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Summary

This thesis introduces extensions to the standard animal model, a type of generalized linear
mixed model in the field of quantitative genetics. The model makes use of the information
in a known pedigree structure of animal or plant populations to disentangle their pheno-
typic variation into environmental and additive genetic effects, as well as examining the
influence of other factors on the phenotypic trait. In wild study populations the animal
model helps to gain specific knowledge that is particularly needed in the context of con-
servation, for example to quantify evolutionary responses to both natural and artificial
processes.

Mutations have been suggested as one explanation for the continued response in long-
term selection experiments in which it is expected that a selection plateau has been reached.
As a tool to explore this theory, we suggest and investigate a method to separate mutational
variance from other sources of additive genetic variance in the animal model, based on the
already known pedigree structure.

As an example, we fit an animal model including mutation effects with data from
a song sparrow population on the Mandarte island in Canada, using the Bayesian frame-
works INLA and Stan. Moreover, a resampling method is used to look at temporal changes
in random effects and the corresponding variances. As expected from previous insight
from other populations, the estimated increase in variance, from one generation to the
next, accounts for a minor part of the total phenotypic variance, but resampling reveals a
rapid increase over time. This suggests a surprisingly large inflow of additive genetic vari-
ance from mutations, but there are signs of overestimation. Further work on the subject
should include testing the model on simulated data, likely unveiling confounding between
mutational variance and other additive genetic effects.
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Sammendrag

Dette prosjektet introduserer utvidelser av dyremodellen, en type generalisert lineær blan-
det modell innen kvantitativ genetikk. Modellen utnytter informasjonen i en kjent slekt-
skapsstruktur for dyre- eller plantepopulasjoner for å dele deres fenotypiske variasjon inn i
miljøeffekter og additive genetiske effekter, samt å undersøke påvirkningen andre faktorer
har på det fenotypiske trekket. I ville studiepopulasjoner kan dyremodellen hjelpe til med
å skaffe spesifikk kunnskap som spesielt trengs innen konservering, for eksempel ved å
kvantifisere evolusjonære responser på både naturlige og kunstige prosesser.

Mutasjoner er foreslått som en forklaring på den kontinuerlige responsen i langvarige
seleksjonseksperimenter hvor det forventes at et seleksjonsplatå er nådd. Som et verktøy til
å utforske denne teorien, foreslår og undersøker vi en metode for å separere mutasjonsvar-
ians fra andre kilder til additiv genetisk varians i dyremodellen, basert på den kjente slek-
tskapsstrukturen.

Som et eksempel, inkluderer vi mutasjonseffekter i en dyremodell med data fra en
sangspurv-populasjon på øya Mandarte i Canada, implementert i de Bayesiske rammev-
erkene INLA og Stan. I tillegg benytter vi en resamplingsmetode for å se på årlige en-
dringer i tilfeldige effekter og de tilsvarende variansene. Som forventet fra tidligere innsikt
fra andre populasjoner, står den estimerte økningen i additiv genetisk varians, fra en gen-
erasjon til den neste, for en mindre del av den totale fenotypiske variansen, men resam-
plingen avdekker en rask økning over tid. Dette indikerer et overraskende stort tilskudd av
additiv genetisk varians fra mutasjoner, men det finnes tegn til overestimering. Videre ar-
beid bør inneholde testing på simulerte data, noe som trolig vil vise at mutasjonsvariansen
ikke er fullstendig separert fra andre additive genetiske effekter.
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Chapter 1
Introduction

Population genetics is a field within evolutionary biology where genetic differences be-
tween and within populations are studied (Conner and Hartl 2004). Genetic differences
appear as results of the four evolutionary forces selection, genetic drift, gene flow and
mutations. The interest lies in detecting these forces in populations, understanding their
past impact and predicting how populations will be affected in the future. One approach to
study population genetics is by the tools developed within the subfield of quantitative ge-
netics (Lynch and Walsh 1998). Methods in quantitative genetics are based on predictions
and summary statistics for related individuals, rather than knowledge on specific genetic
material in single individuals.

Quantitative genetics is built around the assumption that many traits follow the in-
finitesimal model (e.g. Barton et al. 2017). That is, traits are quantitative and do not fall
into distinct categories, but their values are assumed to be affected by an infinite number
of genetic components, each with an infinitely small additive effect. A common goal is to
disentangle the total variation in a trait into separate parts caused by either environmen-
tal or genetic components. A measure of the genetic diversity in focal phenotypic traits,
makes it possible to predict a population’s response to selection or potential for adaptation
to new environmental factors. By Fisher’s Fundamental Theorem of Natural Selection,
the rate of change in fitness in a population is equal to the additive genetic variance in fit-
ness (Fisher 1930), therefore many argue that a population at equilibrium should have no
additive genetic variation in fitness (e.g. Kimura 1958). Despite this, high levels of inher-
ited additive genetic variance are consistently found in traits under selection (Lynch and
Walsh 1998). This variation is believed to be maintained partly by mutations and partly
by balancing selection, but their relative importance are not known (Barton and Keightley
2002).

A central model in quantitative genetics is a type of generalized linear mixed models,
the so-called animal model (e.g. Kruuk 2004, Wilson et al. 2010). The animal model is
often used as a tool to disentangle additive genetic variance and environmental variance
in both domestic and wild populations, based on the relationships between individuals. In
this project we will focus on an extension to the animal model that allows for estimation
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of new additive genetic variance per generation due to newly emerging mutations (Wray
1990). Estimating mutational variance in wild populations can contribute to understanding
the maintained additive genetic variance in fitness traits.

As an example of applying the mutational animal model, we perform a quantitative
genetics analysis with data from song sparrows (Melospiza melodia) on the small Man-
darte Island. The song sparrow population has been monitored since 1975 by researchers
from the University of British Columbia, Canada (Smith et al. 2006). They have built
an almost complete pedigree of the sparrow population over years, which is necessary to
properly estimate mutation variance. Due to consistent immigration, we apply a genetic
groups extension (Wolak and Reid 2017, Muff et al. 2019) to the model, separating native
and immigrant individuals. Moreover, we fit the model in the Bayesian frameworks INLA
(Rue et al. 2009) and Stan (Stan Development Team 2021), and utilize posterior samples
to model temporal changes in the population (Sorensen et al. 2001). The main interest
lies in estimating the mutational variance and investigating how including mutation effects
influences other estimates.
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Chapter 2
Background

In this chapter we introduce the most important statistical concepts and the relevant back-
ground in quantitative genetics that is needed to understand the methodological extensions
proposed and applied in later chapters.

2.1 Generalized linear mixed models

Generalized mixed models (GLMMs) are an extension of the generalized linear models
(GLMs) (Zuur et al. 2009), which allows for a mix of fixed and random effects, thereby
mixed models. Random effects do not take determined values, but represent the deviations
around the expected value determined by fixed effects. Thus, fitting a GLMM does not
only involve estimating the fixed effects, but also the distributional parameters of random
effects. A general GLMM can be defined using vector notation. Letting the response
vector y be linked to the linear predictor η through some link function g, the GLMM is
given as

g(E[y]) = η = µ+ Xβ + Zγ , (2.1)

where E[y] is the conditional expectation of y, µ denotes the intercept vector, β is a
vector of fixed effects and γ is the random effect vector with some given multivariate
distribution. The design matrices X and Z, for fixed and random effects respectively, are
built to correctly relate the effects to the response.

To show the purpose of random effects we take a look at an example. Imagine a study
on an animal population where we have taken several measurements from each individual.
Repeated measurements are naturally not independent from each other and thus may vio-
late the assumption of independent residuals in the GLM (Zuur et al. 2009). One approach
to avoid this violation is to only use the mean value of each individual. With this approach
we lose power compared to a model where every individual is contributing several mea-
surements. Another possibility is to include identities as a categorical fixed effect with
one level per individual. However, the latter approach reduces the degrees of freedom for
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every level included. Moreover, the main interest in a study often lies on the overall effects
in a population, rather than in specific individuals.

As a third option, we can introduce a random identity effect γi, for individual i. In
the simplest case we assume γi ∼ N (0, σ2

γ) to be independent and identically distributed
between different individuals i. Now, instead of estimating a fixed effect based on means
or a categorical variable for each individual, we estimate one parameter, σ2

γ , which is
the between-individual variance in the population conditioned on the fixed effects. In
conclusion, random effects are suitable when different observations are not independent,
that is, when we know there is some covariance structure in the data. Other types of
covariance structures than those imposed by repeated measurements exist, some of which
are central in the following sections.

2.2 The animal model
A specific type of linear mixed models is the animal model (e.g. Kruuk 2004, Wilson et al.
2010). A simple linear animal model for individual i’s continuous phenotypic trait yi, only
including the intercept µ, the breeding value ai and residual error εi, can be stated as

yi = µ+ ai + εi ,

where we assume εi ∼ N (0, σ2
ε ). The breeding value is a random effect based on the

relatedness between individuals, and it is the defining feature of the animal model. In a
population of size N , the breeding value ai for a quantitative phenotypic trait is the total
additive effect of an individual’s genotype on the trait expressed relative to the population
mean phenotype (Wilson et al. 2010). Since close relatives are likely to share large parts of
their genotype, covariance between breeding values in a population must be accounted for.
With access to a pedigree, we can therefore utilize the animal model to quantify effects of
genotypes without the need of genotypic data.

Applying Mendelian laws of inheritance, we can build the covariance structure of
breeding values from information on relatedness between individuals. Letting a be the
vector of breeding values following a multivariate normal distribution, we can write

a ∼ N (0,Aσ2
a) ,

where σ2
a is the population’s additive genetic variance and A is an N ×N additive genetic

relatedness matrix. The elements of A are given by two times the coefficient of coances-
try, that is Aij = 2Θij (Kruuk 2004). In other words, the ijth entry of A is twice the
probability that an allele drawn at random from individual i is identical by descent to one
drawn at random from individual j. Given no inbreeding, 2Θij equals 1 for i = j, 1/2 for
parent-offspring or full-sibling pairs and so on. Inbreeding refers to the situation where
mating individuals are closely related, which means the total amount of unique genetic
material within the pair is smaller than expected in an unrelated pair. Hence, in the case of
inbreeding, the probability of alleles being identical by descent will necessarily be larger
(Wilson et al. 2010). Specifically, the diagonal elements are given by Aii = 1 +Fi, where
Fi denotes individual i’s coefficient of inbreeding, a measure of how inbred i is (Wright
1922).
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The main interest from an animal model is often the estimation of the additive genetic
variance σ2

a. It serves as a scaling factor in the covariance structure of breeding values
and can be interpreted as the part of the variance in an individual’s phenotype caused by
additive genetic effects (Kruuk 2004). Non-additive genetic effects, such as those due to
dominance or epistasis, are extremely difficult to estimate in non-experimental settings
and are usually neglected in wild populations (Wilson et al. 2010).

There are usually other sources of covariance that should be accounted for to obtain a
valid estimate of σ2

a. If available, these should be included in the animal model as random
or fixed effects. Such sources include simple correlating effects like time of measurement
and individual traits like sex, but also environmental effects that can falsely be interpreted
as additive genetic effects (Kruuk and Hadfield 2007). An example of such environmen-
tal effects is common environmental effects. Confounding with additive genetic variance
happens if individuals sharing similar environments are more related to each other than to
individuals with different environments (Wilson et al. 2010). This can typically be birds
bound to their nests, but is also relevant in many other species where the surroundings
have an impact in early stages of life.

Including K fixed effects and L additional random effects, a general animal model for
individual i can be stated as follows. Let ηi be the linear predictor linked to the continuous
phenotypic trait yi through ηi = g(E[yi]), where g is some link function and E[yi] is
the conditional expectation of yi. Let xik denote the measurement of fixed effect k ∈
{1, . . . ,K} and µ be the model intercept. Let γ(l) be a vector for random effect number
l, where l ∈ {1, . . . , L}, and let γ(l)i denote said effect for the group to which individual
i belongs. In the simplest case, the L random effects are assumed to be independently
normally distributed between each group with zero mean, so we let γ(l)i ∼ N (0, σ2

l ) be
the additional random effects. Then we can write

ηi = µ+

K∑
k=1

xikβk +

L∑
l=1

γ
(l)
i + ai .

The matrix form of this formula is equal to Equation 2.1 with breeding values included in
the random vector. With all random effects assumed to be normally distributed with zero
mean, the conditional means and variances are given by

E [ηi|xi] = µ+

K∑
k=1

xikβk and Var [ηi|xi] =

L∑
l=1

σ2
l + σ2

a .

Note that fixed effects are expected to explain some of the total variance, which means
their inclusion changes the interpretation of this variance measure. For example a model
including a fixed effect for sex will estimate the variance after accounting for a systematic
sex effect, and thus giving a smaller variance estimate compared to a model without any
fixed effects (Wilson 2008).

For the sake of comparability between different species, populations and traits, the
additive genetic variance is often scaled to achieve the trait’s heritability. In the simple
case of a Gaussian trait, the heritability is defined as

h2 =
σ2
a

σ2
p

, (2.2)
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where σ2
p is the total phenotypic variance, that is, the sum of all variance components

(e.g. Conner and Hartl 2004). Heritability is thereby the proportion of the total phenotypic
variance that is due to additive genetic causes. Animal breeders are particularly interested
in this measure because it is an important factor when predicting the response to selection,
but it can also say something about a population’s ability to adapt to rapid changes in the
environment.

For a model with non-Gaussian traits, where we use a link function, the parameters are
computed on a latent scale corresponding to the linear predictor η instead of the scale of
the trait y. A consequence of computing variances on a latent scale, with the inverse link
function being non-linear, is generating non-additive genetic variance on the data scale.
As a first step, calculating the heritability on a ”liability scale” can be done by adding a
so-called ”link variance” to the other variance components in the denominator of Equation
2.2 (de Villemereuil 2018). For the probit link function, the link variance corresponds to
the variance of a value drawn in a standard normal distribution, which is 1. Thus, with a
probit animal model the heritability on a liability scale is

h2liab =
σ2
a

σ2
p + 1

. (2.3)

To transform the heritability to the observed data scale we can apply

h2obs =
t2

p(1− p)
h2liab , (2.4)

where p is the proportion of the focal binary phenotypic trait and t is the density of a
standard normal distribution at the pth quantile (de Villemereuil 2018). Note that there
are different practices for estimating heritability, which can lead to wrong comparisons
between different studies. Moreover, the concept of scaling σ2

a by the phenotypic variance
has been strongly criticized (see e.g. Hansen et al. 2011). The fixed effects included
in a model will for example affect variance estimates, and thus heritability estimates are
dependent on the model design.

2.3 Genetic groups extension
All relatedness measures in the animal model are computed relative to a defined base
population (Lynch and Walsh 1998). The base population typically consists of imaginary
”phantom parents” of all individuals whose true parents are unknown or not identified
in the pedigree (Quaas 1988). Phantom parents are assumed to share the same genetic
parameters, be entirely unrelated and each only having one offspring (Wolak and Reid
2017). As a consequence, σ2

a is the additive genetic variance of the base population, and
not the population as a whole.

The base population is not exclusively parents of individuals from the earliest gen-
eration in the pedigree (founder population). Missing parents in a pedigree also arise in
later generations due to failure of observation or immigration. However, depending on
the study system, non-founders with unknown parents may have systematically different
genotypes to the founder population and thus violate model assumptions (Wolak and Reid
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2017). An example would be consistent immigration from a nearby population, adapted
to a different local environment, where immigrants have lower fitness in their new habitat
compared to native individuals. This would lead to estimated breeding values and additive
genetic variances being biased towards values among immigrants.

It is possible to account for this systematic bias by defining different genetic groups
for which the base population gets partitioned into (e.g. Wolak and Reid 2017, Muff et al.
2019). Instead of assuming all breeding values to have expected value zero, different ge-
netic groups can have different means. Phantom parents are assumed unrelated and can
only be members of one group each, while their descendants can partially inherit member-
ships from different groups as the genotypes mix through between-group mating. Define
qir as individual i’s proportion of membership to group r (Wolak and Reid 2017). Then
phantom parents have qir = 1 if they belong in group r and qir = 0 otherwise. If individ-
ual i is not a phantom parent, qir is the mean of its two parents’ membership proportions
in group r. Consequently, group memberships are inherited through generations. Note
that, in this thesis, genetic groups are assumed to have equal amounts of genetic variance.

Having genetic groups that allow for different means, it is useful to introduce the ”total
additive genetic effect” ui (Wolak and Reid 2017). It is defined by

ui =

R∑
r=1

qirgr + ai ,

where R is the number of genetic groups and gr is the mean of group r, or the genetic
group effect. The breeding value ai can now be interpreted as i’s deviation from the ex-
pected value according to its composition of group inheritance. Letting Q be an N × R
matrix with qir as elements and g be the vector of genetic group effects, total additive
genetic effects are distributed as u ∼ N (Qg,Aσ2

a) (Wolak and Reid 2017). Note that
we introduce in the next section an additional additive genetic effect, which means ui will
no longer be the total additive genetic effect and σ2

a does not capture all additive genetic
variance. Nevertheless, we will stick with these terms instead of introducing new ones.

Estimating gr is most easily done by explicitly estimating each group effect as a fixed
effect in the animal model. However, we need to constrain one group’s mean additive effect
equal to zero, or we will have an infinite number of solutions, that is, an identifiability
problem. For this purpose we have to choose a reference group with gr = 0. That is, other
groups’ genetic effects will denote the deviation in mean total additive genetic effect from
the reference.

2.4 Mutation effects

Although there exist methods for estimation of the additive genetic effect of mutational
variance, additive genetic effects are only very rarely split into standing genetic variance
and mutation effects (but see Wray 1990; Casellas and Medrano 2008). This may lead
to upwards bias in the additive genetic variance, especially in long-term selection exper-
iments (see e.g. Casellas et al. 2010). In addition, the inclusion of mutational effects
naturally offers means to quantify mutation variance in populations.
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Inclusion of mutational effects as individual random effects in the animal model is
based on a set of assumptions (Wray 1990). First, individuals in the base population are
assumed to have no mutational effects because any mutations in their genome contribute
to the base additive genetic effects. Second, in individuals of the first and subsequent
generations, new mutations are assumed to arise independently. And finally, mutational
effects are assumed to be small with mean zero and contributing a new additive genetic
variance of σ2

m per generation, if inbreeding effects are ignored. The covariance structure
of mutational effectsm is closely related to the one of breeding values. Let the mutational
covariance matrix be Mσ2

m. With t being the total number of generations, Mσ2
m can be

partitioned as

Mσ2
m =

t∑
k=1

Akσ
2
m ,

where Ak is the covariance matrix of additive effects attributed to mutations arising in
generation k. The elements of Ak are the additive genetic relationships if ancestors born
in generations 0 to k − 1 are ignored (Wray 1990). This design ensures that mutational
effects, independently arising in each generation, are inherited like other additive genetic
effects.

A challenge with the construction of the mutational covariance matrix M (or its in-
verse, M−1) is dividing populations into t non-overlapping generations k. Due to mech-
anisms such as inbreeding, extra-pair paternity and full-siblings being born in different
years, generations are often overlapping and difficult to separate from each other. Luck-
ily, according to Matthew Wolak (email communication, July 7, 2020), methods based on
algorithms for A−1 (Quaas 1976; Meuwissen and Luo 1992) do not need defined gener-
ations to construct M−1, but instead trace each individual one-by-one to determine each
ancestor’s contribution to identical-by-descent mutational effects shared between two in-
dividuals. Consequently, two full-siblings can be born in different years, but would will
share the same mutational effect relatedness as full-siblings born in the same year. On the
other hand, this method is more vulnerable to missing parents in the pedigree due to obser-
vation failure or genotyping uncertainty. Moreover, since this approach does not directly
depend on generations, exact interpretation of σ2

m is complicated.
Similar to the additive genetic variance, estimating mutational heritability in a Gaus-

sian trait can be done by the formula

h2m = σ2
m/σ

2
p , (2.5)

and potentially transformed similar to h2 in Equation 2.3 and 2.4. However, earlier es-
timates of mutation variance have often been reported on the form σ2

m/σ
2
e , where σ2

e

denotes the total environmental variance (that is the sum of non-genetic variance com-
ponents). These estimates have ranged from 1 · 10−4 to 5 · 10−2 (Lynch 1988). Estimates
for mutational variance are small because σ2

m only estimates the increment of the per gen-
eration variation due to new mutations. Note that mutational variance accumulates over
generations and its contribution to the genetic variation in populations thus increases over
time.
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2.5 Bayesian inference, MCMC and INLA

In the classical, frequentist approach to statistics, the parameter(s) θ is considered to be
some unknown, but fixed, value. In that approach, θ is thus entirely estimated by the
data, that in some way is generated by θ. In the Bayesian approach however, we utilize
our prior knowledge to θ by giving it a prior distribution p(θ) before doing any other
estimation. Giving parameters a distribution may represent the fact that they are truly
varying and/or reflect that our knowledge of the parameters is imperfect. Either way,
it provides an additional layer of flexibility. When observing new data y, we get more
information about θ and obtain a posterior distribution p(θ|y). Given a likelihood of the
data p(y|θ), the posterior distribution is given by Bayes theorem to be proportional to
p(y|θ)× p(θ), that is, the likelihood times the prior.

2.5.1 Markov chain Monte Carlo methods

Fitting Bayesian models is most commonly done with Markov chain Monte Carlo (MCMC)
methods. The purpose of a general MCMC algorithm is to draw samples from some target
density p(θ). The idea of an MCMC sampler is to construct a Markov chain {Θi}∞i=1 so
that limi→∞ Pr(Θi = θ) = p(θ), that is the chain converges to the target distribution.
After a sufficient amount of iterations i the transitions of the Markov chain θi,θi+1, . . .
essentially form a sample from p(θ|y). In the case of a regression model, the algorithm
draws samples of the different parameters θ based on their priors p(θ) and the likelihood
of the data p(y|θ) with the aim to obtain approximate posterior distributions p(θ|y).

Stan is a state-of-the-art platform for statistical modeling and high-performance statis-
tical computation (Stan Development Team 2021). One of Stan’s applications is a variant
of MCMC called Hamiltonian Monte Carlo (HMC). HMC uses an approximate Hamilto-
nian dynamics simulation based on numerical integration to generate more efficient tran-
sitions in the Markov chain (see Betancourt and Girolami 2013). Moreover, Stan uses the
”no-U-turn sampling” (NUTS) algorithm for automatic parameter tuning (see Hoffman
and Gelman 2014). The parameter tuning is done during ”warmup iterations” (or burn-in),
and provides approximately optimized transitions in the following iterations, from which
the posterior samples are taken. For efficient computations, Stan is implemented with
C++, allowing several chains to run in parallel on different cores, which also reduces auto-
correlation in the resulting samples. Wrappers in R such as rstanarm and brms, makes
Stan a user-friendly and reliable platform for Bayesian problems.

2.5.2 Latent Gaussian models and INLA

Despite great developments in the recent years, MCMC methods can still be slow and
impose issues with both convergence and mixing, especially with large data sets. For a
large class of models, using integrated nested Laplace approximations (INLAs) has in the
last decade become a popular alternative (Rue et al. 2009). INLA relies on a combination
of analytical approximations and efficient numerical integration schemes to achieve highly
accurate deterministic approximations to posterior quantities of interest (Rue et al. 2009).
Benefits of using INLA over MCMC are mainly its fast computation even for large models,
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but also that INLA does not suffer from slow convergence or bad mixing in generated
samples.

One condition for using INLA is that the model needs to be a latent Gaussian model
(LGM). This is a wide class of models containing GLMs, GLMMs, time series, spatial
models and several more (Rue et al. 2009). An LGM consists of three elements: a likeli-
hood function

y|z,θ ∼
∏
i

p(yi|ηi(z),φ) ,

a latent Gaussian field
z|φ ∼ p(z|φ) = N (µ,Σ(φ)) ,

and the hyperpriors
φ ∼ p(φ) .

Here, z is the latent Gaussian field (can be interpreted as the joint distribution of the pa-
rameters in the linear predictor) with mean vector µ and covariance matrix Σ. Moreover,
φ is a vector of hyperparameters and ηi(z) is the ith linear predictor connecting the data
yi to the latent field through some known link function.

The linear predictor with K fixed effects βk and corresponding data xik can be ex-
pressed in a general form as

ηi = β0 +

K∑
k=1

xikβk +

L∑
l=1

fl(vil) + εi ,

where β0 is the intercept, εi is the residual error and f is a set of functions on correspond-
ing covariates v. These functions can take many forms, for example random effects with
Gaussian priors. For more information on the INLA computing scheme we refer to Rue et
al. (2009).

2.5.3 Penalized complexity priors
The choice of priors in models is a highly debated topic in Bayesian statistics. A com-
mon practice in animal models is, in the absence of prior knowledge, to use for example
gamma distributions with small parameters. Such priors are assumed to be uninformative,
however this is not necessarily the case (Lambert et al. 2005). Moreover, many popular
prior distributions have parameters that are not intuitive for the user.

A recently introduced alternative are penalized complexity (PC) priors, which are ro-
bust and intuitive in their use (Simpson et al. 2017). These priors are designed to penalize
deviation from a simple defined base model, based on the Kullback-Leibler divergence
(Kullback and Leibler 1951). The user needs only specify the two parameters α and U ,
which decide how much prior weight is assigned to certain values of the parameter θ, be-
low the chosen threshold. With 0 < α < 1, the parameter’s prior probability is given by
Pr(θ > U) = α. As an example, let the prior be PC(1, 0.05). Then the prior distribution
assigns 5% of the weight on θ > 1, that is Pr(θ ≤ 1) = 0.95. This demonstrates how
PC priors are intuitive in their use, as opposed to most classical choices. In addition, the
R-INLA package (Rue et al. 2009) provides the necessary functionality for the application
of PC priors to be easy to implement, while Stan requires some more work from the user.
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For this thesis, it is most interesting to look at a random effect γ ∼ N (0, τ−1R−1),
where R−1 is some known covariance structure and τ−1 = σ2

γ is the variance parameter
of interest. Given the penalty parameter λ > 0, the PC prior for τ writes

p(τ) =
λ

2
τ−3/2 exp(−λτ−1/2)

(Simpson et al. 2017). Both INLA and Stan require priors for the standard deviation σγ ,
and a change of parameter to σγ yields

p(σγ) =
λ

2
(σ−2γ )−3/2 exp

(
−λ(σ−2γ )−1/2

)
·
∣∣∣∣−2

σ3
γ

∣∣∣∣
= λ exp(−λσγ) ,

which is the exponential distribution with rate λ. Thus, for the standard deviation of a ran-
dom effect, the PC prior is equivalent to the exponential distribution with λ = − ln(α)/U .
This property makes the PC priors for specific parameters possible to implement also with
Stan and other frameworks that do not inherently provide such functionality. A set of PC
priors for the standard deviation σγ with U = 1 and α ∈ {0.01, 0.15} are shown in Figure
2.1. The figure illustrates how most weight is put on values close to 0, and how the α
parameter controls how much weight is put on each side of U = 1. Similarly, it can be
shown that the PC prior for a random effect variance σ2

γ is given by

p(σ2
γ) =

λ

2
(σ2
γ)−1/2 exp

(
−λ(σ2

γ)1/2
)
,

with λ = − ln(α)/U1/2. Notice that p(σ2
γ) goes towards infinity when σ2

γ approaches 0.
Figure 2.1 illustrates how p(σ2

γ) is steeper close to 0 than p(σγ) is, penalizing values for
deviating from 0. Moreover, p(σ2

γ) has a long narrow tail, potentially allowing for more
extreme values. Changes to the α parameter lead to relatively small differences in p(σ2

γ)
visually, but small changes may still significantly affect the posteriors.
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6

0.0 0.5 1.0 1.5

p(σγ)
p(σγ

2)

PC(1,0.01)

PC(1,0.15)

Figure 2.1: Penalized complexity priors PC(1, α) for standard deviation p(σγ) (solid lines) and
variance p(σ2

γ) (dashed lines) of a random effect γ. The vertical dotted line illustrates that 1 is
always the 1 − α quantile in PC(1, α). The y-axis is cut at y = 6 because the variance priors go
towards infinity when σ2

γ is close to 0.
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Chapter 3
Methods

The basis for this project are the data and animal model used by Reid et al. (2021) in
their analysis of immigration effects on local evolution in fitness. They provide a thorough
description of the field system, data set and modelling choices. Here we will describe the
most relevant information from their work, together with own modelling choices. We will
use a genetic groups animal model with mutational effects on measurements of a binary
trait, survival from independence to adulthood, to investigate the effect of mutations in
a small song sparrow population (Smith et al. 2006). The population inhabits Mandarte
island BC, Canada, and is assumed to be descendants from two genetic groups: natives
and immigrants.

3.1 Data description
The Mandarte song sparrows have been monitored continuously since 1975 and the main
data set consists of 2478 observations from individuals born in the 26-year long period
1993-2018. Mandarte is a small island (approximately 6 hectares), and adult sparrows
typically stay in the same breeding territories across years. This behavior makes the Man-
darte song sparrows a suitable study population because it becomes relatively easy to keep
track of all individuals. A pair of song sparrows can produce up to 3 broods during the
season April-August, with 1 to 4 offspring in each brood. During the study period, the
island was systematically surveyed to identify the chicks that survived to independence
from parental care, and these constitute our data set. New surveys were done in April each
year to identify whether young sparrows lived through their first winter, a measure defined
as survival to adulthood (Smith et al. 2006).

Genetic parentage data was collected since 1993, and revealed some wrong parentage
assignment in the pre-1993 pedigree (Sardell et al. 2010). Therefore, we only use phe-
notypic data from individuals born in the period 1993-2018. However, to avoid artificial
zero-values from 1993-individuals, relationships from the whole study period are used to
calculate inbreeding coefficients and genetic group memberships (details in Reid et al.
2021). Despite no observed emigration from Mandarte (Wilson and Arcese 2008), there
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was in average approximately 1 immigrant from surrounding islands per year. Molecular
genetic analyses verified that immigrants were relatively unrelated to the resident popula-
tion at the time of arrival (Reid et al. 2021), which justifies a division of the base population
into two genetic groups: natives and immigrants. Defined phantom parents of the native
population count 15 founders, while there were 33 reproducing immigrants since 1975.

3.2 Model description
Since an extensive animal model on the Mandarte song sparrows had already been con-
structed by Reid et al. (2021), we chose to include the same fixed and random effects as
in the respective publication, but added the mutational effects. As response yi we used
the binary trait, survival from independence to adulthood, which is closely related to fit-
ness. Because we only had two genetic groups, we defined natives as the reference group.
We denoted by g the single fixed genetic group effect for immigrants, together with qi
describing individual i’s proportion of genes inherited from the immigrant group. Due to
known inbreeding depression (Reid et al. 2014) potentially biasing estimates of σ2

a (Reid
and Keller 2010), we included inbreeding coefficients Fi as fixed effects. Further, since
song sparrows often rear multiple broods within each summer, we defined brood date as
the date on which the first egg in the individuals clutch was estimated to have been laid
(where January 1st is day 1). Additionally, the model included the individual’s natal year
(numbered as 1 to 44) to account for linear phenotypic changes due to the environmental
factors and lastly, the binary effect sex, where 1 was related to males.

Random effects of main interest were the breeding values ai and mutational effects
mi, but we needed to account for two other effects that were not properly covered by
linear fixed effects. Those were non-linear effects of the natal year and the multi-level nest
effect (represented by 1109 unique nest IDs), which is a common environmental effect. All
random effects were assumed normally distributed with zero mean and covariances Aσ2

a,
Mσ2

m, Iσ2
year and Iσ2

nest, where A and M are relatedness matrices defined in sections 2.2
and 2.4 and I is the N ×N identity matrix. The full model for individual i is then given as

ηi = µ+

5∑
k=1

xikβk +

2∑
l=1

γ
(l)
i + qig + ai +mi ,

where ηi is the linear predictor, µ denotes the model intercept and γ(l)i are the random natal
year and nest effects respectively. Furthermore, xik are the measurements corresponding
to the mentioned fixed effect coefficients βk and qi describes membership to the immigrant
genetic group with coefficient g. Since survival to adulthood is a binary trait, a natural
choice was to do binary regression with the probit link function. The probit link function
is defined by

g(yi) = Φ−1(yi) ,

where Φ−1(.) corresponds to the inverse of the cumulative distribution function of the
standard normal distribution. Note that we here, due to instability of the results when
using INLA, deviated from the model of Reid et al. (2021), which was a logit model.

The model was implemented using INLA and Stan, and every variance component
needed a suitable prior distribution. In accordance with earlier arguments, PC priors were
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chosen for every parameter in the model. As a starting point, we fitted a model without
mutation effects (model 0) with priors PC(1, 0.01) for each variance component. The
resulting posterior marginal distributions provided evidence for variances being smaller
than 1. Thus, due to lack of prior knowledge and low prior sensitivity in model 0, we used
PC(1, 0.01) for all variance components except the mutational variance in the main model
(model 1). For the mutational variance we knew that earlier estimates of σ2

m/σ
2
e were for

sure smaller than 0.05 (Lynch 1988). Moreover, summing up the modes for environmental
variance marginals in the model without mutational variance and the link variance, we
could use 1.2 as a proxy for σ2

e . This relates to an upper bound of the mutational standard
deviation of

√
0.05 · 1.2 = 0.24. Hence, we chose to apply a PC(0.25, 0.01) prior to σm

(i.e. priors are set for standard deviations in INLA and Stan). In addition, a set of other
PC priors were implemented for mutational variance to explore the effect of different prior
assumptions.

Given the data and model formulation, INLA efficiently approximates all posterior
marginal distributions. However, INLA (and Stan) has no built-in model that directly
enables the use of a mutational covariance structure. Therefore, for computation of the
A- and M-matrices, or their inverse, we used the R-package nadiv (Wolak 2012). Note
that at the time of this thesis, functions for computing M were not yet released (current
version 2.17). Thus, because Stan requires the non-inverted covariance matrices, we had
to numerically invert M−1 for use in the Stan models.

The exact same model assumptions were used in both the INLA and MCMC imple-
mentations. The Stan model was implemented through the R package brms, which pro-
vides a user-friendly interface for Bayesian generalized multilevel modelling. A drawback
for using brms is that it is not optimized for models with several random effects with a
large number of levels. It requires repeatedly computing Kronecker products of the co-
variance matrices, which is slow for large matrices. Therefore, it was not feasible to run
very long Markov chains with this implementation. As a result, we used the Stan imple-
mentation mostly as a validation model for the INLA implementation. We ran 4 chains
with 10000 iterations each, of which 5000 were warmup iterations, resulting in a poste-
rior sample of Ns = 20000 for each model parameter in model 1. In addition, model
0 was run with 4 × 1000 iterations (500 warmup iterations), generating samples of size
Ns = 2000. It is likely that 2000 samples was not enough to generate accurate posterior
distributions for model 0, but was sufficient to somewhat confirm the trends seen with the
INLA implementation.

After running the INLA computation we were provided with marginal posterior dis-
tributions of the focal parameters. From the marginals it is straightforward to extract for
example, point estimates and credible intervals. However, obtaining posteriors of trans-
formed variables such as the heritability required more work. INLA provides a resam-
pling method with which we could generate samples from the joint posterior distribution,
equivalent to samples from an MCMC sampler. Given a sufficiently large sample for the
different variance components, we could obtain approximate posteriors of transformed
statistics, such as heritabilites. The full implementation in R (R Core Team 2020) is pre-
sented in Appendix A.
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3.2.1 Cohort resampling
Mutational variance σ2

m is defined as the increase in additive genetic variance due to muta-
tions from generation 0 (i.e. the base population) to the next generation. This is a measure
that is difficult to make use of in practice, especially when we have overlapping genera-
tions. Therefore, it is interesting to divide posterior samples of mutational effects – and
other genetic parameters – into different cohorts. Sorensen et al. (2001) propose a method
for a resampling scheme that lets us generate posterior distributions of genetic parameters
in arbitrary cohorts. Because the individuals are all associated with a natal year, choosing
cohorts based on the year of birth makes it possible to assess temporal changes in the focal
parameters.

The resampling scheme can be described with the mutational effectsm as an example.
Let Ns be the number of samples, either from resampling with INLA or the Stan Markov
chains. For iteration n we have a sample mn, from which we get mutational values mi,n

for each individual i = 1, . . . , N . Let t relate to a set Ct of individuals from a given
cohort, and Nt be the number of individuals in the cohort. Then

m̄n(t) =
1

Nt

∑
i∈Ct

mi,n and σ̂2
m,n(t) =

1

Nt − 1

∑
i∈Ct

(mi,n − m̄n(t))2

estimate the mean mutational value and mutational variance, respectively, in cohort Ct
for iteration n in the given sampling method. Note that where Sorensen et al. (2001)
would use the population variance to estimate σ̂2

m, we instead use the sample variance.
This method is repeated for each sample mn for n = 1, . . . , Ns, leaving us with ap-
proximate posterior distributions for mean mutation value and mutational variance for the
given cohort. For comparison, cohort-wise posteriors distributions for ā(t), ū(t) and their
respective variances were also computed for each model.
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Chapter 4
Results and Discussion

In this chapter we present posterior results for fixed effect coefficients, random effect vari-
ances and heritabilites, as well as cohort-wise posterior distributions for genetic parame-
ters from the INLA implementation. Moreover, we present some observations related to
accounting for mutation effects in the animal model with INLA and Stan.

4.1 Parameter estimates
From the posterior marginal distributions of the INLA implementation of model 1, we
obtained point estimates of fixed effects on the latent probit scale by taking the posterior
mean (Table 4.1). Moreover, all estimates are reported with the corresponding 95% highest
posterior density (HPD) credible interval (CI). The effect of the inbreeding coefficient was
clearly different from zero, and estimated to be−4.29 (95% CI from−6.00 to−2.66). The
negative value provided further evidence for inbreeding depression in the song sparrow
population. The genetic group effect g was estimated to be −1.14 (95% CI from −2.02 to
−0.24), thus, there was evidence that immigrant genome was associated with lower fitness.
The posterior marginal of the brood date effect had most weight on small negative values
(estimate −0.006, 95% CI from −0.009 to −0.004), suggesting an advantage in hatching
early in the season, as opposed to late summer. Moreover, males were more likely to
survive through their first year than female juveniles (estimate: 0.28, 95% CI from 0.16
to 0.39). On the other hand, there was no evidence for a linearly decreasing trend of the
natal year effect (95% CI from −0.063 to 0.008), even though mean juvenile survival had
a clearly decreasing trend over the study period.

As recommended by He and Hodges (2008), we mainly looked at posterior modes for
variances, but also reported the posterior mean values in Table 4.1. For mutational vari-
ance we obtained 8e−4 (95% CI from 7e−5 to 0.0063), which is a very small estimate
relative to the largest variance components, but remember that σ2

m only relates to the in-
crease in additive genetic variance in one generation and should accumulate over time.
The posterior marginal for σ2

a spanned larger values, with the 95% CI covering 0.01 to
0.16 (posterior mode 0.04). The posterior mode for nest variance was 0.001, which sug-
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Table 4.1: Posterior mean (for fixed effects), posterior mode; mean (for random effect variances)
and 95% HPD CI for the animal model on juvenile survival that accounted for mutational variance
(model 1) and the model not accounting for mutational variance (model 0) generated with INLA.

Summary of posterior distributions for model parameters
Model 1 Model 0

Parameter Estimate 95% CI Estimate 95% CI

Fixed effects
F −4.29 (−6.00,−2.66) −4.24 (−5.93,−2.62)
g −1.14 (−2.02,−0.24) −1.16 (−2.05,−0.25)
Natal year −0.026 (−0.063, 0.008) −0.025 (0.061, 0.009)

Brood date −0.006 (−0.009,−0.004) −0.006 (−0.009,−0.004)
sex 0.28 (0.16, 0.39) 0.28 (0.16, 0.39)

Variances
σ2
nest 0.001; 0.018 (2e−5, 0.051) 8e−4; 0.019 (2e−5, 0.054)
σ2
year 0.20; 0.23 (0.11, 0.38) 0.19; 0.23 (0.10, 0.38)

σ2
a 0.04; 0.07 (0.01, 0.16) 0.04; 0.06 (0.01, 0.13)

σ2
m 8e−4; 0.0024 (7e−5, 0.0063)
h2 0.05; 0.09 (0.01, 0.23) 0.07; 0.09 (0.02, 0.18)

h2
m 0.0010; 0.0036 (1e−4, 0.0097)

gests small variance due to common environmental effects, although the 95% CI spanned
substantially larger (and smaller) values (2e−5 to 0.051), reflecting the relatively large
uncertainty in the marginal posterior. Unlike for the corresponding fixed effect, the natal
year variance was substantial, with a posterior mode of 0.20 (95% CI from 0.11 to 0.38),
and was thus the largest variance component, explaining the majority of environmental
variance after adjusting for fixed effects.

Estimates of heritabilities were found using the resampling scheme from INLA with
105 samples from the joint distribution of each variance parameter. Using the heritability
formulas introduced above, we obtained the posterior heritability distributions on the data
scale. The posterior mode for h2 was 0.05 (95% CI from 0.01 to 0.23). This point estimate
of h2 was in the smaller range compared to earlier estimates (e.g. Kruuk 2004). The small
value may be an indication of relatively large environmental variation, a consequence of
a genetically homogeneous population or the fact that σ2

a is generally expected to be low
in fitness traits when the population is under strong selection. The posterior mode of h2m
was 0.0010 (95% CI from 1e−4 to 0.0097). Moreover, using the same procedure for
σ2
m/σ

2
e , we obtained a posterior mode of 0.0010 (95% CI from 0.0001 to 0.0101). This

estimate falls perfectly inside the range of 1 · 10−4 to 5 · 10−2 reported by Lynch (1988).
Again, large environmental variation leads to smaller values. Note that it is somewhat
unclear whether the transformation to data scale holds also for σ2

m/σ
2
e . Moreover, scaling

variance components by other variance components is often criticized, and thus, these
results should not be overinterpreted.

To examine the outcome of including mutational effects, we could compare estimates
from model 1 (main model) with estimates from the already fitted model 0 (no mutational
effects). Posterior statistics from model 0 are presented on the right side in Table 4.1. The
table reveals only minor changes to point estimates for all the modeling components that
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were included in both models. Furthermore, a comparison of posterior marginal distribu-
tions for variance components in the two models is presented in Figure 4.1. The figure
shows that posterior marginal distributions for σ2

nest and σ2
year were essentially unaltered

between the models. Moreover, the estimate of mutational variance σ2
m seems to be so

small that the distribution of standing additive genetic variance σ2
a was only marginally

altered.
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Figure 4.1: Marginal posterior distributions of the variances for the animal model on juvenile sur-
vival that accounted for mutational variance generated with INLA. The dashed lines for a,b and c
denote distributions for the model without mutational variance, and the dashed red line in d denotes
the prior distribution of σ2

m.

Posteriors for σ2
m and σ2

a from the INLA implementation turned out to be highly sen-
sitive to the prior of the former. Relatively small changes in the given prior distribution
for σ2

m led to notable changes in the two marginal distributions (see Appendix B). Priors
with more weight on larger values led to right-shifted posteriors for σ2

m, as one would
expect. Still, estimated distributions consistently differed from the prior distribution (see
Figure B.1d). The PC-priors penalize values that deviate from zero, and still the posterior
marginal distribution for σ2

m clearly differed from zero. This suggested that the data and
covariance structure were quite informative, despite the observed sensitivity to the prior.
Moreover, the additive genetic variance σ2

a appears to be confounded with the mutational
variance, that is, a right shift of the posterior marginal for σ2

a comes together with a left
shift of σ2

m, and vice versa.

4.1.1 Stan implementation
Implementing model 1 in Stan generated very similar posterior marginal distributions to
the results from the INLA implementation for most parameters, but there were some devia-
tions (summary of posterior distributions for model parameters are presented in Appendix
C). Estimates for the five fixed effects seem reliable since they had close to identical distri-
butions in the two implementations. Approximate posterior marginal distributions for the
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random effect variances are displayed in Figure 4.2. The most interesting changes, com-
pared to the posterior marginals from INLA in Figure 4.1, were the changes in shape for σ2

a

and σ2
m, which seemed to be heavily influenced by the shape of their priors. In Figure 4.2d

the prior for σ2
m is included, illustrating how its shape is similar to the posterior marginal

of σ2
m. However, the posterior clearly differs from the prior for σ2

m. Unlike INLA, Stan
seemed to have trouble with very small values, arguably putting too much weight close
to 0 for all variances, except σ2

year. Hence, the posterior modes for these parameters do
not seem reliable. On the other hand, differences in posterior means between the two im-
plementations were not too large, implying some learning from the data also with Stan.
Moreover, since we worked with means in the cohort-wise results, both implementations
were somewhat useful.

a

0

500

1000

1500

2000

0.000 0.025 0.050 0.075 0.100

σnest
2

b

0

400

800

1200

0.0 0.2 0.4 0.6 0.8

σyear
2

c

0

500

1000

1500

2000

0.00 0.05 0.10 0.15 0.20

σa
2

d

0

500

1000

1500

2000

0.0000 0.0025 0.0050 0.0075 0.0100

σm
2

Figure 4.2: Approximate marginal posterior distributions of the random effect variances for the
animal model on juvenile survival that accounted for mutational variance implemented with Stan. In
d) the prior for mutational variance p(σ2

m) is included as a dashed red line.

4.2 Cohortwise results
Using the posterior samples generated from model 1 with INLA, we found approximate
posterior distributions for the genetic parameters in each defined cohort. Figure 4.3a-c
illustrates how the distributions of σ2

a(t), σ2
u(t) and σ2

m(t) changed over different cohorts
Ct. The additive genetic variance σ2

a(t) was very stable through the years 1993-2018.
As seen in Figure 4.3d, the mean of σ2

a(t) had some variation from year to year, but the
overall mean σ2

a(t) during the study period was 0.044, which is in accord with the general
parameter estimate. The corresponding σ2

u(t) was overall larger than σ2
a(t) and also had

larger fluctuations between each cohort. This behaviour is natural because the samples of
ui is the sum of two sampled values, qig and ai, instead of being directly sampled from a
set of different σ2

u. The mean value of σ2
u(t) appeared to vary between approximately 0.05
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and 0.08 (Figure 4.3d), and there were weak indications of a slightly decreasing trend in
σ2
u(t).
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Figure 4.3: Boxplots of cohort-wise distributions for a) additive genetic variance σ2
a(t), b) total

additive genetic variance σ2
u(t) and c) mutational variance σ2

m(t) from the animal model on juve-
nile survival accounting for mutational variance implemented with INLA. Horizontal lines denote
medians, boxes denote first and third quartiles and whiskers denote the most extreme value within
1.5 times the inter quartile range. Outliers are not included in the figures. Figure d) displays the
posterior mean variances for each cohort.

The posterior cohort-wise mutational variance σ2
m(t) told a more surprising story. The

yearly mean values of σ2
m(t) during the period 1993-2018 were much larger than the first

posterior estimate. The mean σ2
m(t) grew steadily up to 2012, starting at 0.020 in 1993 and

reaching 0.033 in 2012. However, the growth seemed to stop after 2012. Fitting a simple
linear model of σ2

m(t) on natal year, for the period 1993-2018, gave a slope of 5.3e−4,
which was somewhat smaller, but of the same order of magnitude as the estimate of overall
σ2
m (8.1e−4). However, the linear model predicts that σ2

m(1975) = 0.011, which on this
scale is much larger than the expected 0 for the base population. This indicated that the
growth in σ2

m(t) was faster in the earlier years (i.e. before 1993), and that the value reached
in 2012 might have been close to a maximum.

An interesting finding in the work of Reid et al. (2021) was how immigration counter-
acts the expected increase in additive genetic effects in the population. Figure 4.4 illus-
trates how this phenomenon is present in our model 1 as well. As expected from the
non-zero additive genetic variance in survival and consistent directional selection, there
was a clear increase in cohort-wise mean breeding value ā(t) in the period 1993-2018. An
increase in ā(t) would normally imply a higher value on the phenotypic trait (i.e. higher
survival rate), but there are more effects to consider. The genetic group effects qig are
also additive genetic effects. Cohort-wise mean immigrant group membership q̄(t) in the
population increased through the observed period, and because g was negative, q̄(t)g de-
creased accordingly. Thus, since the increase in ā(t) and the decrease in q̄(t)g were of
similar magnitude, the total additive genetic effects ū(t) = ā(t) + q̄(t) were quite stable,
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with no clear increasing or decreasing trend. In model 0 however, ū(t) had a substantial
increase (see Figure 4.5).
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Figure 4.4: Boxplots of cohort-wise distributions for a) breeding values a(t), b) genetic group
effects q(t)g, c) total additive genetic values u(t) and d) mutational effects m(t) from the animal
model on juvenile survival accounting for mutational variance implemented with INLA. Horizontal
lines denote medians, boxes denote first and third quartiles and whiskers denote the most extreme
value within 1.5 times the inter quartile range. Outliers are not included in the figures.

The discrepancy in ū(t) between model 1 and model 0 can be explained by the addi-
tion of mutational effects. Figure 4.5 illustrates how the mean mutational effects increased
over generations compared to other additive genetic effects in model 1 and model 0. The
increase in m̄(t) can be interpreted as the net effect of mutations on survival to adulthood
in the population being positive, indicating substantial directional selection on new mu-
tations. If we compare mean mutational effects to breeding values, m̄(t) was typically
50− 60% of ā(t). Mutational effects are additive genetic values and would be included in
the breeding values in a model without mutational effects, explaining why ā(t) in model
0 are larger than in model 1. If we instead look at the sum of m̄(t) and ū(t) in model 1
(Figure 4.5), we are close to resembling ū(t) from model 0, especially in the first half of
the study period, showing that the sum of all additive genetic effects was almost constant
between model 0 and model 1.

Since the covariance structures of σ2
a and σ2

m are based on the same relatedness mea-
sures, some confounding between the two parameters was expected. Moreover, mutations
are assumed to generate additive genetic variance. Thus, we expected σ2

m to be absorbed
in σ2

a in models that do not consider mutational effects. Figure 4.6 shows mean σ2
u(t) for

model 0 and model 1. From the figure, it is clear that mean σ2
u(t) behaved similarly in the

two models, and that estimating mutational variance in model 1 led to a shift in the value
of σ2

u(t). If we let ∆σ2
u(t) be the difference between σ2

u(t) in model 0 and model 1 respec-
tively, we expected ∆σ2

u(t) to have similar values to σ2
m(t). In Figure 4.7, ∆σ2

u(t) and
∆σ2

a(t) are plotted together with σ2
m(t) for the focal period. Although ∆σ2

u(t) had a spiky
profile like σ2

u(t), it started at a similar value to σ2
m(t) in 1993 and somewhat followed
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Figure 4.5: Comparison of cohort-wise means of different additive genetic effects from the ani-
mal model on juvenile survival accounting for mutational variance (model 1) and the model not
accounting for mutational variance (model 0).

the increasing trend up until the last five years, where both ∆σ2
u(t) and ∆σ2

a(t) started to
decrease, while σ2

m(t) flattened out. The correspondence between σ2
a(t) and ∆σ2

u(t) was
not perfect, but deviations were small enough to meet our expectations.
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Figure 4.6: Posterior means of cohort-wise distributions for total additive genetic variance σ2
u(t)

from the animal model on juvenile survival accounting for mutational variance (model 1) and the
model not accounting for mutational variance (model 0).

The posterior distributions of σ2
a(t), σ2

m(t) and σ2
u(t) for individuals born in t = 1993

are displayed in Figure 4.8. Both σ2
a(1993) and σ2

m(1993) had two clear modes in their
posterior distributions, whereas σ2

u(1993) had a regular distribution with one mode. At
first glance this looked like a genetic group problem, where one group had larger val-
ues of genetic variance than the other, and the group difference was corrected by adding
the genetic group effects qig to the breeding values ai. However, the posterior marginals
reported in Section 4.1 showed no sign of such problems. The real reason for bimodal pos-
teriors was the sampling algorithm from INLA, where all 10000 samples of random effects
were generated from only 25 different configurations of hyperparameters (i.e. variances),
which was not enough to precisely represent the actual distribution (personal communi-
cation with Håvard Rue, February 26, 2021). Therefore, the shapes of posterior marginal
distributions of σ2

a and σ2
m were not precisely conveyed into the cohort-wise posteriors.
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The reason why σ2
u(1993) had a simpler distribution was the, wide and almost symmet-

ric, posterior of the genetic group coefficient g, which had greater impact to the shape of
σ2
u(1993) than the variance in breeding values. Still, these cohort-wise posteriors captured

most of the features we were interested in, and could be used to model temporal changes
in the genetic parameters.
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Figure 4.8: Histograms for a) additive genetic variance σ2
a, b) mutational variance σ2

m and c) total
additive genetic variance for the 1993 cohort generated with INLA.
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4.2.1 Results from Stan implementation
Although posterior marginal distributions of σ2

a and σ2
m were quite different between the

results from the INLA and Stan implementations, using the resampling method with sam-
ples from Stan led to similar conclusions as before. The new posterior distributions for
σ2
a(1993), σ2

m(1993) and σ2
u(1993), displayed in Figure 4.9, had shapes very similar to

the respective posterior marginals in Figure 4.2. This check gave further evidence for
the complicated distributions of σ2

a(1993) and σ2
m(1993) from the INLA samples being

caused by the sampling algorithm. Moreover, all analyses on cohort-wise results from the
INLA implementation were repeated for the Stan implementation (see Appendix C). Apart
from some minor differences in size and slope of the parameters, all conclusions drawn
from the INLA implementation could be drawn from the Stan implementation as well.
Note that the sample size for model 0 in Stan was only 2000, so that comparisons between
model 0 and model 1 could not very meaningfully be done.
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Figure 4.9: Histograms for a) additive genetic variance σ2
a, b) mutational variance σ2

m and c) total
additive genetic variance for the 1993 cohort generated with Stan.
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Chapter 5
Discussion and conclusion

By extending a Bayesian genetic groups animal model with mutational effects, we have
obtained posterior distributions of genetic parameters related to fitness in a song spar-
row population. We have applied a resampling scheme, with samples from the Bayesian
frameworks INLA and Stan to estimate temporal changes in these genetic parameters. The
posterior marginal distribution of mutational variance had most weight on relatively small
values, but point estimates lay within the expected range and were in agreement with ear-
lier studies.

A major challenge regarding mutational variance was how it should be interpreted. The
definition states that σ2

m measures how much variance is generated from mutations from
the base population to the next generation (Wray 1990). However, the base population
consisted of a group of 15 founders primarily present in 1975 and 33 immigrants sporadi-
cally arriving between 1975 and 2018. Hence, it was difficult to place the base population
on a timeline, especially when we do not have data between 1975 and 1993. Since the
estimated mean σ2

m(1993) was as high as 0.020, the increase in additive genetic variance
due to mutations must have been faster between the pre-1993 generations than post-1993.
According to Reid et al. (2019), the length of a song sparrow generation should be approx-
imately 2.5 years, implying the number of generations between 1975 and 2018 would be
around 17.5. Treating the posterior mean of σ2

m, instead of the posterior mode, as a linear
per generation increase since 1975 would correspond to a value of 0.0024 · 17.5 = 0.042
for σ2

m(2018), which is not extremely far from 0.033 (the estimated mean for σ2
m(2018)).

Remembering that 1975 is not necessarily a completely accurate placement for the base
population, interpreting the posterior mean σ2

m as the per generation increase in additive
genetic variance due to mutations might be reasonable. On the other hand, the estimated
mean σ2

m for the Stan implementation was 0.0035, and would correspond to a value of
0.061 for σ2

m(2018), almost twice as large as the estimated mean σ2
m(2018). This showed

that the relationship between posterior estimates of σ2
m and σ2

m(t) is complicated and
needs further inspection.

Results from model 1 suggest that mutational effects and mutational variance increased
rapidly in the study period. The increase was larger than one would expect from other
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studies, which raised the concern that σ2
m might have been overestimated. According

to Henrik Jensen (personal communication, May 7, 2020), the majority of mutations have
neutral or negative effects on fitness, and even strongly beneficial mutations are very likely
to get lost because of genetic drift. Thus, the modelled increase in mutational effects and
mutational variance in fitness are likely to not only stem from mutations. Seeing how
sensitive σ2

m was to the choice of prior distribution, we cannot exclude the possibility that
the chosen prior assigned too much weight on larger values. Another problematic point
is the strong temporal increase of the sum ū(t) + m̄(t) (see Figure 4.5), which includes
all additive genetic effects. This increase would mean increased fitness over time in the
population, as opposed to an approximate selection-migration balance in the results of
Reid et al. (2021). Note that this increase in total additive genetic value was present also
in model 0, possibly indicating confounding with other parameters than the mutational
variance.

Implementing the models in Stan gave some validation to the results from INLA, but
did also reveal some difficulties. Firstly, posteriors marginals for σ2

a and σ2
m differed in

shape, but the means were somewhat in agreement. Judging from the shapes of the pos-
terior marginals in Figure 4.2, it seems like Stan has some problems with distinguishing
complicated random effects from 0. We recognize that running more MCMC iterations
could have possibly helped on this issue, but it seems unlikely that doing more iterations
would drastically change the posteriors. Since we used a pedigree including 244 individ-
uals without any measurements, both the breeding values and mutational effects had more
levels than data points. The nest effect also had more than 1000 levels, partly explain-
ing why σ2

a, σ2
m and σ2

nest were hard to estimate, while σ2
year (26 levels) was consistent

between all models. Disregarding differences in posterior shapes, INLA and Stan gave
very similar cohort-wise results with only minor differences. This confirmed that the ani-
mal model accounting for mutational variance is evaluated sufficiently similar in different
frameworks.

Comparing model 1 to model 0 (Figure 4.6 and 4.7) showed that ∆σ2
u(t) increased

similarly to σ2
m(t) up to 2013. This similarity indicates that σ2

u(t) includes most of σ2
m(t)

in a model without mutational effects, while other effects are essentially unaffected. This
behavior is exactly what was expected, since mutational variance is defined as an additive
genetic effect itself. As described earlier, ∆σ2

a(t) did not show the same growth as ∆σ2
u(t),

meaning the genetic group effect contains part of the mutational variance. On the other
hand, these patterns were less clear for 2014-2018, where the growth of σ2

m(t) seemed to
halt, while ∆σ2

u(t) and ∆σ2
a(t) were decreasing. This is believed to be a consequence of

the latest cohorts having a very limited sample size, and thus we were lacking power to
accurately estimate both σ2

a(t) and σ2
m(t) in these cohorts. The results for later cohorts

should therefore not be overinterpreted.

Survival from independence to adulthood is undoubtedly closely connected to the fit-
ness of an individual. However, using a binary response may negatively affect the power
we have to reliably estimate all modeling parameters. In contrast to continuous traits,
survival only has two possible values: survival or not survival. This affects the latent
information in each individual as it for example does not distinguish between a sparrow
barely surviving for a year and a sparrow with extremely high fitness. Moreover, we may
be close to the border of how many parameters we can reliably estimate in this model. This
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may be part of the reason why disentangling σ2
m and σ2

a was difficult, especially in the Stan
implementation. Using a continuous fitness trait would likely allow for more informative
posterior estimation.

Future work on the mutational animal model could include some specific improve-
ments when it comes to modeling decisions. Applying the model to simulated data seems
necessary to tune model parameters and check whether the current model properly sep-
arates mutational variance from other model parameters. Further investigations of prior
sensitivity is important and should be done in upcoming work. Moreover, by replacing
the binary survival trait by a continuous trait and fitting the linear animal model with mu-
tational effects, we could drastically increase power to disentangle mutational variance
from other sources of additive genetic variance. The Mandarte song sparrow data luckily
contain suitable continuous traits and thus provide opportunities to fit such models in the
future.
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Appendix A
Code

This appendix contains the R code used for the project.

A.1 Data preparation
We load data files with data on each sparrow, the pruned pedigree and individual genetic
group memberships qi for all sparrows. The continuous traits are then centered and sex
data are transformed from 1 and 2 to 0 and 1, for females and males respectively.

#' Load data
qg.data.gg.inds <- read.table(

"../data/qg.data.gg.inds.txt", header=T)
d.ped <- ped.prune.inds <- read.table(
"../data/ped.prune.inds.txt", header=T)

d.Q <- read.table(
"../data/Q.data.txt", header=T)

#' Center continuous covariates:
# Inbreeding coefficient:
qg.data.gg.inds$f.coef.sc <- scale(

qg.data.gg.inds$f.coef,scale=FALSE)
# Immigrant group coefficient:
qg.data.gg.inds$g1.sc <- scale(

qg.data.gg.inds$g1,scale=FALSE)
# Natal year:
qg.data.gg.inds$natalyr.no.sc <- scale(
qg.data.gg.inds$natalyr.no,scale=FALSE)

# Brood date:
qg.data.gg.inds$brood.date.sc <- scale(

qg.data.gg.inds$brood.date,scale=FALSE)
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#' Make sex binary:
qg.data.gg.inds$sex <- qg.data.gg.inds$sex.use.x1 - 1

A.2 Covariance matrices
Since INLA works with precisions we need to compute the inverse of matrices A and M.
This is done with the nadiv package (Wolak 2012). For nadiv, INLA and Stan to work
however, the data needs some restructuring.

#' First load the nadiv package.
library(nadiv)

#'Get pedigree on nadiv's format
d.ped <- nadiv::prepPed(d.ped)

#' For INLA we need ids that run from 1 to the number of
#' individuals
d.ped$id <- 1:(nrow(d.ped))

#' Need a map file to keep track of the ids and data from
#' the Q-matrix
d.map <- d.ped[,c("ninecode","id")]
d.map$g1 <- d.Q[match(d.map$ninecode,d.Q$ninecode),"g1"]

#' give mother and father the id
d.ped$mother.id <- d.map[match(

d.ped$gendam, d.map$ninecode),"id"]
d.ped$father.id <- d.map[match(

d.ped$gensire, d.map$ninecode),"id"]

#' Make the inverse A and M matrices using the nadiv
#' package:
Ainvmatrix <- nadiv::makeAinv(
d.ped[,c("id","mother.id","father.id")])$Ainv

Minvmatrix <- nadiv::makeMinv(
d.ped[,c("id","mother.id","father.id")])$Minv

#' Store the id twice: Once for the breeding value and once
#' for the mutation effects
qg.data.gg.inds$id <- d.map[match(

qg.data.gg.inds$ninecode, d.map$ninecode), "id"]
qg.data.gg.inds$idm <- qg.data.gg.inds$id
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A.3 INLA model
Now we have all data on the correct format and are ready to define the INLA formula.
Modelling choices are explained in Section 3.2.

#' f() encode the random effects and
#' v denoting an initial guess for the variance component
#' corresponds to initial=log(1/v))
formula.surv.ind.to.ad <- surv.ind.to.ad ˜

f.coef.sc + g1.sc + natalyr.no.sc + brood.date.sc + sex +
#Nest variance:
f(nestrec,
model="iid",
hyper=list(prec=list(

initial=log(1/0.003),
prior="pc.prec",
param=c(1,0.01)))) +

#Natal year variance:
f(natalyr.no,
model="iid",
hyper=list(
prec=list(

initial=log(1/0.22),
prior="pc.prec",
param=c(1,0.01)))) +

#Additive genetic variance
f(id,model="generic0",
Cmatrix=Ainvmatrix,
hyper=list(prec=list(

initial=log(1/.05),
prior="pc.prec",
param=c(1,0.01)))) +

#Mutational variance
f(idm, model="generic0",
Cmatrix=Minvmatrix,
hyper=list(prec=list(

initial=log(1/.001),
prior="pc.prec",
param=c(.25,0.01))))

#Load INLA package
if(!require(INLA)){

install.packages("INLA", repos=c(getOption("repos"),
INLA="https://inla.r-inla-download.org/R/stable"),
dep=TRUE)}

library(INLA)
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#' Call INLA:
r.inla.surv.ind.to.ad <- inla(

formula=formula.surv.ind.to.ad,
family="binomial",
data=qg.data.gg.inds,
control.family = list(

control.link = list(model="probit"))
)
#' Rerun INLA with the mode of last run as initial value
#' to avoid possible bias due to a bad initial guess:
r.inla.surv.ind.to.ad <- inla.rerun(r.inla.surv.ind.to.ad)

After running the INLA computation, most interesting estimates are found using INLA-
specific functionality.

A.4 Stan model
The exact same model is implemented with the brms package in Stan. The only differ-
ences to the INLA call are that Stan works with covariance instead of precision and we
need to define priors as exponential distributions because brms does not have functional-
ity for PC priors.

#' brms needs non-inverted covariance matrices
Amatrix <- makeA(d.ped[,c("id","mother.id","father.id")])
#Functions for Mmatrix are not yet implemented
Mmatrix <- solve(Minvmatrix)

#' Random effects coded as (1|gr(data),cov=Matrix)
#' Formula and priors identical to INLA model
#' Four chains with 1000 iterations -> n_sample=2000
model_brms <-

brm(surv.ind.to.ad ˜ f.coef.sc + g1.sc + natalyr.no.sc +
brood.date.sc + sex + (1|gr(id, cov=Amatrix)) +
(1|gr(idm, cov=Mmatrix)) + (1|gr(nestrec)) +
(1|gr(natalyr.no)),

data = qg.data.gg.inds,
family = bernoulli(link="probit"),
data2 = list(Amatrix=Amatrix, Mmatrix=Mmatrix),
prior = c(prior(exponential(-log(0.01)/1),

class=sd, group=nestrec),
prior(exponential(-log(0.01)/1),

class=sd, group=natalyr.no),
prior(exponential(-log(0.01)/1),

class=sd, group=animal),
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prior(exponential(-log(0.01)/0.25),
class=sd, group=mutation)),

inits = "0",
chains = 4,
iter = 1000)

A.5 Resampling
We then utilize INLA’s resampling function to obtain posterior distributions of h2 and h2m
on the data scale from posterior distributions of precisions.

#' To obtain the posterior marginal of heritability 'h2'
#' and mutational heritability 'hm2', we need to resample
#' from the posterior of the hyperparameters:
nsamples <- 10ˆ5
sample.posterior <- inla.hyperpar.sample(

n=nsamples, r.inla.surv.ind.to.ad)

# Compute scaling factor to get h2 on data scale
p <- mean(qg.data.gg.inds$surv.ind.to.ad)
t <- qnorm(p, lower.tail = FALSE)
h2_scale <- p*(1-p)/tˆ2

#' INLA works with precisions, and variance is 1/precision
h2.inla <- 1/sample.posterior[,"Precision for id"] /

((1/sample.posterior[,"Precision for id"]) +
(1/sample.posterior[,"Precision for natalyr.no"]) +
(1/sample.posterior[,"Precision for nestrec"]) +
(1/sample.posterior[,"Precision for idm"]) + 1) /
h2_scale

hm2.inla <- 1/sample.posterior[,"Precision for idm"] /
((1/sample.posterior[,"Precision for id"]) +
(1/sample.posterior[,"Precision for natalyr.no"]) +
(1/sample.posterior[,"Precision for nestrec"]) +
(1/sample.posterior[,"Precision for idm"]) + 1) /
h2_scale

For the cohort resampling we need posterior samples of a,m and g.

#' Sample a and m from all individuals in pedigree
n_ind <- length(d.ped)

#' Extract samples of a, m and g from INLA
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n_sample <- 2000
posterior.sample <-

inla.posterior.sample(n=n_sample,
r.inla.surv.ind.to.ad,
selection =

list("id"=0, "idm"=0, "g1.sc"=0))
breedingvalues_INLA <- matrix(NA, n_sample, n_ind)
mutationvalues_INLA <- matrix(NA, n_sample, n_ind)
groupvalues_INLA <- numeric(n_sample)

for (it in 1:n_sample){
breedingvalues_INLA[it,] <-

posterior.sample[[it]]$latent[1:n_ind]
mutationvalues_INLA[it,] <-

posterior.sample[[it]]$latent[(n_ind+1):(2*n_ind)]
group_coefficients_INLA[it] <-

posterior.sample[[it]]$latent[2*n_ind+1]
}

#' Extract samples of a, m and g from Stan
breedingvalues_brms <- as.matrix(
model_brms, pars=c("r_id"))

mutationvalues_brms <- as.matrix(
model_brms, pars=c("r_idm"))

groupvalues_brms <- posterior_samples(
model_brms, pars="b_g1.sc")

Samples of mean and variance for each cohort can be extracted with the following func-
tions.

# Get id of all individuals born in one year
get_cohort <- function(year){

with(qg.data.gg.inds, unique(id[natalyr == year]))
}

#' Function to extract samples of mean and variance
#' in a given cohort
find_cohort_stats <- function(cohort,

breedingvalues,
groupvalues,
mutationvalues) {

#Declare vectors to save cohort results
Va_samples <- numeric(n_sample)
meana_samples <- numeric(n_sample)
meanu_samples <- numeric(n_sample)
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Vm_samples <- numeric(n_sample)
meanm_samples <- numeric(n_sample)
Vu_samples <- numeric(n_sample)
meanqg_samples <- numeric(n_sample)
for (it in 1:n_sample) {
#Declare vectors for each sample
n_t <- length(cohort)
a_t <- numeric(n_t)
u_t <- numeric(n_t)
m_t <- numeric(n_t)
qg_t <- numeric(n_t)
#Only one g per sample
g_t <- groupvalues[it]
i <- 1
#Get samples for each individual in cohort
#NB! Indexing is slightly different for Stan samples
for (ind in cohort) {

a_t[i] <- breedingvalues[it,ind]
qg_t[i] <- qg.data.gg.inds$g1.sc

[qg.data.gg.inds$id==ind] * g_t
u_t[i] <- a_t[i] + qg_t[i]
m_t[i] <- mutationvalues[it,ind]
i <- i + 1

}
#Save mean and variance of cohort for each sample
Va_samples[it] <- var(a_t)
meana_samples[it] <- mean(a_t)
meanu_samples[it] <- mean(u_t)
Vm_samples[it] <- var(m_t)
meanm_samples[it] <- mean(m_t)
Vu_samples[it] <- var(u_t)
meanqg_samples[it] <- mean(qg_t)

}
return(list(Va = Va_samples, meana = meana_samples,

meanu = meanu_samples, Vm = Vm_samples,
meanm = meanm_samples, Vu = Vu_samples,
gq = meanqg_samples))

}

#' Function to extract samples of mean and variance
#' in multiple cohorts - each year in years
get_yearly_cohort_stats <- function(years,

breedingvalues,
groupvalues,
mutationvalues){
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n_years <- length(years)
#Declare matrices to store results
yearly_Va <- matrix(NA, n_sample, n_years)
yearly_Vm <- matrix(NA, n_sample, n_years)
yearly_Vu <- matrix(NA, n_sample, n_years)
yearly_a <- matrix(NA, n_sample, n_years)
yearly_m <- matrix(NA, n_sample, n_years)
yearly_u <- matrix(NA, n_sample, n_years)
yearly_qg <- matrix(NA, n_sample, n_years)
i <- 1
#Get stats for each year
for (year in years){

cohort <- get_cohort(year)
n_cohort <- length(cohort)
cohort_stats <-

find_cohort_stats(cohort, breedingvalues,
groupvalues, mutationvalues)

yearly_Va[,i] <- cohort_stats$Va
yearly_Vm[,i] <- cohort_stats$Vm
yearly_Vu[,i] <- cohort_stats$Vu
yearly_a[,i] <- cohort_stats$meana
yearly_m[,i] <- cohort_stats$meanm
yearly_u[,i] <- cohort_stats$meanu
yearly_qg[,i] <- cohort_stats$meanqg
i <- i + 1

}
return(list(Va=yearly_Va, Vm=yearly_Vm, Vu=yearly_Vu,

a=yearly_a, m=yearly_m, u=yearly_u,
qg=yearly_qg))

}

Lists of cohort-wise samples can be generated by simple function calls.

#Get individuals born in 1998
cohort <- get_cohort(1998)
#Get statistics for the 1998 cohort
cohort_stats <-

find_cohort_stats(cohort, breedingvalues,
groupvalues, mutationvalues)

#Get statistics for all cohorts
years <- 1993:2018
all_cohort_stats <-

get_yearly_cohort_stats(years, breedingvalues,
groupvalues, mutationvalues)
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Appendix B
Prior sensitivity with INLA

In order to test how the prior distribution of σ2
m affects posterior marginal distribution, we

defined models with the following priors for σ2
m: PC(0.20, 0.01) and PC(0.30, 0.01). The

posterior marginal distributions of these two models, together with the main model (with
prior PC(0.25, 0.01)) and the model without mutational effects, are shown in Figure B.1.
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Figure B.1: Marginal posterior distributions of the variances for the animal model on juvenile sur-
vival that accounted for mutational variance with different prior distributions for σ2

m, compared to a
model not accounting for mutational variance.

From Figure B.1 it is clear that relatively small changes to the prior of σ2
m greatly

affects the posterior marginal distribution of σ2
m. As expected, environmental variances

σ2
nest and σ2

year are essentially unaffected by changes in σ2
m. On the other hand, σ2

a seems
to be confounded with σ2

a as a right shift of the posterior marginal for σ2
a comes together
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with a left shift of σ2
m, and vice versa. Interestingly, very small estimates of σ2

m leads
to a right shift in the marginal of σ2

a relative to the non-mutational model. These results
show that correlation between the additive genetic variance and mutation effects needs to
be investigated in upcoming work.
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Appendix C
Stan results

In the analysis of model 1, mainly results from the INLA implementation were used.
Because running the Markov chains was very slow with multiple random effects with large
covariance matrices in Stan, it was not feasible to generate large samples with this method.
Therefore, the results from the Stan implementation were mainly used as validation for the
INLA results, and are presented here. Overall, results between the two implementations
were very similar, and main differences are discussed in Chapter 4. Keep in mind that the
number of sampling iterations for model 0 in Stan was only 2000, so that comparisons
between model 0 and model 1 should not receive too much attention.

Table C.1: Posterior mean (for fixed effects), posterior mode; mean (for random effect variances)
and 95% HPD CI for the animal model on juvenile survival that accounted for mutational variance
(model 1) generated with Stan.

Summary of posterior distributions for model parameters in Stan model
Posterior statistics

Parameter Estimate 95% CI

Fixed effects
F −4.27 (−5.96,−2.61)

g −1.13 (−2.05,−0.20)

Natal year −0.03 (−0.06, 0.01)

Brood date −0.006 (−0.009,−0.003)

sex 0.28 (0.16, 0.40)

Variances
σ2
year 5e− 04; 0.03 (8e− 10, 0.10)

σ2
year 0.21; 0.23 (0.11, 0.39)

σ2
a 3e− 04; 0.05 (9e− 09, 0.13)

σ2
m 6e− 05; 0.0035 (1e− 13, 0.0113)

h2 9e− 04; 0.07 (1e− 08, 0.18)

h2m 8e− 05; 0.005 (2e− 13, 0.017)
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Figure C.1: Boxplots of cohort-wise distributions for a) breeding values a(t), b) genetic group
effects q(t)g, c) total additive genetic values u(t) and d) mutational effects m(t) created by samples
from the animal model on juvenile survival accounting for mutational variance generated with Stan.
Horizontal lines denote medians, boxes denote first and third quartiles and whiskers denote the most
extreme value within 1.5 times the inter quartile range. Outliers are not included in the figures.
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Figure C.2: Boxplots of cohort-wise distributions for a) additive genetic variance σ2
a(t), b) total

additive genetic variance σ2
u(t) and c) mutational variance σ2

m(t) created by samples from the animal
model on juvenile survival accounting for mutational variance generated with Stan. Horizontal lines
denote medians, boxes denote first and third quartiles and whiskers denote the most extreme value
within 1.5 times the inter quartile range. Outliers are not included in the figures. Figure d) displays
the posterior mean variances for each cohort.
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Figure C.3: Posterior means of cohort-wise distributions for total additive genetic variance from the
animal model on juvenile survival accounting for mutational variance and the model not accounting
for mutational variance (dotted line) generated with Stan.
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Figure C.4: Posterior mean of cohort-wise mutational variance compared to the difference in ad-
ditive genetic variance and total additive genetic variance between the animal model on juvenile
survival accounting for mutational variance and the model not accounting for mutational variance
generated with Stan.
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