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Abstract

We prove a correspondence between Tilting subcategories and Cotorsion Torsion
triples in abelian categories with enough projectives. These structures are then
shown to induce an equivalence of subcategories. We also prove that certain type
of cotorsion pairs in categories of quiver-representations can be described locally
in the underlying abelian category. These results are applied to show that some
classes of Multiparameter Persistence Modules are of finite or tame representation
type.

Sammendrag

Vi beviser en korrespondanse mellom "Tilting"-underkategorier og Kotorsjon Torsjons
tripler i abelske kategorier med nok projektive. Deretter vises det at disse trip-
lene induserer en ekvivalens av underkategorier. Vi beviser også at enkelte type
kotorsjonspar i representasjonskategorier kan beskrives lokalt i den underliggende
abelske kategorien. Resultatene anvendes til å vise at enkelte familier av "Multi-
parameter Persistence" Moduler er av endelig eller tam representasjonstype.
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1 INTRODUCTION

1 Introduction

Tilting theory has throughout the end of the last century up until today been,
and most certainly will be for the foreseeable future, a great tool in the study of
algebraic structures. The exposition given in [17] brings to light the usefulness
of the theory. In the classical setting of tilting one works over finitely generated
modules over a finite-dimensional algebra A. However, in this thesis, the tilting
theory studied will, following [5], be defined in an abelian category with enough
projectives. This allows us to develop the dual notion of cotilting by simply passing
to the opposite category. We will see that tilting induces a torsion theory in
addition to a complete cotorsion theory in the given abelian category. In fact, we
will show as one of our main results that there is a correspondence between what
we call cotorsion torsion triples and tilting theories in the category, i.e.

Theorem 1.1 (Theorem 3.55). Let A be an abelian category with enough projec-
tives. Then the two constructions

{tilting subcategories} ↔ {cotorsion torsion triples}

T 7→ ({X ∈ ⊥1T | pdim ≤ 1},FacT,T⊥)

C ∩ T ←[ (C, T ,F)

is a bijective correspondence.

The interest given cotorsion torsion triples is justified by how they induce an
equivalence between subcategories of the category. This is the second of the main
results presented in this thesis. Namely

Theorem 1.2 (Theorem 3.36). Let (C, T ,F) be a cotorsion torsion triple in an
abelian category A. Then there is an equivalence of subcategories

F ' C
C ∩ T

which was discovered by [5] and independently in [6] as noted by Bauer et al..
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1 INTRODUCTION

In categories of representations of (possibly infinite, but rooted) quivers over an
abelian category, it was shown by Holm et al. and Odabaşı that certain complete
cotorsion pairs can be described locally by complete cotorsion pairs of the under-
lying abelian category [16, 23]. These results are given here as the third and final
of our main results in this thesis, in the special case of finite acyclic quivers.

Theorem 1.3 (Proposition 4.29 and Theorem 4.32). Let (C,D) be a complete
cotorsion pair in an abelian category A and Q a finite acyclic quiver.

(i) If A has enough injectives, then (Γ(C),Rep(Q,D)) is a complete cotorsion
pair in Rep(Q,A), and

(ii) If A has enough projectives, then (Rep(Q, C),Λ(D)) is a complete cotorsion
pair in Rep(Q,A).

where

Γ(C) =

F ∈ Rep(Q,A)

∣∣∣∣∣∣∣
the canonical morphism

∐
α∈Q1(∗,x)

F (i(α))
γFx−→ F (x)

is mono and Cok(γFx ) ∈ C ∀ x ∈ Q0

 ,

and

Λ(D) =

F ∈ Rep(Q,A)

∣∣∣∣∣∣∣
the canonical morphism F (x)

λFx−→
∏

α∈Q1(x,∗)
F (t(α))

is epi and Ker(λFx ) ∈ C ∀ x ∈ Q0

 .

These induced cotorsion pairs of representations are then studied to see when they
are a part of a cotorsion torsion triple and thus further induces a tilting theory
of representations. The first cotorsion pair (Γ(C),Rep(Q,D)) does in fact induce
a cotorsion torsion triple if and only if the original cotorsion pair (C,D) is the
cotorsion part of a cotorsion torsion triple in A. The second cotorsion pair is seen
to only induce a cotorsion torsion triple when the original cotorsion pair is the
trivial pair (ProjA,A).

2



1 INTRODUCTION

The thesis assumes only knowledge up to and including that which one obtains
through introductory courses of Homological Algebra and Representation Theory
of Quivers. However, for the benefit of the reader, Section 2 and the start of
Section 4, contain some of the key results which would have been learnt through
such courses. In addition, Section 2 states a few results regarding Krull-Schmidt
categories with reference to proofs, and sets the stage for the rest of the thesis with
some preliminary definitions and results. In particular, the notions of approxima-
tions and orthogonality are introduced here.

In Section 3 we introduce the concepts of torsion, cotorsion and tilting, and prove
our first two main results. This section mainly follows in the footsteps of [5].

Section 4 is devoted to introducing representations and developing our final main
result. Towards the end of this section, we also study how this relates to tilting,
and we end the section as well as the the whole thesis by applying the developed
theory to grid representations that arises in Topological Data Analysis. The first
part of this section follows closely the treatment given in [16, 23], and the last
section follows the last part of [5].

Throughout we have tried to make the thesis as self-contained as possible. How-
ever, in Section 2 we have seen it more favourable to refer to other sources for most
of the proofs which wouldn’t have contributed significantly to the understanding
of the main story. In the appendix we have gathered a couple miscellaneous proofs
as well as a short introduction to the field of Topological Data Analysis in an effort
to provide background on the application of the last section.

3
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2 ADDITIVE CATEGORIES

2 Additive Categories

In this section we will recall a few definitions and results regarding additive and
abelian categories. We will also take a look at orthogonal subcategories, Krull-
Schmidt categories and approximations. These concepts will help us build the
theory surrounding tilting. Note that we do implicitly assume throughout the
thesis that our categories are skeletally small, or in other words the isomorphism
classes of objects form a set.

An ideal of an additive category E is a subfunctor I(−,−) of the additive hom
bifunctor HomE(−,−) going from Eop × E into the category of abelian categories.
To every ideal of E we have an additive quotient category E/I, which consists
of the same objects as E , but whose hom sets are quotient groups by the groups
arising from I(−,−). That is, for objects A,B ∈ E , the hom set HomE/I(A,B)

is equal to the quotient HomE(A,B)/I(A,B). To any quotient category there is
a canonical full and dense projection functor E πI−→ E/I, which is universal in the
sense that any other additive functor F : E → X such that F (φ) = 0 for every
φ ∈ I, factors through it.

E X

E/I

πI

F

We will only be interested in the case where the ideal is generated from a full
subcategory X ⊆ E . That is, the quotient of E by X is the quotient category
E/[X ] where [X ] is the ideal consisting of all morphisms factoring through an
object in X . We will usually drop the brackets from the notation whenever it do
not lead to any confusion. For a more thorough treatment on ideals of additive
categories, we refer to [1, Appendix A.3] or [29].

Two monomorphisms with the same codomain in an additive category are equiv-
alent if there exists an isomorphism of the domains which is compatible in the
natural way. That is, the monomorphisms f : X ′ ↪→ X and g : X ′′ ↪→ X are

5



2 ADDITIVE CATEGORIES

equivalent if and only if we have an isomorphism X ′ ∼= X ′′ such that the diagram

X ′

X

X ′′

f

∼=
g

commute. The equivalence class of a monomorphism f : X ′ ↪→ X is called a
subobject of X and is often referred to by a representative domain X ′ if it do not
lead to ambiguity of the morphisms, we write X ′ ⊆ X. Two epimorphisms with
the same domain are equivalent in the dual fashion, and the equivalence class of
an epimorphism X → X ′ is called a factor object or quotient object of X, often
only referred to by the codomain X ′.

We define the sum of a collection subobjects {Xi} of X to be the smallest sub-
object of X respective to the partial ordering given by ⊆, which contains all the
subobjects. We write

∑
iXi for the sum, and if the collection consists of only two

objects X ′, X ′′, it is written as X ′+X ′′. The intersection of a collection of subob-
jects {Xi} of X is defined as the largest subobject contained by all the subobjects,
and it is denoted by ∩iXi.

Any subcategory X ⊆ E of an additive category induces two other subcategories
related to the notion of subobjects and factor objects. Namely the subobject
category SubX consisting of every object U admitting a monomorphism into a
direct sum of objects in X , and the factor category FacX consisting of objects F
admitting an epimorphism from a direct sum of objects in X, i.e.

Sub(X ) =

{
U ∈ E | ∃ U ↪→

n⊕
i=1

Xi, Xi ∈ X

}
,

and

Fac(X ) =

{
F ∈ E | ∃

n⊕
i=1

Xi � E, Xi ∈ X

}
.

Another subcategory related to X is the smallest additive subcategory of E con-
taining X , which we denote by addX . It is given by all direct summands of finite

6



2.1 Abelian Categories 2 ADDITIVE CATEGORIES

direct sums of objects in X , that is,

addX =

{
E ∈ E | E ⊕ E ′ =

n⊕
i=1

Xi, Xi ∈ X

}
.

The notions of noetherian and artinian also generalizes to the categorical setting.
An object X ∈ E is called noetherian if every ascending chain of subobjects X1 ⊆
X2 ⊆ X3 ⊆ . . . ⊆ X stabilizes, i.e. there is some integer n such that Xi = Xi+1 for
every i ≥ n. Similarly, X is called artinian if every descending chain of subobjects
. . . ⊆ X3 ⊆ X2 ⊆ X1 ⊆ X stabilizes. Specifically, any subobject of a noetherian
object X is contained in a maximal subobject X ′ ⊆ X. A category in which
every object is noetherian, respectively artinian, is called noetherian, respectively
artinian.

2.1 Abelian Categories

As the reader is assumed to have knowledge equivalent to that obtained through an
introductory course for Homological Algebra, we assume that most of the results of
abelian categories in the following section are known. They are, however, included
as a benefit for the reader, as they will be used frequently throughout. The reader
can look to the notes on abelian categories in [25] or the appendix of [1], for a
more in-depth treatment.

Lemma 2.1 ([25, Thm. 14.2]). Consider the following exact commutative diagram
in an abelian category

0 Ker(f) A B Cok(f) 0

0 Ker(i) C D Cok(i) 0

k

f

g h c

i

Then

• the middle square is a pullback if and only if k is an isomorphism and c is a
monomorphism, and

7



2.1 Abelian Categories 2 ADDITIVE CATEGORIES

• the middle square is a pushout if and only if k is an epimorphism and c is
an isomorphism.

Lemma 2.2 ([25, Cor. 13.8]). Monomorphisms and epimorphisms are stable under
pullbacks and pushouts in an abelian category. Furher, the resulting square from
the pullback of an epi is also a pushout square. Dually, the resulting square from
the pushout of a mono is also a pullback square.

Lemma 2.3 (Snake lemma [25, Thm. 14.3]). Consider the following commutative
diagram with exact rows and columns, in an abelian category

Ker(f1) Ker(f2) Ker(f3)

A B C 0

0 A′ B′ C ′

Cok(f1) Cok(f2) Cok(f3)

a

f1

b

f2 f3

a′ b′

Then the dashed morphisms exists, making the whole diagram commutative, and
the sequence

Ker(f1)→ Ker(f2)→ Ker(f3)→ Cok(f1)→ Cok(f2)→ Cok(f3)

is exact. Further, if a is a monomorphism and b′ an epimorphism, then we have
the exact sequence

0→ Ker(f1)→ Ker(f2)→ Ker(f3)→ Cok(f1)→ Cok(f2)→ Cok(f3)→ 0

Lemma 2.4 (Horsheshoe Lemma, [25, Prop. 23.8]). Let

0→ A −→ B −→ C → 0

be a short exact sequence in an abelian category. If A admit a projective resolution
P •A and C admit a projective resolution P •C, then B admits a projective resolution
P •B where P i

B = P i
A ⊕ P i

C, which is compatible with P •A and P •B in the natural way.

8



2.1 Abelian Categories 2 ADDITIVE CATEGORIES

We can also note that in an abelian category we can describe sums and intersection
of subobjects more explicit. It can be seen (Lemma A.1) that the intersection of
two subobjects B ↪→ A and C ↪→ A of an object A coincide with the pullback

B ∩ C B

C A

y ,

and the sum of them coincide with the pushout

B ∩ C B

C B + C
p

.

The sum can also be seen to be the image of the canonical map B ⊕ C → A.

2.1.1 Extensions

We would like to work with the derived functors ExtnA(A,−) and ExtnA(−, B)

in cases where the abelian category do not necessarily have enough projectives.
Hence, we would like to have an equivalent notion that do not require projective
resolutions. This is found in Yoneda extensions. The reader is referred to [24] and
[22, Chapter 7] for proofs of the following claims, and for further properties. In
the special case of 1-extensions the reader can also see [25, chapter 27].

An n-extension of an object A to an object B in an abelian category A is an exact
sequence with n+ 2 terms on the form

X : 0 B Xn · · · X1 A 0 .

The class of all such extensions from A to B is denoted by En(A,B). Two n-
extensions X and Y are called similar, which is denoted by X→ Y, if we can find
morphisms making the following diagram commutative

X : 0 B Xn . . . X1 A 0

Y : 0 B Yn . . . Y1 A 0

,

9



2.1 Abelian Categories 2 ADDITIVE CATEGORIES

When n = 1, this reduces to demanding there exists some isomorphism making
the following diagram commutative

X : 0 B X A 0

Y : 0 B Y A 0

∼= .

We say that two n-extensions X and Y in En(A,B) are equivalent if there ex-
ists some n-extension Z ∈ En(A,B) such that X ← Z → Y. This gives us
an equivalence relation upon En(A,B). The collection of equivalence classes un-
der this equivalence relation is denoted by YExtnA(A,B) and is called an Yoneda
extension group. Any morphism f : B → B′ induces a well-defined morphism
f · − : YExtnA(A,B)→ YExtnA(A,B′), given on representatives X ∈ En(A,B) by a
pushout along B f−→ B′ and B → Xn,

X : 0 B Xn Xn−1 . . . A 0

f ·X : 0 B′ P Xn−1 . . . A 0

f

p
.

Also any morphism g : A′ → A induces a well-defined morphism−·g : YExtnA(A,B)→
YExtnA(A′, B), given on representatives X ∈ En(A,B) by taking the pullback along
A′

g−→ A and X1 → A,

X · g : 0 B . . . X2 P A′ 0

X : 0 B . . . X2 X1 A 0

y
g .

A Yoneda extension group is, as the name suggest, a group where addition is
defined on elements X,Y ∈ YExtnA(A,B) as the "Baer-sum" given by

X + Y = ( 1 1 ) (X ⊕ Y) ( 1
1 ).

The zero object in these groups are given as the split exact sequence

0 B B ⊕ A A 0 ,

10



2.2 Orthogonal Subcategories 2 ADDITIVE CATEGORIES

in YExt1
A(A,B) and the trivial extension

0 B B 0 · · · 0 A A 0 ,

for YExtnA(A,B).

The usefulness of these Yoneda extensions is that we have the group isomorphism

YExtnA(A,B) ∼= ExtnA(A,B)

whenever the latter exists, which is natural in both variables. That is, we have
an explicit description of the derived hom-functors. When working with Ext, this
isomorphism will be thought of as an identification, hence there will be given no
effort in distinguishing the first from the latter in the following.

2.2 Orthogonal Subcategories

Now, having a concept of extensions in the general abelian case, we can set forth
defining a collection of subcategories which will be used extensively throughout
the rest of the thesis, namely orthogonal complements.

Definition 2.5. For any subcategory X of A, we have the full subcategories

X⊥i : = {A ∈ A | ExtiA(X,A) = 0 for all X ∈ X},

and
⊥iX : = {A ∈ A | ExtiA(A,X) = 0 for all X ∈ X}.

X⊥i is called the right i-orthogonal complement to X and ⊥iX the left i-orthogonal
complement. When i = 0, the i is usually dropped from the notation.

Remark 2.6. The action of taking the right or left i-orthogonal complement is
inclusion reversing. That is, if we have two subcategories X ,Y of A, such that
X ⊆ Y then ⊥iX ⊇ ⊥iY , and X⊥i ⊇ Y⊥i . We also note that X ⊆ ⊥1(X⊥1) and
X ⊆ (⊥1X )⊥1 .

11



2.2 Orthogonal Subcategories 2 ADDITIVE CATEGORIES

Further, we also observe that by that inclusion and the inclusion reversing property
we have X⊥1 ⊆ [⊥1(X⊥1)]⊥1 ⊆ X⊥1 , and then necessarily [⊥1(X⊥1)]⊥1 = X⊥1 .
Similarly, ⊥1 [(⊥1X )⊥1 ] = ⊥1X .

We will derive a few immediate properties of the orthogonal complements. The
proofs of these will be using the inherent duality of the left and right complements
to avoid needlessly repetitious arguments. Explicitly, this means that only the
properties attributed to one of the complements will be proven where a mutatis
mutandis argument is needed for the other. Alternatively, all proofs associated to
one of the complements can at once be used for the other, by first passing to the
opposite category.

Lemma 2.7. Let X ⊆ A be a subcategory of an abelian category A. Both the
right and left i-orthogonal complement of X are closed under extensions. The
right i-orthogonal complement X⊥i is further closed under products and the left
i-orthogonal complement ⊥iX is closed under coproducts.

Proof. Let
0→ A −→ B −→ C → 0

be a short exact sequence such that A,C ∈ X⊥i . Then by applying the hom-
functor HomA(X,−) for any X ∈ X , we extract from the consequent long exact
sequence, the exact sequence

ExtiA(X,A)→ ExtiA(X,B)→ ExtiA(X,C),

whose first and last term vanishes, forcing ExtiA(X,B) = 0, and therefore B ∈
X⊥i , proving that the subcategory is closed under extensions.

Recall that for any family of objects {Aα}α∈Λ which admits a product in A, we
have

ExtiA(−,
∏
α∈Λ

Aα) =
∏
α∈Λ

ExtiA(−, Aα).

12



2.2 Orthogonal Subcategories 2 ADDITIVE CATEGORIES

Hence, assuming that {Aα}α∈Λ consists of objects in X⊥i , we have that

ExtiA(−,
∏
α∈Λ

Aα)|X =
∏
α∈Λ

ExtiA(−, Aα)|X =
∏
α∈Λ

0 = 0

so
∏

α∈ΛAα ∈ X⊥i . �

Lemma 2.8. Let X ⊆ A be a subcategory of an abelian category A. Then ⊥X is
closed under factors while X⊥ is closed under subobjects.

Proof. Let Y � F be any factor-object of an object Y ∈⊥ X . Then we have a
short exact sequence

0→ K −→ Y −→ F → 0

which induces a long exact sequence

0→ HomA(F,X)→ HomA(Y,X)→ HomA(K,X)→ Ext1
A(F,X)→ · · ·

for any X ∈⊥ X . The third term vanishes by assumption, hence HomA(F,X)

vanishes as well. We conclude that F ∈⊥ X . �

Lemma 2.9. Let X ⊆ A be a subcategory of an abelian category A. Then both
⊥1X and X⊥1 are closed under direct summands. Further, ⊥1X contains all the
projective objects of A and X⊥1 contains all injective objects.

Proof. If P ∈ A is projective in A, then the hom-functor HomA(P,−) is exact and
necessarily Ext1

A(P,−) = 0. Thus, Proj(A) ⊆ ⊥1X .

Now, to see that ⊥1X is closed under direct summands, let Y ⊕ Y ′ be an object in
⊥1X , and let

0→ X −→ E −→ Y → 0

be any 1-extension of Y to an object of X . We construct the following commutative

13



2.2 Orthogonal Subcategories 2 ADDITIVE CATEGORIES

pull-back diagram

0 0

Y ′ Y ′

0 X P Y ⊕ Y ′ 0

0 X E Y 0

0 0

y e′
g πY

r

e

ιY

,

where we the middle row splits, since Ext1
A(⊥1X ,X ) = 0. Observe that

e(grιy) = πY e
′rιY = πY idY⊕Y ′ιY = πY ιY = idY ,

that is, the lower row splits, or equivalently Ext1
A(Y,X) = 0. �

Definition 2.10. A subcategory X ⊆ A of an abelian category A is called self-
orthogonal if it satisfies any of the following equivalent conditions

(i) Ext1
A(X ,X ) = 0,

(ii) X ⊆ ⊥1X ,

(iii) X ⊆ X⊥1 ,

(iv) X ∩ X⊥1 = X = ⊥1X ∩ X .

Lemma 2.11. Let X ⊆ A be a self-orthogonal subcategory of an abelian category.
Then the additive closure addX is also self-orthogonal.

Proof. Let A,A′ be any two objects in add (X ). Then we can find objects B,B′ ∈
A such that A⊕B =

⊕n
i=1Xi and A′ ⊕B′ =

⊕m
j=1 for Xi, Xj ∈ X . Hence,

Ext1
A(A⊕B,A′ ⊕B′) =

n⊕
i=1

m⊕
j=1

Ext1
A(Xi, Xj) = 0,

14
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which we claim gives that Ext1
A(A,A′) = 0 as well. This is shown through a

similar argument as that given for complements being closed under summands in
Lemma 2.9. That is, for any short exact sequnece A′ ↪−→ X −→→ A we construct the
following commutative diagram with exact rows by taking the pushout along the
inclusion A′ ↪→ A′ ⊕B, and then the pullback along the projection A⊕B � A.

0 A′ X A 0

0 A′ ⊕B′ P A 0

0 A′ ⊕B′ P A⊕B 0

p

q

The bottom row splits as Ext1
A(A ⊕ B,A′ ⊕ B′) = 0, which results in the middle

row splitting, and then consequently that the upper row splits.

�

2.3 Krull-Schmidt Categories

We say that an object X ∈ E is indecomposable whenever X ∼= X ′ ⊕ X ′′ implies
either X ′ = 0 or X ′′ = 0. An additive category in which every object admits a
finite decomposition into indecomposable objects with local endomorphism rings
is called a Krull-Schmidt category. As noted in [18], this naming originates from
the Krull-Schmidt Theorem, which states that such a decomposition is guaranteed
for every finite length module. An in-depth and self-containing exposition on the
subject of Krull-Schmidt categories have been written by Krause in [18]. Most of
the following results concerning Krull-Schmidt categories are found in said article,
and the reader is referred there for the proofs which we omit.

Remark 2.12. A Krull-Schmidt category is both noetherian and artinian.

Definition 2.13. An epimorphism φ : X → Y is essential if any morphism ψ : Z →
X is epimorphic if and only if the composition φ ◦ ψ : Z → Y is epimorphic.

15
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An epimorphism from an projective object φ : P → X is a projective cover if it is
essential.

Definition 2.14. An endomorphism f : X → X is said to be split idempotent if
there exist a factorization X

r−→ Y
s−→ X of f such that r ◦ s = idY . It is easily

verified that a split idempotent is in fact an idempotent. We say that an additive
category E has split idempotents if all idempotents in E splits.

Lemma 2.15. If f : X → Y → X is a split idempotent such that the idempotent
idX − f : X → X also splits, then Y is a direct summand of X.

Proof. Let
f : X

r−→ Y
s−→ X

and
idX − f : X

r′−→ Y ′
s′−→ X

be split idempotents in E . Now, consider the maps

( r
r′ ) : X → Y ⊕ Y ′ and ( s s′ ) : Y ⊕ Y ′ → X,

which, by construction, gives

( r
r′ )( s s′ ) =

(
idY 0
0 idY ′

)
= idY⊕Y ′

and
( s s′ )( r

r′ ) = s ◦ r + s′ ◦ r′ = f + (idX − f) = idX

That is X ∼= Y ⊕ Y ′. �

Proposition 2.16 ([18, Prop. 4.1]). Let R be a ring. The category of R-modules is
Krull-Schmidt if and only if every finitely generated R-module admits a projective
cover. If R satisfies these equivalent assertions it is called semi-perfect.

Theorem 2.17 ([18, Thm. 4.2]). Let X be an object in a Krull-Schmidt category
and suppose there are two decompositions

X1 ⊕ · · · ⊕Xr
∼= X ∼= Y1 ⊕ · · · ⊕ Ys

16
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into objects with local endomorphism rings. Then r = s and there exists some
permutation π such that Xi

∼= Yπ(i) for 1 ≤ i ≤ r.

Corollary 2.18 ([18, Cor. 4.4]). An additive category is a Krull-Schmidt category
if and only if it has split idempotents and the endomorphism ring of any object is
semi-perfect.

Remark 2.19. In an abelian category the condition of split idempotents is triv-
ially satisfied, since all morphisms factor through their image. Hence, the corollary
above says that an abelian category is Krull-Schmidt if and only if the endomor-
phism ring of any object is semi-perfect.

Remark 2.20. It can be seen that an additive quotient of a Krull-Schmidt cat-
egory is itself a Krull-Schmidt category. We omit the arguments here, since it
requires us to define the categorical radical.

2.4 Approximations

The notion of approximations were introduced by Auslander and Smalø while
studying subcategories of mod(A) for an artin ring A [3]. In certain literature one
may stumble upon the concept of pre-envelopes/covers for the same morphisms
which we call right-/left-approximations [14]. It has traditionally been normal to
use this naming convention when working in the category of all modules over a ring
R, and the convention of Auslander when working over finitely generated modules.

In module categories we can enforce a minimality condition on every morphism,
which in turn gives us minimal approximations or envelopes/covers. These mini-
mality conditions gives in particular Wakamatsu’s Lemma which relates approxi-
mations to orthogonality. We will see that Krull-Schmidt categories have minimal
morphisms, and, by Wakamatsu’s lemma, we can therefore later characterize co-
torsion pairs in Krull-Schmidt categories through the existence of approximations.

Definition 2.21. Let X be a full subcategory of an additive category E . A mor-
phism out of X to an object E of E is called a right X -approximation of E if any

17
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other morphism out of X to E factors through it. That is φ : X → E, with X ∈ X ,
is a right X -approximation of E if any morphism X ′ → E, with X ′ ∈ X factors
through φ

X ′

X E

∃

φ

.

Equvialently φ : X → E is a right X -approximation of E if it induces an epimor-
phism of functors

Hom(−, X)|X
φ∗−→ Hom(−, E)|X .

If every E ∈ E admits a right X -approximation, then X ⊆ E is said to be con-
travariantly finite.

Dually a left X -approximation of E is a morphism ψ : E → X which induces an
epimorphism of functors

Hom(X,−)|X
ψ∗−→ Hom(E,−)|X ,

and if every E admits such a left X -approximation, X ⊆ E is covariantly finite.

Any subcategory X ⊆ E which is both contra- and covariantly finite is called
functorially finite.

Remark 2.22. The naming originates in the study of modules of an additive
category E [See e.g. 2, 15], which are contravariantly additive functors from E
into the category of abelian groups. In the category of these modules, one has
that the representable modules, M ∼= HomE(−, X), are projective. Every module
admitting an epimorphism from a projective module are called finitely generated.
Thus, the existence of a right X -approximation of E from an additively closed
subcategory X of E implies that HomE(−, E)|X is finitely generated as an X -
module.

Example 2.23. Let E be an exact category with enough projectives and let E
be any object of E . Since we have enough projectives we have the following short
exact sequence

0→ ΩE −→ P
π−→ E → 0,

18
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which gives the short exact sequence

0→ HomE(−,ΩE)|ProjE −→ HomA(−, P )|ProjE
i∗−→ HomE(−, E)|ProjE → 0.

Thus the full subcategory of projective objects ProjE ⊆ E , is contravariantly finite.

Dually, if E has enough injectives, then the full subcategory InjE ⊆ E of injective
objects is covariantly finite.

If E is Frobenius exact, we have that ProjE = InjE is functorially finite. ♣

2.4.1 Example: The Syzygy-Subcategories

A slightly less trivial example of contravariantly finite subcategories is the Syzygy-
subcategories which was used in [4]. Let A be an abelian category with enough
projectives.

Definition 2.24. Let Ωn(A) denote the additive closure of the collection of all
n-syzygies in A, that is

add

{
K ∈ A

∣∣∣∣∣ ∃ an exact sequence
0→ K → Pn → · · · → P1 → P0 → A→ 0, Pi ∈ Proj(A)

}
.

We are going to show that Ωn(A) is contravariantly finite in A.

Definition 2.25. Let Cb(Proj(A)), respectively Cb(Inj(A)), be the full subcate-
gories of the bounded chain complex category Cb(A), consisting of bounded chain
complexes of projectives, respectively injectives.

Proposition 2.26. Let A• ∈ Cb(A) be a bounded A chain complex of length n <
∞. Then we can find an epimorphic right Cb(Proj(A))-approximation P• � A•,
such that P• has length n.

Proof. The proof is constructive. We start by finding a right epimorphic Proj(A)-
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approximation ρ1 : P1 � A1. Then by taking the pullback of

P1

A2 A1

ρ1

f1

we get the commutative diagram with exact rows

0 Ker(f1) X2 P1 C1 0

0 Ker(f1) A2 A1 C1 0

ρ1

f1

where the middle square is both a pushout and a pullback square, since ρ1 is an
epimorphism. We now find an epimorphic right Proj(A)-approximation P2 � X2.
Set ρ2 : P2 � A2 to be the composition P2 � X2 � A2, and g1 : P2 → P1 as
the composition P2 � X2 → P1. Observe that since the right-hand square of the
following commutative diagram is a pushout square, we have that the outer square
is also a pushout square,

P2 X2 P1

A2 A2 A1

ρ1

f1

.

Hence, the kernel morphism Ker(g1)→ Ker(f1) is necessarily an epimorphism.

Next, we take the pullback of

Ker(f2)

A2 Ker(f1)
f1

to obtain the commutative diagram with exact rows,

0 Ker(f2) X3 Ker(f2) C2 0

0 Ker(f2) A3 Ker(f1) C2 0
f2

,
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where the middle square is a push-out and pullback square by the same reason
as above. Let now P3 � X3 be a right epimorphic Proj(A)-approximation, and
set ρ3 : P3 � A3 as the composition P3 � X3 � A3 and g2 : P2 → P1 as the
composition P3 � X3 → Ker(g1) ↪→ P2. By the same reason as above, the kernel
morphism Ker(g2)→ Ker(f2) is an epimorphism. We iterate this construction up
until An.

We are left with showing that ρ : P• � A• is a right approximation. Thus, let
ε : Q• → A• be any other morphism from Cb(Proj(A)). ρ1 : P1 � A1 is an approx-
imation, so ε1 factors through ρ1. Observe that we get the following commutative
diagram

Q2 Q1

X2 P1

A2 A1

ε2 ε1

y
ρ1

f1

where the dashed morphism arises from the pullback-property. Now, using that
P2 � X2 was an approximation, we get that ε2 factors through ρ2. Assume we
have shown that εi factors through ρi for all i ≤ k. If we let Ker(Qk → Qk−1) = K,
we have a commutative diagram

Qk+1 K Qk Qk−1

Xk+1 Ker(gk−1) Pk Pk−1

Ak+1 Ker(fk−1) Ak Ak−1

εk+1

y
κk ρk

gk−1

ρk−1

fk−1

where the dashed morphism arises from the kernel property, and the dotted mor-
phism exists by the pullback property. Once again, by the approximation property
of Pk+1 � X ′ we get that εk+1 : Qk+1 → Ak+1 factors through ρk. Thus, we con-
clude that ρ : P• → A• is a right Proj(A)-approximation. �

Corollary 2.27. The full subcategory Cb
n(Proj(A)) ⊆ Cb

n(A) of bounded complexes
of length n is contravariantly finite.
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Corollary 2.28. Let A be a bounded chain complex of length n in Cb(A). The
epimorphic right Cb(Proj(A))-approximation ρ : P• � A• constructed in Proposi-
tion 2.26 induces isomorphisms Hi(P•) ∼= Hi(A•) for i < n and an epimorphism
Hn(P•)→ Hn(A•).

Proof. Since the approximation Pi � Xi is an epimorphism, we have the exact
diagrams from the construction

Pi+1 Ker(gi−1) Ci 0

Ai+1 Ker(fi−1) Ci 0

ρi+1 κi

for all i < n. Thus, for i ≤ n, we have Hi(P•) ∼= Ci ∼= Hi(A•). When i = n we
have Hn(P•) ∼= Ker(gn−1)� Ker(fn−1) ∼= Hn(A•). �

Lemma 2.29. For every object A ∈ A, there exists a right Ωn(A)-approximation
of A.

Proof. Let I• ∈ C−(Inj(A)) be an injective resolution of A. By truncation we find
the bounded complex σ≤n(I•), and by Proposition 2.26 we find a right Proj(A)-
approximation ρ : P• → σ≤n(I•). We therefore obtain the commutative diagram

0 K Pn Pn−1 · · · P1 fn(A) 0

0 A I1 I2 · · · In fn(A) 0

ρn ρn−1 ρ1 ,

which is exact by Corollary 2.28. Therefore K = Ωn(fn(A)) and is thus contained
in Ωn(A). We claim that the morphism K � A is a right Ωn(A)-approximation of
A. Suppose we have a morphism X → A with X ∈ Ωn(A), then we have an exact
sequence

0→ X → Qn → Qn−1 → · · · → Q1 → Y

with Qi ∈ ProjA. By letting Q• be the bounded complex of length n

Qn → Qn−1 → · · · → Q1,
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we first obtain a morphism Q• → I• since I• consists of injective elements, thus
also a morphism Q• → σ≤n(I•). Since ρ : P• → σ≤n(I•) is a right Cb

n(ProjA)-
approximation, we obtain a factorization through ρ. Thus by kernel-property, we
also have a factorization of X → A through K → A. �

♣

2.4.2 Minimal Approximations

As already mentioned we are interested in minimal morphisms as they relate
approximations to orthogonality. We can also observe that orthogonality in an
abelian category relates naturally to approximations. Hence, in categories where
all morphisms decomposes into a minimal and a zero part, we obtain a corre-
spondence between orthogonality and approximation. The last relation is given
in the following lemma, before we move on to explore the other direction through
minimality and Wakamatsu’s lemma.

Lemma 2.30. Let f : X → E be any epimorphism in an abelian category A with
X ∈ X a full subcategory of A. If the kernel K = Ker(f) of the morphism has the
property that Ext1

A(X , K) = 0, then f is a right X -approximation of E.

Proof. Let f ′ : X ′ → E be any morphism such that X ′ ∈ X . Then, by taking the
pullback of this map along f : X → E we get the commutative diagram with exact
rows

0 K P X ′ 0

0 K X E 0

y
f ′

f

and by hypothesis the upper row splits, thus giving the wanted factorization. �

Definition 2.31. A morphism f : A→ B is right minimal if every endomorphism
g : A→ A such that f = f ◦ g is an isomorphism.

23



2.4 Approximations 2 ADDITIVE CATEGORIES

Conversely, f : A→ B is left minimal if every endomorphism h : B → B such that
f = h ◦ f is an isomorphism.

Whenever we have a right, respectively left, X -approximation of a subcategory
X , which is also right, respectively left, minimal, we will be calling it a right,
respectively left, minimal X -approximation.

Lemma 2.32. If φ1 : X1 → E and φ2 : X2 → E are two right minimal X -
approximations of E, then X1

∼= X2.

Proof. The approximation propery of φ1 and φ2 gives us the following commutative
diagrams

X1

X2 E

φ1
f

φ2

and
X2

X1 E

φ2
g

φ1

.

These diagrams gives us that

φ1 = φ2 ◦ f = φ1 ◦ (g ◦ f) and φ2 = φ1 ◦ g = φ2 ◦ (f ◦ g)

and by minimality both (g ◦ f) and (f ◦ g) are automorphisms, thus giving that f
and g are isomorphisms. �

Through Corollary 1.4 of [19] and its dual we observe that any morphism in a
Krull-Schmidt category admit a decomposition into a minimal part and a zero
part.

Lemma 2.33 (Dual of Corollary 1.4 in [19]). Let φ : X → Y be a morphism in an
abelian Krull-Schmidt category A. Then there exist a decomposition, X ∼= X ′⊕X ′′,

φ =
(
φ′ φ′′

)
: X ′ ⊕X ′′ → Y,

such that φ′ is right minimal and φ′′ = 0. �
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Lemma 2.34 ([19, Corollary 1.4]). Let ψ : X → Y be a morphism in an abelian
Krull-Schmidt category A. Then there exist a decomposition, Y ∼= Y ′ ⊕ Y ′′,

ψ =

(
ψ′

ψ′′

)
: X → Y ′ ⊕ Y ′′,

such that ψ′ is left minimal and ψ′′ = 0.

Lemma 2.35 (Wakamatsu’s Lemma). Let A be an abelian category, and X ⊆ A
a full subcategory closed under extensions. Then

(i) Let φ : X → A be a right minimal X -approximation of an object A, then

Ext1
A(−,Ker(φ))|X = 0.

(ii) Let ψ : A→ X be a left minimal X -approximation of an object A, then

Ext1
A(Cok(ψ),−)|X = 0.

Proof. (i):
First observe that φ gives us a short exact sequence

0→ Ker(φ)
k−→ X

c−→ Im(φ)→ 0

where c : X � Im(φ) is a right minimal X -approximation of Im(φ).

Consider now any short exact sequence

0→ Ker(φ)
m−→ E

e−→ X ′ → 0

with X ′ ∈ X . This give rise to the following commutative diagram with exact
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rows and columns, where the upper left square is a push-out square,

0 0

0 Ker(φ) E X ′ 0

0 X Y X ′ 0

Im(φ) Im(φ)

0 0

m

k

e

k′

m′

c

p e′

c′

X is closed under extensions, so we get that Y ∈ X , and, necessarily, c′ : Y →
Im(φ) factors through X. That is, we get a morphism f : Y → X such that
c′ = c ◦ f .

Y Im(φ)

X A

c′

f i

φ

c .

Thus, we get that c = c′ ◦m′ = c ◦ f ◦m′, and, since c is right minimal, we deduce
that f ◦m′ is an isomorphism. We observe now that

c ◦ (f ◦m′)−1 ◦ f ◦ k′ = c ◦ f ◦ k′ = c′ ◦ k′ = 0

so (f ◦m′)−1 ◦f ◦k′ factors through Ker(φ), that is, we obtain a morphism g : E →
Ker(φ) fitting into the following commutative diagram with exact rows

0 E Y Im(φ) 0

X

0 Ker(φ) X Im(φ) 0

k′

g

c′

f

(f◦m′)−1

k c

.

We claim that g is a right inverse to m : Ker(φ) ↪→ E. In order to see this, we
observe that

k = (f ◦m′)−1 ◦ f ◦m′ ◦ k = (f ◦m′)−1 ◦ f ◦ k′ ◦m = k ◦ g ◦m
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which gives that idKer(φ) = g ◦m, since k is mono. That is, g is a right inverse as
we wanted, further the short exact sequence

0→ Ker(φ)
m−→ E

e−→ X ′ → 0

splits, so
Ext1

A(−,Ker(φ))|X = 0.

The second assertion is proven by applying the first part of the lemma in the
opposite category. �
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3 Torsion, Cotorsion and Tilting

We are now ready to set forth on the study of tilting. For the most part, we
will follow the treatment given by Bauer et al. in [5], but some parts of the story
will diverge slightly. We will see that tilting is in a bijective correspondance with
cotorsion torsion triples, and that these triples induce an equivalence between
certain subcategories. However, before we can prove any of these results, we have
to make clear what torsion and cotorsion is. Hence, we will start by giving the
axioms and some results of torsion, before moving on to cotorsion. Then cotorsion
torsion triples will be defined and the induced equivalence proven, before tilting is
defined in the last part of the section.

3.1 Torsion Pairs

Dickson introduced in [12] a set of axioms for decomposing a subcomplete1 abelian
category A into hom-orthogonal complements, based upon the concept of torsion
in abelian groups. The abelian category in this thesis is not generally assumed to
be subcomplete, hence our notion of torsion is a bit more restrictive than that of
Dickson. However, in the more restrictive setting, our definition do coincide with
the original axioms.

In an abelian group we have torsion elements, which are elements that are annihi-
lated when multiplied by some non-zero integer. Every finitely generated abelian
group decomposes into a direct sum of torsion groups on the form Z/pZ for some
prime p ∈ N and free groups Z.

In a general abelian category these properties are approximatied through the fol-
lowing set of axioms describing torsion.

Definition 3.1. A torsion pair in an abelian category A is a pair (T ,F) of full
1Dickson used the term subcomplete about abelian categories which for any object had a set

of subobjects, and in which any family of subobjects admitted a sum and intersection.
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subcategories of A closed under isomorphisms, such that

(i) HomA(T, F ) = 0 for any T ∈ T and F ∈ F , and

(ii) for any object A in A, there is a short exact sequence

0→ tA −→ A −→ fA→ 0

with tA ∈ T and fA ∈ F .

If (T ,F) is a torsion pair, then T is called a torsion class and F is called a
torsion-free class.

Example 3.2. The trivial examples of torsion pairs in A are (0,A) and (A, 0). ♣

Example 3.3. Let (T ,F) be a pair of full categories in the category of finitely
generated modules over a principal ideal domain R, given by

T = add({R/rR | r 6= 0 unit}),

F = add(R).

We claim that these subcategories forms a torsion pair. To prove this let us look
at R/rR ∈ T and R ∈ F . For any homomorphism f : R/rR → R we have
0 = f(r)f(r−1) = f(rr−1) = f(1). Hence Hommod(R)(R/rR,R) = 0. For any other
finitely generated module M over R, we have a structure theorem which gives us
a decomposition into torsion and torsion free modules [See e.g. 7]. That is, any
finitely generated module M over a PID R is of the form

M ∼= Rs ⊕

(
t⊕
i=1

R/riR

)
.

This guarantees the existence of a short exact sequence

0→

(
t⊕
i=1

R/riR

)
−→M −→ Rs → 0.

(T ,F) is therefore a torsion pair in mod(R). ♣
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Example 3.4. In the category of finite-dimensional representation over mod(k)

of the the zig-zag quiver Q,

•
1

•
2

•
3

we have the indecomposable representations

P1 : k 0 0 P2 : k k k P3 : 0 0 k

I1 : k k 0 I2 : 0 k 0 I3 : 0 k k

11

1 1

Let

T = add{ k k 01 ⊕ 0 k 0 ⊕ 0 k k1 },

F = add{ k 0 0 ⊕ k k k11 ⊕ 0 0 k }.

It is easy to see that HomA(T ,F) = 0 and since every representation V over
mod(k) decomposes into a direct sum of these indecomposables, we obtain a short
exact sequence

0→ tV −→ V −→ fV → 0

for all representations V ∈ rep(Q,k). Thus, (T ,F) is a torsion pair in rep(Q,k).
♣

Example 3.5. Over the linear quiver

•
1

•
2

•
3

we have a torsion pair (T ,F) in rep(Q,k) given by

T = add{ 0 k 0 ⊕ k k 0 ⊕ k 0 0 },

and
F = add{ 0 0 k ⊕ 0 k k ⊕ k k k }.

We also have the torsion pair (T ′,F ′) given by

T ′ = add{ k k k ⊕ k k 0 ⊕ k 0 0 },
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and
F ′ = add{ 0 0 k ⊕ 0 k k ⊕ 0 k 0 }.

♣

Example 3.6. All the examples of torsion pairs given thus far has been such that
the union of the torsion and torsion-free class is the whole of A, i.e. T ∪ F = A,
this is not a general property of torsion pair. In rep(Q,k) of the linear quiver from
above, we can observe that the subcategories

T = add{ k k 0 ⊕ k 0 0 ⊕ 0 k 0 },

F = add{ k k k ⊕ 0 0 k }.

form a torsion pair (T ,F), but the indecomposable representation 0 k k

is not in either of them. ♣

Observe that if (T ,F) is a torsion pair of A and we have an object X ∈⊥ F , then
we get the exact sequence

0→ tX −→ X
0−→ fX → 0.

That is, X ∼= tX ∈ T . Thus ⊥F ⊆ T , and since the converse inclusion is trivial
we have equality. The equality T ⊥ = F follows similarly. From this and the
results on orthogonality in Lemma 2.7 and Lemma 2.8, we conclude that that the
following corollary holds.

Corollary 3.7. If (T ,F) is a torsion pair of A, then

F = T ⊥ = {A ∈ A | HomA(T,A) = 0 ∀ T ∈ T },

and
T =⊥ F = {A ∈ A | HomA(A,F ) = 0 ∀ F ∈ F}.

Further, both T and F are extension-closed, T is closed under factors and coprod-
ucts, and F is closed under subobjects and products. �
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Lemma 3.8. The short exact sequence arising from a torsion pair is functorial.
In other words, given a torsion pair (T ,F) in A, the assignments

t : A → T

A 7→ tA
and

f : A → F

A 7→ fA

are functors.

Further, they appear in adjoint pairs (incT , t) and (f, incF), where incX : X ↪→ A
is the canonical inclusion functor.

Proof. Let A,A′ ∈ A and g ∈ HomA(A,A′). Observe that the composition

φ : tA A A′ fA′
g

is zero, since φ ∈ HomA(tA, fA′) = 0. The universal property of tA′ as kernel of
A � fA′ gives a unique morphism tg : tA → tA′. Likewise, using the universal
cokernel property of fA, we get the unique morphism fg : fA→ fA′.

tA A fA

tA′ A′ fA′

tg g fg .

For the adjoint claims, we apply the hom-functors HomA(T,−) and HomA(−, F )

where T ∈ T and F ∈ F on

0→ tA −→ A −→ fA→ 0,

obtaining natural isomorphisms

HomA(T,A) ∼= HomA(T, tA) and HomA(fA,F ) ∼= HomA(A,F ).

�

Remark 3.9. For a torsion pair (T ,F), we have that t is a subfunctor of the
identity functor in A. Such functors are often called a pre-radical on A. Moreover,
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a pre-radical r on A is said to be idempotent if r(r(−)) = r(−). If r(X/rX) =

02 for every object X ∈ A, then the pre-radical is radical on A. Thus t is
an idempotent radical of A. In fact, we also have the converse direction; any
idempotent radical give rise to a torsion pair, as shown in the following proposition.

Proposition 3.10 ([12, Theorem 2.8]). Let r be a subfunctor of the identity in an
abelian category A such that r(r(X)) = r(X) and r(X/rX) = 0. Then the pair
of subcategories (T ,F) given by

T = {T ∈ A | rT = T}

and
F = {F ∈ A | rF = 0}

is a torsion pair of A.

Proof. Let f ∈ HomA(T, F ) for any T ∈ T and F ∈ F . r is a subfunctor of the
identity, so we obtain the following commutative diagram

rT T

rF F

rf f ,

and since rF = 0, we see that every morphism in HomA(T, F ) factors through
zero, thus

HomA(T ,F) = 0.

From the hypothesis it follows that

0→ rA −→ A −→ A/rA→ 0

satisfies the second axiom for being a torsion pair. �

We have seen that it is necessary for a torsion class to be closed under extensions,
factors and coproduct. When the ambient abelian category is locally small and

2Where X/rX denote the cokernel Cok[rX ↪→ X].
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bicomplete, we can in fact show that these properties are sufficient as well [12].
This is done by constructing the so-called trace of any object A ∈ A in T , which
is a functor given by

t(−) =
∑

f∈HomA(T,−)
[T ]∈[T ]

Im(f) : A → T ,

where [T ] denotes the isomorphism classes of objects in T .

Observe that the trace is a a right T -approximation, hence implying a relationship
between being torsion and contravariantly finite. In fact, any torsion subcategory
is contravariantly finite. This is easily seen by observing that any morphism T → A

for T in a torsion subcategory T gives the exact diagram

0 tT T 0

0 tA A fA 0

.

Conversely, we get the following sufficient criterion for being a torsion subcategory.

Lemma 3.11. Let A be an abelian category, and T a contravariantly finite full
subcategory closed under extensions and factors. Then (T , T ⊥) is a torsion pair.

Proof. Let A be any object of A, and φ : T → A be a right T -approximation of A.
T is closed under factors, so we can assume that φ is in fact an monomorphism.
Then we obtain the following short exact sequence

0→ T
φ−→ A

c−→ Cok(φ)→ 0,

which we want to show is of the desired form, i.e. Cok(φ) ∈ T ⊥. Therefore, let
f : T ′ → Cok(φ) be any morphism from T and form the exact diagram

0 T X T ′ 0

0 T A Cok(φ) 0

φ′

y
c′

f ′ f

φ c
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where the right square is a pullback-square. T is extension-closed, so X lie in T ,
thus f ′ factors through φ. Consequently, the top row splits. Now, f : T ′ → Cok(φ)

factors as
T ′

g−→ X
f ′−→ A

c−→ Cok(φ),

where g is the right inverse of c′. Using the fact that φ is a right T -approximation
gives us a factorization T ′ h−→ T

φ−→ A of f ′◦g. Combining this, we see that f : T ′ →
Cok(φ) factors through c ◦ φ = 0, so we conclude that HomA(D,Cok(φ)) = 0, and
(T , T ⊥) is a torsion pair. �

In noetherian categories we can even see that any full subcategory closed under
factors is contravariantly finite. This allows us to drop the condition of T being
contravariantly finite in order to be a torsion class.

Lemma 3.12. Let A be a noetherian abelian category, and T ⊆ A a full subcat-
egory closed under factors and extensions. Then T is contravariantly finite and
therefore a torsion class in A.

Proof. We start by claiming that any object A of A has a unique maximal sub-
object that lies in T . A is noetherian by assumption, so it suffices to show the
uniqueness claim. Assume therefore that T and T ′ are two maximal subobjects
that lie in T . The sum of these two objects is a subobject of A by definition and
trivially contains T and T ′ in a natural way. Further, since T + T ′ is equal to
the image of the canonical morphism T ⊕ T ′ → A, it must also lie in T . This
contradicts the maximality of T and T ′, thus proving the existence of a unique
maximal subobject of A that lie in T . Let us denote this subobject by tA.

Now, we claim that the subobject tA ↪→ A is a right T -approximation. Let,
therefore, f : T → A be any other morphism from T , and observe that the image
of this morphism must necessarily factor through tA by maximality. That is,
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tA ↪→ A is a right T -approximation.

T A

Im(f)

tA

f

.

�

3.2 Cotorsion Pairs

Where torsion pairs are hom-orthogonal, we have Ext-orthogonality in the related
concept of cotorsion pairs. Cotorsion was first introduced for abelian groups in
[28] by Salce, but is easily generelized to a general abelian category as we will see
in the following section.

Definition 3.13. A cotorsion pair of A is a pair of full subcategories (C,D) such
that D is left 1-orthogonal to C, and C is similarly right 1-orthogonal to D, i.e.

C = ⊥1D = {A ∈ A | Ext1
A(A,D) = 0 for all D ∈ D}

and
D = C⊥1 = {A ∈ A | Ext1

A(C,A) = 0 for all C ∈ C}.

A cotorsion pair (C,D) is said to have enough projectives if for any object A in A
we have an exact sequence

0→ dA −→ cA −→ A→ 0

with dA ∈ D and cA ∈ C. Equally, (C,D) is said to have enough injectives if for
any object A in A we have an exact sequence

0→ A −→ d̃A −→ c̃A→ 0

with c̃A in C and d̃A in D.

A cotorsion pair (C,D) which has both enough injectives and projectives, is called
complete.
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Remark 3.14. We have chosen to not follow the convention used in [5] where
the existence of enough projectives and injectives is a part of being cotorsion, and
instead use the convention of calling such pairs complete cotorsion. This is done
in an effort to not unnecessarily over-complicate the notation for the constructions
in Section 4.2. Further, this allows us to state Salce’s Lemma (Lemma 3.25) in its
commonly known form.

Example 3.15. LetA be an abelian category with enough projectives ProjA ⊆ A.
Then (ProjA,A) is a cotorsion pair with enough projectives. In fact, since we can
always form the short exact sequence

0→ A
∼−→ A −→ 0→ 0

for any object A ∈ A, we have that (ProjA,A) is a complete cotorsion pair.

Dually, if A has enough injectives InjA ⊆ A, then (A, InjA) is a complete cotorsion
pair. ♣

Example 3.16. Let us fix some abelian category A with enough projectives and
injectives. We consider the functor category Fun(Z+,A) of all functors from the
ordered category of positive integers to A. Equivalently, we can describe this by
the category rep(

→
A∞,A) of A-valued representations of the infinite quiver

→
A∞ : •

1
•
2

•
3

•
4

· · · .

The pair (C,D) of subcategories of Rep(
→
A∞,A), given by

C = {F ∈ Rep(
→
A∞, A) | All structure maps of F are mono},

D = Rep(
→
A∞, InjA) = Fun(Z+, InjA),

is a cotorsion pair [16, Theorem A]. Further, Odabaşı has shown that this cotorsion
pair is in fact complete whenever A has exact small coproducts [23, Theorem 4.6].

Considering the ordered category of negative integers, or equivalently the quiver

→
A∞ : · · · •

4
•
3

•
2

•
1
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we have the cotorsion pair (C,D) of Rep(
→
A∞,A) given by

C = Rep(
→
A∞,ProjA) = Fun(Z−,ProjA),

D = {F ∈ Rep(
→
A∞, A) | All structure maps of F are epi}.

which is complete if A has exact small products. ♣

Remark 3.17. The above example is an application of the main results presented
by Holm et al. in [16] and Odabaşı in [23]. In section 4.2 we will prove those results
for finite acyclic quivers. From there we obtain the next two examples.

Example 3.18. Let us fix an abelian category A with enough projectives and the
zig-zag quiver

Q : •
1

•
2

•
3

βα

Then (C,D) given by

C = Rep(Q,ProjA),

D = {F ∈ Rep(Q,A) | The canonical morphism F2 → F1 ⊕ F3 is epic.}

is a complete cotorsion pair in Rep(Q,A).

Let us verify the cotorsion claim by showing that ⊥1D ⊆ C and C⊥1 = D. Then
we will show that the pair has enough injectives, which by the soon to be shown
Salce’s Lemma (Lemma 3.25) is sufficient for it to be complete.

Assume first that we have a representation F ∈ Rep(Q,A),

F1 F2 F3
FβFα ,

in ⊥1D, that is Ext1
A(F,−)|D = 0. We want to show that F ∈ C, which we will do

by showing that F1, F2, F3 are projective objects in A. We start by showing that
F2 is projective. Consider the following exact diagram

F2

0 A B C 0
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in A, which gives us the following exact commutative diagram where the right
square is a pullback

0 A X F2 0

0 A B C 0

y .

From this, we construct the following commutative diagram with exact rows, where
the columns are representations of Q,

0 0 F1 F1 0

0 A X F2 0

0 0 F3 F3 0

.

This sequence splits by assumption, as the representation 0 A 0

clearly lies in D. Specifically, we see that

0→ A −→ X −→ F2 → 0

splits, and thus, we obtain a factorization

X F2

0 A B C 0

giving that F2 is projective. By symmetry, it is enough to show that F1 also is
projective for F to be in C = Rep(Q,ProjA) and thus ⊥1D ⊆ C. Therefore, let us
consider the exact diagram

F1

0 A′ B′ C ′ 0

,
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which by constructing the pullback, gives the following commutative diagram with
exact rows,

0 A′ Y F1 0

0 A′ B′ C ′ 0

y
.

From this, we obtain the following short exact sequence of representations, by
taking the pullback along F2

Fα−→ F1 and Y → F1,

0 A′ Y F1 0

0 A′ Z F2 0

0 0 F3 F3 0

1

q .

Once again, by assumption, this sequence and specifically

0→ A′ −→ Y −→ F1 → 0

splits, giving the factorization

Y F1

0 A′ B′ C ′ 0

.

That is, F1 is projective, hence F lie in C and ⊥1D ⊆ C.

Now, we want to show that D = C⊥1 . Let us therefore assume we have F ∈
C⊥1 . Explicitly, for any representation C ∈ C = Rep(Q,ProjA) with projective
resolution

· · · → P−1 → P 0 → C → 0

we have an epimorphism

HomRep(Q,A)(P
0, F )→ HomRep(Q,A)(P

−1, F ). (1)
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Observe that we have the short exact sequence of representations

0 C2 C2 ⊕ C1 C1 0

0 0 C2 C2 0

0 C2 C2 ⊕ C3 C3 0

(
1
−f

)
( f 1 )

1

( 1
0 )

( 1
0 )

f

g(
1
−g

)
( g 1 )

,

which, in fact, is a projective resolution of C since C ∈ Rep(Q,ProjA). Any
morphism P 0 → F is on the form

C2 ⊕ C1 F1

C2 F2

C2 ⊕ C3 F3

(Fα◦y x )

y

( 1
0 )

( 1
0 )

Fα

Fβ

(Fβ◦y z )

and any morphism P−1 → F is on the form

C2 F1

0 F2

C2 F3

x′

Fβ

Fα

z′

.

Hence the condition that the morphism (1) is an epimorphism is equivalent to

A(C1, F1)⊕A(C2, F2)⊕A(C3, F3)

(−◦f Fα◦− 0
0 Fβ◦− −◦g

)
−−−−−−−−−−−→ A(C2, F1)⊕A(C2, F3)

being epimorphic. Now any morphism C → F is on the form

C1 F1

C2 F2

C3 F3

x

y

f

g

Fα

Fβ

z
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i.e. x◦f = Fα◦y and z ◦g = Fβ ◦y. Thus we also get the sufficient and necessary
condition that

A(C2, F2)

(
Fα◦−
Fβ◦−

)
−−−−−→ A(C2, F1)⊕A(C2, F3) ∼= A(C2, F1 ⊕ F3) (2)

is epimorphic for every projective object C2 ∈ ProjA. A has enough projectives,
so specifically, we know there is an epimorphism C2 � F1⊕F3 for some projective
C2 ∈ ProjA. Hence, we have that the morphism (2) is epimorphic if and only
if F2 → F1 ⊕ F3 is epimorphic. That is, F lie in C⊥1 if and only if it lie in D,
equivalently C⊥1 = D. Now, we have

C ⊆⊥1 (C⊥1) =⊥1 D ⊆ C,

which implies C =⊥1 D, and consequently (C,D) is a cotorsion pair.

To conclude, we are now left with showing that (C,D) has enough injectives, as this,
in conjunction with Rep(Q,A) having enough projectives, guarantees that (C,D)

is complete by Salce’s Lemma. In that endevaour, let us fix some representation
F ∈ Rep(Q,A)

F1 F2 F3
Fα Fβ

.

A has enough projectives, so we find an epimorphism

( xy ) : P � F1 ⊕ F2

from some projective object P ∈ ProjA. Observe then that since this epimorphism
is equal to the composition

P
( 0

1 )
↪−−→ F2 ⊕ P

(
Fα x
Fβ y

)
−−−−−→ F1 ⊕ F3,

we get that the last morphism of the composition is an epimorphism. Thus we
obtain the short exact sequence of representations

0 F1 F1 0 0

0 F2 F2 ⊕ P P 0

0 F3 F3 0 0

1

Fα

Fβ

( 1
0 )

(Fα x )

(Fβ y )

( 0 1 )

1

,
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where the last representation is in C and the middle representation is in D. We
conclude that (C,D) has enough injectives, and therefore is complete. ♣

Example 3.19. Dually, let A be an abelian category with enough injectives. Then
in the category of representaions of the zig-zag quiver

Q : •
1

•
2

•
3

α β

we have the complete cotorsion pair (C,D) given by

C = {F ∈ Rep(Q,A) | The canonical morphism F1 ⊕ F3 → F2 is mono.},

D = Rep(Q, InjA).

♣

Example 3.20. Any class of objects X ⊆ A in an abelian category A gives us the
two cotorsion pairs (⊥1(X⊥1),X⊥1) and (⊥1X , (⊥1X )⊥1). We say that the cotorsion
pair is generated, respectively cogenerated by X . ♣

Remark 3.21. The usefullness of generated cotorsion pairs were demonstrated by
Eklof and Trlifaj, who proved that for module categories all cotorsion pairs which
is generated by a set of modules are complete [13, Theorem 10].

From Lemma 2.7 and Lemma 2.9 we know that a cotorsion pair possesses the
following basic properties.

Corollary 3.22. Let (C,D) be a cotorsion pair, then both C and D are closed
under direct summands and extensions. Further

(i) C contains all projective objects of A and is closed under coproducts.

(ii) D contains all injective objects of A and is closed under products. �

In Lemma 2.30 we found that a morphism f : X → E from a full subcategory
X of an abelian category is a right-approximation if Ext1

A(X ,Ker(f)) = 0, i.e. if
Ker(f) ∈ X⊥1 . This result and it’s dual gives us the following result for cotorsion
pairs with enough injectives or projectives respectively.
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Corollary 3.23. Let (C,D) be a cotorsion pair in A.

(i) If (C,D) has enough injectives, then D is covariantly finite in A.

(ii) If (C,D) has enough projectives, then C is contravariantly finite in A. �

The following corollary to Wakamatsu’s Lemma, Lemma 2.35, gives a converse to
the above when we work in a Krull-Schmidt category. In fact, the proof generalizes
to abelian categories where every morphism decomposes as in Lemma 2.33 and
Lemma 2.34.

Corollary 3.24. Let (C,D) be a cotorsion pair in an abelian Krull-Schmidt cat-
egory A with enough projectives. If C is contravaritantly finite, then (C,D) has
enough projectives. Dually, if D is covariantly finite, then (C,D) has enough in-
jectives.

Proof. We prove the first claim, the second follows dually. Let φ : C → E be any
right C-approximation of an object E ∈ A. First, observe that if φ is not right
minimal, then Lemma 2.33 and the fact that C is closed under direct summands
gives us a right minimal C-approximation φ′ : C ′ → E. Observe also that since A
has enough projectives, we have an epimorphism P � E with P ∈ Proj(A) ⊆ C,
which factors through φ′, thus forcing φ′ to be an epimorphism.

Now Lemma 2.35 gives us that

Ext1
A(C,Ker(φ′)) = 0,

or, equivalently, Ker(φ′) ∈ C⊥1 = D. We therefore have the short exact sequence

0→ Ker(φ′) −→ C ′
φ′−→ E → 0

with C ′ ∈ C and Ker(φ′) ∈ D. �

The dual statement for an abelian Krull-Schmidt category with enough injectives
holds as well.
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Salce showed in his article [28, Corollary 2.4] that in the category of abelian groups,
every cotorsion pair has enough projectives if and only if it has enough injectives.
This result generalizes to hold in any abelian category A with enough projectives
and injectives, as is seen from the following lemma, which is commonly called
Salce’s lemma.

Lemma 3.25 (Salce’s Lemma). Let A be an abelian category with enough pro-
jectives, and (C,D) a cotorsion pair in A with enough injectives. Then (C,D) is
complete, that is it also has enough projectives. The dual assertion for A having
enough injectives and (C,D) enough projectives holds as well.

Proof. Let A be any object of A. We can find an epimorphism P � A from a
projective object P , since A has enough projectives, and by taking the kernel of
this map we have a short exact sequence

0→ K −→ P −→ A→ 0.

(C,D) has enough injectives, so we find a short exact sequence

0→ K −→ d̃K −→ c̃K → 0,

with d̃K ∈ D and c̃K ∈ D. By taking the push-out along K ↪→ P and K ↪→ d̃K,
we obtain the following exact commutative diagram

0 0

0 K P A 0

0 d̃K X A 0

c̃K c̃K

0 0

p .

Observe that P ∈ C, since ProjA ⊆ C and c̃K ∈ C by construction, so the pushout
X lies in C, by closure of extensions. The second row is now a short exact sequence
on the wanted form. The dual statement is proven similarly. �
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3.2.1 Adjoint Functors

We would like for complete cotorsion pairs to have natural functors associated to
them through their short exact sequences, like we had for torsion pairs. Unfortu-
nately, the short exact sequences are not necessarily unique and therefore neither
functorial. However, we can in some sense approximate the same property by
going to an appropriate quotient category. This will be made clear in an instant.

Definition 3.26. The subcategory K = C ∩D ⊆ A associated to a cotorsion pair
(C,D) is called the core of the pair. For any full, additive subcategory X of A
containing K, let X/K denote the ideal qoutient of X by K. If f ∈ HomX (A,B)

is a morphism in X , let f̄ denote the image in X/K.

Lemma 3.27. For any complete cotorsion pair (C,D) in A we have that any
morphism from an object in C to an object in D, factors through an object in K.
That is,

HomA/K(C/K,D/K) = 0.

Further, the constructions d, d̃ and c, c̃ induce functors from A/K to D/K and
C/K respectively.

Proof. Let f : C → D be any morphism with C ∈ C and D ∈ D. By using that
(C,D) has enough projectives, we obtain the short exact sequence

0→ dD
m−→ cD

e−→ D → 0,

where necessarily cD ∈ C ∩ D, since D is closed under extensions. This sequence
gives us the following short exact sequence

0→ HomA(C, dD)
m∗−→ HomA(C, cD)

e∗−→ HomA(C,D)→ 0,

since Ext1
A(C, dD) = 0. Observe that since e∗ is an epimorphism, we can find a

morphism h ∈ HomA(C, cD) such that f = eh.

C

cD D 0

f
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Thus any morphism from C to D factor through an object in C ∩ D.

Now for the functorality claim, observe that any morphism g : A → B in A, fits
into the following commutative diagram with exact rows

0 dA cA A 0

0 dB cB B 0

dg cg g .

The existence of the lift from g to cg follows from cB → B being a right C-
approximation of B by Lemma 2.30. The existence of this lift guarantees the
existence of dg, by the universal property of kernels.

Finally, we are left with checking uniqueness of the lifts in C/K and D/K. We
do this by showing that any lifts of the zero map 0: A → B factors through an
object of K. If cg is a lift of the zero map, we observe that it factors through some
morphism h : cA→ dB by the kernel property of dB ↪→ cB. In fact, dg must also
factor through this morphism. Now, observe that by the first part of our lemma
h factors through some object K ∈ K, and thus so does cg and dg. �

Lemma 3.28. Let (C,D) be a complete cotorsion pair in A, with core K. Let
A ∈ A be any object in A, and

0→ dA
m−→ cA

e−→ A→ 0

a short exact sequence with dA ∈ D and cA ∈ D. Then ē∗ = HomA/K(C, ē) is an
isomorphism for every C ∈ C. That is

ē∗ : HomA/K(C, cA)
∼−→ HomA/K(C,A)

Proof. As in Lemma 3.27, we get a short exact sequence

0→ HomA(C, dA)
m∗−→ HomA(C, cA)

e∗−→ HomA(C,A)→ 0,

for C ∈ C, hence ē∗ is epimorphic.
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In order to show that ē∗ is also mono, we let f ∈ HomA(C, cA) be any morphism
such that ē∗(f) = ē◦ f̄ = 0. Thus, we can find an object I ∈ K, such that we have
the following commutative diagram with exact rows

C I

0 dA cA A 0

i

f j

m e

in A. I lies specifically in C, so we get a new short exact sequence

0→ HomA(I, dA) −→ HomA(I, cA) −→ HomA(I, A)→ 0.

We can therefore find a morphism g ∈ HomA(I, cA) such that e ◦ g = j. Thus we
have

0 = e ◦ f − j ◦ i = e ◦ f − e ◦ g ◦ i = e∗(f − g ◦ i),

and, by exactness above, we have Ker(e∗) = Im(m∗), so there is a morphism
h ∈ HomA(C, dA) such that m ◦ h = f − g ◦ i. By Lemma 3.27, h factors through
some object I ′ ∈ K

I ′ C I

0 dA cA A 0

j′

i

f
h

i′

jg

m e

,

so f = m ◦ h + g ◦ i = m ◦ j′ ◦ i′ + g ◦ i. Thus, we have obtained the following
factorization of f

C cA

I ⊕ I ′
( ii′ )

f

( g j′◦m )
,

and since both C and D are closed under extensions, we have I ⊕ I ′ ∈ K, and
therefore f̄ = 0. We conclude that ē∗ is an isomorphism. �

Corollary 3.29. The inclusion functor C/K ↪→ A/K is a left adjoint to the in-
duced functor c′ : A/K → C/K.

We also obtain the dual results, which we state without proof.
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Lemma 3.30. Let (C,D) be a complete cotorsion pair in A, with core K. Let
A ∈ A be any object in A, and

0→ A
m−→ d̃A

e−→ c̃A→ 0

a short exact sequence with d̃A ∈ D and c̃A ∈ D. Then m̄∗ = HomA/K(m̄,D) is
an isomorphism for every D ∈ D. That is

m̄∗ : HomA/K(A,D)
∼−→ HomA/K(d̃A,D)

Corollary 3.31. The inclusion functor D/K ↪→ A/K is a right adjoint to the
induced functor d̃′ : A/K → D/K.

3.3 Cotorsion Torsion Triples

Now we can define what we mean by a cotorsion torsion triple.

Definition 3.32. A cotorsion torsion triple is a triple of subcategories (C, T ,F)

in A, such that (C, T ) is a complete cotorsion pair, and (T ,F) is a torsion pair.

Additionally, we define a torsion cotorsion triple as a triple of full subcategories
(T ,F ,D), such that (T ,F) is a torsion pair, and (F ,D) is a complete cotorsion
pair.

Remark 3.33. We can observe that torsion and cotorsion is self-dual, in the sense
that if (X ,Y) is either torsion or cotorsion in A, then (Yop,X op) is either torsion or
cotorsion in Aop. Therefore, a triple of subcategories (C,D,F) in A is a cotorsion
torsion triple if and only if the triple (Fop,Dop, Cop) is a torsion cotorsion triple in
Aop.

As we saw in the previous section, the cotorsion and cotorsion-free parts of a
cotorsion pair are contravariantly and covariantly finite respectively. Let us now
show that in the presence of the functors of a torsion pairs, these properties extend
to the core of the cotorsion pair as well.
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Lemma 3.34. Let (C, T ,F) be a cotorsion torsion triple, then C ∩ T is con-
travariantly finite. Analogously, if we have a torsion cotorsion triple (T ,F ,D),
then F ∩ D is covariantly finite.

Proof. We will only prove the first statement of the lemma, the proof of the second
statement follows similarly. Let A be any object in A. Let f : X → A, be any
morphism from C ∩ T to A. By post-composition with A � fA we see that f
factors through tA ↪→ A by the kernel property since HomA(T ,F) = 0.

X

0 tA A fA 0

∃! .

From Lemma 2.30, we know that the last morphism of

0→ dtA −→ ctA −→ tA→ 0

is a right C-approximation of tA, thus f factors further through ctA. Since T
is extension-closed we have ctA ∈ C ∩ T , so we have obtained a right C ∩ T -
approximation of A.

X

ctA tA A fA

f
∃!

�

Lemma 3.35. Let (C,D) be a complete cotorsion pair in an abelian category A.
Then D is closed under factors if and only if all objects in C have projective di-
mension at most one.

In particular, if (C, T ,F) is a cotorsion torsion triple, then all objects in C have
projective dimension at most one.

Proof. We start by assuming that D is closed under factors. Let us consider a
2-extension of an object C in C to any object A ∈ A,

0→ A
m−→ E

f−→ F
e−→ C → 0.
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Using that (C,D) is a cotorsion pair, we find the exact sequence

0→ E −→ d̃E −→ c̃E → 0,

where the monomorphism E ↪→ d̃E is of particular interest. By constructing
the push-out along this monomorphism and f : E → F , we find the following
commutative diagram with exact rows

0 A E F C 0

0 A d̃E F ′ C 0

m f e

m′ f ′ e′
p

From the diagram above, we can use the exactness of the bottom row to extract
the short exact sequence

0→ Im(f ′) −→ F ′ −→ C → 0

D is closed under factors, so in particular we have that the image of f ′ : d̃E → F ′

lies in D. Therefore we know that Ext1
A(C, Im(f)) = 0, and in particular the short

exact sequence above splits. Therefore we can form the commutative diagram with
exact rows

0 A E F C 0

0 A d̃E Im(f)⊕ C C 0

0 A A C C 0

m f e

m′

(
f
0

)
( 0 1 )

0

(m
′

0 ) ( 0
1 )

which gives us that our original 2-extension is equivalent to the trivial 2-extension
from C to A, and therefore also Ext2

A(C,−) = 0. That is, the projective dimension
of C is at most one.

Now, assume that the projective dimension of C it at most one, or equivalently
Ext2

A(C,−) = 0. Let
0→ A −→ D −→ B → 0
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be any short exact sequence whereD is an object ofD, then by applying HomA(C,−)

we get the exact sequence

Ext1
A(C,D)→ Ext1

A(C,B)→ Ext2
A(C,A)

where the first and last component is zero by assumption, and thus Ext1
A(C,B) =

0, i.e. B ∈ C⊥1 = D. That is, D is closed under factors.

In conclusion, if (C, T ,F) is a cotorsion torsion pair, we get that since (T ,F) is a
torsion pair, T is closed under factors. Thus C has projective dimension at most
one. �

Theorem 3.36. Let (C, T ,F) be a cotorsion torsion triple in an abelian category
A. Then c ◦ πK : A → C/K and f : A → F induce mutually inverse equivalences

F incF
↪−−→ A πK−→ A/K c−→ C/K

and
C/K

incC/K
↪−−−→ A/K → F

such that F ' C/K

Proof. Recall that f is left adjoint to the inclusion F ↪→ A, and c : A/K is right
adjoint to the inclusion C/K ↪→ A/K. Observe also that the functor f : A → F
satisfies f(T ) = 0. Therefore by the universal property of quotient categories we
obtain a functor f : A/K → F such that f = f ◦ πK.

F A

A/K C/K

πK

f
c◦πK

c
f

Denote the restriction C/K ↪→ A/K f−→ F , by f|C, and the restriction F ↪→ A c◦πK−−−→
C/K by c|F . We want to show that f|C and c|F are quasi-inverses.
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Let us start with a morphism φ : A → B in F , then by the same argument as in
the proof of 3.27, we find the commutative exact diagram

0 dA cA A 0

0 dB cB B 0

dφ cφ φ

where cφ is uniquely determined in C/K. Now, by applying f we obtain the exact
commutative diagram

0

=0︷︸︸︷
fdA fcA fA 0

0 fdB︸︷︷︸
=0

fcB fB 0

fdφ fcφ fφ

and by using that f acts as identity on all objects of F , we conclude f|C◦c|F ∼= idF .

Now let, φ : C → C ′ be any morphism in C/K and let φ : C → C ′ be a preimage of
φ in C. This preimage gives rise to the following exact commutative diagram in A

0 tC C fC 0

0 tC ′ C ′ fC ′ 0

tφ φ fφ

with tC, tC ′ ∈ T and fC, fC ′ ∈ F . Now, observe that φ is a lift of fφ, and we
know that the lift of fφ is unique in C/K, thus

φ = c ◦ πK ◦ f(φ) = c|F ◦ f|C(φ)

giving c|F ◦ f|C = idC/K. We conclude that

F ' C/K

�

By the duality remarked earlier, we also obtain the dual result of this theorem.

Theorem 3.37. Let (T ,F ,D) be a torsion cotorsion triple in an abelian category
A. Then d ◦ πK : A → D/K and t : A → T induce mutually inverse equivalences
such that T ' D/K
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3.4 Tilting

Definition 3.38. Let A be an abelian category with enough projectives. An
additively closed full subcategory T of A, i.e. T = add(T), is a weak tilting
subcategory if

(i) it is self-orthogonal, i.e. Ext1
A(T1, T2) = 0 for all T1, T2 ∈ T,

(ii) any object T ∈ T has projective dimension at most 1, that is, it appears in
a short exact sequence

0→ P1 −→ P0 −→ T → 0

with Pi projective in A, and

(iii) for any P projective in A, there is a short exact sequence

0→ P −→ T0 −→ T1 → 0

with Ti ∈ T.

A weak tilting subcategory T ⊆ A is tilting provided T is contravariantly finite in
A.

Example 3.39. Let A be an abelian category with enough projectives, then
Proj(A) is a tilting subcategory of A. ♣

Example 3.40. Let k be a field. We will work in the abelian category of mod(k)

valued representations of the quiver Q with commutativity relations

•
1

•
4

•
2

•
5

•
3

•
6
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We claim that T = add{T1, T2, T3, T4, T5, T6} ⊆ rep(Q,k) where

T1 =

k 0

0 0

0 0

, T2 =

k 0

k 0

k 0

, T3 =

0 0

0 0

k 0

, T4 =

k k

0 0

0 0

, T5 =

k k

k k

k k

, T6 =

0 0

0 0

k k

is a weakly tilting subcategory of rep(Q,k). It is easily verified that T is self-
orthogonal. It is in fact sufficient to check that Ext1

A(Ti, Tj) = 0 for 1 ≤ i, j ≤ 6.
We can observe that for

(i, j) ∈ {(1, 3), (3, 1), (1, 6), (6, 1), (3, 4), (4, 3), (4, 6), (6, 4)},

Ti and Tj have non-zero components in non-adjacent positions, forcing

Ext1
A(Ti, Tj) = 0.

Note also that T5 is projective, thus

Ext1
A(T5,−) = 0.

We are left with checking Ext1
A(Ti, Tj) = 0 for

(i, j) ∈

{
(1, 1), (1, 2), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 2),

(3, 3), (3, 5), (3, 6), (4, 1), (4, 2), (4, 4), (4, 5), (6, 2), (6, 3), (6, 5), (6, 6)

}
,

which by symmetry reduces to checking for

{(1, 1), (1, 2), (1, 4), (1, 5), (2, 1), (2, 2), (2, 4), (2, 5), (4, 1), (4, 2), (4, 4), (4, 5)}.

We check explicitly for (1, 2), the rest are left as an exercise. Consider therefore
the short exact sequence

0→ T2 −→ E −→ T1 → 0

which reduces to the exact commutative diagram

0 k E1 k 0

0 k E2 0 0
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which clearly splits.

Now, let us verify that all projective elements admit a coresolution of objects from
T. It will be shown in Remark 3.46 that it is enough to verify the existence of
such coresolutions for a subclass of projective objects which additively generates
the rest. That is, it is enough to check the existence for the indecomposable
projectives.

P1 =

k k

0 0

0 0

, P2 =

k k

k k

k k

, P3 =

0 0

0 0

k k

, P4 =

0 k

0 0

0 0

, P5 =

0 k

0 k

0 k

, P6 =

0 0

0 0

0 k

We obtain the following coresolutions

0→ P1 → T4 → 0

0→ P2 → T5 → 0

0→ P3 → T6 → 0

0→ P4 → T4 → T1 → 0

0→ P5 → T5 → T2 → 0

0→ P6 → T6 → T6 → 0

where the three first doubles as projective resolutions of T4, T5 and T6. To verify
that pdT ≤ 1 we observe that we have the following projective resolutions

0→ P4 → P1 → T1 → 0

0→ P5 → P2 → T2 → 0

0→ P6 → P3 → T3 → 0

0→ P1 → T4 → 0

0→ P2 → T5 → 0

0→ P3 → T6 → 0

which by the same proceeding result as noted above, is enough to guarantee pdT ≤
1 for all T ∈ T.
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Observe that the weakly tilting subcategory T = add{T1, T2, T3, T4, T5, T6} admits
an object which additively generates the whole subcategory, i.e.

add

(
6⊕
i=1

Ti

)
= T.

This is an example of what we shortly will be calling a tilting object. ♣

3.4.1 Tilting Objects

When we are traditionally talking of tilting we are thinking of a module with trivial
extensions, projective dimension at most 1 and which additive closure admits a
coresolution for every projective object. Even though our definition seems to be less
limiting we will see that our notion of tilting and the traditional notion coincide
in particularly well-behaved categories. Examples of such include categories of
finitely generated modules over an artin ring.

Definition 3.41. Let A be an abelian category with enough projectives. An
object T ∈ mod(A) is called a tilting object if

(i) Ext1
A(T, T ) = 0

(ii) pd(T ) ≤ 1

(iii) For each projective object P ∈ ProjA there exists a short exact sequence

0→ P −→ T ′ −→ T ′′ → 0

where T ′ and T ′′ lie in add(T ).

Proposition 3.42. Let A be an abelian category with enough projectives, such
that Proj(A) = add(P ) for some projective object P ∈ A. Then, if T is a tilting
subcategory of A, we can find a tilting object T ∈ T such that T = add(T ).
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Proof. We will prove that T = add(T1 ⊕ T2) where T1, T2 are objects of T such
that we have the short exact sequence

0→ P −→ T1 −→ T2 → 0

Let us first prove that any projective object P ′ ∈ Proj(A) = add(P ) admits a
short exact sequence

0→ P ′ −→ T ′1 −→ T ′2 → 0

where T ′1, T ′2 ∈ add(T1 ⊕ T2). By assumption we have for some projective object
Q ∈ add(P ) and positive integer n > 0, that P ′ ⊕ Q = P n, and therefore also a
short exact sequence

0→ P ′ ⊕Q ( f g )−−−→ T n1 −→ T n2 → 0

We can now form the exact commutative diagram

0 0

T n1 T n1

0 P ′ ⊕Q T n1 ⊕ T n1 Cok(f)⊕ Cok(g) 0

0 P ′ ⊕Q T n1 T n2 0

0 0

( 1
−1 )(

f 0
0 g

)

( 1 1 )

( f g )

where the right column splits since Ext1
A(T n2 , T

n
1 ) = 0, thus both Cok(f) and

Cok(g) lie in add(T1 ⊕ T2). We extract the short exact sequence

0→ P ′ −→ T n1 −→ Cok(f)→ 0

which is on the wanted form.

We will now show that any object T ∈ T of the tilting subcategory lies in add(T1⊕
T2). We start by fixing a projective resolution of T ,

0→ P2
m−→ P1

e−→ T → 0
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and for Pi ∈ Proj(A) we find the short exact sequence

0→ Pi
φi−→ T ′i

ψi−→ T ′′i → 0

with T ′i , T ′′i ∈ add(T1 ⊕ T2) for i = 1, 2. These two sequences gives us the epimor-
phisms

HomA(φi,−)|T : HomA(T ′i ,−)|T � HomA(Pi,−)|T

since Ext1
A(T ′′i ,−)|T = 0. Equivalently, φi is a left T-approximation of Pi. We can

therefore construct the following commutative diagram

0 0

0 P2 P1 T 0

T ′2 T ′1 T

T ′′2 T ′′1

0 0

a

c

b

d

g

e

h

f

i

j

where the upper row and the two columns are exact. The dashed morphisms
exists because of the approximation property remarked above. Note that the
second row do not necessarily compose to zero, but that by commutativity we
have f ◦ e ◦ c = b ◦ a = 0. Hence, the cokernel property of c give rise to the dotted
morphisms.

To finish our proof it is enough to show that the sequence

0→ T ′2
( e
−g )
−−−→ T ′1 ⊕ T ′′2

(
f j
h i

)
−−−→ T ′′1 ⊕ T → 0

is exact, since it then would split and give T ∈ add(T ′1 ⊕ T ′′2 ) ⊆ add(T1 ⊕ T2). We
split the proof of exactness into the three following lemmas. �

Lemma 3.43. ( e
−g ) is a monomorphism.
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Proof. Let K
k
↪−→ T ′2 be the kernel of ( e

−g ). Specifically, we get that g◦k = 0 = e◦k,
and thus k factors through c. By commutivity of the diagram above we have now
that 0 = e ◦ k factors through e ◦ c = d ◦ a where d ◦ a is mono, so k must further
factor through 0. Thus K = 0 and the map is mono.

0 P2 P1

K T ′2 T ′1

T ′′2 T ′′2 ⊕ T ′1

a

c d

k e

−g

�

To ease the complexity of the next two lemmas we will prove them by use of
elements and diagram chasing.

Lemma 3.44.
(
f j
h i

)
is an epimorphism

Proof. We fix some element ( xy ) ∈ T ′′1 ⊕ T . h is an epimorphism, so we find some
preimage z ∈ T ′1 of y along h. Also b is an epimorphism, so we can find a preimage
v ∈ P1 of f(z)− x along b. The element

(
d(v)

0

)
lie in T ′1 ⊕ T ′′2 and(

f j

h i

)(
z − d(v)

0

)
=

(
f(z)− f(d(v))

h(z)− h(d(v))

)
=

(
f(z)− f(z) + x

y − 0

)
=

(
x

y

)

We conclude that the morphism is in fact an epimorphism. �

Lemma 3.45. Im( e
−g ) = Ker

(
f j
h i

)
.

Proof. We observe at once that by commutivity we get(
f j
h i

)
( e
−g ) = ( 0

0 )

giving us the inclusion ⊆. For the converse inclusion, let us fix some element
( xy ) ∈ Ker

(
f j
h i

)
. We start by lifting y ∈ T ′′2 along the epimorphism g to some
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element z ∈ T ′2, thus obtaining

0 =f(x) + j(y) = f(x) + j(g(z) = f(x+ e(z))

0 =h(x) + i(y) = h(x) + i(g(z)) = h(x+ e(z))

x + e(z) lie in the kernel of h, so in turn it lie in the image of d. Let therefore
v ∈ P1 be such that d(v) = x + e(z). Further, 0 = f(d(v)) = b(v) so v lie in the
kernel of b and therefore also in the image of a. Hence we find w ∈ P2 such that
a(w) = v. Observe that the object c(w)− z ∈ T ′′2 is such that(

e

−g

)
(c(w)− z) =

(
e(c(w))− e(z)

−g(c(w)) + g(z)

)
=

(
d(a(w))− e(z)

−0 + g(z)

)
=

(
x

y

)

This establishes the converse inclusion, which concludes the proof. �

Remark 3.46. In the definition of a tilting subcategory we can relax the require-
ments a bit. We will be using a similar argument as those presented in the start of
the proof of Proposition 3.42, to show that we only need to show that (iii) holds
for the objects in a subcategory P ⊆ ProjA which additively generates ProjA, i.e.
addP = ProjA.

Observe that if we have Q,P ∈ P, with short exact sequences

0→ Q −→ T0 −→ T1 → 0

and
0→ P −→ T ′0 −→ T ′1 → 0

such that Ti, T ′i ∈ T, then Ti ⊕ T ′i lie in T. Thus we get our desired short exact
sequence

0→ P ⊕Q −→ T0 ⊕ T ′0 −→ T1 ⊕ T ′1 → 0,

and all direct sums of objects in P have a two-term T-coresolution. The same
holds true for summands, in fact, assume P ⊕Q fits into the short exact sequence

0→ P ⊕Q ( f g )−−−→ T0 −→ T1 → 0
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with Ti ∈ T. Then we have the commutative exact diagram

0 0

T0 T0

0 P ′ ⊕Q T0 ⊕ T0 Cok(f)⊕ Cok(g) 0

0 P ′ ⊕Q T0 T1 0

0 0

( 1
−1 )(

f 0
0 g

)

( 1 1 )

( f g )

Ext1
A(T0, T1) = 0, so we have that the short exact sequence in the right hand

column splits, and therefore we see that both Cok(f) and Cok(g) lies in T.

We can also observe that the second requirement (ii) only needs to be verified for
a subcategory T′ ⊆ T which additively generates the rest.

Proposition 3.47. Let A be a noetherian abelian category with enough projectives
and assume that T is a weak tilting subcategory of A. Then T is automatically
contraviariantly finite, and therefore already tilting.

Proof. By the equivalent definition of contravariantly finite, we will show that for
any object X ∈ A, the functor

HomA(−, X)|T : Top → Ab

is finitely generated. Let us start by showing that any object X ∈ A has a unique
maximal subobject tX ↪→ X with the property that it is an epimorphic image
of an object in T. The existence of such maximal objects are guaranteed by A
being noetherian, thus we only need to check uniqueness. Suppose we have two
maximal subobjects Y1, Y2 of X such that there exist epimorphisms Ti � Yi with
Ti ∈ T. The image of the induced morphism Y1 ⊕ Y2 → X contains both Y1

and Y2, and admits an epimorphism from an object in T by precomposition with
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T1⊕T2 � Y1⊕Y2. This contradicts the maximality of Y1 and Y2, and we conclude
that there is a unique maximal subobject tX of X with the given properties.

Let f : T →M be any morphism from an object X ∈ T. This morphism factorizes
uniquely through the subobject Im(f) ⊆M , and by the maximality of tM we can
observe that the inclusion Im(f) ↪→M also factors uniquely through tM .

X M

Im(f)

tM

f

This factorization gives that HomA(−,M)|T ∼= HomA(−, tM)|T, since we have for
every X ∈ T the natural bijections where f : X → M is sent to the composition
X � Im(f) ↪→ tM , and g : X → tM is sent to the composition X → tM ↪→M .

The given maximal epimorphism T
φ−→→ tM gives us the short exact sequence

0→ Ker(φ) −→ T
φ−→ tM → 0

which in turn gives rise to the exact sequence

HomA(−, T )|T
φ∗−→ HomA(−, tM)|T → Ext1

A(−,Ker(φ))|T → Ext1
A(−, T )|T

of T-modules. The last term is zero by assumption, so this gives us a short exact
sequence

0→ Im(φ∗) −→ HomA(−,M)|T −→ Ext1
A(−,Ker(φ))|T → 0

where we have used that HomA(−,M) ∼= HomA(−, tM). Now, from the definition
we have the epimorphism HomA(−, T )|T � Im(φ∗), or equivalently that Im(φ∗) is
finitely generated as a T-module. Hence, by the Horseshoe lemma we only need
to check that Ext1

A(−,Ker(φ))|T is finitely generated for HomA(−, tM)|T to be so
as well.

A has enough projectives, so we can find a short exact sequenceK ′ ↪−→ P −→→ Ker(φ)

with P projective. This gives rise to a long exact sequence, from which we extract
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the exact sequence

Ext1
A(−, P )→ Ext1

A(−,Ker(φ))→ Ext2
A(−, K ′)

The last term of this sequence vanishes when restricting to T, since any weakly
tilted subcategory has projective dimension at most 1, giving an epimorphism
Ext1

A(−, P )� Ext1
A(−,Ker(φ)). We now construct the exact sequence

HomA(−, T 1)|T → Ext1
A(−, P )|T → Ext1

A(−, T 0)|T

by applying the left exact hom-functor to the coresolution P ↪−→ T 0 −→→ T 1, of P
in T. T is self-orthogonal so the last term of this sequence vanishes, giving us an
epimorphism HomA(−, T 1)|T � Ext1

A(−, P )|T. Now, by postcomposing this with
the previous epimorphism we have that Ext1

A(−,Ker(φ))|T is finitely generated,
finishing our proof. �

We can now conclude that the weakly tilting in Example 3.40 was in fact an
example of a tilting subcategory.

Lemma 3.48. Let T be a tilting object in an abelian category A with enough projec-
tives. The additively closed subcategory T = add(T ) is a weak tilting subcategory.
If A is also noetherian, then T is tilting.

Proof. {T} is a self-orthogonal subcategory of A, so by Lemma 2.11 we get that
add(T ) is also self-orthogonal. The last two conditions for being weakly tilting
follows from Remark 3.46. If A is further a noetherian category, then by Proposi-
tion 3.47 we get that T = add(T ) is contravariantly finite, thus tilting. �

Remark 3.49. We can now conclude that the notion of tilting subcategory pre-
sented here coincides with the traditional notion of tilting in the category of finitely
generated modules over an artinian ring.
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3.4.2 Properties of Tilting

In the classical setting, a tilting module T , give rise to a torsion class T epimor-
phically generated by direct sums of T , i.e. T = Fac{T} [1, Lemma VI.2.3]. We
will now show that our notion of tilting subcategories recaptures this property. In
fact, we will see that for a tilting subcategory T, Fac(T) is not only a torsion class,
but also a cotorsion-free class of a complete cotorsion pair. That, is any tilting
subcategory give rise to a cotorsion torsion triple. Further, we establish that it is
in fact a correspondence between cotorsion torsion triples of an abelian category
and tilting subcategories.

Remark 3.50. The factor category FacT for a weakly tilting T ⊆ A consists of
all objects X ∈ A such that there exist an epimorphism T � X from an object
T ∈ T, since T is closed under finite direct sums and summands.

Lemma 3.51. Let T ⊆ A be a weakly tilting subcategory of an abelian category A
with enough projectives. Then FacT = T⊥1.

Proof. Assume X ∈ FacT, or equivalently that we have a short exact sequence

0→ K −→ T −→ X → 0

with T ∈ T. The subcategory T has projective dimension at most 1, so Ext2
A(T, K) =

0, thus we obtain the exact sequence

Ext1
A(T, K)→ Ext1

A(T, T )→ Ext1
A(T, X)→ 0

Now, recall that every weakly tilted subcategory is self-orthogonal, so Ext1
A(T, T ) =

0 which forces the last term to also be zero. We therefore have

Ext1
A(T,FacT) = 0

or in other words FacT ⊆ T⊥1 . To show the converse inclusion, let us assume
that we have Y ∈ T⊥1 that is Ext1

A(T, Y ) = 0. A has enough projectives, so we
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pick an epimorphism P � Y from a projective object P ∈ ProjA. From the third
property of a weakly tilting we can now construct the following push-out diagram

0 P T ′ T ′′ 0

0 Y X T ′′ 0
p

with T ′, T ′′ ∈ T. Observe that by construction we have X ∈ FacT. Further, since
Y ∈ T⊥1 , we have that the lower row splits, so we obtain an epimorphism

T ′ � X � Y

by composition, thus Y ∈ FacT. �

Proposition 3.52. Let A be an abelian category with enough projectives. If T ⊆ A
is a tilting subcategory, then

(FacT,T⊥)

is a torsion pair.

Proof. Let X be any object of FacT, then we have an epimorphism T � X for
some T ∈ T. Now, for any Y ∈ T⊥ = {A ∈ A | HomA(T, A) = 0}, we get a
monomorphism

0→ HomA(X, Y )→ HomA(T, Y ) = 0

hence Y ∈ (FacT)⊥, that is T⊥ ⊆ (FacT)⊥. The converse inclusion is easily seen
from the fact that T is a subcategory of FacT.

To finish the proof of our claim, we need to find a suitable short exact sequence
for any object A ∈ A. We start by finding a right T-approximation φ : T → A for
A. This morphism gives us the short exact sequence

0→ Im(φ) −→ A −→ Cok(φ)→ 0

with Im(φ) ∈ FacT, which in turn give rise to a long exact sequence

0 HomA(−, Im(φ))|T HomA(−, A)|T · · ·
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The first morphism of this sequence acts as a part of the factorization

HomA(−, T )|T HomA(−, A)|T

HomA(−, Im(φ))|T

and must therefore be an epimorphism. Hence, the second morphism in the se-
quence factors through zero, and we get the monomorphism

0 HomA(−,Cok(φ))|T Ext1
A(−, Im(φ))|T

Now, by Lemma 3.51 we have that Im(φ) ∈ FacT = T⊥1 , and consequently

HomA(−,Cok(φ))|T = 0

or equivalently Cok(φ) ∈ T⊥. We conclude that (FacT,T⊥) is in fact a torsion
pair. �

Proposition 3.53. Let T be a weakly tilting in an abelian category A with enough
projectives. Then

(⊥1(FacT),FacT)

is a complete cotorsion pair, and

⊥1(FacT) = {X ∈⊥1 T | pdimX ≤ 1}

Whenever T is also contravariantly finite, the intersection of the cotorsion and
cotorsion-free part is the whole of T, i.e.

⊥1(FacT) ∩ FacT = T

Proof. The first condition of cotorsion pairs stipulates that the pair has to be
right 1-orthogonal and left 1-orthogonal of each other. ⊥1(FacT) is already left
1-orthogonal of FacT, so we are left with showing that

(FacT)⊥1 = (⊥1(FacT))⊥1
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In the first part of the proof for Proposition 3.52 it was shown that Ext1
A(−, X)|T =

0 for any X ∈ FacT. That is T ⊆ ⊥1(FacT), so we obtain the inclusion

T⊥1 ⊇ (⊥1(FacT))⊥1

For any subcategory X ⊆ A we have X ⊆ (⊥1X )⊥1 , so in fact

FacT ⊆ (⊥1(FacT))⊥1 ⊆ T⊥1

Now again by Proposition 3.52 we have the equality T⊥1 = FacT, and thus FacT =

(⊥1(FacT))⊥1 .

We are now left with showing that the cotorsion pair is complete. A has enough
projectives, so by Salce’s lemma (Lemma 3.25) it suffices to show that the pair
has enough injectives. Let therefore P � A be an epimorphism from a projective
to any object A in A, and P0 ↪−→ T0 −→→ T1 be a coresulution of P in T. We now
construct the push-out along P � A and P ↪→ T0 and obtain the commutative
diagram

0 P T0 T1 0

0 A X T1 0
p

X clearly lies in FacT and T1 lie in T ⊆ ⊥1(FacT), so the lower row is our desired
short exact sequence. Thus (⊥1FacT,FacT) has enough injectives.

In order to show the equality

⊥1(FacT) = {X ∈⊥1 T | pdimX ≤ 1}

we start by observing that since T ⊆ FacT we have the inclusion ⊥1FacT ⊆ ⊥1T.
In addition to being a cotorsion class, we have by Proposition 3.52 that ⊥1(FacT)

is a torsion class and therefore closed under factors. Now by Lemma 3.35, we know
that a cotorsion class which is closed under factors has projective dimension less
than or equal to 1, hence

⊥1(FacT) ⊆ {X ∈⊥1 T | pdimX ≤ 1}.
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For the other inclusion, let X ∈ ⊥1T have projective dimension at most one. Let
F be an object in FacT and choose an epimorphism φ : T � F with T ∈ T. From
this epimorphism we get the exact sequence

Ext1
A(X,T )→ Ext1

A(X,F )→ Ext2
A(X,Ker(φ))

where the outer two terms vanish, thus forcing Ext1
A(X,F ) = 0. Hence X also lies

in ⊥1(FacT) and therefore the other inclusion is established.

Assume now that T is contravariantly finite and let X ∈ ⊥1(FacT) ∩ FacT. We
choose an epimorphism T ′ � X for T ∈ T and use that T is contravariantly finite
to obtain a right T-approximation φ : T � X

T

T ′ X

φ

which is necessarily also an epimorphism. From the short exact sequence Ker(φ) ↪−→
T

φ−→→ X we obtain the exact sequence

HomA(−, T ) HomA(−, X) Ext1
A(−,Ker(φ)) Ext1

A(−, T )

where the first map must be an epimorphism since φ is a right T-approximation,
hence the second morphism factors through zero. In addition when restricting to
T, the last term vanish since T is self-orthogonal. Hence, by exactness we must
have Ext1

A(−,Ker(φ))|T = 0, or equivalently Ker(φ) ∈ T⊥1 = FacT. Now, since
X ∈ ⊥1(FacT), we observe that the short exact sequence

0→ Ker(φ) −→ T −→ X → 0

splits, and thus Ker(φ) ⊕ X ∼= T . Further, since T is closed under summands,
X must lie in T, and we have ⊥1(FacT) ∩ FacT ⊆ T. As already noted T is
a subcategory of both FacT and ⊥1(FacT), so we have in fact the equality we
wanted. �

Proposition 3.54. Let A be an abelian category with enough projectives, and
(C, T ,F) be a cotorsion torsion triple in A. Then C ∩ T is a tilting subcategory of
A.
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Proof. We start by observing that we have the natural inclusion

Ext1
A(C ∩ T , C ∩ T ) ⊆ Ext1

A(C, T )

where the last term is zero by (C, T ) being a cotorsion pair. Next, we have by
Lemma 3.35 that every object in C has projective dimension at most one. Thus
all subcategories of C will also exhibit the same property. In particular the sub-
category C ∩ T ⊆ C satisfies the second property of being weakly tilted in A.

Now, for the third condition for C ∩ T being weakly tilting, we let P ∈ A be a
projective element, and

0→ P −→ d̃P −→ c̃P → 0

be a short exact sequence as in the definition of (C, T ) being a cotorsion pair, i.e.
d̃P ∈ T and c̃P ∈ C. T is closed under quotients, so c̃P also lies in T . C contains
all the projective objects in A, and is closed under extensions, thus P ∈ C and
therefore d̃P ∈ C. We conclude that both d̃P and c̃P lie in C ∩ T and C ∩ T is
weakly tilting.

Recall that for a cotorsion torsion triple (C, T ,F) it was shown in Lemma 3.34
that C∩T is contravariantly finite. We conclude that C∩T is a tilting subcategory.

�

We have seen that a tilting subcategory induces a cotorsion torsion triple and
conversely that a cotorsion torsion triple induces a tilting subcategory. These
constructions do in fact induce a correspondence as we will see shortly.

Theorem 3.55. Let A be an abelian category with enough projectives. Then the
two constructions

{tilting subcategories} ↔ {cotorsion torsion triples}

T 7→ ({X ∈ ⊥1T | pdim ≤ 1},FacT,T⊥)

C ∩ T ←[ (C, T ,F)

is a bijective correspondence.

71



3.5 Cotilting 3 TORSION, COTORSION AND TILTING

Proof. The map taking a cotorsion torsion triple to a tilting subcategory is given
in Proposition 3.54 and the converse map is given through Proposition 3.52 and
Proposition 3.53. What is left to do is to show that these maps are inverses of
each other. If we start with a tilting subcategory, we have by Proposition 3.53
that T = ⊥1FacT∩FacT, i.e. the maps gives back the original tilting subcategory.

Conversely, if we start with a cotorsion torsion triple (C, T ,F) and construct the
tilting subcategory T = C ∩ T , we want to recover (C,D,F). A cotorsion torsion
triple is uniquely given from one of it’s component, so it is enough to show that
T = Fac(C ∩ T ). T is closed under factors, since it is a torsion class, thus Fac(C ∩
T ) ⊆ Fac(T ) = T . For the inclusion T ⊆ Fac(C ∩ T ), construct the short exact
sequence

0→ dT −→ cT −→ T → 0

with dT ∈ T and cT ∈ C for any T ∈ T . T is closed under extensions, so
cT ∈ C ∩ T . That is, we have an epimorphism cT � T from an object in C ∩ T ,
thus T ∈ Fac(C ∩ T ). Consequently T ⊆ Fac(C ∩ D), concluding our proof. �

From this theorem and Theorem 3.36 we get the following immediate corollary.

Corollary 3.56. Let T be a tilting subcategory in an abelian category A with
enough projectives. There is an equivalence

{X ∈ ⊥1T | pdim ≤ 1}
T

∼= T⊥

3.5 Cotilting

We can observe that all the result concerning tilting has corresponding dual results
in abelian categories with enough injectives. This observation relies partly on the
fact that the concepts of torsion and cotorsion are self-dual. With this in mind we
define the dual of tilting, namely cotilting.

Definition 3.57. Let A be an abelian category with enough injectives. An addi-
tivel closed full subcategory C of A is a weak cotilting subcategory if
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(i) it is self-orthogonal,

(ii) any object C ∈ C has injective dimension at most 1, and

(iii) for any I injective in A there is a short exact sequence

0→ C1 −→ C0 −→ I → 0

with C0, C1 ∈ C.

A weak cotilting subcategory C ⊆ A is cotilting provided it is also covariantly
finite in A.

Proposition 3.58 (Dual of Proposition 3.52 and Proposition 3.53). Let A be
an abelian category with enough injectives. If C ⊆ A is weakly cotilting, then
SubC = ⊥1C, (SubC)⊥1 = {X ∈ C⊥1 | idimX ≤ 1}, and

(SubC, (SubC)⊥1)

is a cotorsion pair. If C is in addition covariantly finite, then

(⊥C, SubC)

is a torsion pair and
(SubC)⊥1 ∩ SubC = C

Theorem 3.59 (Dual of Theorem 3.55). Let A be an abelian category with enough
injectives. Then there is a bijective correspondence between cotilting subcategories
C of A and torsion cotorsion triples (T ,F ,D) in A, given by

C 7→ (⊥C, SubC, {X ∈ C⊥1 | idimX ≤ 1}

F ∩ D ← [ (T ,F ,D),

Corollary 3.60 (Dual of Corollary 3.56). In an abelian category A with enough
injectives, any cotilting subcategory C gives an equivalence

{X ∈ C⊥1 | idimX ≤ 1}
C

' ⊥C
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4 Representations

We are now ready to study cotorsion and tilting in the abelian categories of quiver
representations valued over an abelian category A. We start by recalling a few
fundamental facts about quivers and fix some notation conventions. In Section 4.1
we describe classical results of projective and injective representations through the
use of adjoints pair between the category of representations and the underlying
abelian category. Then in Section 4.2 we give a description of certain complete
cotorsion pairs of representation through their local behaviour in A, before we
explore how these pairs correspond to tilting and cotilting in Section 4.3 and
Section 4.4. At the end of Section 4.4 we also give an application of the discovered
results to Multiparameter Persistence Modules.

Recall that a quiver is an oriented graph Q consisting of a set of vertices Q0 and
a set of arrows Q1. We will be denoting the initial vertex of an arrow α by i(α)

and the terminal vertex with t(α), that is, for the quiver

•
1

•
2

•
3

α β

we have i(α) = 2 and t(α) = 1. A path of a quiver, will be a concatenation
of arrows such that their initial and terminal vertices correspond nicely, that is
p = αnαn−1 · · ·α1 is a path if i(αi) = t(αi−1). The length of a path is the number
of arrows it consists of. We will be denoting the set of paths starting in vertex
x and ending in vertex y by Q(x, y), the set of all non-trivial paths by Q≥1(x, y),
and all arrows starting at x and ending in y by Q1(x, y). If we want to consider
all paths ending in x, we will denote that set by Q(∗, x). We similarly define the
sets Q(x, ∗), Q≥1(∗, x), Q≥1(x, ∗), Q1(∗, x) and Q1(x, ∗).

We can observe that any quiver Q generate a small category where the objects are
the vertices and the morphisms are the paths. Hence, a classical quiver represen-
tation can be thought of as a functor from the quiver into the module category of
an algebra A. In this text we further generalize this and think of representations
as functors from the quiver-category into some abelian category A. This is done
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so that we can utilize the inherent duality of A. One can observe that the oppo-
site category of a module category is not necessarily a module category, but the
opposite of an abelian category is always an abelian category. Hence,

Definition 4.1. A representation of a small category X (over A) is a covariant
functor

F : X → A

into an abelian category A.

We denote the category of all representations of a quiver (valued over A) by
Rep(Q,A), and whenever A is a module category over an algebra A we denote it
by Rep(Q,A). Note that any quiver in the following will be assumed to be finite
and acyclic.

Remark 4.2. Recall that the opposite of a functor F : C → D is the functor
F op : Cop → Dop such that F op(C) = F (C) for any object C ∈ C, and F op(φ) =

F (φ)for any morphism φ ∈ C. Thus, Rep(Q,A)op = Rep(Qop,Aop).

Lemma 4.3. Let F : C → D be a functor, such that F op : Cop → Dop has a left
adjoint G : Dop → Cop, then the functor Gop : D → C is a right adjoint of F .

Proof. The assumption gives us a natural isomorphism

HomCop(G−,−)
η−→ HomDop(−, F op−)

Which is the same as having commutative squares with horizontal isomorphisms

HomCop(GD,C) HomDop(D,F opC)

HomCop(GD′, C ′) HomDop(D′, F opC ′)

HomCop (Gfop,gop)

ηC,D

HomDop (fop,F opgop)

ηC′,D′

for every morphism f op : D′ → D in Dop and gop : C → C ′ in Cop. Now, passing to
the opposite setting, this induces the commutative squares,

HomC(C,G
opD) HomD(FC,D)

HomC(C
′, GopD′) HomD(FC ′, D′)

ηC,D
op

HomC(g,Gopf)

ηC′,D′
op

HomD(Fg,f)

76



4.1 Projective and Injective Representations 4 REPRESENTATIONS

with isomorphic horizontal morphisms, for each morphism f : D → D′ in D and
each morphism g : C ′ → C in C. Thus we have a natural isomorphism

HomCop(−, Gop−)
ηop←−− HomDop(F−,−)

and we see that Gop is an right adjoint to F . �

Remark 4.4. To save space, we will find it useful to sometimes adopt the con-
vention of denoting the morphism sets of a category C by C(−,−) in the following,
that is for pairs of objects C,D ∈ C we have C(C,D) = HomC(C,D)

4.1 Projective and Injective Representations

We would now like to describe how the projective and injective representations
look like in the category Rep(Q,A). In the special case where A = mod(A) for an
algebra A, we will rediscover the descriptions we are used to. The description relies
on constructing adjoint functors between A and Rep(Q,A) and is a specialization
of the corresponding construction in [16].

We start by observing that for every vertex x ∈ Q there is an exact evaluation
functor

−x : Rep(X,A)→ A

taking any representation F ∈ Rep(Q,A) to it’s evalutaion at x, and any morphism
φ ∈ Rep(Q,A)(F,G) to the morphism φx : Fx → Fy. In the other direction we
can define the following functor.

Definition 4.5. For every vertex x ∈ Q we have an exact functor

Px : A → Rep(Q,A)

sending an object A in A to the representation Px(A) given on each vertex y ∈ Q
by the zero object in A if Q(x, y) is empty and else by

Px(A)(y) =
⊕

p∈Q(x,y)

A(p).
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Here the superscript only acts as an identifier for which path the summand arises
from, that is A(p) = A.

The internal morphisms of the representation are given as follows. Let ιp : A(p) ↪→
Px(A)(y) be the canonical inclusion morphism into the direct sum in A, and note
that for every path q ∈ Q(y, z) and p ∈ Q(x, y), there is a path qp ∈ Q(x, z). Now

Px(A)(q) : Px(A)(y)→ Px(A)(z)

is the unique morphism in A making the following square commutative

A(p) A A(qp)

Px(A)(y) Px(A)(z)

ιp ιqp

Px(A)(q)

(3)

Explicitly, Px(A)(y) maps the summand A(p) identically to A(qp).

Example 4.6. For the quiver

•
(1,3)

•
(2,3)

•
(3,3)

•
(4,3)

•
(1,2)

•
(2,2)

•
(3,2)

•
(4,2)

•
(1,1)

•
(2,1)

•
(3,1)

•
(4,1)

we have that P(2,2) is given by

0
(1,3)

A
(2,3)

A2

(3,3)
A3

(4,3)

0
(1,2)

A
(2,2)

A
(3,2)

A
(4,2)

0
(1,1)

0
(2,1)

0
(3,1)

0
(4,1)

♣
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Proposition 4.7. Px is left adjoint to the evaluation functor −x.

Proof. To prove the statement we construct natural isomorphisms

Rep(Q,A)(Px(−),−)
η

�
ξ
A(−,−x)

in the following manner. Let A ∈ A and F ∈ Rep(Q,A). Define

ηA,F : Rep(Q,A)(Px(A), F )→ A(A,Fx)

as
φ 7→ φx ◦ ιidx

The other transformation

ξA,F : A(A,Fx)→ Rep(Q,A)(Px(A), F )

is a bit more delicate. Let us fix a morphism ψ ∈ A(A,Fx). If there are no paths
from x to y in Q, ξ(ψ)x is forced to be the zero map since Px(A)(y) = 0. When
there is at least one path p ∈ Q(x, y), we set ξ(ψ)y as the unique morphism which
fits into the commutative square

A Fx

Px(A)(y) Fy

ψ

ιp Fp

ξ(ψ)y

(4)

for every path p ∈ Q(x, y), whose existence and uniqueness follows from the uni-
versal property of coproducts. In order to see that ξ(ψ) is in fact a morphism of
representations, we now claim that for any path q ∈ Q(y, z), the following square
commutes

Px(A)(y) Px(A)(z)

F (y) F (z)

Px(A)(q)

ξ(ψ)y ξ(ψ)z

Fq

If there are no paths from x to y in Q, then Px(A)(y) = 0, so in that case our claim
holds. Therefore we assume that there is at least one path p ∈ Q(x, y). Now, for
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each of these morphisms, we have by using the defining Diagram (4) and (3) that

F (q) ◦ ξ(ψ)y ◦ ιp = F (q) ◦ F (p) ◦ ψ = F (qp)ψ = ξ(ψ)z ◦ ιqp = ξ(ψ)z ◦ Px(A)(q) ◦ ιp

By the universal property of the coproduct Px(A)(y) we summize that

F (q) ◦ ξ(ψ)y = ξ(ψ)z ◦ Px(A)(q),

which proves our claim. Now we claim that the two given natural transformations
are in fact mutual inverse.

Let ψ ∈ A(A,Fx) be a morphism in A. We have η(ξ(ψ)) = ξ(ψ)x ◦ ιidx and by
the defining Diagram (4), this is equal to F (idx) ◦ ψ = idFx ◦ ψ = ψ. Thus, η ◦ ξ
is the identity on A(A,Fx).

Now, let φ ∈ Rep(Q,A)(Px(A), F ) be a morphism in Rep(Q,A). If there are no
paths from x to y in Q, then Px(A)(y) = 0 and we have necessarily that φy = 0

and ξ(η(φ)) = 0, so we can assume there is at least one path from x to y. We
will now utilize the universal property of coproducts once again to establish that
φy = ξ(η(φ))y. Let p ∈ Q(x, y) be any path. We have that

ξ(η(φ))y ◦ ιp = F (p) ◦ η(φ)

by Diagram (4), and
F (p) ◦ η(φ) = F (p) ◦ φx ◦ ιidx

from the definition of η. Now, using that φ is a morphism in Rep(Q,A) we get

F (p) ◦ φx ◦ ιidx = φy ◦ Px(A)(p) ◦ ιidx

Finally, using the defining property of Px(A)(p) in Diagram (3), we get

φy ◦ Px(A)(p) ◦ ιidx = φy ◦ ιp

That is,
ξ(η(φ))y ◦ ιp = φy ◦ ιp

and by the universal property of coproducts we conclude that ξ(η(φ))y = φy, so
ξ ◦η is the identity on Rep(Q,A)(Px(A), F ). Thus, ξ and η is mutual inverses and
we have established the needed isomorphism. �
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We can now make use of the fact that Rep(Q,A)op = Rep(Qop,Aop) and Lemma 4.3
to find a right adjoint to −x as well. Let us therefore define the dual functor of
Px.

Definition 4.8. For every vertex x in Q we have an exact functor

Ix : A → Rep(Q,A)

given by sending any object A in A to the representation Ix(A) given on each
vertex y ∈ Q by the zero object if Q(y, x) is empty and else by

Ix(A)(y) =
⊕

p∈Q(y,x)

A(p)

where the superscript is an identifier for the otherwise identical summands. Let
πp : Ix(A)(y)� A(p) be the canonical projection morphism from the direct sum in
A.

The internal morphisms of the representation are dual to those of Px. That is, for
each path q ∈ Q(y, z) and p ∈ Q(z, x), the related morphism Ix(A)(q) : Ix(A)(y)→
Ix(A)(z) takes the summand A(qp) identically to A(p). Equivalently, Ix(A)(q) is the
unique morphism making the following square commutative;

Ix(A)(y) Ix(A)(z)

A(qp) A A(p)

Ix(A)(q)

πqp πp

Example 4.9. For the quiver of Example 4.6 we have that I(2,2)(A) is given by

0
(1,3)

0
(2,3)

0
(3,3)

0
(4,3)

A
(1,2)

A
(2,2)

0
(3,2)

0
(4,2)

A2

(1,1)
A

(2,1)
0

(3,1)
0

(4,1)

♣
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Proposition 4.10. Ix is a right adjoint to the evaluation functor −x for every
vertex x ∈ Q.

Proof. The opposite functor −xop is the evaluation functor from Rep(Qop,Aop) =

Rep(Q,A)op to Aop, which we know has a left adjoint Px : Aop → Rep(Q,A)op.
By Lemma 4.3 we therefore know that Pxop : A → Rep(Q,A) is a right adjoint to
−x : Rep(Q,A)→ A, which by the previous construction is equal to Ix. �

We will now see that with the adjoint functors of the evaluation map, we can send
projective or injective objects in A to projective or injective objects in Rep(Q,A)

respectively. Under some further constraints we can in fact guarantee that if A
has enough projectives or injectives, then Rep(Q,A) inherits the same property.

Lemma 4.11. If P ∈ ProjA is a projective object in A, then Px(P ) is projective
in Rep(Q,A) for every x ∈ Q0. Dually, if I ∈ InjA is injective in A, then Ix(I)

is injective in Rep(Q,A) for every x ∈ Q0

Proof. We prove the first claim, the second follows dually.

Each evaluation functor −x is exact, so by the left-adjunction Px we obtain that
for each projective object P in A, the hom-functor HomRep(Q,A)(Px(P ),−) ∼=
HomA(P,−x) is exact. Thus Px(P ) is projective. �

Lemma 4.12. Let A have enough projectives. Then Rep(Q,A) also has enough
projectives. Dually, let A have enough injectives. Then Rep(Q,A) also has enough
injectives.

Proof. Assume thatA has enough projectives ProjA ⊆ A. The adjunction (Px,−x)

give rise to the counit transformation, εx : Px◦−x→ idRep(Q,A), which in turn gives
us a morphism εxF : Px(Fx)→ F for every x ∈ Q. We obtain by the universal prop-
erty a morphism from the coproduct

⊕
x∈Q0

Px(Fx) to F , which we claim is an
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epimorphism.

Px(Fx) F

⊕
x∈Q0

Px(Fx)

εFx

It is enough to show that ρx is epimorphic for every x ∈ Q0, since cokernels are
computed component-wise. Thus, apply −x to the commutative triangle above.
Observe that ρx is epimorphic if and only if −x(εxF ) is epimorphic. Recall that since
(Px,−x) are adjoints with unit ηx and counit εx, we have that idFx = −x(εxF )◦ηxFx.
In other words, −x(εxF ) is a split epimorphism with right inverse ηxFx. We conclude
that our claim holds, i.e. ρ is epimorphic.

Now, for every x ∈ Q0, we obtain an epimorphism px : P x � Fx with P x projective
in A. Px is exact, so we have in turn an epimorphism Px(P

x) � Px(Fx) in
Rep(Q,A). The coproduct

⊕
x∈Q0

Px(P
x) is also projective, since it is a small

coproduct of projectives, and coproducts preserves epimorphisms, so we have in
fact obtained an epimorphic composition from a projective object to F .⊕

x∈Q0

Px(P
x)�

⊕
x∈Q0

Px(Fx)
ρ−→→ F

The dual assertions regarding enough injectives InjA ⊆ A, is proven by applying
the first part in the opposite category. �

Lemma 4.13. Let A have enough projectives. Then

ProjRep(Q,A) = add{Px(P ) | x ∈ Q0 and P ∈ ProjA}

Proof. As we have seen in Lemma 4.11 Px(P ) is projective, so we must necessarily
have the inclusion ” ⊇ ”. For the other inclusion, we take some projective object
P ′ ∈ Rep(Q,A), and observe that the epimorphism from Lemma 4.12 splits,

P ′

⊕
x∈Q0

Px(P
x) P ′ 0
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Thus, P ′ is a summand of
⊕

x∈Q0
Px(P

x) and therefore lies in add{Px(P ) | x ∈
Q0 and P ∈ ProjA}. We have both inclusions, so the sets must be equal. �

4.2 Cotorsion

A natural question to ask when considering cotorsion in categories of representa-
tions is what, if any, relation cotorsion pair of the underlying abelian category has
to those in the representation category. This has recently been studied by Holm
et al. in [16]. They found that for left (right) rooted quivers Q3 and an abelian cat-
egory A satisfying certain conditions, the representations inherit cotorsion pairs
from A. It was also shown that hereditary cotorsion pairs4 of the underlying
category gave hereditary cotorsion pairs in the category of representations.

Holm et al. also asked whether complete cotorsion pairs in the abelian category
induces complete cotorsion pairs in the category of representations over a (left)
right rooted category. Odabaşı answered this in the affirmative when the pair
in addition were hereditary [23]. Recently, in a preprint by Di et al. [11], the
hereditary condition has been removed.

We will in this section reproduce this relation between cotorsion in representations
and the underlying category, in the special case when the quiver is finite and
acyclic. This allows us to greatly simplify the arguments, and relax the conditions
put on the underlying abelian category a bit. The proofs are constructive in nature
and not necessarily intuitive nor informative. The reader can therefore skip past
them without losing too much understanding of the story.

As in the previous subsection we let Q denote a finite acyclic quiver.

3A left rooted quiver, is a quiver which do not admit the left infinite linear quiver
→
A∞ : · · · •

3
→

•
2
→ •

1
as a subquiver.

4A cotorsion pair (C,D) is hereditary if ExtiA(C,D) = 0 for all i ≥ 1.

84



4.2 Cotorsion 4 REPRESENTATIONS

Definition 4.14. For each vertex x ∈ Q, we have the exact stalk functor

sx : A → Rep(Q,A)

given by sending an object A ∈ A to the representation sx(A) where

sx(A)(y) =

{
A if y = x

0 else.

To each representation F ∈ Rep(Q,A) we have for each evaluation F (x) two
morphisms in A that we will be using quite frequently in the following, namely

γFx :
∐

α∈Q1(∗,x)

F (i(α))→ F (x)

and
λFx : F (x)→

∏
β∈Q1(x,∗)

F (t(β))

given as the unique morphisms fitting into the following diagrams

F (i(α′)) ∀α′ ∈ Q1(∗, x)

∐
α : ∈Q1(∗,x)

F (i(α)) F (x)

ια′
F (α′)

γFx

F (x)
∏

β∈Q1(x,∗)
F (t(β)) ∀β′ ∈ Q1(x, ∗)

F (t(β′))

F (β′)

λFx

πβ′

where ια′ are the canonical inclusion morphisms and πβ′ the canonical projection
morphisms. Note that since we are working over a finite acylic quiver, both the
product and coproduct in the preceding is nothing but direct sums.

Remark 4.15. A necessary, but not sufficient condition for γFx to be a monomor-
phism, is that all internal morphism of the representation F ∈ Rep(Q,A) are
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monomorphisms. That it is not sufficient can be seen by representations of the
zig-zag quiver

Q : •
1

•
2

•
3

valued over the category of finite dimensional k-vector spaces for a field k. The
representation

k k k1 1

clearly has monomorphic structure morphisms, but

γF2 = ( 1
1 ) : k⊕ k→ k

is not a monomorphism.

Lemma 4.16. γFx induces a functor cx : Rep(Q,A) → A given by F 7→ CokγFx .
Similarly, λFx induces a functor kx : Rep(Q,A)→ A given by KerλFx .

Proof. Let φ ∈ Rep(Q,A)(F,G) be a morphism of representations, this gives a
unique morphism φ̃ fitting into the commutative diagrams below

F (i(α′))
∐

α∈Q1(∗,x)

F (i(α)) ∀α′ ∈ Q1(∗, x)

G(i(α′))
∐

α∈Q1(∗,x)

G(i(α))

ιF
α′

φi(α′)
φ̃

ιG
α′

Now, we claim that φx : F (x)→ G(x) fits into the following commutative diagram

∐
α∈Q1(∗,x)

F (i(α)) F (x) CokγFx 0

∐
α∈Q1(∗,x)

G(i(α)) G(x) CokγFx 0

φ̃

γFx

φx

γGx

This can be seen by observing that for every arrow α′ ∈ Q1(∗, x) we have from
φ ∈ Rep(Q,A)(F,G) being a morphism of representations that φx ◦ F (α′) =
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G(α′)◦φi(α′). In addition, from the construction of γFx we know that F (α′) factors
as γFx ◦ιFα′ for the inclusion ιFα′ : F (i(α′))→

∐
α∈Q1(∗,x) F (i(α)), and G(α′) as γGx ◦ιGα′

for the inclusion ιGα′ : G(i(α′))→
∐

α∈Q1(∗,x) G(i(α)). Thus, we have

φx ◦ γFx ◦ ιFα′ = φx ◦ F (α′) = G(α′) ◦ φi(α′) = γGx ◦ ιGα′ ◦ φi(α′) = γGx ◦ φ̃ ◦ ιFα′

and by the universal propery of coproducts, we conclude that φx ◦ γFx = γGx ◦ φ̃ as
we claimed.

F (i(α′))

∐
α∈Q1(∗,x)

F (i(α)) F (x) ∀α′ ∈ Q1(∗, x)

∐
α∈Q1(∗,x)

G(i(α)) G(x)

G(i(α′))

ιF
α′

ηi(α′)

F (α′)

η′

γFx

ηx

γGx

ιG
α′

G(α′)

Now, we can see that by the cokernel property, there is a unique induced morphism
CokγFx → CokγGx making the diagram below commutative

∐
α∈Q1(∗,x)

F (i(α)) F (x) CokγFx 0

∐
α∈Q1(∗,x)

G(i(α)) G(x) CokγFx 0

φ̃

γFx

φx

γGx

Observe that idF ∈ Rep(Q,A)(F, F ) gets sent to idCokγFx
. Associativity is straight-

forward, albeit a bit tedious to verify, and is therefore omitted here. We conclude
that cx : Rep(Q,A) → A is a functor. The claim of kx being a functor is proven
similarly. �
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Remark 4.17. Observe that if we let cx : Rep(Q,A)→ A and kx : Rep(Q,A)op →
Aop, we have that cxop = kx. Thus, kx being a functor follows from cx being a
functor.

Proposition 4.18. Let x ∈ Q be any vertex in a finite, acyclic quiver.

(i) cx is left adjoint to the stalk functor sx.

(ii) kx is right adjoint to the stalk functor sx.

Proof. Here we will only be proving (i), as (ii) follows directly from (i) in light of
Lemma 4.3 and Remark 4.17.

We start by constructing a natural map

ηF,A : A(cx(F ), A)→ Rep(Q,A)(F, sx(A))

We have that sx(A)(y) = 0 whenever y 6= x, so for every φ ∈ A(cx(F ), A) we must
necessarily have ηF,A(φ)y = 0 in these cases. When y = x, we set ηF,A(φ)x = φ ◦ e
where e : F (x)→ CokγFx is the cokernel morphism∐

α∈Q1(∗,x)

F (i(α))
γFx−→ F (x)

e−→→ CokγFx

We have sx(A)(y) 6= 0 and ηF,A(φ)y 6= 0 only when y = x, so we are left with
verifying that ηF,A(φ)◦F (α) = 0 for every arrow α ∈ Q1(∗, x), in order to see that
ηF,A(φ) is a morphism of representations. Observe therefore that F (α) factors
through γFx by construction, thus ηF,A(φ) ◦ F (α) = φ ◦ e ◦ F (α) = 0.

Now, let us construct a natural map in the opposite direction

ξF,A : Rep(Q,A)(F, sx(A))→ A(cx(F ), A)

Let ψ ∈ Rep(Q,A)(F, sx(A)) be any morphism. We do have that ψt(α) ◦F (α) = 0

for any arrow α ∈ Q1. Specifically we have 0 = ψx ◦ F (α′) = ψx ◦ γFx ◦ ια′ for
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every α′ ∈ Q0(∗, x). Thus, we get that ψx ◦ γFx = 0 and therefore by the cokernel
property, there exists a unique morphism ξF,A(ψ) such that φx = ξF,A(ψ) ◦ e. Let
ξ be defined to send any ψ ∈ Rep(Q,A) to these unique morphisms.

F (i(α′)) ∀α′ ∈ Q1(∗, x)

∐
α∈Q1(∗,x)

F (i(α)) F (x) CokγFx 0

sx(A)(x)

ια′
F (α′)

γFx

ψx

e

ξF,A(ψ)

It is clear that ξ and η are mutual inverses, so we have established the natural
isomorphism

Rep(Q,A)(F, sx(A)) ∼= A(cx(F ), A)

which means that (cx, sx) is an adjoint pair. �

We will now see that the adjoint pairs obtained for the representation category
extends to Ext1, which will be essential in our proceeding proofs of cotorsion.
The fact that (Px,−x) and (−x, Ix), extends to Ext1 follows easily from the fol-
lowing technical proof, which is proven in the appendix. The recently seen ad-
joint pairs (cx, sx) and (sx, kx), extends to Ext1 for a subclass of representations
F ∈ Rep(Q,A) and needs a bit more careful argumentation than the two first
pairs.

Lemma 4.19. Let F : A → B and G : B → A be functors between abelian cate-
gories such that F is a left adjoint of G. If for objects A ∈ A and B ∈ B we have
that

(i) the functor F sends every short exact sequence

0→ GB −→ Y −→ A→ 0

to an exact sequence

0→ FGB −→ FY −→ FA→ 0
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(ii) and, the functor G sends every exact sequence

0→ B −→ X −→ FA→ 0

to an exact sequence

0→ GB −→ GX −→ GFA→ 0

then there is an isomorphism of abelian groups YExt1
B(GA,B) ∼= YExt1

A(A,FB).

Proof. Proof in appendix (Lemma A.2) �

Proposition 4.20. Let x be any vertex in Q0. For all objects A ∈ A and repre-
sentations F ∈ Rep(Q,A) we have that

Ext1
Rep(Q,A)(Px(A), F ) ∼= Ext1

A(A,Fx)

and
Ext1

Rep(Q,A)(F, Ix(A)) ∼= Ext1
A(Fx,A)

That is, the adjunctions (Px,−x) and (−x, Ix) extends to Ext1.

Proof. −x, Px and Ix are exact functors, so the result follows from Lemma 4.19. �

Proposition 4.21 (Proposition 3.10 in [23], Proposition 5.4 in [16]). Let x be any
vertex in Q0, F ∈ Rep(Q,A) any representation and A ∈ A any object.

(i) There is an injective homomorphism of abelian groups

Ext1
A(cx(F ), A) ↪→ Ext1

Rep(Q,A)(F, sx(A))

If γFx is a monomorphism, then the homomorphism is an isomorphism.

(ii) There is an injective homomorphism of abelian groups

Ext1
A(A, kx(F )) ↪→ Ext1

Rep(Q,A)(sx(A), F )

If ψFx is an epimorphism, then the homomorphism is an isomorphism.
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Proof. We show (i), (ii) is dual. Let E be a representative of an element in
YExt1

A(cx(F ), A),
E : 0→ A

f−→ E
g−→ cx(F )→ 0

We form the following commutative diagram with exact rows and columns by
taking the pullback of g and the cokernel of γFx

0 0

A A

∐
α∈Q1(∗,x)

F (i(α)) E ′ E 0

∐
α∈Q1(∗,x)

F (i(α)) F (x) cx(F ) 0

0 0

f

h

g′

e′

y
g

γFx e

Now, let G ∈ Rep(Q,A) be a representation given on each vertex y ∈ Q0 by

G(y) =

{
E ′ if y = x

F (y) else.

And for an arrow α ∈ Q1(z, y), we let G(α) : G(z)→ G(y) be given by

Case 1: If z 6= x and y 6= x, then G(α) = F (α).

Case 2: If z 6= x and y = x, then G(α) = h◦ια where ια is the inclusion corresponding
to the arrow α, into the coproduct.

Case 3: If z = x and y 6= x, then G(α) = F (α) ◦ g′.

Now, we observe that the representation G ∈ Rep(Q,A) fits into a short exact
sequence of representations,

G : 0→ sx(A)
f̃−→ G

g̃−→ F → 0
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where the morphisms are given by

f̃y =

{
f ′ if y = x

0 else.
g̃y =

{
g′ if y = x

idF (x) else.

Clearly, the assignment of E ∈ YExt1
A(cx(F ), A) to G ∈ YExt1

Rep(Q,A)(F, sx(A)) is
well-defined. For X,Y ∈ Ext1

A(A,B) and f ∈ HomA(B,B′), we have

(X + Y) · f = ( 1 1 ) · X⊕ Y · ( 1
1 )f = ( 1 1 ) · (X · f)⊕ (Y · f) · ( 1

1 )

so our construction gives in fact a group homomorphism. Now for the injectivity,
let us assume that G splits, so we have a morphism φ : G → sx(A) such that
φ ◦ f̃ = idsx(A)

G : 0 sx(A) G F 0
f̃ g̃

φ

If there are no arrows α ∈ Q1 which terminates in x ∈ Q0, then e′ : E ′ → E is the
identity, and thus f = f ′ = f̃x is a split monomorphism, and E is split. If there
is at least one arrow which terminates in x ∈ Q0, we have for every such arrow
α ∈ Q1(∗, x), that φx ◦ h ◦ ια = φx ◦G(α) = 0, and consequently that φx ◦ h = 0.
Now, e′ : E ′ → E is the cokernel of h, so φx must factor through e′, i.e. there exist
some morphism ψ : E → A, such that φx = ψ ◦ e′. Now,

idA = φx ◦ f ′ = ψ ◦ e′ ◦ f ′ = ψ ◦ f

so E is split. Thus, the constructed homomorphism is injective.

We now assume that F ∈ Rep(Q,A) is such that γFx is a monomorphism, and
claim that this makes the homomorphism surjective. Let

H : 0→ sx(A)
φ−→ H

ψ−→ F → 0

be a short exact sequence in Rep(Q,A). This sequence induces the following
commutative diagram with exact rows in A,

0
∐

α∈Q1(∗,x)

sx(A)(i(α))
∐

α∈Q1(∗,x)

H(i(α))
∐

α∈Q1(∗,x)

F (i(α)) 0

0 sx(A)(x) H(x) F (x) 0

γ
sx(A)
x γHx γFx
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We have by assumption that KerγFx = 0, so by the snake lemma we obtain the
short exact sequence

0→ Cokγsx(A)
x

f−→ CokγHx
g−→ CokγFx → 0

Q is acyclic, so necessarily
∐

α∈Q1(∗,x) sx(A)(i(α)) =
∐

α∈Q1(∗,x) 0 = 0. Thus
Cokγ

sx(A)
X

∼= A, and we have gotten an element in YExt1
A(cx(F ), A). Further,∐

α∈Q1(∗,x) H(i(α)) ∼=
∐

α∈Q1(∗,x) F (i(α)), so we get the commutative diagram with
exact rows and columns

0 0

A A

0
∐

α∈Q1(∗,x)

H(i(α)) H(x) CokγHx 0

0
∐

α∈Q1(∗,x)

F (i(α)) F (x) CokγFx 0

0 0

f

∼=

γHx e′

g

γFx e

Observe that since Ker(e′) → Ker(e) is an isomorphism and Cok(e′) → Cok(e) is
an isomorphism, that H(x) is the pullback of f and e. We have therefore found
a preimage for H ∈ YExt1

Rep(Q,A)(F, sx(A)) in YExt1
A(cx(F ), A), and conclude

therefore that the homomorphism is in fact an isomorphism. �

As we observed, the adjuncts of the stalk functor extends to Ext1 for representa-
tions F ∈ Rep(Q,A) such that γFx is monomorphic or λFx is epimorphic. Hence, we
would like to have some kind of condition on F for these induced morphism to be
exactly that. The following constructive remark and the subsequent Proposition
gives us such a condition.

Remark 4.22. Let F ∈ Rep(Q,A) be a representation and {fα}α⊆Q1(∗,x) be any
set of morphisms fα : F (i(α))→ A in A. There is a representation G ∈ Rep(Q,A)
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fitting into a short exact sequence

0→ sx(A)
m−→ G

e−→ F → 0

given on objects as

G(y) =

{
F (y) if y 6= x

F (x)⊕ A if y = x

Proof. Let G ∈ Rep(Q,A) be given on objects as described. If β ∈ Q1(z, y) is an
arrow in Q, we define the corresponding morphism G(β) : G(z)→ G(y) as

Case 1: If z 6= x and y 6= x,

G(β) = F (β) : F (z)→ F (y).

Case 2: If z 6= x and y = x,

G(β) =
(
F (β)
fβ

)
: F (z)→ F (x)⊕ A

Case 3: If z = x and y 6= x,

G(β) = ( F (β) 0 ) : F (x)⊕ A→ F (y)

Now, G fits into the short exact sequence

0→ sx(A)
m−→ G

e−→ F → 0

where

mz =

{ (
0

idA

)
if z = x

0 else.
ez =

{
( idFx 0 ) if z = x

idFz else.

In order to verify that m and e is in fact morphisms of representations, we check
whether the diagram

Sx(A)(z) G(z) F (z)

Sx(A)(y) G(y) F (y)

mz

sx(A)(β)=0

ez

G(β) F (β)

my ey
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commutes for every arrow β : z → y in Q. If z = x we get G(β) ◦ mx =

( F (β) 0 )
(

0
idA

)
= 0 = my ◦ 0, so the left-hand square is commutative for every

arrow β ∈ Q1(z, y). Let us now go through the right-hand side for each of the
cases given above.

Case 1:
ey ◦G(β) = idFy ◦ F (β) = F (β) ◦ idFz = F (β) ◦ ez

Case 2:

ex ◦G(β) = ( idFx 0 )
(
F (β)
fβ

)
= idFx ◦ F (β) = F (β) ◦ idFz = F (z) ◦ ez

Case 3:
ey ◦G(β) = idFy ◦ ( F (β) 0 ) = F (β) ◦ ( idFz 0 ) = F (β) ◦ ez

�

Proposition 4.23 ([16, Prop. 5.6 ]). Let x ∈ Q0 be any vertex, and F ∈
Rep(Q,A) and A ∈ A any objects. Then

(i) If Ext1
Rep(Q,A)(F, sx(A)) = 0, then HomA(γFx , A) is an epimorphism. Further,

if A has enough injectives and Ext1
Rep(Q,A)(F, sx(I)) = 0 for every injective

object I ∈ InjA, then γFx is a monomorphism.

(ii) If Ext1
Rep(Q,A)(sx(A), F ) = 0, then HomA(A, λFx ) is an epimorphism. Fur-

ther, if A has enough projectives and Ext1
Rep(Q,A)(sx(P ), F ) = 0 for every

projective object P ∈ ProjA, then λFx is an epimorphism.

Proof. (i): HomA(γFx , A) is an epimorphism if and only if for every morphism
f :
∐

α∈Q1(∗,x) F (i(α))→ A in A, there exists a morphism g : F (x)→ A such that
the following triangle commutes∐

α∈Q1(∗,x) F (i(α)) F (x)

A

γFx

f
g
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By precomoposing f with the canonical injections ια : F (i(α)) ↪→
∐

α′∈Q1(∗,x) F (i(α′)),
we obtain a collection of morphisms {f ◦ ια}α∈Q(∗,x) as in the construction of Re-
mark 4.22. Thus we get the short exact sequence

0→ sx(A)
m−→ G

e−→ F → 0

Now, by the hypothesis, Ext1
Rep(Q,A)(F, sx(A)) = 0, so the sequence splits, and we

obtain a right-inverse r : F → G to e. For any vertex y ∈ Q0 not equal to x, we
have ey = idFy, so necessarily ry = idFy. For the vertex x, r must be on the form

rx =
(
r1x
r2x

)
: F (x)→ G(x) = F (x)⊕ A

rx is a right-inverse of ex so idFx = ex ◦ rx = ( idFx 0 )
(
r
(1)
x

r
(2)
x

)
= r

(1)
x . For every arrow

α ∈ Q1(∗, x) terminating in x, we have a commutative diagram, from r being a
morphism of representations,

F (i(α)) G(i(α))

F (x) G(x) F (x)⊕ A

F (α)

rz=idFz

G(α)=

(
F (α)
fια

)
rx=

(
idFx
r2x

)

which gives us that r(2)
x ◦F (α) = f ◦ ια. By definition we have that γFx ◦ ια = F (α)

for every arrow α terminating in x, thus r(2)
x ◦ γFx ◦ ια = f ◦ ια for every such

arrow. This forces r(2)
x ◦ γFx = f by the universal property of the coproduct, and

by setting g = r
(2)
x we have obtained the wanted morphism, and we can conclude

that HomA(γFx , A) is an epimorphism.

If A has enough injectives InjA ⊆ A, then we can find a monomorphism

f :
∐

α∈Q1(∗,x)

F (i(α)) ↪→ I

into an injective object I ∈ InjA. If also Ext1
Rep(Q,A)(γ

F
x ,−)|InjA = 0, then the

discussion above gives that we have a morphism g : F (x)→ I, such that f = g◦γFx ,
thus forcing γFx to also be a monomorphism.

(ii) follows similarly. �
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Definition 4.24. Let C ⊆ A be a full subcategory of A. Let

Rep(Q, C) = {F ∈ Rep(Q,A) | F (x) ∈ C ∀ x ∈ Q0}

P∗(C) = {Px(C) | x ∈ Q0, C ∈ C}

I∗(C) = {Ix(C) | x ∈ Q0, C ∈ C}

Γ(C) = {F ∈ Rep(Q,A) | γFx is monic and CokγFx ∈ C ∀ x ∈ Q0}

Λ(C) = {F ∈ Rep(Q,A) | λFx is epic and KerλFx ∈ C ∀ x ∈ Q0}

Proposition 4.25 ( [16, Prop. 7.3]). Let B ⊆ A be any class of objects in A, then

(i) P∗(B)⊥1 = Rep(Q,B⊥1).

(ii) ⊥1I∗(B) = Rep(Q,⊥1 B).

(iii) if A has enough injectives such that InjA ⊆ B we have ⊥1s∗(B) = Γ(⊥1B).

(iv) if A has enough projectives such that ProjA ⊆ B we have s∗(B)⊥1 = Λ(B⊥1).

Proof. Similarly to the preceding proofs, we will only prove (i) and (iii). (ii) and
(iv) follows by analogous arguments, or by passing to the opposite setting. To
prove (i) we recall from Proposition 4.20 that for any vertex x ∈ Q0, object A ∈ A
and representation F ∈ Rep(Q,A) we have

Ext1
Rep(Q,A)(Px(A), F ) ∼= Ext1

A(A,Fx)

That is, if B ∈ B and Fx ∈ Rep(Q,B⊥1) we have

Ext1
Rep(Q,A)(Px(B), F ) ∼= Ext1

A(B,Fx) = 0

Thus P∗(B)⊥1 ⊇ Rep(Q,B⊥1). The converse inclusion is shown similarly.

(iii) In Proposition 4.21 we saw that for any vertex x ∈ Q0, any representation
F ∈ Rep(Q,A) and A ∈ A we have the inclusion

Ext1
A(cx(F ), A) ↪→ Ext1

Rep(Q,A)(F, sx(A))
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which is an isomorphism if γFx is a monomorphism. If F ∈ Γ(⊥1B) and B ∈ B we
have for each x ∈ Q0

0 = Ext1
A(cx(F ), B) ∼= Ext1

Rep(Q,A)(F, sx(B))

since cx(F ) = CokγFx ∈⊥1 B, consequently ⊥1s∗(B) ⊇ Γ(⊥1B). If F ∈⊥1 s∗(B),
then for each x ∈ Q0 and B ∈ B we have

Ext1
Rep(Q,A)(F, sx(B)) = 0

We also have that InjA ⊆ B, so γFx is a monomorphism by Proposition 4.23.
Therefore we have

Ext1
A(cx(F ), B) ∼= Ext1

Rep(Q,A)(F, sx(B)) = 0

so cx(F ) ∈⊥1 B, thus we conclude that F ∈ Γ(⊥1B) and s∗(B) ⊆ Γ(⊥1B).

�

In the next proof we will be using a filtration of the set of vertices in our fi-
nite acyclic quiver. This filtration coincide with what Holm et al. call transfinite
sequence in Section 2.5 of [16], for a general (possibly infinite) quiver.

Remark 4.26. The filtration of our quivers will be the set of subsets {Q0(i) ⊆ Q0}
given by

Q0(0) = ∅

Q0(1) = {x ∈ Q0 | Q1(∗, x) = ∅, i.e. x is initial}
...

Q0(i) = {x ∈ Q0 | There is no arrow α ∈ Q1(z, x) s.t. z ∈ Q0 \Q0(i− 1)}
...

We will denote the filtration by {Q0(i)}0≤i≤k, where k ∈ N is the smallest positive
integer such that Q0(k) = Q0. This integer exist since Q is assumed finite acyclic.
To familiarize us with the concept, let us look at a few examples.
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Example 4.27. Let Q be the quiver

•
5

•
6

•
3

•
4

•
1

•
2

The filtration {Q0(i)}0≤i≤4 of Q is given by

◦
5

◦
6

◦
3

◦
4

◦
1

◦
2

Q0(0)

◦
5

◦
6

◦
3

◦
4

•
1

◦
2

Q0(1)

◦
5

◦
6

•
3

◦
4

•
1

•
2

Q0(2)

•
5

◦
6

•
3

•
4

•
1

•
2

Q0(3)

•
5

•
6

•
3

•
4

•
1

•
2

Q0(4)

♣

Example 4.28. Let Q be the quiver

•
4

•
5

•
2

•
3

•
1

The filtration {Q0(i)}0≤i≤4 of Q is given by

◦
4

◦
5

◦
2

◦
3

◦
1

Q0(0)

◦
4

◦
5

◦
2

◦
3

•
1

Q0(1)

◦
6

◦
5

◦
2

•
3

•
1

Q0(2)

◦
4

◦
5

•
2

•
3

•
1

Q0(3)

•
4

•
5

•
2

•
3

•
1

Q0(4)
♣
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Proposition 4.29 ([16, Thm. 7.4 & 7.9]). Let (C,D) be a cotorsion pair in an
abelian category A.

(i) If A has enough injectives, then

(Γ(C),Rep(Q,D))

is a cotorsion pair generated by P∗(C) and cogenerated by s∗(D).

(ii) If A has enough projectives, then

(Rep(Q, C),Λ(D))

is a cotorsion pair cogenerated by I∗(D) and generated by s∗(C).

Proof. (i): Proposition 4.25 tells ut that

P∗(C)⊥1 = Rep(Q, C⊥1) = Rep(Q,D)

and
⊥1s∗(D) = Γ(⊥1D) = Γ(C)

so we must show that Rep(Q,D) = Γ(C)⊥1 . Let C ∈ C and D ∈ D be any objects,
then for every pair of vertices x, y ∈ Q0, we have

Ext1
Rep(Q,A)(Px(C), sy(D)) ∼= Ext1

A(C, sy(D)(x))

since (Px,−x) is an adjoint pair. Further

Ext1
A(C, sy(D)(x)) =

{
Ext1

A(C,D) = 0 if y = x

Ext1
A(C, 0) = 0 if y 6= x

Thus P∗(C) ⊆⊥1 s∗(D) and

Rep(Q,D) = P∗(C)⊥1 ⊇ (⊥1s∗(D))⊥1 = Γ(C)⊥1

In order to prove the converse inclusion, let {Q0(i)}0≤i≤k be a filtration of the
vertices in Q. Now, let F ∈ Rep(Q,D). We construct a chain of subrepresentations

F0
m1
↪−→ F1

m2
↪−→ · · · mk

↪−→ Fk = F
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in the following way. Fi is given by

Fi(x) =

{
F (x) if x ∈ Qi(x)

0 else.

on objects and for any arrow α : x→ y by

Fi(α) =

{
F (α) if both x, y ∈ Q0(i)

0 else.

We clearly have monomorphisms mi : Fi−1 → Fi, so we have obtained our chain of
subrepresentations. Observe that

Cok(mi)(x) =

{
F (x) if x ∈ Q0(i) \Q0(i− 1)

0 else.

Let α : x→ y be any arrow in Q1. If x is in Q0(i)\Q0(i−1) we necessarily have that
y ∈ Q0 \Q0(i), so Fi(y) = 0 and thus Cok(mi)(α) = 0. If y is in Q0(i) \Q0(i− 1)

then x ∈ Q0(i − 1), so Cok(mi)(x) = 0 and thus also Cok(mi)(α) = 0. Therefore
we have

Cok(mi) =
⊕

x∈Q0(i)\Q0(i−1)

sx(F (x)),

and since F lies in Rep(Q,D), we have sx(F (x)) ∈ s∗(D) ⊆ (⊥1s∗(D))⊥1 = Γ(C)⊥1

further since Γ(D)⊥1 is closed under products we also have that Cok(mi) ∈ Γ(D)⊥1 .
We claim now that every representation Fi for 0 ≤ i ≤ k lies in Γ(D)⊥1 . Obviously
F0 = 0 ∈ Γ(D)⊥1 , so we assume that Fi−1 ∈ Γ(D)⊥1 , so we obtain the short exact
sequence

0→ Fi−1
mi−→ Fi −→ Cok(mi)→ 0

and since Γ(D)⊥1 is closed under extensions, and Cok(mi), Fi−1 ∈ Γ(D)⊥1 we
conclude that Fi ∈ Γ(D)⊥1 for every 0 ≤ i ≤ k. Thus

Rep(Q,D) ⊆ Γ(C)⊥1

(ii): Dual proof. �
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We can describe the subcategories Γ(C) and Λ(D) even more explicit, as shown in
the following lemma.

Lemma 4.30 ([16, Proposition 7.2]). Let (C,D) be a cotorsion pair in an abelian
category A, and Q be a finite acyclic quiver. Then

• if F is a representation in Γ(C), then Fx ∈ C for every vertex x ∈ Q0, and

• if F is a representation in Λ(D), then Fx ∈ D for every vertex x ∈ Q0.

Proof. The statements are proven in a dually manner, so it is sufficient to prove
the first statement. Let {Q0(i)}0≤i≤k be the filtration given in Remark 4.26. We
observe that for every vertex x ∈ Q0(1) the claim is trivially true, thus let us
assume that it has been shown for every filtration step i < n. Let x ∈ Q0(n), then
we obtain the short exact sequence

0→
⊕

α∈Q1(y,x)

Fy
γFx−→ Fx −→ Cok(γFx )→ 0

where the first term is a direct sum of objects in C, and therefore also an object of
C. Fx is therefore trapped between two objects of C, and since C is closed under
extension it is also in C. �

As an easy corollary to the preceding theorem we get the following characterization
of projective and injective representation when working over an abelian category
having enough injectives and projectives.

Corollary 4.31. Let A be an abelian category with enough projectives and injec-
tives, and Q a finite acyclic quiver. Then the set of projective objects in Rep(Q,A)

is given as

ProjRep(Q,A) = {F ∈ Rep(Q,A) | γFx is split mono and Fx ∈ ProjA ∀ x ∈ Q0}

and the set of injective objects in Rep(Q,A) is given as

InjRep(Q,A) = {F ∈ Rep(Q,A) | λFx is split epi and Fx ∈ InjA ∀ x ∈ Q0}
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Proof. We prove the claim for the projectives, the claim regarding injectives is
completely dual. In A we have the trivial cotorsion pair (A,ProjA) which induces
the cotorsion pair (Γ(ProjA),Rep(Q,A)) since A has enough injectives. Thus,
since a cotorsion pair is completely described from either part of it, we see that
the cotorsion pair (Γ(ProjA),Rep(Q,A)) is nothing but the trivial cotorsion pair
(Rep(Q,A),ProjA) of Rep(Q,A). Observing further that the short exact sequence

0→
⊕

α∈Q1(y,x)

Fy
γFx−→ Fx −→ CokγFx → 0→ Fx

splits for every F ∈ Γ(ProjA) gives that

ProjRep(Q,A) = Γ(ProjA) =

{
F ∈ Rep(Q,A)

∣∣∣∣∣ γFx is split mono and
Fx ∈ ProjA ∀ x ∈ Q0

}
�

4.2.1 Completeness

In order to show that the induced cotorsion pairs are complete, we recall that by
Salce’s Lemma (Lemma 3.25) we only need to show that ((Γ(C),Rep(Q,D)) has
enough projectives. The proof is a specialization of the constructions used in [23]
and [11]. By passing to the finite case, we are able to omit some of the more
lengthy and formal arguments.

Theorem 4.32 ([23, Thm. 4.6]). Adopting the setup of Proposition 4.29, we have
that the induced cotorsion pairs are complete when (C,D) is complete.

Proof. We will show the claim for the cotorsion pair (Γ(C),Rep(Q,D)) in an
abelian category with enough injectives. The other claim is shown dually.

As already noted, it suffices to show that the cotorsion pair has enough projectives.
Let F ∈ Rep(Q,A) be any representation. We will be constructing a short exact
sequence

0→ D −→ C −→ F → 0

103



4.2 Cotorsion 4 REPRESENTATIONS

with C ∈ Γ(C) and D ∈ Rep(Q,D). First, observe that since (C,D) is a complete
cotorsion pair in A, we can construct short exact sequences

0→ D′(x) −→ C ′(x) −→ F (x)→ 0

for every vertex x ∈ Q0 such that D′(x) ∈ D and C ′(x) ∈ C. For every arrow
α : x→ y in Q0 we can finish the commutative diagram

0 D′(x) C ′(x) F (x) 0

0 D′(y) C ′(y) F (y) 0

D′(α) C′(α) F (α)

as we observed in the proof of Lemma 3.27. Thus we have a short exact sequence

0→ D′ −→ C ′ −→ F → 0

of representations, such that D′ ∈ Rep(Q,D) and C ′ ∈ Rep(Q, C). Now, C ′ is not
necessarily in Γ(C), so we have to somehow remedy this. We will be doing this
iteratively by means of the filtration, {Q0(i)}0<i≤k, of Q0 given in Remark 4.26.
For each 0 ≤ i ≤ k we will be constructing a short exact sequence

C(i) : 0→ Di
m(i)−−→ Ci

e(i)−−→ F → 0

in Rep(Q,A) such that

(i) for every vertex x ∈ Q0 \Q0(i), Ci(x) = C ′(x) and Di(x) = D′(x).

(ii) for every vertex x ∈ Q0(i), γCix is mono, Ci(x),Cok(γCix ) ∈ C and Di(x) ∈ D.

We start by setting C1 = C ′ and D1 = D′. Assume that we have constructed C(i)

for every i < n, then we construct C(n) as follows.

For any vertex x ∈ Q0(n)\Q0(n− 1) we have that if there is an arrow α : z → x ∈
Q1, then z ∈ Q0(n−1) and thus Cn−1(z) ∈ C, so specifically

∐
α∈Q1(∗,x) Cn−1(i(α)) ∈

C. By using the completeness of (C,D), we now obtain a short exact sequence

0→
∐

α′∈Q1(∗,x)

Cn−1(i(α′))
fxn−→ Xx

n −→ Y x
n → 0
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with Y x
n ∈ C and Xx

n ∈ C ∩ D. A precomposition with the canonical inclusion
ια : Cn−1(i(α)) ↪→

∐
α′∈Q1(∗,x) Cn−1(i(α′)), gives us a monomorphism

fxn ◦ ια : Cn−1(i(α)) ↪→
∐

α′∈Q1(∗,x)

Cn−1(i(α′)) ↪→ Xx
n

for each arrow α ∈ Q1(∗, x). Since x ∈ Q0(n) \ Q0(n − 1) ⊆ Q0 \ Q0(n − 1), we
also get

Cn−1(α) : Cn−1(i(α))→ Cn−1(x) = C ′(x)

for these arrows. Hence, we obtain the morphism(
γ
Cn−1
x

fxn

)
:

∐
α′∈Q1(∗,x)

Cn−1(i(α′))→ C ′(x)⊕Xx
n

which in fact is a monomorphism since fxn is a monomorphism.

Now, we define Cn and Dn in the following way. For vertices x ∈ Q0 let

Cn(x) =

Cn−1(x) if x 6∈ Q0(n) \Q0(n− 1)

C ′(x)⊕Xx
n else.

and

Dn(x) =

Dn(x) if x 6∈ Q0(n) \Q0(n− 1)

D′(x)⊕Xx
n else.

For arrows α : x→ y ∈ Q1 we define Cn(α) and Dn(α) as follows

• If y ∈ Q0(n) \Q0(n− 1), then x ∈ Q0(n− 1). In that case we set Cn(α) and
Dn(α) as

Cn(α) : Cn(x) = Cn−1(x)

(
Cn−1(α)

fyn◦ια

)
−−−−−−−→ C ′(y)⊕Xy

n = Cn(y)

and

Dn(α) : Dn(x) = Dn−1(x)

(
Dn−1(α)

fyn◦ια◦m(n−1)y

)
−−−−−−−−−−−→ D′(y)⊕Xy

n = Dn(y)
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• If x ∈ Q0(n) \Q0(n− 1), then y ∈ Q0 \Q0(n). We set Cn(α) and Dn(α) as
the compositions

Cn(x) = C ′(x)⊕Xx
n

ρC−→→ C ′(x)
C′(α)−−−→ C ′(y) = Cn(y)

Dn(x) = D′(x)⊕Xx
n

ρD−→→ D′(x)
D′(α)−−−→ D′(y) = Dn(y)

where ρC and ρD are the canonical projections.

• If neither x nor y lies in Q0(n) \ Q0(n − 1), then we set Cn(α) = Cn−1(α)

and Dn(α) = Dn−1(α).

Observe that since Xx
n ∈ C ∩ D for every vertex x ∈ Q0(n) \ Q0(n − 1), we get

that D′(x)⊕Xx
n ∈ D and C ′(x)⊕Xx

n ∈ C. Thus Dn(x) ∈ D and Cn(x) ∈ C for all
x ∈ Q0. We can also observe that for x ∈ Q0(n) \Q0(n− 1), γCnx is equal to(

γ
Cn−1
x

fxn

)
:

∐
α′∈Q1(∗,x)

Cn−1(i(α′)) ↪→ C ′(x)⊕Xx
n

thus we are only left with showing Cok(γCnx ) ∈ C to see that Cn and Dn are of the
wanted form. Therefore, consider the following commutative diagram with exact
rows and columns

C(x)

0
∐

α∈Q1(∗,x)

Cn−1(i(α)) C ′(x)⊕Xx
n Cok(γCnx ) 0

0
∐

α∈Q1(∗,x)

Cn−1(i(α)) Xx
n Y x

n 0

γCnx

where the dashed morphism exist because of the cokernel property. By the snake
lemma, we also get that the cokernel of this morphism coincide with C ′(x), thus
we have the short exact sequence

0→ C ′(x) −→ Cok(γCnx ) −→ Y x
n → 0
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where the end-terms are objects of C. We conclude that Cok(γCnx ) ∈ C, since C is
closed under extensions. We are thus left with showing that we do in fact have a
short exact sequence

0→ Dn
m(n)−−−→ Cn

e(n)−−→ F → 0

Thus, define

m(n)x =


m(n− 1)x if x 6∈ Q0(n) \Q0(n− 1)m(n− 1)x 0

0 1

 else.

and

e(n)x =

e(n− 1)x if x 6∈ Q0(n) \Q0(n− 1)(
e(n− 1)x 0

)
else.

Verification that these maps are in fact morphisms of representations, are left to
the reader.

Observe that for k ∈ N such that Q0(k) = Q0, we have

0→ Dk −→ Ck −→ F → 0

such that Dk ∈ Rep(Q,D) and Ck ∈ Γ(C), finishing our proof.

�

4.3 Tilting

We have observed in the previous chapters that cotorsion pairs appearing together
with a torsion pair is of great interest since they are in correspondence with tilting
subcategories. A natural question is therefore when the cotorsion pairs obtained
in Proposition 4.29 acts as a part of a cotorsion torsion triple, or equivalently,
when the cotorsion-free class is also a torsion class. In this section we will observe
that the cotorsion pair (Γ(C),Rep(Q,D)) is a part of a triple exactly whenever
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the underlying cotorsion pair (C,D) is a part of such a triple. The other induced
cotorsion pair (Rep(Q, C),Λ(D) will be observed to only induce such a triple when
(C,D) is the trivial pair (ProjA,A). We start by proving the stated property of
the first induced cotorsion pair.

Lemma 4.33. Let (C,D) be a complete cotorsion pair in an be an abelian category
A with enough injectives, and Q a finite acyclic quiver. The induced cotorsion-
free subcategory Rep(Q,D) is a torsion subcategory if and only if D is a torsion
subcategory.

Proof. We start by assuming that Rep(Q,D) is in fact a torsion class. Any epi-
morphism D � X out of an object D in D, gives an epimorphism sx(D)� sx(X)

for some vertex x ∈ Q0. Rep(Q,D) is closed under factors since it is assumed
to be a torsion class. Hence, as sx(X) admits such an epimorphism, it must also
lie in Rep(Q,D) and by definition X lies in D. D is therefore closed under fac-
tors. If we also can find a right D-approximation for any object A ∈ A, we have by
Lemma 3.11 that D is in fact also a torsion class. The obvious candidate morphism
for being an approximation is that which arises from the short exact sequence

0→ tsx(A)
m−→ sx(A) −→ fsx(A)→ 0

in Rep(Q,A), i.e. mx : tsx(A)(x) ↪→ A. We observe easily that for every morphism
T → A out of D in A, we get our wanted factorization.

T = sx(T )(x)

0 tsx(A)(x) sx(A)(x) = A
mx

We conclude that D is a torsion class.

For the converse direction, assume that D is a torsion class. By the functoriality
of t : A → T and f : A → F , we have for every representation F ∈ Rep(Q,A) and
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path p ∈ Q(x, y) the commutative exact diagram

0 tF (x) F (x) fF (x) 0

0 tF (y) F (y) fF (y) 0

tFp Fp fFp

which give rise to the representations tF (x) ∈ Rep(Q,D) and fF ∈ Rep(Q,D⊥),
as well as the short exact sequence

0→ tF −→ F −→ fF → 0

We conclude by the easy observation Rep(Q,D⊥) ⊆ Rep(Q,D)⊥, that Rep(Q,D)

is a torsion class. �

This gives us that in any category with enough injectives, the induced cotorsion
pair (Γ(C),Rep(Q,D)) is a part of a cotorsion torsion triple, if and only if the
original cotorsion pair was the cotorsion part of a cotorsion torsion triple. Let us
therefore shift our interest to the other induced cotorsion pair.

Lemma 4.34. Let Q be a finite acylic non-trivial quiver, and (C,D) a complete
cotorsion pair in an abelian category A with enough projectives. If

(Rep(Q, C),Λ(D),Λ(D)⊥)

is a cotorsion torsion triple in Rep(Q,A), then (C,D) is necessarily the trivial
cotorsion pair (Proj(A),A).

Proof. We first claim that D is necessarily closed under factors. Let therefore
f : D � E be any epimorphism such that D ∈ D. If x is an initial vertex of Q,
then sx(D) lie in Λ(D), and we have an epimorphism sx(f) : sx(D)� sx(E) from
an object of Λ(D). Now, since Λ(D) is a torsion subcategory it is necessarily closed
under factors, therefore sx(C) ∈ Λ(D) and Ker(λ

sx(C)
x ) = C ∈ D.

Next, we claim that D is also closed under subobjects. Suppose we have a short
exact sequence in A,

0→ U
m−→ D

e−→ E → 0
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withD ∈ D. Ix is an exact functor, hence Ix(e) : Ix(D)� Ix(E) is an epimorphism
out of an object in Λ(D). Let us now fix a terminal vertex x ∈ Q0. We construct
a new representation F ∈ Rep(Q,A) in the following manner. If y ∈ Q0 is an
initial vertex such that there exists at least one path p ∈ Q(y, x), then we set
Gy = Ix(D)(y) =

⊕
p∈Q(y,x) D

(p) and otherwise Gy = Ix(E)(y).

For an arrow β : y → z ∈ Q1 we let

Gβ = Ix(E)(β) ◦ Ix(e)(y) : Gy = Ix(D)(y)→ Ix(E)(y)→ Ix(E)(z)

if y ∈ Q0 is initial with some path p ∈ Q(y, z) and Gβ = Ix(E)(β) otherwise.
From the epimorphism Ix(e) we construct an epimorphism

φ : Ix(D)� G

given by φy = idIx(D)(y) if y is initial with a path p ∈ Q(y, x) and φy = Ix(E)(y)

else. Thus G ∈ Λ(D) as Λ(D) is closed under factors and Ix(D) ∈ Λ(D). Now,
let us fix an initial vertex y which admits at least one path p ∈ Q(y, x). We have
that Ker(λGy ) ∈ D fits into the following commutative diagram with exact rows

0 Ker(λGy ) Gy
⊕

α∈Q1(y,∗)
G(t(α)) 0

0 Ker(λGy )
⊕

α∈Q1(y,∗)
q∈Q(t(α),x)

D(qα)
⊕

α∈Q1(y,∗)

( ⊕
p∈Q(t(α),x)

E(q,α)

)
0

0 U (q′α′) D(q′α′) E(q′,α′) 0

for all paths q′α′ ∈ Q(y, z), where the superscripts only acts as identifiers for
otherwise identical summands. We summize that since finite direct sums preserves
kernel, we have

Ker(λGy ) =
⊕

α : y→z∈Q1
p∈Q(z,x)

U q′α′ =
⊕

α : y→z∈Q1
p∈Q(z,x)

U,

and since D is closed under summands, we get that U ∈ D. That is, D is closed
under subobjects.
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We are now ready to prove that D = A. Let A be any object of A. (C,D) is
complete, so we obtain the short exact sequence

0→ A −→ d̃A −→ c̃A→ 0

with d̃A ∈ D and c̃A ∈ C. That is, A is a subobject of some object in D, and
since D is closed under subobjects we get that A ∈ D. Thus, A ⊆ D, and trivially
D ⊆ A, so D = A. Then, necessarily C = Proj(A). �

The question which then arises is when the trivial cotorsion pair (ProjA,A) of an
abelian category A with enough projectives, do induce a cotorsion torsion triple
(Rep(Q,ProjA),Λ(A),Λ(A)⊥). In an effort to answer this question we observe
in the following lemma that Λ(A) is closed under factors, which in an noetherian
category suffices for it to be a torsion class as we saw in Lemma 3.12.

Lemma 4.35. Λ(A) is closed under factors.

Proof. Let φ : F � G be any epimorphism from an representation in Λ(A). Then
for each vertex x ∈ Q0 we obtain the commutative diagram

Fx Gx 0

⊕
α∈Q1(x,∗)

F (t(α))
⊕

α∈Q1(x,∗)
G(t(α)) 0

φx

λFx λGx

⊕φy

where we know by assumption that all but λGx is epimorphic, thus forcing λGx to
also be epimorphic. Then, necessarily G ∈ Λ(A), concluding our proof. �

The cotorsion pair (Rep(Q,ProjA),Λ(A)) does in fact always appear as the cotor-
sion part of a cotorsion torsion triple (Rep(Q,ProjA),Λ(A),Λ(A)⊥). This follows
from the fact that I∗(ProjA) is a tilting subcategory in Rep(Q,A) as was shown
by Bauer et al. in [5]. This tilting subcategory induces a cotorsion torsion triple
by the correspondende given in Theorem 3.55, which in short notice will be shown
to coincide with our wanted cotorsion torsion triple.
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Proposition 4.36 ([5, Prop. 3.9]). Let A be an abelian category with enough
projectives. The subcategory T = I∗(ProjA) of Rep(Q,A) is a tilting subcategory.

Corollary 4.37. The tilting category I∗(ProjA) induces the cotorsion torsion
triple (Rep(Q,ProjA),Λ(A),Λ(A)⊥)

Proof. The correspondence in Theorem 3.55 tells us that the tilting subcategory
T = I∗(ProjA) give rise to the cotorsion torsion triple

(⊥1FacT,FacT,T⊥)

where ⊥1FacT = {F ∈ ⊥1T | pdimF ≤ 1}. Thus, we have to show that
Rep(Q,ProjA) = ⊥1FacT and FacT = Λ(A). In fact, if we show the first of
these equalities, we get the last one at once, since one part of a cotorsion pair
uniquely determines the whole, i.e.

Λ(A) = Rep(Q,ProjA)⊥1 = {F ∈ ⊥1T | pdimF ≤ 1}⊥1 = FacT

First, since A has enough projectives, we can find an epimorphism P � A from
a projective object to any object A in A, which after applying the exact functor
Ix gives that Ix(A) ∈ FacT for any vertex x ∈ Q0. Now, for any representation
F ∈ ⊥1FacT we see that

Ext1
A(Fx, A) ∼= Ext1

Rep(Q,A)(F, Ix(A)) = 0

hence, Fx is projective for every vertex x ∈ Q0, i.e. ⊥1FacT ⊆ Rep(Q,ProjA).

For the converse inclusion, observe first that for any F ∈ Rep(Q,ProjA) and
P ∈ ProjA, we have

Ext1
Rep(Q,A)(F, Ix(P )) ∼= Ext1

A(Fx, P ) = 0

hence F ∈ ⊥1T. Therefore, we are left with showing that pdimF ≤ 1. This will
be shown by an inductive argument on the number of vertices in the support of
F , i.e.

SuppF = {x ∈ Q0 | Fx 6= 0}
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We start by observing that for every vertex x ∈ Q0 we have the following projective
resolution

0→
⊕

α∈Q1(x,y)

Py(Fx) −→ Px(Fx) −→ sx(Fx)→ 0

so pdimsx(Fx) ≤ 1, and consequently pdimF ≤ 1 when |SuppF | = 1. Let us
assume that the claim holds whenever |SuppF | < n. Now, for |SuppF | = n, we
find a vertex x ∈ Q0 such that Fy = 0 for every y ∈ Q0 such that Q1(y, x) 6= ∅.
From this we have the canonical epimorphism F � sx(Fx) which give rise to the
short exact sequence

0→ K −→ F −→ sx(Fx)→ 0

where |SuppK| < n andK ∈ Rep(Q,ProjA), giving by assumption that pdimK ≤
1. Therefore by the Horseshoe lemma, we conclude that pdimF ≤ 1. �

4.3.1 Representations of
→
An

When we are working with representations over the linear quiver

•
1

•
2

•
3

· · · •
n−1

•
n

valued over an abelian categoryA with enough projectives, we can observe that the
cotorsion-free Λ(A) is the class of representation where all the internal morphisms
are epimorphic. From this observation we deduce that Λ(A)⊥ must necessarily be
all representations where the first vertex evaluates to the zero object. Thus, we
have the following explicit description of (Rep(

→
An,ProjA),Λ(A),Λ(A)⊥).

Lemma 4.38. Let A be an abelian category with enough projective. There is a
cotorsion torsion triple (C, T ,F) given by

C = Rep(
→
An,Proj(A))

T = {F ∈ Rep(
→
An,A) | All internal morphisms are epimorphic.}

F = {F ∈ Rep(
→
An,A) | F1 = 0}

�
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Combining this with the obvious isomorphism

{F ∈ Rep(
→
An,A) | F1 = 0} ∼= Rep(

→
An−1,A)

and Theorem 3.36, we obtain the following corollary which was also obtained in
[5, Corollary 3.14].

Corollary 4.39. Let A be an abelian category with enough projectives. Then

Rep(
→
An,ProjA)

C ∩ T
' Rep(

→
An−1,A)

where

C ∩ T = {F ∈ Rep(
→
An,ProjA) | All internal morphisms are epimorphic.}

�

Remark 4.40 (Construction). When working over the linear quiver
→
An we can

without a lot of effort describe the cotorsion torsion triple

(Rep(
→
An,ProjA),Λ(A),Λ(A)⊥)

explicit. In fact, let us start by observing that the short exact sequence tF ↪−→
F −→→ fF , of the torsion pair is given through the following exact commutative
diagram, where the upper row is the representation tF ∈ T = Λ(A) and the lower
row is the representation fF ∈ F = Λ(A)⊥.

F1 Im(f1) Im(f2f1) · · · Im(fn−1 · · · f2f1)

F1 F2 F3 · · · Fn

0 Cok(f1) Cok(f2f1) · · · Cok(fn−1 · · · f2f1)

f1 f2 f3 fn−1

We can also see that the short exact sequence F ↪−→ d̃F −→→ c̃F of the cotorsion
pair can be described iteratively in the following manner. We start by setting
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d̃Fn = Fn. Then after finding an epimorphism from a projective object P ′n−1 to
d̃Fn, setting d̃Fn−1 = Fn−1 ⊕ P ′n−1. Now, iterating this process, provides us with
the short exact sequence of representations on the wanted form

F1 F2 F3 · · · Fn−1 Fn

F1 ⊕ P ′1 F2 ⊕ P ′2 F3 ⊕ P ′3 · · · Fn−1 ⊕ P ′n−1 Fn

P ′1 P ′2 P ′3 · · · P ′n−1 0

The last sequence dF ↪−→ cF −→→ F of the cotorsion pair is a bit more involved
to describe than the two preceding. We start by finding an epimorphism from a
projective object Pn to Fn, and taking a pullback along this and the internal map
Fn−1

fn−1−−→ Fn of F .
ΩFn ΩFn

Xn Pn

Fn−1 Fn

Then we find an epimorphism from a projective object Pn−1 to Xn which by
composition gives an epimorphism down onto Fn−1. Denote the kernel of this
epimorphism by ΩFn−1 and observe that the upper left square in the subsequent
commutative diagram is exact

ΩFn−1 ΩFn ΩFn

Pn−1 Xn Pn

Fn−1 Fn−1 Fn

The morphism ΩFn−1 → ΩFn is by the exactness of that square necessarily an
epimorphism. Now, take the pullback along Pn−1 � Fn−1 and the structure mor-
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phism Fn−2
fn−2−−→ Fn−1, and repeat until reaching F1.

ΩFn−1 ΩFn−1 ΩFn ΩFn

· · · Xn−1 Pn−1 Xn Pn

· · · Fn−2 Fn−1 Fn−1 Fn

y y

This results in the following short exact sequence of representations

ΩF1 ΩF2 · · · ΩFn−2 ΩFn−1 ΩFn

P1 P2 · · · Pn−2 Pn−1 Pn

F1 F2 · · · Fn−2 Fn−1 Fn

where the upper representation lie in T and the middle representation lie in C.

Example 4.41. Let Q be the zig-zag quiver •
1
← •

2
→ •

3
and set A as the abelian

category of representations of Q valued in the category of finite dimensional vec-
tor spaces over a field k, rep(Q,k). Then we can observe that Rep(

→
A2,A) is

equivalent to Rep(Q′,k) where Q′ is the quiver with commutativity relations from
Example 3.40, that is

•
1

•
4

•
2

•
5

•
3

•
6

Hence we observe that the tilting subcategory Λ(Proj[rep(Q,k)]) is exactly the
tilting subcategory T of Example 3.40. ♣
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4.3.2 Representations of •
1
← •

2
→ •

3

Example 4.42. Let us go back to cotorsion pair of the zig-zag quiver

Q : •
1

•
2

•
3

βα

presented in Example 3.18. That is, in the category of representation of Q valued
over an abelian category A with enough projectives, the pair (C,D) given by

C = Rep(Q,ProjA)

D = {F ∈ Rep(Q,A) | The canonical morphism F2 → F1 ⊕ F3 is epic.}

is a complete cotorsion class. This is nothing but the cotorsion pair

(Rep(Q,ProjA),Λ(A))

induced by the trivial cotorsion pair (ProjA,A) of A. Therefore we also know that
this gives the cotorsion torsion triple (C,D,D⊥) and the tilting subcategory

C ∩ D = {F ∈ Rep(Q,ProjA) | F2 → F1 ⊕ F3 is epic.}

If A = rep(
→
A2,k) we see that in Rep(Q′,k) where Q′ is the quiver with commuta-

tivity relations from Example 3.40, that is

•
1

•
4

•
2

•
5

•
3

•
6

we also have the tilting subcategory

T = add{T1, T2, T3, T4, T5, T6}

where

T1 =

k k

k k

0 0

, T2 =

0 0

k k

0 0

, T3 =

0 0

k k

k k

, T4 =

0 k

0 k

0 0

, T5 =

0 0

0 k

0 0

, T6 =

0 0

0 k

0 k

♣
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4.4 Cotilting

Just as cotorsion torsion triples are interesting by their relation to tilting, we
have also seen that torsion cotorsion bear the same relation to cotilting. Thus an
equally natural question to that asked in Section 4.3 is when the cotorsion part
of the induced cotorsion pairs from Proposition 4.29 acts as a part of a torsion
cotorsion triple. The self-duality of torsion and cotorsion let us answer this quickly
through the dual results of the tilting-case. Let us therefore summarize the dual
results for cotilting. After stating these results, we will at the end apply them to
representations of about the commutative grids

→
An ⊗

→
Am which were mentioned

in the introduction of the thesis. This application is found among a couple more
in [5].

Lemma 4.43 (Dual of Lemma 4.33). Let (C,D) be a complete cotorsion pair in
an abelian category A with enough projectives, and Q a finite acyclic quiver. The
induced cotorsion subcategory Rep(C,A) is a torsion-free class if and only if C is
a torsion-free class.

Lemma 4.44 (Dual of Lemma 4.34). Let Q be a non-trivial finite acyclic quiver,
and (C,D) a complete cotorsion pair in an abelian category A with enough injec-
tives. If

(⊥Γ(C),Γ(C),Rep(D,A))

is a torsion cotorsion triple in Rep(Q,A), then (C,D) is necessarily the trivial
cotorsion pair (A, InjA).

Lemma 4.45 (Dual of Lemma 4.35). Let A be an abelian category with enough
injectives. Then Γ(A) is closed under subobjects.

Lemma 4.46 (Dual of Corollary 4.37). Let A be abelian with enough injectives,
then (⊥Γ(C),Γ(C),Rep(D,A)) is a torsion cotorsion triple in Rep(Q,A).
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4.4.1 Representations of
→
An

Analogous to the discussion in Section 4.3.1 we observe that for representations
over the linear quiver

→
An valued over an abelian category with enough injectives,

the cotorsion class Γ(A) is the class of representations with monomorphic structure
morphisms. Hence, we have the following dual characterization.

Lemma 4.47 (Dual of Lemma 4.38). Let A be an abelian category with enough
injectives. There is a torsion cotorsion triple (T ,F ,D) given by

T = {F ∈ Rep(
→
An,A) | Fn = 0}

F = {F ∈ Rep(
→
An,A) | All internal morphisms are monomorphic.}

D = Rep(
→
An, Inj(A))

�

Thus giving us the equivalence

Lemma 4.48 (Dual of Corollary 4.39). Let A be an abelian category with enough
injectives. Then

Rep(
→
An, InjA)

F ∩ D
' Rep(

→
An−1,A)

where

F ∩ D = {F ∈ Rep(
→
An, InjA) | All internal morphisms are monomorphic.}

�

4.4.2 Application to TDA

Multiparameter persistence modules in topological data analysis (See Appendix B
for a brief introduction to TDA) are a special case of quiver representation. That
is, as these modules arises as the nth-homology of a filtered topological space
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(Xi)i∈I , we have for each filtration step i ∈ I a vector space Vi over some field k.
The set I which the filtration is taken over, is a partially ordered set, such that
for each i ≤ j ∈ I we have Xi ⊆ Xj. These inclusions induces maps Vi → Vj

of the homology of them, and hence the multiparameter persistence module is a
representation of I seen as a quiver with relations valued over vector spaces of k.

The filtration on the topological space can explicitly be described as a multi-
dimensional grid, which in the 2-parameter case gives us that I is the partially
ordered set given by the Hasse-diagram

•
(1,n)

•
(2,n)

•
(3,n)

· · · •
(m,n)

...
...

...
...

•
(1,2)

•
(2,2)

•
(3,2)

· · · •
(m,2)

•
(1,1)

•
(2,1)

•
(3,1)

· · · •
(m,1)

or equivalently the fully commutative grid quiver given by the same diagram. We
denote such quivers by

→
Am ⊗

→
An, and observe that we have in fact a natural

equivalence
Rep(

→
An,A) ' Rep(

→
Am ⊗

→
An,k)

for A = Rep(
→
Am,k). To summarize, we have that the category of multiparameter

persistence modules is in fact equal to Rep(
→
Am ⊗

→
An,k).

Observe that persistence modules arising from the zeroth homology measures the
connectivity of the space at different filtration steps. If we fix all filtration pa-
rameters except the radius, we observe that each subsequent filtration step leads
to a greater overlap of the pieces. Hence, each subsequent space is either equally
connected or more connected as the preceding one. This translates to the induced
maps of the persistence module being surjections. Hence, we conclude that there
is a non-trivial amount of cases where we can assume that the multiparameter
persistence module in question has epimorphic structure morphism in at least one
direction of the grid.
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Example 4.49. If we have the following 4-step filtration with radius as the only
parameter

we see that for each step in the filtration, more and more pieces merge. Hence
each subsequent filtration step is equally or more connected than the preceding
step. ♣

Motivated by the preceding observation, we denote the full subcategory of all rep-
resentations of

→
Am ⊗

→
An with epimorphic structure morphism in the horizontal

direction by repe,∗(
→
Am ⊗

→
An,k). Similarly the full subcategory of representations

with epimorphic horizontal structure morphisms and monomorphic vertical mor-
phisms is denoted by repe,m(

→
Am ⊗

→
An,k). Applying our acquired knowledge of

cotilting in the category of representations of the linear quiver
→
An we observe the

following.

Lemma 4.50 ([5, Corollary 3.17]). There is an equivalence

repe,∗(
→
Am ⊗

→
An,k)

repe,m(
→
Am ⊗

→
An,k)

' rep(
→
Am ⊗

→
An−1,k)

Proof. First, observe that the injective representations of Rep(
→
An,k) are those

which have epimorphic structure morphisms. Hence for A = Rep(
→
Am,k) we see

that
Rep(

→
An, InjA) ' Repe,∗(k,

→
Am ⊗

→
An)

Further, we observe that

F ∩ D = {F ∈ Rep(
→
An, InjA) | All internal morphisms are monomorphic.}
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is necessarily equivalent to Repe,m(k,
→
Am⊗

→
An). Thus, by Lemma 4.48 we see that

repe,∗(
→
Am ⊗

→
An,k)

repe,m(
→
Am ⊗

→
An,k)

' Rep(
→
An, InjA)

F ∩ D
' Rep(

→
An−1,A) ' rep(

→
Am ⊗

→
An−1,k)

�

Now, by observing that the indecomposables of Repe,m(
→
Am ⊗

→
An,k) are those

which is equal to k on each vertex (x, y) ∈ [1, i] × [j, n] for 1 ≤ i ≤ m and
1 ≤ j ≤ n5 and zero else, we realise that there is a finite difference in the amount
of indecomposables in repe,∗(

→
Am ⊗

→
An,k) and rep(

→
Am ⊗

→
An−1,k). Hence, the

equivalence above gives us the following corollary to Theorem B.1.

Corollary 4.51. Let k be an algebraically closed field. The category repe,∗(
→
Am ⊗

→
An,k), is of finite representation type when

• m = 1 or n ≤ 2,

• or (m,n) ∈ {(2, 3), (2, 4), (2, 5), (3, 3), (4, 3)}.

It is of tame representation type when

• (m,n) ∈ {(2, 6), (3, 4), (5, 3)}. �

Hence, we have a small amount of additional cases where we can parametrize 2-
parameter persistence modules under the additional epimorphic condition. If we
have a case where we can safely assume that all the internal morphisms of a 2-
parameter persistence module is epimorphic, we would hope that the subcategory
of such representations, which we denote by repe,e(

→
Am ⊗

→
An,k), has even more

additional cases where we can parametrize the resulting modules. This was ob-
served to be the case in [5], which through the dual of Corollary 3.36 established

5These representations are often called constant representations and denoted by k[1,i]×[j,n].
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the equivalence

repe,e(
→
Am ⊗

→
An,k)

C
' rep(

→
Am−1 ⊗

→
An−1,k)

where C is a suitable cotilting subcategory with a finite amount of indecomposable
objects, and therefore also the following classification.

Lemma 4.52 (Dual of [5, Corollary 3.36]). Let k be an algebraically closed field.
The category repe,e(

→
Am ⊗

→
An,k), is of finite representation type when

• m ≤ 2 or n ≤ 2,

• or (m,n) ∈ {(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)}.

It is of tame representation type when

• (m,n) ∈ {(3, 6), (4, 4), (6, 3)}. �
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A MISCELLANEOUS RESULTS

A Miscellaneous Results

A.1 Sums and Intersections

Lemma A.1. Let E be an additive category. The sum and intersection of two
subobjects B ↪→ A and C ↪→ A are described through the following pullback and
pushout diagram.

B ∩ C B

C A

y
B ∩ C B

C B + C
p

Further, the image of B ⊕ C → A coincide with the sum B + C.

Proof. Let us start with the intersection. Let D be a subobject of A contained
in both B and C, then we have by the pullback-property that it factors through
B ∩C. The morphism D → B ∩C is necessarily a monomorphism, thus D is also
contained in B∩C, proving that this is in fact the intersection. Now, for the sum,
we first would like to show that B + C is in fact a subobject of A. The pushout
diagram above give rise to the exact sequence

0 B ∩ C B ⊕ C A

which then in connection with the pullback diagram above gives us the following
commutative diagram with exact rows,

0 B ∩ C B ⊕ C B + C 0

0 B ∩ C B ⊕ C X 0

where X = Im(B⊕C → A). Now the five lemma tells us that the last morphism is
necessarily an isomorphism, giving that B+C is in fact a subobject of A. Assume
now that there is a subobject Y of A which contains both B and C, then by the
pushout-property, we have that B+C ↪→ A factors through it, and therefore B+C

is necessarily also a subobject of Y .

125



A.2 Adjoints in Extensions A MISCELLANEOUS RESULTS

�

A.2 Adjoints in Extensions

We have that for certain pairs of adjunct functors (F,G) between abelian cate-
gories, the adjunction extends to the first extension group. In fact similar results
is true for higher extension groups [16, Lemma 5.1].

Lemma A.2. Let F : A → B and G : B → A be functors between abelian categories
such that F is a left adjoint of G. If for objects A ∈ A and B ∈ B we have that

(i) the functor F sends every exact sequence

0→ GB → Y → A→ 0

to an exact sequence

0→ FGB → FY → FA→ 0

(ii) and, the functor G sends every exact sequence

0→ B → X → FA→ 0

to an exact sequence

0→ GB → GX → GFA→ 0

then there is an isomorphism of abelian groups YExtnB(GA,B) ∼= YExtnA(A,FB).S

Proof. By the given assumptions, we have that F and G induces well-defined
group-homomorphisms

F (−) : YExt1
A(A,GB)→ YExt1

B(FA, FGB)

and
G(−) : YExt1

B(FA,B)→ YExt1
A(GFA,GB)
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Let η : idA → G◦F be the unit and ε : F ◦G→ idB be the counit of the adjunction.
We now construct group homomorphisms φ : YExt1

B(FA,B) → YExt1
A(A,GB)

and ψ : YExt1
A(A,GB)→ YExt1

B(FA,B) by the compositions,

YExt1
B(FA,B) YExt1

A(A,GB)

YExt1
A(GFA,GB)

YExt1
A(A,GB) YExt1

B(FA,B)

YExt1
B(FA, FGB)

G(−)

φ

−·ηA

F (−)

ψ

εB ·−

As we will show, these homomorphisms is inverses of each other and thus gives our
desired isomorphism. Let X ∈ YExt1

B(FA,B) be an isomorphism class represented
by

X : B X FA

Under φ this class is sent to φ(X) ∈ YExt1
A(A,GB) represented by the lower row

in the following commutative diagram

G(X) : GB GX GFA

φ(X) : GB PB A

ηA

We now apply F (−) on the whole diagram, obtaining the following commutative
diagram

F (G(X)) : FGB FGX FGFA

F (φ(X)) : FGB F (PB) FA

F (ηA)

By using εB · − on the lower row obtaining a representative of ψ(φ(X)), and using
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the counit ε on the whole upper row, we get a new commutative diagram,

X : B X FA

F (G(X)) : FGB FGX FGFA

F (φ(X)) : FGB F (PB) FA

ψ(φ(X)) : B PO FA

εB εX εFA

εB

F (ηA)

By the properties of units and counits, we have that idFA = εFA ◦F (ηA). Further,
by the universal property of a push-out, we conclude that the upper and lower
row in this diagram is a representative of the same isomorphism class, that is
ψ(φ(X)) = X, or equivalently, ψ ◦ φ = idYExt1B(FA,B).

Now, let Y ∈ YExt1
A(A,GB) be an isomorphism class represented by

Y : GB Y A

We follow in the same manner as above. Y is sent to the lower row in the com-
mutative diagram below

F (Y) : FGB FY FA

ψ(X) : B PO FA

εB

After applying G(−) on this, we get the commutative diagram,

G(F (Y)) : GFGB GFY GFA

G(ψ(X)) : GB G(PO) GFA

Finally, by applying − · ηA on the lower row and the natural transformation
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η : idA → G ◦ F on the upper row, we obtain the commutative diagram

Y : GB Y A

G(F (Y)) : GFGB GFY GFA

G(ψ(X)) : GB G(PO) GFA

φ(ψ(Y)) : GB PB A

ηGB ηY ηA

G(εB)

ηA

with our original representative on the top row, and a representative of φ(ψ(Y))

on the lower row. By η and ε being unit and counit, respectively, we have that
idGB = G(εB) ◦ ηGB. Furthermore, the pullback property gives us a map Y →
φ(ψ(Y)), so we conclude that Y = φ(ψ(Y)).

�

B Topological Data Analysis

In the last twenty years topological data analysis, TDA for short, has risen as a
promising addition to the data analysts’ toolbox. With roots in cluster analysis it
incorporates results and classification tools from algebraic topology, in an effort to
make sense of seemingly non-structured data. This is the age of information, and
each day there is a new surge of vast data introduced throughout all branches of
science. TDA aims to bring the inherent structure of these data sets into light, in
an effort to make it less overwhelming. This is done by considering the data points
as sampled from some underlying geometric object, and then trying to approximate
this object’s topological features through (co)homological invariants. We will now
give a short introduction to the field of topological data analysis. Those interested
can check out [8, 26, 27] for a more in-depth introduction to TDA.

In the general process of TDA one stumbles upon representations of partially or-
dered sets, or persistence modules as they are called within the realm of TDA. In

129



B TOPOLOGICAL DATA ANALYSIS

order to extract useful information from these modules, they are decomposed into
their smallest components. The traditional concept of persistence modules are
representations over totally ordered sets, e.g. R, Z or a subset of these, which de-
composes into interval modules whenever the ordered set is finite or each associated
vector space is of finite dimension. Longer interval modules imply a more likely
homological invariant associated to the underlying space. Persistence modules over
totally ordered sets are often called single-parameter persistence modules.

However, in most application the resulting persistence module is over a more com-
plex partially ordered set, e.g. Rn, Zn, or subsets of these. These persistence
modules are often denoted as being multi-parameter, and there are no equiva-
lent decomposition theory for them, see e.g. [9]. In fact, we can observe that
for the 2-paramater case, we have that the persistence modules in question are
quiver-representation of the commutative grid

→
Am ⊗

→
An,

•
(1,n)

•
(2,n)

•
(3,n)

· · · •
(m,n)

...
...

...
...

•
(1,2)

•
(2,2)

•
(3,2)

· · · •
(m,2)

•
(1,1)

•
(2,1)

•
(3,1)

· · · •
(m,1)

which has a complete classification into finite or tame representation types. As
would be expected by the results of [9], there is a limited amount of such cases:

Theorem B.1 ([20, Theorem 2.5],[21, Theorem 5]). Let k be an algebraically
closed field. The category rep(

→
Am ⊗

→
An,k) of representations of the quiver with

relations
→
Am⊗

→
An valued in the category of finite dimensional k-vector spcaces, is

of finite representation type when

• m = 1 or n = 1,

• or (m,n) ∈ {(2, 2), (2, 3), (2, 4), (3, 2), (4, 2)}.
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It is of tame representation type when

• (m,n) ∈ {(2, 5), (3, 3), (5, 2)}.

And in all other cases it is of wild representation type.

To make the intuition behind TDA clearer, we will describe in broad strokes
the pipeline of a traditional application of TDA. The first step is to build a
one-parameter filtrated simplicial complex from the set of data points, apply a
(co)homological functor to obtain a vector space representation of the index set
for the filtration and decompose this representation into what is commonly called
barcodes. The quintessential example of how the filtrated simplicial complex is
built is a Čech-complex.

When building the Čech complex, we first embed the set of data points, X,
in a metric space, (M,d). For each value ε ∈ R+ = [0,∞), we construct a
simplicial complex, Cε consisting of a k-simplex [x0, x1, . . . , xk] for each subset
{x0, x1, . . . , xk} ⊂ X of points, such that the intersection of balls of radius ε and
center xi, i = 0, 1, . . . , k is non-empty. That is⋂

0≤i≤k

Bε(xi) 6= ∅.

Thus, we have a filtered simplicial complex {Cε}ε∈R+ . The sampled data point set
is finite, so there will be a finite amount of critical values ε such that, Cε′ 6= Cε for
ε′ ≤ ε. The filtration can therefore be taken over the set of critical values instead,
leading to a persistence module over a finite subset of R+.
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Example B.2. Say we have the data cloud given by

sampled from a circle in the plane. Through taking the union of balls with ever-
increasing radius, we obtain a filtered simplicial complex.

which gives the following barcode-diagram of the first two homologies,
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where each horizontal bar represents an interval module in the decomposition of the
persistence module. Thus, we can deduce that the underlying structure of the data
cloud most likely consists of one connected component and has a 2-dimensional
hole. This correspond nicely with the fact that the data cloud were sampled from
a circle in the plane. ♣

All real data sets contain a certain degree of noise. Therefore one often wants
to have some way of removing noise from the data before building the filtered
complex. This can be done for example by only allowing data points of a certain
density to be considered, see e.g. [10], but by choosing a density treshold, the
analyst has done an a priori analysis of the data, which goes against the principle
of TDA. Thus one wants to consider all density treshold at the same time, which
will give another natural parameter to the filtered simplicial complex and thus
a multi-parameter persistence module. This is one example of a situation where
more than one parameter is wanted, another situation could be that the analysts
needs to consider variations of curvature.
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