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Abstract

When doing regression analysis, we are often interested in what predictors have the
strong influence on the response. While a lot of research has been done in this context
on linear regression models, there is still a lot to explore in mixed-effect models. It
is common in linear regression models that the importance of the predictors should
be a decomposition of the variance explained by the model. In mixed-effect models it
is not immediately clear what proportion of variance is explained by the fixed-effects
and what is explained by the random-effects.

This thesis aims to discuss the extension of an existing method of assigning relative
importance in linear regression models and compare the new extended method to vari-
able importances assigned by a random forest method. The methods will be illustrated
on two examples, namely a simulated data set and a study of children’s activity level
(SPLASHY).

Random forests are a statistical learning method that naturally can provide a relative
importance measure. Although random effects in trees are not so straightforward, it
is possible to encode a random effect variables as a categorical variables to make the
trees handle the random effects. The variable importance estimate from the random
forests can then be used as a comparison for the relative variable importance metric in
random intercept models. However, since the importances assigned in a random forest
does not decompose a model statistic and the magnitude of the importances depend on
the scale of the response, the importances are standardized before comparison.

The existing method for assigning relative variable importance in a regular linear
regression models, called the LMG-method, requires a goodness-of-fit measure. It is
common to use the explained variance, R2. However, for linear mixed models, there are
several ways to define R2. Most importantly, a distinction is made between marginal
and conditional R2 where the marginal considers only the variance explained by the
fixed predictors and the conditional considers the variance explained by the random
intercept in addition to the fixed predictors.

An R package with functions to calculate the relative importance in random intercept
models is also a product of this thesis. How to install and use it is described in
Appendix A.
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Sammendrag

I en regresjonsanalyse er vi ofte interessert i hvilke parametere som har størst p̊avirkn-
ing p̊a responsvariabelen. Selv om det er gjort mye forskning p̊a dette omr̊adet n̊ar
det kommer til lineære regresjonsmodeller, er det fortsatt en del som kan utforskes
n̊ar det kommer til blandede modeller. I lineære regresjonsmodeller er det vanlig at
viktigheten til parameterene er en dekomposisjon av variansen som er forklart av mod-
ellen. I blandede modeller er det ikke åpenbart hvor stor andel av variansen som er
forklart av faste effekter og hvor stor del som er forklart av blandede effekter.

Form̊alet med denne avhandlingen er å diskutere en utvidelse av en eksisterende
metode for å bestemme relative viktighet i lineære regresjonsmodeller, og sammen-
ligne den utvidede metoden med relativ viktighet fra random forests. Metoden vil bli
illustrert p̊a to eksempler, et simulert datasett og en studie av aktivitetsniv̊aet til barn
(SPLASHY).

Random forests er en statistisk læringsmetode som naturlig kan gi et m̊al p̊a relativ
viktighet. Selv om det å h̊andtere blandede effekter i trær ikke er helt rett frem, er
det mulig å kode blandede effekt variable som kategoriske variable for å gjøre de mer
h̊andterbare for trær. Estimatet av variabelviktighet fra random forests kan da bli
brukt som en sammenligning for det relative variabelviktighetsm̊alet fra de blandede
modellene. Siden viktighetene som blir tildelt variablene i en random forest ikke
dekomponerer en modellstatistikk, og størrelsen p̊a viktighetene avhenger av skalaen
til responsen, blir viktighetene standardiserte før sammenligning.

Den eksisterende metoden for å tildele relativ variabelviktighet i vanlige lineære mod-
eller, kalt LMG-metoden, krever et godhetsm̊al (goodness-of-fit) p̊a modellen. Det er
vanlig å bruke forklart varians, R2. For blandede lineære modeller er det i midlertid
flere m̊ater man kan definere R2. Viktigst er skille mellom marginal og betinget R2,
hvor marginal kun tar hensyn til variansen forklart av de faste effektene, mens betinget
tar hensyn til variansen forklart av b̊ade de blandede og de faste effektene.

En R pakke med funksjoner for å beregne de relative viktighetene i tilfeldig skjæringspunk-
tmodeller er ogs̊a et produkt av denne avhandlingen. En beskrivelse for hvordan
installere og bruke denne pakken finnes i Appendix A.
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Chapter 1

Introduction

Linear regression models are frequently used in statistical analyses. One of these
models’ main objective is to explain the influence of a set of regressors on a response
variable. In this context, it can be interesting to know how influential each predictor is
relative to each other. There are several ways relative importance can be defined, and
for linear models an intuitive metric is to take the size of the (standardized) coefficients
or the p-value of the coefficient. However, these metrics have some limitations for
assessing relative variable importance.

In recent years tree-based models have seen an increase in popularity due to their
ability to map non-linear relationships with high accuracy. Random forest is a tree-
based method that can handle both regression and classification problems using either
continuous or categorical regressor variables. One positive aspect of random forests
models is that they can provide an estimate of the variable importance of the variables
in the model (Breiman, 2001; Strobl et al., 2008; Zhu et al., 2015).

The topic of how to assign variable importance has been widely discussed in linear
regression literature (e.g., Pratt, 1987; Kruskal and Majors, 1989; Liu et al., 2014;
Grömping, 2015). A straightforward idea is to decompose the total variance explained
by the model, R2, into shares explained by the individual predictors. Several studies
has also been done on relative importance in random forests (Breiman, 2001; Strobl
et al., 2008; Zhu et al., 2015; Gregorutti et al., 2017). In random forests, on the other
hand, it is common to assign importance to the predictors equal to the predictor’s
contribution to the reduction in error (James et al., 2013). The magnitude of the
importances, therefore, depends on the scale of the response variable.

Decomposing the variance of a linear model is simple when the covariates in the model
are uncorrelated, but it is not obvious when the covariates are correlated with each
other, which they typically are in most real-world applications. This is because the
covariates absorb variance from each other in particular when one is not included in
the model. Lindeman et al. (1980) suggested a method for assigning relative variable
importance in regular linear regression models when regressors are correlated. The
method is often referred to as the LMG-method due to the initials of the authors. This
method is reviewed in detail by Grömping (2015), which also compares the method
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with other common methods of assigning variable importance. It is the LMG-method
that will be the main focus of this thesis.

The LMG-method has previously been used to assign importances to the regressors in
linear regression models by decomposing the explained variance of the full regression
model (Grömping, 2007). The relative importance assigned to a predictor represents
the amount of variance explained by that predictor. The way Lindeman et al. (1980)
assign relative importance is by looking at all possible permutations of the regressors in
all the subset models of the full model, where the assigned importance to a predictor
is the average incremental goodness of fit when a regressor is added to a subset-
model. This way of assessing relative importance is by several researchers regarded
as a comprehensive approach for determining variable importance (Grömping, 2015;
Cançado, 2018). The largest relative variable importance is assigned to the variable
that gives, on average, the biggest increment to the assessment of the model fit. The
LMG-method is, however, restricted to regular linear regression models.

It is not uncommon in applications that observations are correlated. In medical and bi-
ological analysis there is often more than one measurement per subject, this is referred
to as repeated measures. Mixed-effects models are designed to handle these types of
data by letting observations of one subject get their own intercept and/or slope. If a
regular linear model is fitted, the model residuals would be treated as independent,
which they are not if two or more observations are correlated, resulting in too small
standard errors in the model coefficients.

While the main focus of earlier papers has been on assigning variable importances in
regular linear models, the topic of assigning relative importance in mixed-effect models
has lacked attention. As of today, there is no universal agreement on how to assign
relative importances in mixed-effect models, and there is still some work to be done.
Liu et al. (2014) have explored the use of the Pratt index, a method suggested by Pratt
(1987). The Pratt index is a share assigned to a regressor equal to the standardized
regression coefficient corresponding to the regressor times the correlation between the
regressor and the response. Grömping (2015) mentions the Pratt index as too simple
and argues that the Pratt index violates essential properties that a variable importance
metric should possess, such as avoiding to assign negative importances. Byhring (2020)
proposed a way of extending the LMG-method to handle random intercept models,
this method is described in Chapter 2. It is of interest that the relative importance
metric of a regressor should, as in the regular linear regression models, reflect the
proportion of variance explained by the respective regressor.

While it is common in a regular linear regression model to do an R2 decomposition
into shares that are assigned to each of the variables, it is not directly obvious how
to define R2 in mixed models. It is in principle possible to do a decomposition of
the Akaike Information Criterion (AIC) or the Bayesian information criterion (BIC),
as these methods are used to assess the model-fit of mixed effect models. However,
AIC and BIC only provide an estimate of the relative fit in comparison with other
model-fits. The relative importance assigned to a regressor would then not have a
practical meaning in comparison to the R2 decomposition in regular linear regression
models. It would therefore be desirable to have a measure of the explained variance
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in a mixed effect model. Nakagawa and Schielzeth (2013) have proposed several ways
of extending the explained variance in regular linear regression models to linear mixed
models and generalized linear mixed models. This will be discussed further in Chapter
2, where we outline the theory.

Chapter 2 presents the relevant theory and begins by introducing the linear regression
model and a common definition of R2 for this model. We then go on to mention some
useful properties a variable importance metric should possess and defines the LMG-
metric for the linear regression model before we introduce the random intercept model
and look at how R2 can be defined for this type of models. Several possible definitions
of relative importance in random intercept models are provided in Chapter 2. We
present some tree-based methods and describe how these methods handle categorical
variables, along with relative importance metrics for these methods. The theory is
concluded with a section on how to sample a synthetic data set where it is easy to
control the parameters of a random intercept model. In Chapter 3 we look at two
data sets, fit different statistical models to the data sets and calculate the relative
importances. Chapter 4 contains a comparison of the assigned importances from the
random intercept models and random forest models, and we discuss the performance
of the suggested extension to the LMG-method. The R code used to implement the
methods will be provided in the Appendix.
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Chapter 2

Theory

2.1 Linear regression model and R2

When there is a linear relationship between the predictors, X, and the response, Y , it
is possible to use a linear model to do regression analysis. Linear regression is a form
of supervised learning. That is, the response is known and used to improve the model
fit. This is a simple yet powerful way to predict the quantitative relationship between
the response and the predictors. We begin by looking at a standard linear regression
model of the form

yi = β0 + βTxi + ε , (2.1)

where yi is the ith response, β0 is the model intercept, βT is the vector of fixed slopes
corresponding to the covariates xi with elements (x

(1)
i , x

(2)
i , · · · , x(p)i ) and ε is the error

term, which is a collection of the information the model is unable to catch due to
its simplicity. The error term is assumed to be normally distributed with mean zero,
variance σ2

ε and is independent of x. Since there are p covariates, β is a (p× 1) vector
and assuming y is a (1× n) vector, then xi is a (p× n) matrix.

The model used to make predictions can be defined as

ŷi = β̂0 + β̂
T
xi ,

where β̂0 and β̂ are the estimated coefficients of the model. It is common to refer to
difference between the observed and the predicted values as residuals, e = (e1, · · · , en).
The ith residual is defined as

ei = yi − ŷi .

The residuals, ei, are assumed to be independent and identically distributed

ei ∼ N (0, σ2
ε) .
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The coefficients β̂0 and β̂
T

are chosen such that the sum of the squared residuals,

n∑
i=1

e2i =
n∑
i=1

(yi − ŷi)2 , (2.2)

is minimized.

The coefficient of determination, R2, is a measure of the proportion of variance ex-
plained by all the covariates in the model. This measure is commonly used to evaluate
the goodness of fit in linear regression models. The R2 takes values between 0 and 1,
and the closer the value is to 1, the more of the variance is explained by the model.
The variance of the response Y can be decomposed as

Var(Y ) = Var(Ŷ ) + Var(e),

since the residuals, e, are assumed to be independent of the covariates, x. The pro-
portion of variance that is explained can be expressed as

R2 =
Var(Ŷ )

Var(Y )
=

Var(Y )− Var(e)

Var(Y )
= 1− Var(e)

Var(Y )
. (2.3)

This expression for the variance explained can be interpreted as 1 minus the variance
unexplained.

Figure 2.1: The left plot shows a linear model fitted to the data and the red squares
visualizes the residuals (yi− ŷi)2 for the tenth and eleventh data point. The right plot
shows the mean of the data, y, as a horizontal line and the blue squares shows the
residuals (yi − y)2 for the tenth and eleventh data point.

Figure 2.1 illustrates the squared residuals (yi − ŷi)2 and the total squares (yi − y)2.
The sum of squared residuals is often referred to as RSS, and the total sum of squares
is referred to as TSS. It is possible to rewrite equation (2.3) in terms of the RSS and
TSS. This leads to the most common definition of R2 for a standard linear model,
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R2
LM = 1− RSS

TSS
= 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − y)2
,

where y is the grand mean of the response and the subscript LM signifies that the
model is a regular linear model as defined in equation (2.1). For the R2 to take values
close to 1 it is necessary for the sum of squared residuals, defined in equation (2.2),
to be as small as possible. If the value of R2 is exactly one, the model fits the data
perfectly and all residuals are ei = 0.

2.2 Relative importance in linear regression models

It is sometimes of interest to find out what proportion of the variance of the response,
Y , is explained by each of the predictors, X’s, instead of the ensemble of all predictors.
The proportion of variance explained will represent its relative importance.

The expression for the variance of the response, Y , can be written

Var(Y ) = Var

(
p∑

k=1

βkx
(k)

)
+ σ2

ε

=

p∑
i=1

β2
i αi + 2

p−1∑
k=1

p∑
l=k+1

βkβlρkl + σ2
ε ,

(2.4)

where αi denotes the variance of x(i) and ρi,j denotes the covariance between xi and
xj. From equation (2.4) we see that when the regressors are uncorrelated the variance
simply becomes

Var(Y ) =

p∑
i=1

β2
i αi + σ2

ε .

In this situation decomposing the variance of the response becomes very easy. It simply
decomposes into the contributions β2

i αi. On the other hand, when the regressors are
correlated, it is not obvious how the different regressors contribute to R2. The reason
for this is that when regressors are correlated they absorb variance from each other
when one is not included in the model.

When defining a variable importance metric it is often of interest that the metric
has certain properties. Grömping (2015) lists several properties for a relative variable
importance metric which are considered useful in the literature. The five most relevant
metrics are the following:

• Proper decomposition: the model variance is decomposed, that is, the sum of all
shares is the model variance (or R2, depending on normalization).
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• Orthogonal compatibility : The decomposition respects orthogonal subgroups, i.e.,
for each orthogonal subgroup of regressors, the assigned shares sum to the unique
overall model variance (or R2) for that subgroup.

• Non-negativity : all allocated shares are always non-negative.

• Exclusion: the share allocated to a regressor Xj with βj = 0 should be 0.

• Inclusion: a regressor Xj with βj 6= 0 should receive a non-zero share.

It is a common requirement that the metric should be properly decomposed into
non-negative shares, as this is a common request from customers of statistical anal-
ysis (Grömping, 2007). Hence these two properties (proper decomposition and non-
negativity) will be of main interest when extending the LMG-method to random inter-
cept models later in this thesis. Exclusion is often regarded as an undesirable criterion
when the relative importance question is asked with a causal interpretation (Grömping,
2007). There are methods for assigning relative importance in linear regression models
that are designed to fulfill the exclusion criterion, such as the proportional marginal
variance decomposition (PMVD) (Feldman, 2005). The downside to the methods de-
signed to fulfill the exclusion criterion is that they often require increased computation
effort and are harder to implement.

The LMG-method, as suggested by Lindeman et al. (1980), revolves around permuting
variables in subset models of the full model and then looking at the increment in R2

when a regressor is added to the model. It is, therefore, useful to introduce some
notation that will simplify calculations. The regressors will be labeled and denoted
X(1), · · · , X(p). The order of which regressors are entered into the model is denoted
r = (r1, · · · , rp), which is a permutation of the regressors with indices {1, · · · , p}.
The set of regressors that appears before X(1) in permutation r is denoted S1(r). In
general, we have that the set of regressors that appear before the ith regressor, X(i) in
permutation r is denoted Si(r).

Grömping (2007) defines evar(.) and svar(.) to further simplify notation for the
calculations

evar(S) = Var(Y )− Var(Y |Xj, j ∈ S)

svar(M |S) = evar(M ∪ S)− evar(S) ,

where evar(.) denotes the explained variance of a model with regressors from the set
S of regressors and svar(.) denotes the increase in explained variance when adding the
regressors from the set M of regressors to a model that already contains the regressors
from the set S.

The importance assigned to a regressor is equal to the average increment in R2 over
all possible permutations of regressors, when adding the regressor to the model. With-
out loss of generality Grömping (2007) defines the LMG for the first predictor, X(1),
as

LMG(1) =
1

p!

∑
π permutations

svar({1}|S1(π)),
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but this can easily be generalized to the ith predictor, X(i), as

LMG(i) =
1

p!

∑
π permutations

svar({i}|Si(π)), (2.5)

This is an unweighted sum of all orderings that contribute to the relative importance
metric for regressor i. To get a more intuitive understanding of the expression for
LMG in equation (2.5), Berg (2019) has written the expression in terms of R2,

LMG(i) =
1

p!

∑
π permutations

svar({i}|Si(π)) (2.6)

=
1

p!

∑
π permutations

(evar({i} ∪ Si(π))− evar(Si(π))) (2.7)

=
1

p!

∑
π permutations

(
R2
(
{i} ∪ Si(π)

)
−R2

(
Si(π)

))
. (2.8)

In equation (2.8), the notation R2 of a set of indices means R2 of the regular linear
regression model with the regressors corresponding to the indices.

We see that this is simply the average increase in the model R2 when adding X(i) to
the model in the respective permutation order averaged over all possible permutations.
Note that there are p! possible permutations, thus π = {1, · · · , p!}.

The order of the regressors that appear before a regressor, X(i), a permutation, π, is
irrelevant for the model fit, the same holds for the regressor that appears after X(i).
To illustrate this, consider the equivalent models

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + εi ,

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β5xi5 + β4xi4 + εi ,

yi = β0 + β2xi2 + β1xi1 + β3xi3 + β4xi4 + β5xi5 + εi and

yi = β0 + β2xi2 + β1xi1 + β3xi3 + β5xi5 + β4xi4 + εi .

(2.9)

Regardless of the order of the regressors that appear before and after X(3), the four
linear models in equation (2.9) are the same. The models, therefore, also have equal
R2. This can be used to reduce the number of required computations in equation (2.8).
Equation (2.8) can be written

LMG(i) =
1

p!

∑
S⊆(2,··· ,p)

n(S)!(p− n(S)− 1)!

(
R2
(
{i} ∪ S

)
−R2

(
S
))

, (2.10)

where n(S)! is the number of possible permutations of the predictors that appears
before X(i) and (p−n(S)−1)! is the number of possible permutations of the predictors
that appear after X(i). This reduces the numbers of summands required to compute
from π! to 2π−1.
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2.3 Random intercept models and R2

To model clustered or grouped data, for example in the presence of repeated obser-
vations on the same individual, we introduce a random intercept model. In the case
of random intercept models, the response, Y will have two indices, one specifying the
individual number, i, and one for the observation number, j. The random intercept
accounts for the fact that observations within the same individual i, yij and yik, are
correlated. The random intercept ensures that between two individuals i and r the
observations yij and yrj are uncorrelated. The random intercept, γi, can be interpreted
as ith individual’s deviation from the population mean.

The model equation for the j-th observation of the ith individual is

yij = β0 + γi + βTxij + ε , (2.11)

where β0 is the fixed population intercept, β is the the (1×p) vector of fixed population
slopes of the covariates xij and γi is the individual specific deviance from the population
intercept. The error, ε, and the individual specific deviances from the population
intercept is assumed to be independent from x and each other and normally distributed
with mean zero and variance σ2

ε and σ2
γ respectively, that is,

ε ∼ N
(
0, σ2

ε

)
γi ∼ N

(
0, σ2

γ

)
.

Let ρij be the covariance between the fixed regressors X(i) and X(j). Then for the
random intercept model defined in equation (2.11), the variance from the fixed effect
can be expressed as

σ2
f = Var

(
p∑

k=1

βkx
(k)

)

=

p∑
i=1

β2
i αi + 2

p−1∑
k=1

p∑
l=k+1

βkβlρkl,

(2.12)

where αi is the variance of the ith covariate. This is equivalent to the expression for the
variance of the response in regular linear regression models, as described in equation
(2.4), just without the variance from the residuals, σ2

ε . Thanks to the independence
assumptions for γi and εij the variance of Y can be written as a sum of all variance
components, that is,

Var(Y ) = σ2
f + σ2

γ + σ2
ε .

Defining R2 in a random intercept model is not as straightforward as one might first
think. It is therefore not uncommon that information criteria are used as comparison
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tools for mixed models. Information criteria are methods that evaluate the probability
of the data given the fitted model. However, there are several limitations to using
information criteria. They do not give any information about the overall goodness of
model fit, and they also provide no information about how much of the variance is
explained by the model (Nakagawa and Schielzeth, 2013). It is therefore of interest to
find a way to generalize R2 to random intercept models.

When defining R2 in random intercept models, a choice has to be made whether to
define R2 as the variance explained by the fixed effects alone, or the variance explained
by the random and fixed effects combined. Nakagawa and Schielzeth (2013) have
proposed several ways of defining R2 in linear mixed models and generalized linear
mixed models. In particular, Nakagawa and Schielzeth (2013) distinguish between
marginal R2, denoted R2

LMM(m), and conditional R2, denoted R2
LMM(c).

R2
LMM(m) is the proportion of variance explained by the fixed effect components alone.

The expression for the marginal R2 is

R2
LMM(m) =

σ2
f

σ2
f + σ2

γ + σ2
ε

. (2.13)

An advantage of this definition of R2 in random intercept models is that it never
becomes negative, in contrast to other proposed definitions of R2 (Nakagawa and
Schielzeth, 2013). It can occur that R2 decreases when a new variable is added,
although, this is unlikely as the variance explained by the fixed effects, σ2

f , always
increases when a new variable is added.

Nakagawa and Schielzeth (2013) also defined the conditional R2 as the variance ex-
plained by both the fixed effects and the variance of the random effects. In a random
intercept model, the only variance from the random effects is the random intercept
variance, σ2

γ. Thus the expression for the conditional R2 is

R2
LMM(c) =

σ2
f + σ2

γ

σ2
f + σ2

γ + σ2
ε

.

2.4 Relative importance in random intercept regression

model

There are different approaches to assigning importance to the regressors when we
generalize the LMG approach from linear models to linear mixed models. The two
main questions are:

• Are we going to assign importance to the random intercept?

• Should the random intercept be permuted as the other regressors?

If the random intercept is to be assigned an importance like the other variables, then
a possible approach is to permute it in the same way as the regressors. The LMG

10



expression for the ith regressor, X(i), then becomes

LMG(i) =
1

(p+ 1)!

∑
S⊆(1,··· ,p,RI)\i

n(S)!(p− n(S))!

(
R2
(
{i} ∪ S

)
−R2

(
S
))

, (2.14)

where RI stands for random intercept variable. The difference between this expression
and the LMG-expression for regular linear regression, described in equation (2.10) is
that there is now p + 1 variables that are to be permuted. Notice that the random
intercept is not always in the set S. That means the contributions sometimes are the
increase in R2 in a regular linear model when adding the predictor to the model, other
times it is the increase in R2 in a random intercept model.

From equation (2.14) it is evident that the LMG expression for the random intercept
becomes

LMG(RI) =
1

(p+ 1)!

∑
S⊆(1,··· ,p)

n(S)!(p− n(S))!

(
R2
(
{RI} ∪ S

)
−R2

(
S
))

. (2.15)

Observe that in equation (2.15) the share assigned to the random intercept is the
average increase in R2 when adding the random intercept to the models, thus always
comparing a random intercept model with a regular linear model. This might cause the
proper decomposition criteria to be violated. Another possible solution to overcome
the issue of improper decomposition is to not permute the random intercept but rather
let it be in the model in all permutations of the covariates. The LMG expression for
the ith regressor, X(i), then becomes

LMG(i) =
1

p!

∑
S⊆(1,··· ,p)\i

n(S)!(p− n(S)− 1)!

(
R2
(
{i} ∪ S

)
−R2

(
S
))

.

In this situation, the random intercept does not get assigned an importance, but
the importances should decompose the explained variance properly with no negative
shares regardless of whether R2

c or R2
m is used to compute the explained variance.

If R2
c is used, then the shares assigned to regressors are expected to be artificially

high when not assigning any importance to the random intercept. The reason is that
the random intercept variance is then (wrongly) interpreted as variance explained by
the fixed effects because the random intercept is already in the model when the first
predictor is added. Using R2

m defined in equation (2.13), instead of R2
c when calculating

the importances is expected to result in more realistic shares being assigned to the
regressors. The proper decomposition holds in both scenarios. However, when R2

m is
used to assess the model-fit, the relative importances sum up to the variance explained
by the fixed effects alone.

It is meaningful to assign an importance to the random intercept equal to the difference
of the marginal- and conditional R2 of the full model since R2

m will always be smaller
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than R2
c . The random intercept importance can then be defined as

LMG(RI) = R2
c −R2

m =
σ2
γ

σ2
f + σ2

γ + σ2
ε

, (2.16)

whereas R2
c and R2

m correspond to the explained variance of the full models. Further-
more, this ensures a proper decomposition of the full model’s R2

c . This can be easily
seen by rearranging equation (2.16) as

R2
c =

σ2
γ

σ2
f + σ2

γ + σ2
ε

+R2
m .

2.5 Tree-based methods

2.5.1 General theory of tree-based methods

We will begin by introducing regular decision trees and then proceed to introduce
bagging and random forest models before describing how variable importance is defined
in these models.

Decision trees divide the predictor space into n smaller non-overlapping regions, Rj,
where j ∈ {1, · · · , n}. The way predictions are made is by assigning a value to each
region, and the observations that fall into region j are predicted to be the average of
the response of the training samples that fell into the same region, j.

When creating a decision tree, the goal is to find the boxes R1, · · · , Rn that minimize
the residual sum of squares(RSS), defined by

n∑
j=1

∑
i∈Rj

(yi − ŷRj
)2 ,

where ŷRj
is the mean of the response of the observations that fall into region Rj in

the training data. A top-down, greedy approach called recursive binary splitting is
commonly used to partition the predictor space since it is infeasible to consider every
possible way of partitioning the predictor space. The approach selects a predictor Xp,
p ∈ {1, · · · , P}, where P is the total number of predictors, and a cut-off s for that
predictor such that the predictor space is divided into two regions {X|Xp < s} and
{X|Xp ≥ s}. The values for p and s are chosen such that it gives the biggest decrease
to the RSS. That is equivalent to minimizing the expression

∑
i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)
2 ,

where R1(p, s) = {X|Xp < s} and R2(p, s) = {X|Xp ≥ s} are the potential new
regions after the split, and ŷR1 is the mean of the responses for the observations
that fall into region 1 in the training set and ŷR2 is the mean of the responses for
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the observations that fall into region 2. This process is repeated on one of the two
new regions obtained from the previous split, resulting in three regions. The process
is repeated until a stopping criterion is fulfilled. A stopping criterion can be the
requirement that no regions should contain more than five observations.

Once the predictor space is partitioned into the regions R1, · · · , RJ , each region is
assigned a value equal to the average of the response values of the training observa-
tions that fall into the respective region. This value will be the predicted response of
observations that fall into the region.

Trees created using recursive binary splitting often overfits the training data. Remov-
ing some splits from the trees is a well-known strategy to combat this issue. This
method is called pruning. Removing splits in the tree randomly would not result in
very good trees. Intuitively, we want to remove the splits in the tree that give the best
results on the test data, that is, least residual squared if the problem is a regression
problem. However, it is infeasible to evaluate every possible subtree since that would
be extremely computationally heavy. A common way to prune trees is with cost com-
plexity pruning. This method does not consider every possible subtree, T of the full
tree, T0. Instead, it considers a sequence of trees indexed by a tuning parameter, α,
which is non-negative. If the tuning parameter, α, is zero, then no pruning will be
performed. The pruned tree, T ⊂ T0, is created such that

|T |∑
j=1

∑
i:xi∈Rj

(yi − ŷRj
)2 + α|T |

is minimized. Here |T | is the number of terminal nodes of the subtree T .

Regular decision trees often suffer from high variance. This means that if we split the
training sets into two parts randomly and proceed to fit a decision tree on both halves,
then the resulting trees may look very different. Bootstrap aggregation, often referred
to as bagging, and random forest are two different ways of creating trees with lower
variance.

If we have a set of training observations, (X1, · · · , Xn), that all have the same variance,
σ2, then the mean of the training observations

X =
1

n

n∑
i=1

Xi ,

has variance σ2

n
. Hence averaging over a set of observations reduces variance. To reduce

the variance of a tree-based method, it is possible to create many trees and then take
the mean of the created predictions. This will, in many cases, also lead to an increase
in prediction accuracy. However, creating a large number of trees also requires a lot
of training data.

Since the distribution of the training data, let’s call it D, is unknown, we do not have
any distribution to sample more data from. However, we can create a new set of train-
ing data D∗ by randomly drawing observations from the original training data D and

13



add the observation to D∗. It’s important to note that after an observation is drawn
and added to D∗ it is not removed from D. This means that D∗ can and will most
likely contain multiple of one observation. The distribution of D∗ converges to that of
D as the number of sampled observations increases. This method of upsampling data
is called bootstrapping. Both bagging and random forest make use of bootstrapping to
aggregate more training data.

Bagging is a statistical learning method that is designed to reduce variance and avoid
overfitting. It is done by creating B different bootstrapped training sets, (D∗1, · · · , D∗B),

and then fit a tree on each training set, which results in B trees, (f̂D∗
1
(x), · · · , f̂D∗

B
(x)).

These B trees produce B different predictions, which can be averaged to obtain one
single low variance prediction. The expression for this is

f̂bag(x) =
1

B

B∑
b=1

f̂D∗
B

(x) .

Unlike when creating regular decision trees, when bagging is performed the trees are
not pruned. Thus they have high variance and low bias. It is desirable that the trees
are deep since the variance becomes smaller when averaging the predictions from all
B trees.

If there are one or several very important predictors, then many of the B trees will
begin with a split on one of those important predictors. This causes the trees to be-
come similar and predictions from the trees to be correlated. Averaging correlated
predictions will lead to a lower decrease in variance than if the predictions were un-
correlated.

Random forest is a very similar method to bagging, in the sense that many trees are
grown on bootstrapped training samples, then one prediction is made by averaging all
the predictions made by each individual tree. The main difference between the two
methods is in how splits in the trees are done. In bagging the split can be done on any
predictor, and the one that gives the greatest decrease in RSS is chosen. On the other
hand, in a random forest, the split can only be done on a selection of m predictors.
These m predictors are chosen at random for each new split. Trees created using
random forest will often not have the option of splitting on the important variable
early, resulting in more variety in the trees. This leads to less correlated predictions,
which again leads to a greater decrease in the variance when averaging the predictions
made by all the trees.

The main difference between bagging and random forests is the number of predictors,
m, in the set of possible predictors to make a split on. In the RandomForest function
in the RandomForest package in R the default number of predictors, m, is set to be√
p for classification problems and

⌊
p
3

⌋
in regression problems. Here b.c is the floor-

function which rounds down to the nearest integer (e.g b4.8c = 4). Breiman (2001)
states that the mean squared errors of the predictions decrease with more features,
while correlations also increase, but the correlations increase slow, thus more features
are suggested. Liaw et al. (2002) suggests trying either the default, half the default,
or double the default for this parameter.
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There are different ways of assessing the performance of a bagging model or a random
forest model. One approach is to split the data set into training and test set before
training the model on the training set and then look at how well it performs on the
test set by looking at the residuals squared. Another approach is to use a method
called out-of-bag (OOB) error estimation. This method utilizes that on average only
2
3

of the observations are included in a bootstrapped training sample. This means we
can get a prediction for observation i by using the trees where observation i was not
used to create the tree. This is referred to as observation i being out-of-bag. Using
OOB error estimation eliminates the need to split the data into training and test sets.
In the random forest model, there are in particular two parameters that influence
the performance of the random forest, the number of predictors to choose from when
making a split, mtry, and the number of trees created, ntree.

2.5.2 Relative importance in bagging and random forest

It is not as easy to interpret bagging and random forest models as it is to interpret
simple decision trees, which can be visualized easily. However, it is possible to calculate
the variable importances. This can be done using the RSS in the case of regression
trees. The variable importance will be the total amount that the RSS is decreased
when a split is performed on the given predictor, then averaged over the B trees. If
a predictor contributes on average to large decreases in the RSS, it is regarded as
important.

The variable importance metric in random forests differs from that of linear models
because it is not decomposing a model statistic. The variable importance of linear
models always takes values between zero and one, while random forests’ variable im-
portance is only limited to positive values. This makes comparing them not so trivial.
One possible solution is to rescale the values for the importances for both methods,
such that they sum to one. This way it is possible to compare the two ways of assigning
importances, but they have no practical meaning after rescaling.

2.5.3 Categorical regressor variables in random forests

Random forests are a statistical learning method that can handle categorical regressor
variables. Categorical variables, Zi = {z1, · · · , zK}, are handled in random forests by
sending a subset of the categories, Z ⊂ Zi, to the left and the rest of the categories to
the right (Cutler et al., 2012).

By encoding a random factor variable (a variable indicating which cluster or individual
an observation belongs to) as a categorical variable it is possible to use a random forest
model on data set where observations within one cluster are correlated. Since random
forest models can provide variable importance, it serves as a good comparison for the
extension of the LMG-method, described in Chapter 2.4.
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2.6 Simulating data

Simulated data is data that is artificially created rather than being the result of a data
collection process. This is a cost-efficient way of obtaining data when testing how a
method works or illustrating a new method. When illustrating how new methods work,
it is not uncommon to use simulated data as this allow for tuning of the parameters
as well as the ability to increase or decrease the size of the data set, such that it is
possible to obtain a food understanding of advantages and limitations of a method.
Another benefit of synthetic data is that it is easily reproduced.

When creating a suitable data set for random intercept models, there are some prop-
erties it should possess. The expected value of the jth response of the ith individual,
Yij, should have expected value

E(Yij) = γi + β0 + β1x
(1)
ij + · · ·+ βpx

(p)
ij ,

where γi is the individual specific deviance from the global intercept β0, β =
(β1, · · · , βp) is the vector of slope parameters, x is the covariate matrix, and p is
the number of predictors. For the purpose of estimating relative importances it is
useful to be able to control the covaraince matrix of x, Σ. Here we draw x from
a multivariate normal distribution with mean vector µ and covariance matrix Σ.
The random intercepts γi + β0 should be independent of x and the errors εij and
identically distributed (i.i.d.) from a normal distribution with mean β0 and variance
σ2
γ. The errors εij should also be i.i.d. from a normal distribution with mean zero and

variance σ2
ε . Sampling data suitable for a random intercept model can therefore be

done by

X = (x(1), · · · ,x(p)) ∼ Np(µ,Σ)

εij ∼ N (0, σ2
ε)

γi ∼ N (0, σ2
γ)

Yij = γi + β0 + β1x
(1)
ij + · · ·+ βpx

(p)
ij + εij .

(2.17)

The covariance matrix Σ is chosen with ones on the diagonal, and it has to be sym-
metric and positive semi-definite, as this is a requirement for it to be a valid covariance
matrix.
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Chapter 3

Examples

This chapter is devoted to the examples of the methods described in the theory part.
First, we will take a closer look at the simulated dataset and see how the methods
perform when varying some of the parameters of the data. Then we will proceed to a
real-world example where we will look closer at a study of the physical activity among
children.

3.1 Simulated data

The simulation was done using R version 4.0.3, and the code is provided in the Ap-
pendix. Four different models have been fitted to the data: a regular linear regression
model, a linear regression model with one random intercept term, and two random
forest models. The random factor variable, Z, was excluded from the regular linear
model and from one of the random forest models. The resulting relative importances
will be presented at the end of this section.

The simulated data is sampled as described in section 2.6. First, four predictors of X,
X(1), X(2), X(3) and X(4), was sampled from a multivariate normal distribution with
mean, µ = 0 and covariance matrix,

Σ =


1 −0.3 0 0
−0.3 1 0 0

0 0 1 0.6
0 0 0.6 1

 .

We then proceeded to create a random factor variable, Z. This was done using a
categorical variable with 40 factors. Each factor was assigned 200 observations of
X. Due to the limitation of 53 factors in the randomForest package, the number
of individuals had to be smaller than this number since it would be used as a factor
variable. We chose 40 individuals in this case, with 200 observations each.
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Figure 3.1: Pairs plot of X(1), X(2), X(3) and X(4). The diagonal elements show
the distribution of the variable coresponding to that column. The upper triangular
elements shows the correlation between the variables of the respective row and col-
umn. The lower triangular elements shows scatterplots between the variables of the
respective row and column.

Figure 3.1 show the pairs plot of the first four regressors in X. The figure reflects
that X(1) and X(2) are negatively correlated with correlation factor close to -0.3 and
that X(3) and X(4) are positively correlated with correlation factor close to 0.6. All
variables are normally distributed with mean zero.

Next, Y was created according to (2.17) with regression coefficients, β = (β0, . . . , β5) =
(1,−1, 3,−2, 1), error variance σ2

ε = 3 and variance of the random intercept σ2
γ =

2.

We proceeded to fit four different models to the data set, where in two of them the
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random factor was ignored and included in the other two. The regular linear model
was compared to a random forest model, both models ignoring Z to make it a fair
comparison. Then a random intercept model was compared to a random forest model
where Z were encoded as a categorical variable.

Random effect LMM LM
Variance SE Variance SE

Z 1.805 1.343 - -
Residuals 3.024 1.739 4.782 2.187

Fixed effect estimates
Estimate SE Estimate SE

β0 1.16 0.213 1.16 0.024
β1 -1.00 0.020 -0.99 0.025
β2 2.97 0.021 2.95 0.026
β3 -2.01 0.024 -2.03 0.030
β4 0.99 0.024 1.02 0.030

Table 3.1: Coefficient estimates and standard errors(SEs) from fitting a random inter-
cept model(LMM) and a regular linear model without the random intercept(LM) on
a simulated data set.

The random intercept model was fitted using the lmer function in the lme4 package
(Bates et al., 2015). The summary of the two linear model fits shows that the resulting
parameter estimates are very close to the specified values given by the simulation
setup (Table 3.1), which is as expected. The fixed population intercept, β0, has a
much larger standard error in the LMM than the LM. The proportion of variance
that is explained, the R2

m and R2
c statistics, of the random intercept model is 0.751

and 0.844 respectively, and the regular linear model has an R2 of 0.743. The random
factor, Z, was not included in the regular linear model. We could have included it
as a factor variable instead, but that would have created issues when calculating the
relative variable importance, since the relaimpo package is not yet designed to handle
factor variables with many levels.
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Figure 3.2: The upper plot shows the mean OOB error estimates (MSE) when varying
the number of predictors to split on when making the trees in a random forest. The
lower plot shows the MSE when varying the number of in the random forests. The
solid blue line is from the model where Z is a categorical variable, and the red dashed
line is from the random forest where Z is excluded.

We will now look at the random forests and see how different choices of parameters
affected the performance of the trees. We wanted to choose values of parameters mtry
and ntree that resulted in a low OOB error estimate. The number of regressors in
the set of regressors the tree can choose from when making a split, mtry, has default
value one in this case, since

⌊
5
3

⌋
= 1. However, as seen in the left plot in Figure 3.2,

choosing mtry = 2 resulted in considerably lower OOB error estimates, at least when
Z was included in the model. The models used when assessing different values of mtry
had the default number of trees in the forest, that is 500.

20



The right plot in 3.2 shows how the number of trees in the forest influences the random
forest’s performance.

It is well known that more trees improve the model, but at the cost of computational
intensity. The change in MSE seems to be small when using more than 1500 trees,
with no obvious improvement. Therefore 1500 trees were be used when calculating the
importances. mtry was chosen to be 2 when calculating the OOB error estimates.

Now that the four different models were created, we wanted to see how the variable
importances compared. We therefore proceeded to calculate the relative importances
of the variables in the different models. To ease the presentations of the results we
will rename the models.

• Model 1 : The regular linear model where the random factor variable Z is not
included.

• Model 2 : The random forest model where the random factor variable Z is not
included.

• Model 3 : The random intercept model with Z as random intercept variable.

• Model 4 : The random forest model where Z is encoded as a categorical variable.

Regressor Importances M1 Importances M2 Importances M3 Importances M4
Regular Std. Regular Std. Regular Std. Regular Std.

X(1) 0.155 0.155 23942 0.165 0.099 0.118 19616 0.134

X(2) 0.483 0.650 82293 0.568 0.454 0.538 74925 0.513

X(3) 0.126 0.169 26190 0.181 0.154 0.182 20376 0.140

X(4) 0.018 0.025 12417 0.086 0.044 0.052 6908 0.047
Z - - - - 0.093 0.110 24117 0.165

Table 3.2: The importances assigned to the regressors in the four models, along with
the standardized importances. M1 denotes model 1 with equivalent notation for M2,
M3 and M4. ”Std.” stands for standardized, which in this case means that they sum
to one.

The scale of the importances from the linear models and the random forest models
differed significantly. Therefore, standardized importances were also calculated in
order to compare the importances from the different models. An overview of the
importances is given in Table 3.2. The importances will be presented in more detail
later in this Chapter.
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S R2
m(S) R2

m(S ∪X(1)) Weight LMG-summands

∅ 0 0.184 6
24

0.046

{X(2)} 0.551 0.560 2
24

0.001

{X(3)} 0.111 0.294 2
24

0.015

{X(4)} 0.003 0.186 2
24

0.015

{X(2),X(3)} 0.657 0.676 2
24

0.002

{X(2),X(4)} 0.552 0.561 2
24

0.001

{X(3),X(4)} 0.229 0.396 2
24

0.014

{X(2),X(3),X(4)} 0.727 0.750 6
24

0.006
Sum 1 0.099

Table 3.3: The contributions to the importance of X(1) from all subset models of the
full model. Recall that S is the set of regressors that appear before X1 in a model.
The weight is given by n(S)!(p−n(S)−1)!

p!
, where p is the number of regressors in S.

In order to get a better understanding of how variable importances are assigned by the
extended LMG-method, we will look in more detail at the importance assigned to X(1)

in model 3, since this is a newly proposed method. Table 3.3 shows the contribution
from all the subset models of the full model. The largest contribution came from the
increase in R2

m when X(1) was added to the empty model. The importances of X(2),
X(3) and X(4) were calculated equivalently. The importance of the random intercept
was calculated as the difference between R2

c and R2
m, which resulted in an importance

of 0.844− 0.751 = 0.093.

It is of interest to compare the importances assigned by the LMG-method for regu-
lar linear regression models to those assigned by random forests without categorical
variables to get an idea of what to expect when taking the step to random intercept
models. The importances of the variables in model 1 were calculated using the LMG-
method for regular linear regression models. This can be done using the relaimpo

package, made by Grömping (2006). Model 2 was created using the randomForest

package, which let us extract the importances directly (Liaw et al., 2002).
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Figure 3.3: The standardized importances of the regular linear model (Model 1, in red)
and the random forest model (Model 2, in blue). The random factor, Z, is excluded
from both models.

The two methods resulted in quite similar standardized importances for the regressors
(Figure 3.3). X(2) was regarded as the most important regressor in both models and
X(4) least important. X(4) was regarded as more important relative to the other
variables in model 2 than in model 1 as seen in Figure 3.3.

The next step was to compare the variable importances of a random intercept model to
a random forest model where the random factor, Z, is encoded as a categorical variable
in the random forest approach. We have already seen how the importances of the
variables in the random intercept model were calculated in the above example where
the importance of X(1) was derived. Furthermore, notice that the regular importances
of the fixed effects in model 3 in Table 3.2 sum to the R2

m of the full model, as expected.
It is not that surprising that if you add the importance of Z to R2

m you get R2
c , since

the random intercept importance is the difference between R2
c and R2

m. Model 3 was
fitted using the lme4 package (Bates et al., 2015). The randomForest package was
used to fit model 4 as this package can also handle categorical variables and provide
an importance measure of the variables.
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Figure 3.4: The standardized importances of the random intercept model (Model 3,
in green) and the random forest model (Model 4, in blue). The random factor, Z, was
used as random intercept in the random intercept model and as a categorical variable
in the random forest.

The two methods resulted in fairly similar standardized importances(Figure 3.4). Both
in model 3 and model 4, X(2) was regarded as the most important variable and X(4)

was regarded as the least important variable, just like in the models without the
random factor variable Z.

When calculating the relative importances we wanted to see how varying some of
the parameters of the simulated data set would influence the importances assigned
in the different methods. From the expression for the variance of the fixed effects
in equation (2.12) we see that it can be of interest to vary the slope coefficient of
one of the predictors and the covariance between two regressors. We used the same
names for the renamed models as in the example where the simulation parameters
were fixed.

It is expected that the importances in the linear models, model 1 and model 3, to be
affected by the variations in the parameters, but it is interesting to see whether the
random forest models, model 2 and model 4, behave similarly to the linear models.
Therefore, the slope coefficients we used when calculating the relative importances was
(β1, 3,−2, 1) with covariance matrix for X equal to
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Σ =


1 −0.3 0 0
−0.3 1 0 0

0 0 1 0.6
0 0 0.6 1

 ,

where we let β1 vary from -5 to 5. When varying the covariance coefficient we used
slope coefficients (β1, β2, β3, β4) = (−1, 3,−2, 1) and covariance matrix

Σ =


1 Σ12 0 0

Σ12 1 0 0
0 0 1 0.6
0 0 0.6 1

 .

and let Σ12 vary from -0.9 to 0.9 since these are values that are found in a typical
regression model.

Figure 3.5: The standardized variable importances assigned to the variables in model
1 and model 2 when varying the slope coefficient, β1, in the simulated data. The red
line shows the importance assigned in a regular linear regression model (model 1) and
the blue line shows the importance assigned in a random forest model (model 2).

The importances assigned to the variables in model 1 were influenced by the change
in β1 as expected. The standardized importance of the corresponding regressor, X(1),
was low when the absolute value of β1 was low, and vice versa. The standardized
importances in model 2 followed a quite similar slope to the standardized importances
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of model 1 (Figure3.5). However, the importances in model 2 appeared to be slightly
less affected by the change in β1. Furthermore, we see that the importance of X(1)

was mainly absorbed by X(2), and a small portion was absorbed by X(3).

Figure 3.6: The standardized variable importances assigned to the variables in model
3 and model 4 when varying the slope coefficient, β1, in the simulated data. The red
line shows the importance assigned in a random intercept model (model 3) and the
blue line shows the importance assigned in a random forest model (model 4).

The standardized importances assigned in the two models, model 3 and model 4,
matched quite well when varying the slope parameter of X(1), β1 (Figure 3.6). The
random forest model (model 4) assigned a higher importance to the random factor
variable, Z, for the whole interval of β1. In model 4 the regressors X(2) and X(3)

were assigned lower importances than in model 3 for some intervals of β1, this may be
caused by the high importance assigned to Z since the importances are standardized,
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but it may also not be the case. The importance of X(1) was mainly absorbed by X(2)

and X(3).

Figure 3.7: The standardized variable importances assigned to the variables in model
1 and model 2 when varying the covariance between the regressors X(1) and X(2),
Σ12, in the simulated data. The red line shows the importance assigned in a regular
linear regression model (model 1) and the blue line shows the importance assigned in
a random forest model (model 2).

The importances assigned to the variables in model 1 were influenced by the change
in the covariance between the regressors X(1) and X(2), Σ12, as expected (Figure 3.7).
The standardized importances of the variables in the random forest model (model 2)
appear to be less affected by the change in Σ12 as seen in Figure 3.7. The importance
of X(1) was lowest when Σ12 is 0.3. The importance seems to mainly be absorbed by
X(2). Also, the importance of X(3) increased as Σ12 increased.
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Figure 3.8: The standardized variable importances assigned to the variables in model 3
and model 4 when varying the covariance between the regressorsX(1) andX(2), Σ12, in
the simulated data. The red line shows the importance assigned in a random intercept
model (model 3) and the blue line shows the importance assigned in a random forest
model (model 4).

The standardized importances of model 3 and model 4 matched quite well when varying
the covariance between the regressorsX(1) andX(2), Σ12 (Figure 3.8). The importance
of the random factor, Z, was higher in the random forest model (model 4) than in the
random intercept model (model 3) as seen in Figure 3.8. It seems like the importances
of the variables in model 4 were slightly less affected by the change in Σ12, than the
importances in model 3. It also appears like X(2) absorbed the importance of X(1)

when Σ12 was around 0.3.
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3.2 The SPLASHY data

The data set that will be analyzed in this chapter is the Swiss Preschoolers’ health
study (SPLASHY) data set containing information about children’s activity level from
different child care centers (Messerli-Bürgy et al., 2016). It contains observations of
476 children across 84 childcare centers located in five cantons of Switzerland (Aargau,
Bern, Fribourg, Vaud, and Zurich; Schmutz et al., 2017). The aim of the study was to
identify correlates of physical activity. They used a random intercept model to assess
the association between the 35 correlates and the total physical activity (TPA).

Schmutz et al. (2017) provide estimates of the relative variable importances using the
relaimpo package in R (Grömping, 2006). Since the relaimpo package estimates im-
portances using the LMG-method for a regular linear regression model, Schmutz et al.
(2017) only derive relative importance values for a model that disregards the random
intercept for childcare. In this Chapter, the newly proposed method of estimating
relative variable importance in random intercept models, described in chapter 2.4, will
be implemented to see how much the assigned importances differ. Two random forest
models were also fitted to the data set, one where the childcare variable was disre-
garded, and one where the childcare variable is encoded as a categorical variable. The
resulting importances from this model will also be provided.

In the SPLASHY data set, the children were between two and six years, of them 54%
were boys. The study measured 35 potential correlates, however, Schmutz et al. (2017)
only selected the 13 variables with low enough p-values when using a regular linear
regression model. The same 13 regressors will be used in this thesis in addition to
the random intercept, which will represent the childcare center. For the purpose of
fitting the decision trees on the data, only the child care centers that had four or more
children in them were part of the analysis in this thesis, since random forests created
using the R package randomForest is limited to factor variables with 53 or fewer
categories (Liaw and Wiener, 2002). The data set we were left with after filtering
contained observations of 275 children across 43 childcare centers.

Regressor Variable type Description

Sex Binary Boys are encoded as one and girls as 0
Age Continuous The age of the child at the beginning of the study
Birth weight Continuous The birthweight of the child in 100 grams
Gross motor skills Continuous The child’s score on the Zurich Neuromotor Assessment 3-5
Siblings Binary The presence of older siblings in the household is encoded as 1
Family structure Binary Single parent household is encoded as 1, dual as 0
Activity temperament Continuous The child’s mean rating on activity from the EAS Temperament survey. Between 1 and 5
Sport club Binary If at least one of the child’s parents has sports club membership, it is encoded as 1
Alcohol consumption Binary If at least one parent consumes large amounts of alcohol, it is encoded as 1
Time outdoors Continuous The number of hours a child spend outdoors per day
Fixed toys Continuous Number of fixed play items in the home environment. (E.g. Trampoline)
Neighborhood safety Continuous A score of the neighborhood safety between 0 and 44
Season Factor Season established using the date of accelerometer
Childcare Center Factor The childcare center at which the child was located

Table 3.4: The 13 regressor variables from the physical activity study performed by
Schmutz et al. (2017) with descriptions.

Table 3.4 provides a short description of the considered 13 regressors used in the
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analysis presented here. More detailed descriptions can be found in the articles by
Messerli-Bürgy et al. (2016) and Schmutz et al. (2017).

Random effect LMM LM
Variance Standard error Variance Standard error

Childcare center 3113 55.79 - -
Residuals 15455 124.32 18056 134.37

Fixed effect estimates
Estimate SE Estimate SE

Intercept 61.11 23.037 4.16 13.899
Sex 31.46 2.631 33.82 2.614
Age 57.79 1.954 68.01 1.803
Birth weight 1.86 0.235 2.50 0.232
Gross motor skills 18.64 1.351 16.74 1.264
Siblings -6.88 2.774 -13.30 2.687
Family structure 60.38 4.240 55.85 4.133
Activity temperament 43.67 1.955 45.81 1.895
Sport club 27.53 2.943 26.26 2.853
Alcohol consumption -57.68 6.109 -45.71 6.119
Time outdoors 11.10 0.934 11.71 0.905
Fixed toys 20.01 0.967 17.74 0.898
Neighborhood safety -0.38 0.194 -1.16 0.190
Season 39.63 20.364 42.02 3.163

Table 3.5: Coefficient estimates and standard errors(SEs) from fitting a random inter-
cept model(LMM) and a regular linear model without the random intercept(LM) on
a subset of the SPLASHY data set.

A summary of the coefficient estimates obtained when fitting the random intercept
model, with childcare as random intercept, and the regular linear model, where the
childcare variable was excluded, on a subset of the SPLASHY data set is shown in
Table 3.5. The left column shows the coefficient estimates obtained when fitting a
random intercept model and the results for the regular linear model are given on
the right. The two methods result in similar estimates for the fixed effect estimates,
although the intercept estimate differs noticeably. The regular linear model has an R2

of 0.288, and the random intercept model has an R2
c of 0.361 and R2

m of 0.233.
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Figure 3.9: The left plot shows the mean OOB error estimates (MSE), in logarithmic
scale, when varying the number of predictors to split on when making the trees in
a random forest. The right plot shows the MSE when varying the number of in the
random forests. The solid blue line is from the model where childcare center is a
categorical variable, and the red dashed line is from the random forest where the
random factor variable is excluded.

For the purpose of comparing the relative importances, two random forest models were
also fitted on the SPLASHY data set using the R package RandomForest. In Figure 3.9
we see that in general larger mtry resulted in better model performance, 10 predictors
will be used when calculating the relative importances. The OOB error estimate shows
no clear decrease when the number of trees in the model exceeds 1000. Therefore we
will use 1000 trees when calculating the relative importances.

Now that the four models were fitted we wanted to see how the importances compared.
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To ease the presentations of the results we will rename the models.

• Model 1 : The regular linear model where the random factor variable, childcare
center, is not included.

• Model 2 : The random forest model where the random factor variable, childcare
center, is not included.

• Model 3 : The random intercept model with childcare center as random intercept
variable.

• Model 4 : The random forest model where the childcare center variable is encoded
as a categorical variable.

Regressor Importance M1 Importance M3

Sex 0.017 0.010
Age 0.098 0.077
Birth weight 0.010 0.005
Gross motor skills 0.012 0.016
Siblings 0.007 0.003
Family structure 0.010 0.015
Activity temperament 0.057 0.041
Sport club 0.006 0.007
Alcohol consumption 0.003 0.006
Time outdoors 0.011 0.011
Fixed toys 0.039 0.036
Neighborhood safety 0.009 0.001
Season 0.006 0.005
Childcare center - 0.129
Sum 0.286 0.233

Table 3.6: The importances assigned to the regressors in model 1 (M1) in the left
column and in model 3(M3) in the right column. Model 1 had an R2 = 0.286 and
model 3 had R2

m = 0.233 and R2
c = 0.361.

The importances of model 1 were calculated using the package relaimpo Grömping
(2006). The resulting importances of the variables in model 1 are presented in the left
column of Table 3.6. The importances of model 3 were calculated using the relimpLMM
package which is provided in Appendix A. The importances of the variables in model
3 are shown in the right column of Table 3.6.
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Regressor Std. Imp. M1 Std. Imp. M2 Std. Imp. M3 Std. Imp. M4

Sex 0.058 0.020 0.028 0.023
Age 0.343 0.290 0.214 0.167
Birth weight 0.037 0.120 0.014 0.075
Gross motor skills 0.044 0.161 0.043 0.110
Siblings 0.025 0.015 0.007 0.008
Family structure 0.036 0.015 0.041 0.006
Activity temperament 0.199 0.124 0.114 0.072
Sport club 0.021 0.013 0.021 0.010
Alcohol consumption 0.012 0.003 0.016 0.002
Time outdoors 0.039 0.059 0.030 0.035
Fixed toys 0.136 0.076 0.100 0.047
Neighborhood safety 0.030 0.088 0.003 0.056
Season 0.020 0.015 0.013 0.003
Childcare center - - 0.356 0.385

Table 3.7: The standardized importances of all four models. M1, M2, M3 and M4
stands for model 1, model 2, model 3 and model 4 respectively. Std. Imp. stands for
standardized importance.

The importances of the random forest models, model 2 and model 4, can be extracted
directly from the models which were fitted using the RandomForest package. To be
able to compare the importances of the four models they had to be standardized. Table
3.7 gives an overview of the resulting standardized importances.
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Figure 3.10: Relative importances of the regressors in the SPLASHY data set using
the LMG-method for a regular linear model (model 1, in red) and a random forest
model (model 2, in blue). The childcare variable is excluded from both models.

Figure 3.10 shows the comparison between the standardized variable importances in
model 1 and model 2. In both models, the age variable received a large share of the
importance, while Alcohol consumption received a very small share of the importance.
On the other hand, gross motor skills and birth weight received relatively unequal
shares of importance in the two different models.
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Figure 3.11: Standardized relative importances of the regressors in model 3 (in green)
and model 4 (in blue).

Figure 3.10 shows the comparison of the variable importances assigned by the exten-
sion of the LMG-method applied on the random intercept model (model 3) and the
relative importances assigned to the variable in the random forest (model 4). Both
methods assigned a large share of importance to the random factor variable, childcare
center.

35



Chapter 4

Discussion and conclusion

We have looked at ways of extending a method for assigning relative variable im-
portance from regular linear regression models to random intercept models. Byhring
(2020) found that not permuting the random intercept and decomposing the R2

m re-
sulted in the most realistic shares, and therefore this extension of the LMG-method
was used throughout this thesis. To assess this extension of the LMG-method, we
wanted to use the variable importances assigned by random forests as a comparison.
One of the challenges addressed in this thesis was that random forests cannot directly
handle random factor variables, however it is possible to encode the random intercept
variable as a categorical variable with one factor for each individual or cluster. The
statistical models were implemented, and relative importance was calculated on two
data sets: One simulated data set and one real-world example.

In the example with the simulated data set we first presented a simple scenario where
the parameters of the sampled data set were fixed with slope parameters β, and we
only had correlation between X(1) and X(2), and X(3) and X(4). Later, we looked at
how varying some of the parameters of the sampled data set influenced the importances
assigned to the variables in the different models.

In the case of fixed parameters, we found that both the random intercept model (model
3) and the random forest model where Z was encoded as a categorical variable agreed
on which variable was the most important. The random factor variable, Z, received
a higher standardized importance in the random forest model than in the random
intercept model.

When varying the slope parameter, β1, we found that the standardized importance
of the corresponding regressor was lowest when the absolute value of β1 was small in
absolute value. The standardized importance of some of the other regressors peaked
when β1 was close to zero, this may be because they absorbed some of the importance
from the regressor corresponding to β1, however it may also be that the proportion of
variance that is explained, R2, of the full model is smaller when β1 is near zero. In
general, the importances assigned by the two methods matched quite well.

When varying the covariance between X(1) and X(2), Σ12, we found that the impor-
tance assigned to the variables in the random forest model where Z was excluded
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(model 2) appeared to be less affected by changes in Σ12, than the importances as-
signed to the variables in the regular linear regression model (model 1). The impor-
tances assigned to the variables in the random forest model where Z was included
as a categorical variable (model 4) matched better to those assigned in the random
intercept model (model 3). However, the random factor variable Z was assigned a
higher importance in model 4 than in model 3.

In the example with the splashy data set we found that both the random intercept
model and the random forest model where childcare were used as a categorical variable
regarded childcare as the most important variable. There are some variables that get
assigned quite different importances in the two methods, in particular birth weight
and neighborhood safety. However, we see the same differences appear between the
importances in the regular linear model where the childcare variable is excluded and
the random forest model where the childcare variable is excluded.

In general, we see that the importances assigned in the random intercept models
match well with the importances assigned in the random forest models where the
random factor variable is encoded as a categorical variable. In some cases we see that
the importance assigned to the random factor variable is higher in the random forest
model where the random factor variable is encoded as a categorical variable than in the
random intercept models. However, it has been discussed in previous literature that
using categorical variables in random forest models may lead to ”unfair” importances.
It is known that the importance measure tends to favor categorical variables with a
larger number of factors (Strobl et al., 2007; Grömping, 2009).

The method presented in this thesis for assigning relative variable importance in ran-
dom intercept models decomposes the explained variance of the full model into shares
explained by each predictor. The method as presented is limited to one random in-
tercept, but could with small adjustments handle several random intercepts. It would
also be possible to extend the method to handle random slopes, generalized linear
models(GLM) and generalized linear mixed models(GLMM) by providing a way to
calculate R2 in these models. The topic of how to calculate R2 in random slope mod-
els, GLMs and GLMMs is discussed in Nakagawa and Schielzeth (2013) and Johnson
(2014). Therefore we expect that the extension of the ideas presented here should be
possible

An R package with functions to calculate relative importance in random intercept
models is provided in Appendix A. The function is limited to one random intercept
term, and needs at least three fixed effects, and is limited to a maximum of 13. There
is room for improvement when it comes to the speed of the functions in the package.
For example, when calculating the importances in the simulated data, an obvious
improvement would be to only fit the random intercept model with X(1) and Z only
once, however since there were four fixed effect variables in the example, the model
with only X(1) and Z was fitted three times, one time for each of the other fixed effects
when calculating their importance. One possible solution is to fit all possible subset
models of the full model and only store the relevant parameters to calculate the R2

m

of the models.

The LMG-method and the extension of the LMG-method discussed in this thesis
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are very computationally heavy. Johnson (2000) proposed a method called relative
wheights which is much less computationally demanding and has been shown to result
in relatively equal importance shares as the LMG-method for regular linear models
(Grömping, 2015). It could be interesting to see if this method can be generalized to
mixed effect models in future studies.
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Cançado, L. P. (2018). Determining predictor importance in multilevel models for
longitudinal data: An extension of dominance analysis. Theses and Dissertations.
1978 .

Cutler, A., D. R. Cutler, and J. R. Stevens (2012). Random forests. In Ensemble
machine learning, pp. 157–175. Springer.

Feldman, B. E. (2005). Relative importance and value.
https://ssrn.com/abstract=2255827 .

Gregorutti, B., B. Michel, and P. Saint-Pierre (2017). Correlation and variable impor-
tance in random forests. Statistics and Computing 27 (3), 659–678.
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Appendix

Appendix A

The R package with functions to calculate the relative variable importances is available
on my github and can easely be downloaded using the devtools package. This can be
done using the following lines of code:

> library(devtools)

> install_github("oliverbyhring/relimpLMM")

> library(relimpLMM)

This package includes two functions; calc.R2(LMM.obj, Marginal = TRUE) and
calc.relimp.lmm(LMM.obj, response.name).

The calc.R2 function takes a random intercept model, created using the lmer function
in the lme4, as an argument and returns the R2 of the model as proposed by Nakagawa
and Schielzeth (2013). If the Marginal argument is not specified, then TRUE will be
chosen as defaul and the function will return the R2

m as defined in equation (2.13). If
Marginal is set to FALSE, then the R2

c will be returned by the function.

The calc.relimp.lmm function takes a random intercept model, created using the
lmer function in the lme4, and the name of the response as a string as arguments and
returns the relative variable importance estimates as a data frame. The importances
are estimated using the LMG-method as described in section 2.4.
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Appendix B

The functions used to sample the covariate matrix,X, and the response, Y , is provided
below. create.X

> ## Function that creates a matrix of covariates X

> create.X <- function(number.of.cov = 4,

+ n.individuals = 40,

+ obs.per.individual = 200,

+ sigma.mat = NULL){

+ if (is.null(sigma.mat)){

+ A <- matrix(runif(number.of.cov^2)*2-1, ncol=number.of.cov)

+ sigma.mat <- t(A) %*% A

+ }

+ mu.vec = rep(0,number.of.cov)

+ X = MASS::mvrnorm(n.individuals*obs.per.individual,

+ mu = mu.vec

+ , Sigma = sigma.mat)

+ pers <- sort(rep(1:n.individuals,obs.per.individual))

+ X<- matrix(c(X,pers), nrow = 1000)

+ return(data.frame(matrix(X, ncol = number.of.cov+1)))

+ }

> ## Function that samples the response for X

> sample.from.y <- function(X = create.X(),

+ n.individuals = 40,

+ obs.per.individual=200,

+ number.of.cov = 4,

+ residual.var = 3,

+ random.intercept.var = 2,

+ beta = NULL,

+ global.intercept = 1){

+ if(is.null(beta)){

+ a <- -5:5

+ beta <- sample(a,(number.of.cov))

+ }

+ random.intercept <- sort(rep(rnorm(n.individuals,

+ mean = 0,

+ sd = sqrt(random.intercept.var)),

+ obs.per.individual))

+ residual.error <- rnorm(n.individuals*obs.per.individual,

+ mean = 0, sd = sqrt(residual.var))

+ X.mat <- as.matrix(X[1:number.of.cov])

+ Y <- global.intercept + X.mat%*%beta + random.intercept +residual.error

+ return(Y)

+ }

>
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