compared with the power curve of the WTG unit to calculate the probability of different power

outputs, as illustrated in Figure 2.11.

The number of states can be critical for a reliability assessment, because more states usually mean

a better modelling accuracy as well as a higher computation overhead [40]. A five-state COPT

model can achieve a trade-off between accuracy and computation overhead, and is used in many
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reliability assessment cases [50].

Figure 2.11: Example of a multi-state model for a wind unit [39]

Multi-state Markov models is another approach to model the WTGs. In this approach, the

chronological wind power fluctuations are modelled by state transitions of a Markov model. A

Markov model is a stochastic method for randomly changing systems where it is assumed that

future states do not depend on past states. By this model, not only the state probabilities but

also the frequency and duration indices are able to be calculated and evaluated [40]. The wind

speed is represented by a Markov chain with a finite number of states. The wind model parameters

can be calculated using the available observed wind speeds. The transition rates between wind

speed states are needed in order to simulate wind speeds in the reliability evaluation process [41].

The drawback with this method is the computational overhead during reliability evaluation. The

method is therefore not suitable to be applied to large scale systems [40].

The unavailability of the WTG can be expressed by the unit forced outage rate. According to [51],

the changes in the FOR of the WTG units do not have a significant impact on the calculation of

system reliability indices. The WTG FOR can therefore be neglected in many practical situations

without creating unreasonable errors in the calculated reliability indices [52].

2.2.8 Developed Tools for HL-II Evaluation

Since composite system reliability assessment is complex, considerable efforts have been devoted to

developing risk-based or probabilistic tools for power system planning and operation studies [28].

References [10, 28] provide lists of existing probabilistic planning tools, which are both commercial

and research-grade tools. Among the presented tools, which are both aimed at long-term system

development and short-term operational planning, the number of tools capable of performing

analytical assessment and Monte Carlo simulation is approximately the same. With regards to

the power flow solution algorithm, there is a slight overweight of tools capable of performing AC

power flow compared to DC [10]. Among the most used programs in HL-II assessment with wind

penetration is the MECORE program [38, 50, 52–54]. MECORE was developed at the University of

Saskatchewan, Canada, and has been subsequently enhanced and applied by BC Hydro, Canada [28,

55]. This program is based on a combination of Monte Carlo simulation (State Sampling technique)

and enumeration techniques, and utilises linear programming methods to arrive at optimal power
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flows and optimal load curtailment [28]. The program can include appropriate multi-state renewable

energy models, and is therefore suited for wind integration [55].

A program that utilises Sequential MCS in composite assessment with wind penetration is the

RapHL-II program [56]. RapHL-II uses the fast decoupled AC load flow technique to calculate

load flows and line loadings and to check the system operating constraints. An OPF approach

is used to conduct corrective actions to alleviate operating constraints [57]. It should be noted

that the program can utilise different load curtailment policies. Instead of using the priority order

policy, which is based on ranking the bulk delivery points using a reliability worth index such as the

IEAR, assessment often utilises the Pass-1 policy, where loads are curtailed at the delivery points

that are closest to the elements on the outage [58]. If this load shedding policy is utilised, the end

results can be very different from those obtained by the priority order policy. This illustrates the

complexity of HL-II assessment. The RapHL-II program utilises the WTG power curve directly,

instead of creating multi-state WECS models. HL-II assessment which has utilised the MECORE

and RapHL-II programs utilise the ARMA wind speed model.

2.2.9 Correlated Wind Speeds

Correlation between wind speeds at different locations has been identified as an important factor

when examining the reliability contribution of wind power in a power system. Correlations of wind

energy output across geographically separated sites can have a significant impact on the power flow

[28]. Multiple WECS can relatively easily be added to power systems in reliability assessment by

simulating completely identical wind speeds, or by simulating totally independent wind speeds [35].

The latter is perhaps a reasonable assumption when the distances between the various wind farms

are large. However, the assumption of site wind independence could be extremely optimistic if the

sites are in reasonably close proximity. Studies show that the degree of wind speed correlation

between two wind farms has a considerable impact on the resulting reliability indices [59].

Other factors that can influence the reliability benefit of WECS is the degree of hourly wind speed

variation and the degree of correlation between wind energy output and load demands. Correlation

of a time series with its own past and future value can be referred to as autocorrelation [59]. Only

the ARMA wind speed model can incorporate autocorrelation. Also, the degree of correlation

between period wind power output and load demands can influence the reliability benefit of adding

WECS to a power system. Reference [54] developed seasonal and monthly WECS models which

considered variation in wind speed and load models. The summation of seasonal system EENS

obtained using the seasonal WECS model were similar to those obtained using the annual models.

It was therefore concluded that the annual wind profile is an acceptable representation. Variations

in the system reliability indices for different time periods are obviously dependent on the system

conditions [54].

A power system containing multiple wind farms will generally have higher generating capacity

adequacy than a system having only a single wind farm, even though the total installed WECS

capacity in both cases are identical. The reliability benefit is, however, highly dependent on wind

regimes, geographical dispersions, and the distances between wind farms. For composite assessment,

potential reliability benefits are also dependent on the properties of the transmission system. The

degree of the benefit can be measured in terms of the degree of wind speed correlation between the

different wind locations [52, 59].

The previously presented HL-II reliability programs, MECORE and RapHL-II, have been modified

to include wind site correlation [59]. In both programs, the ARMA models are adjusted to simulate

correlated wind speeds with a specified wind speed cross correlation coefficient [53]. Little work is



2.3 Fundamental Knowledge of the Wind-Related Topics 36

done regarding the multisite problem using the Weibull wind speed model. However, reference [60]

developed an analytical approach to model two-site WECS using the Weibull distribution.

2.2.10 Building a Comprehensive Framework for Conducting PSR Assessment at

NTNU

In the last few years, as a part of building a comprehensive framework for conducting PSR assessment

at the Department of Electric Power Engineering at NTNU, a few master theses regarding the

assessment of PSR with wind penetration have been written. Reference [11] developed an analytical

approach to assess the capacity credit of wind at HL-I. Historical wind speed data was used directly

in the wind speed model. In [4], an assessment of the contribution of energy storage to PSR at HL-I

with wind power penetration was conducted. This assessment utilised Sequential MCS using the

State Transition method, which was based on the work of [3]. The wind speed model was obtained

utilising Weibull distributions based on average historical wind speed data. Reference [3] created

scripts for MCS using the State Sampling and State Transition for both HL-I and HL-II. To expand

on the work that has been conducted thus far, this thesis attempts to further develop the HL-II

MCS scripts developed in [3] to include wind power penetration. The ARMA and Weibull wind

speed models have been identified as suitable wind speed models and will be included in the wind

speed modelling. If multiple wind farms are added to a system, the degree of correlation between

wind speeds can have a significant impact on the reliability benefit of adding WECS. Correlation

between multiple wind speeds will therefore be included in both the Weibull and ARMA wind

speed models.

2.3 Fundamental Knowledge of the Wind-Related Topics

The following section is an extension of the literature review as it presents the fundamental

knowledge of the selected wind-related topics required for executing the objectives of the thesis.

Modelling conventional generators in MCS PSR assessment is a relatively straightforward task

given their respective generator capacity, FOR or time to repair and time to breakdown. The Wind

Energy Conversion System (WECS) model, however, is dependent on the site-specific wind speed

regime, as well as the Wind Turbine Generator (WTG) model. There exist different methods to

model both the wind speed and the WTGs, and the chosen methods can have a large impact on the

final results of a PSR assessment when wind penetration is considered. The subsequently presented

methods were selected and used in the developed HL-II MCS reliability assessment.

2.3.1 Wind Speed Modelling

The power of an air mass that flows at speed v through an area A can be calculated as illustrated

in Equation 2.68. The power depends on the cube of the wind speed. This means that even small

changes in wind speed can have large impacts on power generation. At the same time, wind speed

fluctuates randomly with time. This illustrates the importance of accurate wind speed models to

attain accurate results.

Pwind =
1

2
ρAv3 (2.68)

Wind speed is usually modelled in hourly wind speed series. The wind speed data can be modelled

using actual wind speed data for a lengthy period of time or by wind speed time series models
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developed from the actual data [53]. When using historical data, several years of data from the

same location is often utilised to give better predictive accuracy [11]. The subsequent chapters

present sampled wind speed utilising the Weibull distribution and the Auto Recursive Moving

Average (ARMA) time-series model.

2.3.1.1 Weibull Distribution

Weibull distributions are often used to characterise wind speed distributions [4, 43]. It is generally

agreed that the Weibull probability density function adequately represents the wind speed probability

distribution for most sampling times [45]. The parameters defining the behaviour of the PDF is

extracted based on historical data, and a random number generator is then used alongside the PDF

to sample wind speeds. The Weibull PDF is given by Equation 2.69.

f(v) =
β

α

( v
α

)β−1
e−(

v
α )β (2.69)

where:

• v: wind speed

• α: scale parameter

• β: shape parameter

The scale parameter, which is similar to the mean wind speed, indicates how windy the site is, on

average. The shape parameter expresses how peaked the distribution is. If the wind speeds always

tend to be very close to a certain value, the distribution will have a high shape parameter and be

very peaked. This is illustrated in Figure 2.12.

The cumulative probability function for the Weibull distribution is illustrated in Equation 2.70.

F (v) = 1− e−( vα )β (2.70)

By using the inverse transform method [6], as illustrated in Equation 2.71, a way to randomly

sample the wind speed from the Weibull distribution is illustrated in Equation 2.72. The randomly

generated variable U is uniformly distributed in the range [0,1].

v = F−1(U) (2.71)

v = α(−ln(U))
1
β (2.72)

Where F−1 is the inverse cumulative probability function, U is a randomly generated uniformly

distributed variable in the range [0,1], α and β are the Weibull scale and shape parameters.

Examples of Weibull probability density functions with varying values of the scale parameter and

the shape parameter is provided in Figure 2.12.



2.3 Fundamental Knowledge of the Wind-Related Topics 38

Figure 2.12: The Weibull Probability Density Functions with selected Weibull scale and shape

parameters.

2.3.1.2 ARMA

Future hourly data can be predicted by using the time series model, which is based on historical

wind speeds. This method incorporates the chronological nature of the actual wind speed. In the

time series model, the simulated wind speed, SWt, can be obtained from the observed mean wind

speed and its standard deviation, as illustrated in Equation 2.73 [33].

SWt = µ+ σ · yt (2.73)

where:

• µ = Mean wind speed for the wind site

• σ = Standard deviation of the wind speed for the wind site

The original data series set, yt, is used to create a wind speed time series referred to as an Auto-

Regressive and Moving Average Model, ARMA (n, m), series model, as illustrated in Equation 2.74.

yt = φ1yt−1 + φ2yt−2 + · · ·φnyt−n + αt − θ1αt−1 − θ2αt−2 − · · · − θmαt−m (2.74)

where:

φi(i = 1, 2, · · · , n) = the auto-regressive parameters of the model

θj(j = 1, 2, · · · ,m) = the moving average parameters of the model

αt ∈ NID(0, σ2
a) = a normal white noise process with zero mean and a variance of σ2

a.

A white noise process is a random process of random variables that are uncorrelated, have mean

zero, and finite variance, σt. NID denotes Normally Independent Distributed. From Equation 2.74,

new values of yt can be calculated from αt and previous values of yt−i. The hourly wind speeds

incorporating the wind speed time series can then be generated as illustrated in Equation 2.73.

Each wind site has a unique ARMA time series model.
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2.3.2 Wind Turbine Generator Modelling

The power output characteristics of a wind turbine generator (WTG) are quite different from those

of conventional generating units as there is a non-linear relationship between the power output

of the WTG and the wind speed. The power curve illustrates this non-linear relationship, and

the relationship is usually described using the operational parameters of the WTG. The three

commonly used parameters are the cut-in, rated and cut-out wind speeds. A general power curve is

shown in Figure 2.13. The lowest wind speed that the WTG can produce power at is the cut-in

wind speed, Vc,in. The rated wind speed, Vr, is the lowest wind speed that the WTG produce rated

power at. The cut-off wind speed, Vc,out, is the designed wind speed at which the wind turbines

stop producing power to prevent excessive stress and damage to the components of the WTG. The

values of these parameters depend on the respective WTG model.

Figure 2.13: The general shape of a power curve for a WTG.

The WTG output, which reflects the power curve seen in Figure 2.13, is given by Equation 2.75.

P (WSt) =


0 0 ≤WSt < Vci

(A+B ·WSt + C ·WS2
t ) · Pr Vci ≤WSt < Vr

Pr Vr ≤WSt < Vc0

0 WSt ≥ Vc0

(2.75)

where:

P (WSt) = WTG output with the wind speed in time interval t [MW]

WSt = Wind speed in time interval t [m/s]

Pr = Rated output power from the WTG [MW]

Vci = Cut-in wind speed [m/s]

Vr = Rated wind speed [m/s]

Vc0 = Cut-out wind speed [m/s]
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The constants A, B and C are found as functions of Vci and Vr as shown in Equation 2.76.

A =
1

(Vci − Vr)2

{
Vci(Vci + Vr)− 4VciVr

[
Vci+ Vr

2Vr

]3}
B =

1

(Vci − Vr)2

{
4(Vci + Vr)

[
Vci + Vr

2Vr

]3
− (3Vci + Vr)

}
C =

1

(Vci − Vr)2

{
2− 4

[
Vci + Vr

2Vr

]3}
(2.76)

With the power curves and simulated wind speed, the available capacity, CWTGs,i(v), can be found

for a WTG, as illustrated in Equation 2.77, by combining the WTG power output with a simulation

of which units are on an outage.

CWTGs,j,i(v) = P (v)xj,i (2.77)

Where:

• CWTGs,j,i(v) is the individual available capacity for WTG j at time i.

• v is the wind speed at time i.

• P (v) is the function for the power curve.

• xj,i is the state of wind turbine j, either 0 or 1, at time instant i.

An example of the variation in output power from a WTG is provided in Figure 2.14, which

illustrates the relation between wind speed and output power from a WTG. The illustration includes

500 consecutive hours of historical wind speed data from the ØrlandIII weather station(25.03.2015-

15.04.2015) [61], and the corresponding output power from a WTG, obtained from Equation 2.75.

The calculation utilised a cut-in wind speed, Vc,in, of 4m/s, cut-out wind speed, Vc,out, of 22.22m/s

and rated wind speed, Vr, of 10m/s.

Figure 2.14: Illustration of the intermittent nature of the wind speed and the corresponding output

power from a wind turbine generator.
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2.3.3 Wind Speed Correlation

In HL-II assessment with wind power penetration, one is often interested in examining the impact

of adding multiple WECS at different locations in a power system. In an HL-I assessment, where

only the generation facilities are included, the locations of multiple WECS are not considered as

load flows are not executed and individual bus indices are not considered. For the more complex

HL-II assessment, however, the locations and distributions of wind power capacity can make a

significant impact on the end results. An important consideration when adding multiple WECS

to a power system is the degree of correlation between the wind speeds at the different sites. If

the distances between wind farms are not very large, they are neither completely dependent nor

independent, but are correlated to some degree. When the distance between two wind sites is very

large, the wind speeds are approximately independent, while the wind speed within the same wind

farm is approximately completely dependent [57]. The degree of correlation between wind sites is

also dependent on factors such as geographic dispersion and the uniqueness of the individual wind

regimes [53].

Wind speed correlation can be induced by generating correlated random numbers during the hourly

simulation [59]. The correlation between sets of simulated wind speed data will then be close to

the correlation between the random numbers. A challenge with this approach is to assure that the

elements of the generated random variates are distributed uniformly over a given interval, e.g [0,1],

while exhibiting a prespecified linear correlation.

A multivariate random variable X can be defined as illustrated in Equation 2.78, where F is some

distribution function and U ∼ U[0, 1].

X = F−1(U) (2.78)

X will then be a random variable with distribution F . If this expression is reversed, one can create

uniformly distributed variates from variates following other distributions by inserting the latter into

their respective distribution function. However, such transformations typically affect the dependence

between the original variates [62]. Linear correlation, known as Bravais-Pearson correlation, is not

necessarily invariant to transformations, so there is no guaranty that a linear correlation between

original non-uniform variates X will be preserved after a transformation. Rank correlation, known

as Spearman correlation, is however invariant to any strictly increasing transformation. As long as

F is strictly monotonically increasing, Spearman correlation will therefore be preserved. Further,

the linear correlation (Bravais-Pearson) between uniforms obtained from transforming the original

variates equals the rank correlation (Spearman) between the original variates. It is therefore possible

to create linearly correlated normal variates from an adjusted linear correlation matrix,
∑adj

,

and transform the normals into uniforms [62]. The adjusted correlation matrix,
∑adj

, is given by

the relationship between Spearman correlation and Bravais-Pearson correlation, as illustrated in

Equation 2.79.

ρB = 2sin(
π

6
ρS) (2.79)

• ρB = Bravais-Pearson correlation

• ρS = Spearman correlation

To generate the correlated normal variates, the concept of Cholesky Decomposition can be utilised.

The Cholesky Decomposition is commonly used in the Monte Carlo method for simulating systems
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with multiple correlated variables. The Cholesky decomposition is the process of decomposing any

symmetric and positive definite matrix into the product of two triangular matrices, as illustrated in

Equation 2.80, an upper-triangular matrix which when multiplied by its transpose produces the

original symmetric matrix [63].

A = GT ·G (2.80)

• A = Symmetric positive definite matrix

• G = Upper triangular matrix with positive diagonal entries

• GT = Transpose of matrix G

A set of r uncorrelated random number series with q members may be represented by a matrix X,

as illustrated in Equation 2.81.

X =


x11 · · · xr1
...

. . .
...

x1q · · · xrq

 (2.81)

The desired correlation between any two sets of number series is represented by Equation 2.82

Σ =


a11 · · · a1r
...

. . .
...

ar1 · · · arr

 (2.82)

• aij is the desired correlation between ith and jth column of matrix X.

The upper triangular matrix G can then be calculated using Cholesky decomposition [63]. A matrix

XC which contains p correlated random number series as defined in Equation 2.82 can be deduced

as in Equation 2.83.

XC = X ·G (2.83)

If only two random number series are present, the method can be simplified as illustrated in

Equation 2.84 [64].

XC = X1 · r +X2 ·
√

1− r2 (2.84)

• X1 and X2 are series of uncorrelated random numbers.

• r is the desired correlation coefficient from 0 to 1.

• Series XC has a correlation of r with series X1

While the Weibull wind speed model utilises uniformly generated numbers, the ARMA wind speed

model utilises the random white function which follows a normal distribution with a set variance
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and a mean of zero. The approach to induce correlated wind speed is therefore different for the

ARMA wind speed model compared to the Weibull wind speed model.

In the ARMA wind speed model, the random numbers that input into the ARMA model need to be

white noise. This means that they follow a normal distribution with a mean of 0. This white noise

can therefore be generated by drawing random variables from the multivariate normal distribution.

The two-dimensional multivariate normal distribution can be represented by a matrix µ, a vector of

the mean values, and Σ, the covariance matrix, as illustrated in Equation 2.85 and Equation 2.86.

The relation between covariance and correlation is illustrated in Equation 2.87.

µ =

[
µ1

µ2

]
(2.85)

Σ =

[
σ1 σ1,2
σ1,2 σ2

]
(2.86)

Correlation =
Covariance

σ1σ2
(2.87)

When both σ1 = σ2 = 1, a special case arises where the covariance and correlation are equal.

Therefore, two random variables following a normal distribution with mean, µ = 0, variance, σ = 1,

and prespecified correlation corr1,2 can be found by use of the two-dimensional multivariate normal

distribution with parameters µ =

[
0

0

]
and Σ =

[
1 corr1,2

corr1,2 1

]
.

While the random variables used in the ARMA model have a mean, µ, of 0, the variance, σ, is

not necessarily 1. The normal white noise processes, α, must therefore be scaled, as illustrated in

Equation 2.88.

αµ=0,σ=σ1
= αµ=0,σ=1 · σ2

1 (2.88)

The scaled α can now be utilised in Equation 2.74 which in turn can be used in Equation 2.73 to

determine the correlated wind speeds.
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3 Methodological Approach

The objective of this thesis was to create a comprehensive framework for assessing the reliability of

a composite power system that contains significant wind penetration, through MCS. A suitable

methodology for the PSR assessment, which enables the quantification of the system reliability with

the help of appropriate indices is presented in this chapter. The developed software tools, based on

the presented methodological approach, are applied to test systems, the RBTS, the MRBTS and the

IEEE-RTS. A Sequential approach and a Non-sequential MCS approach have been developed for

different wind speed models. It was determined that an accuracy of 2.5 % or better was sufficient

for the obtained results. As such, the chosen amount of simulation years were based upon meeting

this criterion.

3.1 Load Model

All of the simulations in the thesis utilise the hourly peak load model, which has 8736 load levels

per year. More details about the load model is presented in section 2.1.4.

For a HL-II analysis, a load requirement for each bus is required. To determine the load at a given

bus at a given hour, Equation 3.1 is utilised.

Pload,i = HPL · ci (3.1)

where:

Pload,i = The loading at bus i at a given hour [MW]

HPL = The hourly peak load at a given hour [MW]

ci = The percentage of the systems load that is located at bus i

In this thesis the following assumptions are made for the load models:

• Each bus will always take the same percentage of the load, no matter the total load level. As

a result, ci is constant for a given bus i.

• The hourly peak load follows a specified distribution, and is equal for every simulation year.

The formula to calculate the hourly peak load for each hour is presented in Equation 3.2. The

values for lw, ld and lh are presented in Appendix C, and are used for both the RBTS and the

RTS. Yearly Peak Load for the RBTS and the RTS is presented in Appendix A and Appendix B,

respectively.

HPLh,d,w = Y PL · lw · ld · lh (3.2)

where:

HPLh,d,w = Hourly Peak Load calculated by hourly, daily and weekly percentages [MW]

Y PL = Yearly peak load [MW]

lw = Weekly peak load as a percentage of yearly peak load

ld = Daily peak load as a percentage of weekly peak load

lh = Hourly peak load as a percentage of daily peak load
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3.2 Non-sequential State Sampling Approach

The following step-for-step guide describes the algorithmic approaches for the Non-sequential State

Sampling approach.

1. Initialising the script:

• Loading in all the parameters.

• Converting the values to the per unit system.

• Calculating the power curve parameters.

• Creating a vector to store the results of the OPF solver.

2. Running the simulation:

(a) For each hour in a year the following is computed:

i. Generate a random uniformly distributed number U in the range [0,1] for each

component in the system, and compare it against the FOR of that component to

determine if it is in the up-or down-state.

ii. if the system is in a contingency state (at least one component in the down state):

• Determine the wind speeds at each bus, by use of the Weibull distribution or

ARMA-model.

• Use the states of the generators and WTGs as well as the wind speeds to

determine the available capacity at each bus.

• Use the found capacity, line states and load curve to update the parameters for

the OPF problem.

• Run the OPF solver

– If a solution with no curtailment was found, move to the next step

– If a solution with curtailment was found, denote a failure and how much

energy was curtailed and at which bus(es). Then move to the next step.

(b) Return to step 2(a) until the wanted number of years has been simulated.

3. Use the results from the simulation to calculate indices.

In Figure 3.1. a flowchart representation of the above instructions is presented. The green boxes

symbolise the initialisation part of the algorithm, the black box symbolises the state determination

part of the algorithm. The blue boxes symbolise the main loop of the algorithm, which keeps track

of the current hour and year. The red boxes symbolise the OPF related part of the algorithm.

Finally, the magenta box symbolises the calculation and exporting of the indices. In the flow chart,

contingency case means a system state where at least one component is in the down state.
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Figure 3.1: A flowchart detailing how the State Sampling algorithm works.

3.3 Sequential State Transition Approach

With the State Transition approach, it is entirely possible for components to change state multiple

times between each hour. To account for this a time counting variable t is introduced. Every time a

new component state is changed, t is incremented with the time to the next component transition.

The counting variable for the hour (called “current hour”) is only incremented when t is larger than

or equal to the current hour.

The step by step guide for the script now follows:

1. Initialising the script:

• Loading in all the parameters.

• Converting the values to the per unit system.

• Calculating the power curve parameters.

• Creating a vector to store the results of the OPF solver.

• Initialising the component state vector, assuming every component to be in the up-state.
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• Calculate the time to the first state transition using Equation 2.16, and increment t with

that amount.

2. Running the simulation:

(a) Check to see if the time counting variable t is larger than or equal to the next hour

i. If not; determine which component next transitions using Equation 2.17 and how

long it is until it transitions using Equation 2.16.

ii. Update the vector of component states and increase t with the calculated time to

next transition.

iii. Return to step 2(a).

(b) If t is larger than or equal to the current hour, compute the OPF at the given hour.

i. Determine which component is in the up and down state by using the current

component state vector.

ii. if the system is in a contingency state (at least one component in the down state):

• Determine the wind speeds at each bus, by use of the Weibull distribution or

ARMA-model.

• Use the states of the generators and WTGs as well as the wind speeds to

determine the available capacity at each bus.

• Use the found capacity, line states and load curve to update the parameters for

the OPF problem.

• Run the OPF solver

– If a solution with no curtailment was found, move to the next step

– If a solution with curtailment was found, denote a failure and how much

energy was curtailed and at which bus(es). Then move to the next step.

iii. Increment the hour counter to the next hour

• If this was the last hour in the year, reduce t with 8736 and go to step 2(c).

• Otherwise, return to step 2(a).

(c) Repeat from step 2(a) until the wanted number of years have been simulated.

3. Use the results from the simulation to calculate indices.

In Figure 3.2, a flowchart representation of the above instructions is presented. The green boxes

symbolise the initialisation part of the algorithm, the black boxes symbolise the state determination

part of the algorithm. The blue boxes symbolise the main loop of the algorithm, which keeps track

of the current hour and year. The red boxes symbolise the OPF related part of the algorithm.

Finally, the magenta box symbolises the calculation and exporting of the indices. In the flow

chart, contingency case means a system state where at least one component is in the down state.

Compared to the State Sampling approach as seen in Figure 3.1, only the black boxes and the

addition of variable t in the initialisation are different.
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Figure 3.2: A flowchart detailing how the State Transition algorithm works.

3.4 Wind Speed Correlation

To include wind speed correlation between multiple WECS, the following methods were developed

for the Weibull- and ARMA wind speed models.

3.4.1 Weibull Model

The Weibull wind speed model utilises randomly generated uniformly distributed variables in the

range [0,1]. To achieve correlated wind speed data, uniformly distributed random variates need

to remain bounded in the interval [0,1] while exhibiting a given correlation coefficient between 0

and 1, where 0 implies no correlation and 1 implies completely correlation. The following method

generates a set of correlated wind speeds in the Weibull wind speed model:
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• Set up the desired correlation matrix, Σ, which specifies the desired linear correlation between

wind sites.

• Find the linear correlation matrix, Σadj corresponding to the Spearman matrix Σ, as illustrated

in Equation 3.3:

Σadj = 2 · sin(
π

6
Σ) (3.3)

• Create normal variates with the adjusted correlations: Z ∼ N (0,Σadj) by using Cholesky

factorisation [63].

• Transform the normal variates into uniform variates: U = F (Z)

• Generate wind speeds from the correlated numbers, U = [Ui · · ·Un], and the Weibull scale

and shape parameters (α, β), as illustrated in Equation 3.4:

vi = αi(−ln(Ui))
1
βi

vn = αn(−ln(Un))
1
βn

(3.4)

Figure 3.3 shows a flowchart of the approach explained above. The developed code implementation

of this approach is presented in appendix D.5 and appendix D.6.

Figure 3.3: Flowchart showing the algorithmic process of attaining correlated wind speeds with the

Weibull model.

The scatter plots of 2000 pairs of correlated random numbers, using different correlation coefficients,

using the presented method are illustrated in Figure 3.4. For a correlation coefficient of 0.2, the

actual correlation between the pairs was measured to be 0.1954. For a correlation coefficient of

0.5, the actual correlation between the pairs was measured to be 0.5053, while for a correlation

coefficient of 0.8, the actual correlation was measured to be 0.8023.

To investigate the effect of correlation between wind speeds, the generated random numbers were

applied to the Weibull wind speed equation, Equation 3.4. The scale parameter was set to 7 m/s,
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Figure 3.4: Scatter plots of correlated random numbers. Left: R=0.2. Middle: R=0.5. Right:

R=0.8.

Figure 3.5: Scatter plots of correlated pairs of wind speed obtained from the Weibull wind speed

model. Left: R=0.2. Middle: R=0.5. Right: R=0.8.

and the shape parameter was set to 2 m/s. The pairs of correlated numbers from Figure 3.4 were

utilised, and the scatter plots of the pairs of the simulated wind speeds are presented in Figure 3.5.

It can be seen from Figure 3.4 and Figure 3.5 that the pairs of simulated wind speed series have

a correlation close to the correlation of the random numbers. For a correlation coefficient of 0.2,

the actual correlation between the wind speed pairs was measured to be 0.2145. For a correlation

coefficient of 0.5, the actual correlation between the pairs was measured to be 0.5188, while for a

correlation coefficient of 0.8, the actual correlation was measured to be 0.8238.

3.4.2 ARMA Model

The ARMA wind speed model utilises randomly generated normally distributed variables with

mean µ = 0 and variance σ2 (white noise). To achieve correlated wind speed data, random numbers

need to be drawn from this distribution with a given correlation coefficient between 0 and 1, where

0 implies no correlation and 1 implies completely correlation. The following method generates a set

of correlated wind speeds in the ARMA wind speed modelling:

• Set up the desired correlation matrix, Σ, which specifies the desired linear correlation between

wind sites. Σ is a n × n matrix, where n is the number of correlated variables wanted.

• Generate the correlated random numbers by drawing from the n-dimensional multivariate

normal distribution with parameters µ =
[
0 · · · 0

]>
and Σ.

• The drawn variables have a variance of 1. Therefore, scale the variables to the correct variance

by using Equation 3.5.

αµ=0,σ=σ1
= αµ=0,σ=1 · σ2

1 (3.5)
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• Calculate yt from the found correlated numbers and some of their previous values, α =

[αt · · ·αt−n], the previous values of yt: [yt−1 · · · yt−n] and the corresponding ARMA model

parameter for each variable, as illustrated in Equation 2.74. Note that different wind sites

have different parameters for the ARMA models.

• Determine the wind speed by using Equation 2.73 with yt, the mean and standard deviation

of the wind regime.

Figure 3.6 shows a flowchart of the approach explained above. The developed code implementation

of this approach is presented in appendix D.2, appendix D.3 and appendix D.4.

Figure 3.6: Flowchart showing the algorithmic process of attaining correlated wind speeds with the

ARMA model.

200 000 pairs of correlated numbers were generated for different correlation coefficients, with the

presented method. A scatter plot of the first 2000 pairs of correlated numbers is illustrated in

Figure 3.7. For a correlation coefficient of 0.2, the actual correlation between the pairs was measured

to be 0.1974. For a correlation coefficient of 0.5, the actual correlation between the pairs was

measured to be 0.4993, while for a correlation coefficient of 0.8, the actual correlation was measured

to be 0.8011.

Figure 3.7: Scatter plots of normally distributed correlated random numbers with mean µ = 0 and

variance σ2 = 0.524762. Left: R=0.2. Middle: R=0.5. Right: R=0.8.

To investigate the effect of correlation between wind speeds, the generated random numbers were

applied to the Swift Current ARMA wind speed model, see Equation 4.1. The pairs of correlated

numbers from Figure 3.7 were utilised, and the scatter plots of the first 2000 pairs of the simulated

wind speeds are presented in Figure 3.8.
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Figure 3.8: Scatter plots of correlated pairs of wind speed obtained from the Swift Current wind

speed model. Left: R=0.2. Middle: R=0.5. Right: R=0.8.

It can be seen from Figure 3.7 and Figure 3.8 that the pairs of simulated wind speed series have a

correlation close to the correlation of the random numbers. Calculating the correlation coefficient

based on the 200 000 pairs for correlation 0.2, the actual correlation between the wind speed pairs

was measured to be 0.1990. For a correlation coefficient of 0.5, the actual correlation between the

pairs was measured to be 0.5013, while for a correlation coefficient of 0.8, the actual correlation

was measured to be 0.8000.

3.5 Illustrative Example

In this section, a simple illustration of the principles for the algorithms is presented. The goal is to

demonstrate step-by-step how the whole algorithm works, with calculations included. Calculations

will be done from the initialisation of the script, until after one OPF problem has been solved, to

demonstrate all parts of the algorithms, with the exception of the calculation of the indices.

3.5.1 The System Specifications

In this example, a three-bus configuration is considered. For simplicity, the DC-case will be

considered, and the State Transition approach will be utilised. Figure 3.9 shows the three-bus

system, while Table 3.1, Table 3.2 and Table 3.3 contain the parameters for the example system.

Table 3.4 contains the parameters for the WTG specifications and the wind distribution, which in

this example is given by a Weibull distribution. It is assumed that the two WTGs connected to bus

1 have a correlation of 0.8. Also, generator 6 is assumed to always be available. It is also assumed

that the load model will be a yearly peak load model and 1 year will be investigated. The power

base for the system is 50 MVA.

Table 3.1: The generator parameters for the illustration example.

Gen Bus Type Capacity [MW] Failure Rate [#/hour] Repair Rate [#/hour]

1 1 Hydro 50 0.0004 0.02

2 1 Hydro 10 0.0006 0.02

3 1 Hydro 10 0.0006 0.02

4 1 Hydro 10 0.0006 0.02

5 1 Wind 5 0.001 0.1

6 1 Wind 5 0 -
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Figure 3.9: The system configuration used in the illustration example.

Table 3.2: The bus parameters for the illustration example.

Bus Load [MW] Curtailment cost [$/KWh]

1 0

2 25 1

3 35 2

Table 3.3: The line parameters for the illustration example.

Line From Bus To Bus Failure Rate [#/hour] Repair Rate [#/hour] R [p.u]
Power

limit [MW]

1 1 2 0.0002 0.1 0.1 50

2 1 3 0.0002 0.1 0.1 50

3 2 3 0.0002 0.1 0.05 50

Table 3.4: The WTG and wind speed parameters for the illustration example.

vci vr vco A B C α β corr

4 10 22.22 0.0311 -0.0776 0.0174 6 4 0.8

3.5.2 Initialisation and Pre-Calculation Work

With all the parameters as given in Table 3.1, Table 3.2, Table 3.2 and Table 3.4, the simulation

can be started. Due to using the State Transition approach, the component state vector (also

called system vector) is initialised first, with all components in the up-state. Since generator

6 in this example is assumed to always be available, it is not included in the component state

vector. The form of the component vector is given in Equation 3.6, giving the component vector

S0 =
[
0 0 0 0 0 0 0 0

]
. T , a variable keeping track of when the next transition of states

occurs is initialised as T = 0.

S =
[
gen1, · · · , gen5, line1, line2, line3

]
(3.6)
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Table 3.5: The intervals corresponding to component transfer for the illustration example.

Component Lower Limit Upper Limit

Gen1 0.0000 0.1053

Gen2 0.1053 0.2632

Gen3 0.2632 0.4211

Gen4 0.4211 0.5789

Gen5 0.5789 0.8421

Line1 0.8421 0.8947

Line2 0.8947 0.9474

Line3 0.9474 1.0000

3.5.3 Main Loop Calculations

Now, the main loop is entered, where the program iterates from hour 1 to hour 8736.

First, the time to the next transition needs to be calculated. Therefore, Equation 2.16 needs to

be utilised. A uniformly distributed random number is therefore generated, yielding U1 = 0.7470.

Equation 2.16 uses the λ of each component. This value is either the Failure Rate of the component

if it is in the up-state, or the Repair Rate if it is in the down-state. As each component is in the

up-state, the following is obtained, illustrated in Equation 3.7.

t1 = − 1∑m
i=1 λi

lnU = − 1

0.0038
ln 0.7470 = 76.76 (3.7)

It is now known that the first transition of states happens after 76.76 hours, t1 = 76.76. The time

counting variable T is next incremented by one, then the algorithm checks if the system is in a

contingent state (meaning any component in the down-state). As all components are in the up-state,

T is incremented until T = 77. As a result, for the 76 first hours, there is no Loss of Load events.

3.5.4 First State Transition in Main Loop

Next, it is found that t = 76.76 < T = 77, and therefore the system switches state. Now, which

component switches state needs to be determined. The interval [0,1] can be divided up so that

each number on the interval correspond to one of the components. For each generator and line,

the probability that it is the component to transition is calculated by use of Equation 2.17. The

calculation of this for the first generator is shown in Equation 3.8.

Pgen1
=

λgen1∑m
i=1 λi

=
0.0004

0.0038
= 0.1053 (3.8)

To determine the interval, the probabilities for each component are added cumulatively. The

interval [0, Pgen1
= 0.1053] will correspond to a transition of states for generator 1. Likewise, the

interval from [Pgen1
, Pgen1

+ Pgen2
] will correspond to a transition of states for generator 2 etc.

The calculated interval for this case is given in Table 3.5.

A new, uniformly distributed random number is then generated: U2 = 0.2589. It is observed from

Table 3.5 that U2 falls within the limits of Gen2 ( 0.2589 ∈ 〈0.1053, 0.2632]), meaning it is the

component to transition at time T = 76.76. This gives S1 =
[
0 1 0 0 0 0 0 0

]
.

The time to transition now needs to be determined again. This time, the uniform random number
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generator yields U1 = 0.3912. Again, Equation 2.16 is utilised. Based on S1 it is found that λ

consists of the repair rate of generator 2 and the failure rate of all the other components. The

calculation of t is shown in Equation 3.9.

t2 = − 1∑m
i=1 λi

lnU = − 1

0.0232
ln 0.3912 = 40.45 (3.9)

The system will now stay in state S1 until t = t1 + t2 = 117.21.

Now T = 77 <= t = 117.21, and the system is in a contingent state (S1), and therefore the

algorithm will now need to calculate if there is a loss of load incident by use of the OPF solver.

3.5.5 Determining Available Generating Capacity

Firstly, the maximum capacity that can be generated at each bus needs to be calculated. As there

are WTGs in the system, the wind speeds needs to be determined.

3.5.5.1 Determining Correlated Wind Speeds

In this illustrative example, a Weibull distribution is used to sample the wind speed, and there are

two correlated WTGs. Therefore, two correlated random uniformly distributed numbers need to be

calculated from the desired correlation coefficient. Firstly, the 2x2 correlation matrix is constructed

from Equation 2.82, as seen in Equation 3.10.

Σ =

[
1 corr

corr 1

]
=

[
1 0.8

0.8 1

]
(3.10)

The linear correlation matrix, corresponding to the Spearman matrix, Σadj , is obtained by using

Equation 3.3 as illustrated in Equation 3.11.

Σadj = 2 · sin(
π

6
Σ) =

[
2 · sin(π6 · 1) 2 · sin(π6 · 0.8)

2 · sin(π6 · 0.8) 2 · sin(π6 · 1)

]
=

[
1 0.8135

0.8135 1

]
(3.11)

Now, Σadj need to be factorised using Cholesky decomposition. The resulting triangular matrix

that fulfils Equation 2.80 is given in Equation 3.12.

G =

[
1 0.8135

0 0.5816

]
(3.12)

Now, two normally distributed uncorrelated variables are created: U =
[
−1.0524 −0.5030

]>
.

Next, correlation is induced between these variables by multiplying U byG, as seen in Equation 3.13.

UN = GU =

[
1 0.8135

0 0.5816

][
−1.0524

−0.5030

]
=

[
−1.4616

−0.2925

]
(3.13)

The final step is to transfer the normally distributed variables UN into a uniform distribution. By

using the cumulative distribution function for a standard normal distribution the final random
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variables UW is found, as seen in Equation 3.14.

UW =

[
0.0719

0.3849

]
(3.14)

Calculating the wind speed can now be done by using Equation 2.72. The WTGs have the same α

and β giving the calculation as illustrated in Equation 3.15.

v =

[
α(−ln(UW1))

1
β = 6(−ln(0.0719))

1
4

α(−ln(UW2))
1
β = 6(−ln(0.3849))

1
4

]
=

[
7.6423[m/s]

5.9308[m/s]

]
(3.15)

Now, the generation capacity for the WTG needs to be determined from Equation 2.75. v ∈ 〈vci, vr〉
for both wind speeds, therefore the calculation is as illustrated in Equation 3.16 and Equation 3.17.

Pgen5
(v1, t = 77) = (A+B · v1 + C · v21) · Pgen5,rated

= (0.0311− 0.0776 · 7.6423 + 0.0174 · 7.64232) · 5
= 2.2715[MW ]

(3.16)

Pgen6(v2, t = 77) = (A+B · v2 + C · v22) · Pgen6,rated

= (0.0311− 0.0776 · 5.9308 + 0.0174 · 5.93082) · 5
= 0.9145[MW ]

(3.17)

The available capacity at each bus is further summed to determine the generating capacity, shown

in Equation 3.18.

PBus1,gPBus2,g
PBus3,g

 =

1 · Pgen1 + 0 · Pgen2 + 1 · Pgen3 + 1 · Pgen4 + 1 · Pgen5 + Pgen6

0

0

 =

73.1860

0

0

 [MW ] =

1.4637

0

0

 [pu]

(3.18)

3.5.6 Calculating the Reactance Matrix and the Distribution Factors

The reactance matrix, X, needs to be found for the line configuration of the system, as the elements

of the matrix are used in Equation 2.45 to calculate line flows. The line susceptance is found first,

as seen in Equation 3.19.

b12 = b21 = − 1

X12
= − 1

0.1
= −10

b13 = b31 = − 1

X13
= − 1

0.1
= −10

b23 = b32 = − 1

X23
= − 1

0.05
= −20

(3.19)
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This gives the susceptance matrix B as shown in Equation 3.20.

B =

B11 B12 B13

B21 B22 B23

B31 B32 B33


=

−(b12 + b13) b12 b13
b21 −(b21 + b23) b23
b31 b32 −(b31 + b32)


=

 20 −10 −10

−10 30 −20

−10 −20 30



(3.20)

Bus 1 is the chosen slack bus in this system, resulting in the reduced matrix B′, given in Equa-

tion 3.21.

B′ =

[
B22 B23

B32 B33

]
=

[
30 −20

−20 30

]
(3.21)

The inverse of B′ is found in Equation 3.22.

(B′)−1 =

[
0.06 0.04

0.04 0.06

]
(3.22)

Using (B′)−1 the X matrix is found as illustrated in Equation 3.23.

X =

0 0 0

0 0.06 0.04

0 0.4 0.06

 (3.23)

The distribution factor matrix is now to be calculated. By using Equation 2.46 and Equation 2.45

these elements can be found, which is done in in the proceeding equations.

The distribution factors for line 1-2 is found in Equation 3.24.

P12 = a12,1P1 + a12,2P2 + a12,3P3

=
x11 − x21
X12

P1 +
x12 − x22
X12

P2 +
x13 − x23
X12

P3

=
0− 0

0.1
P1 +

0− 0.06

0.1
P2 +

0− 0.04

0.1
P3

= 0P1 − 0.6P2 − 0.4P3

(3.24)
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The distribution factors for line 1-3 is found in Equation 3.25.

P13 = a13,1P1 + a13,2P2 + a13,3P3

=
x11 − x31
X13

P1 +
x12 − x32
X13

P2 +
x13 − x33
X13

P3

=
0− 0

0.1
P1 +

0− 0.04

0.1
P2 +

0− 0.06

0.1
P3

= 0P1 − 0.4P2 − 0.6P3

(3.25)

The distribution factors for line 2-3 is found in Equation 3.26.

P23 = a23,1P1 + a23,2P2 + a23,3P3

=
x21 − x31
X23

P1 +
x22 − x32
X23

P2 +
x23 − x33
X23

P3

=
0− 0

0.05
P1 +

0.06− 0.04

0.05
P2 +

0.04− 0.06

0.05
P3

= 0P1 + 0.4P2 − 0.4P3

(3.26)

In Equation 3.27 all the distribution factors are grouped into one matrix.

ADF =

a12,1 a12,2 a12,3
a13,1 a13,2 a13,3
a23,1 a23,2 a23,3

 =

0 −0.6 −0.4

0 −0.4 −0.6

0 0.4 −0.4

 (3.27)

3.5.7 Calculating OPF Constraints

Now, all required parameters for calculating the constraints on the OPF problem have been found,

and as such the constraints are to be calculated. The following is needed: the cost function, the

equality constraint, the limits on the decision variables and the inequality constraints.

This system would usually have 6 decision variables, the active power generation PBus1,g, PBus2,g
and PBus3,g as well as the power curtailment at each bus C1, C2 and C3. For this system there is

only generation at bus 1, and there is only load at bus 2 and 3. Therefore the decision variables

PBus2,g, PBus3,g and C1 can be removed.

3.5.7.1 Cost Function

As can be observed from Equation 2.49, the cost function is found from the cost of rescheduling

for the generation decision variables, while it is the cost of curtailment for the power curtailment

decision variables. The cost function for this system is shown in Equation 3.28.

f = 0PBus1,g + 1C2 + 2C3 (3.28)
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3.5.7.2 Equality Constraint

The equality constraint follows from the power balance in the system,
∑
P gen +CP − P load = 0.

The resulting equality constraint is shown in Equation 3.29.

PBus1,g + C2 + C3 = PBus2,l + PBus3,l

PBus1,g + C2 + C3 = 1.2
(3.29)

3.5.7.3 Decision Variable Bounds

The bounds on the decision variables follow from the generation and load, and is presented in

Equation 3.30, scaled to the per-unit system.

0 ≤ PBus1,g ≤ 1.4637

0 ≤ C2 ≤ 0.5

0 ≤ C3 ≤ 0.7

(3.30)

3.5.7.4 Inequality Constraints

Solvers used to calculate the OPF problem take the inequalities input as matrix A and vector b,

shown in Equation 3.31 and Equation 3.32.

A =
[
A1 · · · Ak

]>
(3.31)

b =
[
b1 · · · bk

]>
(3.32)

Each inequality constraint needs to be specified in the form of Equation 3.33.

Ai

PBus1,gC2

C3

 ≤ bi (3.33)

The inequality constraints in this OPF come only from the line transfer limits. The line limits are

shown in Equation 3.34. T is the matrix of transferred power across the lines.

−Tmax ≤ T ≤ Tmax (3.34)

To get the correct form of the inequality constraints, Equation 3.34 is divided up as shown in

Equation 3.35. Then, Equation 2.47 and Equation 2.48 are used to calculate the limits in terms of

the decision variables as seen in Equation 3.36 and Equation 3.37.

−T ≤ Tmax
T ≤ Tmax

(3.35)
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−T ≤ Tmax

−

0PBus1,g − 0.6(C2 − P2)− 0.4(C3 − P3)

0PBus1,g − 0.4(C2 − P2)− 0.6(C3 − P3)

0PBus1,g + 0.4(C2 − P2)− 0.4(C3 − P3)

 =

1

1

1


0PBus1,g + 0.6C2 + 0.4C3

0PBus1,g + 0.4C2 + 0.6C3

0PBus1,g − 0.4C2 + 0.4C3

 =

1 + 0.6P2 + 0.4P3

1 + 0.4P2 + 0.6P3

1− 0.4P2 + 0.4P3


0PBus1,g + 0.6C2 + 0.4C3

0PBus1,g + 0.4C2 + 0.6C3

0PBus1,g − 0.4C2 + 0.4C3

 =

1.58

1.62

1.08



(3.36)

T ≤ Tmax0PBus1,g − 0.6(C2 − P2)− 0.4(C3 − P3)

0PBus1,g − 0.4(C2 − P2)− 0.6(C3 − P3)

0PBus1,g + 0.4(C2 − P2)− 0.4(C3 − P3)

 =

1

1

1


0PBus1,g − 0.6C2 − 0.4C3

0PBus1,g − 0.4C2 − 0.6C3

0PBus1,g + 0.4C2 − 0.4C3

 =

1− 0.6P2 − 0.4P3

1− 0.4P2 − 0.6P3

1 + 0.4P2 − 0.4P3


0PBus1,g − 0.6C2 − 0.4C3

0PBus1,g − 0.4C2 − 0.6C3

0PBus1,g + 0.4C2 − 0.4C3

 =

0.42

0.38

0.92



(3.37)

3.5.8 OPF Problem Formulation

The total OPF problem can be summarised as shown in Equation 3.38.

min f = 0 · PBus1,g + 1 · C2 + 2 · C3; (3.38)

subject to Aeq · x = beq (3.39)

A · x ≤ b (3.40)

lb ≤ x ≤ lb (3.41)

Where:



3.5 Illustrative Example 61

x =

PBus1,gC2

C3

 = The decision variables.

Aeq =
[
1 1 1

]
= The equality constraint matrix.

beq = 1.2 = The equality constraint value.

A =



0 0.6 0.4

0 0.4 0.6

0 −0.4 0.4

0 −0.6 −0.4

0 −0.4 −0.6

0 0.4 −0.4


= The inequality constraint matrix.

b =



1.58

1.62

1.08

0.42

0.38

0.92


= The inequality values

lb =

0

0

0

 = The lower bounds of x.

ub =

1.4637

0.5

0.7

 = The upper bounds of x.

3.5.9 OPF Results

Solving the OPF problem yields the results presented in Equation 3.42.

PBus1,gC2

C3

 =

1.2

0

0


f = 0

(3.42)

The power flows for this system is illustrated in Figure 3.10, which were calculated from Equation 2.46

and the obtained generation, load curtailment and system distribution factors.

Figure 3.10: The system with calculated line flows.
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3.5.10 Further Calculations

Due to the OPF-solver yielding no curtailment (f = 0 and C2 = C3 = 0), there was no loss of load

event, and nothing will be recorded. The time will be incremented to T = 78. Again T < t and the

system is in a contingent case, which means the OPF solver will be run again. The wind speed will

be sampled for this hour, and then the OPF-solver is run again with the updated parameters. No

further calculations will be illustrated in this example, but the general further procedure for the

algorithm will be explained:

The algorithm will continue to sample wind speeds and solving the OPF at each hour, until T = 118.

At that point, the next component to transition will be found. The component state vector will be

updated and the next time to transition will be determined until T < t. Then the OPF solver will

run at T = 118 with the updated system vector and new sampled wind speed. This will continue

until the wanted number of hours have been simulated.

At that point, the LOLE and EENS will be calculated, as illustrated in section 2.1.7.7.



63

4 Case Studies and Results

To examine the adopted methodological approaches of the thesis, the developed scripts are executed

on selected standardised test systems. Obtained results are compared to corresponding benchmark

results. Various cases and methods are examined, and sensitivity analyses are conducted.

4.1 Test Systems

The thesis utilises test systems with specified standard parameters (e.g. generation capacity, load

capacity, line capacity, failure rates and repair times of the componets) to perform power system

reliability assessment. There exist two well-established test systems for HL-I and HL-II PSR

assessment: the Roy Billinton Test System (RBTS) and the Institute of Electrical and Electronics

Engineers-Reliability Test System (IEEE-RTS or simply RTS). The RBTS is a 6-bus system with 11

generators, 9 lines and a peak load of 185 MW. The relatively larger RTS consists of 32 generators,

38 lines and a peak load of 2850 MW. The RBTS and the RTS utilise the same chronological

load curve specified in percent of system peak load for 8736 load points per year, as illustrated in

Appendix C. The two systems are detailed in Appendix A and Appendix B. The priority order load

curtailment philosophy controls the load curtailment in the test systems based on the reliability

worth index IEAR-values expressed in $/kWh. The composite system delivery point with the

highest IEAR has the highest priority, and the delivery point with the lowest IEAR has the lowest

priority.

4.2 Verifying the Developed Script: Swift Current Case Study

The previously presented concepts in the thesis were used to develop HL-II MCS MATLAB scripts

that include wind power penetration. The developed scripts were tested on a modified version

of the RBTS (MRBTS) and the RTS, and verified against the results presented in [53], which is

considered as the benchmark. The benchmark, [53], is the work of Billinton, Gao, Huang and

Karki, who are considered to be important contributors to research within the field of power system

reliability. The utilised wind speed data is from the Swift Current site located in the Province

of Saskatchewan, Canada, presented in Table 4.1. The hourly wind speed data is from a 20-year

database (1 Jan. 1984 to 31 Dec. 2003) obtained from Environment Canada [53].

Table 4.1: The wind speed data for Swift Current [53]

Swift Current

Mean wind speed, µ (km/h) 19.46

Standard deviation, σ (km/h) 9.70

The optimal ARMA time series model based on the data presented in Table 4.1, is an ARMA (4, 3)

model with parameters as presented in Equation 4.1. The Swift Current ARMA wind model was

developed by using the ARMASA Toolbox and was published in [59].

yt = 1.1772yt−1 + 0.1001yt−2 − 0.3572yt−3 + 0.0379yt−4

+αt − 0.5030αt−1 − 0.2924αt−2 + 0.1317αt−3
(4.1)

where αt ∈ NID(0, 0.5247602) is a normal white noise process with zero mean and variance

0.5247602 [59]. The simulated time-dependent wind speed is then given by Equation 2.73.
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The wind speed data were also used to estimate the Weibull scale and shape parameters. These are

presented in Table 4.2.

Table 4.2: Estimated Weibull scale and shape parameters for the Swift Current wind-regime

Swift Current

α 5.9334

β 4.2913

The WTG modelling utilised the generator power curve with a cut-in wind speed of 4 m/s, rated

wind speed of 10 m/s and cut-out wind speed of 22.222 m/s. The WTG units are considered to

have a capacity of 2MW.

4.2.1 20MW WECS Added to the MRBTS

The RBTS is a 6-bus system presented in Appendix A. The RBTS has some designed-in weaknesses,

one of which is the radial supply to Bus 6 [53]. The RBTS can therefore be modified by adding a

transmission line designated as line 10 between bus 5 and bus 6. Line 10 has the same parameters

as the existing line 9 between bus 5 and 6. By utilising the MRBTS, the effects of adding wind

penetration to the overall system reliability can be better illustrated. The single line diagram of

the modified-RBTS, MRBTS, is illustrated in Figure 4.1

Figure 4.1: Single line diagram of the MRBTS.

The system with added wind power penetration is designated as MRBTSW, and consists of 10

2MW WTGs added at Bus 4. The WTGs have a FOR equal to zero. 20 MW WECS added to the

MRBTS yields a wind penetration level of approximately 8%. The WECS was connected through

a single transmission line with an unavailability and average repair time of 0.00058 and 10 h, which

is equivalent to a FOR of 0.0548. The priority order philosophy is utilised to control the load

shedding.



4.2 Verifying the Developed Script: Swift Current Case Study 65

4.2.1.1 DC-based Load Flow Approach

This section presents the obtained bus and system EENS-estimates for the DC-based load flow

approach using the State Sampling and State Transition approach. The LOLE estimates and

standard deviations of the estimates are provided in Appendix E, Appendix F and Appendix G.

4.2.1.1.1 State Sampling

The estimates of the EENS-index were obtained by simulations of 1000 years and are presented in

Table 4.3.

Table 4.3: Obtained estimates for the MRBTSW-4 State Sampling DC-case study

Bus nr. Priority order EENS [MWh/year]

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0351 0.0169 0.0190

3 5 10.4255 7.9755 7.8365

4 3 0.0183 0.0000 0.0000

5 2 0.1248 0.1331 0.1698

6 4 0.2138 0.2548 0.2717

System - 10.8174 8.3803 8.2972

4.2.1.1.2 State Transition

The estimates of the EENS-index were obtained by simulations of 7500 years and are presented in

Table 4.4.

Table 4.4: Obtained estimates for the MRBTSW-4 State Transition DC-case study

Bus nr. Priority order EENS [MWh/year]

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0000 0.0173 0.0535

3 5 9.6398 7.1730 8.0018

4 3 0.0000 0.0066 0.0534

5 2 0.0761 0.1262 0.2064

6 4 0.3115 0.2648 0.4105

System - 10.0274 7.5880 8.7256

The obtained estimates from the State Sampling and State Transition techniques with the DC-based

contingency solver are summarised in Figure 4.2.
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Figure 4.2: Comparison of the system-EENS in the MRBTS before and after the wind penetration,

obtained by the State Sampling and State Transition techniques

4.2.1.2 AC-based Load Flow Approach

This section presents the obtained bus and system EENS-estimates for the AC-based load flow

approach using the State Sampling and State Transition approach. The LOLE estimates and

standard deviations of the estimates are provided in Appendix E, Appendix F and Appendix G.

4.2.1.2.1 State Sampling

The estimates of the EENS-index were obtained by simulations of 1000 years and are presented in

Table 4.5.

Table 4.5: Obtained estimates for the MRBTSW-4 State Sampling AC-case study

Bus nr. Priority order EENS [MWh/year]

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0090 0.0421 0.0265

3 5 15.6779 12.7562 12.7424

4 3 0.0000 0.0415 0.0000

5 2 0.1584 0.1289 0.1461

6 4 1.3189 1.1124 1.1821

System - 17.1642 14.0811 14.0970

4.2.1.2.2 State Transition

The estimates of the EENS-index were obtained by simulations of 7500 years and are presented in

Table 4.6.
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Table 4.6: Obtained estimates for the MRBTSW-4 State Transition AC-case study

Bus nr. Priority order EENS [MWh/year]

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0194 0.0063 0.0139

3 5 16.5168 12.7359 12.2706

4 3 0.0000 0.0000 0.0000

5 2 0.1408 0.1902 0.1347

6 4 1.1900 1.0844 1.1390

System - 17.8670 14.0169 13.5582

The obtained estimates from the State Sampling and State Transition techniques with the AC-based

contingency solver are summarised in Figure 4.3.

Figure 4.3: Comparison of the system-EENS in the MRBTS before and after the wind penetration,

obtained by the State Sampling and State Transition techniques
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4.2.1.3 Benchmark comparison: DC-based State Sampling MCS

The benchmark paper presents two different results for the MRBTS-Swift Current assessment. One

result was obtained by utilising the MECORE program, which utilises a combination of the State

Sampling MCS and enumeration techniques. This program uses the DC-based load flow approach

and the priority order philosophy is based on ranking the composite system delivery points using

the reliability worth index IEAR expressed in $/kWh. The program utilises a five-state COPT to

model the WECS, and the ARMA-wind speed model. The WTG units are assigned a FOR of 0%.

The MECORE results [53] are presented and compared to the obtained DC-based State Sampling

estimates in Table 4.7.

Table 4.7: MRBTS-Swift Current case comparison against the State Sampling MECORE program

benchmark results

Bus Benchmark EENS [MWh/year] Obtained EENS[MWh/year]

Priority MRBTS MRBTSW Priority MRBTS MRBTSW-ARMA

2 1 0.000 0.000 1 0.0351 0.0169

3 5 12.566 8.644 5 10.4255 7.9755

4 2 0.029 0.009 3 0.0183 0.0000

5 3 0.293 0.200 2 0.1248 0.1331

6 4 0.674 0.545 4 0.2138 0.2548

System - 13.562 9.399 - 10.8174 8.3803

The differences between the bus estimates of the EENS-index are illustrated in Figure 4.4, and the

differences between the system-EENS estimates are illustrated in Figure 4.5.

Figure 4.4: Benchmark comparison of the EENS at the buses in the MRBTS before and after wind

penetration
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Figure 4.5: Benchmark comparison of the system-EENS for the DC-State Sampling approach in

the MRBTS before and after the wind penetration

4.2.1.4 Benchmark Comparison: AC-based Sequential MCS

The benchmark paper also utilised the RapHL-II program, which uses the Fast-Decoupled AC load

flow technique to calculate load flows and line loadings and to check the system operating constraints.

An OPF approach is used to conduct corrective actions to alleviate operating constraints, and

the load shedding philosophy employed is known as the Pass-I policy, where loads are curtailed

at the delivery points that are closest (or one line away from) the element(s) on outage [53]. The

simulation sample size utilised was 10,000 years. The program utilises the ARMA-wind speed

model. The RapHL-II results [53] are presented and compared to the AC-based State Transition

estimates in Table 4.8.

Table 4.8: MRBTS-Swift Current case comparison against the Sequential RapHL-II program

benchmark results

Bus Benchmark EENS [MWh/year] Obtained EENS [MWh/year]

Priority MRBTS MRBTSW Priority MRBTS MRBTSW-ARMA

2 - 0.4762 0.2568 1 0.0194 0.0063

3 - 7.3563 4.2447 5 16.5168 12.7359

4 - 5.347 3.3721 3 0.0000 0.0000

5 - 0.1098 0.0786 2 0.1408 0.1902

6 - 0.0588 0.0453 4 1.1900 1.0844

System - 13.3464 7.9974 - 17.8670 14.0169

The differences between the system-EENS estimates are illustrated in Figure 4.6. It should be

noted that the benchmark paper used the Pass-I load shedding philosophy, instead of the priority

order philosophy, which has a large impact on the end results, as elaborated in section 4.2.4.
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Figure 4.6: Benchmark comparison of the system-EENS for the AC-State Transition approach in

the MRBTS before and after the wind penetration

4.2.2 600 MW WECS Added to the RTS

The RTS is a 24-bus system with 10 generator buses, 17 load buses, 38 transmission lines and 32

generating units. The system peak load is 2850 MW and the total generation is 3405MW. The

RTS is considered to have a strong transmission network and a relatively weak generation system

[53]. The system is detailed and illustrated in Appendix B. The subsequent study involves the

addition of 300 2MW WTGs for a total of 600 MW WECS at Bus 19 in the northern part of the

RTS. This system is designated as RTSW-19. 600 MW wind power added to the RTS yields a wind

penetration level of approximately 15%. The WECS was connected through a single transmission

line with an unavailability and average repair time of 0.00058 and 10 h, which is equivalent to a

FOR of 0.0548.

This section presents the obtained bus and system EENS-estimates for the DC-based load flow

approach using the State Sampling and State Transition approaches. The LOLE estimates and

standard deviations of the estimates are provided in Appendix E, Appendix F and Appendix G.

4.2.2.1 State Sampling

The estimates of the EENS-index were obtained by simulations of 1000 years and are presented in

Table 4.9. The buses that are not included have zero EENS.
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Table 4.9: Obtained estimates for the RTSW-19 State Sampling case study

Bus nr. EENS [MWh/year]

RTS RTSW-19-ARMA RTSW-19-WB

4 0.0599 0.0000 0.0484

5 0.1278 0.0928 0.0000

6 0.4285 0.4256 0.5242

7 231.0165 235.2007 236.1584

8 0.1702 0.2319 0.4097

9 853.0728 517.3422 517.7288

10 9.3407 4.8211 3.8000

14 262.3221 145.0649 153.8644

18 0.8933 0.2207 0.3652

19 53.3067 28.8700 29.2246

System 1410.7383 932.2700 942.1236

4.2.2.2 State Transition

The estimates of the EENS-index were obtained by simulations of 7500 years and are presented in

Table 4.10. The buses that are not included have zero EENS.

Table 4.10: Obtained estimates for the RTSW-19 State Transition case study

Bus nr. EENS [MWh/year]

RTS RTSW-19-ARMA RTSW-19-WB

3 0.0000 0.0000 0.0262

4 0.0000 0.0577 0.1670

5 0.0000 0.0695 0.0143

6 1.3700 0.2176 0.5626

7 226.9890 229.7046 241.4480

8 0.0572 0.0420 0.0984

9 861.1061 503.4852 498.0605

10 8.6326 4.9881 3.1274

14 260.0709 140.4356 137.6013

18 0.7255 0.5509 0.4093

19 53.7246 26.2229 23.2630

20 0.0000 0.0000 0.0638

System 1412.6758 905.7741 904.8418

The obtained estimates from the State Sampling and State Transition techniques are summarised

in Figure 4.7.
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Figure 4.7: Comparison of the system-EENS in the RTS before and after the wind penetration,

obtained by the State Sampling and State Transition techniques

4.2.2.3 Benchmark Comparison: DC-based State Sampling MCS

For the RTS-Swift Current case, the benchmark utilised the MECORE program, which uses the

Non-sequential State Sampling approach and enumeration techniques, DC-load flow and economic

priority order as the load curtailment policy [53]. This program utilises the ARMA wind speed

model. The benchmark results [53] are presented and compared to the obtained RTS DC-State

Sampling estimates in Table 4.11.

Table 4.11: RTS-Swift Current case comparison against the State Sampling MECORE program

benchmark results

Bus nr. Benchmark EENS [MWh/year] Obtained EENS [MWh/year]

RTS RTSW-19 RTS RTSW-19-ARMA

2 0.399 0.204 0.0000 0.0000

3 0.345 0.169 0.0000 0.0000

4 0.000 0.000 0.0599 0.0000

5 0.000 0.000 0.1278 0.0928

6 0.394 0.392 0.4285 0.4256

7 0.008 0.004 231.0165 235.2007

8 0.020 0.008 0.1702 0.2319

9 407.226 240.042 853.0728 517.3422

10 1.857 0.994 9.3407 4.8211

13 0.146 0.060 0.0000 0.0000

14 68.057 38.827 262.3221 145.0649

15 310.220 180.886 0.0000 0.0000

16 18.572 10.485 0.0000 0.0000

18 13.670 7.458 0.8933 0.2207

19 757.805 451.468 53.3067 28.8700

20 14.454 8.051 0.0000 0.0000

System 1593.130 939.004 1410.7383 932.2700

The differences between the bus estimates of the EENS-index are illustrated in Figure 4.8, and the



4.2 Verifying the Developed Script: Swift Current Case Study 73

differences between the system-EENS estimates are illustrated in Figure 4.9.

Figure 4.8: Benchmark comparison of the EENS at the buses in the RTS before and after the wind

penetration

Figure 4.9: Benchmark comparison of the system-EENS in the RTS before and after the wind

penetration

4.2.3 Multiple WECS at RTS by Incorporating Wind Speed Correlation

Multiple WECS at different locations can be integrated into power systems. The locations can have

different wind speed characteristics, and have different impacts on the reliability of a power system.

An important factor for the contribution that multiple WECS can have to the adequacy of a power

system is the degree of wind speed correlation between the locations. Two WECS were added to

the RTS, one having the wind speed characteristics of Swift Current, and the other having the wind

speed characteristics of Regina, also located in the Province of Saskatchewan, Canada. The mean

wind speed and standard deviation of the two sites are illustrated in Table 4.12.

The optimal ARMA time series model, based on the data presented in Table 4.12, for Swift Current
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Table 4.12: The wind speed data for Regina and Swift Current, Canada [53]

Regina Swift Current

Mean wind speed, µ (km/h) 19.52 19.46

Standard deviation, σ (km/h) 10.99 9.70

was presented in Equation 4.1. A similar model for the Regina wind site [53], is illustrated in

Equation 4.2.

yt = 0.9336yt−1 + 0.4506yt−2 − 0.5545yt−3 + 0.1110yt−4

+αt − 0.2033αt−1 − 0.4684αt−2 + 0.2301αt−3
(4.2)

where αt ∈ NID(0, 0.4094232) is a normal white noise process with zero mean and variance

0.4094232. The simulated time-dependent wind speed is then given by Equation 2.73.

The wind speed data was also used to estimate the Weibull scale and shape parameters for the

Regina wind site. These are presented in Table 4.13.

Table 4.13: Estimated Weibull scale and shape parameters for the Regina wind site

Regina Wind Site

α 5.8602

β 5.5308

4.2.3.1 300 MW WECS Added at Buses 1 and 3

The subsequent assessment involves the connection of 300 MW WECS to two buses in the southern

portion of the RTS. 300 MW WECS was connected to bus 1 and to bus 3, to include a total of 600

MW WECS. The WECS connected to bus 1 has the wind regime of the Swift Current wind site,

while the WECS connected to bus 3 has the wind regime of the Regina wind site. 600 MW wind

power connected to the RTS yields a wind penetration level of approximately 15%. The system

EENS is compared with various degrees of wind speed correlation. The unavailability and average

repair time of the WECS connection lines are 0.00058 and 10 h, respectively. This is equivalent to

a FOR of 0.0548. The State Sampling approach with DC-LF was utilised for the assessment and

the estimates were obtained by simulations of 1000 years. The results of the system-EENS with

various degrees of wind speed correlation is presented in Table 4.14. A comparison of the estimates

obtained by the ARMA- and Weibull wind speed model is provided in Figure 4.10.

Table 4.14: The system EENS for the RTS with different degrees of wind speed correlation

R EENS [MWh/year]

RTS RTSW-1&3-ARMA RTSW-1&3-WB

0.0 1410.7383 861.1635 861.6070

0.2 880.8309 862.6898

0.5 892.1401 869.4094

0.8 911.4227 906.9571
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Figure 4.10: The system-EENS of the RTSW-1&3-Swift Current and Regina Case with the ARMA

and Weibull models

4.2.3.2 Benchmark Comparison: DC-based State Sampling MCS with Correlation

The benchmark utilised the MECORE software, which uses the Non-sequential State Sampling

approach and enumeration techniques, DC-load flow and economic priority order as the load

curtailment policy [53]. This program utilises the ARMA wind speed model. It was not specified

which bus that experienced the Swift Current and Regina wind regime. The benchmark results for

the RTSW-1&3 are presented and compared to the obtained RTSW-1&3 estimates in Table 4.15.

A comparison of the system-EENS with the benchmark results is provided in Figure 4.11.

Table 4.15: RTSW-1&3-Swift Current and Regina Case comparison against the State Sampling

MECORE program benchmark results

R Benchmark EENS [MWh/year] Obtained EENS [MWh/year]

RTS RTSW-1&3 RTS RTSW-1&3-ARMA

0.0 1593.130 751.189 1410.7383 861.1635

0.2 784.810 880.8309

0.5 840.307 892.1401

0.8 893.648 911.4227
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Figure 4.11: Benchmark comparison of the system-EENS of the RTSW-1&3-Swift Current and

Regina Case

4.2.4 Observations and Discussion

The presented, obtained estimates deviate somewhat from the benchmark estimates. Due to the

complexity of HL-II assessment, there could be multiple reasons for this. The obtained estimates

for the AC-based load flow approach are the most pessimistic. This is expected since the AC-based

load flow approach includes more considerations than the simplified DC-based approach. In the

AC-based approach, transmission losses are included, so there is a higher generation requirement in

the system to meet the load demands. Naturally, this leads to an increase in insufficient generation

capacity to meet the load demands. Also, voltage limits are considered in the AC-based approach,

which means that the buses with the lowest priority orders often will experience load curtailment

when there is a voltage limit violation in the system. The significant drawback with the AC-based

approach is the large increase in computation time, compared to the DC-based approach. Also, as

the systems increase in size, the computation time increases further for the AC-based approach.

As an example, it was observed that a State Sampling simulation in the MRBTS that utilised the

AC-based approach required a computation time of 19 270 seconds, while the same simulation with

the DC-approach required a computation time of 1 885 seconds. Because of this relationship, the

AC-based approach was limited to the assessment in the MRBTS.

The benchmark estimates from the RapHL-II program utilised an AC-based load flow approach.

However, the program utilised a different load shedding philosophy, where loads are curtailed at the

delivery points that are closest to the elements on an outage, without any ranking of the delivery

points. This is expected to have a large impact on the end results, and as illustrated in Figure 4.6,

the system-EENS, before and after wind penetration, is much lower compared to the obtained

estimates which utilised the priority order philosophy. Therefore, the RapHL-II estimates cannot

be directly compared to the obtained AC-based estimates in this thesis.

As opposed to the RapHL-II program, the MECORE program utilised the same load shedding

philosophy as this thesis. However, the MECORE program utilised a five-state COPT to model

the WECS, which can decrease the accuracy of the results. In general, the MECORE estimates

are slightly more pessimistic, both with and without wind penetration. An exception is observed

for the estimates considering wind speed correlation, where the obtained estimates were slightly
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more pessimistic. This could be because MECORE utilises a different priority order, as explained

in the subsequent paragraph. In general, the approach utilised by MECORE, combining the State

Sampling MCS and enumeration techniques is expected to be less accurate than the MCS methods

in this thesis.

The priority order of the system delivery points can have a large impact on the final results. It

was observed that the benchmark results from the MECORE program most likely utilised different

IEAR-values than this thesis. This thesis utilised IEAR-values for the buses in the (M)RBTS and

RTS as presented in [3]. The benchmark paper does not present its bus IEAR-values, however, one

of the co-authors presents MECORE IEAR-values in [55]. The bus IEAR-values for the (M)RBTS

presented in [55] is illustrated in Table 4.16. The bus IEAR-values for the (M)RBTS presented in

[3], and utilised in this thesis, is illustrated in Table 4.17. This is also presented in Appendix A.

Table 4.16: Bus IEAR-values and priority order in the RBTS utilised in the MECORE Software

[55].

Bus nr. IEAR ($/kWh) Priority Order

2 7.41 1

3 2.69 5

4 6.78 2

5 4.82 3

6 3.63 4

Table 4.17: Bus IEAR-values and priority order in the RBTS utilised in this thesis.

Bus nr. IEAR ($/kWh) Priority Order

2 9.6325 1

3 4.3769 5

4 8.0267 3

5 8.6323 2

6 5.5132 4

As seen in Table 4.16 and Table 4.17, the priority order is not the same, as the IEAR-value of bus

4 is higher than bus 5 in the MECORE software, while this thesis utilises a higher IEAR-value for

bus 5 than bus 4. Except for this swap, however, the priority order is the same. Bus number 3 has

the lowest priority in the RBTS for both the MECORE program and this thesis. Therefore, the

load curtailment is the largest at this delivery point. The MECORE bus IEAR-values for the RTS

presented in [55] is illustrated in Table 4.18. The bus IEAR-values for the RTS presented in [3],

and utilised in this thesis, is illustrated in Table 4.19. IEAR-values for the RTS is also presented in

Appendix B.
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Table 4.18: Bus IEAR-values and priority order in the RTS utilised in the MECORE Software [55].

Bus nr. IEAR ($/kWh) Priority Order

1 6.20 1

2 4.89 9

3 5.30 8

4 5.62 3

5 6.11 2

6 5.50 4

7 5.41 5

8 5.40 6

9 2.30 16

10 4.14 10

13 5.39 7

14 3.41 14

15 3.01 15

16 3.54 13

18 3.75 11

19 2.29 17

20 3.63 12

Table 4.19: Bus IEAR-values and priority order in the RTS utilised in this thesis.

Bus nr. IEAR ($/kWh) Priority Order

1 8.9815 3

2 7.3606 5

3 5.8990 11

4 9.5992 1

5 9.2323 2

6 6.5238 9

7 7.0291 8

8 7.7742 4

9 3.6623 17

10 5.1940 14

13 7.2813 6

14 4.3717 16

15 5.9744 10

16 7.2305 7

18 5.6149 13

19 4.5430 15

20 5.6836 12

As seen in Table 4.18 and Table 4.19, the priority order for the buses in the RTS is quite different

in the MECORE software. In general, the buses in the MECORE software with a high priority

order also tend to have a high priority order in the utilised data, but the order is quite different. In

the RTSW-19 assessment, the benchmark MECORE EENS estimates were dominated by the load

curtailment at bus 19, bus 9 and bus 15. The EENS estimates obtained by the developed methods

were dominated by the load curtailment at bus 9, bus 7 and bus 14. Bus 19, which has the highest

EENS estimate in the benchmark, has the lowest RTS-priority order in the MECORE Software (17
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of 17). Bus 9 has the highest EENS estimates in this thesis’ RTSW-19 estimates. Table 4.19 shows

that bus 9 has the lowest priority order in the RTS in this thesis (17 of 17). The same pattern can

be seen for other buses with high EENS-estimates from the MECORE software and this thesis.

It is therefore clear that the priority order was different in the benchmark MECORE estimates,

compared to this thesis, and that the priority order has a significant impact on the end results.

For the AC approach in the MRBTS, the inclusion of 20MW WECS reduces the system-EENS

by approximately 18% (Table 4.5). For the DC-approach in the MRBTS, the inclusion of 20MW

WECS reduces the system-EENS by approximately 13-25% (Table 4.3 and Table 4.4). The benefit

of adding WECS to the system-EENS in the MRBTS is mostly affected by the reduction of the

EENS at bus 3, which has the lowest priority order.

For the inclusion of 600MW WECS at bus 19 in the RTS, the system-EENS decreases by ap-

proximately 33-36% (Table 4.9 and Table 4.10). The percentage reduction of the system-EENS

is larger in the RTS than in the MRBTS. This is expected, since 600MW WECS in the RTS is

equivalent to approximately 15% wind power penetration, while 20MW WECS is equivalent to

approximately 8% wind power penetration in the MRBTS. Nevertheless, both systems achieve a

significant improvement for the system-EENS. These results could indicate that the systems have

a strong transmission network, as the generated power is easily transported to the buses in the

systems.

In the RTS, the two buses with the highest EENS without wind power penetration, bus 9 and

bus 14, also have the lowest priority in the system. These buses achieve a reduction in EENS

of approximately 39-47% when the wind is integrated. Bus 7, however, which is the bus with

the third-highest EENS-value without wind in the system, has a higher priority order (8 of 17).

Despite adding wind power to the system, the EENS at bus 7 barely changes. From Figure B.1, it

is observed that bus 7 is located in the south-east of the RTS, and is connected to the rest of the

system through a single transmission line (line 11) to bus 8. If this transmission line experiences a

failure, there will always be load curtailment at bus 7. Because of this, the added WECS have no

impact on the EENS at bus 7.

It is also observed that the MECORE benchmark estimates of the EENS at bus 7 is approximately

equal to zero, both before and after the wind penetration. This might suggest that some of the

tools to evaluate system states are different for the thesis’ and the MECORE program contingency

solvers. The choices that are made for e.g how system states with isolated buses are handled, can

have a significant impact on the results of composite studies. As a result, the estimates of various

studies can deviate significantly [3].

The deviation between the obtained estimates from the State Sampling and State Transition

approaches, and ARMA- and Weibull-models, could likely be reduced by increasing the number

of simulation years. No pattern was observed for the deviation between the estimates obtained

by the ARMA- and Weibull models. For the State Sampling and State Transition approaches,

however, most estimates obtained by the State Sampling technique provided slightly more pessimistic

estimates, compared to the State Transition technique. For the RTS, the obtained system-EENS

was approximately 3-4% lower for the State Transition technique (Figure 4.7). The same pattern

could be observed for the AC-MRTBS case (Figure 4.3), however, this was not the case for the

DC-MRBTS case (Figure 4.2).
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4.3 Ørland Case Study

The effect of integrating wind power having the wind regime of Ørland in Trøndelag county, Norway

is investigated in this section. The analysis utilised the DC-based OPF-approach.

4.3.1 The Wind Speed Data

Historical wind speed data for Ørland was extracted from the Norwegian Meteorological Institute

[61]. The data was collected from the ØrlandIII observation station, and the maximum median

wind per hour was retrieved for the period from 01/01/2015 to 01/01/2021. The wind speed regime

for the first 2000 hours is plotted in Figure 4.12. The mean wind speed and the corresponding

standard deviation is given in Table 4.20.

Figure 4.12: A plot of 2000 consecutive data points for the Ørland historical data.

Table 4.20: The wind speed data for Ørland [53]

Ørland [m/s] Ørland [km/h]

Mean wind speed, µ 7.2274 26.0186

Standard deviation, σ 3.7366 13.4518

4.3.1.1 The Weibull Model

To determine the Weibull parameters from the historical data, the MATLAB function wblfit [65]

was used on the wind data collected from ØrlandIII. Due to wblfit only accepting positive numbers,

all missing measurements (denoted with not a number in the data), as well as all measurements

that were equal to 0, were removed from the data before the wblfit function was run. The Weibull

parameters are given in Table 4.21. A plot of the wind speed using this model is given in Figure 4.13.

Table 4.21: Estimated Weibull parameters for the Ørland wind-regime

Ørland, Trøndelag

α 8.1906

β 2.0604
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Figure 4.13: A plot of 2000 consecutive data points for the Ørland Weibull model.

4.3.1.2 The ARMA Model

The ARMA model for Ørland was developed using the ARMASA Toolbox in MATLAB [66]. The

MATLAB function sig2arma was used to determine an ARMA(4,3) model, based on the historical

wind speed data from the ØrlandIII observation station [61]. Missing measurements (denoted with

Not a Number in the data), as well as measurements that were equal to 0, were removed from the

data. The obtained model is given in Equation 4.3. A plot of the wind speed using this model is

given in Figure 4.14.

yt = 1.2244yt−1 − 0.0124t−2 − 0.0180yt−3 − 0.2052yt−4

+αt − 0.2772αt−1 − 0.2868αt−2 − 0.2199αt−3
(4.3)

where αt ∈ NID(0, 0.5751032) is a normal white noise process with zero mean and variance

0.5751032

Figure 4.14: A plot of 2000 consecutive data points for the Ørland ARMA model.



4.3 Ørland Case Study 82

The above-presented wind speed regimes are compared in the cumulative wind speed-plot, as

illustrated in Figure 4.15.

Figure 4.15: A plot of the different wind models for Ørland against each other. Data is sampled for

a 5 year period.

To examine the difference between the wind speed models, the average yearly output power was

calculated. The calculation used a cut-in wind speed of 4 m/s, rated wind speed of 10 m/s and

cut-out wind speed of 22.222 m/s. The average output power was based on a simulation of 1000

years of hourly wind speeds from both the ARMA- and Weibull model. The result is presented in

Table 4.22.

Table 4.22: Average output power from the WTGs using the different models for Ørland.

ARMA Weibull Historical

18.33 % 18.54% 17.85 %

4.3.2 RBTS

20 MW WECS was added to the RBTS, at bus 4, with WTG FOR set equal to zero. The WTG

modelling utilised the generator power curve with a cut-in wind speed of 4 m/s, rated wind speed

of 10 m/s and cut-out wind speed of 22.222 m/s. Each WTG unit is considered to have a capacity

of 2MW. The WECS is connected to bus 4 through a single transmission line with an unavailability

and average repair time of 0.00058 and 10h, which is equivalent to a FOR of 0.0548.

This section presents the obtained bus and system EENS-estimates for the DC-based load flow

approach using the State Sampling and State Transition approach. The LOLE estimates and

standard deviations of the estimates are provided in Appendix E, Appendix F and Appendix G.

4.3.2.1 State Sampling

The estimates of the EENS-index for the State Sampling technique were obtained by 1000 simulation

years, and are presented in Table 4.23.
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Table 4.23: Obtained estimates for the Ørland RBTSW-4 State Sampling case study

Bus nr. EENS [MWh/year]

RBTS RBTSW-4-ARMA RBTSW-4-WB

2 0.0171 0.0297 0.0000

3 9.9993 5.1086 5.7674

4 0.0000 0.0332 0.0000

5 0.0780 0.1392 0.1743

6 122.4004 122.1977 122.5959

System 132.4949 127.5084 128.5377

4.3.2.2 State Transition

The estimates of the EENS-index for the State Transition technique were obtained by 7500 simulation

years, and are presented in Table 4.24.

Table 4.24: Obtained estimates for the Ørland RBTSW-4 State Transition case study

Bus nr. EENS [MWh/year]

RBTS RBTSW-4-ARMA RBTSW-4-WB

2 0.0214 0.0182 0.0066

3 9.1255 4.8198 5.4927

4 0.0099 0.0000 0.0000

5 0.1858 0.1130 0.1487

6 122.6094 120.6649 118.0777

System 131.9520 125.6160 123.7257

The obtained estimates from the State Sampling and State Transition techniques are summarised

in Figure 4.16.

Figure 4.16: Comparison of the system-EENS in the RBTS before and after the wind penetration,

obtained by the State Sampling and State Transition techniques
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4.3.3 RTS

600MW WECS was added to the northern part of the RTS, at bus 19. The FOR of the WTGs were

set equal to 0. The WTG modelling utilised the generator power curve with a cut-in wind speed of

4 m/s, rated wind speed of 10 m/s and cut-out wind speed of 22.222 m/s. The WTG units are

considered to have a capacity of 2MW. The WECS was connected through a single transmission

line with an unavailability and average repair time of 0.00058 and 10h, which is equivalent to a

FOR of 0.0548.

This section presents the obtained bus and system EENS-estimates for the DC-based load flow

approach using the State Sampling and State Transition approach. The LOLE estimates and

standard deviations of the estimates are provided in Appendix E, Appendix F and Appendix G.

4.3.3.1 State Sampling

The State Sampling MCS was performed for 1000 simulation years. Table 4.25 presents the bus

and system estimates of the EENS obtained with the State Sampling approach utilising the ARMA

and the Weibull wind speed models. The buses that are excluded have zero EENS.

Table 4.25: Obtained estimates for the Ørland RTSW-19 State Sampling case study.

Bus nr. EENS [MWh/year]

RTS RTSW-19-ARMA RTSW-19-WB

4 0.0599 0.0325 0.0595

5 0.1278 0.0000 0.0000

6 0.4285 0.2384 0.3659

7 231.0165 232.0092 234.8121

8 0.1702 0.6663 0.0000

9 853.0728 333.2722 361.4564

10 9.3407 3.0513 3.3821

14 262.3221 98.7885 102.9933

18 0.8933 0.6108 0.3232

19 53.3067 17.6784 20.7840

System 1410.7383 686.3476 724.1766

4.3.3.2 State Transition

The State Transition MCS was performed for 7500 simulation years. Table 4.26 presents the bus

and system estimates of the EENS obtained with the State Transition approach utilising the ARMA

and the Weibull wind speed models. The buses that are excluded have zero EENS.

The obtained estimates from the State Sampling and State Transition techniques are summarised

in Figure 4.17.
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Table 4.26: Obtained estimates for the Ørland RTSW-19 State Transition case study.

Bus nr. EENS [MWh/year]

RTS RTSW-19-ARMA RTSW-19-WB

4 0.000 0.0544 0.6402

5 0.000 0.0463 0.0000

6 1.3700 0.5590 0.0000

7 226.9890 227.7337 252.1489

8 0.0572 0.2438 0.5874

9 861.1061 326.2495 338.8379

10 8.6326 3.0710 0.1848

14 260.0709 98.9796 88.8600

18 0.7255 0.2551 0.0000

19 53.7246 18.9523 11.8725

System 1412.6758 676.1447 693.1318

Figure 4.17: Comparison of the system-EENS in the RTS before and after the wind penetration,

obtained by the State Sampling and State Transition techniques

4.3.4 Observations and Discussion

The obtained estimates for the Ørland Case Study were conducted in the RBTS and the RTS. For

the RBTS, the system-EENS prior to adding the wind power is heavily dominated by the EENS at

bus 6, even though bus 3 has the lowest priority order in the system. This is due to the weak single

transmission line between bus 5 and bus 6. The conventional generators in this system are located

north in the system, at bus 1 or bus 2. The WECS is added to bus 4, in the central part of the

system. If the single transmission line in the south, from bus 5 to bus 6, experiences a failure, this

will always lead to load curtailment at bus 6. Therefore, the EENS at bus 6 remains unchanged

after the wind energy is included at bus 4, as illustrated in Table 4.23 and Table 4.24. The EENS at

bus 3 is, however, decreased by approximately 50%. However, since the system-EENS is so heavily

dominated by the EENS at bus 6, the system-EENS is only decreased by approximately 3-5% after

the wind penetration.

For the RTS, it is observed that the Ørland wind speed regime has a larger impact on reducing

the EENS than the Swift Current wind regime, when WECS is included at bus 19. For the Swift
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Current wind regime, and inclusion of 600MW WECS, the system-EENS decreases by approximately

33-36% (Table 4.9 and Table 4.10). For the Ørland wind-regime the system-EENS decreases by

approximately 49-52% (Table 4.25 and Table 4.26). A comparison of the two wind speed regimes is

illustrated in Figure 4.18.

Figure 4.18: The Weibull probability density functions for Ørland and Swift Current.

Figure 4.18 illustrates that the Ørland wind speed regime is better suited for the WECS integration

with the cut-in, rated and cut-out wind speeds that were utilised in the WTG modelling of this

thesis. This is because a higher proportion of the wind speeds are above, or close to, the rated

wind speed of 10 m/s. Subsequently, this results in a higher WTG output power delivered to the

system. If the mean wind speed and standard deviation of the Ørland wind speed data (Table 4.20)

are compared to the mean wind speed and standard deviation of the Swift Current wind speed

data (Table 4.1), it is also observed that the Ørland wind speed data has a much higher mean

wind speed. The mean wind speed at the Ørland wind site was measured to be approximately 26

km/h (7.2 m/s), while the mean wind speed at the Swift Current wind site was measured to be

approximately 19.5 km/h (5.4 m/s).

The differences between the ARMA- and Weibull wind speed models are illustrated in Figure 4.13

and Figure 4.14. The ARMA model follows a more realistic regime, as the wind speed at a particular

hour is autocorrelated with the previous wind speeds. With this model, there can be long periods

of low/high wind speeds, until a period of high/low wind speeds begins. The wind speed regime

from the Weibull model, however, fluctuates randomly, as the wind speed at a particular hour has

no autocorrelation with the previous hours. If the wind speed data obtained from the two methods

are compared to the historical data, Figure 4.12, it is clear that only the wind speed regime from

the ARMA model reflects the fluctuation of the historical data in a realistic way. However, when

the wind speed data is sampled for a long period, e.g 5 years, like in this thesis, both the Weibull

and ARMA models are able to represent the historical wind data adequately, as illustrated in

Figure 4.15. In certain studies, like assessment incorporating the correlation between wind speed

and load demand, only the ARMA model is suitable. This is because only the ARMA model can

illustrate the impact of wind speed variation within a year. However, for the assessment conducted

in this thesis, the Weibull model also represents the wind speed adequately. As illustrated in

Table 4.22, the obtained average output power from the WTGs are very similar for the wind speed

models and the Ørland wind speed regime. The output power when the Weibull model was utilised
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was measured to be 1.1% higher than the ARMA model.

4.3.5 Sensitivity Analyses

The sensitivity associated with selected considerations when integrating wind power to composite

power systems is analysed in this section. The assessment utilises the DC-based load flow approach

and the Weibull- and ARMA wind speed models.

4.3.5.1 Degree of Wind Power Capacity

The impact of integrating wind power with different degrees of installed wind power capacity in the

RTS is analysed in this section. The analysis utilised the Weibull wind speed model. The different

degrees of installed wind power penetrations examined are 15%, 30%, 45% and 60% of the total

capacity in the RTS. Without any wind penetration, the installed capacity of the RTS is 3405 MW.

With 15% wind power in the system, 600 MW WECS is added. 30% wind power is equivalent to

1460 MW WECS added to the system, 45% wind power is equivalent to 2786 MW WECS added

to the system, and 60% wind power is equivalent to 5108 MW WECS added to the system. The

WECS was added to bus 19 in the RTS, having both the wind speed regime of the Ørland wind

site and the Swift Current wind site. The system EENS with the different degrees of installed wind

power capacity compared to the total capacity in the RTS is illustrated in Figure 4.19.

Figure 4.19: The system EENS for different levels of installed wind power capacity at bus 19 in the

RTS.

Figure 4.19 illustrates the degree of adequacy reliability benefit of adding WECS with different

wind speed regimes to the RTS. For the Ørland wind regime, if added WECS capacity at bus

19 composed of 15% of the total capacity in the system, the system EENS is reduced by almost

50%. For the Swift Current wind regime, the system EENS is reduced by approximately 35%.

For an increase in added wind power capacity to 30% of the total installed capacity, the system

EENS is reduced by approximately 56% for the Ørland wind regime. For the Swift Current wind

regime, the system EENS is decreased by approximately 50%. As the installed WECS capacity is

increased further, the system EENS decreases at a much lower rate. At a certain point, increasing

the installed WECS capacity does not contribute to lowering the system EENS. This point, where
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increasing the WECS capacity barely contributes to decreasing the system EENS, is very dependent

on the system characteristics. The RTS is considered to have a strong transmission network, and

therefore the power is relatively easily transported to the buses. The RBTS, however, has a weak

transmission network, due to the radial supply to bus 6. Increasing the installed WECS capacity in

such a system could therefore lead to a much smaller decrease in the system EENS-metric.

The impact of the wind speed regime on the reliability benefit of adding WECS to the system is

clearly illustrated in Figure 4.19. For the Ørland wind regime, the system-EENS is reduced by

approximately 50% when the installed wind power capacity represents 15% of the total capacity in

the RTS(600MW WECS). To achieve the same reduction in system-EENS for the Swift Current

wind regime, the installed wind power capacity must be increased to approximately 1460MW. In

this case, the installed wind power capacity compose of approximately 30% of the total capacity in

the RTS. When the percentage wind power capacity in the system is increased to approximately

45%(2786MW WECS), the decrease in system-EENS is approximately equal for both wind speed

regimes.

4.3.5.2 Single Site Location Analysis

The impact of integrating wind power at different locations in the RTS is analysed in this section.

600MW WECS was individually added at selected buses in the RTS with the Ørland wind speed

regime. The system-EENS with the addition of WECS at the selected locations is illustrated in

Figure 4.20.

Figure 4.20: The system EENS for addition of WECS at different single sites.

It is observed that the system-EENS is relatively constant when WECS is added at most of the

buses in the RTS. The exception is the addition of WECS at bus 7, which yields a significantly

higher system-EENS compared to the addition at the other buses. This is likely to be because

bus 7 is connected to the rest of the system by a single radial line in the southeast of the RTS

(Figure B.1). If this transmission line experiences a failure, the generated power at bus 7 cannot be

transported to the rest of the system. Subsequently, the system and load point reliabilities are not

improved as much as for the addition of WECS at buses with a strong connection to the rest of the

system.
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4.3.5.3 Wind Speed Correlation Between Two Sites

The impact of integrating multiple WECS in the RTS with different degrees of wind speed correlation

is analysed in this section. Two WECS having a capacity of 300MW were added to bus 1 and bus

3 in the RTS. 600 MW is equivalent to 15% installed wind power capacity in the RTS. Both WECS

had the wind-regime of Ørland, as presented in section 4.3.1.2. The different degrees of wind speed

correlation examined is 0, 0.2, 0.5, 0.8 and 1. The system-EENS with the different degrees of wind

speed correlation is illustrated in Table 4.27. The ARMA model was utilised to model the wind

speeds.

Table 4.27: System-EENS for wind speed correlation at RTS with the Ørland wind regime.

R EENS [MWh/year]

RTS RTSW-1&3-Ørland

0.0 1410.738 532.375

0.2 549.340

0.5 581.333

0.8 622.084

1.0 655.140

Figure 4.21: The system EENS for different levels of wind speed correlation between bus 1 and bus

3.

The results presented in Table 4.27 are plotted in Figure 4.21, and compares the results to the

corresponding Swift Current/Regina results presented in Table 4.14. The results presented in

Table 4.14 used the Swift Current wind speed regime at bus 1, and the Regina wind speed regime

at bus 3, instead of using the Ørland wind speed regime at bus 1 and bus 3. It is observed that the

system-EENS is significantly lower for the Ørland wind speed regime for all levels of wind speed

correlation between the sites. The reason for this is likely to be that the Ørland site has higher

mean wind speed values, as presented in the preceding sections.

It is further observed that the system-EENS for the Ørland-case is more sensitive to the degree of

wind speed correlation between the two sites, compared to the Swift Current/Regina case. The
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reason for this can be how the wind speeds for the different sites are distributed. Figure 4.22

illustrates the probability density distributions of the wind speeds from the three sites. It can be

seen that the Ørland wind speed values are spread over a longer interval, and in general deviate

more compared to the Swift Current and Regina wind speed regimes. The Swift Current and

Regina wind speed regimes, however, have a more peaked distribution, since the wind speeds tend

to be close to a certain value. In addition, the distributions of the Swift Current and Regina wind

speeds are very similar, as the distributions peak at very similar wind speeds. These characteristics

are related to the shape parameter, β, of the Weibull probability density function. Since the

distribution of the Ørland wind speed regime is less peaked, and the wind speed model subsequently

can take a larger set of values, the cases with a low degree of correlated wind speeds can have a

higher deviation between the wind speeds at the two sites, compared to the Swift Current- and

Regina wind speed regimes. A higher difference between the hourly wind speeds at multiple sites

will subsequently lead to a larger benefit(decrease) in the system-EENS.

Figure 4.22: The Weibull probability density functions for Swift Current, Regina and Ørland.

4.3.5.4 Wind Turbine Generators Replacing Conventional Generators

This section analyses the impact of adding wind turbine generators while also removing some of

the existing conventional generators in the RTS. A list of the existing conventional generators in

the RTS is shown in Table B.1. The analysis includes 600MW WECS added to bus 19 in the RTS

for all cases. The wind speed sampling used the Ørland Weibull wind speed model. All simulations

used the DC-based approach and the State Sampling technique. The following three cases are

examined:

• RTSW-13-197: A 197 MW (oil) generator is removed from bus 13. 600MW WECS is added

at bus 19.

• RTSW-18-400: A 400MW (nuclear) generator is removed from bus 18. 600MW WECS is

added at bus 19.

• RTSW-18-21-400: A 400MW (nuclear) generator is removed from bus 18, and a 400MW

(nuclear) generator is removed from bus 21. 600MW WECS is added at bus 19.
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The results of the three cases are presented and compared to the corresponding cases for the RTS

without wind penetration in Figure 4.23 and Table 4.28.

Table 4.28: System-EENS while removing conventional generation from the RTS.

Cases EENS [MWh/year]

Without wind penetration With wind penetration

RTS 1410.7383 724.1766

RTSW-13-197 4797.0245 2216.9316

RTSW-18-400 8279.3988 3696.0748

RTSW-18-21-400 54180.6326 23636.0992

Figure 4.23: The system EENS with removed existing conventional generators in the RTS.

It is observed that the system-EENS increases significantly for all the examined cases. For the

RTSW-13-197-case, where the installed wind capacity is approximately three times the capacity of

the removed conventional generator, there is an increase of approximately 57% for the system-EENS

from the RTS-base case without wind penetration. For the RTSW-18-400-case there is an increase

of approximately 162%, while there is an increase of approximately 1573% in the system-EENS for

the RTSW-18-21-400-case. Extensive large-scale WECS installations are required if wind power is

going to replace existing conventional generation, while maintaining the same level of system-EENS,

for a system like the RTS. The analysis illustrates that the RTS has a weak generation system, as

the system-EENS is very sensitive to the removal of the existing conventional generators. This is

confirmed in [53].

4.3.5.5 Increasing the System Peak Load

This section analyses the impact of increasing the system peak load in the RTS while adding WECS

to the system. The peak load in the original RTS is 2850MW. The percentage hourly peak load

is illustrated in Appendix C. The analysis includes 600MW WECS to bus 19 and uses the State

Sampling technique and the Weibull wind speed model with the Ørland wind speed regime. The

following cases are investigated:
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• System peak load is increased by 5%. This is equivalent to increasing the peak load to

2992.5MW.

• System peak load is increased by 10 %. This is equivalent to increasing the peak load to

3143MW.

• System peak load is increased by 15 %. This is equivalent to increasing the peak load to

3277.5MW

• System peak load is increased by 20 %. This is equivalent to increasing the peak load to

3420MW

The results are presented in Table 4.29, and illustrated in Figure 4.24.

Table 4.29: System-EENS for system load increases in RTS with the Ørland wind regime.

Peak Load Increase EENS [MWh/year]

RTS RTSW-19-Ørland

0 % 1410.7383 724.1766

5 % 3308.2508 1547.8594

10 % 8000.7691 3494.6482

15 % 16382.0783 7628.6637

20 % 33397.9598 15811.7726

Figure 4.24: The system EENS for different levels of increased peak load.

It is observed that the system-EENS increases exponentially as the peak load increases. This

coincides with the results in section 4.3.5.4, where generation was removed from the system. With

wind penetration in the system, the system-EENS deceases approximately equivalently to decreasing

the peak load of the system by 5%. Without wind in the system, the system-EENS is doubled

compared to the RTSW-case, for all levels of increased peak load in the system. It should be noted

that this thesis utilises the same load curves at all the buses of the test systems, instead of using

individual load curves at the different buses. As in the preceding chapter, it is observed that the

RTS has a relatively weak generation system, that is sensitive to an increase in the load demand.
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4.3.5.6 Number of Wind Farms

The impact of spreading the WECS generation across multiple wind farms/sites in the RTS is

analysed in this section. The total WECS capacity is 600MW for all simulations. Four different

scenarios are considered: 600MW WECS connected to one bus, 600MW WECS spread over two

buses(300MW at each bus), 600MW WECS spread over 3 buses(200MW at each bus) and 600MW

spread over 4 buses(150MW at each bus). The analysis utilised the State Sampling approach with

the Weibull wind speed model and the Ørland wind speed regime. The simulations were capped at

1000 simulation years. To provide realistic scenarios, the following wind penetration(s) and wind

speed correlation(s) was considered in the analysis:

• 1 Wind Site: WECS added to bus 19.

• 2 Wind Sites: WECS added to bus 1 and 3. R = 0.8.

• 3 Wind Sites: WECS added to bus 1, 3 and 19. Wind speed correlation between bus 1 and 3:

R1,3 = 0.8. Wind speed correlation between bus 1 and 19, and bus 3 and 19: R1,19 = R3,19

= 0.2. The correlation matrix, Σ, is illustrated in Equation 4.4.

Σ =

 1 0.8 0.2

0.8 1 0.2

0.2 0.2 1

 (4.4)

• 4 Wind Sites: WECS added to bus 1, 3, 19 and 21. Wind speed correlation between bus 1

and 3, 19 and 21: R1,3 = R19,21 = 0.8. Wind speed correlation between bus 1 and 19, and

bus 3 and 19: R1,19 = R3,19 = 0.2. The correlation matrix, Σ, is illustrated in Equation 4.5.

Σ =


1 0.8 0.2 0.2

0.8 1 0.2 0.2

0.2 0.2 1 0.8

0.2 0.2 0.8 1

 (4.5)

The estimated system-EENS for the presented scenarios are illustrated, and compared to the original

RTS, in Table 4.30 and Figure 4.25.

Table 4.30: System-EENS for the RTS with multiple, correlated wind sites with the Ørland wind

speed regime

Nr. of Wind Sites System-EENS [MWh/year]

0 1410.738

1 693.1318

2 622.084

3 537.3723

4 520.7887
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Figure 4.25: The system EENS for different numbers of wind sites.

The effect of connecting different numbers of multiple WECS in the RTS is clearly illustrated in

Table 4.30 and Figure 4.25. The system-EENS decreases as the number of wind farms increase.

There can be multiple reasons for this. If the generation is spread over a larger area, the added

generation is closer to the delivery points, and the transmission lines would in general less often

experience a failure. Also, when the WECS is spread over a larger area, the wind speed correlation

between the wind farms decrease, which is beneficial for the reliability benefit. As illustrated in

Figure B.1, bus 1 and bus 3 is located in the southwest of the RTS, while bus 19 and bus 21 is

located in the north of the RTS. The buses that are located in close proximity in the RTS were

assigned a high degree of wind speed correlation. The wind speed correlation between the buses

with a large distance, however, was assigned a low degree of correlation.

It is observed that the system-EENS decreases by approximately 10% when the number of wind

sites is increased from 1 to 2, and there is a relatively high degree of wind speed correlation between

the sites(0.8). When the number of wind sites is increased to 3, there is a further approximately

14% decrease in the system-EENS compared to having 2 wind sites. The reason for the larger

decline in the system-EENS, compared to going from 1 to 2 wind farms, is likely because there

is a much lower degree of wind speed correlation between the third bus added (19) and the first

two buses (1 and 3). The addition of bus 19, therefore, contributes more to the overall system

reliability. From having 3 wind sites to 4 wind sites in the RTS, the system-EENS decreases further

by approximately 3%. The last wind site addition (bus 21) has a high degree of correlation with

bus 19 and is not able to decrease the system-EENS to the same degree as the addition of bus

19. It should be noted that the WECS in this case is connected to relatively strong points in the

transmission system.
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5 Conclusions and Future Work

5.1 Conclusions

The thesis examined methods of assessing the impact of integrating wind power on the reliability

(adequacy aspect) of composite power systems. A framework for assessing the reliability of a

composite power system that contains significant wind penetration was created through the State

Sampling and State Transition MCS methods. A suitable methodology for the PSR assessment

was identified through a literature review, and in-house software tools were developed to obtain

appropriate HL-II indices. The developed scripts were tested on three test systems: the RBTS,

MRBTS and RTS.

One of the challenges with including wind power in reliability assessment, is to provide an accurate

representation of the variability and intermittent nature of the wind speed, and subsequently the

output power of the WTGs. This thesis identified and developed two wind speed models, the

Weibull wind speed model and the ARMA wind speed model, that were included in the framework.

Further, wind speed correlation between wind sites was identified as an important factor to the

accuracy of quantifying the potential impact of integrating wind power to the reliability of power

systems. Methods that can incorporate wind speed correlation between multiple wind sites were

identified and developed.

The examined concepts and methods were implemented in the existing composite adequacy MATLAB

scripts at the Department of Electric Power Engineering at NTNU, using both a DC-based

contingency solver and an AC-based contingency solver. It was observed that the results obtained

from the AC-based contingency solver were more pessimistic, since this approach includes more

considerations than the simplified DC-based contingency solver. Further, the AC-based approach

required extensive computation time compared to the DC-based approach. Because of this, most

of the assessment in this thesis utilised the DC-based contingency solver. The EENS-metric

was identified as the preferred HL-II metric to examine the impact of integrating wind power in

composite systems. In addition to the EENS-index, the developed scripts include LOLE-calculation.

The LOLE-metric only considers the expected number of time units in which the system experiences

a LOL situation, while the EENS quantifies the severity of LOL events.

Computational efficiency, accuracy and precision of the MCS approach have not been examined

in the thesis. The focus has been to develop scripts that provide a good, basic job of obtaining

reliability indices. The number of simulation years was capped at 1000 years for the State Sampling

approach, and 7500 years for the State Transition approach, as this was in general considered to

yield a sufficient precision for the purposes of the thesis. The standard deviations of the results are

included in the appendix.

The developed scripts were implemented on standard test systems and their results compared with

benchmark results; for validation, the Swift Current wind speed regime in Canada was used as

input. It was observed that there are many considerations that can have a large impact on the

results in HL-II studies. One important factor is the load shedding philosophy, which controls the

load curtailment at the buses. This thesis utilised the priority order philosophy, which is based on

ranking the composite system delivery points by setting different costs for load curtailment at the

delivery points according to a reliability worth index.

Since the validation of the developed scripts was successfully tested for the Canadian case study,

the proof was deemed sufficient enough for conducting a successful case study involving the wind

speed regime of Ørland, Norway. (No benchmark comparison is available in the literature for this

Norwegian case study.) An ARMA model was developed based on historical data, as well as the
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Weibull scale and shape parameters used to sample the wind speed with the Weibull distribution. It

was observed that the Ørland wind speed regime is well-suited for wind integration in power systems,

compared to the Swift Current wind speed regime. For 15% installed wind power penetration, with

the Ørland wind-regime in the RTS, the system-EENS decreased by approximately 49-52%. The

impact of integrating wind power at a specific location can be very different for each delivery point.

It was observed that if buses have a radial connection with the rest of the system, the reliability

at such a delivery point can be strongly dependent on the reliability of the radial connection.

Integrating wind power to a system with weak reliability of radial connections, might not affect the

reliability at the vulnerable delivery points.

The ARMA model and the Weibull model provided similar estimates for the EENS-metric when

power systems with wind penetration were examined. Neither of the two methods was preferred in

this thesis, however, the ARMA model is able to illustrate the variability of a real wind speed regime,

due to autocorrelation between wind speeds at a particular hour and the previous hours. Therefore,

in certain types of assessment, e.g assessment considering the impact of load-wind correlation, only

the ARMA-model is sufficient. The drawback with the ARMA model is that a large historical wind

data set can be required for the model to be accurate.

The Non-sequential State Sampling and the Sequential State Transition approaches are compared

in the thesis. Both methods provide similar results, and the small deviation could be decreased by

increasing the number of simulation years. Relatively small modifications were required for the

developed wind speed models to be included in the Sequential and Non-sequential approaches. It

was observed that the State Sampling approach required fewer simulation years than the State

Transition approach to obtain the same accuracy of the indices. Therefore, the computation time

was shorter for the State Sampling approach, to obtain estimates with sufficient accuracy.

5.2 Future Work

The work conducted in this thesis could be extended to quantify the impact of wind and load

correlation on the reliability of power systems. The different buses in the test systems could have

individual load curves, instead of using the same load curves. It could also be interesting to examine

real power systems, instead of standardised test systems. The scope could also be extended to an

HL-III assessment, by including the distribution facilities.

The thesis developed software tools that are applicable to contingency solvers based on DC-load

flow analysis and AC-load flow analysis. The AC-based approach required considerable more

computation time, and was therefore limited to the most basic assessment, despite yielding higher

estimates. The software tools could be developed to reduce the computational time of the AC-based

approach, for example by using a decoupled OPF approach.

The software tools developed in this thesis could be extended to be used in a well-being analysis with

significant wind penetration. The well-being analysis combines the deterministic and probabilistic

methods, and can provide an extended viewpoint of the effects of integrating wind power to a

system. The Sequential simulation technique is the only realistic option available to investigate the

distributional aspects associated with the well-being analysis [26].

Battery energy storage systems may be an essential key in exploiting wind energy. The work of

this thesis can be extended to include battery energy storage system considerations.

Solar power is another renewable energy source that is growing at a fast pace. It would be interesting

to quantify the impact of significant solar power penetration on the reliability of the composite

power system. The interaction and correlation between solar power- and wind power production
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could be examined and included in a reliability assessment.

The decrease in output power due to the wake effect between multiple wind turbines in a wind

farm is not included in this thesis. Methods to incorporate the effects of this phenomena could be

developed. Also, the wind speeds were not adjusted for the hub heights of wind turbines.

The effect of seasonal wind speed variations could be examined. Seasonal variations could improve

the wind speed model.

Increased penetration of wind power introduces uncertainties associated with the security aspect

of power system reliability. The effects of significant wind power penetration on the dynamic

conditions of the power system, such as transient or voltage instability associated with sudden

disturbances of system components, could be examined.
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Appendix

A RBTS

The RBTS is a PSR test system developed by the Power Systems Research Group at the University

of Saskatchewan [67]. The system gives enough parameters to conduct both HL-I and HL-II PSR

studies. The design intent of the system was to develop a system for educational purposes that is

intricate enough to reflect nuances of PSR, while simultaneously being small enough to be able to

be analyzed by hand or small computer programs [67].

The system is a 6-bus system with 11 generators, 9 transmission lines, an installed capacity of 240

MW and a peak load of 185 MW. The generators are divided on two buses, 1 and 2. The single

line diagram of the generation and transmission system is illustrated in Figure A.1. The system

data that is required to conduct HL-II assessment is provided in Table B.1, Table B.2, Table B.3

and Table B.4.

Figure A.1: Single line diagram of the RBTS
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A.1 The RBTS Generator Data

Table A.1: The generator data of the RBTS test system

Generator Capacity

[MW]

Bus Reactive min

[MVAr]

Reactive max

[MVAr]

FOR Failure rate

[1/year]

Repair rate

[1/year]

1 10 1 0 7 0.020 4.0 196.0

2 20 1 -7 12 0.025 5.0 195.0

3 40 1 -15 17 0.030 6.0 194.0

4 40 1 -15 17 0.030 6.0 194.0

5 5 2 0 5 0.010 2.0 198.0

6 5 2 0 5 0.010 2.0 198.0

7 20 2 -7 12 0.015 2.4 157.6

8 20 2 -7 12 0.015 2.4 157.6

9 20 2 -7 12 0.015 2.4 157.6

10 20 2 -7 12 0.015 2.4 157.6

11 40 2 -15 17 0.020 3.0 147.0

A.2 The RBTS Network Data

Table A.2: The outage data of the RBTS network.

Line From Bus To Bus Failure rate [1/year] MTTR [hours] FOR

1 1 3 1.5 10 0.00171

2 2 4 5.0 10 0.00568

3 1 2 4.0 10 0.00455

4 3 4 1.0 10 0.00114

5 3 5 1.0 10 0.00114

6 1 3 1.5 10 0.00171

7 2 4 5.0 10 0.00568

8 4 5 1.0 10 0.00114

9 5 6 1.0 10 0.00114

Table A.3: The RBTS network parameters.

Line From Bus To Bus Resistance [pu] Reactance [pu] B/2 [pu] Current Rating [pu]

1 1 3 0.0342 0.18 0.0106 0.85

2 2 4 0.1140 0.60 0.0352 0.71

3 1 2 0.0912 0.48 0.0282 0.71

4 3 4 0.0228 0.12 0.0071 0.71

5 3 5 0.0228 0.12 0.0071 0.71

6 1 3 0.0342 0.18 0.0106 0.85

7 2 4 0.1140 0.60 0.0352 0.71

8 4 5 0.0228 0.12 0.0071 0.71

9 5 6 0.0228 0.12 0.0071 0.71
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A.3 The RBTS Bus Data

Table A.4: The Bus data of the RBTS

Bus Share of load Vmin [p.u] Vmax [p.u] Curtailment cost [$/kWh]

1 0 0.97 1.05 0

2 0.1081 0.97 1.05 9.6325

3 0.4595 0.97 1.05 4.3769

4 0.2162 0.97 1.05 8.0267

5 0.1081 0.97 1.05 8.6323

6 0.1081 0.97 1.05 5.5132
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B IEEE-RTS

The IEEE-RTS is a widely used test system, originally developed in 1979. The following presents

the 1996 version (IEEE-RTS96). Several modified versions have since been developed [68, 69].

The model has 3 different configurations, a single-area 24-bus system, a two-area 48-bus system

and a three-area 73-bus system [70]. The thesis utilizes the single area 24-bus system, as illustrated

in Figure B.1.

As with the RBTS, the IEEE-RTS has sufficient data to conduct HL-II PSR studies, but the system

is more complex. The single-area configuration has an installed capacity of 3405 MW and a peak

load of 2850 MW. The system consists of 32 generators, ranging from a capacity of 12 MW to

400 MW. The system data that is required to conduct HL-II assessment is provided in Table B.1,

Table B.2, Table B.3 and Table B.4.

Figure B.1: Single line diagram of the RTS [70]
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B.1 The RTS Generator Data

Table B.1: The generator data of the IEEE-RTS

Capacity [MW] Bus Xmin [MVAr] Xmax [MVAr] FOR MTTF MTTR

12 15 0 6 0.02 2940 60

12 15 0 6 0.02 2940 60

12 15 0 6 0.02 2940 60

12 15 0 6 0.02 2940 60

12 15 0 6 0.02 2940 60

20 1 0 10 0.1 450 50

20 1 0 10 0.1 450 50

20 2 0 10 0.1 450 50

20 2 0 10 0.1 450 50

50 22 -10 16 0.01 1980 20

50 22 -10 16 0.01 1980 20

50 22 -10 16 0.01 1980 20

50 22 -10 16 0.01 1980 20

50 22 -10 16 0.01 1980 20

50 22 -10 16 0.01 1980 20

76 1 -25 30 0.02 1960 40

76 1 -25 30 0.02 1960 40

76 2 -25 30 0.02 1960 40

76 2 -25 30 0.02 1960 40

100 7 0 60 0.04 1200 50

100 7 0 60 0.04 1200 50

100 7 0 60 0.04 1200 50

155 15 -50 80 0.04 960 40

155 16 -50 80 0.04 960 40

155 23 -50 80 0.04 960 40

155 23 -50 80 0.04 960 40

197 13 0 80 0.05 950 50

197 13 0 80 0.05 950 50

197 13 0 80 0.05 950 50

350 23 -25 150 0.08 1150 100

400 18 -50 200 0.12 1100 150

400 21 -50 200 0.12 1100 150

0 14 -50 200 0 - -

0 6 -100 0 0 - -
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B.2 The RTS Network Data

Table B.2: The outage data of the RTS network.

Line From Bus To Bus Failure rate [1/year] MTTR [hours] FOR

1 1 2 0.24 16 0.000438164

2 1 3 0.51 10 0.000581853

3 1 5 0.33 10 0.000376570

4 2 4 0.39 10 0.000445007

5 2 6 0.48 10 0.000547645

6 3 9 0.38 10 0.000433602

7 3 24 0.02 768 0.001750356

8 4 9 0.36 10 0.000410790

9 5 10 0.34 10 0.000387977

10 6 10 0.33 35 0.001316757

11 7 8 0.30 10 0.000342349

12 8 9 0.44 10 0.000502031

13 8 10 0.44 10 0.000502031

14 9 11 0.02 768 0.001750356

15 9 12 0.02 768 0.001750356

16 10 11 0.02 768 0.001750356

17 10 12 0.02 768 0.001750356

18 11 13 0.40 11 0.000502031

19 11 14 0.39 11 0.000489486

20 12 13 0.40 11 0.000502031

21 12 23 0.52 11 0.000652542

22 13 23 0.49 11 0.000614918

23 14 16 0.38 11 0.000476941

24 15 16 0.33 11 0.000414212

25 15 21 0.41 11 0.000514575

26 15 21 0.41 11 0.000514575

27 15 24 0.41 11 0.000514575

28 16 17 0.35 11 0.000439305

29 16 19 0.34 11 0.000426758

30 17 18 0.32 11 0.000401665

31 17 22 0.54 11 0.000677623

32 18 21 0.35 11 0.000439305

33 18 21 0.35 11 0.000439305

34 19 20 0.38 11 0.000476941

35 19 20 0.38 11 0.000476941

36 20 23 0.34 11 0.000426758

37 20 23 0.34 11 0.000426758

38 21 22 0.45 11 0.000564749
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Table B.3: The RTS network parameters.

Line From Bus To Bus Resistance [pu] Reactance [pu] B/2 [pu] Current Rating [pu]

1 1 2 0.0026 0.0139 0.23055 1.93

2 1 3 0.0546 0.2112 0.0286 2.08

3 1 5 0.0218 0.0845 0.01145 2.08

4 2 4 0.0328 0.1267 0.01715 2.08

5 2 6 0.0497 0.192 0.026 2.08

6 3 9 0.0308 0.119 0.0161 2.08

7 3 24 0.0023 0.0839 0 5.1

8 4 9 0.0268 0.1037 0.01405 2.08

9 5 10 0.0228 0.0883 0.01195 2.08

10 6 10 0.0139 0.0605 1.2295 1.93

11 7 8 0.0159 0.0614 0.0083 2.08

12 8 9 0.0427 0.1651 0.02235 2.08

13 8 10 0.0427 0.1651 0.02235 2.08

14 9 11 0.0023 0.0839 0 5.1

15 9 12 0.0023 0.0839 0 5.1

16 10 11 0.0023 0.0839 0 5.1

17 10 12 0.0023 0.0839 0 5.1

18 11 13 0.0061 0.0476 0.04995 6

19 11 14 0.0054 0.0418 0.04395 6

20 12 13 0.0061 0.0476 0.04995 6

21 12 23 0.0124 0.0966 0.1015 6

22 13 23 0.0111 0.0865 0.0909 6

23 14 16 0.005 0.0389 0.0409 6

24 15 16 0.0022 0.0173 0.0182 6

25 15 21 0.0063 0.049 0.0515 6

26 15 21 0.0063 0.049 0.0515 6

27 15 24 0.0067 0.0519 0.05455 6

28 16 17 0.0033 0.0259 0.02725 6

29 16 19 0.003 0.0231 0.02425 6

30 17 18 0.0018 0.0144 0.01515 6

31 17 22 0.0135 0.1053 0.1106 6

32 18 21 0.0033 0.0259 0.02725 6

33 18 21 0.0033 0.0259 0.02725 6

34 19 20 0.0051 0.0396 0.04165 6

35 19 20 0.0051 0.0396 0.04165 6

36 20 23 0.0028 0.0216 0.02275 6

37 20 23 0.0028 0.0216 0.02275 6

38 21 22 0.0087 0.0678 0.0712 6
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B.3 The RTS Bus Data

Table B.4: The Bus data of the RTS

Bus Share of load Vmin [p.u] Vmax [p.u] Curtailment cost [$/kWh]

1 0.038 0.95 1.05 8.9815

2 0.034 0.95 1.05 7.3606

3 0.063 0.95 1.05 5.8990

4 0.026 0.95 1.05 9.5992

5 0.025 0.95 1.05 9.2323

6 0.048 0.95 1.05 6.5238

7 0.044 0.95 1.05 7.0291

8 0.06 0.95 1.05 7.7742

9 0.061 0.95 1.05 3.6623

10 0.068 0.95 1.05 5.1940

11 0 0.95 1.05 0.0000

12 0 0.95 1.05 0.0000

13 0.093 0.95 1.05 7.2813

14 0.068 0.95 1.05 4.3717

15 0.111 0.95 1.05 5.9744

16 0.035 0.95 1.05 7.2305

17 0 0.95 1.05 0.0000

18 0.117 0.95 1.05 5.6149

19 0.064 0.95 1.05 4.5430

20 0.045 0.95 1.05 5.6836

21 0 0.95 1.05 0.0000

22 0 0.95 1.05 0.0000

23 0 0.95 1.05 0.0000

24 0 0.95 1.05 0.0000
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C Test System Load

Table C.1: The weekly peak load, used in the hourly peak load model for all simulations.

Week Peak Load [%] Week Peak Load [%] Week Peak Load [%] Week Peak Load

1 86.2 14 75.0 27 75.5 40 72.4

2 90.7 15 72.1 28 81.6 41 74.3

3 87.8 16 80.0 29 80.1 42 74.4

4 83.4 17 75.4 30 88.0 43 80.0

5 88.0 18 83.7 31 72.2 44 88.1

6 84.1 19 87.0 32 77.6 45 88.5

7 83.2 20 88.0 33 80.0 46 90.9

8 80.6 21 85.6 34 72.9 47 94.0

9 74.0 22 81.1 35 72.6 48 89.0

10 73.7 23 90.0 36 70.5 49 94.2

11 71.5 24 88.7 37 78.0 50 97.0

12 72.7 25 89.6 38 69.5 51 100.0

13 70.4 26 86.1 39 72.4 52 95.2

Table C.2: The weekday peak load, used in the hourly peak load model for all simulations.

Day Peak Load [%]

Monday 93

Tuesday 100

Wednesday 98

Thursday 96

Friday 94

Saturday 77

Sunday 75
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Table C.3: The hourly peak load, used in the hourly peak load model for all simulations.

Winter weeks Summer weeks Spring/fall weeks

1-8 & 44-52 18-30 9-17 & 31-43

Hour Weekday Weekend Weekday Weekend Weekday Weekend

0-1 67 78 64 74 63 75

1-2 63 72 60 70 62 73

2-3 60 68 58 66 60 69

3-4 59 66 56 65 58 66

4-5 59 64 56 64 59 65

5-6 60 65 58 62 65 65

6-7 74 66 64 62 72 68

7-8 86 70 76 66 85 74

8-9 95 80 87 81 95 83

9-10 96 88 95 86 99 89

10-11 96 90 99 91 100 92

11-12 95 91 100 93 99 94

12-13 95 90 99 93 93 91

13-14 95 88 100 92 92 90

14-15 93 87 100 91 90 90

15-16 94 87 97 91 88 86

16-17 99 91 96 92 90 85

17-18 100 100 96 94 92 88

18-19 100 99 93 95 96 92

19-20 96 97 92 95 98 100

20-21 91 94 92 100 96 97

21-22 83 92 93 93 90 95

22-23 73 87 87 88 80 90

23-24 63 81 72 80 70 85
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D MATLAB Codes

In this section, selected parts of the developed MATLAB code is presented. All of the proceeding

code is related to the WTG power output.

D.1 wtg poweroutput

1 f unc t i on [ power f rac t i on ] = wtg poweroutput (v ,A,B,C, v c i , v r , v co )

2 % Returns a number between 0 and 1 corre spond ing to the amount o f rated

3 % power a WTG can produce under the g iven windspeed v .

4

5 i f v < v c i

6 power f rac t i on = 0 ;

7 e l s e i f v < v r

8 power f rac t i on = A+B∗v+C∗v ˆ2 ;
9 e l s e i f v < v co

10 power f rac t i on = 1 ;

11 e l s e

12 power f rac t i on = 0 ;

13 end

14 end

D.2 ARMAy

1 f unc t i on [ Yt , Alphat ] = ARMAy(Yt , Alphat ,AR,MA, sigma , u)

2 %Recieves a 5 element vec to r YT and 4 elemente Alphat , p o s i t i o n 1 i s f o r

3 %time = t , p o s i t i o n 2 i s f o r time = t−1 and so on .

4 %Generates the next Y and Alpha , and s h i f t s the vec to r

5 %AR,MA and sigma i s the ARMA model parameters

6 %u i s a random number normaly d i s t r i b u t e d number ( from the randn func t i on ) .

7

8 Yt = c i r c s h i f t (Yt , 1 ) ; %moves each element one to the r ight , and the l e f tmos t to

po s i t i o n 1

9 Alphat = c i r c s h i f t ( Alphat , 1 ) ;

10

11 var iance = sigma ˆ2 ;

12 Alphat (1 , 1 ) = var iance ∗u ; %normally d i s t r i b u t e d white no i s e

13

14 Yt (1 , 1 ) = AR(1) ∗Yt (1 , 2 )+AR(2) ∗Yt (1 , 3 )+AR(3) ∗Yt (1 , 4 )+AR(4) ∗Yt (1 , 5 )+Alphat (1 , 1 )+MA(1)

∗Alphat (1 , 2 )+MA(2) ∗Alphat (1 , 3 )+MA(3) ∗Alphat (1 , 4 ) ;

15 r e turn

D.3 ARMAyCor

1 f unc t i on [ Yt , Alphat ] = ARMAyCor(Yt , Alphat ,Rho ,AR,MA, sigma )

2 %Recieves a mx5 element Matrix YT and mx4 element Alphat , column 1 i s f o r

3 %time = t , p o s i t i o n 2 i s f o r time = t−1 and so on . The l i n e s correspond to

4 %d i f f e r e n t wind s i t e s

5 %The Rho matrix i s mxm and i s the c o r r e l a t i o n matrix f o r the m

6 %wind s i t e s .

7 %%AR,MA and sigma i s the ARMA model parameters

8 %Generates the next Y and Alpha and re tu rn s them

9 m = length (Rho) ; %Number o f va lue s to generate

10 mu = ze ro s (1 ,m) ;

11 R = mvnrnd(mu,Rho) ; %co r r e l a t e d number from the normal d i s t r i b u t i o n (mean(mu) o f 0

and var ( sigma ) o f 1)
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12 f o r i =1:m

13 [ Yt ( i , : ) , Alphat ( i , : ) ] = ARMAy(Yt( i , : ) , Alphat ( i , : ) ,AR( i , : ) ,MA( i , : ) , sigma ( i ) ,R( i )

) ;

14 end

15 r e turn

D.4 ARMAywind

1 f unc t i on v = ARMAwind(mean , sd , yt )

2 v = mean+sd∗yt ;
3 i f v < 0

4 v = 0 ;

5 end

6 r e turn

D.5 unifrnd corr

1 f unc t i on Y = un i f r nd c o r r (Rho)

2 % Function f o r gene ra t ing c o r r e l a t e d random uniform d i s t r i b u t i o n s . Based on

3 % an algor i thm from http :// comise f . wik idot . com/ t u t o r i a l : c o r r e l a t edun i f o rmva r i a t e s

4 %

5 % Input :

6 % Rho : The c o r r e l a t i o n matrix , needs to be p o s i t i v e d e f i n i t e

7

8 Dim1 = length (Rho) ;

9 Dim2 = 1 ;

10

11 % Fi r s t generate standard normally d i s t r i b u t e d numbers

12 X = randn (Dim1 , Dim2) ;

13

14 % adjus t c o r r e l a t i o n s f o r uni forms

15 f o r i = 1 :Dim1

16 f o r j = 1 :Dim1

17 i f i ˜= j

18 Rho( i , j ) = 2 ∗ s i n ( p i ∗ Rho( i , j ) / 6) ;

19 Rho( j , i ) = 2 ∗ s i n ( p i ∗ Rho( j , i ) / 6) ;

20 end

21 end

22 end

23

24 % induce c o r r e l a t i o n

25 C = cho l (Rho) ;

26 Y = C ∗ X;

27

28 % crea t e uni forms

29 Y=normcdf (Y) ;

D.6 weibull

1 f unc t i on [ v ] = we ibu l l (U wind , alpha , beta )

2 v = alpha∗(− l og (U wind ) ) ˆ(1/ beta ) ;

3 end
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D.7 Solver excerpt

1 % WTG

2

3 wtg up = 0 ;

4 gen wind = ze ro s ( n buses , 1 ) ; %power gene ra t i on from each bus from wtg

5 P wind = ze ro s ( n buses , 1 ) ; % powercurve value f o r each bus

6 k = f i nd ( bus w wind ) ; % array with the bus nr with WTG

7

8 % Determining wind cond i t i on s

9 i f n s i t e s == 1 % i f the re i s only one bus with wind (k i s a s i n g l e number )

10 i f windmodel %ARMA model

11 [ Yt , Alphat ] = ARMAyCor(Yt , Alphat ,Rho ,AR,MA, sigma ) ;

12 v = ARMAwind(mean wind , SD wind , Yt (1 , 1 ) ) ;

13 e l s e %Weibul model

14 U wind = rand ( ) ; % generate uni formly d i s t r i b u t e d random number

15 v = we ibu l l (U wind , alpha , beta ) ; % wind speed

16 end

17 P wind (k ) = wtg poweroutput (v ,A,B,C, V ci , V r , V co ) ;% determine ava l ab l e

capac i ty o f rated value

18 % Cons ider ing c o r r e l a t i o n :

19 e l s e i f n s i t e s > 0 && n s i t e s <= 4 % i f the re are c o r r e l a t e d wind s i t e s

20 v = ze ro s ( n s i t e s , 1 ) ;

21 i f windmodel %ARMA model

22 [ Yt , Alphat ] = ARMAyCor(Yt , Alphat ,Rho ,AR,MA, sigma ) ;

23 f o r j =1: n s i t e s

24 v ( j ) = ARMAwind(mean wind ( j ) , SD wind ( j ) ,Yt( j , 1 ) ) ;

25 end

26 e l s e %Weibull model

27 U wind = un i f r nd c o r r (Rho) ; % generate a s e t o f c o r r e l a t e d random numbers

with c o r r e l a t i o n from 0 to 1

28 f o r j =1: n s i t e s

29 v ( j ) = we ibu l l (U wind ( j ) , alpha ( j ) , beta ( j ) ) ; % wind speed at l o c a t i o n j

30 end

31 end

32 f o r j =1: n s i t e s

33 P wind (k ( j ) ) = wtg poweroutput (v ( j ) ,A( j ) ,B( j ) ,C( j ) , V ci ( j ) , V r ( j ) , V co ( j ) ) ;

% determine ava l ab l e capac i ty o f rated value at l o c a t i o n j

34 end

35 end

D.8 WTGSamplingSS

1 f o r j = 1 : n wtg

2 x = rand ( ) ;

3 i f x >= generat ion wind ( j , 7 )

4 gen wind ( generat ion wind ( j , 2 ) , 1 ) = gen wind ( generat ion wind ( j , 2 ) , 1 ) +

generat ion wind ( j , 1 ) ∗P wind ( generat ion wind ( j , 2 ) , 1 ) ;

5 wtg up = wtg up + 1 ;

6 end

7 end
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D.9 WTGSamplingST

1 f o r j = 1 : n wtg

2 i f comp states ( j+n generator s , 3 ) == 0 %WTG s t a t e s s to r ed a f t e r the r e gu l a r

gene ra to r s

3 gen wind ( generat ion wind ( j , 2 ) , 1 ) = gen wind ( generat ion wind ( j , 2 ) , 1 ) +

generat ion wind ( j , 1 ) ∗P wind ( generat ion wind ( j , 2 ) , 1 ) ;

4 wtg up = wtg up + 1 ;

5 end

6 end
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E LOLE-estimates

The result section of this thesis focused on the estimates of the EENS-index. The estimates of the

LOLE-index are presented in this section to provide additional information about the results. The

presented estimates were obtained by 1000 simulation years for the State Sampling approach, and

7500 simulation years for the State Transition approach.

E.1 MRBTS: 20MW WECS with the Swift Current wind-regime

E.1.1 DC

E.1.1.1 State Sampling

Table E.1: Obtained LOLE-estimates for the MRBTSW-4 State Sampling DC-case study,

corresponding to Table 4.3.

Bus nr. Priority order LOLE (hours/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0030 0.0010 0.0020

3 5 1.1300 0.8890 0.8830

4 3 0.0010 0.0000 0.0000

5 2 0.0100 0.0100 0.0120

6 4 0.0180 0.0200 0.0210

System - 1.1480 0.9090 0.9060

E.1.1.2 State Transition

Table E.2: Obtained LOLE-estimates for the MRBTSW-4 State Transition DC-case study,

corresponding to Table 4.4

Bus nr. Priority order LOLE (hours/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0000 0.0013 0.0039

3 5 1.1243 0.8067 0.8901

4 3 0.0000 0.0002 0.0019

5 2 0.0067 0.0104 0.0159

6 4 0.0252 0.0222 0.0339

System - 1.1495 0.8293 0.9257
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E.1.2 AC

E.1.2.1 State Sampling

Table E.3: Obtained LOLE-estimates for the MRBTSW-4 State Sampling AC-case study,

corresponding to Table 4.5.

Bus nr. Priority order LOLE (hours/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0010 0.0030 0.0020

3 5 1.8110 1.4400 1.4800

4 3 0.0000 0.0020 0.0000

5 2 0.0120 0.0100 0.0120

6 4 0.3120 0.2340 0.2660

System - 1.9360 1.5210 1.5810

E.1.2.2 State Transition

Table E.4: Obtained LOLE-estimates for the MRBTSW-4 State Transition AC-case study,

corresponding to Table 4.6.

Bus nr. Priority order LOLE (hours/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0019 0.0007 0.0012

3 5 1.8685 1.4543 1.3860

4 3 0.0000 0.0000 0.0004

5 2 0.0104 0.0139 0.0123

6 4 0.2921 0.2289 0.2556

System - 1.9952 1.5375 1.4816
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E.2 RTS: 600MW WECS with the Swift Current wind-regime

The following estimates are from the DC-based contingency solver.

E.2.1 State Sampling

Table E.5: Obtained LOLE-estimates for the RTSW-19 State Sampling case study, corresponding

to Table 4.9.

Bus nr. LOLE (hours/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 0.0013 0.0000 0.0010

5 0.0027 0.0020 0.0000

6 0.0053 0.0060 0.0070

7 2.9960 3.0190 3.0720

8 0.0013 0.0020 0.0040

9 9.3267 5.8060 5.7400

10 0.1373 0.0670 0.0580

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 2.8573 1.6660 1.7100

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 0.0120 0.0050 0.0050

19 0.6493 0.3550 0.3790

20 0.0000 0.0000 0.0000

System 12.3240 8.8320 8.8160
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E.2.2 State Transition

Table E.6: Obtained LOLE-estimates for the RTSW-19 State Transition case study, corresponding

to Table 4.10.

Bus nr. LOLE (hours/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0005

4 0.0000 0.0012 0.0037

5 0.0000 0.0017 0.0003

6 0.0171 0.0032 0.0064

7 2.9495 2.9633 3.0991

8 0.0005 0.0003 0.0011

9 9.4100 5.6648 5.6215

10 0.1263 0.0628 0.0460

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 2.8861 1.6264 1.5979

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 0.0119 0.0095 0.0048

19 0.6507 0.3216 0.3084

20 0.0000 0.0000 0.0005

System 12.3695 8.6305 8.7257
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E.3 RBTS: 20MW WECS with the Ørland wind-regime

E.3.1 State Sampling

Table E.7: Obtained LOLE-estimates for the Ørland RBTSW-4 State Sampling case study,

corresponding to Table 4.23.

Bus nr. LOLE (hours/year)

RBTS RBTSW-4-ARMA RBTSW-4-WB

2 0.0010 0.0020 0.0000

3 1.1010 0.5940 0.6330

4 0.0000 0.0010 0.0000

5 0.0070 0.0110 0.0150

6 9.9970 9.9780 9.9930

System 11.0980 10.5730 10.6260

E.3.2 State Transition

Table E.8: Obtained LOLE-estimates for the Ørland RBTSW-4 State Transition case study,

corresponding to Table 4.24.

Bus nr. LOLE (hours/year)

RBTS RBTSW-4-ARMA RBTSW-4-WB

2 0.0017 0.0012 0.0007

3 1.0747 0.5505 0.5885

4 0.0005 0.0000 0.0000

5 0.0161 0.0088 0.0111

6 9.9795 9.8519 9.6475

System 11.0540 10.4023 10.2367
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E.4 RTS: 600MW WECS with the Ørland wind-regime

E.4.1 State Sampling

Table E.9: Obtained LOLE-estimates for the Ørland RTSW-19 State Sampling case study,

corresponding to Table 4.25.

Bus nr. LOLE (hours/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 0.0013 0.0010 0.0020

5 0.0027 0.0000 0.0000

6 0.0053 0.0030 0.0040

7 2.9960 3.0080 3.0540

8 0.0013 0.0070 0.0040

9 9.3267 3.6830 3.9980

10 0.1373 0.0380 0.0500

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 2.8573 1.1020 1.1730

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 0.0120 0.0060 0.0020

19 0.6493 0.2290 0.2460

20 0.0000 0.0000 0.0000

System 12.3240 6.6970 7.0550



E.4 RTS: 600MW WECS with the Ørland wind-regime E-7

E.4.2 State Transition

Table E.10: Obtained LOLE-estimates for the Ørland RTSW-19 State Transition case study,

corresponding to Table 4.26.

Bus nr. LOLE (hours/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 0.0000 0.0012 0.0150

5 0.0000 0.0008 0.0000

6 0.0171 0.0073 0.0000

7 2.9495 2.9489 3.2380

8 0.0005 0.0029 0.0060

9 9.4100 3.6099 3.8150

10 0.1263 0.0445 0.0070

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 2.8861 1.0844 1.0640

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 0.0119 0.0037 0.0000

19 0.6507 0.2385 0.1850

20 0.0000 0.0000 0.0000

System 12.3695 6.5701 7.0630



E.5 Wind Speed Correlation E-8

E.5 Wind Speed Correlation

Table E.11: Obtained LOLE-results for wind speed correlation at RTS using Ørland wind data,

corresponding to Table 4.27

R RTS RTSW-1&3

0.0 12.3240 5.6060

0.2 5.7700

0.5 5.9220

0.8 6.2330

1.0 6.5570



F-1

F Standard Deviation of EENS-estimates

The standard deviation of the EENS-estimates, presented in section 4, is presented in this section

to provide additional information about the results.

F.1 MRBTS: 20MW WECS with the Swift Current wind-regime

F.1.1 DC

F.1.1.1 State Sampling

Table F.1: EENS standard deviation for the MRBTSW-4 State Sampling DC-case study,

corresponding to Table 4.3.

Bus nr. Priority order EENS SD (MWh/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.6810 0.5343 0.4257

3 5 13.5082 12.1806 11.9310

4 3 0.5801 0.0000 0.0000

5 2 1.2708 1.3420 1.5600

6 4 1.6137 1.8254 1.8952

System - 14.1863 12.6276 12.2844

F.1.1.2 State Transition

Table F.2: EENS standard deviation for the MRBTSW-4 State Transition DC-case study,

corresponding to Table 4.4

Bus nr. Priority order EENS SD (MWh/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0000 1.1856 2.5061

3 5 48.8941 46.0419 51.0572

4 3 0.0000 1.1450 3.8160

5 2 2.9157 3.6694 5.7064

6 4 7.1086 5.4752 7.2019

System - 49.6331 46.9933 53.0567



F.1 MRBTS: 20MW WECS with the Swift Current wind-regime F-2

F.1.2 AC

F.1.2.1 State Sampling

Table F.3: EENS standard deviation for the MRBTSW-4 State Sampling AC-case study,

corresponding to Table 4.5.

Bus nr. Priority order EENS SD (MWh/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.2838 0.7833 0.6165

3 5 17.2479 16.0706 15.5962

4 3 0.0000 1.0379 0.0000

5 2 1.4691 1.3170 1.3733

6 4 3.4780 3.2999 3.1794

System - 17.7626 17.3291 16.3566

F.1.2.2 State Transition

Table F.4: EENS standard deviation for the MRBTSW-4 State Transition AC-case study,

corresponding to Table 4.6.

Bus nr. Priority order EENS SD (MWh/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.9692 0.3983 0.9099

3 5 69.1212 60.8691 63.6478

4 3 0.0000 0.0000 0.0035

5 2 4.7244 5.5774 3.7582

6 4 8.9503 9.0716 8.6036

System - 70.6272 63.2220 65.2534



F.2 RTS: 600MW WECS with the Swift Current wind-regime F-3

F.2 RTS: 600MW WECS with the Swift Current wind-regime

The following results are from the DC-based contingency solver.

F.2.1 State Sampling

Table F.5: EENS standard deviation for the RTSW-19 State Sampling case study, corresponding to

Table 4.9.

Bus nr. EENS SD (MWh/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 1.6407 0.0000 1.5297

5 2.5008 2.0777 0.0000

6 5.9711 5.5154 6.3840

7 139.6530 131.2178 141.5159

8 4.6609 5.1848 6.5938

9 329.1633 260.9371 249.9112

10 33.2556 23.3307 20.8728

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 187.2805 143.4107 143.2692

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 11.2353 3.7269 5.3222

19 81.2594 60.6113 59.4109

20 0.0000 0.0000 0.0000

System 543.3354 434.9150 421.0708



F.2 RTS: 600MW WECS with the Swift Current wind-regime F-4

F.2.2 State Transition

Table F.6: EENS standard deviation for the RTSW-19 State Transition case study, corresponding

to Table 4.10.

Bus nr. EENS SD (MWh/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 2.2712

4 0.0000 3.3389 7.1793

5 0.0000 3.9945 1.2412

6 48.0552 11.2977 25.5380

7 602.5205 606.5070 618.4287

8 4.9519 3.6391 6.8938

9 1831.0792 1215.3086 1198.4664

10 130.7653 82.2651 50.2299

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 937.3787 606.6591 560.7682

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 29.5982 22.6606 26.5209

19 368.9624 220.1699 171.7167

20 0.0000 0.0000 5.5294

System 3092.5412 2056.3529 1961.5700



F.3 RBTS: 20MW WECS with the Ørland wind-regime F-5

F.3 RBTS: 20MW WECS with the Ørland wind-regime

F.3.1 State Sampling

Table F.7: EENS standard deviation for the Ørland RBTSW-4 State Sampling case study,

corresponding to Table 4.23.

Bus nr. EENS SD (MWh/year)

RBTS RBTSW-4-ARMA RBTSW-4-WB

2 0.5405 0.6691 0.0000

3 13.6680 9.2314 10.0642

4 0.0000 1.0483 0.0000

5 0.9528 1.3680 1.5893

6 39.5297 40.0334 39.6479

System 41.3728 41.0921 40.6953

F.3.2 State Transition

Table F.8: EENS standard deviation for the Ørland RBTSW-4 State Transition case study,

corresponding to Table 4.24.

Bus nr. EENS SD (MWh/year)

RBTS RBTSW-4-ARMA RBTSW-4-WB

2 1.3282 1.1252 0.3398

3 51.0038 31.9836 38.7043

4 0.8594 0.0000 0.0000

5 4.5669 3.1741 5.3663

6 174.5738 174.8356 173.6524

System 182.3240 177.5581 177.6530



F.4 RTS: 600MW WECS with the Ørland wind-regime F-6

F.4 RTS: 600MW WECS with the Ørland wind-regime

F.4.1 State Sampling

Table F.9: EENS standard deviation for the Ørland RTSW-19 State Sampling case study,

corresponding to Table 4.25.

Bus nr. EENS SD (MWh/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 1.6407 1.0288 1.3334

5 2.5008 0.0030 0.0000

6 5.9711 4.4012 5.8573

7 139.6530 136.0924 134.8930

8 4.6609 8.0612 0.0000

9 329.1633 200.1587 205.8979

10 33.2556 19.4506 20.1699

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 187.2805 112.8568 110.2488

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 11.2353 9.7898 7.2374

19 81.2594 45.2319 48.9526

20 0.0000 0.0000 0.0000

System 543.3354 342.1445 343.0130



F.4 RTS: 600MW WECS with the Ørland wind-regime F-7

F.4.2 State Transition

Table F.10: EENS standard deviation for the Ørland RTSW-19 State Transition case study,

corresponding to Table 4.26.

Bus nr. EENS SD (MWh/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 0.0000 2.9311 14.8635

5 0.0000 3.4865 0.0000

6 48.0552 30.2664 0.0000

7 602.5205 591.1358 621.1638

8 4.9519 11.7202 18.5738

9 1831.0792 891.8497 766.5484

10 130.7653 57.1881 3.1849

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 937.3787 461.8822 322.8944

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 29.5982 12.4990 0.0000

19 368.9624 174.5497 78.7133

20 0.0000 0.0000 0.0000

System 3092.5412 1579.3601 1261.4750



F.5 Wind Speed Correlation F-8

F.5 Wind Speed Correlation

Table F.11: EENS standard deviation for wind speed correlation at RTS using Ørland wind data,

corresponding to Table 4.27

R RTS RTSW-1&3

0.0 543.3354 294.9610

0.2 306.1436

0.5 313.0472

0.8 325.8158

1.0 340.5673



G-1

G Standard Deviation of LOLE-estimates

The standard deviation of the LOLE-estimates, presented in Appendix E, is presented in this

section to provide additional information about the results.

G.1 MRBTS: 20MW WECS with the Swift Current wind-regime

G.1.1 DC

G.1.1.1 State Sampling

Table G.1: LOLE standard deviation for the MRBTSW-4 State Sampling DC-case study,

corresponding to Table E.1.

Bus nr. Priority order LOLE SD (hours/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0547 0.0316 0.0447

3 5 1.0441 0.9474 0.9446

4 3 0.0316 0.0000 0.0000

5 2 0.0995 0.0995 0.1089

6 4 0.1330 0.1401 0.1435

System - 1.0579 0.9611 0.9550

G.1.1.2 State Transition

Table G.2: LOLE standard deviation for the MRBTSW-4 State Transition DC-case study,

corresponding to Table E.2

Bus nr. Priority order LOLE SD (hours/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0000 0.0905 0.1792

3 5 4.2863 3.5002 3.5851

4 3 0.0000 0.0404 0.1317

5 2 0.2513 0.2979 0.4313

6 4 0.5586 0.4580 0.5856

System - 4.3218 3.5271 3.6339



G.1 MRBTS: 20MW WECS with the Swift Current wind-regime G-2

G.1.2 AC

G.1.2.1 State Sampling

Table G.3: LOLE standard deviation for the MRBTSW-4 State Sampling AC-case study,

corresponding to Table E.3.

Bus nr. Priority order LOLE SD (hours/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.0316 0.0547 0.0447

3 5 1.3134 1.2206 1.2701

4 3 0.0000 0.0447 0.0000

5 2 0.1089 0.0995 0.1089

6 4 0.5648 0.4811 0.5172

System - 1.3527 1.2582 1.3066

G.1.2.2 State Transition

Table G.4: LOLE standard deviation for the MRBTSW-4 State Transition AC-case study,

corresponding to Table E.4.

Bus nr. Priority order LOLE SD (hours/year)

MRBTS MRBTSW-ARMA MRBTSW-WB

2 1 0.1007 0.0416 0.0841

3 5 5.4772 4.7393 4.4780

4 3 0.0000 0.0000 0.0346

5 2 0.3440 0.4031 0.3276

6 4 1.3145 1.2498 1.2899

System - 5.5356 4.8047 4.5284



G.2 RTS: 600MW WECS with the Swift Current wind-regime G-3

G.2 RTS: 600MW WECS with the Swift Current wind-regime

The following estimates are from the DC-based contingency solver.

G.2.1 State Sampling

Table G.5: LOLE standard deviation for the RTSW-19 State Sampling case study, corresponding

to Table E.5.

Bus nr. LOLE SD (hours/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 0.0365 0.0000 0.0316

5 0.0516 0.0447 0.0000

6 0.0729 0.0773 0.0834

7 1.7702 1.6270 1.8083

8 0.0365 0.0447 0.0632

9 3.0542 2.4654 2.2400

10 0.3670 0.2580 0.2464

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 1.6957 1.3192 1.3243

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 0.1090 0.0706 0.0706

19 0.8370 0.6192 0.6275

20 0.0000 0.0000 0.0000

System 3.5222 2.9874 2.8280



G.2 RTS: 600MW WECS with the Swift Current wind-regime G-4

G.2.2 State Transition

Table G.6: LOLE standard deviation for the RTSW-19 State Transition case study, corresponding

to Table E.6.

Bus nr. LOLE SD (hours/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0462

4 0.0000 0.0739 0.1624

5 0.0000 0.0986 0.0231

6 0.5831 0.1673 0.2856

7 7.7456 7.7604 7.8857

8 0.0462 0.0231 0.0712

9 16.5727 11.2552 11.2092

10 1.3763 0.7921 0.5433

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 8.2527 5.4404 5.2141

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 0.3426 0.2679 0.1818

19 3.5487 2.1707 1.8599

20 0.0000 0.0000 0.0462

System 18.3845 13.6941 13.6127



G.3 RBTS: 20MW WECS with the Ørland wind-regime G-5

G.3 RBTS: 20MW WECS with the Ørland wind-regime

G.3.1 State Sampling

Table G.7: LOLE standard deviation for the Ørland RBTSW-4 State Sampling case study,

corresponding to Table E.7.

Bus nr. LOLE SD (hours/year)

RBTS RBTSW-4-ARMA RBTSW-4-WB

2 0.0316 0.0447 0.0000

3 1.0516 0.7481 0.7918

4 0.0000 0.0316 0.0000

5 0.0834 0.1044 0.1296

6 3.0927 3.1924 3.1485

System 3.2660 3.2872 3.2194

G.3.2 State Transition

Table G.8: LOLE standard deviation for the Ørland RBTSW-4 State Transition case study,

corresponding to Table E.8.

Bus nr. LOLE (hours/year)

RBTS RBTSW-4-ARMA RBTSW-4-WB

2 0.1039 0.0739 0.0383

3 4.0493 2.6894 2.8009

4 0.0462 0.0000 0.0000

5 0.4032 0.2437 0.3885

6 14.0421 14.1324 14.0866

System 14.6005 14.3759 14.2994



G.4 RTS: 600MW WECS with the Ørland wind-regime G-6

G.4 RTS: 600MW WECS with the Ørland wind-regime

G.4.1 State Sampling

Table G.9: LOLE standard deviation for the Ørland RTSW-19 State Sampling case study,

corresponding to Table E.9.

Bus nr. LOLE (hours/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 0.0365 0.0316 0.0447

5 0.0516 0.0030 0.0000

6 0.0729 0.0547 0.0632

7 1.7702 1.7225 1.7158

8 0.0365 0.0834 0.0000

9 3.0542 1.9587 1.9844

10 0.3670 0.1913 0.2270

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 1.6957 1.0142 1.0650

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 0.1090 0.0773 0.0447

19 0.8370 0.4741 0.4957

20 0.0000 0.0000 0.0000

System 3.5222 2.5518 2.6753



G.4 RTS: 600MW WECS with the Ørland wind-regime G-7

G.4.2 State Transition

Table G.10: LOLE standard deviation for the Ørland RTSW-19 State Transition case study,

corresponding to Table E.10.

Bus nr. LOLE (hours/year)

RTS RTSW-19-ARMA RTSW-19-WB

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 0.0000 0.0663 0.3419

5 0.0000 0.0589 0.0000

6 0.5831 0.3841 0.0000

7 7.7456 7.5457 7.8690

8 0.0462 0.1479 0.1897

9 16.5727 8.2201 7.3676

10 1.3763 0.6472 0.1047

11 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000

14 8.2527 4.0460 3.1796

15 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000

18 0.3426 0.1583 0.0000

19 3.5487 1.7001 1.0039

20 0.0000 0.0000 0.0000

System 18.3845 11.0923 10.6305



G.5 Wind Speed Correlation G-8

G.5 Wind Speed Correlation

Table G.11: LOLE standard deviation for wind speed correlation at RTS using Ørland wind data,

corresponding to Table E.11

R RTS RTSW-1&3

0.0 3.5222 2.3787

0.2 2.4538

0.5 2.4045

0.8 2.5146

1.0 2.6431
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