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Abstract

Let A be an abelian category, and H be the abelian heart of a t-structure
over Db(A). We show that we can always construct a realization functor
Db(H)→ Db(A), whose restriction on H is equal to the identity functor.
We will further give sufficient conditions for this functor to be a derived
equivalence. Lastly, we will use the realization functor to construct the
derived equivalence from the HRS-tilting Db(B) to Db(A)

v





Sammendrag

LaA vær en abelsk kategori, ogH vær det abelske hjertet til en t-struktur
over Db(A). Vi vil da vise at vi alltid kan konstruere en “realization
functor” Db(H) → Db(A), som restriktert til H vil være lik identitets-
funktoren. Videre vil vi gi tilstrekkelige kriterier for at funktoren vil bli en
derivert ekvivalens. Til slutt vil vi bruke denne funktoren til å konstruere
en derivert ekvivalens fra HRS-tiltingen Db(B) til Db(A)
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Chapter 1

Introduction

In the study of triangulated categories, the notion of t-structures some-
times arises. First introduced by Beilinson, Bernstein and Deligne [BBD83],
a t-structure is a certain pair of full subcategories of a triangulated cat-
egory T , whose intersection (often named the heart, H, of the given t-
structure) is an abelian subcategory of T . A natural question then arises:
Can the category T be recovered from the heart H of a given t-structure?

As often in mathematics the answer is: sometimes. We will show that
if the t-structure is bounded, the heart generates the category T . Then
another natural question to ask is how does the bounded derived category
Db(H) over the heart compare to the category T ? We will construct a
functor F : Db(H)→ T given some conditions on T , and prove that this
becomes an equivalence under relatively mild conditions. The functor is
called a realization functor, and was also first introduced in [BBD83], and
then generalized by Beilinson in [Bei87]. We will study how this functor
can be used to create derived equivalences. An important example of the
realization functor is the HRS-tilting, first introduced by Happel, Reiten
and Smalø [HRS96], which induces a certain derived equivalence.

The thesis will start by introducing the Yoneda extension groups in
Chapter 2; an important tool that will be used throughout the whole
thesis. In particular we use the fact that in an abelian category a short
exact sequence induces a long exact sequence of Yoneda extension groups.
In Chapter 3 we will introduce the notion of t-structures on triangulated
categories, and investigate properties of the heart and its connection to
the Yoneda extension. Another important tool introduced in this chapter
will be a cohomological functor from the triangulated category to the
heart of the t-structure. The culmination of these two chapters will be
the first section of Chapter 4; the construction of a special realization

1
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functor and one of the main theorems of the thesis:

Theorem (Theorem 4.10). Let A be an abelian category, and let Db(A)
be the bounded derived category equipped with a t-structure (D≤0,D≥0)
with heart H. There exist a t-exact functor

real : Db(H) −→ Db(A)

such that real|H = idH

Section 4.3 consist of quite surprising, immediate consequences of the
realization functor. It is in general not known if realization functors are
unique, however we get an especially surprising result:

Theorem (Corollary 4.10.3 and Theorem 4.11). Let F : Db(H)→ T be
a realization functor. Then the following are equivalent

(1) F is full
(2) F is dense
(3) F is an equivalence
(4) Any other realization functor G : Db(H)→ T is an equivalence

Lastly, in Chapter 5, we will introduce the notion of torsion pairs, and
observe how torsion pairs induce t-structures. We will look at an import-
ant example of a realization functor, namely the HRS-tilting [HRS96].

We will arrive at a derived equivalence F : Db(B)
∼=−→ Db(A) between the

bounded derived category over an abelian category A and the bounded
derived category over a certain full abelian subcategory B ⊆ Db(A).

It is assumed the reader has prior knowledge in homological algebra,
in particular in the study of triangulated categories and localization. For
a recap of the notation used, and what is assumed known one is advised
to read the lecture notes on Homological Algebra by Steffen Oppermann
[Opp16] and the lecture notes on Derived categories, resolutions, and
Brown representability by Henning Krause [Kra07]. We will only look at
bounded derived categories in this thesis.

It is worth noting that in order to keep the thesis as self-contained
as possible no proofs have been omitted. Thus, wherever a theorem and
proof is similar or identical to one in a previous paper there is a reference
to the original proof in the title of the theorem. At the end, there is also
an appendix that gives some basic results found in neither of the above
mentioned lecture notes, but that still is assumed known, and will be
used throughout the text.



Chapter 2

Yoneda extensions

Recall that if an abelian category A has enough injectives and projectives
the functor Extn(−,−) can be defined. Yoneda gave an alternative defini-
tion of the functor using extensions without assuming enough projectives
and injectives [Yon54]. The new functor, YExtn(−,−), sometimes called
the Yoneda extension, does not require enough projectives and injectives,
however when Extn(−,−) are defined the two functors coincide. In this
chapter we will define the Yoneda extension, and prove that it induces a
long exact sequence applied to a short exact sequence.

2.1 Extensions

We will begin by defining extensions in an abelian category, and proving
some basic properties of the extensions.

Definition 1. Let A be an abelian category, and X, Y ∈ A. Then an
n-fold extension, E, of Y by X is an exact sequence

E : 0→ X ↪→ E1 → · · · → En � Y → 0

where Ei ∈ A
If E,F are two n-fold extensions of X by Y , then a map f : E → F is a
sequence of maps fi, i = 1, · · · , n

0 X E1 · · · En Y 0

0 X F1 · · · Fn Y 0

f1 fn

such that the diagram commutes.

3
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Lemma 2.1. Let E and F be two n-fold extensions of X by Y . If there is
a map E→ F then there exist a n-fold extension G and maps E← G� F
where G� F is an epimorphism.

Proof. Let E→ F be given by

E : 0 X E1 E2 · · · En Y 0

F : 0 X F1 F2 · · · Fn Y 0

e0

α1

e1

α2

e2 en−1

αn

en

f0 f1 f2 fn−1 fn

We construct the exact sequence F̃

0→ F1

( 1
0 )
−−→ F1 ⊕ F2

( 0 1
0 0 )
−−−→ F2 ⊕ F3

( 0 1
0 0 )
−−−→ · · ·

( 0 1
0 0 )
−−−→ Fn−2 ⊕ Fn−1

( 0 1 )−−−→ Fn−1 → 0

Now let G = E⊕ F̃

0 X E1 ⊕ F1 E2 ⊕ F1 ⊕ F2 · · · En ⊕ Fn−1 Y 0
g0 g1 g2 gn−1 gn

where

g0 = ( e00 ), g1 =
(
e1 0
0 1
0 0

)
, gn−1 =

(
en−1 0 0
0 1 0

)
, gn = ( en 0 )

and
gi =

(
ei 0 0
0 0 1
0 0 0

)
, for i = 2, · · · , n− 2

Clearly the direct sum of the exact sequences, with the maps defined
above is again exact. Thus G is an n-fold extension of X by Y .

Denote Ei ⊕ Fi−1 ⊕ Fi in G by Gi. Then we have a diagram

0 X G1 G2 · · · Gn Y 0

0 X F1 F2 · · · Fn Y 0

( e00 )

(
e1 0
0 1
0 0

)

(α1 1 )

(
e2 0 0
0 0 1
0 0 0

)

(α2 f1 1 )

(
en−1 0 0
0 1 0

)
( en 0 )

(αn fn−1 )

f0 f1 f2 fn−1 fn

where the vertical maps Gi → Fi are ( αi fi−1 1 ) for i = 2, · · · , n−1. Note
that all maps are epimorphisms (to see the rightmost epimorphism apply
the five lemma), and since fiαi = αi+1ei and fi+1fi = 0 the diagram
commutes.
By taking the projection G→ E we have have maps E← G� F.
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The next lemma is a horizontal extension of the regular 3× 3 lemma,
which will be useful when studying at extensions of length bigger than
1.

Lemma 2.2. Let

0 0 0 0

X1 X2 · · · Xn−1 Xn

0 Y1 Y2 · · · Yn−1 Yn 0

0 Z1 Z2 · · · Zn−1 Zn 0

0 0 0 0

y1 y2 yn−2 yn−1

z1 z2 zn−2 zn−1

be a commutative diagram in an abelian category, where the two bottom
rows are exact and all the columns are short exact sequences. Then there
exist maps

0→ X1 ↪→ X2 → · · · → Xn−1 � Xn → 0

and the sequence is exact.

Proof. We have for each i = 1, · · · , n short exact sequences

0→ Im(yi−1) −→ Yi −→ Im(yi)→ 0

since Im(yi−1) = ker(yi) and Im(yi) = Yi/ ker(yi) = Yi/ Im(yi−1).
By the universal property of images we get commutative diagrams

0 Im(yi−1) Yi Im(yi) 0

0 Im(zi−1) Zi Im(zi) 0

where the dashed arrows are epimorphisms. We then have, for each i a
commutative diagram

0 ker Xi ker 0

0 Im(yi−1) Yi Im(yi) 0

0 Im(zi−1) Zi Im(zi) 0
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where the top row exist and is exact by the 3× 3 lemma. We obtain the
exact sequence

0→ X1 ↪→ X2 → · · · → Xn−1 � Xn → 0

by the splicing of all the short exact sequences in the top row of the
diagrams above.

The following two lemmas concerns the construction of new extensions
from existing ones by taking pullbacks and pushouts.

Lemma 2.3. Given the following commutative diagram with exact rows

0 X1 X2 · · · Xn 0

0 Y1 Y2 · · · Yn 0

0 Z1 Z2 · · · Zn 0

If Zi → Yi is an epimorphism for every i then we have an exact sequence

0→ PB1 → PB2 → · · · → PBn → 0

where PBi denotes the pullback Xi

∐
Yi
Zi

Proof. Note that, from [Opp16, Proposition 13.4], given a pullback dia-
gram

PBi Zi

Xi Yi

where Zi � Yi is an epimorphism, we have a short exact sequence

0→ PBi ↪→ Xi ⊕ Zi � Yi → 0

We then have a commutative diagram with exact rows and columns

PB1 PB2 · · · PBn

0 X1 ⊕ Z1 X2 ⊕ Z2 · · · Xn ⊕ Zn 0

0 Y1 Y2 · · · Yn 0
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Thus by Lemma 2.2 we have an exact sequence

0→ PB1 → PB2 → · · · → PBn → 0

Lemma 2.4. Given a commutative diagram

0 X1 Y1 Z1

0 X2 Y2 Z2

with exact rows. Then, by taking the pushout of the left square, there exist
a commutative diagram with exact rows:

0 X1 Y1 Z1

0 X2 X2

∐
X1
Y1 Z1

0 X2 Y2 Z2

Dually, given the commutative diagram

X1 Y1 Z1 0

X2 Y2 Z2 0

with exact rows. Then, by taking the pullback of the right square, there
exist a commutative diagram with exact rows:

X1 Y1 Z1 0

X2 Y2
∏

Z2
Z1 Z1 0

X2 Y2 Z2 0

Proof. We only prove the first part; the second is dual. Pushout preserves
monomorphisms, and the cokernel of X1 → Y1 is equal to the cokernel
of X2 → X2

∐
X1
Y1. Since Y1 → Z1 factors through this cokernel the
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middle row is exact and the top two squares commute.
By the pushout property the map X2

∐
X1
Y1 → Y2 exist and the bottom

left square commutes. What is left to show is that the bottom right square
commutes. Since the outer square commutes we have a commutative
diagram

X1 Y1

X2 X2

∐
X1
Y1 Z1

Y2 Z2

Showing that there is a unique map X2

∐
X1
Y1 → Z2 and the lower right

square commutes.

2.2 The Yoneda extension group

We are now ready to define the Yoneda extension groups, and showing
the abelian group structure.

Definition 2 (Yoneda extension). Let A be an abelian category. For
two objects X, Y ∈ A and n ≥ 1, let E be the collection of all n-fold
extensions of Y by X.

E : 0→ Y → E1 → · · · → En → X → 0

We consider two exact sequences, E and F to be similar if there is a map
from E to F
E : 0 Y E1 · · · En X 0

F : 0 Y F1 · · · Fn X 0

We consider two exact sequences E and F equivalent if there exists a
commutative diagram

E : 0 Y E1 · · · En X 0

Ẽ : 0 Y Ẽ1 · · · Ẽn X 0

F : 0 Y F1 · · · Fn X 0
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where Ẽ is also exact. That this forms an equivalence relation will be
proved in Lemma 2.5
The (n-th) Yoneda extension group, YExtnA(X, Y ), of X and Y is
the group whose elements are the equivalence classes [E] ∈ E / ∼.

Lemma 2.5. The equivalence in the definition of the Yoneda extension
group is an equivalence relation.

Proof. The reflexive- and symmetric property is trivial, so what needs to
be proven is the transitive property. Assume E is equivalent to F, and F
is equivalent to G. We then have a commutative diagram

E : 0 Y E1 · · · En X 0

Ẽ : 0 Y Ẽ1 · · · Ẽn X 0

F : 0 Y F1 · · · Fn X 0

F̃ : 0 Y F̃1 · · · F̃n X 0

G : 0 Y G1 · · · Gn X 0

and from Lemma 2.1 there exist an n-fold extension H and maps Ẽ ←
H � F. By using Lemma 2.3 on the maps H � F ← F̃ we get an exact
sequence of pullbacks, PB. Since, given A ∈ A, the pullback of

A

A A

is again A, PB is an n-fold extension of Y by X. We have the maps

E← Ẽ← H← PB→ F̃→ G

and thus a commutative diagram
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E : 0 Y E1 · · · En X 0

PB : 0 Y PB1 · · · PBn X 0

G : 0 Y G1 · · · Gn X 0

We conclude that E is equivalent to G and the transitive property holds.

Example 1. In YExt1A(X, Y ) if E is equivalent to F we have a commut-
ative diagram

E : 0 Y E X 0

Ẽ : 0 Y Ẽ X 0

F : 0 Y F X 0

and the five lemma forces E ∼= Ẽ ∼= F .

The Yoneda extension group is indeed an abelian group. To see this
we first need to define what the Yoneda extension does on maps in A

Definition 3. Given a function f : Y1 → Y2 we define

YExtnA(X, f) : YExtnA(X, Y1)→ YExtnA(X, Y2)

by taking the pushout as shown in the following diagram:

0 Y1 E1 E2 · · · En X 0

0 Y2 Y2
∐

Y1
E1 E2 · · · En X 0

f

where the first row is an element in YExtnA(X, Y1) represented by E and
the second row is the element represented by YExtnA(X, f)(E). It is an
easy observation to see that the bottom row is exact and the diagram
commutes. Thus the class [YExtnA(X, f)(E)] ∈ YExtnA(X, Y2) and the
definition makes sense. One usually writes f · − for YExtnA(X, f)(−)



Chapter 2: Yoneda extensions 11

Similarly, for a map g : X1 → X2, we define the map

YExtnA(g, Y ) : YExtnA(X2, Y )→ YExtnA(X1, Y )

by taking the pullback as shown in the following diagram:

0 Y E1 · · · En−1 En
∏
X1 X1 0

0 Y E1 · · · En−1 En X2 0

g

One usually writes − · g for YExtnA(g, Y )

Lemma 2.6. The maps YExtnA(X, f) and YExtnA(g, Y ) in the definition
above are well-defined.

Proof. Let E represent an element in YExtnA(X, Y1) and let F be equival-
ent to E as shown in the diagram

E : 0 Y1 E1 · · · En X 0

G : 0 Y1 G1 · · · Gn X 0

F : 0 Y1 F1 · · · Fn X 0

Then, given f : Y1 → Y2 we have a commutative diagram

0 Y2 Y2
∐

Y1
E1 E2 · · · En X 0

0 Y2 Y2
∐

Y1
G1 G2 · · · Gn X 0

0 Y2 Y2
∐

Y1
F1 F2 · · · Fn X 0

showing that fE is equivalent to fF.

Lemma 2.7. Let E represent an element in YExtnA(X, Y ), and let f :
Y → Ỹ and g : X̃ → X be two maps. Then (fE)g = f(Eg)

Proof. The statement is trivial for all n > 1, so we only need to check
for a sequence E ∈ YExt1A(X, Y ). We have a commutative diagram
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Eg : 0 Y E
∏

X X̃ X̃ 0

E : 0 Y E X 0

fE : 0 Ỹ Ỹ
∐

Y E X 0

g

f

Look at the composite Eg → fE and from the pullback variant of Lemma
2.4 we get a commutative diagram

Eg : 0 Y E
∏

X X̃ X̃ 0

(fE)g : 0 Ỹ (Ỹ
∐

Y E)
∏

X X̃ X̃ 0

f

From the pushout variant of Lemma 2.4 we get the commutative diagram

Eg : 0 Y E
∏

X X̃ X̃ 0

f(Eg) : 0 Ỹ Ỹ
∐

Y (E
∏

X X̃) X̃ 0

(fE)g : 0 Ỹ (Ỹ
∐

Y E)
∏

X X̃ X̃ 0

f

and we conclude that
(gE)f = f(Eg)

We therefore can omit the parentheses without ambiguity.

Lemma 2.8. Let Y1
α−→ Y2

β−→ Y3 and X2
γ−→ X1

δ−→ X be maps in A. We
then have (βα)E = β(αE) and (Eδ)γ = E(δγ)

Proof. We have a commutative diagram

Y1 E1 E2 · · · En X

Y2 Y2
∐

Y1
E1 E2 · · · En X

Y3 Y3
∐

Y2
(Y2
∐

Y1
E1) E2 · · · En X

α

β
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and from [Opp16, Exercise I.14] we know that the “iterated pushout”

Y3
∐
Y2

(Y2
∐
Y1

E1) ∼= Y3
∐
Y1

E1

proving (βα)E = β(αE). The proof for (Eδ)γ = E(δγ) is similar.

What is left to show that the Yoneda extensions have a group struc-
ture is to define the addition operator.

Definition 4 (Baer-sum). Let E and F represent two elements in YExtnA(X, Y ).
Then we denote by E⊕ F the exact sequence

0→ Y ⊕ Y → E1 ⊕ F1 → E2 ⊕ F2 → · · · → En ⊕ Fn → X ⊕X → 0

with the canonical diagonal maps. Now the addition (Baer-sum) in YExtnA(X, Y )
is defined to be

E + F = ( 1 1 ) · E⊕ F · ( 1
1 ) ∈ YExtnA(X, Y )

Theorem 2.9. Yoneda extension YExtnA(X, Y ) with Baer sum is a abelian
group. The zero element in YExtnA(X, Y ) for n = 1 is

0→ Y → Y ⊕X → X → 0

For n > 1 the zero element is defined to be

0 Y Y 0 · · · 0 X X 0
∼= ∼=

This group structure defines an additive functor

YExtnA(−,−) : Aop ×A → Ab

to the category of abelian groups.

Proof. Since direct sum is commutative, the Baer-sum is commutative.
Further, we have, given E1,E2,E3 ∈ YExtnA, that

E1 + E2 + E3 = ( 1 1 1 )(E1 ⊕ E2 ⊕ E3)
(

1
1
1

)
is independent of brackets so the Baer-sum is associative.
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We have a commutative diagram

E : 0 Y E1 E2 · · · En X 0

( 1
1 )E : 0 Y ⊕ Y PO E2 · · · En X 0

(E⊕ E)( 1
1 ) : 0 Y ⊕ Y E1 ⊕ E1 E2 ⊕ E2 · · · PB X 0

E⊕ E : 0 Y ⊕ Y E1 ⊕ E1 E2 ⊕ E2 · · · En ⊕ En X ⊕X 0

( 1
1 )

( 1
1 )

( 1
1 )

where the dashed arrows exist by the pushout- and pullback propery.
Thus

( 1
1 )E = (E⊕ E)( 1

1 )

Then

fE + gE = ( 1 1 )(fE⊕ gE)( 1
1 )

= ( f g )(E⊕ E)( 1
1 )

= ( f g )( 1
1 )E

= (f + g)E

It is an easy observation that 0 · E = 0 and E · 0 = 0 so

E + 0 = 1 · E + 0 · E = (1 + 0) · E = E

and

E + (−1) · E = (1− 1) · E = 0 · E = 0

2.3 The long exact sequence

The last tool we need to prove the long exact sequence of Yoneda exten-
sion groups is the following definition.

Definition 5. Let [F] ∈ YExtnA(X, Y ) and [E] ∈ YExtmA(Y, Z). Then the
Yoneda product or cup product [E]∪ [F] ∈ YExtn+mA (X,Z) is defined
to be the class represented by the splicing of E and F.
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E : 0 Z E1 · · · Em Y 0

F : 0 Y F1 · · · Fn X 0

E ∪ F : 0 Z E1 · · · Em F1 · · · Fn X 0

We are now ready for the first half of the proof of the long exact
sequence.

Proposition 2.1. Let 0→ X
f−→ Y

g−→ Z → 0 be a short exact sequence
in an abelian category A. Then given A ∈ A, there is an exact sequence

0→ HomA(A,X)→ HomA(A, Y )→ HomA(A,Z)

α−→ YExt1A(A,X)
f ·−−−→ YExt1A(A, Y )

g·−−−→ YExt1A(A,Z)

where, given ϕ ∈ HomA(A,Z), α(ϕ) is defined to be the top exact row in
the following commutative diagram.

0 X A
∏

Z Y A 0

0 X Y Z 0

ϕ

To show the exactness in HomA(A,Z) in the proposition we use the
following lemma

Lemma 2.10. Given an element in YExt1A(Z,X) represented by a se-
quence E, and a diagram on the form

A

E : 0 X Y Z 0

a

Then E · a = 0 if and only if a can be factored through Y → Z.
Dually, given a map diagram on the form

E : 0 X Y Z 0

B

b
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Then b · E = 0 if and only if b can be factored through X → Y

Proof. We only prove the first part, the second is dual.

”⇒ ” Assume E · a = 0 then we have a commutative diagram

0 X X ⊕ A A 0

0 X Y Z 0

where X ⊕ A → A is split epi, so we have A → X ⊕ A → Y → Z
is equivalent to A→ Z. Thus A factors through Y

”⇐ ” Assume h : A
ϕ−→ Y � Z we can then form the commutative

diagram

0 X X ⊕ A A 0

0 X Y Z 0

ϕ

Then from Lemma 2.4 we have the following diagram

0 X X ⊕ A A 0

0 X Y
∏

Z A A 0

0 X Y Z 0

Showing that E · a = 0

Proof of proposition 2.1. We know HomA(A,−) is left exact, and from
Lemma 2.10 we have that the sequence is exact in HomA(A,Z). Therefore
we only need to show exactness in YExt1A(A,X) and YExt1A(A, Y ) in the
sequence

HomA(A,Z)
α−→ YExt1A(A,X)

f ·−−−→ YExt1A(A, Y )
g·−−−→ YExt1A(A,Z)

(2.1)
To show exactness in YExt1A(A,X) let ϕ ∈ HomA(A,Z) Then we have
the following diagram
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0 Y Y
∐

A(Y
∏

Z A) A 0

0 X Y
∏

Z A A 0

0 X Y Z 0

f

ϕ

We see that X → Y factors through Y
∏
A, and from Lemma 2.10 we

have that f · α(ϕ) = 0 and Im(α) ⊆ ker(f · −).
Now let

0→ X −→ E −→ A→ 0

be in the kernel of f ·−. Then we have the following commutative diagram

0 X Y Z 0

0 X E A 0

0 Y Y ⊕ A A 0

f

Where E → Y is the composition E → Y ⊕ A → Y making the top
left square commute. Since A is the cokernel of the map X → E by the
cokernel property there exist a map A→ Z making the top right square
commute. We have then shown that ker(f ·−) = Im(α) and the sequence
2.1 is exact in YExt1A(A,X).

Lastly we need to check exactness in YExt1A(A, Y ). Let E be a short
exact sequence in YExt1A(A,X) We have gfE = (gf)E = 0 · E, and thus
Im(f · −) ⊆ ker(g · −).
Let

0→ Y −→ E −→ A→ 0

be in ker(g · −). We then have a commutative diagram

X A

0 Y E A 0

0 Z Z ⊕ A A 0

We want to show there exist an element B and a map B → E such that
we get a short exact sequence 0 → X −→ B −→ A → 0. Let ϕ : E →
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Z⊕A→ Z. Note that by the five lemma E → Z⊕A is an epimorphism,
so ϕ is an epimorphism. We then get a commutative diagram

0 0 0

0 X B = ker(ϕ) A 0

0 Y E A 0

0 Z Z 0 0

0 0 0

ϕ

Where all the columns, and the two bottom rows, are exact. By the 3×3
lemma the top exact row exist making the diagram commute. Thus we
have shown that ker(g·−) = Im(f ·−) and the sequence in the proposition
is exact.

Because of this proposition we define YExt0A(A,−) := HomA(A,−)
and YExtnA(A,−) = 0 for n < 0. We are now ready to prove the general
result that using the Yoneda extension functor on a short exact sequence
leads to a long exact sequence of Yoneda groups. First we need a useful
lemma.

Lemma 2.11. Let

0→ Y → E1 → · · · → En → X → 0

be a exact sequence in YExtnA(X, Y ) then the following are equivalent

(1) The sequence is equivalent to zero
(2) There exist a commutative diagram

0 Y E1 E2 · · · En X 0

0 H1 H2 · · · Hn X 0

with the bottom row exact
(3) There exist a commutative diagram
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0 Y E1 E2 · · · En X 0

0 Y F1 F2 · · · Fn 0

with the bottom row exact

Proof. We only prove that 1 is equivalent to 2. The proof for 1 equivalent
to 3 is similar.
(1) ⇒ (2) : Assume the sequence is equivalent to zero. Then there exist
a commutative diagram

0 Y E1 E2 · · · En X 0

0 Y H̃1 H1 · · · Hn X 0

0 Y Y 0 · · · X X 0
∼= ∼=

and we note that Y → H̃1 is a split monomorphism. We can then write
the middle row as

0→ Y ↪→ Y ⊕H1 → H2 → · · · → Hn → X → 0

We then have the commutative diagram

0 Y E1 E2 · · · En X 0

0 Y Y ⊕H1 H2 · · · Hn X 0

0 H1 H2 · · · H̃n X 0

Since Y is isomorphic to the kernel of the map Y ⊕ H1 → H2 the map
H1 → H2 is a monomorphisms.
(2)⇒ (1) : Assume we have a commutative diagram

0 Y E1 E2 · · · En X 0

0 H1 H2 · · · Hn X 0

α

δ

β
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We can then extend the diagram to the commutative diagram

0 Y E1 E2 · · · En X 0

0 Y H1 ⊕ Y H2 · · · Hn X 0

0 Y Y 0 · · · X X 0

α

( 0
1 )

(β α )

( δ 0 )

∼= ∼=

showing that the sequence is equivalent to zero.

Theorem 2.12. Given a short exact sequence X : 0→ X
f−→ Y

g−→ Z → 0
in A we get a long exact sequence

· · · → YExtnA(A,X)
f ·−−−→ YExtnA(A, Y )

g·−−−→ YExtnA(A,Z)
[X]∪[−]−−−−→ YExtn+1

A (A,X)→ · · ·

Proof. The proof is similar to the proof of the proposition above. We need
to check for exactness in YExtnA(A, Y ), YExtnA(A,Z) and YExtn+1

A (A,X).

To show exactness in YExtnA(A, Y ), let E represent an element in
YExtnA(A,X). We then have gfE = (gf)E = 0 and Im(f ·−) ⊆ ker(g ·−)

Now assume
0→ Y → E1 → · · · → En → A→ 0

represents an element in ker(g · −) we then, from Lemma 2.11, get a
commutative diagram

0 Y E1 E2 · · · En A 0

0 Z PO E2 · · · En A 0

0 Z H1 H2 · · · Hn 0 0

where PO denotes the pushout. Now by using Lemma 2.1 we can con-
struct an n-fold extension Ẽ such that we have the following commutative
diagram where every vertical map is an epimorphism

Ẽ : 0 Y Ẽ1 · · · Ẽn A 0

0 Z H1 · · · Hn 0
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Then we have a commutative diagram

0 X ker1 ker2 · · · kern A 0

0 Y Ẽ1 Ẽ2 · · · Ẽn A 0

0 Z H1 H2 · · · Hn 0 0

f

g

From Lemma 2.2 the top row is exact and represents an element in
YExtnA(A,X), and we have proved Im(f · −) = ker(g · −)

To show exactness in YExtnA(A,Z) Let

0→ Y → E1 → · · · → En → A→ 0

represent an element in YExtnA(A, Y ). Then we have a commutative dia-
gram

0 Y E1 · · · En A

0 Z Z
∐

Y E1 · · · En A

0 X Y Z
∐

Y E1 · · · En A

and from Lemma 2.11 the bottom row is equivalent to zero showing that
Im(g · −) ⊆ ker([X] ∪ [−])

Now assume a sequence

E : 0→ Z → F1 → · · · → Fn → A→ 0

represents an element in the kernel of [X]∪ [−]. We then have a commut-
ative diagram

0 X Y E1 · · · En A 0

Z

0 H0 H1 · · · Hn A 0

g

ϕ
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where the bottom row can be seen as an element F in YExtnA(A,H0). We
then have gϕF = g · (ϕF) = E, where [ϕF] ∈ YExtnA(A, Y ), and we have
proved ker([X] ∪ [−]) = Im(g · −)

To show exactness in YExtn+1
A (A,X), first let

0→ Z → E1 → · · · → En → A→ 0

represent an element in YExtnA(A,Z). We then have a commutative dia-
gram

0 Z E1 · · · En A 0

0 X Y E1 · · · En A 0

0 Y Y
∐

X Y E1 · · · En A 0

0 Y Y 0 · · · A A 0
∼= ∼=

where the dashed arrow exist by the pushout property, making Im(f ·
−) ⊆ ker([X] ∪ [−])

Now let

E : 0→ X → E0 → E1 → · · · → En → A→ 0

represent an element in ker(f · −) We then have a commutative diagram

0 X E0 E1 · · · En A 0

0 Y PO E1 · · · En A 0

0 H̃0 H̃1 · · · H̃n A 0

where PO denotes the pushout Y
∐

X E0. Note that this diagram can be
extended in the following way:
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0 Y PO E1 E2 · · · En A

0 PO PO
∐

H̃0
H̃1 H̃2 · · · H̃n A

0 H̃0 H̃1 H̃2 · · · H̃n A

showing that we can replace the sequence

0→ H̃0 → H̃1 → · · · → H̃n → A→ 0

with
0→ PO → H1 → H2 → · · · → Hn → A→ 0

We then end up with the following diagram

0 X E0 E1 · · · En A 0

0 Y PO E1 · · · En A 0

PO H1 · · · Hn A 0

f

a

c

e

b d (2.2)

Since the top left square is a pushout, and the maps X → E0 and X → Y
are monomorphisms, we have from [Opp16, Proposition 13.4] that the
sequence

0 X E0 ⊕ Y PO 0
( af ) ( c −b )

is short exact. We have a new diagram

0 X E0 E1 · · · En A 0

0 X E0 ⊕ Y H1 · · · Hn A 0

PO

0 X Y Z
∐

POH1 · · · Hn A 0

Z

a e

( af ) ( c −b )

( 0 1 )

( 1 0 )

d

f
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where the only square we need to check commute is

E0 E1

E0 ⊕ Y PO

e

( 1 0 )

( c −b )
d

We have
d ◦ ( c −b ) = dc− db

And from diagram 2.2 we have that db = 0 and dc = e so the diagram
commutes and we have proved

[E] = [X → Y → Z] ∪ [Z → Z
∐
PO

H1 → H2 → · · · → Hn → A]

and ker(f · −) = Im([X] ∪ [−])

Remark. A similar proof shows that

· · · → YExtnA(Z,A)
−·g−−→ YExtnA(Y,A)

−·f−−→ YExtnA(X,A)
[−]∪[X]−−−−→ YExtn+1

A (Z,A)→ · · ·

is a long exact sequence, where YExt0A(−, A) := HomA(−, A) and YExtnA(−, A) =
0 for n < 0



Chapter 3

t-structures

An open question in the study of triangulated categories is if and when
two derived categories can be equivalent as triangulated categories. Rick-
ard developed a morita theory to give a sufficient and necessary condition
for two derived categories over module categories to be equivalent [Ric89].
However the genereal question of when two derived categories over dif-
ferent abelian categories are triangle equivalent stands unanswered. A
natural approach to begin finding derived equivalences is to find abelian
subcategories of triangulated categories, and then building the derived
categories. In [BBD83] the notion of t-structure was introduced to recover
various abelian subcategories of triangulated categories. In this chapter
we will introduce t-structures, and study relationships between the tri-
angulated categories and the underlying abelian subcategories.

3.1 t-structures

Definition 6. Let C be a triangulated category. A t-structure (C ≤0,C ≥0)
on C is a pair of full subcategories of C such that the following condi-
tions holds for
C≥n := C≥0[−n], C ≤n := C ≤0[−n], n ∈ N.

(1) Hom(X, Y ) = 0 for all X ∈ C ≤0 and Y ∈ C ≥1.
(2) C ≤0 ⊆ C ≤1 and C ≥1 ⊆ C ≥0. (i.e. if X ∈ C ≤0 then X[1] ∈ C ≤0,

and if Y ∈ C ≥0 then Y [−1] ∈ C ≥0)
(3) For all X ∈ C there is a triangle

X ′ → X → X ′′ → X ′[1]

such that X ′ ∈ C ≤0 and X ′′ ∈ C ≥1

For a t-structure (C ≤0,C ≥0) we denote by H the full subcategory C ≤0 ∩
C ≥0 of C . H is called the heart of the t-structure

25
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Theorem 3.1. The heart, H = C ≤0 ∩ C ≥0, of a t-structure (C ≤0,C ≥0)
is an abelian category.

In order to prove the theorem, we will need a very useful lemma

Lemma 3.2. A t-structure is closed under extensions. I.e. let C be a
triangulared category, and (C ≤0,C ≥0) be a t-structure. If

X → Y → Z → X[1]

is an triangle in C with X,Z ∈ C ≤0 (resp. in C ≥0) then Y ∈ C ≤0 (resp.
in C ≥0).

Proof. Assume X,Z ∈ C ≤0 From the third condition of a t-structure
there exist a triangle

A→ Y → B → A[1]

where A ∈ C ≤0 and B ∈ C ≥1. Thus we have a diagram

A

X Y Z X[1]

B

A[1]

We then have a long exact sequence

· · · → HomC (Z,B)→ HomC (Y,B)→ HomC (X,B)→ · · ·

and from condition 1 of t-structures we have HomC (Z,B) = HomC (X,B) =
0 forcing HomC (Y,B) = 0. We have another long exact sequence

· · · → HomC (A[1], B)→ HomC (B,B)→ HomC (Y,B)→ HomC (A,B)→ · · ·

and from the same condition HomC (A[1], B) = HomC (A,B) = 0, forcing

HomC (B,B) ∼= HomC (Y,B) = 0

We conclude that Y ∼= A. In particular Y ∈ C ≤0. The proof for X,Z ∈
C ≥0 is similar.
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Proof of Theorem 3.1. First note that

A1 → A1 ⊕ A2 → A2 → A1[1]

is a triangle and by Lemma 3.2, since A1, A2 ∈ H, A1 ⊕ A2 is in H, the
subcategory is additive.

To show that H is abelian we let f : A1 → A2 be a map between A1

and A2 in H. We want to show that the map A1
f−→ A2 has a kernel and

cokernel in H and that Im(f) = Coim(f).
Look at the triangle A1 → A2 → Cone(f)→ A1[1]. From condition 3 of
a t-structure there is a triangle

X −→ Cone(f)[−1] −→ Y → X[1]

where X ∈ C ≤0 and Y ∈ C ≥1. Thus we obtain a diagram

X X[1]

Cone(f)[−1] A1 A2 Cone(f) A1[1]

Y Y [1]

X[1] X[2]

f

Since A2 ∈ H we have that A2 ∈ C ≥0 ⊆ C ≥−1 by condition 2 of
a t-structure. Then since A1[1] ∈ C ≥−1 we have by Lemma 3.2 that
Cone(f) ∈ C ≥−1. Further, since A2 ∈ C ≤0 and A1[1] ∈ C ≤−1 ⊆ C ≤0, we
have Cone(f) ∈ C ≤0. Thus Cone(f) ∈ C ≤0 ∩ C ≥−1.

Since Cone(f) ∈ C ≤0 and X[2] ∈ C ≤−2 ⊆ C ≤0 we get that Y [1] ∈
C ≤0. We also have that Y [1] ∈ C ≥0, and thus Y [1] ∈ H. We want to
show that Y [1] is a cokernel of the map f . First we show that Y [1] is a
weak cokernel:

Let T ∈ H. We then have an exact sequence

HomH(X[2], T )→ HomH(Y [1], T )→ HomH(Cone(f), T )→ HomH(X[1], T )

Since X[1] ∈ C ≤−1, X[2] ∈ C ≤−2 and T ∈ C ≥0 we have from the first
condition of a t-structure that

HomH(X[1], T ) = HomH(X[2], T ) = 0
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and we get HomH(Cone(f), T ) ∼= HomH(Y [1], T ).
Since Cone(f) is a weak cokernel we then get that Y [1] is a weak cokernel.
To show the uniqueness in the universal property of the cokernel we look
at the following exact sequence

HomH(A[1], T )→ HomH(Cone(f), T )→ HomH(A2, T )→ HomH(A1, T )

Since A[1] ∈ C ≤−1 we have that HomH(A[1], T ) = 0. This, together with
the isomorphism above, gives us the exact sequence

0→ HomH(Y [1], T ) ↪→ HomH(A2, T )→ HomH(A1, T )

showing that Y [1] is indeed a cokernel of the morphism f .
Dually one can verify that X is the kernel of the map f

Then what is left is to show Im(f) ∼= Coim(f). We can embed A2 →
coker(f) into the triangle

A2 → coker(f)→ I[1]→ A2[1]

where, from Lemma 3.2 and the second condition of a t-structure, I[1] ∈
C ≥−1. Especially we have I ∈ C ≥0. We then use the octahedral axiom
to get a commutative diagram

A2[−1] Cone(f)[−1] A1 A2

A2[−1] coker(f)[−1] I A2

ker(f)[1] ker(f)[1] Cone(f)

Cone(f) A1[1]

We then have the triangle

ker(f)→ A1 → I → ker(f)[1]

and by Lemma 3.2 I ∈ C ≤0. Thus I ∈ H.
We can define triangles

ker(f)
ϕ−→ A1 → coker(ϕ)→ ker(f)[1]

ker(ψ)→ A2
ψ−→ coker(f)→ ker(ψ)[1]

Thus we have the commutative diagrams
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ker(f) A1 I ker(f)[1]

ker(f) A1 coker(ϕ) ker(f)[1]

∼=

ϕ

coker(f)[−1] I A2 coker(f)

coker(f)[−1] ker(ψ) A2 coker(f)

∼=

ψ

and

Im(f) := ker(A2 → coker(f)) ∼= I ∼= coker(ker(f)→ A1) =: Coim(f)

Thus we conclude that Im(f) ∼= Coim(f) ∈ H

An immediate consequence is the connection between short exact se-
quences in the abelian heart and triangles, as explained by the following
corollary.

Corollary 3.2.1. A sequence

0→ X
f−→ Y

g−→ Z → 0

in the heart H of a t-structure over C is a short exact sequence if and
only if it gives rise to a triangle

X
f−→ Y

g−→ Z → X[1]

in C .

Proof. ”⇒” Embed X
f−→ Y into the triangle

X → Y → Cone(f)→ X[1]

Then from the triangle

ker(f)[1]→ Cone(f)→ coker(f)→ ker(f)[2]

from the proof above we get, since ker(f) = 0 and coker(f) ∼= Z,
that Cone(f) ∼= Z
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”⇐” Assume
Z[−1]→ X

f−→ Y
g−→ Z → X[1]

is a triangle in C with X, Y, Z ∈ H. Given T ∈ H, using Hom(T,−)
on the triangle we get an exact sequence

Hom(T, Z[−1])→ Hom(T, Z)→ Hom(T, Y )→ Hom(T, Z)→ Hom(T,X[1])

where from the axioms of a t-structure Hom(T, Z[−1]) = Hom(T,X[1]) =
0 making

0→ X
f−→ Y

g−→ Z → 0

an exact sequence in H.

Given the bounded derived category Db(A), the next example illus-
trates how we can recover the underlying abelian subcategory A through
the notion of t-structures.

Example 2. Let A be an abelian category, and Db(A) be its bounded
derived category. Then the pair

Db(A)≤n = {X•|H i(X•) = 0, for i > n}

Db(A)≥n = {X•|H i(X•) = 0, for i < n}
defines a t-structure on Db(A). We need to check the three conditions for
a t-structure:

1. Let X• ∈ Db(A)≤0, Y • ∈ Db(A)≥1 and ϕ ∈ HomDb(A)(X
•, Y •).

Then ϕ can be represented by the roof

X̃•

X• Y •

qis q f

Since Y • ∈ Db(A)≥1, Y • is quasi-isomorphic to a complex on the
form

· · · 0 0 Y1 Y2 Y3 · · ·

we can assume Y • is of this form. Now since X• is quasi-isomorphic
to X̃• we have that X̃• ∈ Db(A)≤0. We therefore have that X̃• is
quasi-isomorphic to a complex Z•, on the form

· · · Z−2 Z−1 Z0 0 0 · · ·

and we can represent ϕ by the roof
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Z•

X̃• X̃•

X• Y •

qis r qis r

qis q f

and we see that f ◦ r must be zero.
2. Clearly Db(A)≤0 ⊆ Db(A)≤1 and Db(A)≥1 ⊆ Db(A)≥0

3. Given X• = (X i, diX) ∈ Db(A) we have a complexes

Y • = · · · X−2 X−1 ker(d0X) 0 · · ·d

X•/Y • = · · · 0 0 X0/ker(d0X) X1 · · ·d̃

where d is the map in the canonical factorization

X−1 X0

ker(d0X)

d

and d̃ is the canonical composite

X0/ ker(d0X)
∼=−→ Im(d0X) ↪→ X1

It is clear that Y • ∈ Db(A)≤0, and since d̃ is injective X•/Y • ∈
Db(A)≥1 and that we have a short exact sequence in the complex
category over A

0→ Y • −→ X• −→ X•/Y • → 0

and from [Opp16, Example 34.9] this induces a triangle

Y • → X• → X•/Y • → Y •[1]

in Db(A)

Thus (Db(A)≤0, Db(A)≥0) forms a t-structure on Db(A). We also have
that the heart is Db(A)≤0∩Db(A)≥0 = {X•|H i(X•) = 0, for i 6= 0} ∼= A.
This is called the Canonical t-structure on the derived category Db(A)
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There is a very important connection between the hom-functor in a
triangulated category and exact sequences in an abelian heart. To see this
we use the Yoneda extension from Chapter 2. The rest of this chapter is
dedicated to explain this connection.

Construction 1. Let E : 0 → Y
f−→ E

g−→ X → 0 be a short exact
sequence in H. From 3.2.1 this fits uniquely into a triangle

Y
f−→ E

g−→ X
θ1X,Y (E)
−−−−→ Y [1]

and we can define a map

θ1X,Y : YExt1H(X, Y )→ HomC (X, Y [1])

This can be generalized in the following way: Let E ∈ YExtn+1
H (X, Y ).

E : 0→ Y → En+1 → · · · → E1 → X → 0

Then we can let [E] = [E1] ∪ [E2] with [E1] ∈ YExt1H(Z, Y ) and [E2] ∈
YExtnH(X,Z).

0 Y En+1 Z 0

0 Z En · · · E1 X 0

From here we define θn+1
X,Y (E) = (θ1Z,Y (E1))[n] ◦ θnX,Z(E2).

[Z[n]→ Y [n+ 1]] ◦ [X → Z[n]] = [X → Y [n+ 1]]

Thus we arrive at the following definition

Definition 7. Let C be a triangulated category with t-structure (C ≤0,C ≥0)
with heart H. For X, Y ∈ H and n ≥ 1, let the canonical map θn be
defined by

θn = θnX,Y : YExtnH(X, Y )→ HomC (X, Y [n])

[E] 7→ θn(E)

Note that we will just write θn instead of θnX,Y in the cases when it is
clear which Yoneda extensions we are working over.
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Lemma 3.3. The canonical map θn is well-defined.

Proof. For n = 1: Assume [E] ∈ YExt1H(X, Y ) is represented by the
extensions E1 and E2. Then θ1(E1) and θ1(E2) can be represented by the
diagram

Y E1 X Y [1]

Y E2 X Y [1]

∼=

θ1(E1)

θ1(E2)

And we see that θ1(E1) = θ1(E2)
For n > 1 let [E] ∈ YExtnH(X, Y ) be represented by the extensions

E : 0→ Y → E1 → · · · → En → X → 0

F : 0→ Y → F1 → · · · → Fn → X → 0

We then know that there exist an extension G such that there exist
a commutative diagram

E : 0 Y E1 · · · En X 0

G : 0 Y G1 · · · Gn X 0

F : 0 Y F1 · · · Fn X 0

As in the construction above let

• [E] = [E1]∪[E2] with [E1] ∈ YExt1H(Z1, Y ) and [E2] ∈ YExtnH(X,Z1)
• [G] = [G1]∪[G2] with [G1] ∈ YExt1H(V1, Y ) and [G2] ∈ YExtnH(X, V1)
• [F] = [F1]∪[F2] with [F1] ∈ YExt1H(W1, Y ) and [F2] ∈ YExtnH(X,W1).

From Corollary 3.2.1 E1, G1 and F1 corresponds to the triangles

Y E1 Z1 Y [1]

Y G1 V1 Y [1]

Y F1 W1 Y [1]
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where the dotted arrows exist by the axioms of triangulated categories.
In particular, by shifting, we have a commutative diagram

Z1[n− 1] Y [n]

V1[n− 1] Y [n]

W1[n− 1] Y [n]

Now look at [E2], [G2] and [F2]. We have a commutative diagram

0 Z1 E2 · · · En X 0

0 V1 U2 · · · Un X 0

0 W1 F2 · · · Fn X 0

again as in the construction let

• [E2] = [Ẽ2]∪[E3] with [Ẽ2] ∈ YExt1H(Z2, Z1) and [E3] ∈ YExtnH(X,Z2)
• [G2] = [G̃2]∪[G3] with [G̃2] ∈ YExt1H(V2, V1) and [G3] ∈ YExtnH(X, V2)
• [F2] = [F̃2]∪[F3] with [F̃2] ∈ YExt1H(W2,W1) and [F3] ∈ YExtnH(X,W2).

and by the same argument as above we have a commutative diagram

Z2[n− 2] Z1[n− 1]

V2[n− 2] V1[n− 1]

W2[n− 2] W1[n− 1]

By continuing this process we compose and end up with a commutative
diagram

X Zn−1[1] · · · Z1[n− 1] Y

X Vn−1[1] · · · V1[n− 1] Y

X Wn−1[1] · · · W1[n− 1] Y
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and we conclude that θn(E) = θn(F) = θn(G). Thus θn(E) is well defined
and is independent of the choice of E1 and E2 in the construction.

Lemma 3.4 ([CHZ18] Lemma 2.1). Let C be a triangulated category
with t-structure (C ≤0,C ≥0) with heart H. Then for the canonical map θn

the following holds:

(1) θ1 is an isomorphism, and θ2 is injective.
(2) Assume that θnX,Y are isomorphisms for all objects X, Y ∈ H. Then

θn+1 is injective
(3) For n ≥ 2, a morphism f : X → Y [n] lies in the image θnX,Y if and

only if f admits a factorization X → X1[1]→ · · · → Xn−1[n−1]→
Y [n] with each Xi ∈ H

Proof.

(1) By the previous lemma the homomorphism θ1 is well defined and
we can then define Ψ : HomC (X, Y [1]) → YExt1H(X, Y ) which sends
ψ ∈ HomC (X, Y [1]) to the unique extension class corresponding to the
unique triangle associated with ψ. Thus Ψ is an inverse of θ1 and θ1 is
an isomorphism. θ2 being injective is a special case of (2).

(2) Assume [E] ∈ ker(θn+1) for [E] ∈ YExtn+1
H (X, Y ). Let

E1 = 0→ Y −→ E
g−→ Z → 0

such that [E] = [E1] ∪ [E2] where [E2] ∈ YExtnH(X,Z). We then have a
commutative diagram.

YExtnH(X,E) YExtnH(X,Z) YExtn+1
H (X, Y )

HomC (X,E[n]) HomC (X,Z[n]) HomC (X, Y [n+ 1])

YExtnH(X,g)

θnX,E

[E1]∪[−]

θnX,Z θn+1
X,Y

−◦g[n] −◦θ1(E1))[1]

We know the bottom row is exact, and from Lemma 2.12 the top row is
exact. By diagram chasing we see that since θn+1

X,Y ([E1] ∪ [E2]) = 0 and
θnX,Z is an isomorphism there is an element ϕ ∈ HomC (X,Z[n]) such
that θnX,Z(ϕ) = E2 and ϕ is sent to zero in HomC (X, Y [n + 1]). Since
the bottom row is exact we can lift ϕ to an element ψ ∈ HomC (X,E[n])
which can be lifted further to an element E0 ∈ YExtnH(X,E) that is sent
to E2. Since the top row is exact E2 must be in the kernel of [E1]∪− and
E = 0. Thus ker(θn+1) = 0 and θn+1

X,Y is injective.

(3) We use induction to prove the statement.
For i = 2
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“⇒” Assume f : X → Y [2] lies in the image of θ2X,Y . Then there exist
short exact sequences

E1 : 0→ Y −→ E1 −→ X1 → 0 and E2 : 0→ X1 −→ E2 −→ X → 0

such that E = E1 ∪ E2 and f = θ2X,Y (E) Then from the definition
of θn we have

θ2(E) = (θ1(E1))[1] ◦ θ1(E2)

= [X1[1]→ Y [2]] ◦ [X → X1[1]]

= [X → X1[1]→ Y [2]]

“⇐” Now assume f : X
α1−→ X1[1]

α2−→ Y [2], with X,X1, Y ∈ H. Then
there exist short exact sequences E2, where [E2] ∈ YExt1H(X,X1)
and E1, where [E1] ∈ YExt1H(X1, Y ). From (1) we know θ1X,Y is an
isomorphism; in particular it is surjective and we can assume

(θ1(E1))[1] = [X1[1]
α2−→ Y [2]]

and
θ1(E2) = [X

α1−→ X1[1]]

Then let E = E1 ∪ E2 and

θ2(E) = (θ1(E1))[1] ◦ θ1(E2) = [X
α1−→ X1[1]

α2−→ Y [2]]

Now assume the statement hold for i = n

“⇒” Assume f : X → Y [n + 1] lies in the image of θn+1
X,Y . Then there

exist extensions

E1 : 0→ Y −→ En+1 −→ Xn → 0

and
E2 : 0→ Xn → E1 → · · · → En → X → 0

such that E = E1 ∪ E2 and f = θn+1
X,Y (E) Then from the definition

of θn+1 we have

θn+1(E) = (θ1(E1))[n] ◦ θn(E2)

and from the induction assumption we have

θn(E2) = [X → X1[1]→ · · · → Xn[n]]

and

θn+1(E) = (θ1(E1))[n] ◦ θn(E2)

= [Xn[n]→ Y [n+ 1]] ◦ [X → X1[1]→ · · · → Xn[n]]

= [X → X1[1]→ · · · → Xn[n]→ Y [n+ 1]]
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“⇐” Now assume f : X
α1−→ X1[1]

α2−→ · · · αn−→ Xn[n]
αn+1−−−→ Y [n + 1],

with X,Xi, Y ∈ H for i = 1, · · · , n. Then there exist short exact
sequences E2, where [E2] ∈ YExtnH(X,Xn) and E1, where [E1] ∈
YExt1H(Xn, Y ). From the induction assumption we have

θn(E2) = [X
α1−→ X1[1]

α2−→ · · · αn−→ Xn[n]]

and from the surjectivity of θ1 we have

(θ1(E1))[n] = [Xn[n]
αn+1−−−→ Y [n+ 1]]

Then let E = E1 ∪ E2 and

θn+1(E) = (θ1(E1))[n] ◦ θn(E2)

= [X
α1−→ X1[1]

α2−→ · · · αn−→ Xn[n]
αn+1−−−→ Y [n+ 1]]

3.2 Cohomological functor

Given the derived category Db(A) a triangle induces a long exact se-
quence of homologies in A. The object of this subsection is to generalize
this to get a functor that maps triangles in a triangulated category to
a long exact sequence of objects in the abelian heart. First we need an
important proposition about maps of triangles

Proposition 3.1. Let C be a triangulated category. Given the solid part
of the diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

a

f g h f [1]

b

where the rows are distinguished triangles, the following are equivalent:

(1) bga = 0
(2) There is a morphism f such that the left square commutes
(3) There is a morphism h such that the middle square commutes
(4) The diagram is a morphism of triangles

If any of these conditions are satisfied, and in addition HomC (X[1], Z ′) =
0 then f and g in condition (2) and (3) are unique.
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Proof. (1) ⇒ (2) If bga = 0 then X → Y ′ factors through X ′ → Y ′ and
there exist a f : X → X ′ such that the left square commutes.
(2)⇒ (3) If f and g exist, and the diagram is commutative, we can from
the axioms of triangulated categories find a h : Z → Z ′ such that the
diagram commutes.
(3) ⇒ (4) By shifting the triangles, and using the same argument as in
(2)⇒ (3) the maps in the diagram exists and form a triangle morphism.
(4) ⇒ (1) If the diagram is a triangle morphism, by the commutativity
bga = 0.

We have an exact sequences

HomC (X[1], Z ′)→ HomC (Z,Z ′)→ HomC (Y, Z ′)→ HomC (X,Z ′)

HomC (X[1], Z ′)→ HomC (X[1], X ′[1])→ HomC (X[1], Y ′[1])→ HomC (X[1], Z ′[1])

We have that HomC (X,Z ′) = 0. If we assume HomC (X[1], Z ′) = 0 then

HomC (Z,Z ′) ∼= HomC (Y, Z ′)

HomC (X[1], X ′[1]) ∼= HomC (X[1], Y ′[1])

showing that the maps f and h are unique.

We draw two immediate corollaries that shows the uniqueness of the
triangle in the third axiom of t-structures.

Corollary 3.4.1. Let C be a triangulared category, and (C ≤0,C ≥0) be a
t-structure. Let X, Y ∈ C and f : X → Y then there exist a commutative
diagram of triangles

X ′ X X ′′ X ′[1]

Y ′ Y Y ′′ Y ′[1]

f

With X ′, Y ′ ∈ C ≤0 and X ′′, Y ′′ ∈ C ≥1 where the maps X ′ → Y ′ and
X ′′ → Y ′′ are unique.

Proof. This follows immediately from the previous proposition

Corollary 3.4.2. Given X ∈ C the triangle

X ′ → X → X ′′ → X ′[1]

with X ′ ∈ C ≤0 and X ′′ ∈ C ≥1 is unique up to unique isomorphism.
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Proof. Assume
X ′ → X → X ′′ → X ′[1]

Y ′ → X → Y ′′ → Y ′[1]

both are triangles from the third condition of t-structures. We then have
from the previous lemma a commutative diagram

X ′ X X ′′ X ′[1]

Y ′ X Y ′′ Y ′[1]

X ′ X X ′′ X ′[1]

Y ′ X Y ′′ Y ′[1]

f1 g1

f2 g2

f1 g1

In particular we have two commutative diagrams

X ′ X X ′′ X ′[1]

X ′ X X ′′ X ′[1]

f2◦f1 g2◦g1

Y ′ X Y ′′ Y ′[1]

Y ′ X Y ′′ Y ′[1]

f1◦f2 g1◦g2

By the uniqueness of the maps f2◦f1 = idX′ and f1◦f2 = idY ′ . Therefore
X ′ ∼= Y ′. Similarly X ′′ ∼= Y ′′

We can then formalize the triangle by the following definition

Definition 8. Let C be a triangulated category, and (C ≤0,C ≥0) be a
t-structure. Let X ∈ C , and

X ′ → X → X ′′ → Y [1]

be the unique triangle from the previous corollary. We define X≤0 := X ′

X≥1 := X ′′

and
X≤n := X[n]≤0[−n] and X≥n := X[n− 1]≥1[1− n]

Indeed this definition induces a functor, commonly called the trun-
cation functor on a triangulated category with a t-structure, which is
explained by the following lemma and corollary
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Lemma 3.5. (−)≥n : C → C ≥n and (−)≤n : C → C ≤n define functors.

Proof. We only prove that (−)≥n defines a functor. The proof for (−)≤n

is similar. Note that X≥n = X[n − 1]≥1[1 − n] ∈ C ≥1[1 − n] = C ≥n. So
the functor is defined on objects. We need to check what (−)≥n does on
morphisms.
Without loss of generality we can let n = 1. Let X → X ′ be a map in C .
From Corollary 3.4.1 We have a diagram between triangles

X≤0 X X≥1 X≤0[1]

X ′≤0 X ′ X ′≥1 X ′≤0[1]

where in particular X≥1 → X ′≥1 is unique and (−)≥1 defines a functor.
By shifting we get the general result.

Corollary 3.5.1. Given X ∈ C we have a triangle

X≤n → X → X≥n+1 → X≤n[1]

Proof. Look at X[n] we then have a triangle

X[n]≤0 → X[n]→ X[n]≥1 → X[n]≤0[1]

Now if we shift the triangle by [−n] we get

X≤n → X → X≥n+1 → X≤n[1]

To understand where the name truncation functor comes from we
look at the following example in the derived category with the canonical
t-structure.

Example 3. Let Db(A) be the derived category, over an abelian category
A, with the canonical t-structure (Db(A)≤0, Db(A)≥0). Let

X• = · · · X−1 X0 X1 X2 · · ·
d−2
X d−1

X d0X d1X d2X

Be an element in Db(A). From Example 2 we know that X• fits in a
triangle

Y • → X• → X•/Y • → Y •[1]

where

Y • = · · · X−2 X−1 ker(d0X) 0 · · ·
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X•/Y • = · · · 0 0 X0/ker(d0X) X1 · · ·

From the uniqueness of the triangle we have (X•)≤0 ∼= Y • and (X•)≥1 ∼=
X•/Y • ∼= X•/(X•)≤0. We then have (X•)≤n = (X•)[n]≤0[−n]

(X•)≤n = · · · Xn−2 Xn−1 ker(dnX) 0 · · ·

with ker(dnX) in the n-th degree, and (X•)≥n = (X•)[n − 1]≥1[1 − n] ∼=
X•[n−1]

(X•[n−1])≤0 [1− n]

(X•)≥n = · · · 0 Xn−1

ker(dn−1
X )

Xn Xn+1 · · ·

with Xn in the n-th degree. The above complexes (X•)≤n and (X•)≥n

are called the (good) truncations, above and below n respectively, of a
chain complex X•. The trucations are often denoted as τ≤n

X• and τ≥n
X•

respectively. [Wei95, Truncation 1.2.7]

We actually get an adjoint pair of the inclusion functor and truncation
functor

Lemma 3.6. Let i : C ≤n → C be the inclusion from C ≤n to C , and
j : C ≥n → C be the inclusion from C ≥n to C . Then (−)≤n and i, and
(−)≥n and j are adjoint pairs respectively:

HomC≤n(−, (−)≤n) ∼= HomC (i(−),−)

HomC≥n((−)≥n,−) ∼= HomC (−, j(−))

Proof. We only prove the first isomorphism, the second is similar. Given
X ∈ C , and Y ∈ C ≤n we want to show

HomC≤n(Y, (X)≤n) ∼= HomC (i(Y ), X)

Note that Y [n] ∈ C ≤n[n] = C ≤0. Let Y ′ = Y [n] and X ′ = X[n]. Given
the triangle

X ′≤0 → X ′ → X ′≥1 → X ′≤0[1]

look at the exact sequence

HomC (Y ′, X ′≥1[−1])→ HomC (Y ′, X ′≤0)→ HomC (Y ′, X ′)→ HomC (Y ′, X ′≥1)
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And note that from the third condition of t-structures that, sinceX ′≥1[−1] ∈
C ≥1, we get HomC (Y ′, X ′≥1[−1]) = HomC (Y ′, X ′≥1) = 0 and

HomC (Y ′, X ′≤0) ∼= HomC (Y ′, X ′)

Shift X ′ and Y ′ back and we get

HomC≤n(Y,X[n]≤0[−n]) ∼= HomC (Y,X)

We actually get the following general relationships, which are obvious
in the case of the canonical t-structure over the derived category.

Corollary 3.6.1. If m ≤ n then:

(i) ((−)≤n)≤m = ((−)≤m)≤n = (−)≤m

(ii) ((−)≥m)≥n = ((−)≥n)≥m = (−)≥n

Proof. We will only prove the first part, the second is similar. Given any
Y ∈ C ≤m we then have from Lemma 3.6

HomC≤m(Y, (X≤n)≤m) ∼= HomC (Y,X≤n) ∼= HomC≤n(Y,X≤n)

∼= HomC (Y,X) ∼= HomC≤m(Y,X≤m)

Therefore we have X≤m ∼= (X≤n)≤m. Let Y ∈ C ≤n then we have

HomC≤n(Y, (X≤m)≤n) ∼= HomC (Y,X≤m) ∼= HomC≤n(Y,X≤m)

where the last isomorphism comes from the second axiom of t-structures.
Thus X≤m ∼= (X≤m)≤n.

Lemma 3.7. ((−)≤n)≥n = ((−)≥n)≤n

Proof. We can construct the diagram

(X≤n)≤n−1 X≤n (X≤n)≥n (X≤n)≤n−1[1]

X≤n−1 X X≥n X≤n−1[1]

X≥n+1 X≥n+1 X≤n[1]

X≤n[1] (X≤n)≥n[1]
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and observe from the previous corollary that (X≤n)≤n−1 ∼= X≤n−1 so the
vertical equalities makes sense. Therefore, by the octahedral axiom, the
dashed arrows form a triangle. We then have triangles

(X≤n)≥n X≥n X≥n+1 (X≤n)≥n[1]

(X≥n)≤n X≥n (X≥n)≥n+1 (X≥n)≤n[1]

∼=

Where, from the last corollary, the third arrow is an isomorphism. Thus
the dashed arrows exist and are isomorphisms.

Observe that if n = 0 we have ((−)≤0)≥0 = ((−)≥0)≤0 ∈ C ≤0∩C ≥0 =
H. We can therefore define a functor from C to H

Definition 9. We define a functor

H0
H : C → H

from a triangulated category C to the heartH of a t-structure (C ≤0,C ≥0)
by

H0
H(X) = (X≤0)≥0 = (X≥0)≤0

We let Hn
H(X) = H0

H(X[n])

We get the following immediate lemma

Lemma 3.8. Let C be a triangulated category with t-structure with heart
H. Let X ∈ H then X ∼= H0

H(X).

Proof. For X ∈ H there exist a triangle

X≤0 → X → X≥1 → X≤0[1]

Since X ∈ H the map X → X≥1 is zero. Thus we have the isomorphism
X≤0 ∼= X. Similarly X≥0 ∼= X and we have the isomorphism

H0
H(X) = X≤0≥0 ∼= X

This is indeed the functor we are looking for, what is left to show is
that any triangle in a triangulated category induces a long exact sequence
through this functor. The following two results shows this.
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Lemma 3.9. Let C be a triangulated category with t-structure (C ≤0,C ≥0)
and heart H. Given A,B,C ∈ C we have

(i) If there exist a triangle A → B → C≥0 → A[1] then we have an
exact sequence

0→ H0
H(A)→ H0

H(B)→ H0
H(C)

(ii) If there exist a triangle A≤0 → B → C → A≤0[1] then we have an
exact sequence

H0
H(A)→ H0

H(B)→ H0
H(C)→ 0

Proof. The proof for the second part is similar to the first, so only a
sketch will be provided for (ii)

(i) Let T ∈ C ≤−1. We have an exact sequence

HomC (T,C≥0[−1])→ HomC (T,A)→ HomC (T,B)→ HomC (T,C≥0)

and we see that HomC (T,C≥0[−1]) = HomC (T,C≥0) = 0 and

HomC (T,A) ∼= HomC (T,B)

From Lemma 3.6 we then have

HomC≤−1(T,A≤−1) ∼= HomC (T,A) ∼= HomC (T,B) ∼= HomC≤−1(T,B≤−1)

in particular
A≤−1 ∼= B≤−1

We then have the commutative diagram

A≤−1 A A≥0 A≤−1[1]

B≤−1 B B≥0 B≤−1[1]

C≥0 C≥0 A[1]

A[1] A≥0[1]

where the dashed arrows form a triangle by the octahedral axiom.
Let M ∈ H. We then have an exact sequence
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HomC (M,C≥0[−1])→ HomC (M,A≥0)→ HomC (M,B≥0)→ HomC (M,C≥0)

By the first condition for a t-structure we have HomC (M,C≥0[−1]) =
0, and from Lemma 3.6 it follows that

HomC (M,A≥0) ∼= HomC≤0(M, (A≥0)≤0) = HomH(M,H0
H(A))

By the same argument on B and C we have an exact sequence

0→ HomH(M,H0
H(A))→ HomH(M,H0

H(B))→ HomH(M,H0
H(C))

and in particular

0→ H0
H(A)→ H0

H(B)→ H0
H(C)

is exact.
(ii) Similar to the first proof we can show that given a triangle

A≤0 → B → C → A≤0[1]

we have that
B≥1 ∼= C≥1

Then we have the diagram

B C A≤0[1] B[1]

B B≥1 B≤0[1] B[1]

C≤0[1] C≤0[1] C[1]

C[1] A≤0[2]

and from the octahedral axiom there exist a triangle

A≤0 → B≤0 → X≤0 → X≤0[1]

Given N ∈ H we have an exact sequence

HomC (A≤0, N)→ HomC (B≤0, N)→ HomC (C≥0, N)→ HomC (A≤0[1], N)
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where HomC (A≤0[1], N) = 0. Similarly to (i) we then get an exact
sequence

H0
H(A)→ H0

H(B)→ H0
H(C)→ 0

Theorem 3.10. The functor H0
H is cohomological, i.e. given a triangle

X → Y → Z → X[1]

in C , we have a long exact sequence

H0
H(X)→ H0

H(Y )→ H0
H(Z)

in H.

Proof. We have a composite map Y → Z → Z≥0. Embed this into the
triangle

W → Y → Z≥0 → W [1]

and from the previous lemma we get an exact sequence

0→ H0
H(W )→ H0

H(Y )→ H0
H(Z)

Now we have the following diagram

Y Z X[1] Y [1]

Y Z≥0 W [1] Y [1]

Z≤−1[1] Z≤−1[1]

Z[1] X[2]

and from the octahedral axiom we have a triangle

Z≤−1[−1]→ X → W → Z≤−1

Since Z≤−1[−1] ∈ C ≤0 we have from the previous lemma we have that

H0
H(X)→ H0

H(W )→ 0

is exact and by splicing the sequences
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H0
H(X) H0

H(W ) 0

0 H0
H(W ) H0

H(Y ) H0
H(Z)

we get that the sequence

H0
H(X)→ H0

H(Y )→ H0
H(Z)

is exact.

To justify that this is a generalization of the induced long exact se-
quence of homology on triangles in the derived category, we note the
following example

Example 4. Let Db(A) be the derived category, over an abelian category
A, with the canonical t-structure (Db(A)≤0, Db(A)≥0). The heart of the
t-structure is A. Let X• ∈ Db(A).
Look at Hn

A(X•) = H0
A(X•[n]) = ((X•[n])≥0)≤0 = ((X•[n−1])≥1[1])≤0 =

( X•[n−1]
(X•[n−1])≤0 [1])≤0 We then have

Hn
A(X•) =

(
· · · → 0→ Xn−1

ker(dn−1X )
↪→ Xn → Xn+1 → · · ·

)≤0
=

(
· · · → 0→ Xn−1

ker(dn−1X )
↪→ ker(dnX)→ 0→ · · ·

)
with ker(dnX) in degree 0. Note that Xn−1

ker(dn−1
X )
∼= Im(dn−1X ) ⊆ ker(dnX) so

the image of the non-trivial map in the bottom complex is still Im(dn−1X ).
Therefore Hn

A(X•) is quasi-isomorphic to the stalk complex of the regular
homology Hn(X•).

We can now prove the following well known result

Theorem 3.11. Let A be an abelian category, and Db(A) be its bounded
derived category. Let (Db(A)≤0, Db(A)≥0) be the canonical t-structure on
Db(A), with heart A. Let X, Y ∈ A Then the map

θn : YExtnA(X, Y ) −→ HomDb(A)(X, Y [n])

is an isomorphism for n ≥ 1

Proof. We use induction to prove that θn are isomorphisms for all n ≥ 1.
We know from Lemma 3.4 that θ1 is an isomorphism, so assume θi are
isomorhpisms for all i = 1, · · · , n. From the second part of Lemma 3.4
we then know θn+1 is injective, so we need to show the surjectivity.
Let
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E•

X Y [n+ 1]

qis q f

denote an element in HomDb(A)(X, Y [n + 1]), With E• = (Ei, d
i
E). Note

that since E• is quasi-isomorphic to X, E• is exact in every non-zero
degree. Let σ≤−n

E• denote the brutal truncation

σ≤−n
E• = · · · E−(n+1) E−n 0 0 · · ·

where (σ≤−n
E•)i = (E•)i for i ≤ −n and (σ≤−n

E•)i = 0 for i > −n
[Wei95, Truncation 1.2.7]. Note that Hn(σ≤−n

E•) = E−n/ Im(d
−(n+1)
E ) ∼=

E−n/ ker(d−nE ) ∈ A. We then have a quasi-isomorphism r : σ≤−n
E• →

H−n(σ≤−n
E•)[n] since σ≤−n

E• is exact in every degree 6= −n. We then
have roof equal to the roof f · q−1:

E•

E• σ≤−n
E•

X H−n(σ≤−n
E•)[n] Y [n+ 1]

id α

qis q qis r◦α qis r

Since θn is assumed to an isomorphism, we have from Lemma 3.4 that
X → H−n(σ≤−n

E•)[n] admits a factorization

X → X1[1]→ · · · → Xn−1[n− 1]→ H−n(σ≤−n
E•)[n]

with Xi ∈ A. Thus X → Y [n+ 1] admits the factorization

X → X1[1]→ · · · → Xn−1[n− 1]→ H−n(σ≤−n
E•)[n]→ Y [n+ 1]

and again from the third part of Lemma 3.4 θn+1 is an isomorphism.

Observation 3.11.1. In the derived category Db(A), given X, Y ∈ Db(A),
the extension groups (given enough injectives and projectives) are defined
as ExtnA(X, Y ) := HomDb(A)(X, Y [n]). (Observe that ExtnA(X, Y ) = 0 for
n < 0). A consequence of the previous theorem is therefore YExtnA(X, Y ) ∼=
ExtnA(X, Y ) for n ≥ 1 in the bounded derived categories.
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3.3 t-exact functors

In our quest to understand a bit more about triangulated equivalences
between derived categories, we need a way of going between the abelian
subcategories of different triangulated categories. To do this we introduce
the concept of t-exact functors.

Definition 10. Let C and D be triangulated categories. Then a trian-
gulated functor from C to D is a pair (F, η) consisting of an additive
functor F : C → D together with natural isomorhpism

η : F (−[1])→ F (−)[1]

such that for every triangle X
f−→ Y

g−→ Z
h−→ X[1] in C , then

F (X)
F (f)−−→ F (Y )

F (g)−−→ F (Z)
ηX◦F (h)−−−−−→ F (X)[1]

is a triangle in D . Now if C and D have t-structures, then a triangulated
functor (F, η) from C to D is called a t-exact functor if F (C ≤0) ⊆ D≤0

and F (C ≥0) ⊆ D≥0.

We have the following two immediate consequences of this definition

Lemma 3.12. F (C ≤n) ⊆ D≤n and F (C ≥n) ⊆ D≥n

Proof. Let X ∈ C ≤n then X[n] ∈ C ≤n[n] = C ≤0. Since (F, η) is triangu-
lated we have

F (X) ∼= F (X[n][−n]) ∼= F (X[n])[−n] ∈ D≤0[−n] = D≤n

Similarly F (C ≥n) ⊆ D≥n.

Lemma 3.13. F (X≤n) ∼= F (X)≤n and F (X≥n) ∼= F (X)≥n

Proof. WLOG we can assume n = 0. We have a triangle

F (X≤0)→ F (X)→ F (X≥1)→ F (X≤0)[1]

Where from the t-exactness F (X≤0) ∈ D≤0 and F (X≥1) ∈ D≥1. We also
have a triangle

F (X)≤0 → F (X)→ F (X)≥1 → F (X)≤0[1]

with F (X)≤0 ∈ D≤0 and F (X)≥1 ∈ D≥1. Thus by Corollary 3.4.2

F (X≤0) ∼= F (X)≤0 and F (X≥1) ∼= F (X)≥1



50 Malkenes, J.: Realization functors and HRS-tilting

The following lemma gives us a relationship between the hearts of
two triangulated categories through a t-exact functor

Lemma 3.14 ([CHZ18, Lemma 2.3]). Let F : C → D be a t-exact
functor as in the definition. Then:

(1) The restriction F |H : H → G is exact.
(2) Given X ∈ C we have isomorphisms

Hn
H(F (X)) ∼= F |H(Hn

H(X))

for n ∈ Z
(3) If F is an equivalence then so is the restriction F |H

Proof. (1) Let 0→ X −→ Y −→ Z → 0 be a short exact sequence in H.
Then from Corollary 3.2.1 the sequence gives rise to a triangle

X → Y → Z → X[1]

in C . Then since F is t-exact we have a triangle

F |H(X)→ F |H(Y )→ F |H(Z)→ F |H(X)[1]

with F |H(X), F |H(Y ), F |H(Z) ∈ G. Then again from Corollary
3.2.1

0→ F |H(X) −→ F |H(Y ) −→ F |H(Z)→ 0

is a short exact sequence.
(2) We have isomorphisms

Hn
G (F (X)) ∼= H0

G(F (X)[n]) = (F (X)[n])≤0≥0 (3.1)

∼= F (X[n])≤0≥0 (3.2)

∼= F |H(X[n]≤0≥0) (3.3)
∼= F |H(Hn

H(X)) (3.4)

where the isomorphism (3.2) comes from the fact that F is a t-exact
functor. The isomorphism in (3.3) comes from Lemma 3.13. Note
further that since X[n]≤0≥0 = Hn

H(X) ∈ H we can restrict the
functor to H without changing anything. The last isomorphism,
(3.4), comes from Lemma 3.8.

(3) Since F is an equivalence F |H is clearly fully faithful. What is left
is to show the denseness. Assume Y ∈ G. Then, since F is an
equivalence, we have Y ∼= F (X̃) for some X̃ ∈ C . Then we use the
isomorphism from (2) and Lemma 3.8 to get

Y ∼= F (X̃) ∼= H0
G(F (X̃)) ∼= F |H(H0

H(X̃))
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Thus for every Y ∈ G there exist a X := H0
H(X̃) ∈ H such that

Y ∼= F |H(X)

Again there is a connection between the Yoneda extension of the
hearts of two different triangulated categories and the Hom-sets

Proposition 3.2 ([CHZ18, Proposition 2.4]). Let (F, η) : C → D be a
t-exact functor as in the definition. Then the following diagram commutes

YExtnH(X, Y ) YExtnG(F (X), F (Y ))

HomC (X, Y [n]) HomD(F (X), F (Y )[n])

F |H

θn1 θn2

(F,η)

For any X, Y ∈ H and n ≥ 1.

In the diagram above θn1 and θn2 are the canonincal maps associated
with the t-structures on C and D . F |H on the top row is defined to map
an exact sequence

E : 0→ Y → E1 → · · · → En → X → 0

to the exact sequence

F |H : 0→ F (Y )→ F (E1)→ · · · → F (En)→ F (X)→ 0

(F, η) on the bottom row is defined to send a morphism f : X → Y [n]
to ηy[n] ◦ F (f) : F (X)→ F (Y )[n]

Proof. We prove the statement for n = 1, the general case is shown by
induction similar to the proof of Lemma 3.4.
For n = 1: First look at θ12 ◦ F |H
Let [E] ∈ YExt1H(X, Y ) be represented by the sequence

0→ Y
f−→ E

g−→ X → 0

then we have the sequence

0→ F (Y )
F (f)−−→ F (E)

F (g)−−→ F (X)→ 0

in YExt1G(F (X), F (Y )). By embedding this into the unique triangle

F (Y )
F (f)−−→ F (E)

F (g)−−→ F (X)
θ12(F (E))
−−−−−→ F (Y )[1]
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we obtain the map (θ12 ◦ F |H)(E)
Next look at (F, η) ◦ θ11. Embed E into the triangle

Y
f−→ E

g−→ X
θ11(E)−−−→ Y [1]

to get map θ11(E) Use (F, η) to get

F (Y )
F (f)−−→ F (E)

F (g)−−→ F (X)
ηY ◦F (θ11(E))−−−−−−−→ F (Y )[1]

and we see that ηY ◦F (θ11(E)) = θ12 ◦F (E) making the diagram commute.

3.4 Bounded t-structures

A question we have not yet asked is if we can recover a triangulated
category from the abelian heart of a t-structure. It is well known that the
bounded derived category Db(A) is generated by the abelian subcategory
A. We will see that with an extra assumption on t-structures, we can
generalize this result to see that the heart will generate the triangulated
category.

Definition 11. Let C be a triangulated category. We say the t-structure
(C ≤0,C ≥0) is bounded, if

C =
⋃
i,j∈Z

(C ≤i ∩ C ≥j)

Lemma 3.15. Let C be a triangulated category with bounded t-structure.
Then the heart H generates C , and

C =
⋃
i≥j

H[−j] ∗ · · · ∗ H[−i]

for i, j ∈ Z

Proof. Since C is bounded, C =
⋃
i,j∈Z(C ≤i ∩ C ≥j). Fix i, j ∈ Z, and

look at C ≤i ∩ C ≥j. If i < j then it is clear that C ≤i ∩ C ≥j = 0, and
if i = j then C ≤i ∩ C ≥j = H[−i]. Let i = j + 1. We then show that
C ≤i ∩ C ≥j = H[−j] ∗ H[−i]. We show this for j = 0 and i = 1, the
general result is analogous. Given X ∈ H ∗ H[−1], we have a triangle

H → X → H̃[−1]→ H[1]
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for some H, H̃ ∈ H. From the definition of t-structure, we see that
H ∈ C ≤0 ⊆ C ≤1, and H̃[−1] ∈ C ≥1 ⊆ C ≥0. Thus we have H, H̃[−1] ∈
C ≤1∩C ≥0, and since t-structures are closed under extensions we see that
X ∈ C ≤1 ∩ C ≥0 and H ∗H[−1] ⊆ C ≤1 ∩ C ≥0.

Now let X ∈ C ≤1 ∩ C ≥0. We then have from the definition of t-
structure that X fits in a triangle

X≥1[−1]→ X≤0 → X → X≥1 → X≤0[1]

We have X≥1[−1] ∈ C ≥2 ⊆ C ≥0, and X≤0[1] ∈ C ≤−1 ⊆ C ≤1. Thus,
since X ∈ C ≤1 ∩ C ≥0, we see that X≤0 ∈ H and X≥1 ∈ H[−1], and we
conclude that H ∗H[−1] = C ≤1 ∩ C ≥0.

An easy induction proves that for i ≥ j we have C ≤i∩C ≥j = H[−j]∗
H[−(j + 1)] ∗ · · · ∗ H[−i]. Thus in conclusion

C =
⋃
i,j∈Z

(C ≤i ∩ C ≥j) =
⋃
i≥j

H[−j] ∗ · · · ∗ H[−i]

The next example illustrates why we can view this as a generalization
of the special case with the bounded derived category and canonical t-
structure.

Example 5. Given the canonical t-structure on Db(A) we see that since
Db(A) is bounded, we have H i(X•) = 0 for small- and large enough i,
and the t-structure is bounded. Thus, by the previous lemma, Db(A) is
generated by the heart A.

The next lemma shows that if we assume that t-structure are bounded,
a t-exact functor can be an equivalence under certain restrictions.

Lemma 3.16. Let C and D be triangulated categories with bounded t-
structure, and let (F, η) : C → D be a triangulated functor. Let H be the
heart of the t-structure on C .

(1) If HomC (X, Y [n]) ∼= HomD(F (X), F (Y )[n]) for all X, Y ∈ H and
all n ∈ Z. Then F is fully faithful.

(2) If further F (H) is equal to the heart of the t-structure on D , then
F is also dense.

Proof. First observe that since C has a bounded t-structure, we know
C =

⋃
i≥jH[−j] ∗ · · · ∗ H[−i]. Given an object A ∈ H[−j] ∗ · · · ∗ H[−i]

we define l(A) = i− j.
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To prove the first part, we must show that there is an isomorphism
HomC (X, Y ) ∼= HomD(F (X), F (Y )) for all X, Y ∈ C . We do this by
double induction on l(X) and l(Y ).

If l(X) = 0 = l(Y ), we can assume X ∈ H[−i] and Y ∈ H[−j]. Since
the shift functor is an autoequivalence, ([1], [−1]) forms an adjoint pair
and we have isomorphisms

HomC (X, Y ) ∼= HomC (X, Y [i][−i]) ∼= HomC (X[i], Y [i])

We observe that X[i] ∈ H. We further observe that Y [j][−j + i] ∼= Y [i]
with Y [j] ∈ H and from the assumption we have the isomorphism

HomC (X[i], Y [i]) ∼= HomD(F (X)[i], F (Y [j])[−j+i]) ∼= HomD(F (X), F (Y )[i][−i])

Now assume the assertion is true for all X with l(X) = n, and Y with
l(Y ) = 0. Given X ∈ H[−j]∗ · · · ∗H[−i], with l(X) = j− i = n+ 1 there
is a triangle

H → X → H̃ → H[1]

with H ∈ H[−j] ∗ · · · ∗ H[−i − 1] and H̃ ∈ H[−i]. Thus we have that
l(H), l(H̃), l(H[1]), l(H̃[−1]) ≤ n. Applying the cohomological functors
HomC (−, Y ) and HomD(−, F (Y )) we get a diagram with exact rows (we
write C (−,−) for HomC (−,−))

C (H̃[−1], Y ) C (H, Y ) C (X, Y ) C (H̃, Y ) C (H[1], Y )

D(F (H̃)[−1], F (Y )) D(F (H), F (Y )) D(F (X), F (Y )) D(F (H̃), FY )) D(F (H)[1], F (Y ))

∼= ∼= ∼= ∼=

and we see from the induction hypothesis that by the five lemma the
middle vertical row must be an isomorphism. To complete the double
induction a dual argument is used on l(Y ).

To prove (2) we let X ∈ D, and proceed by induction on l(X). If
l(X) = 0, then we can assume X ∈ F (H)[−i] ∼= F (H[−i]) and we
are done. Now assume the assertion is true for l(X) ≤ n, and let Y ∈
F (H)[−j] ∗ · · · ∗ F (H)[−i] with l(Y ) = i− j = n+ 1. Then there exist a
triangle

H → Y → H̃ → H[1]

with H ∈ F (H)[−j] ∗ · · · ∗ F (H)[−i − 1] and H̃ ∈ F (H)[−i]. We also
observe that l(H̃[−1]) ≤ n, and let f : H̃[−1]→ H. From the induction
hypothesis there exist a triangle X1

α−→ X2 → Z → Z1[1] where F (X1) ∼=
(H̃[−1]), F (X2) ∼= H and F (α) ∼= f . We then get a map of triangles
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F (X1) F (X2) F (Z) F (X1)[1]

H̃[−1] H Y H̃

F (α)∼=f

∼= ∼= ∼=

f

and we see that F (Z) ∼= Y , and we conclude that F is dense.





Chapter 4

Realization functors

In our quest to construct derived equivalences to a derived category
Db(A), we will look at the heart of t-structures, and study the rela-
tionship between the derived categories over the hearts and Db(A). It
turns out that it is always possible to construct a t-exact functor from
the bounded derived category over the heart of a t-structure back to
Db(A), where the restriction to the heart becomes the identity functor.
This construction is called a realization functor, and was first introduced
in [BBD83]. We will first start by introducing filtered derived categories,
and then show how we can construct a realization functor as a compos-
ition through the filtered derived category. Lastly we will give sufficient
criteria for the realization functor to become an equivalence.

4.1 Filtered derived categories

Definition 12. Let A be an abelian category. The category of finite
filtered objects F (A) is the category of objects X ∈ A together with
a finite filtration F . We denote an object in F (A) by (X,F ). Note that
F (A) is an additive category. The bounded category of filtered chain
complexes CbF (A) is the category of bounded complexes of objects in
F (A). Pictorially a complex (X•, F ) ∈ CbF (A) looks like

57
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...
...

...
...

X−1 : · · · ⊇ F−1X
−1 ⊇ F0X

−1 ⊇ F1X
−1 ⊇ · · ·

X0 : · · · ⊇ F−1X
0 ⊇ F0X

0 ⊇ F1X
0 ⊇ · · ·

X1 : · · · ⊇ F−1X
1 ⊇ F0X

1 ⊇ F1X
1 ⊇ · · ·

...
...

...
...

where the finite filtration implies that for every X i there exist an a ∈ Z
such that FnX

i = X i for all n ≤ a, and there exist a b ∈ Z such that
FmX

i = 0 for all m ≥ b. Unless it is necessary to describe the filtration
we will just denote an object in CbF (A) as X•. Note that CbF (A) is an
additive category.

There are certain canonical maps that will be useful in the study of
filtered derived categories.

Definition 13. For each i ∈ Z we define a functor

gri : CbF (A)→ Cb(A)

by gri(X•) = FiX
•/Fi+1X

•, and a forgetful functor

ω : CbF (A)→ Cb(A)

by ω(X•) = X•, forgetting the filtration on X•.

Lemma 4.1. Given an exact sequence

0→ X• −→ Y • −→ Z• → 0

in CbF (A). Then the sequences

0→ gr(X•) −→ gr(Y •) −→ gr(Z•)→ 0

0→ ω(X•) −→ ω(Y •) −→ ω(Z•)→ 0

are exact
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Proof. ω is exact by definition. We have the commutative diagram

0 FnX
• FnY

• FnZ
• 0

0 Fn+1X
• Fn+1Y

• Fn+1Z
• 0

FnX•

Fn+1X•
∼= grn(X•) FnZ•

Fn+1Y •
∼= grn(Y •) FnZ•

Fn+1Z•
∼= grn(Z•)

with exact columns and rows. Thus by the 3× 3 lemma the bottom row
is exact.

As the derived category is defined as the localization of the chain com-
plex category with respect to quasi-isomorphism, we want some sort of
analogous definition of a ”quasi-isomorphism” in the filtered chain com-
plex category. The following definition and lemma gives us a definition
that makes sense.

Definition 14. (1) We say a map f : X• → Y • in CbF (A) is a
filtered quasi-isomorphism if Fn(f) : Fn(X•) → Fn(Y •) is a
quasi-isomorphism for all n ∈ Z.

(2) If grn(X•) is acyclic for all n ∈ Z we say X• is filtered acyclic.

Lemma 4.2. Let f : X• → Y • in CbF (A) The following are equivalent:

(1) Fn(f) : Fn(X•)→ Fn(Y •) is a quasi-isomorphism for all n ∈ Z
(2) grn(f) : grn(X•)→ grn(Y •) is a quasi-isomorphism for all n ∈ Z
(3) Cone(f) is filtered acyclic

Proof. (1)⇒ (2) Note that one can construct the commutative diagram
with short exact rows

0 Fn+1X
• FnX

• FnX•

Fn+1X•
∼= grn(X•) 0

0 Fn+1Y
• FnY

• FnY •

Fn+1Y •
∼= grn(Y •) 0

we then take homology and get a commutative diagram with exact rows

H i(Fn+1X
•) H i(FnX

•) H i(grn(X•)) H i+1(Fn+1X
•) H i+1(FnX

•)

H i(Fn+1Y
•) H i(FnY

•) H i(grn(Y •)) H i+1(Fn+1Y
•) H i+1(FnY

•)

∼= ∼= ∼= ∼=
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and from the five lemma we get that grn(f) is a quasi-isomorphism for
all n ∈ Z
(2)⇔ (3) We have a short exact sequence in CbF (A)

0→ Y • −→ Cone(f) −→ X•[1]→ 0

use the the grn functor to get an exact sequence

0→ grn(Y •) −→ grn(Cone(f)) −→ grn(X•[1])→ 0

Taking homology we get a long exact sequence

H i(grn(X•)) H i(grn(Y •)) H i(grn(Cone(f))) H i+1(grn(X•)) H i+1(grn(Y •))

Thus we have that grn(Cone(f)) is acyclic, i.e. Cone(f) is filtered acyclic,
if and only if grn(f) is a quasi-isomorphism for all n ∈ Z.
(2) ⇒ (1) Assume grn(f) is a quasi-isomorphism for all n ∈ Z. Since
CbF (A) has finite filtration, there exist a N such that FnX

• = 0 = FnY
•

for all n > N . Then we have grN(X•) = FN(X•), grN(Y •) = FN(Y •)
and H i(FNX

•) ∼= H i(FNY
•). We then have a commutative diagram of

short exact sequences

0 FNX
• FN−1X

• grN−1(X•) 0

0 FNY
• FN−1Y

• grN−1(Y •) 0

and as above we take homology to get a diagram

H i−1(grN−1(X•)) H i(FNX
•) H i(FN−1X

•) H i(grN−1(X•)) H i+1(FNX
•)

H i−1(grN−1(Y •)) H i(FNY
•) H i(FN−1(Y

•)) H i(grN−1 Y •) H i+1(FNY
•)

∼= ∼= ∼= ∼=

and FN−1(f) is a quasi-isomorphism. Inducting this process we get that
FN−n(f) is a quasi-isomorphism for all n ∈ Z

Observation 4.2.1. Since F (A) is an additive category, we can lift CbF (A)
to the homotopy category, which will be aptly named the bounded
filtered homotopy category KbF (A). Since the homotopy category
is triangulated, and since gri and ω are additive functors they will be
lifted to triangulated functors in the homotopy category [Opp16, Obser-
vation 33.7]
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Lemma 4.3. The class of filtered quasi-isomorphisms form a multiplic-
ative system compatible with the triangulation on KbF (A)

Proof. Since gri preserves triangles the functor Hn ◦ gri is homological
for all n, i ∈ Z. Then from Lemma 4.2 we have that Hn(gri(q)) is an iso-
morphism if and only if q is a filtered quasi-isomorphism. From [Kra07,
Lemma 3.1] this is a sufficient condition for a multiplicative system com-
patible with the triangulation.

Now we are ready to define the bounded filtered derived category
analogously to the definition of the standard derived category

Definition 15. The bounded filtered derived category, DbF (A),
is the localization of the bounded filtered homotopy category, KbF (A),
with respect to the class of all filtered quasi-isomorphisms.
We will denote objects X• in DbF (A) by a bullet-notation when it is
necessary to remember the chain complex structure of the given object,
otherwise we will just denote the object as X.

Observation 4.3.1. Observe that

KbF (A)
gri−→ Kb(A)

localization−−−−−−→ Db(A)

sends every quasi-isomorphism to an isomorphism. Further, since F nX•

eventually stabilize to X• the composition

KbF (A)
ω−→ Kb(A)

localization−−−−−−→ Db(A)

also sends every quasi-isomorphism to an isomorphism. From the defini-
tion of localization (see [Kra07]) each of the above compositions factors
uniquely through two maps DbF (A)→ Db(A). By abuse of notation we
denote the two unique maps as gri and ω. Since gri, ω and the localization
functor are triangulated, the induced maps will also be triangulated.

The rest of this section is dedicated to introducing necessary tools to
study the filtered derived categories.

Definition 16. Let (X•, F ) be an object in CbF (A) Define

a(X•) = sup{a ∈ Z|FaX• = X•}

b(X•) = inf{b ∈ Z|FbX• = 0}

We can then define the length of the filtration as.

l(X•) = |b(X•)− a(X•)|
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If X• = 0 we say the length is undefined. We say (X•, F ) has trivial
filtration if l(X) = 1. We can define truncation on the filtration,
(X•)≥iF and (X•)≤i−1F where the filtration on (X•)≥iF is defined by

Fn((X•)≥iF ) =

{
FiX

•, for all n ≤ i

FnX
•, for all n > i

We define the filtration on (X•)≤i−1F to be

Fn((X•)≤i−1F ) = Fn(X•)/Fn((X•)≥iF )

Observe that a((X•)≥iF ) = i, b((X•)≥iF ) = b(X•) and a((X•)≤i−1F ) =
a(X•), b((X•)≤i−1F ) = i

Example 6. Let X be an object with filtration

· · · = X = FaX ⊇ Fa+1X ⊇ · · · ⊇ F0X ⊇ · · · ⊇ Fb−1X ⊇ FbX = 0 = · · ·

such that a(X) = a and b(X) = b The filtration on (X)≥1F is

· · · = F1X = F1X ⊇ F2X ⊇ · · · ⊇ Fb−1X ⊇ FbX = 0 = · · ·

We see that a((X)≥1F ) = 1 and b((X)≥1F ) = b(X) = b The filtration on
(X)≤0F is

· · · = X

F1X
=
FaX

F1X
⊇ Fa+1X

F1X
⊇ · · · ⊇ F0X

F1X
⊇ F1X

F1X
= 0 = · · ·

We see that a((X)≤0F ) = a(X) = a and b((X)≤0F ) = 1 Given a complex
X• observe that in DbF (A) we get a triangle

(X•)≥1F → X• → (X•)≤0F → (X•)≥1F [1]

Indeed for each n ∈ Z we get a triangle

(X•)≥nF → X• → (X•)≤n−1F → (X•)≥nF [1]

Lemma 4.4. If HomDb(A)(ω(X•), ω(Y •)) = 0 then HomDbF (A)(X
•, Y •) =

0

Proof. Let f ∈ HomDb(A)(X
•, Y •). Then since HomDb(A)(ω(X•), ω(Y •)) =

0 we will eventually have that Fnf = 0 for all n ≤ a for some a ∈ Z. We
have the map of triangles
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Fa+1X
• FaX

• gra(X•) Fa+1X
•[1]

Fa+1Y
• FaY

• gra(Y •) Fa+1Y
•[1]

Fa+1f 0

and we see that the commutativity of the diagram forces Fa+1f = 0. By
induction we see that Fnf = 0 for all n ∈ Z and HomDbF (A)(X

•, Y •) = 0

Lemma 4.5. Given X•, Y • ∈ DbF (A) with trivial filtration, if a(Y •) <
a(X•) then HomDbF (A)(X

•, Y •) = 0.

Proof. Let f : X• → Y • be represented by the roof X•
qis q←−− Z•

r−→ Y •

where q is a filtered quasi-isomorphism. Let a(Y •) = a, then pictorially
the map looks like

· · · = X• = X• = X• = X• = · · ·

· · · ⊇ Fa−1Z
• ⊇ FaZ

• ⊇ Fa+1Z
• ⊇ Fa+1Z

• ⊇ · · ·

· · · = Y • = Y • ⊇ 0 = 0 = · · ·

Since q is a filtered quasi-isomorphism, Fnq is a quasi-isomorphism for
all n ∈ Z. We can then construct a Z̃• with filtration

FnZ̃
• =

{
Fa(X)Z

• for n ≤ a(X)

FnZ
• for n > a(X)

such that we have a composite quasi-isomorphisms Z̃•
s−→ Z•

q−→ X•.
Then f is also represented by the roof X•

qs←− Z̃•
rs−→ Y • with qs and rs

being maps in CbF (A). Pictorially the maps looks like

· · · = X• = X• = X• = X• = · · ·

· · · = Fa(X)Z
• = Fa(X)Z

• = Fa(X)Z
• = Fa(X)Z

• = · · ·

· · · = Y • = Y • ⊇ 0 = 0 = · · ·

and from the commutativity of the diagrams we see that the map rs must
be zero.
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Lemma 4.6. Let T be a triangulated category, and let

X Y

X ′ Y ′

a

f g

a′

be a commutative diagram in T . Then this can be extended to a 3 × 3
diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

X ′′ Y ′′ Z ′′ Z ′′[1]

X[1] Y [1] Z[1] X[2]

a

f g

a′

�

where the bottom right square is anti-commutative (indicated by �). Each
row and column are distinguished triangles.

Proof. Complete each map in the square to the triangles

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

X ′′ Y ′′

X[1] Y [1]

a

f g

a′

also complete the map X
a′f=ga−−−−→ Y ′ to the triangle

X −→ Y ′ −→ A −→ X[1]

Now from the octahedral axiom we get commutative diagrams and two
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new distinguished triangles:

X Y Z X[1]

X Y ′ A X[1]

Y ′′ Y ′′ Y [1]

Y [1] Z[1]

a

b

c

X X ′ X ′′ X[1]

X Y ′ A X[1]

Z ′ Z ′ X ′[1]

X ′[1] X ′′[1]

a′

b′

c′

Observe that if we combine the diagrams above we get commutative
diagrams

X ′ X ′′ X[1]

Y ′ A X[1]

Y ′′ Y ′′ Y [1]

a′

b

(4.1)

Y Z X[1]

Y ′ A X[1]

Z ′ Z ′ X ′[1]

a

b′

(4.2)

Now we can complete the map X ′′
ba′−→ Y ′′ into the triangle

X ′′ −→ Y ′′ −→ Z ′′ −→ X ′′[1]

Again use the octahedral axiom on the new triangles to get the commut-
ative diagram and the new triangle

X ′′ A Z ′ X ′′[1]

X ′′ Y ′′ Z ′′ X ′′[1]

Z[1] Z[1] A[1]

A[1] Z ′[1]

h

h′

−b′[1]a[1]

Combining all the triangles we get a diagram
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X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

X ′′ Y ′′ Z ′′ X ′′[1]

X[1] Y [1] Z[1] X[2]

(1) b′a (2)

(3) h
c′

ba′

(4) c
h′

We see that the squares (1) and (2) commutes from diagram 4.2, and the
squares (3) and (4) commutes from diagram (4.1). Since both Y → Z ′

and Y ′ → Y ′′ factors through A, the middle square commutes. From
the octahedral diagrams above we see that the map c′ factorizes as both
Z ′ → X ′[1]→ X ′′[1] and Z ′ → Z ′′ → X ′′[1], and the map c factorizes as
both Y ′′ → Z ′′ → Z[1] and Y ′′ → Y [1] → Z[1]. Thus the middle right
and bottom squares commute. Observe that we have a map of triangles

X ′′ Y ′′ Z ′′ X ′′[1]

A Y ′′ Z[1] A[1]

a′[1]

−a[1]

From the commutativity of the last square and the fact that X ′′[1] →
X[2] and Z[1] → X[2] both factor through A[1] via the maps a and
a′ we conclude that the bottom right square in the diagram is anti-
commutative.

4.2 Filtered derived t-structure

As we have seen, the filtered derived category is closely connected to the
derived category. A natural question to ask is whether a t-structure on the
derived category induces a t-structure on the filtered derived category,
and if so, is there a relation between the abelian hearts of the t-structures?
As we shall see, the answer is all that we could hope for.

Definition 17. Let Db(A) be the bounded derived category with t-
structure (Db(A)≤0, Db(A)≥0), and DbF (A) the filtered derived category.
We define two subcategories of DbF (A) by

DbF (A)≤0 = {X ∈ DbF (A)| grn(X) ∈ Db(A)≤n for all n ∈ Z}

DbF (A)≥0 = {X ∈ DbF (A)| grn(X) ∈ Db(A)≥n for all n ∈ Z}
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We can further define the subcategories

DbF (A)≤i := DbF (A)≤0[−i] = {X ∈ DbF (A)| grn(X) ∈ Db(A)≤n+i for all n ∈ Z}

DbF (A)≥i := DbF (A)≥0[−i] = {X ∈ DbF (A)| grn(X) ∈ Db(A)≥n+i for all n ∈ Z}

Proposition 4.1. Let Db(A) be the bounded derived category with t-
structure (Db(A)≤0, Db(A)≥0), and DbF (A) the filtered derived category.
Then (DbF (A)≤0, DbF (A)≥0) defines a t-structure on DbF (A).

The proof of the proposition is divided into the following three lem-
mas, proving each of the three axioms of t-structures

Lemma 4.7. Let DbF (A)≤0 and DbF (A)≥1 be defined as above, and let
X ∈ DbF (A)≤0 and Y ∈ DbF (A)≥1. Then HomDbF (A)(X, Y ) = 0

Proof. Let f ∈ HomDbF (A)(X, Y ). Assume X has filtration

· · · = X = FaX ⊇ Fa+1X ⊇ · · · ⊇ Fb−1X ⊇ FbX = 0 = · · ·

We truncate on the filtration to get a triangle

(X)≥bF → X → (X)≤b−1F → (X)≥bF [1]

where l((X)≥bF ) = 1 and l((X)≤b−1F ) = l(X)− 1. Observe that
(X)≥bF , (X)≤b−1F ∈ DbF (A)≤0. Using HomDbF (A)(−, Y ) we get a long exact
sequence

· · · → Hom((X)≤b−1F , Y )→ Hom(X, Y )→ Hom((X)≥bF , Y )→ · · ·

and we get Hom(X, Y ) = 0 provided that

Hom((X)≥bF , Y ) = 0 = Hom((X)≤b−1F , Y )

Truncating again on (X)≤n−1F we can by induction on the length of the
filtration show that Hom(X, Y ) = 0 provided that Hom(X̃, Y ) = 0 for
every X̃ ∈ DbF (A)≤0 where X̃ have trivial filtration. A similar induc-
tion argument on Y shows that we can reduce the problem to showing
Hom(X̃, Ỹ ) = 0 for all Ỹ ∈ DbF (A)≥1, X̃ ∈ DbF (A)≤0 where Ỹ and X̃
has trivial filtration.
Without loss of generality, we can assume that a(X̃) = 0. Then

grn(X̃) =

{
X̃, if n = 0

0, if n 6= 0
grn(Ỹ ) =

{
Ỹ , if n = a(Ỹ )

0, if n 6= a(Ỹ )

Now we have two cases



68 Malkenes, J.: Realization functors and HRS-tilting

• If a(Ỹ ) ≥ 0 then HomDbF (A)(X̃, Ỹ ) ∼= HomDb(A)(gr0(X̃), gra(Ỹ )(Ỹ )) =

0 since gr0(X̃) ∈ Db(A)≤0 and gra(Ỹ )(Ỹ ) ∈ Db(A)≥a(Ỹ ) ⊆ Db(A)≥1

• If a(Ỹ ) < 0 we have from Lemma 4.5 that HomDbF (A)(X̃, Ỹ ) = 0

We conclude that f = 0, and therefore HomDbF (A)(X, Y ) = 0

Lemma 4.8. Let DbF (A) and Db(A) be defined as above. Then DbF (A)≤0 ⊆
DbF (A)≤1 and DbF (A)≥1 ⊆ DbF (A)≥0

Proof. If X ∈ DbF (A)≤0 then, for all n ∈ Z, grn(X) ∈ Db(A)≤n ⊆
Db(A)≤n+1 and X ∈ DbF (A)≤1. Thus DbF (A)≤0 ⊆ DbF (A)≤1. Similarly
one shows Db(A)≥1 ⊆ Db(A)≥0

Lemma 4.9. Let DbF (A) and Db(A) be defined as above. Then given
any X ∈ DbF (A) there exist a triangle

X ′ → X → X ′′ → X ′[1]

with X ′ ∈ DbF (A)≤0 and X ′′ ∈ DbF (A)≥1

Proof. We prove the statement by induction on l(X).
If l(X) = 1 we can without loss of generality assume a(X) = 0, b(X) = 1.
Given n ≤ 0, for each FnX = X we can find a triangle in Db(A)

(X)≤0 → X → (X)≥1 → (X)≤0[1]

Now equip (X)≤0 with the trivial filtration and a((X)≤0) = 0, b((X)≤0) =
1 and similar for (X)≥1. Then the triangle above becomes a triangle in
DbF (A) and we have for all n ∈ Z

grn((X)≤0) =

{
(X)≤0, if i = 0

0, if i 6= 0
grn((X)≥1) =

{
(X)≥1, if i = 0

0, if i 6= 0

Thus (X)≤0 ∈ DbF (A)≤0 and (X)≥1 ∈ DbF (A)≥1. We also see that
ω((X)≤0) ∈ Db(A)≤0 = Db(A)≤b(X)−1 and ω((X)≥1) ∈ Db(A)≥1 =
Db(A)≥a(X)+1.

Now assume for all X such that l(X) ≤ n we can find triangles

(X)≤0 → X → (X)≥1 → (X)≤0[1]

inDbF (A) where ω((X)≤0) ∈ Db(A)≤b(X)−1 and ω((X)≥1) ∈ Db(A)≥a(X)+1.
Let X be such that l(X) = n + 1. Without loss of generality we can as-
sume a(X) < 0 and b(X) > 0. By using the truncation on filtration there
is a triangle

(X)≥1F → X → (X)≤0F → (X)≥1F [1]

where l((X)≥1F ), l((X)≤0F ) ≤ n. Note that b((X)≤0F ) = 1 = a((X)≥1F ). We
can then, from the induction hypothesis, find the diagram
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((X)≤0F )≤0[−1] (X)≤0F [−1] ((X)≤0F )≥1[−1] ((X)≤0F )≤0

((X)≥1F )≤0 (X)≥1F ((X)≥1F )≥1 ((X)≥1F )≤0[1]

where the rows are triangles. By the assumption, and from the fact that
ω is triangulated, we have that

ω(((X)≤0F )≤0) ∈ Db(A)≤b((X)≤0
F )−1 = Db(A)≤0

ω(((X)≤0F )≤0[−1]) ∼= ω(((X)≤0F )≤0)[−1] ∈ Db(A)≤b((X)≤0
F )−1[−1] = Db(A)≤1

ω(((X)≥1F )≥1) ∈ Db(A)≥a((X)≥1
F )+1 = Db(A)≥2

From Lemma 4.4 we then have that

HomDbF (A)
(
((X)≤0F )≤0[−1], ((X)≥1F )≥1

)
= 0

HomDbF (A)
(
((X)≤0F )≤0, ((X)≥1F )≥1

)
= 0

Thus, from Proposition 3.1 there exist a unique map ((X)≤0F )≤0[−1] −→
((X)≥1F )≤0 such that the induced left square in the diagram above com-
mutes. Then from Lemma 4.6 we can find a unique commutative diagram
where the rows and columns are triangles

((X)≤0F )≤0[−1] ((X)≥1F )≤0 A ((X)≤0F )≤0

(X)≤0F [−1] (X)≥1F X (X)≤0F

((X)≤0F )≥1[−1] ((X)≥1F )≥1 B ((X)≤0F )≥1

((X)≤0F )≤0 ((X)≥1F )≤0 A[1] ((X)≤0F )≤0[1]

�

We claim that A = (X)≤0 and B = (X)≥1. Since grn is a triangu-
lated functor we see that grn applied to each row is a triangle in Db(A).
Since t-structures are closed under extensions by Lemma 3.2, we see that
grn(A) ∈ Db(A)≤0 for all n ∈ Z and therefore A ∈ DbF (A)≤0. Similarly
B ∈ DbF (A)≥1. What is left to show is that ω(A) ∈ Db(A)≤b(X)−1 and
ω(B) ∈ Db(A)≥a(X)+1.

We have ω((X)≥1F )≤0) ∈ Db(A)≤b((X)≥1
F )−1 = Db(A)≤b(X)−1 and ω((X)≤0F )≤0 ∈

Db(A)≤b((X)≤0
F −1 = Db(A)≤1−1 ⊆ Db(A)≤b(X)−1 where the last inclusion

comes from the fact that b(X) > 0 and the second axiom of t-structures.
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Thus, since ω is a triangulated functor, ω(A) ∈ Db(A)≤b(X)−1. Similarly
one shows the statement about ω(B).

The next proposition shows the relationship between the hearts of
the two t-structures.

Proposition 4.2. Let Db(A) and DbF (A) be equipped with t-structures
as above. Denote by H and HF the respective hearts. Then there is an
equivalence of categories

E : HF

∼=−→ Cb(H)

Proof. We construct E as follows: Let E(X)• be the complex defined by
(E(X))n = grn(X)[n] ∈ H. Given the two triangles

Fn+1X → Fn → grn(X)→ Fn+1X[1]

Fn+2X → Fn+1 → grn+1(X)→ Fn+2X[1]

we define the differential dn to be the composition

grnX[n]→ Fn+1X[n+ 1]→ grn+1[n+ 1]

Observe that dn+1 ◦ dn is the composition.

grnX[n]→ Fn+1X[n+ 1]→ grn+1[n+ 1]→ Fn+2[n+ 2]→ grn+2[n+ 2]

and since the two middle map are two consecutive maps in a triangle,
the composition is equal to the zero map. Thus dn+1 ◦ dn = 0 and we
have indeed a chain complex over H

E(X)• = · · · −→ grn−1(X)[n−1]
dn−1

−−−→ grn(X)[n]
dn−→ grn+1(X)[n+1] −→ · · ·

Since X has finite filtration grn = 0 for n < a(X) and n ≥ b(X), and
E(X)• is a bounded complex. We have to check E is fully faithful and
dense:

(faithful) If we can show that E is an exact functor, and reflects 0-objects,
then we can use Lemma A.4 to show that E is faithful.
Consider a short exact sequence 0 → X −→ Y −→ Z → 0 in HF .
From Corollary 3.2.1 this gives rise to a triangle X → Y → Z →
X[1] in DbF (A). Since grn is a triangulated functor we have a
triangle

grn(X)[n]→ grn(Y )[n]→ grn(Z)[n]→ grn(X)[n+ 1]
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in Db(A) for all n ∈ Z. Again from Corollary 3.2.1 we have that

0→ grn(X)[n]→ grn(Y )[n]→ grn(Z)[n]→ 0

is a short exact sequence in H for all n ∈ Z. We conclude that
0→ E(X) −→ E(Y ) −→ E(Z)→ 0 is a short exact sequence, and E
is exact.
Let X be such that E(X)• = 0, i.e. grn(X) = 0 for all n ∈ Z. As-

sume X 6= 0, and look at 0 = grb(X)−1(X) =
Fb(X)−1X

Fb(X)X
=

Fb(X)−1X

0
=

Fb(X)−1X which contradicts the definition of b(X). Thus we con-
clude that X = 0. We then have from Lemma A.4 that E is a
faithful functor.

(full) Let X, Y ∈ HF , and ϕ• ∈ HomCb(H)(E(X)•, E(Y •)). Visually ϕ•

looks like

· · · grn−1(X)[n− 1] grn(X)[n] grn+1(X)[n+ 1] · · ·

· · · grn−1(Y )[n− 1] grn(Y )[n] grn+1(Y )[n+ 1] · · ·

ϕn−1 ϕn ϕn+1

Now we want to construct a map ψ such that E(ψ)• = ϕ•. We
do this by constructing Fnψ for smaller and smaller n. Let b =
max{b(X), b(Y )}, and define Fnψ = 0 for n ≥ b. We then have a
commutative diagram of triangles

FbX Fb−1X grb−1(X) FbX[1]

FbY Fb−1Y grb−1(Y ) FbY [1]

0

0

ϕb−1[−b+1] 0

0

And we complete this to a map of triangles and define the dashed
arrow as Fb−1ψ. Using this map we get a new map of triangles

Fb−1X Fb−2X grb−2(X) Fb−1X[1]

Fb−1Y Fb−2Y grb−2(Y ) Fb−1Y [1]

Fb−1ψ ϕb−2[−b+2] Fb−1ψ[1]

and we define the dashed arrow to be Fb−2ψ. Inducting this process
we get maps Fnψ for all n ∈ Z that forms commutative diagrams

FnX Fn−1X

FnY Fn−1Y

Fnψ Fn−1ψ
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By gluing these maps we get a map ψ : X → Y such that E(ψ)• =
ϕ• and E is full.

(dense) Given a complex X• ∈ Cb(H) we need to find an object X̃ ∈ HF

such that E(X̃) ∼= X•. Let X• be a bounded chain complex in
Cb(H). Without loss of generality we can assume Xn = 0 for all
n < 0. X• is then of the form

· · · → 0→ X0 d0−→ X1 d1−→ · · · d
b−1

−−→ Xb → 0→ · · ·

We induct on the brutal truncation, σ≤n
(X•) (See Theorem 3.11).

◦ We let X̃•0 be the complex with X0 in degree 0 equipped with
trivial filtration such that a(X̃•0 ) = 0.

Then we have grn(X̃•0 ) =

{
X0, n = 0

0, n 6= 0
. Since X0 ∈ H, we see

that X̃•0 ∈ HF , and

E(X•) = [· · · → 0→ X0 → 0→ · · · ] = σ≤0
(X•)

◦ Let X1
F be the complex with X1 in degree 0 equipped with

trivial filtration such that a(X1
F ) = 1. Then, by abuse of nota-

tion, there is a map d0 : X̃•0 → X1
F where

Fn(d0) =

{
d0, n ≤ 0

0, n > 0
.
We can then complete this map to a triangle in DbF (A)

X̃•0
d0−→ X1

F → A→ X̃•0 [1]

define X̃•1 := A[−1]. Note that X1
F [−1], X̃•0 ∈ HF so X̃•1 ∈ HF .

Now we have the following observations:

− gr0(X1
F ) = 0 so gr0(X̃•0 ) ∼= gr0(X̃•1 ) = X0

− gr1(X̃•0 ) = 0 so gr1(X̃•1 ) ∼= gr1(X1
F )[−1] = X1[−1]

− F1X̃
•
0 = 0 so F1X̃

•
1
∼= F1(X

1
F )[−1] = X1[−1]

− FnX̃
•
0 = 0 = FnX

1
F [−1] for all n ≥ 2, so FnX̃

•
1 = 0 for all

n ≥ 2

We have two triangles

F2X̃
•
1 → F1X̃

•
1

β−→ gr1(X̃•1 )→ F2X̃
•
1 [1]

F1X̃
•
1 → F0X̃

•
1 → gr0(X̃•1 )

α−→ F1X̃
•
1 [1]

and by definition d0
E(X̃•1 )

:= β[1] ◦ α. Since F2X̃
•
1 = 0 we have

β[1] ∼= idX1
F

. From the map X̃•1 → X̃•0 we get a map of triangles
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F1X̃
•
1 F0X̃

•
1 gr0(X̃•1 ) F1X̃

•
1 [1]

F1X̃
•
0 F0X̃

•
0 gr0(X̃•0 ) F1X̃

•
0 [1]

f ∼=

g

∼=

Since, in particular, the middle square commutes we get a
commutative diagram

F0X̃
•
1 F0X̃

•
0 , F0X

1
F F0X̃

•
1 [1]

F0X̃
•
1 gr0(X̃•1 ) F1X̃

•
1 [1] F0X̃

•
1 [1]

d0

∼=g◦f−1

α

which we can complete to a map of triangles, and in particular
we see that α ∼= d0. Thus

E(X̃•1 ) ∼= [· · · → 0→ X0 d0−→ X1 → 0→ · · · ] =σ≤0
(X•)

◦ Now assume we can find X̃•n such that E(X̃•n) = σ≤n
(X•) then

we have the following observations

− gri(X̃•n) =

{
X i[−i], for 0 ≤ i ≤ n

0, else

− FnX̃
•
n = Xn[−n]

− Fn+iX̃
•
n = 0 for all i > 0

Let Y n+1
F be the complex with Xn+1 in degree 0 equipped with

trivial filtration such that a(Y n+1
F ) = n. Now given E(X̃•n) and

E(Y n+1
F [−n])) there exist a map

E(X̃•n) : · · · Xn−1 Xn 0 · · ·

E(Y n+1
F [−n])) : · · · 0 Xn+1 0 · · ·

dn−2 dn−1

dn

From the construction in the proof of E being full, there exist
a map ϕ : X̃•n → Y n+1

F [−n] such that Fnϕ = dn[−n]. Now let
Xn+1
F [−n] be the complex with Xn+1[−n] in degree 0 equipped

with trivial filtration such that a(Xn+1
F [−n]) = n+1 then there

exist a map ι : Y n+1
F [−n]→ Xn+1

F [−n] where

Fi(ι) =

{
idXn+1[−n], i ≤ n

0, i > 0
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By abuse of notation define dn[−n] := ι◦ϕ : X̃•n → Xn+1
F [−n],

and observe that in particular Fn(dn[−n]) = dn[−n]. We com-
plete this map to a triangle

X̃•n
dn[−n]−−−−→ Xn+1

F [−n]→ A→ X̃•n[1]

and define X̃•n+1 = A[−1]. Observe that since X̃•n, X
n+1
F [−n−

1] ∈ HF we have that X̃•n+1 ∈ HF . By a similar argument as
before we conclude that dn

E(X̃•n+1)
[−n] ∼= dn[−n], and

E(X̃•n+1)
∼= σ≤n+1

(X•). Thus given our original complex X•

we see that E(X̃•b ) ∼= σ≤b
(X•) ∼= X• and E is dense.

4.3 The realization functor

We are now ready for the main results of the thesis. We have defined the
tools to construct the realization functor, and to prove when this functor
becomes an equivalence.

Theorem 4.10. Let A be an abelian category, and let Db(A) be the
bounded derived category equipped with t-structure (Db(A)≤0, Db(A)≥0)
with heart H. There exist a t-exact functor

real : Db(H) −→ Db(A)

such that real|H = idH

Proof. Let E be the equivalence from the lemma above, then we have
the composition

r̃eal : Cb(H)
E−1

−−→ HF ↪→ DbF (A)
ω−→ Db(A)

Let f : A• → B• be a quasi-isomorphism in Cb(H). Then we have a short
exact sequence

0→ B• −→ Cone(f •) −→ A•[1]→ 0

where Cone(f •) is acyclic. From Corollary 3.2.1, that E−1 is exact, and
the fact that ω is triangulated, the short exact sequence will be sent to
the triangle

r̃eal(A•)→ r̃eal(B•)→ r̃eal(Cone(f •))→ r̃eal(A•)[1]
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Further, given the cohomological functor Hn
H from Theorem 3.10, we see

that Hn
H ◦ r̃eal is equal to the canonical homology functor. In particular

Hn
H(r̃eal(Cone(f •))) ∼= Hn(Cone(f •)) = 0

for all n ∈ Z. Thus every quasi-isomorphism is sent to an isomorphism.
And from the definition of localization we get a commutative diagram

Cb(H) Db(A)

Db(H)

r̃eal

localization ∃!

where the unique map is the map we are looking for. We name the new
functor the realization functor, or just real. Since the diagram com-
mutes we see that real is triangulated. Given an object X ∈ H, X is
isomorphic to the stalk complex in Cb(H) with X in degree 0. In partic-

ular Hn(X) =

{
X, if n = 0

0, else
.

Thus, since we have Hn
H(r̃eal(X)) ∼= Hn(X) = X we conclude that

real|H ∼= idH. Remember the the canonical t-structure on Db(H) is given
by

Db(H)≤0 = {X•|H i(X•) = 0, for i < 0}

Db(H)≥0 = {X•|H i(X•) = 0, for i > 0}

It is clear that real is t-exact with respect to the canonical t-structure.

Remark. Given a triangulated category T with t-structure (T ≤0, T ≥0)
with heart H, it is possible to generalize this construction to get a real-
ization functor real : Db(H) → T provided that T can be lifted to a
filtered triangulated category; See [Bei87, Appendix] and [PV17]. It
is further possible to show that T can be lifted to a filtered triangu-
lated category provided that T is algebraic; see [Han20, Appendix]. The
uniqueness of such a realization functor is in general not known.

Now that we know the existence of such a functor, we can combine
everything previously shown in the thesis to arrive at a few very im-
portant results, particularly we will show sufficient conditions for the
realization functor to be an equivalence.
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Corollary 4.10.1. Let F : Db(H) → T be a realization functor to the
triangulated category T . Then given X ∈ Db(H) we have

(1) isomorphisms
Hn
H(F (X)) ∼= Hn(X)

for n ∈ Z
(2) If X is such that F (X) ∈ H then X ∈ H and consequently F (X) ∼=

X

Proof. (1) Since the realization functor is t-exact we have from Lemma
3.14 the isomorphisms

Hn
H(F (X)) ∼= F |H(Hn

H(X))

By definition of the realization functor we have that F |H = idH
and from Example 4 we see that Hn

H(X) ∼= Hn(X). Thus we have

Hn
H(F (X)) ∼= Hn(X)

(2) If X ∈ H then Hn
H(X) = 0 for n 6= 0. Combining this with the first

part we conclude that F (X) ∈ H and F (X) ∼= idH(X) ∼= X

Corollary 4.10.2. Let F : Db(H) → T be a realization functor to the
triangle category T , and let X, Y ∈ H then the following diagram com-
mutes

ExtnH(X, Y ) HomT (X, Y [n])

YExtnH(X, Y )

F

θn1

∼=
θn2

for n ≥ 1 and F : ExtiH(X, Y ) → HomT (X, Y [i]) is an isomorphism for
i = 1 and an injection for i = 2.

Proof. From Proposition 3.2 we have a commutative diagram

YExtnH(X, Y ) YExtnG(F (X), F (Y ))

HomDb(H)(X, Y [n]) HomT (F (X), F (Y )[n])

F |H

θn1 θn2

F

Since F is a realization functor we have F |H ∼= idH. This fact combined
with Theorem 3.11 gives us the diagram. Then from Lemma 3.4 part (1)
F : ExtiH(X, Y ) → HomT (X, Y [i]) is an isomorphism for i = 1 and an
injection for i = 2.
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Corollary 4.10.3. Let T be a triangulated category with bounded t-
structure with heart H. Let F : Db(H) → T be a realization functor
to the triangle category T , and let θn : YExtnH(X, Y ) → HomT (X, Y [1])
be the canonical map from Definition 7. Then the following are equivalent

(1) The realization functor F is full,
(2) The realization functor F is an equivalence,
(3) The canonical maps θn are isomorphisms for all n ≥ 1
(4) The canonical maps θn are surjective for all n ≥ 1

Proof. ”(1) ⇒ (2)” Assume F is full. Let X ∈ kerF , then F (X) ∈ H,
and from Corollary 4.10.1 part (2) we get that X ∼= 0. Thus from Lemma
A.5 we have that F is faithful. Further, since F is a realization functor,
F (H) ∼= H. Thus, by the boundedness of the t-structure on T we have
by Lemma 3.16 part (2) that F is dense.
”(2) ⇒ (3)” If F is an equivalence then from the commutative diagram
from the previous corollary we see that θn must be an isomorphism for
all n ≥ n
”(3) ⇔ (4)” If θn is an isomorphism then it is clearly surjective. If θn is
surjective for all n ≥ 1, then inductively using Lemma 3.4 part (1) and
(2) it is clear that θn is an isomorphism for all n ≥ 1.
”(3) ⇒ (1)” Observe that F in the diagram an isomorphism for n = 0,
and ExtnH(X, Y ) = 0 = HomT (X, Y [n]) for n < 0. Since T has bounded
t-structure we have from Lemma 3.16 part (1) that F is fully faithful.

Observation 4.10.1. Since θn is constucted independently of the realiz-
ation functor, we see that if part (3) is satisfied then every realization
functor is an equivalence. In other words if one realization functor is an
equivalence, then all realization functors are equivalences.

Theorem 4.11 ([CHZ18, Theorem 2.9]). Let T be a triangulated cat-
egory with bounded t-structure with heart H, and let F : Db(H) → T be
a realization functor. If F is dense, then F is an equivalence.

Proof. From Corollary 4.10.3 part (4) it suffices to show that the map
θn : YExtnH(X, Y ) → HomT (X, Y [n]) is surjective for all X, Y ∈ H
and n ≥ 1. We prove this by induction on n. Observe that by Lemma
3.4 part (1) the assertion is true for n = 1. Now assume it is true for
i ≤ n − 1. Then by Lemma 3.4 part (3) it is enough to show that any
f ∈ HomT (X, Y [n]) with X, Y ∈ H admits a factorization

X → Xn−1[n− 1]→ Y [n]
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for some Xn−1 ∈ H.
First note that f can be embedded in a triangle

X
f−→ Y [n]

g−→ Z̃ → X[1]

and since F is dense there exist a complex Z• ∈ Db(H) such that F (Z•) ∼=
Z̃ Applying the cohomological functor H0

H we get a long exact sequence

· · · H−1H (Y [n]) H−1H (F (Z•)) H0
H(X) H0

H(Y [n]) · · ·

Since H i
H(X) = 0 for all i 6= 0, and H i

H(Y [n]) = 0 for all i 6= −n we
get H i

H(F (Z•)) = 0 for all i 6= −n,−1. In particular we get that H−nH (g)
is an isomorphism. From Corollary 4.10.1 part (1) we have H i(Z•) ∼=
H i
H(F (Z•)) = 0 for i 6= −n,−1, and Z• is quasi-isomorphic to a complex

of the form

· · · → 0→ Z−n → Z−n+1 → · · · → Z−1 → 0→ · · ·

Therefore we may assume Z• is of this form in Db(H). Let π : Z• →
Z−n[n] be the canonical projection. Note that since Z−n ∈ H we have
from Lemma 4.10.1 part (2) that F (Z−n) ∼= Z−n. We then have a map
h[n] : Y [n]→ Z−n[n] given by the composition

Y [n]
g−→ F (Z•)

F (π)−−→ F (Z−n[n])
∼=−→ F (Z−n)[n]

∼=−→ Z−n[n]

Now H−n(π) is a monomorphism, therefore by Corollary 4.10.1 part
(1) the map H−nH (F (π)) is mono. Thus we conclude that, since H−nH (g)
is an isomorphism, the map

Y ∼= H−nH (Y [n])
H−n
H (h[n])∼=h−−−−−−−→ H−nH (Z−n[n]) ∼= Z−n

is a monomorphism. We then have a short exact sequence in H

0→ Y
h−→ Z−n → coker(h)→ 0

This embeds uniquely into a triangle in T by Corollary 3.2.1 and we have
a diagram of triangles

X Y [n] F (Z) X[1]

coker(h)[n− 1] Y [n] Z−n[n] coker(h)[n]

f

h[n]
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Since g ◦ f = 0, and from the definition of h[n] we see that h ◦ f = 0 and
the dashed arrows exist by Lemma 3.1 making the diagram into a map
of triangles. Thus we see that f : X → Y [n] admits a factorization

X → coker(h)[n− 1]→ Y [n]

with coker(h) ∈ H and we are done.





Chapter 5

HRS-tilting

An important example of the application of the realization functor is
the HRS-tilt. This was developed by Happel, Reiten and Smalø in 1996
[HRS96], and is an important tool in representation theory of quasi-
tilted algebras, and in the study of derived equivalence [Huy06]. We will
first define torsion pairs, and then describe how this induces a certain t-
structure on the derived category. Lastly we will show that if the torsion
pair is tilting, the realization functor on the induced t-structure becomes
an equivalence.

Definition 18. Let A be an abelian category, and (T ,F) be a pair of
full subcategories in A. We say that (T ,F) is a torsion pair in A if the
following conditions are satisfied:

(1) Hom(T, F ) = 0 for all T ∈ T and F ∈ F
(2) For all X ∈ A there exist a short exact sequence

0→ t(X)→ X → X/t(X)→ 0

such that t(x) ∈ T and X/t(X) ∈ F
If (T ,F) is a torsion pair, then

• T is called the torsion class
• T ∈ T is called a torsion object
• F is called the torsion free class
• F ∈ F is called a torsion free object

Observation 5.0.1. It is clear that T and F are closed under extensions,
T is closed under taking quotients and F is closed under subobjects.

81
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Lemma 5.1. Let A be an abelian category with torsion pair (T ,F)

(1) If X ∈ A, and HomA(X,F ) = 0 for all F ∈ F , then X ∈ T .
(2) If X ∈ A, and HomA(T,X) = 0 for all T ∈ T , then X ∈ F

Proof. We prove part (1), the second is dual. Given X ∈ A there is a
triangle

0→ t(X) −→ X −→ X/t(X)→ 0

with t(X) ∈ T and X/t(X) ∈ F . If HomA(X,F) = 0, then in the above
short exact sequence we see that t(X) ∼= X and X ∈ T

We can now show that a torsion pair induces a t-structure on the
derived category

Proposition 5.1 ([HRS96, Proposition 2.1]). Let (T ,F) be a torsion
pair in an abelian category A.
Let D≤0 = {X• ∈ Db(A)|H i(X•) = 0, i > 0, H0(X•) ∈ T }
and D≥0 = {X• ∈ Db(A)|H i(X•) = 0, i < −1, H−1(X•) ∈ F}
Then (D≤0,D≥0) is a bounded t-structure on Db(A).

Proof. We verify condition (1), (2) and (3) of the definition for a t-
structure.

(1) Let X• ∈ D≤0 and Y • ∈ D≥1 = {X• ∈ Db(A)|H i(X•) = 0 for i <
0 and H0(X•) ∈ F}. Assume there exist 0 6= f ∈ HomDb(A )(X

•, Y •).
So f can be represented by the roof

X̃•

X• Y •

q f

where f • is given by a morphism of complexes not homotopic to
zero. Using the truncation, and Proposition 3.1 we obtain the fol-
lowing map of triangles in Db(A)

(X̃•)≤0 X̃• (X̃•)≥1 (X̃•)≤0[1]

(Y •)≤0 Y • (Y •)≥1 (Y •)≤0[1]

a•

(f•)≤0 f• (f•)≥1

Following Example 3, since X̃• ∈ D≤0, we have that H i(X̃•) = 0
for i > 0. Then H i((X̃•)≥1) = 0 for all i ∈ Z. Thus (X̃•)≥1 ∼= 0
in Db(A), and a• is an isomorphism in Db(A). In particular, this
makes (f •)≤0 6= 0.
Again using trucation we get the map of triangles
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((X̃•)≤0)≤−1 (X̃•)≤0 ((X̃•)≤0)≥0 ((X̃•)≤0)≤−1[1]

((Y •)≤0)≤−1 (Y •)≤0 ((Y •)≤0)≥0 ((Y •)≤0)≤−1[1]

((f•)≤0)≤−1 (f•)≤0 ((f•)≤0)≥0

b•

Since Y • ∈ D≥0 we have that H i(Y •) = 0 for i < −1, and
((Y •)≤0)≤−1 = 0 in Db(A). We then get that b• is an isomorph-
ism. Since ((X̃•)≤0)≥0 = H0(X̃•) ∼= H0(X•) ∈ T , ((Y •)≤0)≥0 =
H0(Y •) ∈ F and since (T ,F) is a torsion pair this forces ((f •)≤0)≥0 =
0 which again forces (f •)≤0 = 0 which is a contradiction. Thus
f • = 0.

(2) We have

D≥0 = {X• ∈ Db(A )|H i(X•) = 0 for i < −1 and H−1(X•) ∈ F}
D≥1 = {X• ∈ Db(A )|H i(X•) = 0 for i < 0 and H0(X•) ∈ F}

D≤0 = {X• ∈ Db(A )|H i(X•) = 0 for i > 0 and H0(X•) ∈ T }
D≤1 = {X• ∈ Db(A )|H i(X•) = 0 for i > 1 and H1(X•) ∈ T }

In D≤0, we have H1(X•) = 0 we have that H1(X•) ∈ T . Thus
D≤0 ⊆ D≤1. A similar argument shows D≥1 ⊆ D≥0

(3) Let X• = (X i, di) ∈ Db(A ). Since (T ,F) is a torsion pair in A we
have an exact sequence

0→ t(H0(X•))
ι−→ H0(X•)

π−→ H0(X•)/t(H0(X•))→ 0

where t(H0(X•)) ∈ T and H0(X•)/t(H0(X•)) ∈ F .
We also have a short exact sequence

0→ Im(d−1)→ ker(d0)→ H0(X•)→ 0

Taking the pullback, PB, of the diagram

t(H0(X•))

ker(d0) H0(X•)

ι

we get from [Opp16, Proposition 13.7] a commutative diagram with
exact rows and columns
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0 0

0 Im(d−1) PB t(H0(X•)) 0

0 Im(d−1) ker(d0) H0(X•) 0

H0(X•)/t(H0(X•)) H0(X•)/t(H0(X•))

0 0

α

β ι

π

Let d−1 be the composite X−1
ρ−→ Im(d−1)

i−→ X0. Let d̃−1 = αρ :
X−1 → PB. We can then construct X̃•, as the following subcomplex
of X•:

· · · X−2 X−1 PB 0 0 · · ·d−3 d−2 d̃−1 0

with PB in degree 0. ThenH0(X̃) = PB/ Im(αρ) ∼= PB/ Im(d−1) ∼=
t(H0(X•)) ∈ T and X̃• ∈ D≤0.
Let X ′′• be the quotient complex X•/X ′•. Thus we obtain a triangle

X ′• → X• → X ′′• → X ′•[1]

in Db(A ). We have to show that X ′′• ∈ D≥1.
Note that H i(X ′′•) = 0 for i < 0. Now X ′′0 = X0/PB and X ′′1 =
X1. We get a commutative diagram with exact columns:

X ′• : · · · X−1 PB 0 0 · · ·

X• : · · · X−1 X0 X1 X2 · · ·

X ′′• : · · · 0 X0/PB X1 X2 · · ·

In particular we have a diagram with short exact rows and columns
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PB ker(d0) ker(d̃0)

0 PB X0 X0/PB 0

0 0 X1 X1 0

and from the 3×3 lemma we get H0(X ′′•) = ker(d̃0) ∼= ker(d0)/PB.
From the first diagram we know that ker(d0)/PB ∼= H0(X•)/t(H0(X•)) ∈
F and X ′′• ∈ D≥1. Hence the assertion holds.

In order to construct a derived equivalence, we need one more defin-
ition

Definition 19. Let Db(A) be the bounded derived category over an
abelian category A, and let (T ,F) be a torsion pair over A. The abelian
heart,

B = {X• ∈ Db(A)|H−1(X•) ∈ F , H0(X•) ∈ T , H i(X•) = 0 for i 6= 0, 1}

of the t-structure defined in the previous proposition is called the HRS-
tilt of A with respect to the torsion pair (T ,F).

Definition 20. Let (T ,F) be a torsion pair in an abelian category A.

(1) We say a torsion class T is a tilting torsion class if T is a co-
generator for A (I.e. if for all X ∈ A, there exist an object TX ∈ T
together with a monomorphism µX : X ↪→ TX)

(2) Dually we say a torsion free class F is a cotilting torsion free
class if F is a generator for A.

Lemma 5.2. Let A be an abelian category with a torsion pair (T ,F). If
T is tilting then every X• ∈ Db(A) is quasi-isomorphic to a complex T •

where every T i ∈ T

Proof. Let X• ∈ Db(A). Since Db(A) is bounded we can without loss of
generality assume X i = 0 for i < 0 and i > n for some n ≥ 1. Since T
is tilting there exist a T 0

X and a monomorphism X0 ↪→ T 0
X . Taking the

pushout we then construct a complex as the bottom in the diagram

· · · 0 X0 X1 X2 · · ·

· · · 0 T 0
X T 0

X

∐
X1 X2 · · ·
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Observe that since the map X0 → T 0
X is mono, the pushout square is also

a pullback square. Thus by [Opp16, Proposition 13.7] the complexes are
quasi-isomorphic. Again taking the pushout and using the fact that T is
tilting we construct a further complex as the bottom row in the diagram

· · · 0 T 0
X TX

∐
X1 X2 X3 · · ·

· · · 0 T 0
X T 1

X T 1
X

∐
X2 X3 · · ·

The complexes are again quasi-isomorphic. Continuing this process we
get a quasi-isomorphism X• ↪→ T •X where every T iX ∈ T

Now we are ready to construct a derived equivalence and state the
main theorem of this section:

Theorem 5.3. Let A be an abelian category with a torsion pair (T ,F),
and let B be its corresponding HRS-tilt. If T is a tilting torsion class then

there exist a triangle equivalence F : Db(B)
∼=−→ Db(A), where F |B = idB

Proof. From Theorem 4.10 there exist a realization functor F : Db(B)→
Db(A) where F |B = idB. To show that F is an equivalence it is enough
by Theorem 4.11 to show that F is dense. Let X• ∈ Db(A). Since T is
tilting, we get from the previous lemma a quasi-isomorphism X• → T •,
where T i ∈ T . T • is on the form

· · · T n−1 T n T n+1 · · ·
dn−2
T dn−1

T dnT dn+1
T

Observe that each T i is in B, thus F (T i) = F |B(T i) = idB(T i) = T i and
F (diT ) = F |B(diT ) = idB(diT ) = diT .
We conclude that F (T •) = T • ∼= X• and F is dense.

Remark. In the original construction and proof of the derived equivalence
of the HRS-tilt, [HRS96, Theorem 3.3], it is assumed enough injectives
and projectives, however as we have seen this is unnecessary.
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Appendix A

Basic results

Lemma A.1 (Yoneda Lemma). Let C be a category, let and C ∈ C ,
and let F : C → Set be a covariant functor. Then the map

{natural transformations HomC (C,−)→ F )} → F (C)

α 7→ αC(1C)

is a bijection.

Corollary A.1.1. Let

α : HomC (A,−)→ HomC (B,−)

is a natural transformation. Then, for all C ∈ C

αC = [− ◦ f ] : HomC (A,C)→ HomC (B,C)

with a unique f : B → A.

Proof. Let ϕ ∈ HomC (A,C) Then from the naturality of α the following
diagram commutes

HomC (A,A) HomC (B,A)

HomC (A,C) HomC (B,C)

αA

ϕ◦− ϕ◦−

αC

In particular ϕ◦ (αA(1A)) = αC(ϕ) From the Yoneda lemma we have the
bijection

Homfun(HomC (A,−),HomC (B,−))→ HomC (B,A)

α 7→ αA(1A)

89
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So define f := αA(1A) ∈ HomC (B,A), and we get

αC(−) = [− ◦ f ] : HomC (A,C)→ HomC (B,C)

Theorem A.2. Given a locally small category C , i.e. given X, Y ∈ C ,
HomC (X, Y ) forms a set. Let A,B,C ∈ C . Then the sequence A →
B → C → 0 is exact if and only if 0→ HomC (C,−)→ HomC (B,−)→
HomC (A,−) is exact.

Proof. Given the sequence 0→ HomC (C,−)
β−→ HomC (B,−)

α−→ HomC (A,−).
We have from the previous corollary that, for all M ∈ C , αM = [− ◦ f ]
and βM = [− ◦ g] for unique f : A → B and g : B → C. For any M
we have, given two ϕg, ψg ∈ HomC (B,M), if ϕg = ψg then by the in-
jectivity of β there is a unique object φ such that φ ◦ g = ϕg = ψg. Then
ϕ = φ = ψ and g is an epimorphism. So there exist a unique sequence

A
f−→ B

g−→ C → 0

First let M = C, we then have

αCβC(1C) = αC(1C ◦ g) = 1C ◦ g ◦ f = 0

so gf = 0 and Im(f) ⊆ ker(g).
Now let M = coker(f), and let π : B � coker(f) be the projection. Then

αcoker(f)(π) = π ◦ f = 0

so by the exactness of the sequence there exist a ϕ ∈ HomC (C, coker(g))
such that βcoker(g)(ϕ) = π. We see that π = ϕ ◦ g. Since coker(f) =
B/ Im(f) we have by the first isomorphism theorem that B/ ker(π) ∼=
B/ Im(f) and in particular ker(π) ∼= Im(f). We conclude by seeing that
ker(g) ⊆ ker(π) ∼= Im(f).
For the converse, see [Opp16, Theorem 16.2]

Corollary A.2.1. If HomC (B,−) ∼= HomC (A,−) then A ∼= B

Proof. If HomC (B,−) ∼= HomC (A,−). Then it fits in an exact sequence

0→ HomC (B,−)→ HomC (A,−)→ 0

and from the previous theorem there exist a unique exact sequence

0→ A→ B → 0

and A ∼= B
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Observation A.2.1. Every statement above has a dual. In particular The
sequence 0→ A→ B → C is exact if and only if

0→ HomC (−, A)→ HomC (−, B)→ HomC (−, C)

and if HomC (−, A) ∼= HomC (−, B) then A ∼= B

Definition 21 (Cohomological functor). An additive functor F : C → A
from a triangulated category C to an abelian category A is called a
cohomological functor if for any distinguished triangle X → Y →
Z → X[1] in C , the sequence

F (X)→ F (Y )→ F (Z)

is an exact sequence in A.

Observation A.2.2. By the rotation axiom of triangulated categories the
definition of a cohomological functor F is equivalent to for any distin-
guished triangle X → Y → Z → X[1] the sequence

· · · → F (X[n])→ F (Y [n])→ F (Z[n])→ F (X[n+ 1])→ · · ·

is long exact.

Lemma A.3. Let C be a triangulated category, and T ∈ C . Then
HomC (T,−) and HomC (−, T ) are cohomological.

The proof of the lemma can be found in [Opp16, Theorem 32.4].

Lemma A.4. Let F : A → B be an exact functor between abelian
categories. If F reflects 0-objects (i.e. F (X) = 0 implies X = 0), then F
is faithful.

Proof. Let ϕ ∈ HomA (A,B) such that F (ϕ) = 0. We know ϕ factors
through the image

A B

Im(ϕ) ∼= A/ ker(ϕ)

π

ϕ

ι

where π is an epimorphism, and ι is a monomorphism. Since F is assumed
to be exact F (π) is still an epimorphism, and F (ι) is a monomorphism.
Thus 0 = F (ϕ) = F (ι)F (π) which implies that F (ι) = 0 since F (π)
is an epimorphism. Since F (ι) is mono we have F (A/ ker(ϕ)) = 0 and
thus from the assumption that F reflects 0-objects we conclude that
A = ker(ϕ) and ϕ = 0. Thus the kernel of the map HomA (A,B) →
HomB(F (A), F (B)) is zero and F is faithful.
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Lemma A.5. Let C → D be triangulated categories, and let F : C → D
be a triangulated functor. If F is full and ker(F ) ∼= 0 then F is faithfull.

Proof. Let X, Y ∈ C , and let f : X → Y be a morphism such that
F (f) = 0. We can complete f to a triangle

X
f−→ Y

g−→ Z → X[1]

Since F is triangulated we get a triangle

F (X)
F (f)−−→ F (Y )

F (g)−−→ F (Z)→ F (X)[1]

where F (g) is an isomorphism. Then, as F is full, there exist a map

h : Z → Y such that F (hg) = idF (Y ). Now we complete Y
hg−→ Y to the

triangle

Y
hg−→ Y → Z̃ → Y [1]

Then F (Z̃) ∼= 0, and since ker(F ) = 0 we have Z̃ ∼= 0, and hg is an
isomorphism. Thus we can conclude that g is a split monomorphism,
and in particular f = 0. Thus F is faithful.
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