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Abstract

Regularization methods are commonly used to solve inverse problems. In particular, to-
tal variation regularization has proven to be effective for image denoising. Regularization
methods usually require selection of one or more numerical parameters in order to be
effective, which can be a challenge in many applications. In this thesis, we give an in-
troduction to Fourier analysis and convex analysis, which is needed to understand and
implemnet total variation denoising and deconvolution. Building on recent work, we pro-
pose a new method for parameter selection which we call Solution Regularization. The
method consists of choosing the reconstruction that is closest to an approximate solution,
which is found by another reconstruction method. We compare our method with exist-
ing methods and show that our method can give superior results for image denoising and
image deconvolution.

Sammendrag
Regulariseringsmetoder er ofte brukt for å løse inverse problemer. Spesielt har total variasjon-
regulering vist seg å være effektiv for støyfjerning av bilder. Regulariseringsmetoder kr-
ever vanligvis valg av én eller flere numeriske parametere for å være effektiv, og dette kan
være utfordrende i mange applikasjoner. I denne avhandlingen gir vi en introduksjon til
Fourieranalyse og konveks analyse, som trengs for å forstå og implementere total variasjon
støyfjerning og dekonvolusjon. Vi foreslår en ny metode for parametervalg som bygger
på nyere arbeid som vi kaller Solution Regularization (Løsningsregularisering). Metoden
består av å velge rekonstruksjonen som er nærmest en tilnærmet løsning, som vi finner
med en annen rekonstruksjonsmetode. Vi sammeligner våre resultater med eksisterende
metoder of viser at vår metode kan gi bedre resultater for både støyfjerning og dekovolver-
ing av bilder.
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Chapter 1
Introduction

In science and engineering, solving inverse problems is the art of recovering data from
noisy, corrupted measurements. In many settings, one uses data and a mathematical model
to make predictions. When solving inverse problems, one goes the other way around,
which is where the word ”inverse” comes from. The field saw great advances in the the
1960s, and was mainly of interest to geophysicists [2]. Since then, the field of inverse
problems has grown relatively quickly, and has found its use in many applications. One
application of interest in this text is image analysis, where inverse problems can be used
to model image reconstruction.

Traditionally, inversion theory uses techniques from Bayesian statistics and/or func-
tional analysis. In text we will use techniques from the latter, specifically using tools from
regularization theory. Here, data is reconstructed by solving a well-chosen optimization
problem using some knowledge about the data. In this setting another problem has to be
solved, namely the problem of parameter selection. The optimization problem usually has
one or several numerical parameters that can be changed to yield different reconstructions.
Choosing this numerical parameter has traditionally been done using heuristic methods.

In this master thesis, we will investigate the parameter selection problem, building
on ideas from Vito et al. [9]. In their work, they suggest an unsupervised method for
parameter selection in elastic net regularization of images. In this text we will try to
apply the same method to total variation regularization, specifically to solve the denoising
problem and deconvolution problem for images. In order to achieve this, we will take a tour
through Fourier analysis and signal processing, image resampling and convex analysis.

Almost all the code used to produce this thesis can be found freely available on GitHub:
https://github.com/martilud/Master-Thesis. The code is written in Python and FORTRAN
using NumPy. This code will also be used in the initial stages of further work after this
thesis, and is therefore subject to change.

The text is built up in the following way: Chapter 2 consists of an introduction to image
analysis, inverse problems, regularization and specifically total variation regularization.
Chapter 3 consists of an introduction to Fourier analysis and signal processing, with the
aim of understanding its role in solving inverse problems and convolutions. Chapter 4
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2 Chapter 1. Introduction

consists of an introduction to image resampling, which we will use to develop methods for
the parameter selection problem. Chapter 5 consists of an introduction to convex analysis,
which is used to formulate numerical methods for solving total variation regularization
problems. Chapter 6 contains a summary of some traditional parameter selection methods,
ending with a numerical experiment showcasing the different methods. Chapter 7 is the
main contribution of this work, consisting of a short statement of the method proposed by
Vito et al. [9], followed by some extensions of the method with numerical experiments.
This part mostly exhibits the potential of the proposed methods. Chapter 8 contains a
summary of how the proposed methods can be investigated further, which will be one of
the pursuits of an upcoming PhD thesis.



Chapter 2
Images and inverse problems

This chapter will give an introduction to digital image processing, introduce inverse prob-
lems and explain its role in image processing. Near the end we will introduce Total Varia-
tion (TV) regularization, which will be the main topic of discussion in this text.

2.1 Digital image processing
Digital image processing is the use of a digital computer to process digital images. It is a
subfield of digital signal processing [20]. Digital image processing has been a fruitful field
since the advent of the digital computer. It has benefited from the development of many
mathematical fields: Fourier analysis, functional analysis, high-dimensional probability
theory and machine learning, to name a few. The demand for sophisticated and robust
image processing algorithms is prevalent in many scientific and industrial fields.

A rectangular, two-dimensional, grayscale, discrete digital image is a signal u with
components uij for i = 1, ..., nx, j = 1, ..., ny . In other words u ∈ Rnx×ny ∼ Rnxny .

The components are usually called pixels, whose values describe the intensity of light
in this part of the image. Pixels can also be thought of as samples of the original light they
attempt to capture.

The pair of integers nx and ny describes the size of the image, and is called the reso-
lution of the image. We will denote the resolution of an image as nx×ny . In this text, we
will focus on square, grayscale images to make our life easier. From now on we denote
the size of images with n = nx = ny .

When storing images, one also has to consider the bit depth of the image, which
describes how many bits are used to store each pixel of the image. Grayscale images
are usually stored in 8-bit, meaning that each pixel is allowed to take on 256 different
values for intensity. In this text, we will always rescale pixels to be floating point numbers
between 0 and 1.

In studying images, it is often useful to look at images as functions u : Ω→ R usually
belonging to a suitable Banach or Hilbert space, where Ω ⊂ R2. In this text we will select
Ω = [0, nx − 1] × [0, ny − 1]. This allows us to use powerful techniques from integral

3



4 Chapter 2. Images and inverse problems

and differential calculus. In this sense a discrete image contains pixels sampled from a
continuous signal. The standard convention for image coordinates is to start at the top
left corner, which one has to be careful with in implementations. An illustration of this is
shown in figure 4.1.

Ω

(1, 1) (n, 1)

(n, n)

...

· · ·

Figure 2.1: To the left we have a domain Ω ⊂ R2 with image coordinates on a grid. To the right is
a grayscale image u : Ω→ R.

In this text we will mainly discuss natural images, which in this text are defined as
images of natural scenes, taken with a camera. The method of capture naturally changes
some of the properties of the resulting image. Some other classes of images that has seen
many applications of image processing are the fields of medical imaging and astronomic
imaging. It is clear that the space of natural images has some structure, but it is very hard
to mathematically describe this structure. There are certainly many ”images” in Rn×n
that many will not consider natural. We will approach images mostly as an element of a
vector space, or a discrete signal, not making any more assumptions on the structure of the
images.

2.1.1 Inverse problems
Inverse problems are concerned with the recovery of an unknown quantity from a corrupt
observation. The process of corruption can be complicated, usually consisting of non-
linear physical phenomenon and intricate noise. The relationship between the observation
and the unknown quantity that we will use is

v = Au+ σw, (2.1)

where v ∈ V is the observed data, u ∈ U is the original data, w ∈ V has components wi
independent and identically distributed with E(wi) = 0 and Var(wi) = 1, meant to model
noise, with noise level σ > 0 and A : U → V is a linear forward operator. The spaces V
and U are usually Banach or Hilbert spaces. The inverse problem thus consists of solving
a linear equation with some added noise. The linear operator A describes the forward
model that our data follows. ChoosingA is usually done based on some information about
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the data, and in this text we will only consider cases where A is known. Having some
uncertainty in the forward model A can make solving the inverse problem significantly
harder. We will often use some convenient abuse of notation when describing the noise
vector w, as it represents both a random variable and an actual realization.

General inverse problems need not follow equation 2.1. In particular, the forward
operator A can be non-linear (which it almost certainly is if it models some physical phe-
nomenon). In this case, a linear approximation of the forward operator can be used to
simplify the problem. Furthermore, additive, i.i.d noise is rarely realistic, but is a useful
model.

Many problems in image processing can be formulated as inverse problems depending
on the linear operator A. Examples are the denoising problem, where A = Id, deconvolu-
tion when A is a convolution operator and inpainting when A is a masking operator.

Noise is an unwanted modification of a signal. It is often considered random, and can
also be thought of as the part of the signal carrying no useful information. Noise occurs
in signal processing during capture, storage and transmission etc. of signals. Noise is so
prevalent, that one can almost always assume that whenever there is a signal, there will
also be some unwanted noise. There are many different types of noise that can be relevant
in image processing. Noise may arise from random behaviour of particles, down to the
statistical mechanical and quantum mechanical level, the image capturing technology it-
self, errors in analog to digital conversion and compression/decompression to name some
mechanisms [4]. The different kinds of noise are usually named after the statistical model
they follow. The most relevant type of noise in all of signal processing is Gaussian noise
where the probability density function (PDF) of each element has a Gaussian PDF

f(x) =
1√
2πσ

exp− x2

2σ2
. (2.2)

Here µ is the expected value which coincides with the location parameter and σ is the
standard deviation which coincides with the scale parameter.

A type of noise that is inevitable in many systems is so-called shot noise. This type of
noise occurs in images because of the particle behaviour of electromagnetic waves, and in
electrical circuits because of the particle nature of electrons. This makes this kind of noise
inevitable in images and especially in medical images. When measuring the intensity of
a pixel one is essentially measuring the flux of electromagnetic particles, i.e how many
particles pass a surface per time. The actual amount of particles can vary because of the
statistical nature of particles. The amount of particles measured is usually modeled by a
Poisson process, which means the noise follows a Poisson distribution. When the amount
of particles is very large the difference from the mean becomes relatively small. Thus,
when the amount of particles is low, the shot noise is more prevalent, but as the amount
of particles becomes larger the noise becomes more Gaussian and less prevalent, as the
Poisson distribution approaches the Gaussian distribution. This is an example of why
Gaussian noise is very common. Simulating this kind of noise can get technical, and will
look almost identical to Gaussian noise for realistic examples.

There exists more ”exotic” noise models, like noise resulting from more complex
stochastic processes and structurally dependent noise. In this work we will only consider
additive Gaussian noise. When adding Gaussian noise to an image we will project the



6 Chapter 2. Images and inverse problems

resulting noisy image so that the actual pixel values lie between the minimal and maximal
allowed pixel value. We do this because it is more realistic and does not alter the contrast
of the noisy image. This makes it easier to compare noiseless and noisy images. It also
makes our noise model slightly incorrect. We will ignore this inaccuracy.

Some examples of Gaussian noise is shown in figure 3.9. We will refer back to these
examples several times in this text.

Figure 2.2: Original image and image with added Gaussian noise with σ = 0.05, 0.075, 0.1 respec-
tively.

Convolutions are, in the context of image processing, an operation between an image
and a kernel or mask κ. They are used for many tasks, and are often synonymous with ap-
plying a filter to the image. They are a subclass of more general linear operators. We will
describe convolutions more thouroughly in a later section. Some common filters are Gaus-
sian blurring (which has applications in smoothing and removing noise), edge detection
and sharpening filters. Physical phenomena can also cause blur. Lenses are seldom perfect
or perfectly focused, which leads to blur in our human vision as well as cameras. Cameras
have a shutter speed, meaning the time where light reaches the sensor of the camera to cre-
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ate a photo , and this time is obviously non-zero. If the light comes from a moving source
relatively to the camera during this time, the image can be corrupted with what is called
motion blur. When light travels through the atmosphere, refraction can cause blur, usually
called atmospheric blur. These effects are very relevant in all imaging, from medical to
atrological, which is why we need methods for removing blur.

Some examples of different linear operators leading to different image corruptions is
shown in figure 2.3.

Figure 2.3: Different image corruptions corresponding to different forward operators A. The cor-
ruptions are made using a Gaussian blur filter, a masking operator and a laplace filter respectively.

When talking about noise and corruptions it is useful to have some quantity describing
how noisy and corrupted an image is. Conversely, we need a quantity to describe how
similar two images are. A simple choice for this is the Mean Squared Error (MSE). Given
an original image u and noisy image v with resolution n× n, we define the MSE as

MSE(u, v) =
1

n2

∑
i,j

(ui,j − vi,j)2 =
1

n2
‖u− v‖2. (2.3)

A problem with the MSE is that it is dependent on the intensity range of the images. A
different quantity is the Peak signal-to-noise ratio (PSNR), which can be defined on a
decibel scale as

PSNR(u, v) = 10 log10

(
MAX2

MSE(u, v)

)
, (2.4)

where MAX is the maximal value attained by a pixel of the original image. For 8-bit
images, we have MAX = 255. Higher PSNR means the original and noisy images are
more similar. If nothing else is specified, the value of the PSNR is usually between a noisy
or reconstructed image and the orignal image.

There exists other signal-to-noise variants. One problem with using PSNR is that it
measures distance between two images differently from how humans measure similarity.
PSNR only measures the pixelwise intensity difference. For example, a shifted or rotated
image can yield low PSNR even though the images carry much of the same information.
Another example is smaller structures in an image, like objects or parts of an object.

A quantity that can be used to measure the structure of an image is the so-called
structural similarity index measure(SSIM) [25]. The SSIM compares three measures of
a smaller subset of the images, usually called a window of the images. The three measures
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are intensity(I), contrast (C) and structure (S). Given two windows x and y of equal size,
the three quantites are measured by

I(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
,

C(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
,

S(x, y) =
σxy + c3
σxσy + c3

,

where µx and σx is the mean and standard deviation over the window and σxy is the
covariance between the two windows. The constants c1, c2 and c3 are there to stabi-
lize the division, in case denominators are close to 0. These three constants are usu-
ally chosen as c1 = (k1 MAX)2 with k = 0.01, c2 = (k2 MAX)2 with k = 0.03 and
c3 = 0.5(k2 MAX)2. The SSIM can be attained by multiplying the three quantities to
obtain

SSIM(x, y) =
(2xµy + (k1 MAX)2)(2σxy + (k2 MAX)2)

µ2
x + µ2

y + (k1 MAX)2)(σ2
x + σ2

y + (k2 MAX)2
. (2.5)

The SSIM is a number between −1 and 1, or 0 and 1 if the components of the two
windows have the same sign, where the value 1 corresponds to two equal images. The
SSIM is non-negativity, but is not a metric as it does not satisfy the triangle inequality.
The SSIM for an entire image is usually calculated using a sliding block window, where
we choose the size 9× 9.

2.1.2 Solving inverse problems
Recovering data u from an observation v in equation (2.1) is an inverse problem. We will
only consider finite-dimensional inverse problems. Some concepts and results are also
relevant in infinite dimensions, and notation is usually ambiguous.

When there is no noise the inverse problem corresponds to solving the linear equation
problem Au = v, which on its own can be difficult. From linear algebra we know that a
solution exists if v ∈ range(A). This is not always the case, and even when v ∈ rangeA
there can be infinitely many solutions. A way to circumvent this is to solve a altered
problem which has better properties.

A common assumption is that the original data u lies in some well-chosen subspace
W . On finite-dimensional Hilbert spaces this can be done by solving the least squares
problem

Sv = arg min
u∈W

‖Au− v‖22. (2.6)

Here we define the solution operator S, which maps the observation to a proposed solu-
tion. When noise is added, the inverse problems coresponds to solving Au = v − σw, but
we generally do not know what σw is. Thus, trying to obtain a reconstruction in spite of
the noise is the goal.

There are three main difficulties with inverse problems, and the point with an inversion
method like the least square solution should be to alleviate some of these problems.
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Firstly, existence of a solution. A solution only exists if v − σw ∈ range(A). A least
squares solution can be shown to exist. Secondly, uniqueness of a solution. If the kernel
of the operator A is non-trivial, we can always add an element in ker(A) to a solution to
achieve another solution, meaning there can be infinitely many solutions. A least squares
solution is not necessarily unique. Lastly, the stability of a solution. The stability of a
linear operator A is often measured with the condition number of the operator. If we let
δ be a perturbation (like noise) in the data v, then the condition number is defined as

K(A) = max
v,δ 6=0

‖A−1δ‖
‖δ‖

‖v‖
‖A−1v‖

= ‖A−1‖‖A‖ ≥ 1. (2.7)

In the case where A−1 does not exist, one usually interprets this as the condition number
being infinite. We can use the condition number as an upper bound of how much pertur-
bations in the data affect the solution of u+ ε = A(v + δ). Here ε is the error that occurs
when perturbing the data v. Specifically, one finds that

‖ε‖
‖u‖
≤ K(A)

‖δ‖
‖v‖

. (2.8)

Many inverse problems are ill-conditioned, meaning that the condition number is high,
or infinite for non-invertible A. Some linear problems are so ill-conditioned that they
cannot be solved without taking precautions because of machine precision. When noise or
other perturbations are added, the instability of the inversion can yield wildly innacurate
solutions.

2.2 Regularization
Inversion methods can be significantly improved by adding regularization. The main idea
of regularization is to constrict the solution to lie on a subset with suitable properties,
which usually means solving an altered problem. For our least squares problem, we can
choose a regularization functional R : U → R+ that chooses some property we want
the inversion to have, and define

Sv = arg min
u

1

2
‖Au− v‖22, subject to R(u) ≤ c, (2.9)

where c is a non-negative scalar. Here the term 1
2‖Au − v‖

2
2 is usually called the data

discrepancy term, which measures the distance between the observed and reconstructed
data. We can also write this regularization problem on the lagrangian form

S(λ)v = arg min
u

L(u, v)︸ ︷︷ ︸
Data discrepancy

+ λR(u)︸ ︷︷ ︸
Regularization

. (2.10)

where the Lagrange multiplier λ ≥ 0 is called the regularization parameter. We use the
notation S(λ)v to denote a solution operator depending on a parameter λ, acting on v.

The data discrepancy term is usually chosen based on information about the noise.
The commonly used data discrepancy ‖Au − v‖22 can be derived as the log-likelihood of
u given Gaussian noise.
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We will now Let D be a linear operator that selects some property we want to regular-
ize. Some commonly used regularizers are:

• L1-Regularization R(u) = ‖Du‖1.

• L2-Regularization R(u) = ‖Du‖22.

• Elastic net regularization R(u) = ‖Du‖1 + α‖u‖22, where α > 0 is an additional
parameter.

For example, if we letD = I , L1-regularization is usually called Lasso regression and L2-
regularization is usually called Ridge regression in the statistical learning framework [? ].
Both Lasso and Ridge add bias, which by the bias-variance trade-off should reduce the
variance and reduce overfitting. Lasso also does variable selection, meaning it completely
eliminates some elements of the solution. This is an attractive property in many research
applications. Elastic net is a mix of Lasso and Ridge regression [? ], and also does variable
selection.

2.2.1 Why regularization?
We will attempt to give a short overview of why regularization can yield good solutions to
inverse problems, starting with a common L2 example. We define the solution operator

S(λ)v =
1

2
‖Au− v‖22 +

λ

2
‖Du‖22. (2.11)

We can apply the Euler-Lagrange equation to find that the solution operator coincides with
the solutions to

A∗(Au− v) +D∗Du = 0. (2.12)

The solution operator can then be written as

S(λ)v = (A∗A+ λD∗D)−1A∗v, (2.13)

when (A∗A + D∗D) is invertible. Note that the solution operator is linear in v and con-
tinuous and smooth in λ.

The operators A∗A and D∗D are always semi-positive definite, which is easy to see

u∗A∗Au = (Au)∗Au = ‖Au‖22 ≥ 0. (2.14)

While this does not guarantee that A∗A or D∗D is invertible, A∗A + λD∗D will be
invertible if eitherA orD is invertible. Thus, if the least square solution u = (A∗A)−1A∗v
does not exist, the L2 regularized solution will exist if D∗D is invertible. Conversely, if
the regularizer is not well-posed, we require that A∗A is invertible for a unique solution to
exist.

If we assume that A∗A and D∗D have the same eigenspace, which we will see is a
valid assumption in this work, then A∗A + λD∗D will have eigenvalues λAi + λλDi , i =
1, ...n2. It can be shown that the condition number satisfies [22]

K(A∗A+ λD∗D) =
maxi |λAi + λλDi |
mini |λAi + λDi|

. (2.15)



2.2 Regularization 11

Thus, if A∗A is ill-conditioned, meaning the ratio between the largest absolute eigen-
value and the smallest absolute value is large, it can become better conditioned by adding
λD∗D if λD∗D has a smaller spectrum. If this is the case, the problem becomes better
conditioned as λ increases, which corresponds to the problem becoming more regularized.
However, a better-conditioned problem does not necessarily corresponds to a better solu-
tion to an inverse problem. As the problem becomes more regularized, we stray away from
the original problem Au = v, and the regularized solution becomes biased. We can also
interpret the regularization procedure as a preconditioner of the problem Au = v, where
we have

S(λ)v = S(λ)Au = (A∗A+ λD∗D)A∗Au. (2.16)

If we add noise to the problem, so that v = Au + σw, we have by the linearity of the
solution operator

S(λ)v = S(λ)Au+ σS(λ)w. (2.17)

In this case, we do not only want to stabilize the problem Au = v, but we also want to
choose our regularizer so that the term σS(λ)w vanishes. The act of removing noise can
be difficult because there is a trade-off between removing noise and keeping the signal
unaltered.

It is also clear that for larger σ, i.e more noise, we need more regularization for the
noisy term to vanish. The main difficulty of choosing a regularizer, and the regulariza-
tion parameter λ is to balance the removal of noise and the stabilization of the problem
Au = v without adding too much bias and corruption to the reconstruction u. We note
that for a linear solution operator, and if we interpret w as a random vector with indepen-
dent elements, zero mean and variance equal to unity, we have E(σS(λ)w) = 0 for any
linear operator S(λ). As for the variance, we have Var(S(λ)w) = σ2S(λ)∗S(λ). We
immediately note that unless the operator S(λ)

For the L1 problem, we have the solution operator

S(λ)v =
1

2
‖Au− v‖22 + λ‖Du‖1. (2.18)

Applying the Euler-Lagrange equation we find that this corresponds to

A∗(Au− v) + λD∗
Du

‖Du‖1
= 0. (2.19)

This equation is non-linear, and the solution operator is non-linear and we cannot find a
closed form operator in the general case. This makes everything more difficult. However,
in many cases, this solution operator has many similar properties to the L2 case.

In the regularization setting, the inversion problem has two parts. The choice of a
suitable solution operator and the choice of the parameters of the solution operator. We
focus mainly on the unsupervised case, i.e when the original data u is not known. In this
work, we consider the regularization method as given, and focus our energy on choosing
the correct regularization parameter. This means that many of the methods proposed can
be used on many different problems . In imaging, one of the regularization functionals
that have seen the most success is total variation regularization, which will be the main
focus of this work. We will also focus on a cousin of total variation, namely quadratic
variation.
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2.3 Quadratic Variation and Total Variation regulariza-
tion

Before we discuss total variation we will discuss a similar problem which will be helpful
in this work, quadratic variation regularization. Quadratic variation regularization corre-
sponds to L2 regularization of the gradient of the reconstruction

SQV(λ)v = min
u∈U

1

2
‖Au− v‖22 +

λ

2
‖|Du|‖22, (2.20)

where D is a gradient operator. In the continuous case D is the gradient operator∇ : Ω ⊂
R2 → R. In the discrete case, a common gradient operator is D : Rn2 → Rn2×2

(Du)i,j =

({
ui+1,j − ui,j , i < n

0, i = n
,

{
ui,j+1 − ui,j , j < n

0, j = n

)
, (2.21)

which corresponds to forward differences with Neumann conditions on two sides of Ω.
We have thatD∗D is the negative (discrete) Laplacian operator with specific boundary

conditions, which means that a solution to the quadratic variation problem is equivalent to
the solution of the so-called inhomogeneous Helmholtz equation. For slightly differently
defined D, the operator D∗D becomes a convolution usually called a Laplacian filter. The
aim of quadratic variation regularization is to punish large variations in an image. Large
variations are sometimes parts of images, especially edges, but can also be caused by noise.
We will later see that the act of punishing large variations is very similar to the idea of a
low-pass filter.

It is clear that the solution operator SQV(λ)v is linear in v, as well as continuous and
smooth in λ. Finding SQV(λ) can be done computationally efficiently. In this work we
will use the conjugate gradient method, but there exists a wealth of effective methods. In
particular, if we interpretD∗D as a convolution with a Laplacian kernel, which means that
SQV(λ) can be calculated as a convolution, which we will get into later.

Examples of QV denoised images are shown in figure 2.4. We see that using the QV
solution operator we are able to significantly remove noise, at the cost of blurring the
image. For higher λ, it is very evident that this blurring especially damages the edges of
the image. This is the case for most linear denoising operators.

Total variation can be defined in several ways. For smooth functions of two variables
it is defined as

TV(u) =

∫
Ω

‖∇u‖ =

∫
Ω

√
∂u

∂x

2

+
∂u

∂y

2

. (2.22)

For 2D discrete signals one version of total variation is

TV(u) =
∑

i<n,j<n

√
|ui+1,j − ui,j |2 + |ui,j+1 − ui,j |2 = ‖|Du|‖1. (2.23)

We choose to use the notation ‖|Du|‖1 here, by which we mean that the euclidean norm
is applied component-wise for each (Du)i,j .
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Figure 2.4: Original image u, noisy image v = u+ σw with Gaussian noise and σ = 0.1 and QV
reconstructions using λ = 1.0, 5.0, 10.0, 50.0 respectively.

The applications of total variation denoising was first proposed by L.Rudin, S. Osher
and E. Fatemi in 1992 [? ]. They proposed the Rudin-Osher-Fatemi model for denoising

STV(λ)v = arg min
u

1

2
‖u− v‖2 + λTV (u). (2.24)

In the more general inverse problem case, one would use 1
2‖Au− v‖

2 as the data discrep-
ancy term.

Lemma 1. The TV functional on L2(ω) is lower semi-continuous and convex.

Proofs are shown in [5], which is also a much more thorough introduction to total
variation and its uses.

While the solution operator is continuous, it is not differentiable with respect to λ
everywhere. In fact, it can be shown that for a certain parameter λ̄, any λ > λ̄ yields a
constant solution.

Total variation has proven to be very effective for denoising, but also has uses in some
of the other inverse problems mentioned earlier, like deblurring and zooming [6].

Figure 2.5 shows an example denoised images for different regularization parameters.
From the figure we see that we are able to remove much of the noise, while also applying
a kind of blur to the reconstructions. However, as opposed to the QV reconstructions, the
TV reconstructions conserve edges.

For higher regularization parameters, we see that that the reconstruction loses much
of the detail by over-smoothing the image, and we see there are ”plateaus” of relatively
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Figure 2.5: Original image u, noisy image v = u + σw with Guassian noise and σ = 0.1 and TV
reconstructions using λ = 0.01, 0.05, 0.1, 0.5 respectively. Note that parameters differ greatly in
size from figure 2.4.

similar intensity.
L1 regularization has a tendency to conserve some componetns of Du while setting

others to 0. In the case of TV we see that it conserves large variations, like edges, but
smoothes areas with small variations effectively. L2 regularization does not have this
”selective” property to the same degree. TV regularization also yields better values than
QV regularization in many cases for images. However, this does not mean that TV is
”better” than QV in all cases. In some cases the blur caused by TV can be unwanted as
apposed to the blur caused by QV.

From this we can also conclude that choosing the correct regularization parameter is
important in order to create a good reconstruction. Furthermore, the optimal parameter
(in the sense that it minimizes PSNR) depends on the input data v. We will later see that
selecting a good parameter, especially for the TV problem is far from a trivial task. This
will be the main issue discussed later in this text.

Solving the TV problem is It is clearly a problem suitable for optimization, but its non-
differentiability creates problems for traditional optimization algorithms. A naive guess is
to use the Euler-Lagrange equations to obtain the Rudin-Osher-Fatemi PDE:

λ∇ ·
(
∇u
|∇u|

)
+ u− v = 0, u ∈ Ω (2.25)

∂u

∂n
= 0, u ∈ ∂Ω. (2.26)
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The PDE is highly non-linear and not easy to solve, but this was the approach in the
original paper.

Newer methods for solving the total variation problem uses methods from convex anal-
ysis, which is what we will use. This will be the topic of chapter 5.

2.4 Image reconstruction in the supervised case
In the supervised case, the goal is to find an optimal solution operator S given a dataset
of corrupt observations v(i) and original data u(i). Inverse problems in practice mainly
concern the unsupervised case, where only corrupt observation(s) u(i) are given. A differ-
ent but related categorization is data-driven and knowledge-based methods. Data-driven
methods are, as the name suggests, methods where the solution operator is created using
observed data. Knowledge-based methods are methods are created using domain-specific
knowledge and mathematical modelling. Neural networks, especially convolutional neu-
ral networks (CNN) and generative adversarial networks (GAN) are data-driven methods
that have been shown to be effective on image denoising and superesolution [16] [29]. In
experimental cases, deep learning methods are shown to be more effective than traditional
numerical methods. The main strength of deep learning methods is that solution operators
can be learnt without much domain knowledge.The main problem of supervised image
reconstruction is underfitting and overfitting. In the case of denoising, a good solution
operator can be learnt using a few hundred images. Here it is not unreasonable to assume
that the solution operator learns an operator that is similar to the methods we will inves-
tigate later. For more advanced problems, like superresolution and inpainting, several ten
thousand or hundred thousand images are required to create good solution operators. How
many images that are required depends on properties of the dataset, like resolution, simi-
larity of images and so on. A recent talk [1] showed that solving the inpainting problem
on a dataset of face images can be done using a CNN. A working method requires about
eighty thousand image samples in this case. However, if the dataset is reduced to two
thousand images, the method completely falls apart, and the CNN just returns noise. In
other words, data-driven models can only get you so far, and there is still a need for more
knowledge-based models in cases with small amounts of data.

We have so far introduced the main aspects of image reconstruction and regulariza-
tion. In order to properly tackle the problem of deconvolution, as well as give greater
understanding to the methods that will be proposed, the next chapter will give an introduc-
tion to Fourier analysis and signal processing.
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Chapter 3
Discrete signal processing, Fourier
analysis and convolutions

The goal of this section is to give an introduction to Fourier analysis, with the goal of
discussing its role in solving inverse problems and discrete signal processing. The main
goal is to understand convolutions, image resampling, as well as understanding inversion
methods. For images, many corruption processes can be modeled as convolutions, so we
will need to understand how we can implement them efficiently. During this endeavor
we will also obtain knowledge that will help us understand denoising and the parameter
selection problem.

This section is also a look at digital (discrete) signal processing, as viewed by a grad-
uate mathematician. Signal processing concerns signals, which is a thing that carries or
conveys information [18]. A signal usually exhibits variation in time and/or space, which
is why the notion of function or vector from mathematical calculus are commonly used to
represent signals.

Signal processing has its roots in mathematics, and is categorized as a sub-field of elec-
trical engineering . Before the 1950s, signal processing was done in analogue, continuous-
time systems like electronic circuits. Digital signal processing has grown in tandem with
the use of digital computers and the microprocessor. Digital signal processing is in a sense
more disconnected from electronics and physics than analogue signal processing, but even
though the theory of signal processing has its roots in the very abstract and mathematical,
the uses and applications are often very practical and physical. As this is a mathematical
thesis, we will try to avoid the more physical components of signal processing and instead
focus on the mathematical aspects. When this is said, signal processing is becoming more
”mainstream” for all engineers with the use of machine learning and other data-driven (in
many cases signal-driven) methods.

This section is heavily inspired by Principles of digital image processing by W. Burger
et. al [28], but we attempt to add some rigour and extra remarks to this work. A more
detailed introduction to digital signal processing can be found in Discrete-time signal pro-
cessing by Oppenheim et. al [18]. Other sources Fourier analysis and their use in signal

17
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processing used are Numerical analysis by Sauer [19] and Advanced engineering mathe-
matics by Kreyszig [14].

We will begin by mostly discussing so-called continuous time signals, where a signal
u(x) is a function of the continuous variable x. The word ”continuous” can be somewhat
confusing here as it refers to the variable x, not the continuity of the function u(x). We
will focus mostly on discrete time signals, where a signal uk is a function of the discrete
variable k. We will also discuss the process of turning a continuous time signal into a
discrete time signal. The reason we discuss both continuous and discrete time signals is
that this is essentially the difference between working in an infinite-dimensional and a
finite-dimensional space.

We initially limit ourselves to one-dimensional signals, as the results easily generalize
to two-dimensional signals, like images. We will mostly discuss real signals, for which
some results simplify.

3.1 Fourier series and The Fourier Transform
Jean-Baptiste Joseph Fourier (1768-1830) was was a French mathematician, who spent
much of his career researching heat flow and the partial differential equation called the heat
equation.[21] He derived the heat equation, and found that its solution could be described
by sine waves and cosine waves, trigonometric functions. The main insight of Fourier was
that a general solution to the heat equation could be written using a possibly infinite sum
of trigonometric functions, and expressing how to find the coefficients of this sum. This
idea proved to be important in many fields of science, the industrial age to the information
age.

We will use the complex exponential function

eix = cos(x) + i sin(x), (3.1)

as it captures the properties of the cos and sin functions elegantly.
The main result of Fourier and other mathematicians was that any periodic function

can be expressed as a sum of trigonometric functions, called a Fourier series. In fact, any
integrable function defined on an interval T of length T such that u : T → C can be
expressed as a Fourier series. The Fourier series is then a periodic function. The word
”integrable” here means that u lies in the Lsbeque space

L1(T) = {u(x)|
∫
T
|u(x)|dx <∞}.

Definition 1. (Fourier series) A function u that is integrable on an interval T of length T
has a Fourier series

v(x) =

∞∑
k=0

Ak cos(2π
kx

T
) +Bk sin(2π

kx

T
), (3.2)

where the coefficients Ak and Bk are the Fourier coefficients, given by

Ak =
2

T

∫
T
u(x) cos(2π

kx

T
)dx, Bk =

2

T

∫
T
u(x) sin(2π

kx

T
)dx. (3.3)
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The integral is understood to be over a period of length T . If u is periodic with period T ,
the integral can be computed over any interval of length T . Alternatively, the function can
be described by its complex Fourier series

v(x) =

∞∑
k=−∞

Cke
i2π kxT , (3.4)

with complex Fourier coefficients

Ck =
1

T

∫
T
u(x)e−i2π

kx
T dx.. (3.5)

We then have that u(x) = v(x) almost everywhere.

A main result of Fourier analysis is that any integrable function on an interval T can
be described by its Fourier series on that interval. This Fourier series is then a periodic
function with period T .

Instead of period, one can also define the series using a fundamental frequency ξ0 =
1
T or fundamental angular frequency ω0 = 2π

T The trigonometric functions used in the
Fourier series have frequencies equal to integral multiples of the fundamental frequency,
and these are called harmonic frequencies, or just harmonics.

The idea of the Fourier series can be extended by assuming the period is infinitely
large, thus encapsulating functions that are integrable on R. This is called the Fourier
transform.

Definition 2. The Fourier transform of a complex-valued, integrable function u : C→ C
is defined as

F(u(x)) = U(ξ) =

∫ ∞
−∞

u(x)e−i2πξxdx. (3.6)

We will denote the Fourier transform of a signal with capital letters. The Fourier
transform has many uses in electrical engineering and physics. In these fields x often
represents time, and ξ often represents frequency. The Fourier transform translates a signal
from its ”time”-domain to its ”frequency”-domain, also called the spectrum of the signal.
We will in general call the space where u exists the signal space and the space of its
spectrum the Fourier space. There exists many nearly equivalent conventions for the
Fourier transform. For a short overview, see Appendix A.

A crucial mathematical property of the Fourier transform is its invertibility.

Definition 3. (Inverse Fourier transform) For an integrable, complex-valued function U :
R→ C, the inverse Fourier transform is defined as

F−1(U(ξ)) = u(x) =
1

2π

∫ ∞
−∞

U(ξ)ei2πξxdξ. (3.7)

This is the inverse function of the Fourier transform.

The inverse Fourier transform is very similar in form to the Fourier transform. The
invertibility property is also sometimes called the Fourier inversion theorem.

The Fourier transform has many other useful properties, which we will illustrate.
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Lemma 2. (Properties of the Fourier transform). Assume that u and v are complex-
valued, integrable functions on R. The Fourier transform then satisfies

1. Linearity. For scalars c1 and c2 we have that

F(c1u+ c2v) = c1F(u) + c2F(v). (3.8)

2. Conjugation. The transform satisfies

F(u∗)(ξ) = F(u)(−ξ)∗. (3.9)

In particular, for purely real signals we have that

F(u)(−ξ) = F(u)(ξ)∗ ⇐⇒ |F(u)(−ξ)| = |F(u)(ξ)|. (3.10)

3. Shift property. Let x′ ∈ R, and v(x) = u(x− x′), then

F(v)(ξ) = e−i2πx
′ξF(u)(ξ). (3.11)

Furthermore, let ξ′ ∈ C, and v(x) = ei2πxξ
′
u(x), then

F(v)(ξ) = F(u)(ξ − ξ′). (3.12)

4. Scaling property. Let c > 0 be a scalar, then

F(u(cx))(ξ) =
1

c
F(u(x))

(
ξ

c

)
. (3.13)

Proof. The proofs generally follow directly from the definition.
(1.) Follows directly from the linearity of the integral operator.
(2.) By the definition of the Fourier transform

F(u∗) =

∫ ∞
−∞

u∗e−i2πξxdx

=

∫ ∞
−∞

(
uei2πξx

)∗
dx

=

(∫ ∞
−∞

ue−i2π(−ξ)xdx

)∗
= F(u)(−ξ)∗.

The last line is only true because dx∗ = dx, i.e we integrate over a real variable. Further-
more, if u is purely real then u∗ = u. Thus we have

F(ξ) = F(u)(−ξ)∗. (3.14)

Taking the absolute value on each side we obtain

|F(u)(ξ)| = |F(u)(ξ)|, (3.15)
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and the spectrum is symmetric around the origin.
(3.) Let ξ′ ∈ R and v(x) = u(x− x′), then by the definition of the transform

F(v) =

∫ ∞
−∞

u(x− x′)e−i2πξxdx

=

∫ ∞
−∞

u(y)e−i2πξ(y+x′)dy

= e−i2πx
′
∫ ∞
−∞

u(y)e−i2πξydy

= e−i2πx
′
F(u),

using the change of variables y = x − x′. We have thus proven the first part of the shift
property. Now, let v(x) = u(x)ei2πxξ

′
. Using the definition of the transform we have

F(v) =

∫ ∞
−∞

u(x)ei2πxξ
′
e−i2πξxdx

=

∫ ∞
−∞

u(x)e−i2π(ξ−ξ′)xdx

= F(u)(ξ − ξ′).

(4.) Let c be a real, non-zero scalar. Using the definition of the transform we have

F(u(cx)) =

∫ ∞
−∞

u(cx)e−i2πξxdx

=

∫ ∞
−∞

u(y)e−i2πξ
y
c d
(y
c

)
=

1

c
F(u)

(
ξ

c

)
,

using the change of variables y = cx.

The conjugation property is especially useful for purely real signals. In this case, the
property means that the magnitude of the spectrum is symmetric around the origin.

3.1.1 Sampling
Continuous signals can be transformed to or interpreted as discrete signals through a pro-
cess called sampling. We can interpret sampling in two ways: The discrete signal uk
sampled uniformly from a continuous signal u(x) satisfies

u(kTs) = uk, k ∈ Z, (3.16)

where Ts is the sampling period and Z ⊂ Z. Sampling might seem like an easy process,
but it comes with some caveats. It is clear that the sampled signal does not contain all the
information in the continuous signal.

The first concept we must introduce to understand this better are convolutions. Con-
volutions are the result of multiplying the spectrum of a function with another function,
yet this is not immediately obvious.



22 Chapter 3. Discrete signal processing, Fourier analysis and convolutions

Definition 4. A convolution u ∗ v between two functions u, v ∈ U returns a third function
defined by

(u ∗ v)(x) =

∫ ∞
−∞

u(y)v(x− y)dy. (3.17)

The convolution can be thought of as measuring the overlap between two functions
if we ”pass” one function over the other. Convolutions are extremely useful in signal
processing because of the property called the convolution theorem.

Theorem 1. For two integrable functions u, v ∈ U , a convolution in signal space corre-
sponds to multiplication in the Fourier space, i.e

F(u ∗ v) = F(u)F(v). (3.18)

Proof. Let u and v be integrable functions.
The Fourier transform of the convolution u ∗ v satisfies

F(u ∗ v) =

∫ ∞
−∞

[∫ ∞
−∞

u(y)v(x− y)dy

]
e−i2πξxdx

=

∫ ∞
−∞

u(y)e−i2πξydy

∫ ∞
−∞

v(z)e−i2πξzdz

= F(u)F(v).

Here we substitute the variable z = x − y and then separate the double integral into two
integrals of separate variables.

The convolution property is a marvelous property of the Fourier transform. It is worth
noting that the exact same proof holds for the inverse transform. The convolution theorem
holds both ways. Multiplication in signal space corresponds to a convolution in Fourier
space, and vice versa.

In order to discuss sampling, we introduce the impulse or Dirac delta function, which
also has close ties to the Fourier transform.

The impulse function can be loosely defined as a single impulse at a point, a function
δ(x) satisfying

δ(x) =

{
+∞, x = 0

0, otherwise
,

∫ ∞
−∞

δ(x)dx = 1. (3.19)

This definition is not particularly useful if rigour is the goal. Instead, we must define the
δ function as a generalized function, or distribution. However, this is outside the scope of
this text, and does not lead us towards the end goal of studying images. In this sense, all
subsequent uses of the impulse functions are essentially abuse of notation, and have to be
used with care. From now on, we also use a generalized Fourier transform, that allows for
distributions.

Definition 5. The impulse function δ is defined by the property that for a continuous
function u : R→ C we have that∫ ∞

−∞
u(x)δ(x− x′)dx = u(x′). (3.20)
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Moreover, ∫ x′+ε

x′−ε
u(x)δ(x− x′)dx = u(x′). (3.21)

for any ε > 0.

In other words, equation 3.20 lets us extract a single value u(x′) from the function
u(x), which is equvalent to sampling the point x′. We can thus interpret u(x)δ(x − x′)
as a sample of the signal u(x) in the point x′. The next lemma illustrates some of the
properties of the impulse function. The properties will be given without proof.

Lemma 3. (Properties of the impulse function) Let u : R → C and x′ ∈ C. Then the
following properties are satisfied:

1. Fourier Transform.
F(δ(x))(ξ) = 1. (3.22)

Furthermore, let δ′(x) = δ(x− x′), then

F(δ′(x))(ξ) = e−i2πx
′ξ. (3.23)

2. Convolution property. The impulse function is acts as the identity for convolution

u(x) ∗ δ(x) = u(x), (3.24)

or alternatively the shift operator

u(x) ∗ δ(x− x′) = u(x− x′). (3.25)

3. Scaling property. Let c be a scalar, then∫ ∞
−∞

u(x)δ(cx) =∞−∞ u(x)
δ(x)

|c|
. (3.26)

4. Symmetry.
δ(−x) = δ(x). (3.27)

The properties of the impulse function should be reminiscent of the properties of the
Fourier transform, and we will see that these two ideas are linked. The third property is
more often written as

δ(cx) =
δ(x)

|c|
, (3.28)

which is an abuse of notation. We will use this notation from now on.
We can extend the idea of the impulse function to ”sample” infinitely many discrete

values from a signal. We will only consider uniform sampling, where one samples equidis-
tant points. We call the distance between these points the sampling period Ts > 0, with
corresponding sampling rate ξs = 1

Ts
. To formalize this, we introduce the so called Dirac

comb function, also called the sampling function.
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Definition 6. (Sampling function) The sampling functionWTs with sampling rate ξs = 1
Ts

is defined as

WTs(x) =

∞∑
k=−∞

δ(x− kTs) =
1

Ts

∞∑
k=−∞

δ(
x

Ts
− k) =

1

Ts
W1(

x

Ts
). (3.29)

From lemma 3, some properties of the sampling function are immediately apparent.
We can interpret u(x)WTs(x) as infinitely many equidistant samples of the u(x). The
resulting function is infinitely many impulses where each impulse is weighted with the
value of u(x) in that point. In this sense, we can extract the value of the sample by the
operation

u(kTs) = uk =

∫ kTs+ε

kTs−ε
u(x) ·WTs(x)dx, (3.30)

for any 0 < ε < Ts. This might seem cumbersome. If we wanted to interpret sampling in
continous time, a choice of interpretation is

ũ(x) =

{
uk, x = kT

0, otherwise
(3.31)

The problem with a function like this is that any integral will be 0. In this sense, none
of the points have any ”weight”, which does not translate well into actual discrete signals
where each point has a weight equal to uk. This means that a function like ũ has Fourier
transform equal to 0, which means we cannot use the tools from Fourier analysis. Thus
we interpret the sampling of a function u(x) as u(x)WTs(x).

The sampling function lets us define an important property of periodic functions,
namely periodic summation.

Definition 7. (Periodic summation) For a function u : R→ C, the periodic summation of
u with period T , denoted by uT is defined as

uT =

∞∑
k=−∞

u(x− kT ) = u ∗WT (3.32)

Without getting too technical, the periodic summation does not always exist for all
functions u. The function uT is obviously periodic. In this sense we can create periodic
functions out of aperiodic functions.

With the idea of periodic summation, we can introduce a crucial relationship between
continuous time and discrete time Fourier transforms.

Lemma 4. (Poisson summation formula) Assume the periodic summation uT converges
uniformly. We then have

uT =

∞∑
k=−∞

u(x− kT ) =
1

T

∞∑
k=−∞

F(u(x))(
k

T
)ei2π

kx
T . (3.33)

Furthermore,
∞∑

k=−∞

u(k) =

∞∑
k=−∞

U(k). (3.34)
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Proof. The periodic summation uT is periodic with period T . The Fourier coefficients are

Ck =
1

T

∫ T

0

[

∞∑
k=−∞

u(x+ kT )]e−i2π
kx
T dx

=
1

T

∞∑
k=−∞

∫ T

0

u(x+ kT )e−i2π
kx
T dx

=
1

T

∞∑
k=−∞

∫ k+T

k

u(x)e−i2π
kx
T dx

=
1

T

∫ ∞
−∞

u(x)e−i2π
kx
T dx

=
1

T
F(u)(

k

T
) = F(u(xT ))(k)

Thus, uT can be written as a Fourier series.

uT =
1

T

∞∑
k=−∞

F(u(x))(
k

T
)ei2π

kx
T . (3.35)

Inserting x = 0 and T = 1 yields
∞∑

k=−∞

u(k) =

∞∑
k=−∞

U(k). (3.36)

The main result of the Poisson summation formula is that the periodic summation of a
function u(x) can be written as a Fourier series where the coefficients are equal to samples
of the Fourier transform of u(x). By the duality of the Fourier transform, we can instead
write the Poisson summation as

UT =

∞∑
k=−∞

U(ξ − k

T
) = Tu(kT )ei2πξkT . (3.37)

This is perhaps easier understood by realizing that the Fourier transform of the sam-
pling function is another sampling function, which we will show in the next lemma.

Lemma 5. The sampling function WTs can be written as a Fourier series

WTs(x) =
1

Ts

∞∑
k=−∞

ei2π
kx
Ts . (3.38)

Furthermore, the Fourier transform of the sampling function is another sampling function

F(WTs(x))(ξ) =
1

Ts
W1/Ts(ξ) =

∞∑
k=−∞

δ(
x

Ts
− k) =

∞∑
k=−∞

e−i2πkxTs (3.39)
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Proof. Inserting u(x) = δ(x) into lemma 4 immediately yields that

WTs(x) =
1

Ts

∞∑
k=−∞

ei2π
kx
Ts . (3.40)

For the Fourier transform, we first use the scaling property of the Fourier transform

F(WTs(x))(ξ) = F(
1

Ts
W1(

x

Ts
)) = F(W1(x))(Tsξ), (3.41)

and using the definition of the Fourier transform this becomes

=

∫ ∞
−∞

[

∞∑
k=−∞

δ(x− k)]ei2πξxTsdx =

∞∑
k=−∞

∫ ∞
−∞

δ(x− k)ei2πξxTsdx. (3.42)

We recognize this as the integral shift property of the impulse function, and this becomes

∞∑
k=−∞

ei2πξkTs , (3.43)

which is a Fourier series. Using the previous Fourier series result we find that this Fourier
series corresponds to

∞∑
k=−∞

ei2πξkTs =
1

Ts
W1/Ts(ξ). (3.44)

which concludes the proof.

We can now reinvestigate the poisson summation formula, and ask ourselves: What is
the Fourier transform of a sampled signal? It should be clear by now that

F(uWTs) =
1

Ts
U(ξ) ∗W1/Ts =

1

Ts
U1/Ts . (3.45)

In other words, the spectrum of a sampled function is a periodic summation of the spectrum
of the function. In order to properly introduce what this means, we must talk about the
bandwidth of a signal. The bandwidth of a signal is equal to the distance between the
maximal frequency ξmax and the minimal non-negative frequency ξmin. ξmax is the largest
ξ where the power spectrum |U(ξ)| has support. For many real signals, ξmin is usually 0.
In this case the bandwidth is the same as ξmax. In this case the support of the spectrum
is in [−ξmax, ξmax]. When sampling from a signal like this, there can be problems. If the
sampling frequency ξs = 1/Ts is small relative to ξmax, the periods periodic summation
of the spectrum can ”bleed” into each other. This is a phenomenon called aliasing, and is
illustrated in figure 3.1.

What aliasing means is that we cannot extract the continuous signal from a sampled
signal if it has been sampled with a low sampling frequency compared to the bandwidth of
the signal. This means that different signals can become indistinguishable (aliases of one
another) when sampled.

We have basically shown the Nyquist-Shannon theorem, which we will now stated as
Shannon originally stated it.
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ξ

Spectrum |U(ξ)|

ξmax

ξ

Periodic summation of |U(ξ)| with ξs = 2ξmax

ξs

. . .. . .

ω

Periodic summation |U(ω)| with ωs < 2ωmax

. . .. . .

Aliasing! ξs

ξmax

Figure 3.1: Effects on the spectrum U(ξ) when sampling from a signal u(x). In the first figure we
see the spectrum of the original continuous signal. In the second figure we see the signal samples
with ”perfect” sampling frequency ξs = 2ξmax. The spectrum is periodic, and perfectly captures all
the information of the original signal. In the last figure we see the same but with ξs < 2ξmax. The
periods ”bleed” into each other, and the resulting spectrum does not represent the original continuous
signal.

Theorem 2. (Nyquist-Shannon) If a signal u(x) has no frequencies higher than ξmax, it is
completely determined by giving its ordinates at a series of points spaced 1

2ξmax
apart.

Another way of stating this theorem is that in order to avoid aliasing, we need the
sampling frequency to satisfy

ξs
2
≥ ξmax. (3.46)

This is the sampling theorem, and is essential when sampling signals. The quantity ξs
2 is

usually called the Nyquist frequency.
The act of Fourier transforming a sampled signal also goes by another name, the

Discrete Time Fourier Transform (DTFT).

Definition 8. (Discrete Time Fourier Transform) The Discrete Time Fourier Transform
(DTFT) of a discrete signal uk = u(kT ) is defined as

DTFT1/T (u)(ξ) =

∞∑
k=−∞

Tu(kT )e−i2πkξT =

∞∑
k=−∞

U(ξ− k
T

) = F(

∞∑
k=−∞

u(kT )δ(x−kT )).

(3.47)
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This definition summarizes periodic summation, poisson summation and sampling.
Sampling in one space corresponds to periodic summation in the other.

The DTFT of a discrete signal is a function, which is not easy to handle on a computer.
We would like something akin to the Fourier transform that also returns a discrete signal.

3.1.2 The discrete Fourier Transform
We can finally introduce the Discrete Fourier Transform (DFT).

Definition 9. (Discrete Fourier Transform) The Discrete Fourier Transform (DFT) of a
discrete, summable, signal u with elements uk, k = 0, ...n− 1 is defined as

DFT(u)l = Ul =

n−1∑
k=0

uke
−i2π lkn . (3.48)

The result of the DFT is a new discrete signal U with elements Ul, l = 0, ...n− 1.
The DFT is discrete analog to the Fourier coefficients of a signal, not the Fourier

transform as the name implies. If we calculate the l − th Fourier coefficients of a signal
u(x) sampled n times over a period T s we obtain

Cl =
1

T

∫ T

0

n−1∑
k=0

u(kT )δ(x− kT )e−i2π
lx
T dx

=

n−1∑
k=0

u(kT )

∫ T

0

δ(x− kT )e−i2π
lx
T dx

=

n−1∑
k=0

u(kT )e−i2π
kl
n ,

Which is exactly the DFT. Note the Fourier coefficients Cl are periodic with period n in
this case, which is consistent with what we have concluded earlier in this text.

The DFT is also motivated by the DTFT. If we assume a discrete signal u(kT ) of
period n, the DTFT should converge to zero everywhere except for integer multiples of
1/nT , the harmonic frequecnies of u. We can see this by rearranging the DTFT to obtain

DTFT1/T (u)(ξ) =

∞∑
k=−∞

uke
−i2πkξT

=

∞∑
l=−∞

n−1∑
k=0

unl+ke
−i2π(nl+k)ξT

We see that this sum diverges to infinity for integer multiples of ξ = 1
nT at the rate and

goes to 0 for any other ξ. Here we use the notion that the infinite sum of something periodic
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is 0. If we insert an integer multiple ξ = m
nT we obtain

DTFT1/T (u)(m/nT ) =

∞∑
l=−∞

n−1∑
k=0

uke
−i2π (nl+k)m

n

=

∞∑
l=−∞

[

n−1∑
k=0

uke
−i2π kmn ]e−i2πlm

= DFT (u)m

∞∑
l=−∞

1

In other words, it diverges with the rate of the DFT coefficients. We can use this to assert
that the DTFT of a periodic discrete signal is perfectly described by the DFT coefficients.
What we have just done is essentially to sample n points of the DTFT. If we now assume
a finite discrete signal u(kT ) of length n, and we want to sample n points of the DTFT we
obtain

DTFT1/T (u)(l/nT ) =

∞∑
k=−∞

uke
−i2πk( l

nT T =

n−1∑
k=0

uke
−i2π lkn , (3.49)

which is exactly the DFT. It should be noted that the DFT can suffer from aliasing, and
it is important to remember that the DFT is periodic. The bandwidth of a discrete signal
is always infinite, but the spectrum is periodic. Thus the bandwidth of any interest is
”squeezed” inside the first period of the DTFT, which we can sample from using the DFT.
This period depends on the size n of the signal. We can interpret the sampling theorem
from a different perspective. While a discrete signal of length n can attain infinitely many
values, it can only capture a finite ”amount of frequency”.

We have so far introduced four different tools of Fourier analysis: Fourier series,
Fourier transform, DTFT and DFT. A depiction of these tools is shown in figure 3.2.

ξ

Fourier Series

ξ

Fourier Transform

ξ

Discrete Time Fourier Transform

ξ

Discrete Fourier Transform

DFT

Figure 3.2: The different Fourier transforms.

The DFT has many of the properties analogous to the continuous Fourier transform.
Firstly, it has an inverse.
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Definition 10. (Inverse DFT) The inverse DFT of a discrete signal U is defined as

DFT−1(U)k = uk =
1

n

n−1∑
l=0

Ule
i2π lkn , k = 0, ..., n− 1. (3.50)

We can restate the properties of the continous Fourier transform in lemma 2 in the
discrete case.

Lemma 6. (Properties of the DFT)

1. Linearity.
DFT(c1u+ c2v) = c1 DFT(u) + c2 DFT(v). (3.51)

2. Conjugation.
DFT(u∗)l = DFT(u−k)∗l (3.52)

3. Circular shift property

DFT(u · ei2π ll
′
n )l = DFT(u)l−l′ . (3.53)

Proofs are analogous to the continuous case.

Remembering that the DFT is periodic with period n, we use the notation u−k = un−k.
This means that the shift property should be interpreted as a circular shift. We can also
describe a circular shift as shifted modulo N .

We can now discuss discrete convolutions, which can be defined identically to con-
tinuous convolutions.

Definition 11. (Discrete linear convolution) For discrete signals u and v, the discrete
convolution u ∗ v is defined as

(u ∗ v)l =

∞∑
k=−∞

ulvl−k. (3.54)

We use the word ”linear convolution” to separate this convolution from the different
convolutions we will show later.

For finite discrete signals, the support of the convolution (or just the size of the result-
ing vector) depends on the size n of u and m of v. For the purpose of simplicity, we will
always assume that n is an even number while m is an odd number. Here the convolution
can be defined as

(u ∗ v)l =

n+(m+1)/2∑
k=−(m+1)/2

ulvl−k. (3.55)

The result is a new signal of size m+ n− 1.
We can now investigate convolution theorems similar to the continuous case. The goal

is to calculate the linear convolution. The original convolution theorem obviously holds
for the DTFT, as this is just a Fourier transform applied to discrete signals.

DTFT1/T (u ∗ v) = DTFT1/T (u)DTFT1/T (v). (3.56)
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In order to find a convolution theorem for the DFT, we can essentially apply the proof for
the original convolution theorem in reverse. What is

DFT−1(DFT(u) DFT(v))? (3.57)

This depends on the properties of the signals u and v. Firstly, we assume the signals are
periodic with period n. We then arrive at the idea of a periodic convolution, which can be
defined as

(ũ ∗ ṽ)k =

n−1∑
l=0

ũlṽk−l. (3.58)

It should be noted that the periodic convolution is defined over just one period, but is
periodic with period n. A linear convolution of two infinite signals almost always diverges.

For periodic convolutions, i.e linear convolutions of periodic signals, we have that

DFT(ũ ∗ ṽ) = DFT(ũ) DFT(ṽ), (3.59)

which is the convolution theorem! This can be shown using the exact same proof as for
the continuous case and using the circular shift property of the DFT.

What if we want to use the DFT to calculate the convolution between two finite (non-
periodic) signals? We can turn the finite signals into periodic signals using periodic exten-
sions discussed earlier. If we define u to be one period of ũ, i.e

ũk = ũ ∗Wn. (3.60)

The shift of a periodic signal of period n is a circular shift, which means that for 0 ≤
l, k ≤ n− 1 we have

ũl−k =

{
ul−k, l − k ≥ 0

un−(k−l), l − k < 0.
(3.61)

If we insert this into the periodic convolution, we obtain

(ũ ∗ ṽ)k =

n−1∑
l=0

ũlṽl−k =

n−1∑
l=0

ulṽl−k. (3.62)

The second equality is because ũl = ul for 0 ≤ l ≤ n−1. We call this kind of convolution
a Circular convolution. If we apply the convolution theorem for periodic sequences we
see that

DFT(ũ ∗ ṽ) = DFT(u ∗ ṽ) = DFT(u) DFT(ṽ), (3.63)

where the tilde denotes a periodic extention of an aperiodic signal.
We can use a circular convolution to calculate a linear convolution with aliasing. When

multiplying the discrete Fourier transforms of two signals finite signals of different length,
we must pad the signals to be of the same length.

We will see that the act of padding a signal with zeros gives us a DFT with higher
”resolution”, and is actually the same as interpolating the DFT. For a signal u with length
n, a zero padded signal of length n+m satisfies

Pm(u)k =

{
uk, k ≤ n− 1

0, otherwise
, (3.64)
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where Pm is an operator that pads the signal with m zeroes.
The DFT of a padded signal satisfies

DFT(Pm(u))l =

n∑
k=0

uke
−i2π lk

n+m , (3.65)

which is a signal of length n + m. We recognize this as a finer sampling of the DTFT.
While DFT(u) consists of n samples of the DTFT over one period, DFT(Pm(u)) con-
sists of n + m samples of the DTFT over one period. This corresponds to a specific
upsampling of DFT(u). This is not the same as using a finer sampling of a continuous
signal, and cannot on its own be used to reduce aliasing. In order to apply a circular con-
volution to two signals u of length n and v of length m, we must pad the two signals to be
of the same length.

If we pad the signals to max(n,m), or just assume they have the same length, we
achieve a linear convolution with aliasing. The argument is essentially the same as for why
sampling signals can yield aliasing, only in Fourier space. Because the linear convolution
between two signals of length n and m is of length n+m− 1, we need at least n+m− 1
DFT coefficients to properly describe the signal. If not, the periods of the convolution in
signal space will overlap, and aliasing will occur.

To summarize, a linear convolution of two signals of length n and m can be calculated
as a circular convolution with aliasaing. In order to avoid aliasing, we need to pad both
signals to length n+m− 1. This will become more clear in later sections.

3.1.3 Vector perspective of the DFT
We will now approach the DFT from a more mathematical perspective. This allows for a
deeper understanding as well as makes it easier to show some needed results.

We now interpret a discrete signal u as a vector in Rn of length n, whose elements we
denote uk. Any linearly independent set of n vectors of size n is a basis for this space. A
particularily interesting orthogonal basis are the normalized version of the vectors used in
the DFT

(qk)l =
1√
n
e12π kln . (3.66)

The corresponding basis functions in infinite dimensions are the functions

qk =
1

T
ei2π

kx
T , (3.67)

which also form an orthogonal basis for the infinite-dimensional space L2(R). We can
easily see that

n−1∑
l=0

(qk)l =

{
1, k = 0

0, k > 0.
(3.68)

This can be easily seen by recognizing this as a geometric series. Let θ = (q1)0 = 1
ne

i2π l
T ,

which satisfies θn = 0, then
n−1∑
l=0

(qk)l = 1 + θ + · · ·+ θn−1 =
θn − 1

θ − 1
= 0. (3.69)
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A direct consequence of this is that

〈qk, qk′〉 =
1

n

n−1∑
l=0

ei2π
(k−k′)l

n =

{
1, k = k′

0, otherwise
= δkk′ , (3.70)

and the basis functions are orthonormal. Here we also defined the Kroenecker delta func-
tion δkk′ , which is the discrete analogue of the Dirac delta function.

Using the basis vectors we can alternatively write each element of the DFT as the inner
product

DFT(u)k =

n−1∑
l=0

ul(e
i2π kln )∗ = n〈u, qk〉. (3.71)

Furtheremore, the inverse DFT can be written as a linear combination of the Fourier basis
vectors

DFT−1(U) =

n−1∑
k=0

Ukq̄k. (3.72)

Both the DFT and inverse can then be written as a matrix operation. The DFT can be
written as a matrix multiplication with the so-called Fourier matrix

Qn =

 (q0)0 · · · (qn−1)0

...
...

(q0)n−1 · · · (qn−1)n−1

 =
1√
n


ω0 ω0 · · · ω0

ω0 ω1 ω2 · · ·ωn−1

ω0 ω2 ω4 · · ·ω2(n−1)

...
...

...
...

ω0 ωn−1 ω2(n−1) · · ·ω(n−1)2

 ,
(3.73)

where ω is the n-th root of unity. We see that the Fourier matrix is symmetric, and the
inverse is the complex conjugate

Q−1
n = Q̄n =


ω0 ω0 · · ·ω0

ω0 ω−1 ω−2 · · ·ω−(n−1)

ω0 ω−2 ω−4 · · ·ω−2(n−1)

...
...

...
...

ω0 ω−(n−1) ω−2(n−1) · · ·ω−(n−1)2

 , (3.74)

which is also symmetric. The Fourier matrix is thus orthogonal, as QnQ∗n = I . We can
write the forward and inverse Discrete Fourier transforms as matrix operations

DFT(u) = nQnu, DFT−1(U) = Q∗nU. (3.75)

A useful relationship between a signal u and its DFT is Parseval’s theorem.

Theorem 3. (Parseval’s theorem) Let u, v ∈ Rn, then

〈u, v〉 =
1

n
〈DFT(u),DFT(v)〉. (3.76)
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Furthermore,

〈u, v〉 =

n−1∑
k=0

〈u, qk〉〈v, qk〉∗ (3.77)

For a differently scaled DFT, this implies that the DFT is a unitary operator.
We can deduce what the different elements of the DFT of a discrete signal represent.

The wave number k is a measure of how many cycles the Fourier basis function makes
over the signal length n. For k = 0, the basis function is just a vector containing 1. In
other words, the real part of the zeroth entry of DFT(u) contains the constant part of the
signal, or the average of the signal.

We can now define a linear convolution as a linear operator

Au = κ ∗ u, (3.78)

for some kernel κ of size m. From the previous section, we found that

Au = DFT−1(DFT(κ) DFT(u)), (3.79)

where the DFT is of size n+m−1. We can combine this with equations (3.71) and (3.72)
to find

Au =

n+m−1∑
k=0

DFT(κ)k〈u, qk︸ ︷︷ ︸
(DFT(κ) DFT(u))k

〉 qk︸︷︷︸
DFT−1

. (3.80)

Using this formulation of convolutions, we see that

Aqk = DFT(κ)kqk. (3.81)

For all convolution kernels κ, the eigenvectors of the convolution operator A is the Fourier
basis vectors qk, and the eigenvalues are the DFT coefficients of the kernel κ. Thus, we
can write a convolution as a matrix diagonalization

Au = Q∗n+m−1 diag(DFT(κ))Qn+m−1u, (3.82)

where diag(DFT(κ)) is a diagonal matrix containing the DFT coefficients of κ.
The matrix diagonalization is an absolutely beautiful reformulation of the convolution

theorem. We can interpret the matrix diagonalization in three parts:

• Qn+m−1 corresponds to the DFT.

• diag(DFT(κ)) corresponds to element-wise multiplication with the DFT of an-
other signal.

• Q∗n+m−1 corresponds to the inverse DFT.

We can use this to investigate the inverse operator A−1. It can be written as

A−1u = Q∗n+m−1 diag(DFT(κ))−1Qn+m−1u = DFT−1

(
DFT(u)

DFT(κ)

)
, (3.83)
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where the division is interpreted element-wise. This means that the inverse of a convolu-
tion operator only exists is all DFT coefficients are non-zero. We can also use this to find
the condition number of the operator A,

K(A) =
maxl |DFT(κ)l|
minl |DFT(κ)l|

. (3.84)

A convolution operator is ill-conditioned if there is a large span in the DFT coefficients of
the kernel κ.

Two other operators we will need later are A∗ and A∗A. We can find A∗ by applying
Parsevals theorem

〈Au, v〉 =
1

n+m− 1
〈DFT(Au),DFT(v)〉 = 〈DFT(κ) DFT(u),DFT(v)〉

=
1

n+m− 1

n+m−1∑
l=0

DFT(κ)l DFT(u)l DFT(v)∗l

=
1

n+m− 1

n+m−1∑
l=0

DFT(κ)l (DFT(u)∗l DFT(v)l)
∗︸ ︷︷ ︸

DFT(A∗v)l

= 〈u,A∗v〉.

We find that

A∗u = DFT−1(DFT(κ)∗DFT(u)). (3.85)

We can now apply the convolution theorem and the conjugation property of the DFT to
find that A∗ is another convolution operator satisfying

(A∗v)k =

n+m−1∑
l=0

κ∗l−kvl. (3.86)

The adjoint of a convolution operator is equivalent to a convolution with the kernel κ
conjugated and flipped, so the elements are in reversed order.

As for the operator A∗A, we find that this is equal to

A∗Au =

n+m−1∑
k=0

DFT(κ)∗k〈Q∗n+m−1 diag(DFT(κ))Qn+m−1u, qk〉qk

=

n+m−1∑
k=0

DFT(κ)∗k〈diag(DFT(κ))Qn+m−1u,Qn+m−1qk〉qk

=

n+m−1∑
k=0

|DFT(κ)k|2〈u, qk〉qk

= DFT−1(|DFT(κ)|2 ·DFT(u)).
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3.1.4 The Discrete Fourier Transform in 2D
For image applications, we need to extend the DFT to 2D. Essentially all we have shown
in the previous sections also apply to the 2D case with extra indices.

For a 2D, discrete signal ukx,ky , with kx = 0, ..., n− 1 and ky = 0, ..., n− 1, the DFT
can be defined as

Ulx,ly =

n−1∑
kx=0

n−1∑
ky=0

ukx,kye
−i2π

(
kxlx
n +

kyly
n

)
, lx = 0, ...n−1, ly = 0, ..., n−1. (3.87)

The 2D DFT can be decoupled into multiple 1D DFTs

Ulx,ly =

n−1∑
kx=0

 n−1∑
ky=0

ukx,kye
−i2π kylyn


︸ ︷︷ ︸

1D DFT

e−i2π
kxlx
n . (3.88)

In other words, a 2D DFT is as computationally expensive as applying n2 1D DFTs.
The result from the DFT is a n×n discrete signal, which can be interpreted as periodic

in both dimensions
Ulx+cxn,ly+cyn = Ulx,ly (3.89)

for any integers cx and cy .
In order to visualize the 2D DFT, one usually works with the magnitude of the DFT,

|Ulx,ly |, also called the power spectrum of the signal. As in one dimension, the power
spectrum of a real signal (images) is symmetric about the origin, i.e

|Ulx,ly | = |U−lx,−ly|. (3.90)

Because of this, it is common to swap the four quadrants of the power spectrum in or-
der to obtain a so-called centered representation when visualising. This means that the
low-frequency coefficients are found in the center of the image and the high-frequency co-
efficients are found near the edges of the image. Finally, because the coefficients usually
span a large range, it is common to plot the logarithm of the power spectrum log |Ulx,ly |.
Examples of the 2D DFT is shown in figure 3.3.

From the figure we see the usefulness of the centered DFT. The second signal shown,
the brick wall, is actually a periodic image. Because of this, we see the DFT tends towards
discrete frequencies. In both signals, and particularily the first, the frequencies in the x
and y direction are large compared to the other frequencies. This is partly because of the
periodic extension of the original signal. An illustration of the periodic extension of the
two signals is shown in figure 3.4. In the first image, the periodic extension creates some
very abrupt changes in the x and y direction. We see this in the DFT coefficients, as most
of the power spectrum is in the x and y direction.

3.1.5 2D discrete convolution
Linear discrete convolutions in 2D can be defined as

(u ∗ v)kx,ky =

∞∑
lx=−∞

∞∑
ly=−∞

ulx,lyvkx−lx,ky−ly . (3.91)
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Signal DFT Centered DFT

Figure 3.3: Two signals and the logarithm of the power spectrum log |U | using normal DFT and
centered DFT. In the centered DFT, the low frequencies are in the center, and the high frequencies
are closer to the edges.

Figure 3.4: Periodic extenstions of the signals in figure 3.3.

We will now attempt to show how the circular convolution theorem can be used to calcu-
late linear discrete convolutions. Figure 3.5 shows the convolution procedure between an
image u with resolution n × n and a kernel κ with resolution m ×m. Here the kernel is
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∗ =

n × n image m × m kernel n × n result

· =

DFT DFT (padded to n× n) Inverse DFT

Figure 3.5: DFT convolution without proper padding. The kernel has to be padded to n× n before
the DFT in order to obtain two signals of the same size for multiplication.

paadded to be of the same size of the image, which yields an aliased image. For images
the act of convolving an image u with a kernel κ is the same as applying a linear filter to
the image. Although the resulting convolution is of size n + m − 1 × n + m − 1 we are
mostly interested in the convolution in the n×n area corresponding to the original image.
For this reason we crop the convolution result. Figure 3.6 shows a convolution procedure
with ”correct” padding, avoiding aliasing.

One problem with zero-padding is that the edges of the resulting convolved image
will be darkened. This is unrealistic or unwanted for mathematical models and linear
filters. This effect is worse for kernels κ with larger resolution. The convolution around
the edges of the image requires knowledge about the intensities outside the image, which
is information we generally do not have. One way to lessen the impact of this effect is so
called ”egde”-padding, where instead of padding the image with zeros, we pad it with the
value at the edge pixel of the image. This procedure is shown in 3.7. When doing this
one must be careful with shifting and cropping the image. Note that when applying edge
padding, the ”edge” part of the resulting convolution will be aliased. To illustrate this,
figure 3.8 shows the periodic extension of the three resulting convolutions of the proposed
convolution methods.

3.1.6 The Fast Fourier Transform
The convolution theorem is a crucial result, as it allows us to calculate the convolution
between two signals by the DFT. The naive calculation of the 2D convolution can be done
in O(n2m2) operations.
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∗ =

Pad Pad Crop

· =

DFT DFT Inverse DFT

n × n image m × m kernel n × n result

Figure 3.6: DFT convolution with proper zero-padding. Both the image and kernel are padded to a
resolution of (n+m− 1)× (n+m− 1).
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∗ =

Pad Pad Crop

· =

DFT DFT Inverse DFT

n × n image m × m kernel n × n result

Figure 3.7: FFT convolution with ”edge” image padding. Both the image and kernel are padded to
a resolution of (n + m − 1) × (n + m − 1). Note that after the inverse DFT the image is in the
lower right corner, not in the middle as in figure 3.6.
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Figure 3.8: Periodic extenstions of the resulting convolutions in figure 3.5, 3.6 and 3.7 respectively.

The DFT can be calculated using the Fast Fourier Transform (FFT) algorithm, which
has many efficient implementations.

The complexity of the FFT convolution becomes O(n2 log n), a huge improvement
in many cases. Because we are working with real signals, half of the frequencies are
redundant, so we can use an FFT algorithm specialized for this case. It is also possible to
use different trigonometric transforms, like the Discrete Cosine Transform (DCT) and the
Discrete Sine Transform (DST).

It is worth mentioning that there exists other fast convolution algorithms. One of them
being consecutive convolutions with separable kernels, which means that

κ = κx ∗ κy, (3.92)

for two kernels κx ∈ Rm×1 and κy ∈ R1×m. In this case the convolution can be calculated
as (u∗κx)∗κy inO(n2m) when done naively. Another algorithm is the so-called overlap-
and-add algorithm, which is well-suited when the resolution of the signal u and the kernel
κ is of very differing size.
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+ =

Image u Noise σw Noisy image v = u + σw

DFT DFT DFT

Figure 3.9: The power spectrum of noise added to an image.

3.2 Fourier analysis and inverse problems
We can use the tools of Fourier analysis to better understand deconvolution and denoising.

If we first investigate the denoising model

v = u+ σw, (3.93)

where w is a random vector with uncorrelated, zero mean and finite, equal variance ele-
ments. In this case, w is usually called white noise, and has the property that the power
spectrum is constant. For finite signals, the power spectrum slightly deviates from a con-
stant spectrum because of the random properties of the noise. In the case where w is
Gaussian distributed, we usually call this Gaussian white noise.

Figure 3.9 shows what happens to the spectrum of an image when noise is added. From
the figure, we see that the DFT of the noise vector is a nearly constant spectrum, while the
DFT of an image usually has most of its weight clustered around the center, corresponding
to low frequencies.

In this text we have mentioned the word filter without properly defining it. A filter
is a process that removes certain components of a signal, usually certain frequencies. In
particular, a band-pass filter. is a filter which ”passes” certain frequencies of a signal,
and removes others. A particular case of a band-pass filter is a low-pass filter which pre-
serves all low frequencies up to a maximal frequency. A linear filter usually corresponds
to a multiplication in Fourier space (removing and amplifying certain frequencies) which
corresponds to a convolution in signal space. Examples of linear filters are Gaussian filters
and QV regularization. An example of a non-linear filter is TV regularization. All of these
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λ = 0.1 λ = 1.0 λ = 10.0

Figure 3.10: DFT of QV solution operator for different λ.

v = κ ∗ u 1/DFT(κ) DFT−1(DFT(v)/DFT(κ))

Figure 3.11: Example of deconvolution of Gaussian blur. The Gaussian blur has a kernel of size
15 × 15 and σ = 1.2. The condition number of the resulting operator is K(A) = 3.7 × 105. The
resulting deconvolution has PSNR = 16.43

filters are low-pass filters. Low-pass filters usually smooth a signal by not allowing large
frequencies, corresponding to ”fast” variations. This smoothing corresponds to noise re-
duction when the original signal consists mostly of lower frequencies, like images. Figure
3.10 shows the spectrum of the solution operator SQV(λ) for denoising for different λ. We
see that the spectrum is large near the center, corresponding to low frequencies, and small
near the edges.

Figure 3.9 shows that we can remove large frequencies, as they mostly correspond
to noise, not the signal. We can therefore apply a low-pass filter like Gaussian blur, QV
regularization and TV regularization to remove noise.

3.2.1 Deconvolution

We will now investigate some of the properties of deconvolution. We interpret deconvolu-
tion as removing a linear convolution with edge padding as was shown in figure 3.7. We
remember that a deconvolution is also a convolution, so we apply the same edge padding
method to deconvolution. An example of this ”naive” deconvolution is shown in figure
3.11.

While Gaussian blur is a low-pass filter, we see that the inverse is a high-pass filter.
While the blur operator A is not too ill-conditioned, the main problem with the decon-
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v = κ ∗ u DFT(SQV(λ)) SQV(λ)v

Figure 3.12: Example of deconvolution of Gaussian blur using QV regularization and λ = 0.05.
The Gaussian blur is the same as in figure 3.10. The resulting deconvolution has PSNR = 33.66.

volution is the ringing effects that occur. The ringing occurs because of the sharp jump
caused by the periodic extension of the original image. This ringing is especially visi-
ble around the edges of the image. This is also for a problem without noise. If noise is
added, the resulting deconvolution will amplify that noise, especially if the blur is more
ill-conditioned.

The ringing and noise can be alleviated with regularization. An example of this is
shown in figure 3.12. The resulting deconvolution using QV regulariztion is much better
than the ”naive” deconvolution. Note that the solution operator is a low-pass filter. The
QV deconvolution does however have some ringing near the edges, as well as some extra
QV blur. This can be improved (or worsened) for different parameter choices for SQV(λ).
As with the denoising problem, choosing the correct parameter is of great importance. We
will later see that the results for TV regularization will be similar as for QV regularization.
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Image resampling

Image resampling amounts to transforming one discrete image into a similar discrete im-
age with different resolution. Ideally, this should be done without losing much information
about the image. Image resampling can be done to create an image with smaller resolu-
tion, called downsampling, and to create images of larger resolution, called upsampling.
In addition, these methods can be used to resample an image with the same resolution.
Aliasing becomes a problem when performing image resampling, and we will also discuss
techniques to avoid aliasing.

Image resampling is traditionally done using interpolation, which can often be de-
scribed as linear operators, usually convolutions. The idea of interpolation is to find a
continuous signal interpolated from a discrete signal, then sample from this new continu-
ous signal.

Moreover, it is possible to describe image resampling as an inverse problem

v = Au+ σw (4.1)

where v is a resampled image of u and A is either a downsampling or upsampling op-
erator. The goal of resampling is then to ”undo” a downsampling or upsampling. This
approach is mainly used for upsampling, as downsampling can usually be done with tradi-
tional interpolation techniques. Newer methods of upsampling also merge into the concept
of super-resolution imaging. The goal of super-resolution imaging is often to extract in-
formation from several similar images to produce an image of better quality and higher
resolution.

We wish to resample an n×n image u to a n′×n′ image u′. We define the resampling
ratio α

α =
n′

n
(4.2)

In the downsampling problem, we have α < 1, while in the upsampling problem we have
α > 1, usually an integer value. We define a pixel coordinate of the grid of the original
image as (x, y), and the pixel coordinate of the new grid as (x′, y′). The original grid

45
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consists of all pairs of integers satisfying

{x ∈ N|x < n} × {y ∈ N|y < n}. (4.3)

It is not enough to just have the resampling ratio α, we also need to choose a new grid
and a method for calculating the value of (x′, y′). We need to transform between the grid
of the new image and the old image. This transform is obviously not unique, and there
are infinitely many ways to do this transformation. We can think of this as choosing a
continuous coordinate transform B satisfying

B(x′, y′) = (x, y). (4.4)

An illustration is shown in figure 4.1.

(x′, y′)

(x, y)
B

Original image grid Resampled image grid

Figure 4.1: The continuous coordinate transform B transforms a pixel of the resampled image grid
(x′, y′) to a pixel of the original image (x, y). Note that the point (x, y) does not necessarily hit a
point on the grid of the original image.

We seldom need to mathematically describe the operator B, but it is a useful abstrac-
tion. For simplicity, we usually choose the resampled grid to have equidistant, possibly
shifted points, which means that the coordinate transform B is a particular class of affine
operators.

The point (x′, y′) need not correspond with a coordinate (x, y) on the grid of the
original image, i.e a coordinate where we know the image value. An illustration of two
different choices for the new grid is shown in figure 4.2. A resampling algorithm then
requires us to choose a method for approximating such pixels, which can be done through
interpolation.

There exists many different linear interpolation methods, or more specifically, interpo-
lation kernels. Many interpolation methods can be written as separable convolutions. In
this text we will discuss nearest-neighbour interpolation, bilinear interpolation, bicubic in-
terpolation and Lanczos interpolation. These methods can be interpreted as a convolution
with between a discrete signal, interpreted as a Dirac comb, and a continuous kernel w

u′(x) =

∞∑
y=−∞

w(x− y)u(x). (4.5)
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B2

B1

Figure 4.2: Illustration of two different coordinate transforms B1 and B2 for downsampling with
α = 1/2. B1 maps new points (x′, y′) between the original points (x, y) whileB2 maps new points
onto a subset of the old points.

The act of downsampling is then to sample a discrete signal from the interpolated function
u′.

The simplest interpolation method is nearest-neighbour interpolation. This method
simply consists of choosing the interpolated pixel to be the closest pixel in the original
image. The pixel (x′, y′) of the new image u′ satisfies

u′(x′, y′) = u(bx′ + 0.5c, by′ + 0.5c). (4.6)

This is a very simple and easy to implement method. It can also be expressed as a convo-
lution with a square windowing kernel in 1D

κ1Dnn(x) =

{
1, −0.5 ≤ x ≤ 0.5

0, otherwise
. (4.7)

The nearest neighbour kernel easily extends to 2D

κ2Dnn(x, y) =

{
1, −0.5 ≤ x ≤ 0.5,−0.5 ≤ y ≤ 0.5

0, otherwise
. (4.8)

A more complex method is bilinear interpolation. In 1D, linear interpolation amounts
to a weighted sum between the two closest points. The point we want to interpolate, x′
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−3 −2 −1 1 2 3

1

x

κ1Dnn

Figure 4.3: The kernel for nearest neighbour interpolation

has two closest points on the original grid x1 and x2 satisfying bx′c = x1 and dx′e = x2.
Given our scaling, the points also satisfy x2 = x1 + 1. Linear interpolation can then be
written as

u′(x′) = (x2 − x′) · u(x1) + (x′ − x1)u(x2). (4.9)

Note that the equation satisfies u′(x1) = u(x1) and u′(x2) = u(x2), meaning the method
reduces to nearest neighbour interpolation when a new pixel aligns with a pixel on the
existing grid. Linear interpolation can also be interpreted as the line between the two
points, or a weighted mean of the two points. It is easy to express as a convolution with a
kernel

κ1Dlin(x) =

{
1− |x|, |x| < 1

0, otherwise
. (4.10)

In 2D, bilinear interpolation corresponds to a linear interpolation between two linear
interpolations. In other words, it depends only on the closest four pixels, and is a weighted
mean of these pixels. One begins with linear interpolation between two pairs of pixels,
and then interpolate between the appropriate points on these two lines. Writing this out is
rather technical, and it is more easily expressed as a convolution with a kernel

κ2Dlin(x, y) = κ1Dlin(x) · κ1Dlin(y) =

{
1− |x| − |y|+ |xy|, |x| < 1, |y| < 1

0, otherwise.
(4.11)

Both nearest-neighbour and bilinear interpolation are simple naive methods that do
not take into account the spectrum of the signal u. We seek ways of interpolating a band-
limited signal

A band-limited, continuous, real signal has a spectrum ranging from −ξmax to ξmax,
while a sampled discrete version has the same spectrum but repeated infinitely. To re-
construct the signal, we should try to isolate this original spectrum. This can be done by
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x

κ1Dlin

Figure 4.4: The kernel for linear interpolation.

multiplying the spectrum U(ξ) with a square windowing function

U(ξ) ·Hπ(ξ) = U(ξ) ·

{
1, −π ≤ ξ ≤ ξmax

0, otherwise
. (4.12)

This is an ideal low-pass filter, as it perfectly passes low frequencies while removing fre-
quencies beyond ξs As we have repeated several times, this multiplication in Fourier space
corresponds to a convolution in signal space. The inverse Fourier transform of the square
windowing function H(ω) is the so-called Sinc function

F−1(Hπ(ξ)) = Sinc(x) =

{
1, |x| = 0
sin(πx)
πx , otherwise

. (4.13)

For a band-limited signal, the optimal interpolation method is a convolution with the
Sinc function

κ1Dsinc(x) = Sinc(x). (4.14)

Note that the sinc function is 0 for all integer values of x.
In 2D, this corresponds to a convolution with a 2D Sinc function

κ2Dsinc(x, y) = κ1Dsinc(x)κ1Dsinc(y) =
sin(πx)

πx

sin(πy)

πy
. (4.15)

This is called Sinc interpolation, also called the Whittaker-Shannon interpolation for-
mula. It can be shown that using Sinc interpolation can perfectly recreate a continuous
signal from a properly sampled, band-limited, discrete signal. At least ideally, but as we
will see there are some problems in practice.

While the nearest-neighbour interpolation used only the closest point, and linear inter-
polation uses the closest two points, Sinc interpolation uses infinitely many points. Sinc
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Figure 4.5: The kernel for Sinc interpolation.

interpolation can potentially give negative weight to some pixels. In order to perfectly
recreate a continuous signal, we need information of the entire signal for each point, not
just the local information. This is obviously problematic as it is makes Sinc interpola-
tion not calculateable for an infinite signal, and potentially costly for a finite one. Most
advanced interpolation methods are approximations to the Sinc function.

One of the most common interpolation methods is Bicubic interpolation, which ap-
proximates the Sinc function with a cubic function. The kernel is given as

κ1Dcub =


(−a+ 2)|x|3 + (a− 3)|x|2 + 1, 0 ≤ |x| < 1

−a|x|3 + 5a|x|2 − 8a|x|+ 4a, 1 ≤ |x| < 2

0, otherwise
(4.16)

, where a is a tuning parameter usually set to 1.
The bicubic interpolation method can also weigh pixels negatively, but only uses in-

formation from the neighbouring four points.
For downsampling, it is most common to choose the resampling ratio such that the

pixels of the downsampled image aligns with the pixels of the original image. In this case
all methods is equivalent to nearest neighbour resampling. For example, when α = 1/2,
meaning we downsample an n×n image into a n/2×n/2 image, we can downsample by
choosing every other pixel of the original image. This will obviously lead to aliasing, as we
are only using one fourth of the pixels of the original image to calculate the downsampled
image.

To avoid aliasing, one usually applies an anti-aliasing filter. An anti-aliasing filter
is essentially the same as a denoising filter, in that it attempts to remove aliased frequen-
cies. For images, these are usually high frequencies, which means that anti-aliasing filters
corresponds to a low-pass filter, like a Gaussian blur. An anti-aliasing smooths the pixels
intensities, so that information from neighbouring pixels are added to downsampled pixels.
The anti-aliasing filter can be applied both before and after the downsampling procedure.
We will investigate this more in a later chapter.
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Figure 4.6: The kernel for cubic interpolation with the parameter a = 1. Note the similarity with
the Sinc function.

For upsampling, it is also possible that some of the pixels of the upsampled image
corresponds to the original image, but there will also be new pixels that lie in between
pixels of the original image. Some of the different upsampling methods is shown in figure
4.7.

Nearest-neighbour interpolation usually yields ”blocky” or ”pixelated” images. This
is sometimes a wanted effect, but is often avoided. The more advanced methods yields
smoother results. In the case of linear interpolation, the upsampled version can in some
cases be too smooth, creating blur. For bicubic interpolation, and any interpolation method
that can weigh pixels negatively, an unwanted effect that is usually called ringing can
occur. Ringing occurs near sharp transitions of a band-limited signal. It is equivalent to the
Gibbs phenomenon, which refers to oscillations in the Fourier series near discontinuities
of a periodic function. We saw the ringing phenomenon when we discussed deconvolution
in chapter 3. Ringing can also be interpreted as the oscillations in the Sinc function.
More intuitively, a sharp transition in a signal requires high frequencies. When these
high frequencies are removed, the sharp transitions will be inaccurate, and will have to be
created with smaller frequencies.
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Figure 4.7: Left is a 56 × 56 image. All other images are upsampled images with α = 2.0.
The upper middle image is created using nearest-neighbour interpolation. The upper right image is
created using bilinear interpolation. The bottom image is created using bicubic interpolation.



Chapter 5
Convex Analysis and Numerical
Methods

This chapter will provide required definitions and results from the field of convex analysis
and optimization. The aim is for this chapter to be self-contained, and in this pursuit we
will omit some proofs and assume standard optimization results are known. The chapter
is loosely based on chapter 3, 13, 15, 16 and 28 in the rather extensive work of Bauschke
et al. [3]

The field of convex optimization concerns optimization of convex functions on convex
sets. While mathematical optimization is in general an NP-hard problem , many convex
optimization problems allow for more efficient solution algorithms. The main appealing
property of convex optimization problems is that local solutions are also global solutions,
and for differentiable functions every stationary point is a global solution. [17] The class
of convex optimization problems also contain many common problems, such as linear
programming and least square problems.

As discussed earlier least square solutions are simple solutions (but not necessarily
good ones!) to inverse problems. Many optimization problems that arise in inverse prob-
lems are convex, but not differentiable. In such cases, ”traditional” line search and trust
region methods fail. The goal is then to have a mathematical framework and numerical
methods for solving convex problems, which is why we turn to convex analysis.

5.1 Convex analysis
We begin by assuming U to be a Hilbert space, but not all definitions and proofs require
this structure.

Definition 12. (Convexity) A function f : U → R is convex if for all u, v ∈ U and
0 ≤ t ≤ 1 we have

f(tu+ (1− t)v) ≤ tf(u) + (1− t)f(v). (5.1)

53
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A subset C of U is convex if for all u, v ∈ U and 0 ≤ t ≤ 1 we have

tu+ (1− t)v ∈ C. (5.2)

In other words, a set is convex if line segments between points of the set is contained in
the set. A function is convex if line segments between points on the graph of the function
lies on or above the graph of the function.

Definition 13. (Projection) Let C be a closed, convex subset of U . Then the projection
πC(u) is the solution of the problem

πC(u) = min
v∈C
‖v − u‖2.

Note that the mapping v 7→ ‖v − u‖2 is strictly convex and coercive, meaning the
projection exists and is unique. For convex subsetss C, there exists an useful way of
characterising projections, which will be stated without proof.

Theorem 4. Let πC(u) be the projection onto the closed, convex subset C. Then

v = πC(u) ⇐⇒ v ∈ C and 〈u− v, w − v〉 ≤ 0,∀w ∈ C.

Example 1. Let C be the closed ball around 0 with radius λ > 0

C = Bλ = {u ∈ U : ‖u‖ ≤ λ}.

The projection onto this subset satisfies

πBλ(u) =
λu

max{λ, ‖u‖}

We can use Theorem 4 to characterize a projection onto this subset. Let v = λu
max{λ,‖u‖} ).

For ‖u‖ ≤ λ, we have that v = u, and thus the variational inequality holds trivially. For
‖u‖ ≥ λ we have that v = λu

‖u‖ , and the variational inequality yields

〈u− λu

‖u‖
, w − λu

‖u‖
〉 = 〈u,w〉 − λ‖u‖ − λ

‖u‖
〈u,w〉+ λ2

= −‖u‖λ
(

1− λ

‖u‖

)
+ 〈u,w〉

(
1− λ

‖u‖

)
= −‖u‖λ

(
1− λ

‖u‖

)
+ ‖u‖λ

(
1− λ

‖u‖

)
= 0.

Thus πBλ(u) is the projection onto Bλ.

To exclude uninteresting functions we first begin by defining a class of convex func-
tions.
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Definition 14. (Domain) The domain of a function f : U → R ∪ {+∞} is

dom(f) = {u ∈ U : f(u) < +∞}

Definition 15. (Proper convex function) A proper convex function is a convex function
f : U → R ∪ {+∞} so that dom(f) is non-empty, i.e ∃u ∈ U s.t f(u) < +∞.

In particular, we denote

Γ0(U) = {f : U → R ∪ {+∞} proper, convex and lower semi-continuous} (5.3)

Example 2. When f is allowed to take on +∞, convex functions are no longer guaranteed
to be lower semi-continuous. For example, an important function is the characteristic of a
convex set C,

iC(u) =

{
0, u ∈ C
+∞, u /∈ C

.

Now chooseC = (0,+∞]. The characteristic function in this case is convex. The inequal-
ity

iC(tu+ (1− t)v) ≤ tiC(u) + (1− t)iC(v), 0 ≤ t ≤ 1

always holds because if there is a +∞ on the left side, either iC(u) = +∞ or iC(v) =
+∞. However, it is not lower semi-continuous, as lim infu→0+ iC(u) = 0, but iC(0) =
+∞.

The characteristic function is lower semi-continuous for closed C. Recall that uncon-
strained optimization problems have solutions if the function we are minimizing is coercive
and lower semi-continuous.

5.1.1 Convex conjugates and their properties
We can now begin to introduce some of the main tools in convex analysis.

Definition 16. (Convex Conjugate) For a function f : U → R ∪ {+∞}, we define its
convex conjugate f∗ : U → R ∪ {+∞} (also called Legendre-Fenchel transform)

f∗(p) = sup
u∈U

[〈u, p〉 − f(u)]. (5.4)

The power of the convex conjugate will become evident when discussing optimality
conditions for convex optimization problems. For now, let us try to calculate the conjugate
of a few functions.

Example 3. The characteristic function mentioned earlier is interesting because it turns
unconstrained problems into constrained ones, for example

arg min
u∈U

[f(u) + iC(u)] = arg min
u∈C

f(u), (5.5)

in the sense that the two problems are identical. Assume C is a ball with radius λ:

C = Bλ = {u ∈ U : ‖u‖ ≤ λ}
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. We can calculate the convex conjugate of the indicator function on this set

f∗(p) = sup
u∈U

[〈u, p〉 − f(u)] = sup
‖u‖≤λ

〈u, p〉 = λ‖p‖ (5.6)

Example 4. Another useful calculation is the adjoint of f(u) = 1
2‖Au− v‖

2 for a linear
operator A : U → V , u ∈ U , v ∈ V .

f∗(p) = sup
u∈U

[〈u, p〉 − 1

2
‖Au− v‖2] = sup

w∈V,w=Au
[〈A−1w, p〉 − 1

2
‖w − v‖2].

The problem is differentiable, so the supremum satisfies,

A−∗p = w − v.

Inserting this we get,

f∗(p) = 〈A−∗p+ v,A−∗p〉 − 1

2
‖A−∗p‖2

= ‖A−∗p‖2 +
1

2
‖v‖2 − 1

2
‖A−∗p− v‖2

=
1

2
‖A−∗p+ v‖2 − 1

2
‖v‖2.

A tool that is frequently used Young’s inequality.

Lemma 7. (Young’s Inequality) For all u, v ∈ U we have

〈u, v〉 ≤ f(u) + f∗(v) (5.7)

Proof. From the definition of convex conjugate we have

f∗(v) ≥ 〈u, v〉 − f(u),

and the result trivially follows.

Theorem 5. Let f ∈ Γ0(U), then f∗ ∈ Γ0(U).

Theorem 6. Let f : U → R ∪ {+∞} be proper. Then f∗∗ ≤ f with equality if and only
if f ∈ Γ0(U).

Proof. Apply Young’s inequality

f(u) ≥ 〈u, v〉 − f∗(v),∀u, v ∈ U.

Because the inequality holds for all u, v ∈ U , it also holds if we apply a supremum on one
side,

f(u) ≥ sup
v∈U

[〈u, v〉 − f∗(v)] = f∗∗(u).
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Example 5. Continuing from Example 3, we can put Theorem 5 and 6 to the test.
Let us try to find the conjugate of f∗(v) = λ‖v‖

f∗∗(u) = sup
p∈U∗

[〈p, u〉 − f∗(p)] = sup
p∈U∗

[〈p, u〉 − λ‖v‖]. (5.8)

If ‖u‖ > λ the mapping v 7→ 〈p, u〉−λ‖p‖ is unbounded above. If ‖u‖ ≤ λ, the mapping
attains a maximum for p = 0. This means that

f∗∗(u) =

{
0, ‖u‖ ≤ λ
+∞, ‖u‖ > λ

= iBλ(u) = f(u)

As expected, we have f = f∗∗ and f ∈ Γ0(U), f∗ ∈ Γ0(U∗).

5.1.2 Subdifferentials and their properties
We need a way to define properties of non-differentiable functions. We also need a way of
characterizing optimality conditions for non-differentiable functions. Subdifferentials are
extensions of differentials of continuous functions.

Definition 17. (Subdifferential) Let f ∈ Γ0(U). The convex subdifferential ∂f(u) of f at
u is

∂f(u) =

{
Ø, if u /∈ dom(f)

{ξ ∈ U : f(v) ≥ f(u) + 〈ξ, v − u〉,∀v ∈ U}, if u ∈ dom(f)
(5.9)

The elements of ∂f(u) are called subgradients of f at u.

Example 6. Let f(u) = ‖u‖, which is differentiable everywhere except u = 0. The
subdifferential of f(u) at u = 0 is

∂f(0) = {ξ ∈ U : ‖v‖ ≥ 〈ξ, v〉,∀v ∈ U}
= {ξ ∈ U : ‖ξ‖ ≤ 1}.

A line with slope equal to the gradient of a differentiable, convex function always lies
under the graph of the function. For non-differentiable, convex functions the subdifferential
contains the slopes of all lines that lie under the graph of the function.

Why define subdifferentials this way? One reason is that for differentiable functions,
the only element of the sub-differential is the actual gradient of the fucntion.

Lemma 8. Let f : U → R ∪ {+∞} be convex, lower semi-continuous, u ∈ int(dom f)
and f (Gâteaux) differentiable at u, then

∂f(u) = {∇f(u)} (5.10)

Another reason for defining subdifferentials is that they provide familiar optimality
conditions.
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Lemma 9. Let û ∈ U be a minimizer of a convex function f : U → R ∪ {+∞}. Then

0 ∈ ∂f(û). (5.11)

Proof. Assume

0 ∈ ∂f(û).

By the definition of subdifferentials we have

=⇒ f(u) ≥ f(û),∀u ∈ U,

meaning û is a global minimizer.

Note that the previous lemma contain the familiar first order necessary optimality con-
dition, namely that optimal points are also stationary points.

The next theorem contains some useful properties of subdiffererntials.

Theorem 7. (Properties of subdifferentials) Let f ∈ Γ0(U), g ∈ Γ0(P ) and let D : P →
U be a linear operator. Then:

1.
ξ ∈ ∂f(u) ⇐⇒ 〈ξ, u〉 = f(u) + f∗(ξ)

2.
ξ ∈ ∂f(u) ⇐⇒ u ∈ ∂f∗(ξ)

3. Assume ∃ũ ∈ int(dom f) with g(ũ) <∞. Then

∂(f + g)(u) = ∂f(u) + ∂g(u)

4. Define ∂g(p) = f(Dp) and assume ∃p̃ ∈ V s.t Dp̃ ∈ int(dom f). Then

∂g(p) = D∗∂f(Dp)

Proof. We will omit the proofs of (3.) and (4.) as they are relatively complicated. (1.)
Young’s inequality yields 〈ξ, u〉 ≤ f(u) + f∗(ξ). The definition of subdifferentials yields

f(v) ≥ f(u) + 〈ξ, v〉 − 〈ξ, u〉,∀v ∈ U,

which means that

〈ξ, u〉 ≥ f(u) + 〈ξ, v〉 − f(v) ≥ f(u) + f∗(ξ).

This means that 〈ξ, u〉 = f(u) + f∗(ξ)
(2.)

ξ ∈ ∂f(u) ⇐⇒ 〈ξ, u〉 = f(u) + f∗(ξ) = f∗∗(u) + f∗(ξ)

⇐⇒ u ∈ ∂f∗(ξ)
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5.1.3 Duality
As we saw with regularization problems like the total variation problem, we need to be
able to solve problems of the form

min
u∈U

[f(u) + g(Du)].

Here D : U → P is a linear operator. Optimality conditions for such problems can be
described by the Fenchel-Rockafellar theorem

Theorem 8. (Fenchel-Rockafellar) Assume f ∈ Γ0(U), g ∈ Γ0(V ) and D ∈ L(U, V ).
Assume that the primal problem

min
u∈U

[f(u) + g(Du)]

admits a solution u∗ ∈ U and that there exists ũ ∈ dom f s.t Dũ ∈ int(dom g). Then

1. The dual problem
min
p∈V

[g∗(p) + f∗(−D∗p)]

admits a solution p∗ ∈ V .

2. f(u) + g(Du) + g∗(p) + f∗(−D∗p) ≥ 0,∀u ∈ U, p ∈ V

3. The following are equivalent:

(a) f(u∗) + g(Du∗) + g∗(p∗) + f∗(−D∗p∗) = 0.

(b) u∗ solves the primal problem and p∗ solves the dual problem.

(c) −D∗p∗ ∈ ∂f(u) and p∗ ∈ ∂g(Du)

(d) u∗ ∈ ∂f∗(−D∗p∗) and Du∗ ∈ ∂g∗(p∗).

Proof. The primal problem has a solution for

0 ∈ ∂(f(u∗) + g(Du∗)) = ∂f(u∗) +D∗∂g(Du∗).

The equality is obtained by applying (3.) and (4.) of theorem 7. We can introduce a new
variable p∗ to split this into two conditions

p∗ ∈ ∂g(Du∗),−D∗p∗ ∈ ∂f(u∗).

Applying (2.) of theorem 7, we obatin

Du∗ ∈ ∂g∗(p∗), u∗ ∈ ∂f∗(−D∗p∗).

We can now rewrite these two conditions into a single condition, and again use (3.) and
(4.) of theorem 7

0 = Du∗ −Du∗ ∈ g∗(p∗)−Df∗(−D∗p∗).
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Finally, we recognize this as the optimality conditions for a different problem,

p∗ = arg min
p∈V

g∗(p) + f∗(−D∗p),

which we call the dual problem.
We can now use Young’s inequality

f(u) + g(Du) + g∗(p) + f∗(−D∗p) ≥ 〈u,−D∗p〉+ 〈Du, p〉 = 0.

Equality is attained if and only if f(u) + f∗(−D∗p) = 〈u,−D∗p〉 and g(Du) + g∗(p) =
〈Du, p〉, which means 3. (c) and (d) hold, which again mean that 3. (a) and (b) hold.

We now have optimality conditions for problems on the same form as many regular-
ization problems. The final tool will be a tool that lets us formulate numerical methods for
solving the problems, namely proximal operators.

5.1.4 Proximal point operators
Definition 18. (Proximal point operator) Let f ∈ Γ0(U). The proximal point mapping
proxf : U → U for f is defined as

proxf (u) = arg min
û∈U

[
1

2
‖û− u‖2 + f(û)

]
A useful reformulation is that the proximal operator satisfies

0 ∈ û− u+ ∂f(û) ⇐⇒ u ∈ û+ ∂f(û) ⇐⇒ proxf (u) = (I + ∂f)−1(û) (5.12)

Example 7. The proximal point mapping of the characteristic function on a set C is

proxiC (x) = arg min
x̂∈X

[
1

2
‖x̂− x‖2 + iC(x̂)] = arg min

x̂∈C

1

2
‖x̂− x‖2 = πC(x) (5.13)

In other words, the proximal operator of the characteristic function onto the set C is the
the same as a projection onto the set C.

Lemma 10. Let f ∈ Γ0(U) and u, ξ ∈ U . Then for all γ > 0

ξ ∈ ∂f(u) ⇐⇒ u = proxγf (u+ γξ)

Proof.

ξ ∈ ∂f(u) ⇐⇒ u+ γξ ∈ u+ γ∂f(u) ⇐⇒ u = proxγf (u+ γξ)

by equation (5.12).

In other words, proximal operators describe fixed points. An optimal point satisfies

0 ∈ ∂f(u) ⇐⇒ u = proxγf (u).

We now have all pieces of the puzzle, and are ready to discuss some numerical meth-
ods.
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5.2 Numerical Methods
We are only interested in optimization problems of the form

min
u∈U

f(u) + g(Du). (5.14)

Most algorithms work for variants of this problem, but we will exclusively apply it to the
total variation problem for grayscale images with resolution n× n.

min
u∈Rn2

1

2
‖Au− v‖2︸ ︷︷ ︸

f(u)

+λ‖|Du|‖1︸ ︷︷ ︸
g(Du)

. (5.15)

The operator D is as defined in equation (2.21). It is worth noting that we have already
done much of the analysis needed for the total variation problem in the examples in the
last subsection. Furthermore, the optimization problem (5.15) satisfies the conditions of
the Fenchel-Rockafellar theorem. Both f and g are continuous and coercive, meaning the
problem (5.15) has a solution. Furthermore, both f and g are proper, convex functions,
so f ∈ Γ0(U) and g ∈ Γ0(V ). Finally it is not difficult to choose ũ ∈ dom f so that
Dũ ∈ int(dom g). We have dom g = R+, while dom g ⊂ R+, based on A. We can easily
choose ũ so that g(Dũ) takes on any value, including its interior, so this condition also
holds.

We have essentially already calculated the conjugates f∗ and g∗ in examples 3 and 4.
The dual problem of (5.15) can be written as

min
p∈Rn2×2

1

2
‖v −A−∗D∗p‖2 − 1

2
‖v‖2︸ ︷︷ ︸

f∗(−D∗p)

+ iBλ(p)︸ ︷︷ ︸
g∗(p)

. (5.16)

For the dual variable p we use the notation

pi,j = (p
(x)
i,j , p

(y)
i,j ).

The ball in g∗ is Bλ = {p ∈ V : ‖|p|‖∞ ≤ λ}. To be clear, we interpret |p| compo-
nentwise (or pointwise), so the ball contains all p so that every component pi,j satisfies√

(p
(x)
i,j )2+, (p

(y)
i,j )2 ≤ λ.

We can find the adjoint D∗ : Rn2×2 → Rn2

by calculating

〈Du, p〉 =
∑

i<n,j<n

(ui+1 − ui,j)p(x)
i,j + (ui,j+1 − ui,j)p(y)

i,j

=
∑

1<i<n,1<j<n

(p
(x)
i−1,j − p

(x)
i,j + p

(y)
i,j−1 − p

(y)
i,j )ui,j

−
∑
j

p
(x)
1,ju1,j −

∑
i

p
(y)
i,1 ui,1 +

∑
j

p
(x)
n−1,jun−1,j +

∑
i

p
(y)
i,m−1ui,n−1

= 〈u,D∗p〉.
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In other words,

D∗p =


p

(x)
i−1,j − p

(x)
i,j , 1 < i < n

−p(x)
i,j , i = 1

p
(x)
i−1,j , i = n

+


p

(y)
i,j−1 − p

(y)
i,j , 1 < j < m

−p(y)
i,j , j = 1

p
(y)
i,j−1, j = m

(5.17)

We will also need the operator norms ‖D‖ and ‖D∗‖. In Hilbert spaces, it can be
shown that bounded operators D satisfy ‖D‖ = ‖D∗‖, so we only need to find ‖D‖.

The operator norm ‖D‖ = sup{‖Du‖ : u ∈ Rn2

with ‖u‖ ≤ 1} can be found by
investigating

‖Du‖ =

√ ∑
i<n,j<n

(ui+1,j − ui,j)2 +
∑

i<n,j<n

(ui,j+1 − ui,j)2

=

√ ∑
i<n,j<n

u2
i+1,j − 2ui,jui+1,j + u2

i,j+1 − 2ui,jui,j+1 + 2u2
i,j

≤
√ ∑
i<n,j<n

u2
i+1,j + 2|ui,jui+1,j |+ u2

i,j+1 + 2|ui,jui,j+1|+ 2u2
i,j

This upper bound is nearly satisfied when the difference between neighbouring compo-
nents of u are maximized, i.e when u creates a checkerboard pattern. For ‖u‖ = 1 and
ignoring that the sum does not include i = n and j = n this means ui,j = ± 1

n . Thus we
can approximate ‖D‖ ≈

√
8 for large n.

Now, onto numerical methods. The main idea of the numerical methods we will formu-
late is to use the Fenchel-Rockafellar theorem for optimality conditions and use proximal
operators to create fixed point methods. When applying such methods, one has to be cre-
ative in how to split the functional one wants to minimize. In regularization problems,
the splitting is often given by the problem. Additionally, because solutions to the primal
and dual problem comes in pairs, setting up the methods to solve either the primal or dual
problem can make more sense.

5.2.1 Forward backward splitting
The first method discussed can essentially be derived in two ways, either by using the
Fenchel-Rockafellar theorem and attempt to solve the dual problem instead of the primal
problem, or by using proximal operators. We will derive it using proximal operators.

Assume g is differentiable, the optimality system is then

p = ∇g(Du), −D∗p ∈ ∂f(u), (5.18)

or
p = ∇g(Du), u = proxγf (u− τD∗p). (5.19)

We thus have the iteration

pk ← ∇g(Duk)

uk+1 ← proxτf (uk − τD∗pk)
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This formulation is known as ”Forward-Backward splitting”. This formulation, and the
other proximal operator methods to come, are all relatively simple to implement, requiring
relatively few line of code.

We need to assure some conditions to ensure convergence of the method, stated in the
following theorem without proof [8].

Theorem 9. Let g be (Gâteaux) differentiable and∇g Lipschitz continuous with constant
L > 0. The sequence uk generated by forward-backward splitting converges (weakly) to
a solution u∗ of the primal problem provided that 0 < τmin ≤ τ ≤ τmax = 2

‖D‖2L

For the total variation problem it is not easy to apply this directly to the primal problem,
but things work out very nicely if we apply it to the dual problem for A = I . In other
words, we look to satisfy the optimality system

u = ∇f∗(−D∗p), Du ∈ ∂g∗(p), (5.20)

which means we obtain the iteration

uk ← v −D∗pk

pk+1 ← proxτg(pk + τDuk) =
λ(pk + τDuk)

max{λ, |pk + τDuk|}

Note that ∇f∗(−D∗p) = v − D∗p is Lipschitz continuous with Lipschitz constant
L = 1. Furthermore, with ‖D‖2 ≤ 8, we should choose τ ≤ 1

4 .

5.2.2 Primal-Dual methods

The idea of this algorithm is to do fixed point iteration in both the primal and the dual
variable. The methods we state here are based on the works of Chambolle and Pock[7].
We can use the optimality conditions

−D∗p ∈ ∂f(u), Du ∈ ∂g∗(p), (5.21)

or
p = proxσg∗(p+ σDu), u = proxτf (u− τD∗p). (5.22)

to obtain the iteration

pk+1 ← proxσg∗(pk + σDuk)

uk+1 ← proxτf (uk − τD∗pk+1).

This is called the Arrow-Hurwicz method.

Theorem 10. The sequence (uk, pk) generated by the Arrow-Hurwicz method converges
(weakly) to the primal-dual solution (u∗, p∗) provided that στ < 1

‖D‖2 .
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A problem with this method is that the update for p uses the u from the previous
iteration while the update for u uses the p from the current iteration. We can try to better
the method by adding an extrapolation step for u, and obtain the iteration

pk+1 ← proxσg(pk + σDûk)

uk+1 ← proxτf (uk − τD∗pk+1)

ûk+1 ← uk+1 + θ(uk+1 − uk).

This method is called the Chambolle-Pock method. The parameter θ ≥ 0 is usually set to
1.0. If we set θ = 0 we again obtain the Arrow-Hurwicz method.

Theorem 11. The sequence (uk, pk) generated by the Chambolle-Pock method with θ = 1
converges (weakly) to the primal-dual solution (u∗, p∗) provided that στ ≤ 1

‖D‖2 .

For the total variation problem, we should choose στ < 1
8 .

Chambolle also proposed an accelerated version in the case where g or f∗ is uniformly
continuous, which is true for the total variation problem. Here the step lenghts τ and σ are
updated for each iteration to hopefully yield better convergence. The iterations become

pk+1 ← proxσg∗(pk + σDûk)

uk+1 ← proxτf (uk − τD∗pk+1)

θk = 1/
√

1 + 2γτk, τk+1 = θkτk, σk+1 = σk/θk

ûk+1 ← uk+1 + θ(uk+1 − uk).

Applying the original Chambolle-Pock method to the total variation problem yields
the iterations:

pk+1 =
λ(pk + σDûk)

max{λ, |pk + σDûk|}
uk+1 = (I + τA∗A)−1(uk − τD∗pk+1 + τA∗v)

ûk+1 = uk+1 + θ(uk+1 − uk).

5.2.3 Total variation deblurring
The update for the primal variable is simple for the denoising problem, but requires solving
a linear system for different forward operators A. When A is a convolution operator,
Au = κ ∗ u, we can solve the system directly using the DFT

uk+1 = DFT−1

(
DFT(uk − τD∗pk+1) + τ DFT(κ)∗DFT(v)

1 + τ |DFT(κ)|2

)
. (5.23)

To make the process more computationally efficient, we note that τA∗v does not change,
and only needs to be calculated once. We apply edge padding as was shown in chapter
3. We interpret (I + τA∗A)−1 as a single convolution, and only apply the padding once.
Some care must be taken to ensure that the different terms are padded to the correct sizes



5.2 Numerical Methods 65

Figure 5.1: Original image u, blurred and noisy image v = Au + σw with σ = 0.02 and TV
reconstructions using λ = 0.0001, 0.001, 0.01, 0.1 respectively. The blur operator A is a Gaussian
blur with a 15× 15 kernel and σblur = 1.5.

and cropped at the correct positions. An example of deconvolutions using the Chambolle-
Pock algorithm is shown in figure 5.1 The example shown is a relatively ill-conditioned
problem. We see that for low regularization there are still artifacts from the noise of the
corrupted image, and for high regularization we get similar results as for the denoising
examples shown in chapter 2. There are no noticable ringing effects, which we saw could
be a problem in the end of chapter 3. The regularization parameter is on a different scale
than for the TV denoising problem, with much smaller regularization parameters required
for resulting regularization. We again see that choosing a suitable regularization parameter
is crucial in order to obtain a good reconstruction.

5.2.4 Convergence criterion for numerical solvers

We will now discuss some aspects of implementing a Chambolle-Pock solver. We will
only be using this algorithm for solving the TV problem. One of the main concerns of
implementing a Chambolle-Pock solver is how to determine convergence. Effective de-
termination of convergence deserves a study on its own, which is beyond the scope of
this text. We will therefore attempt to quickly discuss some options and properties of the
Chambolle-Pock algorithm.

We can determine convergence using the optimality conditions given by the Fenchel-
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Rockafellar theorem. We have that the duality gap

δ(u, p) = f(u) + g(Du) + g∗(p) + f∗(−D∗p) (5.24)

=
1

2
‖Au− v‖2 + λ|Du| − ‖v‖2 +

1

2
‖v −A−∗D∗p‖2 + iBλ(p), (5.25)

which satisfies δ(u∗, p∗) = 0 only if u∗ solves the primal problem and p∗ solves the
dual problem. One of the main problems with using this optimality condition is that it
is expensive to evaluate. The term ‖f − A− ∗ D∗p‖2 is especially costly and possibly
numerically unstable depending on the forward operator A. After some experimentation,
which is not included in this text for the sake of brevity, one finds that convergence is
generally fast when the regularization term is small relative to the data discrepancy term,
and slow when the regularization term is large relative to the data discrepancy term. If
the regularization term is very large we are most likely applying too much regularization,
which is not useful in this work.

The rate of convergence depends on the parameter σ and τ . Convergence towards the
correct solution can only be ensured when

στ ≤ 1

‖D‖2
≈ 1

8
. (5.26)

To ensure this is satisfied we set σ = τ = 0.25 for the remainder of this text.
Because we are mainly concerned with the primal variable u, a simpler convergence

criterion is to terminate the iterations when

‖uk − uk−1‖ ≤ tol (5.27)

for some tolerance tol. This is much more computationally efficient, but does not ensure
the solution is correct. This criterion does not ensure convergence for the dual variable
p. This is especially evident for high regularization, when the convergence is slow. This
will cause some problems later, but in general we are not concerned with very regular-
ized solutions. For this reason, we choose this convergence criterion over the duality gap
converence criterion. In addition, we always terminate the iterations after 100 iterations.



Chapter 6
Parameter selection

So far we have discussed inverse problems, and the need for regularization, and we know
how to solve quadratic variation and total variation problems. However, we do not know
how to choose the regularization parameter. As we saw earlier, different choices for
the regularization parameter can yield very different reconstructed images. We begin by
rescaling the regularization problem

S(t)(v) = arg min
u

tL(u, v) + (1− t)R(u) (6.1)

and looking for regularization parameters 0 ≤ t ≤ 1. This is essentially the same problem
as before, but with λ = (1−t)

t . We do this because it is easier to look for regularization
parameters t ∈ [0, 1] than λ ∈ [0,+∞].

A way of phrasing the parameter selection problem is to find

topt = arg min
t

1

2
‖u† − S(t)(v)‖2 = arg min

t
E(t), (6.2)

where S(t)(v) is the reconstructed image and u† is the original non-corrupted image. Here
we use a simple metric to measure distance between images. It is also possible to use other
loss functions E(t). The goal of parameter selection is often to achieve a good parameter
selection ”automatically”, without the need for human intervention.

We will always rescale the data to have elements between 0 and 1, so we divide the
image by the maximum value attainable, which is 255 for 8-bit images. This step is not
necessary, but it is useful to have all data on the roughly the same scale.

A good parameter choice depends on the features of the original, non-corrupted image
as well as the signal-to-noise ratio. For the regularization methods we are looking at, it
is infeasible to choose the regularization parameter based on just information about the
noise or the forward model. In order to obtain the best results we must choose the optimal
regularization parameter individually for every observed data v.

We can not solve equation (7.1) directly, because it would require the knowledge of
u†, in which case we have already solved the inverse problem perfectly.

67
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Figure 6.1 shows the loss function E(t) for the quadratic variation and total variation
problem for a test denoising example. The test denoising example we will use is the
Lenna image with added Gaussian noise as was shown in figure 3.9. The loss functions

Figure 6.1: Parameter selection loss functions for the denoising problem on a 512× 512 test image
with Gaussian noise. The top image is created using QV denoising and the bottom one is created
using TV denoising.

are continuous, with only one minimizer. It is important to note that the behaviour of E(t)
in practice depends on the numerical implementation of the solution operator S(t)v. The
values of E(t) for the TV problem for low t must be taken with a grain of salt, as the
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numerical implementation struggles to converge here.
For the QV problem, the loss functions are convex and smooth, and does not have

much curvature. For the TV problem, low t corresponds to the parameter values where
TV yields a constant solution. The TV loss functions are unimodal, but not convex. The
curvature around the optimal parameter for the TV problem is larger than for the QV
problem. This means that a TV reconstruction is more sensitive to the parameter selection
than the QV problem. We also see that the optimal TV reconstruction yields an image that
is closer to the original image than the QV reconstruction.

6.1 Solving equations and optimization poblems of one
variable

We will see that we will require methods for solving nonlinear equations

F (t) = 0, (6.3)

and unconstrained optimization problems

topt = arg min
t

G(t), (6.4)

where F : [0, 1] → R and G : [0, 1] → R+. Therefore, we need to quickly discuss
methods for solving such problems.

We will discuss two different types of methods, bracketing methods and iterative
methods. We will need this for functions F (t) and G(t) that are computationally demand-
ing to evaluate. In this case the work done by the solver is usually dwarfed by the work
done by evaluating the function and its derivatives.

Bracketing methods work by finding smaller and smaller intervals where the solution
lies. Iterative methods uses an initial guess to create a sequence of guesses that (hopefully)
converge towards the desired solution.

We begin by looking at methods for solving equations. The simplest bracketing method
for solving nonlinear equations is the bisection method. This method works if we can find
two points tl and tr, tl < tr so that F (tl) and F (tr) have opposite signs and the function
F (t) is continuous. The method works by bisecting this interval into two intervals, and
the sign of the middle point F ((tl + tr)/2) will tell us if the solution lies in one interval or
the other. We then either set This is useful if the function F (t) is non-increasing or non-
decreasing, or if we know that there exists a unique solution. In this case we can choose
tl = 0 and tr = 1 and the method will surely converge to this unique solution, but it will
in general converge to a solution.

One can easily show that for the bisection method, the k-th midpoint tk satisfies

|tk − tsol| ≤
|tr − tl|

2k
, (6.5)

where tsol satisfies F (tsol) = 0. This is a convergence property that is very useful, as
one can replace the left-hand side with the desired tolerance and solve the equation for n



70 Chapter 6. Parameter selection

to find how many iterations are required to achieve a desired tolerance. Additionally, the
method only requires one function evaluation per iteration.

Iterative methods usually work using information about the derivative F ′(t) when it
exists and is practically computable, and some approximation of the derivative otherwise.
If F (t) is differentiable, one of the most popular methods is Newton’s method. In the cases
we will look at, calculating F ′(t) is not always feasible. Because of this, we will instead
use the secant method. A secant iteration is

tk+1 = tk − F (tk)
tk − tk−1

F (tk)
− F (tk−1). (6.6)

The secant method requires two initial values t0 and t1, and requires only one function
evaluation each iteration.

As a stopping criterion, we can stop the iterations either satisfy

|tk+1 − tk| < tol1, (6.7)

for some tolerance tol1 or when

|F (tk+1)| < tol2 (6.8)

for some possibly different tol2.
The convergence of this method is slower than Newton’s method. For similar condi-

tions as the Newton method, one can show that it can converge with order equal to the
golden ratio φ ≈ 1.618. While the convergence is slower, the fact that only one function
evaluation is needed per iteration can make the secant method faster than Newton’s method
in practice.

Optimization of nonlinear functions can be challenging. The functions we will need to
optimize are mostly continuous, and because we are optimizing over a compact subset we
can be sure that a global minimizer exists [10]. Optimization problems are much easier if
the function is unimodal, meaning the function is monotonically decreasing for t ≤ topt
and monotonically increasing for topt ≤ t for some topt ∈ [0, 1]. topt is then the minimizer
of the function. All convex functions are unimodal, but not all unimodal functions are
convex.

A bracketing method for solving optimization problems is the Golden section search
[27]. This method works for a unimodal function with the global minima inside a chosen
interval [tl, tr]. The method works similarly to the bisection method where each iteration
obtains a smaller interval wherein the solution lies. The Golden section search algorithm
is stated in algorithm 1.

Similarily to the bisection method, one can show that the k-th iterate tk satisfies

|tk − tsol| ≤
|tr − tl|
φk

, (6.9)

where tsol = arg mintG(t) and φ = 1.618.... While this convergence can be slow, it
is predictable and easy to work with. It is possible to preselect the amount of iterations
required to achieve a solution within some tolerance, which means the runtime of the
algorithm is somewhat predictable.
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Algorithm 1: Golden-section search algorithm.

Set tol > 0, maxiter > 0.
Set ρ = 3−

√
5

2 , φ =
√

5−1
2

Set tl and tr, ∆t = tr − tl
t̂l = tl + ρ∆t, t̂r = tl + φ∆t

gl = G(t̂l), gr = G(t̂r)
Set i = 0
while i < maxiter do

if rl < rr then
tr = t̂r
t̂r = t̂l
gr = gl
∆t = φ∆t

t̂l = tl + ρ∆t

gl = G(t̂l)

else
tl = t̂l
t̂l = t̂r
gl = gr
∆t = φ∆t

t̂l = tl + φ∆t

rr = G(t̂r)

end
if ∆t < tol then

return (t̂r + t̂l)/2
end

end

A common iterative method for solving optimization problems are so-called line search
methods [17]. Line search methods require a search direction, usually based on informa-
tion about G′(t) and G′′(t) and a step length criterion, whcih ensures that a step in the
search direction is an improvement over the current step. Calculating a good step length
can require many evaluations ofG(t) and possiblyG′(t), and can require problem-specific
tuning in order to be effective. When G′(t) and/or G′′(t) is not available they have to be
approximated using for example finite differences. This means that each iteration requires
at least two evaluations of G(t), and potentially more to find a suitable step length.

6.2 Overview of existing parameter selection methods
We will now explain the methods for the general regularization problem

S(t)v = arg min
u

tL(u, v) + (1− t)R(u), (6.10)
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as well as how they specialize to the TV and QV problem. It should be noted that none of
these methods are new, but our implementation of the methods are somewhat novel.

Existing methods for the parameter selection are mostly based on some well chosen
heuristic criterion. Methods usually attempt to fulfill this criterion in two different ways:
By solving the regularization problem and finding a parameter that satisfies the heuristic
criterion at the same time or by solving the regularization problem for multiple regulariza-
tion parameters and then choosing a solution that satisfies the criterion. We will focus on
the latter approach.

Here we will assume a sequence of parameters tn = 1
1+t0qn

, n = 0, ..., N for some
0 < q < 1, 0 < t0 and integer N . The parameter selection problem can be solved by
solving the inverse problem for each tn and check if this reconstruction satisfies some
criteria.

As we are presenting the methods we will illustrate them for denoising a 512 × 512
image with Gaussian noise and σ = 0.1.

The Discrepancy principle (DP) is based on formulating the regularization problem
as

S(t)v = arg min
u

R(u), so that ‖Au− v‖22 ≤ c, (6.11)

for some well-chosen c [26]. In the case where the noise σ is known, it is possible to show
that an upper bound for c is τn2σ2, where τ is a tuning parameter which we will set to
τ = 1. The discrepancy principle can then be used to select a regularization parameter topt
to satisfy

‖S(t)v − v‖2 = τσn. (6.12)

We can then select the firs tn that satisfies eq:DP within some tolarance.
We indeed see that if we insert Au† for S(t)v we have

‖Au† − v‖22 = σ2‖w‖2, (6.13)

where the expected value of the right side is σ2n2. Another way of thinking of it is if
‖AS(t)v − v‖22 ≥ σ2n2, we are most likely underfitting the solution, and if ‖AS(t)v −
v‖2 ≤ σ2n2 we are most likely overfitting the solution. Figure 6.2 shows how ‖AS(t)v−
v‖2 behaves as for an example problem. Something that is immediately obvious from the
plots is that ‖AS(t)v − v‖22 is non-increasing and continuous in t. Conversely it is non-
decreasing and continuous in λ. This was proven for the TV problem with injective A as
seen in Lemma 2.3 in a work by Chambolle and Lions [6]. In fact, this can be proven for
a general solution operator.

The Quasi-Optimality criterion (QOC) was first proposed by Tikhinov [23], where
the parameter is selected to satisfy

λopt = arg min
λ

‖λ∂S(λ)v

∂λ
‖. (6.14)

In most applications this is infeasible to calculate. In this case, we can choose a sequence
λi = λ0q

i for some initial guess λ0 and 0 < q < 1. In this case, we can approximate

λopt = arg min
λ

‖∂S(λ)

∂λ
‖2 ≈ arg min

i≤Nmax
‖S(λi)v − S(λi+1)v‖2. (6.15)
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Figure 6.2: Illustration of Discrepancy principle for denoising. The top figure is created using QV
regularization and the bottom figure is created using TV regularization respectively.

The rationale for this is that around the optimal parameter, small changes in the parameter
usually does not change the solution of the problem drastically. One of the main advan-
tages of this method is that it does not require the noise level σ. A study on applying
the quasi optimality criterion to the TV problem in the infinite-dimensional case is done
in a work by Kindermann et. al [13], where they suggest slight alterations to the quasi
optimality criterion.

Figure 6.3 shows the functional in equation (6.15) for the example case and λ0 = 100
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and q = 0.9. From the figure some issues with the method are apparent. For both methods

Figure 6.3: Quasi-optimality condition loss function. The top figure is created using QV denoising
and the bottom figure is created using TV denoising.

a minimum is approached as t goes to 1, corresponding to no regularization. This is a
problem for our interpretation of the method in finite dimensions. Furthermore, for the TV
method, very large regularization also yields a minimum, as changing the regularization
parameter does not change the solution operator here. For the TV problem, the parameter
we are interested in is the local minimizer, not the minimizers close to t = 0 and t = 1.
Similarily for the QV problem we are interested in the local minimizer, not the minimizer
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near t = 1.
This means that choosing the initial guess, number of iterations and the parameter q is

crucial for selecting a good parameter. Furthermore, it is hard to apply numerical methods
to find the parameter as we did for the discrepancy principle. We have to evaluate the
solution operator for a sequence of regularization parameter. For smoother functions like
the QV problem, we can stop whenever the next iteration increases the QOC functional.
In this case the method will stop either after one iteration, close to the desired solution, or
at t = 1. For the TV problem, the QOC functional is so erratic that stopping early can
yield bad results. In this case one needs to be extra careful with selecting parameters for
the method. Compared to the other methods this is a major drawback which makes the
method more computationally expensive and less robust.

The L-curve method (LC) uses the fact that a log-log plot ofR(S(t)v) againstL(S(t)v, v),
usually has a horizontal part and a vertical part separated by a part of high curvature, re-
sembling an L-shape [11][12]. A good parameter choice is then in the elbow of the curve.
The reasoning for this is similar to the discrepancy principle. When the data discrepancy
is large, we have an underfitted solution. After the elbow of the curve, the error reduces
slowly, and we are overfitting. The L-curve method then chooses the parameter that max-
imizes the curvature of the L-curve.

If both R(S(t)v) and L(S(t)v, v) are twice differentiable with respect to t, it is possi-
ble to derive an analytic expression for the curvature of the L-curve, which then has to be
optimized. This will in most cases be non-trivial, and possiblt unstable.

One of the proposed methods for finding the maximal curvature of the L-curve is [9]

topt = arg max
t

L(S(t)v, v)R(S(t)v). (6.16)

We can then choose the tn that approximately solves (6.16).
Figures of the L-curves and the corresponding curvature for the example problem is

shown in figures 6.4 and 6.5.
We see that the L-curves has a clear horizontal part, a part with high curvature and a

vertical part. For TV regularization, there is also a point of high curvature corresponding
to high regularization (low R(S(t)v)). This part is somewhat anomalous, and depends on
how the numerical implementation handles high regularization.

As for curvature, we see that both QV regularization and TV regularization have
unique global maximisers corresponding to the L-curve parameter choice. For TV reg-
ularization we see that there is a local minimizer between the L-curve parameter choice
and large regularization. This is more or less profound depending on the numerical imple-
mentation of the regularization method. It is also known that the L-curve method can have
this problem regardless of numerical implementation, and perhaps paradoxically, it only
gets worse when there is less noise. This means that the L-curve method can potentially
give an extremely regularized solution when almost no regularization is needed.

Generalized Cross-validation. Cross-validation is used to find the optimal parameter
given a dataset of corrupted images and their true reconstruction. Generalized Cross-
validation (GCV) is an extention of cross-validation that gives an estimate of the optimal
parameter given a single corrupted image v. The estimate is the one that minimizes

GCV (t) = arg min
t

‖AS(t)v − v‖22
|trace(I −AS(t))|2

. (6.17)
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Figure 6.4: Log-log plot examplifying the L-curve for QV regularization and TV regularization
respectively.

This trace in this formula can be difficult to compute, and impossible in most cases as
the solution operator S(t) is nonlinear. This means we cannot apply this method to TV
regularization without doing some approximations or altering the method, but we can use
it for QV regularization. A useful identity is

traceA =
∑
i

λi, (6.18)

where A is a linear operator and λi is the i-th eigenvalue. The eigenvalues of AS(t) are
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Figure 6.5: Curvature of the L-curve for QV regularization and TV regularization respectively.

not necessarily easy to calculate for general linear operatorsA and S(t). In the case where
they are both convolutions, we have that

trace(I −AS(t)v) = n2 −
n∑
i=1

n∑
j=1

DFT(κA) DFT(κS), (6.19)

where κA and κS are the convolution kernels of A and S(t) respectively. For QV regular-
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ization, we can find that

DFT(κA) DFT(κS) =
|DFT(κ)|2

|DFT(κ)|2 −DFT(κL)
, (6.20)

where κ is the convolution kernel corresponding to the linear operator A and κL is the
discrete laplacian operator

κL =

0 1 0
1 −4 1
0 1 1

 . (6.21)

Figure 6.6 shows GCV (t) for the test problem. We see that the function is similar to the

Figure 6.6: GCV (t) using the example problem created using QV denoising.

parameter loss function E(t), and is a function suitable for optimization. This is generally
the case for different noise levels σ. A problem with the GCV function is that for t close
to 0, corresponding to little regularization. In this case, evaluating GCV (t) is numerically
unstable.

6.3 Numerical solvers applied to existing methods
The recasting of regularization parameter from λ ∈ R to t ∈ [0, 1] is useful for quickly
finding a parameter satisfying a heuristic criterion. Instead of preselecting a sequence of
parameters tn we can more cleverly select a sequence of parameters through numerical
methods. Remember, the main goal is to have a parameter selection that is as automatic as
possible, without the need for human decision making.

For the discrepancy principle, it is clear that regularization problems have properties
that make them suitable for root-finding algorithms. We can apply the bisection method
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and similar method, and we can also apply the secant method and in rare cases, newton’s
method. For TV regularization, the solution operator is not differentiable, and newton’s
method is infeasible. For QV regularization, we can calculate the derivative, and therefor
use Newton’s method, but this will only be useful if precision of the heuristic method is
of concern. Heuristic methods are often biased and innacurate, so finding a parameter that
satisfies the heuristic criterion within some relatively low tolerance is often sufficient. The
reduced convergence rate of the secant method is not of much concern as it is a much more
practical method in this case.

For the L-curve, QOC and GCV methods, an optimization problem must be solved.
As discussed, these three methods have their own quirks which can make the resulting op-
timization problem difficult. We will quickly discuss how to implement numerical solvers
for these methods.

For the QOC method, not much can be done to improve the implementation. The clue
is to have a good initial guess, and stop the iterations if no new minimizers have been
found in a number of steps.

The L-curve is a bit more interesting. The objective is to find the maximal curvature,
which was shown in figure 6.5. We can assume that R(S(t = 0)v)L(S(t = 0)v, u) =
R(S(t = 1)v)L(S(t = 1)v, u) = 0, at least analytically. Something we can use here that
we will use later is that the maximiser is ”close” to t = 1. If an iterative method with or
without a line search starts near t = 1.0 we should end up close to the desired solution.
For bracketing methods like the golden-section search, we have similar problems as for
QOC in that we need a good inital interval [tl, tr] to search for a solution. We can safely
choose tr = 1.0 and choose tl ”close” to the maximal curvature.

For GCV, the main problem is the numerical instability around t = 1. This is again
problematic in settings where very little regularization is required, which is also prob-
lematic for the L-curve method. For bracketing methods, we can avoid this problem by
choosing the initial iteration (or right boundary of initial interval for bracketing methods)
t0 = 1− ε for some ε > 0. If the next iteration is somewhere to the right of this point, we
stop the iteration.

For the L-curve and GCV method, we found Golden-section search to be more reliable
for different problems than line-search methods, so we will apply Golden-section search
to the L-curve and GCV methods. However, we predict that given more work, suitable
line-search methods can be implemented that yield more computationally efficient results.

6.3.1 Testing the existing methods

We will now test the different parameter selection method on a test denoising problem for
both QV and TV denoising and different noise levels.

For all bracketing methods we choose the initial interval (tl, tr) = (0.8, 1.0) for TV
denoising and (tl, tr) = (0.2, 1.0) for QV denoising and tolerance 10−4. For the secant
method we choose t0 = 1.0 and t1 = 0.99 and tolerance 10−4. For QOC we choose
λ0 = 0.25 for TV denoising and λ0 = 50.0 for QV denoising, q = 0.9, and stop the
algorithm if no new minimiser has been found in 5 iterations. All methods are stopped if
they do not find a solution in 100 iterations. The algorithms are implemented in Python
using Numpy. For timing the methods, we take the average processor time over ten runs.
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The algorithms are run on a laptop with an Intel Core i5-8250U CPU and 8 gigabytes of
RAM.

The results of applying these methods to the test problem is shown in tables 6.1.

σ = 0.05
Method t |t− topt| PSNR(u, u†) Time [s]
Noisy − − 26.04 −

Optimal 0.9646 0.0 33.35 −
DP Secant 0.9422 0.02238 32.30 1.69

DP Bisection 0.9421 0.02241 32.30 4.32
QOC 0.9460 0.01866 32.52 5.02

LC Golden-section 0.800 0.1643 27.11 9.34
σ = 0.1

Method t |t− topt| PSNR(u, u†) Time [s]
Noisy − − 20.08 −

Optimal 0.9236 0.0 30.24 −
DP Secant 0.8764 0.04718 28.99 2.12

DP Bisection 0.8764 0.04718 28.99 4.45
QOC 0.8714 0.05223 28.84 3.63

LC Golden-section 0.9450 0.02137 29.20 7.22

Table 6.1: Parameter selection results for TV denoising.

σ = 0.05
Method t |t− topt| PSNR(u, u†) Time [s]
Noisy − − 26.04 −

Optimal 0.6141 0.0 31.75 −
DP Secant 0.3773 0.2367 30.40 0.25

QOC 0.9985 0.3845 26.09 3.69
LC Golden-section 0.200 0.4136 28.12 5.55

GCV Golden-section 0.8439 0.2298 29.89 3.05
σ = 0.1

Method t |t− topt| PSNR(u, u†) Time [s]
Noisy − − 20.08 −

Optimal 0.3998 0.0 28.81 −
DP Secant 0.1764 0.2234 27.34 0.31

QOC 0.2364 0.1635 28.05 2.86
LC Golden-section 0.5872 0.1873 27.91 3.87

GCV Golden-section 0.5684 0.1685 28.08 3.05

Table 6.2: Parameter selection results for QV denoising.

From the results we see that the secant method is more computationally efficient than
the bisection method for finding the discrepancy principle parameter for TV denoising, and
it is much more computationally efficient than the other methods. The time is somewhat
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artificial, as it depends heavily on the tolerance of the numerical methods. The L-curve
does not converge to a value inside the initial interval for low noise for neither QV nor TV
denoising. The Discrepancy principle and quasi-optimality criterion yields similar results,
expect for low-noise QV denoising where it does not find a minimizer. Although we cannot
draw conclusions from these results alone, we see that the methods exhibit some bias. For
example, the discrepancy principle tends to regularize too much, and the GCV tends to
regularize too little. Although we have only shown results for a single image here, similar
results are obtained using other 512× 512 grayscale images.

From these results we also see that while the different parameter selection methods are
able to yield relatively good parameters, there is still some room for improvement.

6.4 Different parameter selection loss functions
Until now we have only investigated the parameter selection problem as it was given in
equation (7.1). It should be noted that this is equivalent to choosing the parameter that
yields the best PSNR value. For images, and inverse problems in general, the ”optimal”
parameter depends on the desired outcome of the reconstruction. Describing the desired
outcome can be difficult to describe mathematically. For example, when denoising natural
images the optimal parameter should be chosen so that noise is removed without adding
too much blur, especially near edges in the image. The PSNR value does not necessarily
take this into consideration. An alternative measure for image similariy is the SSIM, which
was discussed in chapter 2. The optimal parameter using the SSIM for TV regularization
can be chosen as

tSSIM = arg max
t

[
SSIM(STV(t)v, u†)

]
. (6.22)

Figure 6.7 shows the loss function in equation (6.22). From the figure it is clear that the
SSIM loss function is suitable for optimization in this case similarly to the original loss
function. We also see that for this problem, the loss function is similar to the original loss
function shown in figure 6.1, and they have similar optimizers.

In this work, we will choose parameter based on PSNR. The point is that other loss
functions, like SSIM, can be used to measure the success of a parameter choice. In the
next chapter, we will discuss some new ways of doing parameter selection, where the loss
function chosen will be of more importance.
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Figure 6.7: Loss function in equation (6.22) using different window sizes for the same noisy test
image as the last section with σ = 0.1. For all window sizes, the optimal parameter is t = 0.92,
which is roughly the same as the parameter which maximizes PSNR.



Chapter 7
A new parameter selection method

The method we will be investigating is inspired by work by Vito et al. [9]. In this paper,
an unsupervised learning method for parameter selection of elastic net regularization was
proposed and developed. The method is phrased in a statistical learning framework and
uses results from high-dimensional probability theory.

Instead of solving the ”true” parameter selection problem

topt = arg min
t
‖S(t)v − u†‖2 = arg min

t
E(t), (7.1)

we attempt to solve an approximate problem

t̂opt = arg min
t
‖S(t)v − û‖2 = arg min

t
Ê(t) (7.2)

where û is an approximate solution to S(topt)v. To motivate why this can be a good idea,
we consider our earlier example, and choose û as a Gaussian blurred image. From earlier,
we know that a Gaussian filter can be used to remove noise. We choose the parameter
for the Gaussian filter as the one that maximises PSNR. The resulting loss functions are
shown in figure 7.1. We see that the minimizer of of the approximate loss function Ê(t)
almost coincides with the minimizer of the true loss functionE(t). We can use this to solve
the approximate problem instead of the true one, and use the parameter found here. We
call this approach Solution Regularization for reasons that will become apparent. This
of course requires access to an approximate solution. An approximate solution should be
chosen from a different method, like another regularization method or a direct method that
does not rely on parameter selection.

When the approximate solution û is given, we can find the parameter t̂opt in essentially
the same time as we can find the optimal parameter topt given the true data u†. In order for
this to be effective, the alternate method should to have an easier and/or more computa-
tionally efficient implementation. The alternate method should also not yield On the other
hand, one only needs the approximate loss function to have a minimizer that is close to
the minimizer of the true loss function. This means that û does not in itself have to be a
good reconstruction. It only has to be close to S(topt)v in the ‖.‖2-norm. We can interpret

83
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Figure 7.1: True and approximate loss functions from equations (7.1) and (7.2) respectively on a
512 × 512 noisy image with σ = 0.1. The approximate solution û is calculated using a Gaussian
blur.

the method as finding a reconstruction that has the properties given by the solution oper-
ator S(topt) while being close to another data û. We can thus interpret this as a kind of
regularization on the reconstruction problem rewriting it to

uopt = min
u=S(t)v

‖u− û‖2. (7.3)

In other words, the method corresponds to minimizing a distance metric while regularizing
based on some solution operator. Because of this reformulation, we will call the method
Solution Regularization (SR). In general, this reformulation does not help us solve the
problem, as the constraint is difficult to work with.

In the case where û is another regularization problem, we need to solve another param-
eter selection problem. As mentioned, this alternate parameter selection problem should
be ”easier”, in the sense that it should be robust and computationally efficient.

Solving equations (7.1) and (7.2) was done using line search method in the work by
Vito et al.[9], but we will instead use the Golden-section search, as we found it to give
more reliable results. This means that in addition to finding an approximate solution û,
solving (7.2) is roughly as expensive as the L-curve method discussed in chapter 6.

In the referenced work, a specific choice for the approximate solution û was investi-
gated, which we will discuss in an upcoming section. In this work, we will investigate
more choices for û, with the goal of applying it to TV regularization. We begin by inves-
tigating the properties of 7.2.
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7.1 Parameter selection loss function
In order for the SR method to be effective, we need the empirical loss function

Ê(λ) =
1

2
‖S(λ)v − û‖22 (7.4)

to be a function suitable for optimization, perhaps for different choices of û. The function
should also be suitable for optimization for û = u†, for the parameter selection problem
to be well-posed. Through experimentation, one finds that for û = u†, (7.4) has a unique
global minimizer both for the QV and TV regularization in most realistic cases for images.
Furthermore, for QV regularization the loss function seems to be convex. This is not the
case for the approximate loss function for poorly chosen û, which is something we will
investigate.

In particular, we want to know if optimal points exist, if there exists local minima
and if the function is convex, and how this depends on the solution operator S(λ)v and
approximate solution û.

This analysis is easier for the solution operator S(λ), not the rescaled one. We first
need to be clear about what happens in λ = 0 and λ = +∞, corresponding to no and
infinite regularization respectively.

For both L1 and L2 regularization we have that

S(0)v = arg minu
1

2
‖Au− v‖22, (7.5)

which is just a least squares solution. In particular, if v ∈ range(A) this is the solution
to Au = v. As for infinite regularization, we will assume that the solution operator is
continuous in λ = +∞, where

S(+∞)v = arg min
u∈ker(D)

1

2
‖Au− v‖22. (7.6)

For QV and TV regularization, an element in ker(D) is a constant vector. We gener-
ally want to avoid cases where there is either no regularization or infinite regularization.
Both of these cases correspond to where the regularization function is not doing its job as
intended.

If we assume the solution operator S(λ)v is continuous in λ, which it is for both QV
and TV regularization, minimizing the loss function (7.4) corresponds to minimization of
a continuous function over a compact domain. In other words, a global minimizer exists.

If we assume S(λ)v is differentiable, we have

E′(λ) = 〈S′(λ), S(λ)− û〉, (7.7)

and
E′′(λ) = 〈S′′(λ), S(λ)− û〉+ ‖S′(λ)‖2. (7.8)

We can only safely assume that S(λ) is differentiable for L2 regularization. If we further
assume that A and D have the same eigenspace, the solution operator satisfies

S′(λ)v = −(D∗D)(A∗A+ λD∗D)−2A∗v, (7.9)
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and
S′′(λ)v = 2(D∗D)2(A∗A+ λD∗D)−3A∗v, (7.10)

which are both linear operators in v.
done
We can investigate the zeroes of E′(λ) and the sign of E′′(λ) for the L2 case. Initally,

assume that A∗A = D∗D = I (or just A = D = I), which yields

E′(λ) = −〈(I+λI)−2A∗v, (I+λI)−1A∗v− û〉 = − 1

(1 + λ)3
〈v, v〉+ 1

(1 + λ)2
〈v,Aû〉,

(7.11)
which is 0 only when

〈v,Aû〉λ = ‖v‖2 − 〈v,Aû〉, (7.12)

or for λ → +∞. The characteristics of this equation depends on the operator A. For
images, we usually assume that v and Aû have non-negative components, in which case
the equation has a unique solution unless Aû = 0, which is why non-injective operators A
can be problematic.

In this case, the minimizer of the loss function is

λopt =
‖v‖2

〈v,Aû〉
− 1, (7.13)

when this is positive. If this is not positive, either λ = 0 or λ = +∞ is the optimal
solution. Here we see that the choice of û is crucial in order for the parameter selection
problem to be easily optimizable. We also see that if the solution operator S(λ)v is chosen
poorly, the parameter selection problem can be hard to solve.

In the more general for operators A and D case we have

E′(λ) = −〈(D∗D)(A∗A+ λD∗D)−2A∗v, (A∗A+ λD∗D)−1A∗v − û〉
E′′(λ) = 〈2(D∗D)2(A∗A+ λoptD

∗D)−3A∗v, (A∗A+ λoptD
∗D)−1A∗v − û〉

+ 〈(D∗D)(A∗A+ λD∗D)−2A∗v, (D∗D)(A∗A+ λD∗D)−2A∗v〉.

Remembering that the function is continuous, if we can show that E′(λopt) = 0 and
E′′(λopt) > 0 we have shown that the only stationary point is λopt, and it is a global
minimizer.

In particular, this is the case if A is a convolution operator and D∗D is the laplace
operator, which is the case for QV regularization with certain boundary conditions. We
can write

A∗A = Q∗ΣAQ, D∗D = Q∗ΣDQ. (7.14)

HereQ andQ∗ are the forward and backward DFT matrices, and ΣA and ΣD are diagonal
matrices with the eigenvalues of the operators. We know that the eigenvalues of A∗A and
D∗D are the squared absolute value of their Fourier coefficients. Here we use Q so that it
is uitary. We then have that

(A∗A+ λD∗D) = Q∗(ΣA + λΣD)Q, (7.15)
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is another convolution. Furthermore, (ΣA + λΣD) is diagonal with only real, positive
values. In this case E′(λ) can be solved for many λ. In fact, it can be shown that E′(λ)
is a polynomial equation of order up to twice as large as the size of v and û. We can then
write

E′(λ) = −〈Q∗ΣD(ΣA + λΣD)−2QA∗v,Q∗(ΣA + λΣD)−1QA∗v − û〉
E′′(λ) = 2〈Q∗Σ2

D(ΣA + λΣD)−3QA∗v,Q∗(ΣA + λΣD)−1QA∗v − û〉
+ 〈Q∗ΣD(ΣA + λΣD)−2QA∗v,Q∗ΣD(ΣA + λΣD)−2QA∗v〉.

Using the unitarity of Q, and the fact that diagonal matrices commute and are their own
conjugate transpose when they contain only real values, we have that this is equal to

E′(λ) = −〈ΣD(ΣA + λΣD)−3QA∗v,QA∗v〉+ 〈ΣD(ΣA + λΣD)−2QA∗v,Qû〉
E′′(λ) = 3〈Σ2

D(ΣA + λΣD)−4QA∗v,QA∗v〉 − 2〈Σ2
D(ΣA + λΣD)−3QA∗v,Qû〉.

Solving E′(λ) = 0 is difficult, and it is hard to see if this condition can be used to say
anything about E′′(λ) in stationary points. For optimization purposes, we want E′′(λ) >
0. While this is possible depending on v, û and A, the conditions they need to satisfy are
not easily stated. We want to avoid technicalities, so we will instead try to intuitively argue
when the loss function is suitable for optimization and when it is not.

Intuitively, if the parameter selection is well-posed for û = u†, it should be well-posed
for a û that is close to u†. However, it is clear that it is possible to choose û so that
E(λ) is non-convex and possibly not suitable for optimization. If û has large components
compared to v, it is possible that E′′(λ) changes signs. We can choose: û = cS(λ′)v for
some λ′ and large scalar c, and almost surely have E′′(λ) < 0 for some λ.

For images we can assume that the approximate solution û, the observed data v and
the original data u† have roughly the same norm. This means that the operator A should
keep the pixel values at roughly the same sizes as before, which can always be satisfied by
rescaling. Furthermore, we can assume that the solution operator S(λ) does not drastically
change the norm of the image. Remember, the reconstruction S(λ)v should be close to the
original data u. For images, the DFT components are usually large for low frequencies
and small for high frequencies. The noisy image v will have larger high frequencies than
the noiseless image u, and hopefully the approximate solution û. This means that the first
term of E′′(λ) should be larger than the second term.

If all of these assumptions hold, which they generally do for images, we can assume
that the loss function is unimodal, and most likely convex. In fact, if we choose û =
S(λopt)v = Q∗(ΣA + λΣD)−1A∗v, we have that E′′(λopt) > 0.

A case when things simplify is again when A∗A = D∗D = I , in which case we have
ΣD = ΣA = I , which yields

E′′(λopt) =
3

(1 + λopt)4
〈v, v〉 − 2

(1 + λopt)3
〈v, û〉, (7.16)

If λopt is positive, we have

1 + λopt =
〈v, v〉
〈v,Aû〉

(7.17)
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by an earlier derivation, which means we have

E′′(λopt) =
〈v,Aû〉4

〈v, v〉3
> 0, (7.18)

and λopt is a unique minimzer.
For the L1 case, things are much more difficult because the solution operator S(λ)v

cannot in general be written on a closed form. We believe unimodality of E(λ) can be
shown for TV regularization given some assumptions on v and û, and possibly the linear
operator A. This is something that should be investigated further.

Wit these results and our experimental findings, we have confidence in our propossed
method.

7.2 Empirical estimator
In the referenced work [9] a specific choice for an approximate solution was investigated.
We will explain some of the basics of this paper to motivate our work. The work uses
results from high-dimensional probability theory to solve the paramater selection prob-
lem for finite-dimensional inverse problems. For a great resource on the topic of high-
dimensional probability theory which is used in the referenced work see the comprehen-
sive work by Vershynin [24].

The framework can be explained as follows: Assume that one has a dataset of cor-
rupted data where the original data and the noise comes from independent sub-gaussian
distributions

v(i) = Au(i) + σw(i), i = 1, ..., N. (7.19)

All corrupted data comes from the same forward operator A and has the same noise level
σ, but different noise realizations w(i). Let the non-centered covariance matrix of the
original data u be Σorg, which is a n2 × n2 matrix. u and w(i) are here considered as
random variables.

Assume that the covariance matrix satisfies rank(Σorg) = h for some h << n2, and
the forward operator A is injective on the range of Σorg. We call the space spanned by
this covariance matrix V . This is a particular sparsity condition on the dataset, namely that
the original data lies in a particular subspace V . The first h eigenvectors then represent
the information of the components of our dataset. This is similar to the ideas of principal
component analysis.

The main idea is then to project the corrupted data onto this sparse subspace V . This
can be done with an orthogonal projection Π onto the first h eigenvectors of the covariance
matrix. However, one rarely knows the covariance matrix of the original data. One can
then use the empirical non-centered covariance matrix Σ̂ which can be calculated from the
dataset by

Σ̂ =
∑
i

v(i)v(i)T . (7.20)

The projection onto Σ̂, Π̂, can be used as an estimator for the projection Π. One can then
show that Π̂ is a good estimator of Π by leveraging high dimensional probability theory to
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give probabilistic upper bounds on ‖Π̂−Π‖. A good approximate estimate should then be

Aû = Π̂v. (7.21)

We call this the empirical estimator. In the paper they instead define the estimator as û =
A−1Π̂v, and replaceA−1 with the Moore-Penrose inverse if it does not exist. This method
was shown to be a good parameter selection method for synthetic problems, including
elastic net wavelet denoising. In cases where the forward operator A is orthogonal and
D = I , the elastic net has a closed form solution. This can be used to show that the true
loss function has has no local minima given some additional assumptions, and is suitable
for optimization, similar to what we showed earlier for L2 regularization. In the case
of bounded Bernoulli noise, it is possible to find an analytic solution to the parameter
selection problem, and an upper bound on |topt− t̂opt|. This gives some theoretical strength
to the method.

There are some problems with this approximate solution, which we will discuss and try
to alleviate. Firstly, we see that the calculating the empirical estimator in equation (7.21)
requires solving a possibly ill-posed linear equation. Even if Π̂v is a good approximate
estimate of Au, û can still be a bad estimate if A is ill-posed. As a way to alleviate this
problem it is proposed in the paper that for non-injective A one uses the alternate loss
functions

ÊP = ‖PS(t)v − û‖2, ÊM = ‖AS(t)v − Π̂v‖2, (7.22)

called the projected and modified loss function respectively. Here P is the orthogonal
projection onto ker⊥(A). These should stabilize the parameter selection somewhat. It was
shown in the paper that while the empirical loss function in general gave poor results for
non-injective A, the projected and modified loss functions gave better results.

If these still don’t yield good results, one idea not discussed in the paper is to add
regularization to either ÊP or Êm, but this could require another parameter selection.

The main problems with the empirical estimator for imaging are calculating the empir-
ical estimator, and the assumptions made on the data. It is not clear what kinds of image
datasets satisfies the sparsity conditions, or comes from some kind of statistical distribu-
tion in a meaningful way. For natural images, which we are working with, it seems highly
unlikely that images follow some sparse distribution unless we are working with some
very specific subset of images. Some potential cases are medical images or facial images
with uniform backgrounds. However, in these cases the complexity is still high, meaning
that the rank of the covariance matrix should still be high. The empirical covariance matrix
Σ̂ has maximum rank of the size of the dataset, given equation (7.20). To illustrate this,
we need a suitable image dataset. For this cause, we will use the CIFAR-10 [15] dataset,
which contains 60000 32×32 images divided into 10 different classes. Some example im-
ages from the ”deer” class are shown in figure 7.2. The images are rescaled to have values
between 0 and 1 and Gaussian noise is added, the result is shown in figure 7.3. For such

Figure 7.2: Example images from the ”deer” class from the CIFAR-10 dataset.
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Figure 7.3: Example images from the ”deer” class from the CIFAR-10 dataset with added Gaussian
noise with σ = 0.05

small images, it i impossible to see the finer details of the image, but the images clearly
contain deer-like animals with nature backgrounds. The question is, can we meaningfully
extract the information of to dataset to find a sparse subspace? We select 512 such images
to form a dataset. We calculate the ”true” (noiseless) and empirical (noisy) covariance ma-
trices, and their eigenvalues. The result is shown in figure 7.4. From this figure we see that

Figure 7.4: Eigenvalues of the true and empirical covariance matrices. Note the logarithmic scaling.

there is an initial fast decay in the size of the eigenvalues, followed by a slower decay until
the 512-th eigenvalue where the rest of the eigenvalues are 0, ignoring round-off errors.
We remind that the maximal rank of the covariance matrix is the size of the dataset, which
in this case is 512. It is clear that the dataset does not satisfy the sparsity condition, as the
eigenvalues until the 512-th eigenvalue are clearly non-zero, meaning we essentially have
h = 512, which does not satisfy h << n2. It is however clear that some eigenvectors carry
more information than others, as one would also suspect. The empirical covariance matrix
roughly has the same eigenvalues as the true covariance matrix adding σ. Figures 7.5 and
7.6 show the first ten eigenvectors (or ”eigen-deer”) of the true and empirical covariance
matrices. It is clear that these few eigenvectors on their own do not carry much useful
information about the dataset. We can now try to create empirical estimators for different
values of h. We calculate the empirical estimators as the projection onto the first h eigen-
vectors of the ”true” covariance matrix Σ, calculated from the noiseless images, and the
”empirical” covariance matrix Σ̂, calculated from the noisy images. The estimators are
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Figure 7.5: First 10 eigenvectors of the true covariance matrix.

Figure 7.6: First 10 eigenvectors of the empirical covariance matrix.

calculated as
û = PhP

T
h v, (7.23)

where Ph is a matrix containing the first h eigenvectors. We select the first image in figures
7.2 and 7.3 for an experiment. To evaluate how good these empirical estimators are we
use the metric

‖û− u†‖
‖u†‖

, (7.24)

where û is the empirical estimator and u† is the original image. We try creating empirical
estimators both for the noiseless and noisy images with both the true and empirical esti-
mators for different choices of h, i.e how many eigenvectors we project the image onto.
The results is shown in figure 7.7 Some example empirical estimators are shown in figure

Figure 7.7: ‖û− u‖/‖u‖ for the different projections for noisy and noiseless images.

7.8, 7.9 and 7.10.
For the noiseless data, we see that we have a ”perfect” empirical estimator for h larger

than 512, as expected. For the noisy images, the empirical estimators deviate from the
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Figure 7.8: Empirical estimators of an example noiseless image using true projection. From left to
right, we have h = 1, 16, 32, 128, 256, 512, 768, 1024.

Figure 7.9: Empirical estimators for an example noisy image using empirical projection. From left
to right, we have h = 1, 16, 32, 128, 256, 512, 768, 1024.

Figure 7.10: Empirical estimators for an example noisy image using true projection. From left to
right, we have h = 1, 16, 32, 128, 256, 512, 768, 1024.

noiseless estimator, and actually become less close to the original image as h increases,
before converging to a constant value which coincides with reconstructing the noisy image.
The true projection yields better results than the empirical projection. It is worth noting
that for the empirical projection, we just recreate the noisy image for h > 512. It seems
like the ”optimal” h, i.e the one that is closest to the original image, in the case of the
empirical estimator here is h = 221. It is evident that for low h the empirical estimator
is similar to a low-resolution or blurred reconstruction of the image, which we know can
have noise-removing properties. As we add more and more eigenvectors to the projection
we achieve finer details. Increasing the size of the dataset yields almost identical results.
A larger dataset should yield a more accurate projection.

The main issue is how difficult it is to extract useful information from the dataset, and
this is especially evident in images which have many non-linear features, in which case a
linear projection is probably not optimal.

Calculating the empirical covariance matrix Σ̂ and the empirical projection matrix Π̂
is infeasible for larger images. For a dataset of n × n images the covariance matrix is a
n2 × n2 dense matrix. If we store this in 8-bit depth, for 512× 512 images the covariance
matrix requires ∼ 69 gigabytes of memory. We then need to calculate the first h eigenvec-
tors of this matrix, which is also tremendously expensive. The calculation required to do
this method and the memory requirements make this infeasible for applications on bigger
images.

In order to circumvent these issues we can downsample the dataset and do the projec-
tion on the downsampled images, which is less costly, and then upsample to achieve our
empirical estimator. As discussed in earlier chapters, we will lose some information in the
downsampling and upsampling process, especially if the downsampling is coarse.

From our earlier experiment it seems like natural images in general do not satisfy the
sparsity conditions which the empirical estimators assume. It is however clear that project-
ing unto a lower dimensional subspace acquired from both the empirical (unsupervised)
and true (supervised) covariance matrix can reduce the noise of the image. We have not
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tested how suitable these empirical estimators are for parameter selection. Remember the
end goal is to use the empirical estimator for parameter selection.

Then there is a final problem. In unsupervised cases, which is our aim, it is not unusual
to have small datasets. In this case, even if the datasets satisfy some sparsity, we might
not be able to create a good projection matrix because the rank of the covariance matrix is
smaller than h. Because of the difficulty of extracting useful information from a dataset,
we will instead be working on single images.

We will first consider a special case of the proposed method that is similar to working
with single images. Consider a dataset containing the same original data u†, but with re-
alizations of the noise. Thus every image satisfies v(i) = Au† + σw(i). We can choose
h = 1 for the empirical covariance matrix, as the sparse subspace is the space spanned
by u. The covariance matrix then has one large eigenvalue and the rest of the eigenvalues
are roughly equal to the noise level. This was investigated in the referenced work, and
was shown to give good results. We will argue that in this case, the calculation of the em-
pirical estimator simplifies, without the need for calculating the covariance and projection
matrices.

We can first note that a good estimator for the denoised iamge is the mean of the
observations

v̄ =
1

N

N∑
i=1

u+ σw(i) = u+ σw̄. (7.25)

Here w̄ denotes the mean of the noise observations. It is well known that if w(i) are
independent random variables with mean 0 and variance 1 we have

E(w̄i) = 0, Var(σw̄i) =
σ2

N
. (7.26)

Thus, taking the mean gives us an approximate denoised image. With many noise models
this can be used to measure the same signal many times and take the mean of the observa-
tions to reduce noise.

The covariance matrix can be written as

Σ̂ =
1

N

N∑
i=1

(u+σw(i))(u+σw(i))T = uuT+σ(uw̄T+w̄uT )+
σ2

N

N∑
i=1

w(i)w(i)T . (7.27)

If we assume that u and the noise vectors w(i) are linearly independent, the three first
terms are rank 1 matrices and the last term is a rank N matrix. The covariance matrix has
rank N + 1, meaning there are N + 1 non-zero eigenvalues. If we asssume for simplicity
that ‖u‖ = ‖w(i)‖ = 1 we see that the first term is larger than the other terms for small σ
and large N . We see the eigenvector of uuT is u with eigenvalue ‖u‖2 = 1. In fact, if we
multiply the covariance matrix with the original data u, we have

Σ̂u = u+ σ(w̄ + 〈w̄, u〉) +
σ2

N

N∑
i=1

w(i)〈w(i), u〉. (7.28)
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If we again interpret w(i) as random variables with mean 0 and variance 1 we have that the
inner prodduct 〈u,w(i)〉 satisfies

E(σ〈u,w(i)〉) = σE(
∑
j

ujw
(i)
j ) = 0, Var(σ〈u,w(i)〉) = σ2

∑
j

u2
j = σ2, (7.29)

and is normal distributed.
It is worth noting that projecting a noisy image v = u + σw onto the true image u

yields
〈u, u+ σw〉
〈u, u〉

u =
‖u‖2 + σ〈u,w〉

‖u‖2
u, (7.30)

which is an unbiased estimator of u.
We can here apply some useful results from linear algebra: the sum of the eigenvalues

of a matrix is equal to its trace, which is a linear operator, and the trace of an outer product
between two vectors is the inner product between the vectors trace(uvT ) = uT v.

Thus we find that

trace(Σ̂) = ‖u‖2 + 2σ〈u, w̄〉+
σ2

N

N∑
i=1

‖w(i)‖2 = 1 + 2σ〈u, w̄〉+ σ2, (7.31)

which is the sum of the eigenvalues. If we further assume that the vectors u,w(1), ..., w(N)

are orthogonal, we see that the sum of the eigenvalues is 1 + σ2. Although orthogonality
will not be the case in general, the inner products will be diminishingly small for images,
so it is a useful simplification. be diminishingly small for images. In this case we also
have that the mean of the observations v̄ = u + σw̄ is an eigenvector of the covariance
matrix, which can be shown by inserting

Σ̂(u+ σŵ) = u‖u‖2 + σu〈u, w̄〉
+ σ(σu‖w̄‖2 + u〈u, w̄〉+ σw̄‖u‖2 + σw̄〈u, w̄〉)

+
σ2

N

N∑
i=1

wi〈wi, u〉+ σwi〈wi, w̄〉

= (1 +
σ2

N2
)(u+ σw̄).

The proportion of the eigenvalue (1 + σ2

N2 ) to the sum of all eigenvalues is

1 + σ2

N

1 + σ2
. (7.32)

This is the largest eigenvalue for large N and sufficiently small σ. Thus the mean is the
largest eigenvector, which should be close to the original data u†. No covariance matrix or
projection needed.

It could be possible to find the eigenvalues of Σ̂ in the non-orthogonal case. The eigen-
vectors are in span{u,w(1), ..., w(N), and it should not be impossible to do the same the
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same analysis as above without the orthogonality assumption. However, even if orthogo-
nality between the noise vectors and the data does not hold, the mean estimator v̄ should
still be a good estimator for u, especially when the noise level σ is not too high and N not
too small.

We can apply this to larger 512 × 512 images. Calculating the covariance matrix and
the largest eigenvector is infeasible in this case. Using the Lenna image with different
noise levels σ = 0.05, 0.075, 0.1, the PSNR of the mean estimator for different N is
shown in figure 7.11. We remind the reader that PSNR is on a logarithmic scale, and

Figure 7.11: PSNR values of the mean estimator v̄ for an increasing number of noisy images v(i) =
u+ σw(i) where w(i) is Gaussian distributed.

larger PSNR means the estimator is closer to the original image. It is clear that we can
achieve arbitrary precision in our reconstruction as the number of data N increases. If we
in addition attempt to project noisy data onto the original data we obtain PSNR values in
the range 80 − 100, which in this case is close to single floating point precision, and the
projected image and the original image is completely indistinguishable by the human eye.
This reinforces the fact that the inner product between an image u and a noise vector w(i)

is diminishingly small.
The goal we set at the start was to use this for parameter selection by solving

topt = arg min
t
‖S(t)v − v̄‖2. (7.33)

It is worth noting here that S(t)v is most likely a biased estimator of u. The goal the
solution operator S(t)v is then either to imbue the reconstruction with certain traits or
to create a less noisy reconstruction of u. This method yields a good parameter for TV
denoising for realistic values of N . We do not showcase the results here as we are mainly
interested in single image denoising.
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To summarize, we have investigated recent work on the topic of parameter selection
[9]. Although the general method developed in this work does not apply well to natural
images, it has potential in the case where one has a dataset with the same data, but dif-
ferent noise corruptions. In this case, we found that the method simplifies, and becomes
computationally feasible. We will now develop these ideas further for single image recon-
struction.

7.3 Single image reconstruction

We now want to apply what we have seen so far to single image reconstruction. In this
case, we only have access to one image v = u + σw. We will propose methods of
resampling the image v to create a dataset v(i) based on the single observation v, similar
to bootstrapping methods. We can then use this dataset to create an approximate estimator
for the denoised image.

As discussed in chapter 4, image resampling can be done by interpolating the pixels
of the image to create a continuous signal and sampling from this continuous signal. Two
classes of image resampling are upsampling and downsampling, which creates a new im-
age containing more or less pixels respectively. We saw that for simple methods, both
these processes can be described by convolutions.

In our case, downsampling is the most useful, as we can downsample an image into N
different images v(i)

ds . We can then upsample these images to create a dataset of resampled
images v(i)

us . When we have achieved a dataset of resampled images, we can calculate the
mean estimator

v̄ =
1

N

N∑
i=1

v(i)
us , (7.34)

and use this as an approximate denoised image. We will require that downsampled images
are square images, which means that N can only be a square number. Applying the SR
method yields

t̂opt = arg min
t

1

2
‖STV(t)v − 1

N

N∑
i=1

SusS
(i)
ds v‖

2. (7.35)

Here S(i)
ds is a downsampling operator where the superscript denotes the grid used. The

simplest downsampling algorithm to achieve this is nearest neighbour downsampling with
α = 0.5, which is what we will use. We can choose the grids so that

S
(1)
ds v =

v1,1 v1,3 · · ·
v3,1 v3,3 · · ·

...
...

 , S
(2)
ds v =

v2,1 v2,3 · · ·
v4,1 v4,3 · · ·

...
...


S

(3)
ds v =

v1,2 v1,4 · · ·
v3,2 v3,4 · · ·

...
...

 , S
(4)
ds v =

v2,2 v2,4 · · ·
v4,2 v4,4 · · ·

...
...


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Figure 7.12: Image with Gaussian noise with σ = 0.05 downsampled into 4 different images using
nearest-neighbour interpolation.

This can easily be extended to N = 9, 16.... Figure 7.12 shows a noisy image downsam-
pled into four different images. We then upsample the images, take the mean and use this
as an approximate solution in the solution regularization method. The result is shown in
figure 7.13. We see that the average image removes some noise, and the remaining noise

Figure 7.13: To the left is the average image v̄ of the upsampled images from figure 7.12. The up-
sampling algorithm used is linear interpolation. To the right is TV regularization using the parameter
given in equation (7.35). The resulting parameter is t̂ = 0.9746, and the PSNR values of the two
images are 31.97 and 32.70 respectively. Note that this is a better parameter than any of the other
methods shown in table 6.1.

has some different characteristics from the original noisy image. The noise in the average
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Figure 7.14: True and empirical loss functions from equations 7.1 and 7.35, where the approximate
solution is the one given in figure 7.13.

image is more clumped together in local regions. The loss functions for the true and ap-
proximate parameter selection problems is shown in figure 7.14. We see that the two loss
functions are very similar. The resulting TV regularization removes more noise, and has
better PSNR value than the average image.

We can create a downsampled dataset of larger size by using coarser downsampling
grids. However, these images quickly loose the details of the original image, especially if
the original image has low resolution. Downsampling into more images will create a more
blurred average image, but possibly remove more noise.

What we are doing when creating the average image is actually apply a linear operator

v̄ =

(
1

N

N∑
i=1

SusS
(i)
ds

)
v, (7.36)

which is a convolution. There are many different choices for N , Sus and S(i)
ds , and the best

choice depends on the noisy image v.
Experimentation shows that for 512× 512 images, using neasest neighbour downsam-

pling and bilinear or bicubic upsampling with N = 4, N = 9 or N = 16 always yields
results comparable to the methods described in chapter 6. In particular, bicubic upsam-
pling and N = 9 yields good results for noise values between σ = 0.05 and σ = 0.1.
Some results are shown in table 7.1.

The parameters found using this method are better than the methods from chapter 6.
Interestingly, the chosen parameter is too small for σ = 0.05, and too large for σ = 0.075
and onward, and almost perfect for σ = 0.06. This indicates that the optimal N and Sus
differs depending on the noise.
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σ topt t̂opt

0.05 0.9646 0.9597
0.06 0.9563 0.9552

0.075 0.9438 0.9479
0.09 0.9316 0.9403
0.1 0.9236 0.9350

Table 7.1: Results from parameter selection on a 512× 512 noisy image with different noise levels
σ using equation (7.35) with N = 9, nearest neighbour downsampling and bicubic upsampling.

The main problem with this approach is that there is that there is no automatic way
of choosing N , Sus and S(i)

ds , and the best choice depends on not only the noise level, but
the resolution of the image and the contents of the image. In order to make this method
robust one would either need to find N , Sus and S(i)

ds in a supervised setting, use some
heuristic criterion on v or as we have done here: experiment until suitable settings are
found. We would suspect that the settings we have chosen would generalize somewhat
to other 512 × 512 images. This method will most likely fail if the image contains high
frequencies, which would make it prone to aliasing in the downsampling and upsampling
process.

The approximate solution û given by equation (7.36) is created using a particular con-
volution operator on the noisy image v. We showed as early as figure 7.1 that using a
convolution with a Gaussian kernel could be used to achieve a good appoximate solution,
but this requires that the Gaussian blur is created using a suitable parameter. There exists
very limited literature on good parameter selection for denoising using Gaussian blur in the
unsupervised case. However, setting this parameter to some default value, like σblur = 1.0,
yields comperable results as those given in 7.1. Experimentation also shows that better
results when σblur increases with the noise level σ. The point is that it is possible to do
a good parameter selection when an approximate denoised solution is given by a linear
operator, and the operator used can be the same, or tweaked slighlty, for different noise
levels.

It is intriguing that we are able to select good parameters using downsampling and up-
sampling. This motivates us to investigate the properties of upsampling and downsampling
further.

7.3.1 Upsampling and downsampling inverse problems
If we assume our inverse problem model,

v = Au+ σw (7.37)

the noisew with noise level σ of our observed signal v is independent of the original signal
u. In this subsection we interpret w as a random variable.

We have so far discussed downsampling which amounts to applying a linear operator
Sds to an image. Thus, when downsampling the observed signal v, we obtain

vds = Sdsv = SdsAu+ σSdsw. (7.38)
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In other words, the downsampled signal vds consists of the signal SdsAu and a noise vector
Sdsw, which we will call wds, independent of SdsAu. Thus we have

vds = SdsAu+ σwds. (7.39)

Say we want to solve this downsampled inverse problem instead. This is in fact a new
inverse problem with a new forward operator SdsA and noise vector wds. Let us first
investigate the noise vector ds.

The expected value of the new noise vector is obviously 0, and variance of the new
noise vector satisfies

(wds) = Sds(w)STds. (7.40)

This means that the downsampled noise vector does not necessarily have independent
components. For Gaussian noise, wds is also Gaussian. The components of wds can have
higher or lower variance (or noise level) depending on the interpolation method. We can
write the new noise vector as

(wds)i′,j′ =
∑
i

∑
j

κ(i′ − αi, j′ − αj)wi,j , (7.41)

where κ is the convolution kernel.
This also means that the different components of wds can have different noise levels.

In particular, it is clear that

Var((wds)i′,j′) = Var(wi,j)
∑
i

∑
j

κ(i′ − αi, j′ − αj)2 =
∑
i

∑
j

κ(i′ − αi, j′ − αj)2.

(7.42)
This value depends on the grid chosen and the interpolation method. If the downsampled
grid aligns with the original grid, the new noise vector will have independent componentss
with the same noise level σ.

For interpolation kernels that attain negative values, like sinc and bicubic, the variance
can actually increase, and noise is amplified. For bilinear interpolation the noise level will
either be the same or lower.

We have thus found that downsampling can decrease the variance of the noise in the
downsampled signal. In fact, if we know the downsampling algorithm, we know, with
some work, the new variance of each pixel. With this knowledge, a possibility is to solve
the regularization problem on the downsampled grid, and upsample the result and use this
as an approximate solution. Furthermore, we can do this for N different downsampling
grids, to essentially obtain N different approximate solutions, which we can then take the
mean of. In the inverse problem model we described in chapter 2, we assumed the compo-
nents of the noise vector was independent. For this reason, we will only use downsampling
grids where the downsampled grid aligns with the original grid, meaning the components
are still independent.

Upsampling has many of the same properties as downsampling, expect for upsampling
there will always be new points which do not align with the original grid. The pixels that
do not align with the original grid will not have noise independent of the other pixels, and
can again have lower or higher variance based on the method. If we choose to denoise
on the downsampled grid, it can be a wise decision to use an upsampling method that can
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increase noise but better preserve the information in the image. After upsampling, we have
N resampled images which we can take the mean of and use as û. Even if we denoise on
the downsampled grid, the upsampled images will not necessarily be good reconstructions
on the original grid.

Note that the downsampled problem

vds = Sdsu+ σSdsw, (7.43)

is an inverse problem with forward operator Sds. Instead of using one of the linear upsam-
pling methods we have discussed we could use QV or TV regularization to calculate this
upsampling.

Let us now discuss downsampling and upsampling for a convolution operator A. In
this case, we can interpret the downsampled problem

vds = SdsAu+ σSdsw, (7.44)

as a new inverse problem with forward operator SdsA. We can calculate this operator by
downsampling the kernel of the convolution A. Hopefully, SdsA is a better conditioned
operator than A. If A is a low-pass filter, the downsampled operator SdsA will become
more well-conditioned as it approaches the identity operator, which is much more well-
conditioned.

Downsampling and upsampling can be beneficial because we can potentially solve a
simpler parameter selection problem. Not only will the downsampled problem be less
computationally intensive, but the properties of the donwsampled noise and forward oper-
ator can yield a better reconstruction.

As an example, we attempt to solve a denoising problem by downsampling, use one
of the methods from chapter 6 to do parameter selection for TV denoising and upsample
the result, then use this as an approximate solution. We downsample into N images, apply
the method on one image and use the same parameter for the other N − 1 images. We
upsample the images, take the mean, and use this as an approximate solution.

The approximate solution can be written as

û =
1

N

N∑
i=i

SusSTV(tTV)S
(i)
ds v. (7.45)

Here the parameter tTV has to be chosen using a parameter selection method. The L-
curve method performed the best for σ = 0.1, so we apply this on the downsampled
problem. Results are shown in figure 7.15. In this case, the results are good, surpassing
the methods in chapter 6. Interestingly, the approximate solution from equation 7.45 is
a good denoised image in its own right, and has essentially equivalent PSNR value as
the resulting TV denoised solution. However, the two images have different denoising
artifacts. The approximate solution still has some noise artifacts remaining, and the TV
denoised solution has the artifacts one would predict from a TV denoised image.

This has some of the same problems as discussed in the previous section. We are
left to choose N , Sus and S(i)

ds , and we also require a parameter selection method on the
downsampled images. This parameter selection is computationally cheaper than doing
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Figure 7.15: The upper left image is a 512 × 512 image without noise. The upper right image is
the same iamge with added Gaussian noise with σ = 0.1. The lower left is the approximate solution
given by equation 7.45. N , Sus and S(i)

ds are chosen the same as in figure 7.12. The resulting image
has PSNR value 30.19. The lower right image is the result from using the middle image as an
approximate solution in the solution regularization method. The resulting parameter is t = 0.9204
and the resulting image has PSNR value 30.21.

parameter selection on the original noisy image. Particularly interesting here is how the
approximate solution, which is much cheaper to produce than parameter selection on the
original noisy image, outperforms the methods proposed in 6. As with the last section, this
is something that should be investigated further.
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7.3.2 QV regularization as approximate solution for TV regulariza-
tion

TV regularization is better suited for image reconstrucion than QV regularization on most
images of its edge-preserving properties. Parameter selection for the TV problem is thus
the end goal. As we saw earlier, solutions to the QV problem are easier to calcuate, and
the parameter selected is of less importance. While the TV solution operator is non-linear,
the QV solution operator is linear, making analysis easier. Furthermore, the parameter
selection problem for the QV problem is more stable, in the sense that a wider spread of
parameters yield a decent reconstruction.

We can write equation (7.2) as

t̂opt = arg min
t
‖STV(t)v − SQV(tQV)v‖2, (7.46)

where tQV is an approximate optimal parameter for the QV problem. Let us begin by
choosing tQV as the optimal parameter for QV regularization, i.e the one that minimizes
PSNR. The resulting loss function is shown in figure 7.16. Again we see that the true loss

Figure 7.16: True and approximate loss functions from equations (7.1) and (7.46) for the denoising
problem with different noise levels σ. The paramater tQV is chosen to be the one that maximizes the
PSNR value of SQV(t)v.

function and approximate loss functions are very similar. However, this is not necessarily
the case if the parameter tQV is chosen poorly. From chapter 6 we saw that the GCV
method gave the best results without requiring any knowledge about the noise level σ. We
will therefore solve 7.46 with tQV given by GCV. The results are shown in figure 7.17.
In this case, the QV and TV denoising solutions are very similar, but the TV denoising
solution is actually worse than the QV denoising solution in terms of PSNR. It should be
noted that STV(t) and SQV(t) yield similar reconstructions for t close to 1, corresponding
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Figure 7.17: Top left is an 512×512 test image. Top right is a noisy image with Gaussian noise and
σ = 0.05. Bottom left is a the result of applying QV denoising with parameter chosen by GCV. The
resulting PSNR value is 29.89. Bottom right is the result of applying TV denoising with parameter
chosen by equation 7.46 with approximate solution cohosen as the previous image. The resulting
parameter is t = 0.9878 and PSNR value is 29.62.

with little regularization. In other words, if we want this approach to be successful, we
need a better choice of tQV, preferably one that regularizes too much instead of too little.

7.3.3 Parameter selection for deblurring
So far we have only tested parameter selection for denoising, and we will now apply the
methods to deblurring.

The blur we will use is a 15 × 15 Gaussian kernel with σblur = 1.5, and Gaussian
noise with σ = 0.02. The condition number of the resulting blurring operatorA isK(A) =
1.1 × 109. We will apply the methods to a 256 × 256 test image, because these methods
are much more computationally intensive.

Firstly, the loss function is shown in figure We see that the loss function has a similar
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Figure 7.18: True loss function for the Total Variation deconvolution problem.

shape as before, but the minimizer is very close to t = 1.0, meaning that little regular-
ization is required in order to achieve a good solution. Choosing a parameter that is too
small can result in round-off errors, and possibly yield a bad solution. This can make pa-
rameter selection difficult, because we saw that some methods will yield parameters very
close to t = 1.0 when they are essentially diverging. In fact, if we test the parameter se-
lection methods for TV deblurring, this is exactly what happens for the Quasi Optimality
Criterion and the L-curve method. The methods looks for parameters closer and closer to
t = 1.0 until round-off errors happen, making them both very slow and unreliable. How-
ever, we have an additional method to work with for QV deblurring, which we will now
test. Results for QV deblurring is shown in table 7.2. From the table we see that the L-

Method t PSNR
Noisy − 25.60

Optimal 0.9718 27.70
DP 0.7817 26.38

QOC 0.9247 27.36
LC 1.0 6.30

GCV 0.9757 27.69

Table 7.2: Quadratic Variation deblurring results on test problem.

curve method has the same problems as for TV deblurring. It goes until a round-off error
happens, and then erroneously chooses a poor parameter. The best method in this case is
GCV, which yields near perfect results.

This motivates us to apply the idea from the last subsection, using a QV deblurred
image as an approximate solution for the TV deblurring problem. The SR method yields
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the parameter

t̂opt = arg min
t
‖STV(t)v − SQV(tQV)v‖2, (7.47)

where tQV is selected using one of them methods from table 7.2. We compare these results
to applying the discrepancy principle on the TV deblurring problem. The results are shown
in table 7.3, as well as figures 7.19 and 7.20.

Method t PSNR
Noisy − 25.60

Optimal 0.9979 28.21
DP 0.9804 27.00

SR QV QOC 0.9984 28.20
SR QV GCV 0.9998 27.76

Table 7.3: Total Variation deblurring results on test problem. Here SR QV QOC refers to solving
equation (7.47) with tQV chosen by the QOC and SR QV GCV refers to solving equation (7.47) with
tQV chosen by GCV.

From the results we see that solving (7.47) with the approximate solution given by
QV deblurring yields better results than the discrepancy principle. In both cases, the TV
reconstruction is a better reconstruction than the QV reconstructions used to choose the pa-
rameters. However, while the GCV method yields the best PSNR for QV reconstructions,
the TV reconstruction using this tQV in equation (7.47) barely improves the result, with the
difference being indistinguishable by the human eye. These reconstructions clearly have
noise artifacts in them. Using QOC for finding tQV in equation (7.47) yields almost per-
fect results, with the TV reconstruction being slighlty sharper than the QV reconstruction.
From this it is clear that choosing an approximate solution that maximizes PSNR does not
give the TV reconstruction.

Although we have not included the timings in this experiment, finding a QV parameter
is much more efficient than finding a TV parameter for the deblurring problem. When this
parameter has been found, solving (7.47) is comparable in cost to the methods described
in chapter 6.

We have also done some experiments with downsampling and upsampling deblurring
problems, with promising results, but it will not be included in this text.

To summarize, we see that the SR method can give better results than the methods
described in 6 when the approximate solution is well chosen. The main challenge of
applying the method is then to choose this approximate solution robustly and efficiently.
The results are promising for both denoising and deconvolution when the approximate
solution is well-chosen.

7.4 Further work

In order to make the SR method more robust, it is natural to investigate the properties of
approximate solutions and how they relate to the resulting parameter. It is worth investi-
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Figure 7.19: Deconvolution results part 1. The upper left image is an 256 × 256 test image. The
upper right image is a blurred and noisy image using Gaussian blur and Gaussian noise. The bottom
left image is the optimal TV reconstruction. The bottom right image is the TV reconstruction using
the discrepancy principle.

gating the parameter selection problem for a more general distance d,

topt = arg min
t

d(S(t)v, u), t̂ = arg min
t

d(S(t)v, û). (7.48)

In this text we used the euclidean norm distance, but also mentioned the SSIM. It is pos-
sible that different distances can yield better reconstructions for different problems. It is
then interesting to investigate how the true and approximate loss functions relate, and find
how they differ depending on the approximate solution û. The goal is to find theoreti-
cal bounds on |topt − t̂opt|. One should then look for good methods of producing û that
minimizes |topt − t̂opt|. We saw that for denoising, choosing û using some linear denoiser
gave decent results. Choosing û by QV denoising can potentially be a good option, but
we would then need a good way of selecting the optimal parameter. Perhaps one can
investigate the optimal operator for finding û, by looking for the optimal solution operator

Sopt = arg min
S

| arg min
t

d(STV(t), u)− arg min
t

d(STV(t), Sv)|. (7.49)
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Figure 7.20: Deconvolution results part 2. The upper left image is the QV reconstruction using the
quasi optimality criterion. The upper right image is the TV reconstruction using the previous image
as the approximate solution. The bottom left image is

Perhaps it is possible to choose û by some data-driven method. When a suitable distance
d and approximate solution operator is found, solving the optimization problems 7.48 still
has some room for improvement. In this text, we used the Golden-section search method,
but we believe higher order methods like line search methods can be used. This can also
be applied for the other methods discussed in chapter 6.

Lastly, while we have investigated this method for TV regularization for images, it
should extend to other regularization methods in other settings. This is something which
can be investigated further.



Chapter 8
Conclusion

The aim of this text was to investigate algorithms for image reconstruction modelled as
an inverse problem. We have seen that regularization can effectively be used to solve in-
verse problems. In particular, total variation regularization can be effectively used to solve
denoising and deconvolution problems for images. The accuracy of the reconstructions
depends on the selection of a numerical parameter. Some existing methods were imple-
mented using numerical methods. They gave decent results in some cases, but exhibited
some room for improvement.

The main contribution of this work was the introduction of a new method for parameter
selection, which we called Solution Regularization (SR). This method attempts to solve
the parameter selection problem by using an approximate reconstruction, and find the
parameter that yields the reconstruction that is closest to the approximate reconstruction.
The main benefit of this method is that given an approximate reconstruction, the parameter
can be found in approximately the same time as finding the optimal parameter when the
original data is given. This requires solving an optimization problem, which we solved
using the Golden-Section search method.

We investigated some choices for approximate reconstructions. We proposed finding
an approximate reconstruction by applying other reconstruction methods, including other
regularization methods requiring parameter selection. The idea is then to substitute a po-
tentially difficult or computationally demanding parameter selection problem with a direct
method or a simpler, less computationally demanding problem. This was shown to yield
better results than existing method when the approximate reconstructions were well cho-
sen. The main challenge with the SR method is choosing an approximate solution robustly
and efficiently. The method is promising when this is the case, and good results were
obtained for both denoising and deconvolution for images.

Further work will further assess how to find approximate solutions for total variation
regularization and similar methods.

109



110



Bibliography

[1] One world imagine seminar, may 6 2020, 2020.

[2] P. Argoul. Overview of inverse problems. 2012.

[3] H. H. Bauschke, P. L. Combettes, et al. Convex analysis and monotone operator
theory in Hilbert spaces, volume 408. Springer, 2011.

[4] A. K. Boyat and B. K. Joshi. A review paper: noise models in digital image process-
ing. arXiv preprint arXiv:1505.03489, 2015.

[5] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock. An introduction to
total variation for image analysis. Theoretical foundations and numerical methods
for sparse recovery, 9(263-340):227, 2010.

[6] A. Chambolle and P.-L. Lions. Image recovery via total variation minimization and
related problems. Numerische Mathematik, 76(2):167–188, 1997.

[7] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex prob-
lems with applications to imaging. Journal of mathematical imaging and vision,
40(1):120–145, 2011.

[8] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing.
In Fixed-point algorithms for inverse problems in science and engineering, pages
185–212. Springer, 2011.

[9] E. de Vito, Z. Kereta, and V. Naumova. Unsupervised parameter selection for de-
noising with the elastic net, 2018.

[10] M. Grasmair. Minimisers of optimisation problems. 2017.

[11] P. C. Hansen. Analysis of discrete ill-posed problems by means of the l-curve. SIAM
review, 34(4):561–580, 1992.

[12] P. C. Hansen and D. P. O’Leary. The use of the l-curve in the regularization of discrete
ill-posed problems. SIAM journal on scientific computing, 14(6):1487–1503, 1993.

111



[13] S. Kindermann, L. D. Mutimbu, and E. Resmerita. A numerical study of heuristic
parameter choice rules for total variation regularization. Journal of Inverse and Ill-
posed Problems, 22(1):63 – 94, 2014.

[14] E. Kreyszig. Advanced engineering mathematics, 10th eddition, 2009.

[15] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny im-
ages. 2009.

[16] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image super-resolution using
a generative adversarial network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4681–4690, 2017.

[17] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business
Media, 2006.

[18] A. V. Oppenheim, J. R. Buck, and R. W. Schafer. Discrete-time signal processing.
Vol. 2. Upper Saddle River, NJ: Prentice Hall, 2001.

[19] T. Sauer. Numerical analysis pearson addison wesley, 2006.

[20] C. Solomon and T. Breckon. Fundamentals of Digital Image Processing: A practical
approach with examples in Matlab. John Wiley & Sons, 2011.

[21] J. Stillwell. Logic and the philosophy of mathematics in the nineteenth century. In
Routledge History of Philosophy Volume VII, pages 224–250. Routledge, 2013.
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Appendix A - Scaling of the Fourier transform

There exists several different conventions for the Fourier transform. Fourier series can be
defined for periodic function u with period T

u(x) =

∞∑
k=−∞

Cke
i2πkx
T . (8.1)

In this thesis we chose to define the Fourier transform for frequencies ξ, but it can also
be defined for angular frequencies ω = 2πξ generalized to d dimensions as

F(u(x)) =

∫ ∞
−∞

u(x)e−iωxdx, F−1(U(ω)) =
1

(2π)d

∫ ∞
−∞

U(ω)eiωxdω. (8.2)

With this formulation the Fourier transform is no longer unitary on L2, i.e we no longer
haveF∗ = F−1. In order to preserve this property an alternate formulation exists:

F(u(x)) =
1

(2π)d/2

∫ ∞
−∞

u(x)e−iωxdx, F−1(U(ω)) =
1

(2π)d/2

∫ ∞
−∞

U(ω)eiωxdω,

(8.3)
which has the additional property of being more symmetric.

As for the DFT, the definition we used in this thesis is not unitary. The basis vectors
of the transform are orthogonal, but not orthonormal. Orthonormality can be ensured by a
simple scaling

DFT(u)l =
1√
2π

n−1∑
k=0

uke
−i2π lkn , DFT−1(U)k =

1√
2π

n−1∑
l=0

Ule
i2π lkn . (8.4)
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