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In recent years, the number of web services grows explosively. With a large amount of information resources, it is difficult for users
to quickly find the services they need. Thus, the design of an effective web service recommendation method has become the key
factor to satisfy the requirements of users. However, traditional recommendation methods often tend to pay more attention to
the accuracy of the results but ignore the diversity, which may lead to redundancy and overfitting, thus reducing the satisfaction
of users. Considering these drawbacks, a novel method called DivMTID is proposed to improve the effectiveness by achieving
accurate and diversified recommendations. First, we utilize users’ historical scores of web services to explore the users’
preferences. And we use the TF-IDF algorithm to calculate the weight vector of each web service. Second, we utilize cosine
similarity to calculate the similarity between candidate web services and historical web services and we also forecast the ranking
scores of candidate web services. At last, a diversification method is used to generate the top-K recommended list for users. And
through a case study, we show that DivMTID is an effective, accurate, and diversified web service recommendation method.

1. Introduction

In recent years, web services have developed rapidly and are
playing an increasingly important role in E-commerce and
virtual reality applications. With the increasing of Internet
web services’ numbers, people have more access to Internet
information anytime and anywhere. However, people need
to deal with a large amount of information resources, which
makes it difficult for people to quickly find valuable services
which they are interested in. In other words, the selection
process is complicated in the age of big data [1–4]. Therefore,
precise recommendation of web services is the key issue in
service computing. As we all know, the recommender system
has been widely used in many applications, such as https://
Amazon.com, https://TiVo.com, and https://Netflix.com
[5]. And web service recommendation is a process of actively

identifying suitable web services and recommending them to
users. The most common method is traditional collaborative
filtering [6].

As we all know, collaborative filtering usually explores
users’ preferences basing on users’ historical usage records
and then recommends the most appropriate service items
to users automatically [7]. However, this method mainly
focuses on improving the accuracy of recommendation,
which may lead to the redundancy of services in a limited list
of top-K recommendations. Worse, the recommendation
results may reduce users’ satisfaction and are not conducive
to exploring users’ potential preferences for other services.
For example, it is assumed that there is a certain service
category with similar or related functions that match the
interests of users and has better quality of services than other
categories of services. Ordinary service recommendation
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methods may only recommend this category of services to
users in the final recommended list, but from users’ points
of view, recommendation services with similar functions
are redundant, and this phenomenon is called overfitting.
Accordingly, the recommender system should also pay
attention to the diversity of service recommendations
while ensuring a high accuracy of recommendation results.
In this manner, other categories of services that users may
be interested in can be included in the top-K recom-
mended list [3, 8].

Fortunately, diversification methods can not only avoid
redundancy but also expand the range of users’ choices,
which is beneficial to avoid the uncertainty in the prediction
of users’ preferences [9]. However, there is a trade-off
between accuracy and diversity [10] because high accuracy
may often be obtained by safely recommending users the
most popular and appropriate items, which can clearly lead
to the reduction of diversity. And on the contrary, higher
diversity can be achieved by trying to uncover and recom-
mend highly idiosyncratic or personalized items with less
data for each user, which will be more difficult to predict.
And it may lead to the decrease of recommendation accu-
racy. Therefore, it is crucial for recommender systems to
provide an optimal list of recommendations that takes into
account both accuracy and diversity and to keep a balance
between them [11–14]. This is also the main research direc-
tion of this paper. The main contributions of this paper are
listed below:

(i) A new web service recommendation method which
pays attention to both accuracy and diversity is
proposed

(ii) Providing users with the list of top-K service rec-
ommendations, our method improves the disad-
vantages of traditional service recommendation
methods and effectively solves the problem of
overfitting

(iii) Our method weighs well the double indicators of
accuracy and diversity in order to achieve the
best recommendation effect and improve users’
satisfaction

The remainder of this paper is organized as follows. Sec-
tion 2 describes a scenario of web service recommendation,
and based on that, the main motivation and research content
of this paper are further described. Section 3 presents the
framework and specific steps of the proposed web service
recommendation method (named DivMTID). Section 4
introduces a case study, where a specific case is solved by
DivMTID. Section 5 summarizes this paper, draws conclu-
sions, and expounds future work.

2. Research Scenario and Motivation

In this section, the research scenario and motivation of this
paper are described. All the work we have done is based on
the research scenario and motivation.

2.1. Research Scenario. Here, we use Figure 1 to describe the
research scenario in this paper. Suppose that a website has
many different types of modules (entertainment, military,
sports, life, finance, cars, games, films, shopping, etc.), and
there are many different web services under each module.
Assume that there are M web services used by a user under
all modules, and they are recorded as WSu1, WSu2,…, WSuM.
For each module, they are recorded as WSu1, WSu2,…, WSux
(x is a variable). Meanwhile, there are N candidate web ser-
vices recorded as WS1, WS2,…, WSN in the set of candidate
services. And each web service is described by the Web
Service Description Language (which is called the WSDL
document). In order to describe it exhaustively, the symbols
mentioned in this paper and their meanings are shown in
Table 1.

2.2. Motivation. In this subsection, we utilize the example in
Figure 2 to demonstrate the motivation of our proposal. It is
assumed that the recommender system intends to recom-
mend a list of web services to a user. In this condition, to rec-
ommend appropriate web services to the user, the similarity
between historical web services and candidate web services
should be calculated first. And then the system generates
the top-K recommended list to the user. However, in the
process of similarity calculation and recommendation
calculation, we will face the following challenges:

When calculating the similarity between historical web
services and candidate web services, it is necessary to estab-
lish the relationship between historical records and the can-
didate service set. However, an effective method to predict
the relative score of candidate service objects and filter the
candidate web services is needed.

As the diversity of the recommended list is frequently
neglected, the web services in the list may be similar to each
other, which may lead to overfitting and failure to explore
users’ potential preferences and finally reduce the users’
satisfaction.

Considering the above issues, a novel web service recom-
mendation method named DivMTID is proposed, which will
achieve the accuracy and diversity of recommendation
results, and it will be presented in detail in the following
sections.

3. A Diversified Service Recommendation
Method Based on TF-IDF

Under the research scenario of Section 2, this paper proposes
a new web service recommendation method named DivM-
TID, which is based on the TF-IDF algorithm. It utilizes
cosine similarity and combines WSDL documents to calcu-
late the ranking score of each candidate service and then uses
the diversity algorithm to select the best web services from
candidate services to set the top-K service recommended list.
Meanwhile, it takes into account the accuracy and diversity of
recommendation results. Table 2 lists the basic framework of
DivMTID, which includes four steps.

3.1. Step 1: Explore Users’ Preferences Approximately. In step
1, we first make an approximate positioning of users’
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preferences according to users’ historical score records. In
order to give more effectively personalized service recom-
mendations, we need to figure out what users like and why
they like it. In other words, using more effective preference
representation methods may make recommendation algo-
rithms exhibit higher performance. In most service recom-
mendation methods, a user’s score on web service can only
represent the user’s opinion on a service, but the user’s
preferences cannot be fully determined by a score record.
However, a user’s historical score records can be used to
make an approximate positioning of the user’s preferences.
We can use the rating scores of web services to establish
correlations with metadata and break the common limitation
of expressing preferences with only one score.

For example, under the scenario described in Section 2, if
a user rated 5 for all the web services under the module of
military and rated 2 for all the web services under the module
of finance, then the recommender system should infer that
the user prefers the military module and should recommend
more candidate web services about the military than finance.

We can establish the correlation between history scores
and the information of the metadata module in equation
(1), which utilizes score records for web services to calculate
a user’s preference degree for each module.

Mj =
∑rmax

i=rmin
ri × nrservice‐rated
� �

nrservice‐used
: ð1Þ

In equation (1),Mj represents the degree of a user’s pref-
erence for module j. ri represents a user’s historical rating
scores for the used web services. nrservice‐rated represents the
number of web services which rated ri under the metadata
module j, and nrservice‐used represents the number of all the used
web services by the user under the metadata module j.

We can calculate the user’s preference degree for the
modules in equation (1) and make an approximate position-
ing of the user’s preference. A threshold “a” is set here, and
the module with a calculated result greater than “a” is defined
as the user’s preference module. For example, in the scenario
of Section 2, we set a threshold 3. After calculation, if the
modules with a result greater than 3 are military, finance,
cars, and shopping, then the top-K recommended list should
mainly consist of web services under these modules, which
means that the modules below the threshold are automati-
cally filtered out. At last, we put all the web services belonging
to the preference modules together to form a set P. The above
is the content of step 1, its pseudocode can be described by
Algorithm 1.

Table 1: Symbols and their meanings.

Symbol Meaning

WSui Web service i used in a user’s history

WSj Candidate web service j

WSDLi The WSDL documentation of web service i

M The number of web services used in a user’s history

N The number of candidate web services

ri A user’s rating of web service i used in history

Mj Degree of a user’s preference for module j

a, b Threshold setting

t j The j-th word in the corpus

ω The weight vector of web service

CosSimi,j The similarity level of web service i and web service j

Scorej The predicted ranking score of candidate web service j

Entertainment Military Sports Life Finance

Cars Games Films Shopping

WSu1,...,WSux WSu1,...,WSux WSu1,...,WSux WSu1,...,WSux WSu1,...,WSux

WSu1,...,WSux WSu1,...,WSux WSu1,...,WSux WSu1,...,WSux

User

Figure 1: Research scenario.
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3.2. Step 2: Calculate TF-IDF Weight Vectors of Web Services.
The task of step1 in DivMTID is to determine users’ prefer-
ences, filtering out the web services under all modules with
low history rating scores. It saves a lot of time for the subse-
quent recommendation algorithm to run. However, step 1
cannot exactly determine what kind of services users like,
what characteristics the web services with high scores have,
and how to select the best web services from so many candi-
date services. Step 2 is designed to solve these problems. It is
assumed that step 1 filtered out L web services together.

As is mentioned, each web service in set P has a corre-
sponding WSDL document, the same as candidate services.
Then, all meaningful words in the WSDL documents of all
services can form a corpus. After that, a well-known TF-

IDF algorithm [8, 15] is used to assess the importance of
words in the corpus for each web service. The importance is
proportional to the number of times that words appear in
the document and inversely proportional to the frequency of
words appearing in the corpus. The explanation is as follows.

tf represents the word frequency, indicating the
frequency of a word appearing in a WSDL document. It
can be described in

tf t j, WSDLi
� �

=
freq t j, WSDLi

� �

WSDLij j : ð2Þ

tj represents the j-th word in the corpus and WSDLi repre-
sents the WSDL document of the i-th web service. Freqðt j,

User

Similar item search

Recommended list generation
Filtered candidate

service set

Candidate
service 

set

Historical

records

WS1

WS2

WSK

...

M1 Mj

rxj

WSu1

rx1

... ......

r11

WSux

r1j

...

...

...

...

Figure 2: A motivating example.

Table 2: The basic framework of DivMTID.

Step 1: explore users’ preferences approximately

By establishing the relationship between a user’s history score
records and the information of the metadata module, the
preference degree of each module is calculated, and the user’s
preferences is approximately explored.

Step 2: calculate TF-IDF weight vectors of web services

Using the TF-IDF algorithm, the importance of words in the
corpus to web services is calculated and finally represented by the
TF-IDF weight vector in order to make a distinction among web
services.

Step 3: predict the ranking scores of candidate services

The similarity between candidate web services and historically used
web services is calculated by using cosine similarity, and the
ranking score values of candidate web services are predicted.

Step 4: create a diversified web service recommended list

According to different index numbers, K different web services are
selected to form multiple recommended lists. Then, it needs to
calculate the list-diversity value of each list, and the list with the
highest value becomes the web service recommended list that is
finally recommended to the user.

Input:
WSu1, WSu2,…, WSuM: web services used by a user.
r1, r2,…, rM: the rating scores.
a: the threshold.

Output:
P: a set.

1.forj = 1 to gdo//assume there are g modules
2. nrservice‐used = count(WSui)
3. forr = rmin to rmaxdo
4. nrservice‐rated = count(WSui)
5. nrservice‐rated ∗ r
6. end for
7. Calculate Mj according to equation (1)
8. ifMj ≥ a
9. then add fWSui ∣ WSui ∈ jg to P
10. end if
11.end for
12.return P

Algorithm 1: Explore users’ preferences approximately.

4 Wireless Communications and Mobile Computing



WSDLiÞ represents the number of times that t j appears in the
WSDLi document, and ∣WSDLi ∣ represents the number of
words that appear in the WSDLi document. So we can also
get the equation jWSDLij =∑jf reqðt j, WSDLiÞ.

idf represents the inverse document frequency. It is
expressed by the ratio of the total number of all WSDL
documents and the number of documents containing the
word. We can calculate the logarithm of the quotient in

idf t j, WSDLi
� �

= log2
WSDLj j

WSDLi : t j ∈WSDLi
� ��� �� : ð3Þ

∣WSDL ∣ represents the total number of WSDL docu-
ments. And ∣fWSDLi : t j ∈WSDLig ∣ represents the total
number of documents containing word t j.

we use TF-IDF to assess the importance of words in a
corpus for a web service. If a word appears with high fre-
quency in a WSDL document of a web service and appears
with low frequency in other WSDL documents of services,
then we suppose that the word has a high importance and
representativeness for this web service, which can be used
to classify and distinguish different services.

Since WSDL documents are generally short, this paper
chooses to give higher weight to the idf value to normalize
the inherent bias with

ω = tf t j, WSDLi
� �

∗ idf 2 t j, WSDLi
� �

: ð4Þ

The common way to implement TF-IDF is to give the
same weight to word frequency and the inverse document
frequency. However, this paper gives higher weight to idf in
order not only to standardize the inherent deviation of the
tf measurement in short documents but also to better exclude

the common words that frequently appear in web services in
the corpus [16]. In this way, it can improve the classification
and differentiation ability among web services and so
improve the accuracy of a user’s preferences. ω represents
the calculation result. It is the TF-IDF weight of word t j to
web services, which means the importance of word t j for
web services. Utilizing all the words in the corpus, we calcu-
late the TF-IDF weight of a web service by equation (4) to
form the weight vector of a certain web service. We candidate
the TF-IDF weight vectors of all web services in the set P,
denoted as ωi, i = u1, u2,⋯, uðM − LÞ. Similarly, for all
candidate web services, their TF-IDF weight vectors are also
calculated and denoted as ωj, j = 1, 2,⋯,N . The above is

Input:
WSu1, WSu2,…, WSu(M-L): web services in set P.
WS1, WS2,…, WSN: candidate web services.

Output:
ωi: weight vectors of services in set P.
ωj: weight vectors of candidate services.

1. Count (∣WSDL ∣ )
2. fori = u1 to uðM − LÞdo
3. forj = 1 to ndo//assume there are n words in the corpus
4. ift j ∈WSDLi
5. then freq(t j, WSDLi)
6. Count ∣WSDLi ∣
7. Count ∣fWSDLi : t j ∈WSDLig ∣
8. Calculate ωi according to equation (4)
9. end if
10. end for
11.end for
12. ωi = ðω1, ω2,⋯, ωnÞ
13.Calculate candidate services’ TF-IDF weight vectors ωj

14.returnωi, ωj

Algorithm 2: Calculate TF-IDF weight vectors of web services.

Input:
ωi,ωj: weight vectors of services.
ri: the rating scores.
b: the threshold.

Output:
Y : a set.

1. forj = 1 to Ndo
2. fori = 1 to M − Ldo
3. Calculate CosSimi, j according to equation (5)
4. ri ∗ CosSimi,j
5. end for
6. Calculate Scorej according to equation (6)
7. ifScorej > b
8. then add WSj to Y
9. end if
10.end for
11.returnY

Algorithm 3: Predict the ranking scores of candidate services.
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the content of step 2; its pseudocode can be described by
Algorithm 2.

3.3. Step 3: Predict the Ranking Scores of Candidate Services.
In order to evaluate the similarity between two web services,
we use the TF-IDF weight vector of web services to calculate
their cosine similarity [17] and define the similarity level
between two web services as CosSimi,j. The reason that we
choose cosine similarity to measure the distance between dif-
ferent services is twofold: (1) cosine similarity is not limited
to dimension volume; (2) cosine similarity has higher
accuracy and is intuitive enough to describe the similarity
calculation. The value of CosSimi,j is calculated in

CosSimi,j = cos ωi, ωj

� �
=

ωi ⋅ ωj

ωij j × ωj

�� �� : ð5Þ

In equation (5), ∣ωi ∣ and ∣ωj ∣ is the Euclidean length of
the weight vector ωi and ωj. Besides, ωi · ωj is their dot prod-
uct. Cosine similarity can be used to effectively evaluate the
similarity degree between two vectors, so we can also evaluate
the similarity between two web services. After that, we calcu-
late CosSimi,j of candidate web services by combining each
candidate web service and every web service in set P to get
their value of cosine similarity in order.

We can get the similarity between the candidate web
services and a user’s history web services according to the
value of CosSimi,j, so that we can calculate the ranking score
of each candidate web service (defined as Score j) in

Scorej = λ 〠
M‐L

i=1
ri × CosSimi,j: ð6Þ

In equation (6), λ is the parameter and ri is users’ rating
on history web services. The aim of multiplying users’ rating
and the value ofCosSimi,jis to giveCosSimi,ja different weight.
After that, we carry on the accumulation, and we can obtain
the ranking score of each candidate service. At last, we sort

the score and set a threshold “b.” All the candidate web
services with a ranking score greater than “b” form a set Y.
And the web services in the top-K recommended list are
selected from this set. The above is the content of step 3; its
pseudocode can be described by Algorithm 3.

3.4. Step 4: Create a Diversified Web Service Recommended
List. The purpose of setting threshold “b” is to ensure the
accuracy of the top-K recommended list, which is usually
recommended to the user by selecting the first K services
from high value to low value according to Scorej. Although
it ensures the high accuracy of the recommendation results,
it leads to the decrease of the diversity. Besides, it may cause
the problem of overfitting, which is not conducive to explor-
ing the potential preferences of users [18–21]. Therefore, we
need a method which can balance accuracy and diversity.

Input:
Y : set Y .
K : the length of recommended list
CosSimi,j: the similarity between service i and service j.

Output:
a diversified web service recommended list

1. f = ∣Y ∣ //f denotes the number of web services in the set Y
2. Sort(Y)
3. Create indexes for f web services
4. forj = 1 to CK fdo//K < f
5. Form a list with K web services according to different

index numbers
6. Calculate list-diversity according to equation (7)
7.end for
8.return the list with the highest list-diversity value

Algorithm 4: Create a diversified web service recommended list.

Table 3: The user’s history rating records.

Entertainment Military Sports

Webu1 Null 2 4

Webu2 2 3 5

Webu3 Null 1 3

Webu4 3 2 5

Webu5 4 1 3

Life Finance Cars

Webu1 4 1 Null

Webu2 4 1 4

Webu3 5 Null 3

Webu4 3 5 2

Webu5 3 Null 1

Games Films Shopping

Webu1 2 5 1

Webu2 1 3 2

Webu3 1 3 2

Webu4 1 3 3

Webu5 2 5 Null
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Step 4 provides a solution to how to make the recommenda-
tions more diverse while ensuring a high accuracy at the same
time.

First, we set up an index of all candidate web services in
the set Y and select K services according to different index
numbers to form multiple recommended lists. Then, we
define the diversity of web services in recommended lists as
the list-diversity and each recommended list’s list-diversity
is calculated in equation (7). Finally, we select the recom-
mended list with the highest list-diversity value as the top-
K recommended list to recommend to users.

List‐diversity = 1 − 2
N N − 1ð Þ 〠

i,j∈Y ,i≠j
CosSimi,j: ð7Þ

The list-diversity means the average dissimilarity
between each pair of web services in a recommended list. In
equation (7), Y represents the set Y and N = ∣Y ∣ . CosSimi,j

represents the similarity of every two candidate web services
in a list. The above is the content of step 4, its pseudocode can
be described by Algorithm 4 (set the length of recommended
list is K).

4. Case Study

In order to introduce the specific steps of DivMTID, and also
to further illustrate the effectiveness of DivMTID, a case
study is provided in this section.

Suppose that there are nine existing modules including
entertainment, military, sports, life, finance, cars, games,
films, and shopping. We assume that there are five different
web services under each module and there are ten candidate
web services. A user rated the web services he has used (rat-
ing values between 1 and 5, no rating value is recorded as null
which equals to 0). Table 3 is the user’s history rating records.
Now, our work is providing the user with a top-K web service
recommended list. We set the threshold “a” to 3.

4.1. Step 1: Explore Users’ Preferences Approximately.We use
equation (1) to calculate the user’s preference degree for each
module and make an approximate positioning of the user’s
preference. After the calculation, we get the preference degree
values Mj, and the results are shown in Table 4.

Because we have set the threshold “a” to 3, the modules
containing sports, life, and films whose Mj greater than 3
are the user’s approximate preference modules. The web
services under these three modules form a set P.

4.2. Step 2: Calculate TF-IDF Weight Vectors of Web Services.
After approximately exploring the user’s preferences, we cal-
culate the weight vectors of web services utilizing the WSDL
documents of all services in the set P and the WSDL docu-
ments of all candidate services. Table 5 shows the WSDL
documents of all web services in the set P, and Table 6 shows
the WSDL documents of all candidate services.

A corpus containing all meaningful words from the
WSDL documents of all services in the set P and the WSDL
documents of all candidate services is made (shooting, gym-
nastics, diving, marriage, cooking, Ang Lee, Hollywood,
action movie, video, article, picture, long, short, fast, and

Table 5: The WSDL documents of web services in set P.

Sports Life Films

Webu1

Shooting Marriage Ang Lee

Video Marriage Ang Lee

Long Article Ang Lee

Slow Long Article

Webu2

Shooting Marriage Hollywood

Video

Picture

Article

Short
Long

Fast

Webu3

Gymnastics
Cooking Ang Lee

Video Video

Picture
Short Long

Fast Slow

Webu4

Shooting Cooking Action movie

Shooting Cooking

PictureArticle Cooking

Long Picture

Webu5

Gymnastics Cooking Hollywood

Video Cooking Video

Long Cooking Short

Slow Article Fast

Table 6: The WSDL documents of candidate web services.

Candidate services

Web1 Ang Lee, article, long

Web2 Cooking, cooking, picture

Web3 Shooting, video, short, fast

Web4 Marriage, video, long, slow

Web5 Diving, diving, picture

Web6 Gymnastics, article, long

Web7 Hollywood, picture

Web8 Hollywood, video, short, fast

Web9 Action movie, article

Web10 Shooting, shooting, article, long

Table 4: The user’s module preference degree.

Entertainment Military Sports

Mj 1.8 1.8 4.0

Life Finance Cars

Mj 3.8 1.4 2.0

Games Films Shopping

Mj 1.4 3.8 1.6
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slow). Then, we calculate the weight vector of each web
service according to equation (4).

The sports module:

ωu1
�! = 1:35, 0, 0, 0, 0, 0, 0, 0, 0:54, 0, 0, 0:44, 0, 0, 1:75ð Þ,
ωu2
�! = 1:35, 0, 0, 0, 0, 0, 0, 0, 0:54, 0, 0, 0, 1:35, 1:35, 0ð Þ,
ωu3
�! = 0, 4:68, 0, 0, 0, 0, 0, 0, 0, 0, 1:69, 0, 0, 0, 0ð Þ,
ωu4
�! = 2:69, 0, 0, 0, 0, 0, 0, 0, 0, 0:54, 0, 0:44, 0, 0, 0ð Þ,
ωu5
�! = 0, 2:34, 0, 0, 0, 0, 0, 0, 0:54, 0, 0, 0:44, 0, 0, 1:75ð Þ:

ð8Þ

The life module:

ωu1
�! = 0, 0, 0, 4:68, 0, 0, 0, 0, 0, 0:54, 0, 0:44, 0, 0, 0ð Þ,
ωu2
�! = 0, 0, 0, 4:68, 0, 0, 0, 0, 0, 0, 1:69, 0, 0, 0, 0ð Þ,
ωu3
�! = 0, 0, 0, 0, 1:75, 0, 0, 0, 0:54, 0, 0, 0, 1:35, 1:35, 0ð Þ,
ωu4
�! = 0, 0, 0, 0, 5:24, 0, 0, 0, 0, 0, 0:84, 0, 0, 0, 0ð Þ,
ωu5
�! = 0, 0, 0, 0, 5:24, 0, 0, 0, 0, 0:54, 0, 0, 0, 0, 0ð Þ,

ð9Þ

The films module:
ωu1
�! = ð0, 0, 0, 0, 0, 7:01, 0, 0, 0, 0:54, 0, 0, 0, 0, 0Þ,
ωu2
�! = ð0, 0, 0, 0, 0, 0, 2:31, 0, 0, 0:72, 0, 0:58, 0, 0, 0Þ,
ωu3
�! = ð0, 0, 0, 0, 0, 2:34, 0, 0, 0:54, 0, 0, 0:44, 0, 0, 1:75Þ,
ωu4
�! = ð0, 0, 0, 0, 0, 0, 0, 6:64, 0, 0, 1:69, 0, 0, 0, 0Þ,
ωu5
�! = ð0, 0, 0, 0, 0, 0, 1:75, 0, 0:54, 0, 0, 0, 1:35, 1:35, 0Þ:
The candidate services:

ω1
!= 0, 0, 0, 0, 0, 3:09, 0, 0, 0, 0:72, 0, 0:58, 0, 0, 0ð Þ,
ω2
!= 0, 0, 0, 0, 4:66, 0, 0, 0, 0, 0, 1:12, 0, 0, 0, 0ð Þ,
ω3
!= 1:35, 0, 0, 0, 0, 0, 0, 0, 0:54, 0, 0, 0, 1:35, 1:35, 0ð Þ,
ω4
!= 0, 0, 0, 2:34, 0, 0, 0, 0, 0:54, 0, 0, 0:44, 0, 0, 1:75ð Þ,
ω5
!= 0, 0, 14:36, 0, 0, 0, 0, 0, 0, 0, 1:12, 0, 0, 0, 0ð Þ,
ω6
!= 0, 3:11, 0, 0, 0, 0, 0, 0, 0, 0:72, 0, 0:58, 0, 0, 0ð Þ,
ω7
!= 0, 0, 0, 0, 0, 0, 3:5, 0, 0, 0, 1:69, 0, 0, 0, 0ð Þ,
ω8
!= 0, 0, 0, 0, 0, 0, 1:75, 0, 0:54, 0, 0, 0, 1:35, 1:35, 0ð Þ,
ω9
!= 0, 0, 0, 0, 0, 0, 0, 6:64, 0, 1:09, 0, 0, 0, 0, 0ð Þ,

ω10
�! = 2:69, 0, 0, 0, 0, 0, 0, 0, 0, 0:54, 0, 0:44, 0, 0, 0ð Þ:

ð10Þ

4.3. Step 3: Predict the Ranking Scores of Candidate Services.
According to equation (5), the cosine similarity of the TF-
IDF weight vectors is calculated sequentially for each candi-
date web service with each historically used web service in
the set P, and the CosSimi,j value of each candidate service
is obtained. Then, the ranking score of each candidate web

service is calculated by equation (6), and it is shown in
Table 7.

We set the threshold “b” to 8 and make all candidate web
services with a ranking score higher than 8 form a set Y. It is
shown that the web services which are in set Y contain Web3,
Web8, Web4, Web2, and Web1.

4.4. Step 4: Create a Diversified Web Service Recommended
List. Suppose the value of K is 3. Then, we need to build a
diversified recommended list containing 3 web services for
the user. Step 4 establishes an index of all candidate web
services in the set Y, and three web services are selected
according to different index numbers to form multiple rec-
ommended lists. The list-diversity of each recommended list
is calculated by equation (7). Finally, the recommended list
with the highest list-diversity value is selected as the top-3
recommended list recommended to the user. The results
are shown in Table 8.

As shown in Table 8, we can see that there are two recom-
mended lists ranked first. If two lists have the same ranking
value that indicates the same diversity, we need to consider
accuracy to further rank them. In other words, we need to
compare the sum of every candidate service’s ranking score
through Step 3. And the list that has a higher ranking score
sum of candidate services is preferred. As a consequence,
we choose the list including Web3, Web2, and Web1 as the
top-3 web service recommended list.

5. Conclusions and Future Work

This paper presents a new web service recommendation
method called DivMTID. This method first uses users’ his-
tory ratings about web services to approximately explore
users’ preferences. Second, it uses the TF-IDF algorithm to
calculate the weight vectors of each web service. Third, it uses
the cosine similarity to calculate the similarity between

Table 7: The ranking scores of candidate web services.

Web3 Web8 Web4 Web2 Web1
Scorej 15.685 13.166 11.253 9.834 8.311

Web7 Web6 Web10 Web9 Web5
Scorej 7.052 6.234 5.801 3.347 0.275

Table 8: The list-diversity and the rank of recommended list.

Recommended list List-diversity Rank

Web3, Web8, Web4 0.930 10

Web3, Web8, Web2 0.938 8

Web3, Web8, Web1 0.938 8

Web3, Web4, Web2 0.996 4

Web3, Web4, Web1 0.993 7

Web3, Web2, Web1 1.000 1

Web8, Web4, Web2 0.996 4

Web8, Web4, Web1 0.994 6

Web8, Web2, Web1 1.000 1

Web4, Web2, Web1 0.997 3
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candidate web services and historical services in order to
estimate the ranking scores of candidate services. Finally,
list-diversity is used to generate the top-K recommended list.
DivMTID takes the accuracy and diversity index of web
service recommendation into account and achieves high
diversity of recommendation results while ensuring high
accuracy. It comprehensively balances the influence of accu-
racy and diversity on recommendation results, avoiding the
appearance of recommendation redundancy and solving
the problem of overfitting. DivMTID is an effective, accurate,
and diverse service recommendation method, which is worth
popularizing and using.

However, the specific influence of this method in many
aspects of the recommender system is not measured. There-
fore, in the future work, we will do more experiments about
this method’s influence on each index of the recommender
system.

In addition, we will take the time and space factors into
consideration to improve the algorithm from many aspects,
such as privacy [22–25]. We will also further improve the
performance and effectiveness of the algorithm [26–28] by
combining some new approaches such as Blockchain and
Edge Computing [29–32].

Data Availability

Our study does not need any data set. And all the data used to
support the findings of this study are included within the
article.
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