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Summary
We have studied a Gaussian process for modelling soil heat flow. It is the stationary solu-
tion to a linear stochastic system based on the stochastic heat equation with additive noise.
With temperature measurements at different locations in the soil, filtering, and computing
the likelihood of the observations are efficiently performed using the Kalman recursions.
The maximum likelihood estimates may in turn be found using some numerical optimiza-
tion routine with quick gradient computations by automatic differentiation. Finally, the
proposed model is applied to real temperature measurements in a problem related to the
load capacity of buried electric cables.

Sammendrag
Vi har studert en Gaussisk prosess for å modellere varmeflyt i jord. Prosessen er den
stasjonære løsningen på et lineært stokstisk system basert på varmeledningsligningen med
additiv støy. Med temperaturmålinger rundt omkring i jorden, løses filtreringsproblemet,
og man kan beregne observasjonssannsynligheten, effektivt ved hjelp av Kalmanrekursjo-
nene. Videre kan man finne sannsynlighetsmaksimeringsestimatene med en gradientbasert
optimeringsrutine, hvor gradienten beregnes hurtig ved hjelp av automatisk derivasjon.
Avslutningsvis anvender vi modellen på faktiske temperaturmålinger fra jorden i et prob-
lem relatert til lastkapasiteten til strømkabler.
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Chapter 1
Introduction

The bottleneck for the amount of current which can be passed through buried electric ca-
bles is the temperatures of the cable components. The problem of determining the greatest
amount, or cable load capacity, is an active topic of research among electric engineers.
Even though the physics governing the cable temperature alone is well understood by the
electric engineer, the soil heat dynamics, when exposed to external variables such as vary-
ing weather and precipitation, is much less understood.

Every buried cable has a predetermined static load capacity, as per the industrial stan-
dard IEC 60287. This is the constant current which can be applied for an infinite amount
of time while keeping the temperature of the components below their maximum tolerable
temperature. As it is power consumption and energy production that mainly determine
the current passing through cables, the cable load is rarely constant. Therefore, cables are
also rated according to the dynamic current rating standard, IEC 60853. This standard
determine the cable load capacity when subject to periodic load profiles, and short lasting,
high, loads. Due to the varying thermal properties of the surroundings, conservative values
for the thermal properties must be used in the computations. It follows that the computed
load capacities usually end up becoming conservative, and electric cables generally go
underutilized.

1.1 Problem formulation
In order to better understand and quantify the uncertainties introduced into the heat dy-
namics by varying conditions, different research projects have been initiated, and thermal
measurements from the soil surrounding buried electric cables in different actual cable
installations are being made. Among them, we have the Tronsholen Skeiane cable field,
displayed in Figure 1.1. This motivates us to consider the problem of identifying parame-
ter driven stochastic heat flow. In this study, we aim to propose a simple, stochastic model
for soil heat dynamics, and verify its validity on measurements from an actual cable in-
stallation. The goal of the study is to be able to produce reliable forecasts of the cable
temperature and its uncertainty.

1



Chapter 1. Introduction

Figure 1.1: Tronsholen Skeiane. Source: Lyse Elnett.

1.2 Thesis structure
Chapter 2 presents the underlying theoretical framework of linear stochastic systems, in
addition to filtering, smoothing and forecasting for linear Gaussian state space models. At
the end of the chapter, the nonlinear optimization problem of maximising the observation
likelihood is addressed. In Chapter 3 we study the particular stochastic heat flow problem
related to cable soil systems, and justify our choice of model. In the fourth and final
chapter, parameter inference on actual temperature measurements are performed.

1.3 Main definitions and notation
A random variable, X : Ω → Rn, is a measurable function on a probability space
(Ω,F , P ), and a stochastic process is an indexed collection of random variables,

{Xt : t ∈ T ⊆ Rd}. (1.1)

The probability distribution of a random variable X is the probability measure, µX , on
(Rn,B), satisfying µX(A) = P (X−1(A)), A ∈ B. The density of the distribution, pX , is
the B-measurable function, satisfying µX(A) =

∫
A
pX(x)dx for all A ∈ B. A Gaussian

process is a stochastic process {Xt}t∈T such that for every subset {t1, . . . , tk} ⊆ T , the
random variable (Xt1 , . . . , Xtk) : Ωk → (Rn)k is multivariate Gaussian distributed.

2



Chapter 2
Framework

We are interested in the two dimensional stochastic heat equation with additive noise,

∂tU(t, x) = k∆U(t, x) + q(t, x) +W (t, x); (t, x) ∈ [0,∞)×R2, (2.1)

where ∂t, ∆ denotes time differentiation and the Laplacian operator respectively, with
U0,x : R2×Ω→ R,Wt,x : [0,∞)×R2×Ω→ R independent, and q : [0,∞)×R2 → R.
The solution to (2.1) is,

Ut,x =

∫
R2

φ(0, x− y)U0,ydy +

∫ t

0

∫
R2

φ(t− s, x− y)(q(s, y) +Ws,y)dyds, (2.2)

where φ(t, x) = (4πkt)−d/2 exp(−‖x‖2/(4kt)) is the heat kernel, provided it makes
sense for the choice of Wt,x. A detailed description of the solution form (2.2) is given in
Hairer (2004), and it turns out there are a lot of distributions Wt,x for which it is meaning-
ful. We consider the case when Wt,x takes values according to some twice differentiable
potential, Zt,x : [0,∞)×R2×Ω→ R, such thatW (t, x) = k∆Z(t, x). This corresponds
to heat flow subject to an additional uncertain heat flux,

J = −k∇Zt,x. (2.3)

In the remainder of this study, we consider the discrete version of the conservation law
(2.1), where the spatial domain is divided in a finite number of volumes, and has Dirichlet
boundaries. In this case, the conservation equation may be expressed by a linear stochastic
system. We are interested in inferring the parameters driving the solution to this system.
That is, the parameters determining the stochastic process, Zt,x, the thermal diffusion co-
efficient, k, in addition to parameters related to boundary conditions and source terms. In
the remainder of this chapter we establish necessary theory on identifying linear stochastic
systems, and start by introducing state space processes and filtering.

3



Chapter 2. Framework

2.1 State space process
A stochastic process, {(Xt, Yt) : t = 1, . . . , T}, determined through

(system) Xt+1 = at(Xt, Vt),

(measurement) Yt = bt(Xt,Wt),
(2.4)

with at : Rn ×Rn → Rn, bt : Rn ×Rm → Rm, and X1, Vt,Wt independent random
variables, is referred to as a state space process, or hidden Markov process. The equation
defining the development of the state, {Xt}, is commonly referred to as the state, system
or dynamic equation. The equation defining the observations, {Yt}, is commonly referred
to as the measurement or observation equation. That is, the process naturally arises when
modelling the development of some unobserved stochastic quantity, where we have avail-
able some, possibly noisy, observations related to the unobserved state.

The state space process above satisfies the Markov property,

p(xt|x1:t−1) = p(xt|xt−1), p(x1|x0) := p(x1), (2.5)

where we have omitted the subscript of the probability density as it is clear from the
argument, and denoted the collections (x1, . . . , xt) by x1:t. It also satisfies the conditional
independence properties,

p(yt|y1:t−1, yt+1:T , x1:T ) = p(yt|xt), (2.6)

and,

p(xt|xt+1, y1:T ) = p(xt|xt+1, y1:t). (2.7)

Finally, the joint probability distribution of the state and observations may be expressed,

p(x1:T , y1:T ) = p(x1)p(y1|x1)

T∏
t=2

p(xt|xt−1)p(yt|xt). (2.8)

This study is concerned with linear state space processes. When the time dynamics are
discrete, this process may be expressed,

Xt+1 = AtXt + qt +DtVt,

Yt = BtXt + rt +HtWt,
(2.9)

for matrices At ∈ Rn×n, Bt ∈ Rm×n, Dt ∈ Rn×k and Ht ∈ Rm×l, and qt ∈ Rn,
rt ∈ Rm, and noise terms Vt ∈ Rk,Wt ∈ Rl. In the particular case when X1, Vt and Wt

are all Gaussian and independent, we refer to the process as a linear Gaussian state space
process.

2.2 Filtering, smoothing and forecasting
Many engineering problems are concerned with estimating or monitoring some unknown
quantity that varies continuously or discretely through time, based on some, possibly noisy,

4



2.2 Filtering, smoothing and forecasting

observations. Rephrased, we are interested in estimating the state, given the observations,
preferably the conditional probability distribution, p(xt|y1:T ), if possible. The filtering
problem is the problem of obtaining the best estimate of Xt based on the observations
Ys = ys for s = 1, . . . , t. The smoothing problem concerns obtaining the best estimate
using all observations, while the forecasting problem entail estimating the state Xt′ , at
time t′ > t given observations up to time t.

From Bayes rule and (2.8) we may deduce

p(x1:t|y1:t) ∝ p(x1)p(y1|x1)

T∏
t=2

p(xt|xt−1)p(yt|xt), (2.10)

moreover, the marginal distributions, p(xt|y1:t), may be computed recursively as

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1),

p(xt+1|y1:t) =

∫
p(xt+1|xt)p(xt|y1:t)dxt.

(2.11)

Even though these conditional distributions are rarely easily evaluated, the state inference
problems of the linear state space process of (2.9) has an efficient and elegant solution.
The derivation of which relies on elementary Hilbert space theory and the notion that for
random variables taking values in R, L2(Ω, P ), with inner product E[. · .], is a Hilbert
space (see Brockwell and Davis (1991)). For random variables X taking values in Rn

and Y in Rm, we may define X̂ as the Rn valued random variable, having as entries
the affine transformations of the components of Y , minimizing the mean squared errors,
E[X(i)−X̂(i)]2, i = 1, . . . , n. From the projection theorem, we know that this projection
exists, and satisfies the sufficient and necessary orthogonality conditions,

E[X(i) − X̂(i)] = 0, E[
(
X(i) − X̂(i)

)
Y (j)] = 0, j = 1, . . . ,m, (2.12)

for i = 1, . . . n. This condition may be expressed compactly as

E[X −MY − µ] = 0, E[
(
X −MY − µ

)
Y T ] = 0, (2.13)

with X̂ = MY + µ for some matrix M ∈ Rn×m and µ ∈ Rn. The Kalman recursions,
originally introduced in Kalman (1960), compute the projection of Xt, denoted X̂t|t′ , into
the space {X̂ : X̂ = µ + M1Y1 + · · · + Mt′Yt′ , µ ∈ Rn, Mi ∈ Rn×m}, and its error,
St|t′ := E[

(
Xt − X̂t|t′

)(
Xt − X̂t|t′

)T
], efficiently recursively, in a Gram-Schmidt like

manner.

2.2.1 Kalman recursions
We now derive the recursions for the linear state space process (2.9) where the entries of
X1, Vt,Wt are all in L2(Ω, P ) and orthogonal. The covariance matrices of Vt and Wt are
identity matrices in Rk×k and Rl×l, respectively. Initially, set X̂1|0 = X̂1, S1|0 = S1.
Note that since Wt is orthogonal to Y1, . . . , Yt−1, the best linear predictor of Yt given
Y1, . . . , Yt−1 is BtX̂t|t−1 + rt. Let It := Yt −BtX̂t|t−1 − rt, be the t’th innovation, and

5



Chapter 2. Framework

note that this sequence of random variables is per construction orthogonal. Moreover, the
span of the innovations up to time t coincides with the span of the observations up to time
t. The orthogonality of the innovations implies that we have

X̂t|t = X̂t|t−1 +MtIt, (2.14)

where the n×m-matrix Mt may be found from the orthogonality condition,

E[
(
Xt −MtIt

)
ITt ] = 0, (2.15)

giving, Mt = St|t−1B
T
t ∆−1

t , with ∆−1
t being any generalized inverse of BtSt|t−1B

T
t +

HtH
T
t . Due to the orthogonality of Vt and Y1, . . . , Yt we have that X̂t+1|t = AtX̂t|t + qt.

The errors of the projections can be found from these expressions and algebraic manipu-
lations to be

St|t−1 = AtSt−1|t−1A
T
t +DtD

T
t ,

St|t = (I −MtBt)St|t−1.
(2.16)

The forecasting problem is solved simply by noting that X̂t+1|t′ = AtX̂t|t′ + qt, and
St+1|t′ = AtSt|t′A

T
t +DtD

T
t for t′ < t. In his original paper, Kalman does not treat the

smoothing problem. Although, the same idea applies when computing X̂t|t′ , t
′ > t. The

orthogonality of the innovations allows us to write,

X̂t|t′ = X̂t|t′−1 +Mt,t′It′ , (2.17)

where the matrixMt,t′ is found from the orthogonality condition E[
(
Xt−Mt,t′It′

)
ITt′ ] =

0, giving Mt,t′ = E[XtI
T
t′ ]∆

−1
t′ . We may write E[XtI

T
t′ ] = St,t′B

T
t′ , where St,t′ =

E[Xt(Xt′ − X̂t′|t′−1)T ] is computed from the recurrence relation

St,t′ = At′−1(I −Mt′−1Bt′−1)St,t′−1, (2.18)

with St,t = St|t−1. The error of the projection then becomes

St|t′ = St|t′−1 −Mt,t′∆tM
T
t,t′ . (2.19)

Rausch-Tung-Streibel smoother

The smoother implementation above is not particularly efficient if the intention is to com-
pute the smoothed estimate of the state at all times. Originally introduced in Rauch et al.
(1965), we may obtain a faster implementation by noting that the condition X̂t|t,Xt+1

=
E[Xt|I1:t, Xt+1] (i.e. the conditional expectation is linear), in addition to the conditional
independence condition (2.7), is sufficient for X̂t|T,Xt+1

= X̂t|t,Xt+1
to hold, where the

subscript notation X̂t|T,Xt+1
denotes the projection of Xt into the space {X̂ : X̂ =

µ+M0Xt+1 +
∑T
t=1MtIt}. That is,

X̂t|t,Xt+1
= E[Xt|I1:t, Xt+1] = E[Xt|I1:T , Xt+1], (2.20)

6



2.2 Filtering, smoothing and forecasting

where the latter equality is due to (2.7). This implies that we have,

E[(Xt − X̂t|t,Xt+1
)ITk ] = 0, k > t, (2.21)

which in turn implies, X̂t|T,Xt+1
= X̂t,Xt+1

. The orthogonality condition yields,

X̂t|t,Xt+1
= X̂t|t +Mt(Xt+1 − X̂t+1|t), (2.22)

with Mt = St|tA
T
t S
−1
t+1|t. It follows that

X̂t|T = X̂t|t +Mt(X̂t+1|T − X̂t+1|t), (2.23)

with smoothing errors St|T = St|t + Mt(St+1|T − St+1|t)M
T
t . The equality (2.23) fol-

lows noting that the projection X̂t|T is equal to the projection of X̂t|T,Xt+1
into the span

of {I1, . . . , IT } (see Brockwell and Davis (1991)). Performing the smoothing computa-
tions is in practice performed by first running the filter recursions once, storing the pre-
dictors X̂t|t−1, X̂t|t and the errors, St|t−1, St|t, and then, starting at X̂T |T , ST |T , compute
X̂t|T , St|T , t < T , recursively.

Best linear predictor vs. conditional expectation

Up until now, we have not defined the conditional expectation of a random variable X :
Ω → R, E[|X|] < ∞. In elementary statistics, this is defined in terms of the conditional
probability density. That is, ”conditioning X on the observation Y = y”, where Y is
another random variable, we have,

E[X|Y ] =

∫
R

xp(x|y)dx, (2.24)

and in turn, we are left with a function of y. When X is also in L2(Ω, P ), Brockwell
and Davis (1991) defines the conditional expectation of X given some random variable
Y : Ω → Rn, as the projection of X into the space of all random variables in L2(Ω, P )
which can be written of the form φ(Y ) : Ω→ R, for some measureable φ : Rn → R. In
other words, this is the function E[X|Y ] : Ω→ R of Y minimizing the distance E[(X −
E[X|Y ])2]. The best linear predictor we defined above therefore differs by the conditional
expectation in that we constrain E[X|Y ] to be an affine function of the components of Y .
For this study, the definition in Brockwell and Davis (1991) suffices, since we are only
working with random variables in L2(Ω, P ), and only conditioning on observations of
Y . It does not hold in general for random variables in L1(Ω, P ), and for conditioning on
more general events. The general definition of conditional expectation is given in Øksendal
(2000).

WhenX1, Vt,Wt in the state space model (2.9) are independent and Gaussian, the best
linear predictor and conditional mean coincides, and so the Kalman recursions compute the
first and second moments of the exact conditional distributions recursively. More gener-
ally, Brockwell and Davis (2002) notes that the best linear predictor and conditional expec-
tation coincides in the case when X1, Vt,Wt are uncorrelated, provided {Vt} is a Martin-
gale difference sequence with respect to {Xt}; that is, E[Vt|{Xs}s≤t] = 0, t = 1, . . . , T .

7



Chapter 2. Framework

We note that this condition is implied by independence of X1, Vt,Wt, but not by orthog-
onality. For all practical reasons, we only concern ourselves with state space processes
where X1, Vt,Wt are independent from now on.

2.3 Linear stochastic systems
The way state space models were introduced in this study were as a discrete time stochas-
tic process, defined for integer time steps, t = 1, . . . , T . Although, when modelling some
quantities, it may be more natural to have a continuous time development. This is com-
monly done through a stochastic differential equation. That is, it is meaningful to define

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (2.25)

in the sense that,

Xt −X0 =

∫ t

0

(b(s,Xs)ds+ σ(s,Xs)dBs), (2.26)

is the limit in mean square of the Riemann sum,

k−1∑
j=1

(
b(sj , Xsj )∆sj + σ(sj , Xsj )∆Bsj

)
, ∆sj = sj+1 − sj , s1 = 0, sk = t, (2.27)

with ∆Bsj = Bsj+1
− Bsj , for a Brownian motion {Bt}, in addition to the technical

conditions described in Øksendal (2000). That is, the limit of (2.27) exists in the sense
of Xt being a well defined random variable, and is referred to as the Itô-integral, and the
resulting stochastic process, an Itô diffusion.

Generally, depending on the construction of the Riemann sum, different limits are
obtainable. In fact, in our particular application of linear stochastic system where σ(.)
does not depend on Xt, the two most popular such limits, the one corresponding to Itô
calculus, and that of Stratonovich calculus where the integrand in the Riemann sum is
evaluated as the average of the interval endpoints, actually coincide.

In the case when the stochastic process, {Bt}, in the Riemann sum defining the Itô-
integral above is a standard Brownian motion, satisfying

Bt −Bt′ , t′ < t are independent of all Bs, s ≤ t′,
(Bt1 , . . . , Btk), is multivariate Gaussian for all {t1, . . . , tk} ⊆ [0, T ],

E[Bt] = 0,

E[BtB
T
t ] = tI; B0 = 0,

(2.28)

b(.) affine in Xt, σ(.) does not depend on Xt, the solution to the resulting system of linear
stochastic differential equations,

dXt = AXtdt+ qtdt+ CtdBt; X0 ∼ N(x0, S0), (2.29)

8



2.3 Linear stochastic systems

with Xt ∈ Rn, Bt ∈ Rk, qt ∈ Rn, A ∈ Rn×n, Ct ∈ Rn×k, may be expressed,

Xt = exp(At)X0 +

∫ t

0

exp(A(t− s))(qsds+ CsdBs). (2.30)

Or, equivalently, as the stochastic process, Gaussian distributed at each time t, with mean
and variance X̂(t), S(t), given by the systems of linear ordinary differential equations,

d

dt
X̂ = AX̂ + qt,

d

dt
S = AS + SAT + CtC

T
t ,

(2.31)

with X̂(0) = x0 ∈ Rn, and S(0) = S0 ∈ Rn×n. Note that the solution (2.30) may be
expressed by the discrete dynamics equation,

Xt = FX0 + r + V, (2.32)

with

F = exp(At), r =

∫ t

0

exp(A(t− s))qsds,

V ∼ N(0, Qt), with Qt =

∫ t

0

exp
(
A(t− s)

)
CsC

T
s exp

(
AT (t− s)

)
ds,

(2.33)

where Qt ∈ Rn×n solves the latter equation in (2.31) (referred to as the Lyapunov
equation) with initial condition S(0) = 0, and is assumed to be positive definite. The
expression for Qt may also be found using the expression (2.30) and the Itô isometry
(see Øksendal (2000)). With the linear dynamics equation above, and with observations
{Ytj : j = 1, . . . , k} affine in Xt and with added noise, we have full consistency with the
linear Gaussian state space process as introduced in (2.9). However, the Kalman recursion
still hold in the more general case where A varies with time, provided we replace the dis-
crete mean and variance update equations with the solution to the differential equations
(2.31). The filtering problem arising when also the observation process is continuous was
originally solved in Kalman and Bucy (1961), and gives rise to the well studied Ricatti
differential equation.

An important example, which will be applied a lot in Chapter 3 and 4, is the Ornstein-
Uhlenbeck process, defined through,

dZt = −φZtdt+DdBt; Z0 ∼ N(z0, S0), (2.34)

where Zt ∈ Rn, D ∈ Rn×k, Bt ∈ Rk, which entails that the distribution of Zt is Gaus-
sian with mean exp(−φt)z0 and variance exp(−2φt)S0 + DDT

2φ (1 − exp(−2φt)). A
Technical notion: If we for instance take S0 = 0, Zt is technically only multivariate Gaus-
sian if DDT is positive definite; this is generally not true. However, we usually abuse the
multivariate normal notation, since it does not matter in the filtering recursions.

9



Chapter 2. Framework

Stability of linear stochastic systems

In this and the next section, we assume q and C in (2.29) are fixed in time as well. When
the eigenvalues of A have strictly negative real part, the system is globally asymptotically
stable, and tends to the same random variable independent of initial state. The moments
of the steady state solution is given by the steady states of the linear systems (2.31). In
particular, the steady state variance may be found by solving (the continuous Lyapunov
equation),

AS + SAT + CCT = 0. (2.35)

This equation has a simple solution whenever A commutes with CCT and its own trans-
pose, namely S∗ = −(A+ AT )−1CCT . It follows that we may then solve the Lyapunov
differential equation by the integral shifting trick, S(t) = S∗ − exp(At)S∗ exp(AT t),
with S(0) = 0. In the general case when the matrices do not commute, one could in prin-
ciple find the solution by collecting the linear system of n

2 (n + 1) equations and solving
them, although, there exists method designed specifically for this problem. In a practi-
cal setting, the added noise in (2.33) can just be approximated by the trapezoidal rule,
S(t) ≈ t

2 (CCT + exp(At)CCT exp(AT t)), with S(0) = 0, for a small time step t.
For the linear state space processes (2.9), there may also be a steady state for the con-

ditional distribution of the the state at uniform discrete time steps. Collecting the variance
update equations of the discrete time Kalman recursions, we find that,

Sj+1|j = A(I −MjB)Sj|j−1A
T +Q, (2.36)

and so the steady state variance of the one step predictions is given by the equation,

S∗ = A(I − S∗BT (BS∗BT +R)−1B)S∗)AT +Q, (2.37)

known as the algebraic Ricatti equation (see e.g. Davis and Vinter (1985)).

Stationary solution

Closely related to stability of linear stochastic systems are stationarity. A stationary stochas-
tic process {Xt}t∈[0,T ] is a stochastic process such that for all collections {t1, . . . , tk} ⊆
[0, T ], the joint probability density of (Xt1+h, . . . , Xtk+h), is independent of h. In the
Gaussian case, this is equivalent to the mean and covariance of the process being time
shift invariant. Assuming the system (2.29) is stable and time invariant as described in the
previous section, it admits a unique stationary solution (see Brockwell and Davis (1991)).
To see this, note that we may represent the stationary solution (where we have set q = 0
for simplicity),

Xt =

∫ t

−∞
exp(A(t− s))dBs, E[XtX

T
t ] = S∗, E[Xt] = 0, (2.38)

where S∗ is the steady state variance. It follows that for h > 0,

E[Xt+hX
T
t ] = E[

(
exp(Ah)Xt +

∫ t+h

t

exp(A(t− s))dBs
)
Xt] = exp(Ah)S∗,

(2.39)
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2.4 Parameter inference

owing to the independence of Xt and {Bs}s>t.
In Chapter 4, we employ the zero mean stationary Ornstein-Uhlenbeck process (2.34).

This is the solution of the system (2.34) with initial condition Z0 ∼ N(0, 1
2φDD

T ), and
is the centered Gaussian process, Zt, with covariance,

E[ZtZs
T ] = exp(−φ|t− s|)DD

T

2φ
. (2.40)

2.4 Parameter inference
The remainder of this chapter is concerned with parameter inference for linear Gaussian
state space models. Formally, we are interested in inferring the parameters driving the
process (2.9), by computing the maximum likelihood estimates given the observations,
{(Yt = yt) : t = 1, . . . , T},

θ̂ = argmaxθL(θ), (2.41)

where L(θ) = p(y1:T ; θ) is the likelihood of the observations.
We may avoid the cumbersome task of integrating out the unknown state from (2.8),

by noting that the innovations, It, are independent zero mean multivariate Gaussian with
variance ∆t. The likelihood of the observations may thus be expressed,

L(θ) =

T∏
t=1

(2π)−m/2 det(∆t)
−1/2 exp(−1

2
ITt ∆−1

t It). (2.42)

In the general case, there are no closed form expression for the maximum likelihood es-
timates, and they must be found by maximizing the likelihood numerically. Note that
maximising the likelihood is equivalent to minimizing the negative log likelihood,

`(θ) =
1

2

T∑
t=1

(
log det(∆t) + ITt ∆−1

t It
)
, (2.43)

which is efficiently computed using the filtering recursions. Minimizing (2.43) is a well
studied problem in continuous nonlinear optimization. In order to do so, we search for
a stationary point by numerically solving ∇`(θ) = 0. This is commonly done using a
quasi-Newton method. That is, we hope for convergence of the scheme,

θ̂k+1 = θ̂k −H−1
k ∇`(θ̂k), (2.44)

where Hk is some approximation of the Hessian of ` at θ̂k.

Gradient and Hessian

In our application, we are concerned with time invariant state space processes of the form
(2.9) where B does not depend on θ. In this case, the derivative of (2.43) with respect to
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Chapter 2. Framework

θ ∈ R is,

∂θ` =
1

2

T∑
t=1

(
2ITt ∆−1

t (∂θIt)− ITt ∆−1
t (∂θ∆t)∆

−1
t It + tr(∆−1

t (∂θ∆t))

)
(2.45)

where,

∂θIt = −B∂θX̂t|t−1 − ∂θst, (2.46)

and,

∂θ∆t = B(∂θSt|t−1)BT + ∂θR. (2.47)

The derivatives of X̂t|t−1, St|t−1 may be computed recursively; collecting the Kalman
recursion equations, we obtain,

X̂t+1|t = F (X̂t|t−1 +Mt(Yt −BX̂t|t−1)) + rt,

St+1|t = F (I −MtB)St|t−1F
T +Q.

(2.48)

so that,

∂θX̂t+1|t = (∂θF )(X̂t|t−1 +Mt(Yt −BX̂t|t−1))

+ F (I −MtB)∂θX̂t|t−1 + F (∂θMt)(Yt −BX̂t|t−1)

+ ∂θrt,

(2.49)

and,

∂θSt+1|t = (∂θF )(I −Mt)St|t−1F
T

− F (∂θMt)St|t−1F
T

+ F (I −Mt)(∂θSt|t−1)FT

+ F (I −Mt)St|t−1(∂θF
T ) + ∂θQ,

(2.50)

where,

∂θMt = (∂θSt|t−1)BT∆−1
t

− St|t−1B
T∆−1

t (∂θ∆t)∆
−1
t ,

(2.51)

With initial values ∂θS1|0 = ∂θS1, ∂θX̂1|0 = ∂θX̂1. All matrix derivatives are compo-
nentwise, such that (∂θM)i,j = ∂θ(M)i,j . Differentiating once more we obtain recursions
for the second derivatives of (2.48). However, an approximation to the information matrix
(see Gupta and Mehra (1974), Goodrich and Caines (1979) for details),

M := E[∇2`(θ)], (2.52)

is popularly used instead. That is,

Mi,j = E[(∂θi`(θ))(∂θj `(θ))] ≈
T∑
t=1

(
2(∂θiIt)

T∆−1
t (∂θjIt)

+ tr(∆−1
t (∂θi∆t)∆

−1
t (∂θj∆t)) +

1

2
tr(∆−1

t (∂θi∆t))tr(∆
−1
t (∂θj∆t))

)
.

(2.53)
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2.4 Parameter inference

The derivative of the likelihood may be computed by hand, as described above, but
since we are going to be experimenting with a lot of different parameterizations when
fitting models to real data, manually computing the gradient can become tedious and error
prone. Instead, we use automatic differentiation when computing the gradient.

The Stan Math Library and automatic differentiation

Automatic differentiation has found wide application in many engineering problems, per-
haps most notably in the domain of continuous optimization, particularly parameter esti-
mation for statistical models with large numbers of parameters. The Stan Math Library is a
C++ library implementing reverse mode automatic differentiation using operator overload-
ing. It contains a wide selection of supported matrix operations, including those required
to perform parameter inference using the approach described in this chapter. A detailed de-
scription of automatic differentiation and the Stan math library may be found in the library
documentation, Carpenter et al. (2015). Most relevant for our application are specialized
log determinant and inverse functions for symmetric positive definite matrices, and matrix
exponentials.

Direct maximization

Computing the gradient by automatic differentiation, and using a quasi-Newton method
which approximates the Hessian by recent gradient computations, makes the optimization
very simple implementation wise. In this study we use BFGS with a simple backtracking
linesearch, as outlined in Nocedal and Wright (2006). Due to the nonlinear and compli-
cated nature of the problem, and since we do not expect global convergence, we use a
very relaxed, if any, curvature condition in the line search. Furthermore, we also reset the
inverse Hessian approximation regularly to avoid it becoming ill conditioned. In turn, the
resulting method varies between steepest descent, settingHk = αI in (2.44), where α > 0
is found from the line search, and ordinary BFGS for convex problems.

Since the likelihood generally has multiple stationary points, it is important to verify
that the stationary point we find is in fact a minimizer. This is done by checking that the
Hessian is positive definite at the candidate minimizer. It is worth mentioning that Gupta
and Mehra (1974) has some valuable notions on the choice of optimization scheme for this
problem. Both Gupta and Mehra (1974) and Goodrich and Caines (1979) advocate the use
of the Fisher Scoring method, using (2.53) as the Hessian approximation. However, the
general purpose quasi-Newton method has a clear advantage implementation wise.

Expected maximisation

An alternative approach to maximizing the likelihood directly, popular among statisticians,
is the expected maximization approach, originally outlined in Shumway and Stoffer (1982)
for this problem. In the proceeding we assume that the noise terms in (2.9) are such
that Qt = DtD

T
t , Rt = HtH

T
t are positive definite. Taking the logarithm of the joint

likelihood (2.8), scaling by a factor of −2 and subtracting constant terms, we get,

13



Chapter 2. Framework

`′(θ) = log det(S1) + (x1 − µ1)TS−1
1 (x1 − µ1)

+

T∑
t=2

(
log det(Qt−1) + (xt −At−1xt−1 − qt−1)TQ−1

t−1(xt −At−1xt−1 − qt−1)
)

+

T∑
t=1

(
log det(Rt) + (yt −Btxt − rt)TR−1

t (yt −Btxt − rt)
)
.

(2.54)

Using the trace product property, treating (2.54) as a random variable and interchanging
the order of expectation and trace, we obtain,

E[`′|Y1:T ; θ] = log det(S1) + tr
(
E[(X1 − µ1)(X1 − µ1)T |Y1:T ]S−1

1

)
+

T∑
t=2

(
log det(Qt−1)

+ tr
(
E[(Xt −At−1Xt−1 − qt−1)(Xt −At−1Xt−1 − qt−1)T |Y1:T ]Q−1

t−1

))
+

T∑
t=1

(
log det(Rt) + tr

(
E[(Yt −BtXt − rt)(Yt −BtXt − rt)T |Y1:T ]R−1

t

))
.

(2.55)

From the Rauch-Trung-Streibel smoothing recursions, we can compute the expected value
of `′ conditioned on the observations efficiently. Using the best linear predictor notation,
and the property, E[XY |Z] = E[(X − E[X|Z])(Y − E[Y |Z])T ] + E[X|Z]E[Y |Z]T ,
we note that,

E[Xt|Y1:T ] = X̂t|T ,

E[XtX
T
t |Y1:T ] = St|T + X̂t|T X̂

T
t|T ,

E[XtX
T
t−1|Y1:T ] = At−1St−1|T + X̂t|T X̂

T
t−1|T ,

(2.56)

from which the conditional expectation may be computed. The EM iteration scheme be-
comes

θ̂k+1 = argmaxθE[`′|Y1:T ; θ̂k](θ), (2.57)

where intermediate optimization steps may be performed using for example quasi-Newton
methods. In the particular case when all matrices are constant in time and qt, rt = 0,
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2.4 Parameter inference

Shumway and Stoffer (1982) notes that the EM iteration scheme takes the form,

µ
(s+1)
1 = X̂1|T

S
(s+1)
1 = S1|T

A(s+1) =

( T∑
t=2

E[XtX
T
t−1|Y1:T ]

)( T∑
t=2

E[Xt−1X
T
t−1|Y1:T ]

)−1

,

B(s+1) =

( T∑
t=1

ytE[XT
t |Y1:T ]

)( T∑
t=1

E[XtX
T
t |Y1:T ]

)−1

,

Q(s+1) =
1

T − 1

( T∑
t=2

E[XtX
T
t |Y1:T ]−A(s+1)

T∑
t=2

E[Xt−1X
T
t |Y1:T ]

)
,

R(s+1) =
1

T

( T∑
t=1

yty
T
t −B(s+1)

T∑
t=1

E[Xt|Y1:T ]yTt

)
,

(2.58)

where the expectations are computed using the current parameter estimates. The iteration
scheme for A and B has a natural interpretation, namely as average projection matrices
of Xt onto Xt−1, and Yt onto Xt, using the full conditional distribution with the current
parameter estimates.

The expected maximization method is appealing for a number of reasons when closed
form updates for the parameters exists. However, for most state space processes, it might
be hard to find those closed form updates. A quick informal comparison of ML estima-
tion for the state space process (2.9) using direct maximization and EM, verifies that the
EM approach is superior to direct maximization when closed form updates are available.
When closed form updates are not available, and quasi Newton methods are used for both
approaches, direct maximization seems superior.

2.4.1 Model selection
In the final part of this chapter we briefly note some important aspects of model selection
related to linear Gaussian state space models.

Asymptotic properties of ML estimates

Under the hypothesis that the data is generated from the proposed model, in addition to
some regularity conditions (see Hamilton (1994)), ML estimates are asymptotically mul-
tivariate normal, such that

θ̂ ∼ N(θ,M−1(θ)), as T →∞, (2.59)

with T the number of observations, θ the true parameter value, and M the Fisher informa-
tion matrix as defined in (2.52). The covariance may be approximated by evaluating the
negative inverse Hessian of the log likelihood at the ML estimate, and in turn be used to
estimate parameter uncertainty. It is important to point out that inferring parameter sig-
nificance using this asymptotic distribution is not necessarily valid if the null hypothesis
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lies on the boundary of the parameter space. However, for finite sample sizes, simulation
based methods may be employed to study the finite sample distribution of the parameter
estimates under any hypothesis on the true parameter values.

Akaike information criterion

A much applied criteria in model selection is the Akaike information criterion,

AIC = 2k + 2`(θ̂), (2.60)

with k the number of estimated model parameters, and `(θ̂) the negative log likelihood
evaluated at the ML estimate. Note that the criteria decreases with increasing likelihood,
and increases with model complexity. Hence, we seek a model minimizing the AIC crite-
ria. A thorough motivation for minimizing the criteria may be found in Akaike (1974).

Diagnostics

The Gaussian assumption may be wrong, and in order to verify if it is reasonable, we
note that under the assumption that the proposed model generated the data, the scaled
innovations,

∆
−1/2
t It ∼ N(0, I), (2.61)

where ∆
−1/2
t is the inverse square root innovation variance matrix. Hence, for a given set

of data, we expect the collection of themT in total entries of scaled innovations to be inde-
pendent and standard Gaussian distributed. The scaled innovations may be approximated
by the innovations and variances computed by the model when using the ML parameter
estimates. The distribution of the resulting sample may be studied using test of normality
(e.g. the Anderson Normality test, Q-Q plots), and direct inspection. However, these ap-
proaches may not reveal possible time dependencies of the residuals; to check for this, the
residuals should be plotted against time, and their autocorrelation function inspected.
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Chapter 3
Soil Cable System

Before we develop a stochastic model which suits the problem, we present the underlying
deterministic heat flow problem, and note some of its characteristic properties.

3.1 Model
We are concerned with the 2-dimensional heat problem,

ut −∇ · (k∇u) = f, x ∈ R× (−∞, 0), t > 0,

u(t, x)|x2=0 = h(t), BC,
u(0, x) = u0(x), IC,

(3.1)

where u(t, x) is the temperature of the soil, and f(t, x) is the source term, due to cables
passing through this cross section. The temperature of the ground surface is h(t), and is
located at {x ∈ R2, x2 = 0}. The diffusion coefficient, k, may be expressed κ/c with
κ being the thermal conductivity, and c the volumetric thermal capacity. The source term,
f , may be expressed g/c with g being the actual heat loss per volume per time unit. The
problem (3.1) may readily be solved by finite difference or finite volume methods. How-
ever, in capturing the radial heat flow around the sources, and in incorporating arbitrary
measurement locations, a high resolution discretization might be required. We may obtain
reasonable results by making some further simplifications.

We initially assume that the cables may be modelled as point sources, and hence that
f =

∑
i fi, fi = ai(t)δ(x− xi), with δ(.) the Dirac delta distribution and xi the location

of source i. In the simplified case when the thermal diffusion coefficient is constant in
space, the problem simplifies to the linear inhomogeneous heat equation,

ut − k∆u = f, x ∈ R× (−∞, 0), t > 0,

u(x, t)|x2=0 = h(t), BC,
u(x, 0) = u0(x), IC.

(3.2)
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Chapter 3. Soil Cable System

A solution to (3.2) may be found by summing solutions of the problems,{
ut − k∆u = fi, x ∈ R2, t > 0,

u(0, x) = u0(‖x− xi‖2), IC,
(3.3)

and, 
ut − k∆u = 0, x ∈ R× (−∞, 0), t > 0,

u(t, x)|x2=0 = h(t), BC,
u(0, x) = u0(x2), IC,

(3.4)

provided u(0, x) is expressable as a linear combination of the initial conditions of (3.3)
and (3.4). Moreover, note that the solution to (3.3) varies only in the radial direction. That
is, we may reduce the problem to the radial heat equation,{

ut − k
rur − kurr = ai(t)δ(r), r > 0, t > 0,

u(0, r) = u0(r), IC,
(3.5)

while the problem (3.4) may be reduced to the one dimensional problem,
ut − kull = 0, l > 0, t > 0,

u(0, t) = h(t), BC,
u(l, 0) = u0(l), IC.

(3.6)

Suppose we have n sources and that the solution to (3.3) may be expressed u(s)
i (t, x),

while the solution to (3.4) is expressed u(b)(t, x). Furthermore, we denote the solution of
(3.3) with a source at x̃i, by ũ(s)

i (t, x), where x̃i is equal to xi but with opposite sign of
the second coordinate. Then, the solution to (3.2) with certain restrictions on the initial
condition, may be expressed,

u = u(b)(t, x) +
∑
i

u
(s)
i (t, x)−

∑
i

ũ
(s)
i (t, x). (3.7)

Note that the ũ(s)
i terms cancel out the contribution of the radial problems at the boundary,

so that only the vertical problem, u(b), contributes to the boundary condition.
We may approximate the solutions the 1-dimensional problems (3.3) and (3.4) by solv-

ing the system of ODEs obtained by either, discretizing the derivatives in space using
finite difference approximations, or, use finite volume methods with the original conserva-
tion laws on integral form. In the particular case when finite difference methods are used
for the derivatives in space, suppose we discretize the domain around a source uniformly
radially, with increments d. For the radial problem (3.5), we then obtain,

u̇1 = 2
k

d2
(u2 − u1) +

a(t)

d2
,

u̇i =
k

d2

(
ri − d/2

ri
ui−1 − 2ui +

ri + d/2

ri
ui+1

)
, i = 2, . . . , ns,

(3.8)
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where the inverse factor of d2 in the source term reflects the thermal capacity of the inner
soil volume. For the vertical problem, (3.4), discretizing uniformly with increments d
yields,

u1 = h(t),

u̇i =
k

d2

(
ui−1 − 2ui+ui+1

)
, i = 2, . . . , nb.

(3.9)

Note that we have obtained two additional boundary conditions, namely uns+1 for the
radial problem, and unb+1 for the vertical (the former may always taken to be zero).

Boundary conditions

The boundary condition at the soil surface, l = 0 in problem (3.6), is the interface be-
tween air and soil. It follows that h(t), the soil temperature at the boundary, is not known
to us, although varies with for example the air temperature and radiation just above the sur-
face. In order to model it we employ a finite volume approximation based on the original
conservation law in integral form,

∂t

∫
(−ε,ε)

udl = j(t,−ε)− j(t, ε) +

∫
(−ε,ε)

q(l)dl (3.10)

for some ε > 0 where j(.) is the heat flux. The last term in (3.10) represents heat inflow
due to radiation. We assume that the source density, q, may be expressed r(t)δ(l), so
that the integral is always equal to r(t). In our case, j(−ε) = −ρul(−ε), and j(ε) =
−kul(ε). Setting ε = d/2 and using central differences for the space derivatives yields the
approximate relation, where g(t) is the air temperature,

u̇1 =
ρ

d2
(g(t)− u1) +

k

d2
(u2 − u1) +

r(t)

d
, (3.11)

which replaces the equation for u1 in the scheme (3.9).
A natural form of the radiation term, r(t), where t is given in hours, is,

r(t) = −µ1 + γχ(cloudy)
(
µ2 + µ3 cos2

(
π
t+ δ3

365 · 24

))
cos2

(
π
t+ δ2

24

)
, (3.12)

with µ1, µ2, µ3 > 0, and χ(.) the indicator function. The first term is due to radiation out
from the soil. It is kept constant for simplicity, although it depends on the surface temper-
ature in reality. The term µ2 is the strongest radiation at the time of year when radiation
is weakest, while the term µ3 is the difference between µ2 and the radiation at its overall
strongest. In the next chapter, we will be working with measurements from Tronsholen-
Skeiane. Here, radiation is strongest some time late in June. The hourly measurements
we have available start at 02-07-2015, 18:00, and we assume a maximum of the radiation
onto the ground surface at 22-06, 13:30, so that δ2 = 4.5, δ3 = 10 · 24. It is important to
recognize that the effect of radiation depends highly on the presence of clouds. Whenever
clouds are present, we should scale the radiation inflow by a factor of γ.
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Chapter 3. Soil Cable System

However, this does not really give an accurate description of the actual heat flow at the
boundary. The soil surface is exposed to wind, rain and snow, which complicates the above
relationships. For example, on rainy days, we have significant heat contributions due to
convection. That is, water with a certain temperature rains down and enters the soil. These
complicated relationships are only included in the sense that we model the uncertainties
they introduce into the simpler soil temperature model. This will be discussed further in
Section 3.1.2.

Ideally, we would like to have the boundary condition, unb+1 of (3.9), as far away from
the soil surface as possible, and with constant temperature, s, as this is most reasonable
physically. However, this will possibly require a very high number of grid points in order
to maintain a reasonable resolution scheme. This can in turn become computationally
demanding. A solution to this problem is to use a variable resolution scheme, finer by
the measurement devices and in their immediate vicinity, while coarser far below the soil
surface, and keep s constant. Another solution is to keep the Dirichlet boundary condition
at a relatively shallow depth, but allow it to change slightly with time, with yearly periods.
In the proceeding we use a slightly varying Dirichlet boundary condition at lm below the
ground surface, such that the soil temperature at the boundary becomes,

unb+1 = s(t) = η1 + η2 cos2

(
π

t+ δ

24 · 365

)
, (3.13)

for some auxiliary parameters, η1, η2, δ.

3.1.1 Source term, and extension to non-point sources
We initially made the simplifying assumption that the cables could be treated as points
sources. In this case, all heat losses are in essence placed at the cable conductor. In reality,
different losses occur at different part of the cable components, while the cable conductor
usually ends up being the hottest. Although, not considering the distribution of heat losses
in the cable by treating cables as point sources, could give inaccurate and conservative
results. Cable heat dynamics are in fact very complicated, and we limit ourselves to just
noting the most relevant heat losses. There are three types of heat losses we concerns
ourselves with, and they are displayed in Figure 3.1.

Conductor losses

The first and most important type of loss, is the conductor loss, qc. They are due to the
electrical resistance of the cable conductor, and the applied current. This loss may be
expressed at the electric resistance times the squared current. In the case of direct current,
the electrical resistance is approximately a linear increasing function of the conductor
temperature, while in the case of alternating currents, the resistance increases, and its
relationship with temperature generally becomes very involved.

Sheath losses

As the cable sheath is also usually made of metal, the conductor current induces a current
in these parts of the cable as well, due to magnetic forces. It follows that we get a heat loss

20



3.1 Model

in the cable sheath, qs. It turns out that this loss may be modelled as being proportional
to the conductor losses, with proportionality constant dependent on the temperature of the
sheath.

Dielectric losses

The last type of heat loss we present is the dielectric loss, qd, which occur over the cable
dielectric. It is due the electric field trying to rotate the dipoles of the dielectric material. A
detailed description may be found in Ilstad (2009). For all practical reasons, it is constant,
and usually negligible.

Nonlinear, non point source, cable heat dynamics

In the simple temperature model displayed in Figure 3.1, the radial finite volume repre-
sentation gives rise to a nonlinear system of ODEs for the temperatures in the volume,
u = (u1, u2). This may be expressed,

u̇ = Au+B(u)v(t) + b(t),

A =

(
−a1,2 a1,2

a2,1 −a2,1 − a2,3

)
, B(u)v(t) =

(
qc/C1

qs/C2

)
, b(t) =

(
0.5qd/C1

0.5qd/C2 + a2,3u3

)
,

(3.14)

with v(t) ∈ R the square of the applied current at time t, ai,j = (Ti,jCi)
−1, with Ti,j the

thermal resistance between volume i and j, and Ci the thermal capacity of layer i. The
losses, depending on u, may be expressed,

qc = RAC(u1)v(t),

qs = λ(u2)qc,
(3.15)

whereRAC is the alternating current resistance of the cable conductor. We will not go into
details on the alternating current resistance and its dependence on temperature, as this is
not that relevant for this study.

The nonlinear cable temperature model described above (or a higher resolution system
constructed in the same way), may be concatenated with a numerical solution of the linear
heat flow problem, 

ut − k
rur − kurr = 0, r > rcable, t > 0,

u(t, rcable) = ucable(t), BC,
u(0, r) = u0(r), IC,

(3.16)

where rcable is the radius of the cable, which in turn may replace the problem (3.5) in order
to obtain a more realistic model.

From the notions above, it is apparent that the cable heat dynamics are non linear in
reality. However, when the temperature is limited to a small range of values, keeping the
thermal properties of the system constant may be justified. This is the case for the data
collected at Tronsholen Skeiane, which we will be studying in the next chapter. External
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Chapter 3. Soil Cable System

variables are much more relevant than the nonlinear dynamics in this case (in fact, the
entire heat contribution from the cables are almost negligible). When the cable tempera-
ture varies greatly, and the linear assumption cannot be justified, we may instead locally
linearize the solution. That is, set, B(u(t)) ≈ B(u(t0))+∂uB(u(t0))(u(t)−u(t0)), such
that

u̇(t) =
(
A+ v(t)∂uB(u(t0))

)
u(t)

+
(
B(u(t0))− ∂uB(u(t0))u(t0)

)
v(t) + b(t),

(3.17)

for t > t0 and ∂uB ∈ Rn×n the Jacobian of B with respect to u.

cc qcqdqs
cd

Ambient

ConductorDielectricSheathJacket

cscj u1u2u3

Figure 3.1: A simple temperature model for the cable. Finite volume layers are separated by dotted
lines.

Dynamical system

The scheme illustrated above may be collected in the system of ODEs,

u̇ = M(t)u+ b(t, u), (3.18)

where M ∈ R(s·ns+nb)×(s·ns+nb) is tridiagonal, b ∈ Rs·ns+nb contains the boundary
conditions and the source terms, and s is the number of different sources. The matrix M
may be constructed either by finite difference or finite volume methods, but in either case
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3.1 Model

it takes the form,

Mt =


−m1,0 −m1,2 m1,2 0 . . . 0

m2,1 −m2,1 −m2,3 m2,3 . . . 0

0
... 0

0 . . . 0 mn,n−1 −mn,n−1 −mn,n+1

 ,

(3.19)

with mi,j > 0.
It follows from (3.7) that the modelled temperature is defined at all points in some

domain, [−l, l] × [−2l, 0], where the contributions in the sum of the different solutions is
the interpolated value of adjacent finite difference nodes’ or volume’s temperatures. In the
case when we have three equal point sources, and a decaying vertical temperature profile,
we obtain the contours displayed in Figure 3.2.
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Figure 3.2: Contours of the solution, constructed by the sums of the solutions to the 1-dimensional
problems. The sources are the crosses in the leftmost figure.

3.1.2 Linear stochastic system
In the proceeding, we study the system only for a small range of different temperatures, and
therefore ignore the nonlinear dynamics of the heat losses. We may extend the dynamic
model to be a stochastic linear system, by including noise in a natural way,

dUt = MtUtdt+ btdt+KtZtdt, (3.20)

for some noise process Zt. When we are dealing with stochastic heat flow, we want to
include the noise such that we do not break the underlying conservation laws, but instead
represent heat fluxes which the deterministic model cannot explain. We may include some
uncertainty in the flow of heat between adjacent volumes by letting Kt be a Laplacian
matrix (also called Kirchoff matrix, owing to the discrete conservation law), such that,

(K)i,j ∝ −|adj(i)|χ(i = j) + χ(j ∈ adj(i)), (3.21)

where adj(i) is the set of nodes adjacent to node i, and the proportionality constant is
positive. The discretized Laplacian, M , and the Laplacian matrix K, are not equal, since
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Chapter 3. Soil Cable System

the columns of M need not sum to zero due to the boundary conditions. Note that, heat
flow is ”contained within the system” provided all columns of K sum to 0.

An important property of the included noise is that it is correlated with its past values.
That is, events which affect the heat flow in ways our model cannot explain, for example
local soil moisture differences, lingers in time. The perhaps most clear suggestion is using
Ornstein–Uhlenbeck processes as noise. Note that this may be implemented by expanding
the state space,

dXt = AtXtdt+ qtdt+ CtdBt,

Xt =

(
Ut
Zt

)
, At =

(
M K
0 H

)
, qt =

(
b
0

)
, Ct =

(
0
D

)
,

(3.22)

and setting H = −φI, φ > 0, where Bt is a standard Brownian motion. The same
effects also have dependencies in space. Including these dependencies may be achieved
by constructing DDT appropriately using a suitable covariance function.

Inflow boundaries

In order to allow for some random heat flow through the top boundary in an appropri-
ate way, we may add another, independent and with its own set of parameters, Ornstein-
Uhlenbeck process, Lt, to (3.11), scaled by an inverse factor of d to reflect the soil layer
thermal capacity. This may be achieved with simple modifications to the matrices above.
There should not be any random heat flow from far beneath the ground surface. There
could however be an inflow boundary at the cable sources, since we do not have any
knowledge of the true cable current between measurements. For simplicity, we ignore this
effect.

3.1.3 Properties of the solution
The mean and variance of the system (3.22) may be computed by integrating the systems
of ODEs (2.31) as described in Chapter 2. Although, we point out some of the properties
of the solution under certain simplifying conditions. If we assume that all matrices and
source terms are constant between time steps tj+1 = tj + ∆t, j = 1, . . . , k − 1, we may
express Xtj+1

, given Xtj , through the discrete dynamics equation,

Xtj+1
= exp(Atj∆t)Xtj + (exp(Atj∆t)− I)A−1

tj qtj + Vtj , (3.23)

where Xt1 ∼ N(x1, S1), and Vtj ∼ N(0, Qtj ). Qtj is found from the Lyapunov differen-
tial equation (2.31) with initial condition Stj = 0,

Qtj =

∫ ∆t

0

exp(Atjs)CtjC
T
tj exp(ATtjs)ds, (3.24)

which we may evaluate using either of the two methods proposed in Chapter 2. Without
loss of generality, we may decouple the deterministic model for the temperature mean,
u(t),

u̇ = Mu+ b; u(0) = E[U0], (3.25)
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3.1 Model

and the linear stochastic system describing the uncertain heat flow,

d(Ut − ut) = M(Ut − ut)dt+KZtdt,

dZt = HZt +DdBt,
(3.26)

and only study the stochastic heat flow problem (3.26) in the following.

Stationary solution

When the system (3.26) is time invariant and stable, it has a unique stationary solution. The
system matrix is negative definite provided M and H are negative definite, since A shares
the eigenvalues of M and H (note that det(A) = det(M) det(H)). Clearly H = −φI
is negative definite. Note that M , constructed as (3.19), is always negative semi definite
owing to Greshgorin’s disk theorem. In fact, if we view the discretized domain as a graph,
M must be negative definite if every node is connected with a boundary node/condition.
This is the case for our M (K on the other hand is negative semi definite, and has at least
one zero eigenvalue). It follows that the covariance of Xt = (Ut, Zt) in (3.26) may be
expressed,

E[Xt+hX
T
t ] = exp(Ah)S∗, (3.27)

with h > 0 and S∗ =
∫∞

0
exp(Aτ)CCT exp(AT τ)dτ , the steady state variance. The

properties of the covariance function above is not easily interpreted, and we may instead
study the properties of the one dimensional problem, Ut ∈ R,

dU = mUdt+ kZdt; U(0) = 0, (3.28)

where m < 0, and Zt is the scalar stationary Ornstein-Uhlenbeck process with variance
d2

2φ . Ut may in this case be expressed,

Ut =

∫ t

0

exp(m(t− s))kZsds, (3.29)

so that, owing to the stationary covariance function of Zt, as shown in Chapter 2,

E[Ut+hUt] =
d2k2

2φ

∫ t+h

0

∫ t

0

exp(m(2t+ h− s1 − s2)− φ|s1 − s2|)ds2ds1, (3.30)

with h > 0. Evaluating the integral and simplifying, we eventually find that,

E[Ut+hUt] = emh
d2k2

2φ

(
1

(m− φ)m
+

1

(φ−m)m
e2mt

+
2

φ−m
(e−(φ+m)t − 1)

1

φ+m
e2mt

)
+
d2k2

2φ

1

m2 − φ2

(
e−φh − emh − emt−φ(t+h) + em(t+h)−φt

)
,

(3.31)
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which it may be verified converges as m→ −φ. Letting t→∞, we get,

E[Ut+hUt] =
d2k2

2φ

1

(m2 − φ2)m

(
φemh +me−φh

)
, (3.32)

which is the stationary covariance function of Ut. Setting h = 0, k = m, the expression
for the stationary variance becomes,

d2

2

m

(m− φ)φ
, (3.33)

which is monotonically increasing in −m and bounded above by d2

2φ . In Figure 3.3 the
stationary variance is plotted against −m using d2 = 2, φ = 1. If we on the other hand set
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Figure 3.3: Variance of steady state.

d = φ, and let φ→∞, we get,

E[Ut+hUt] = − k2

2m
emh, (3.34)

which is a stationary Ornstein-Uhlenbeck process with parameter m < 0, and noise coef-
ficient k, as we would expect.

In Figure 3.4, 3.5, 3.6 and 3.7, four realizations using different parameters of the sta-
tionary solution to (3.26) are displayed at some time t, along with the potential Zt at the
same time. Ut and Zt are dicretized in the domain [0, 1] × [0, 1], and the potential Zt is
taken to be a zero mean Gaussian process with covariance function,

E[ZtZ
T
s ] =

σ2

2φ
exp(−φ|t− s|)DDT , (3.35)

where DDT is constructed using a squared exponential covariance function, such that,

(DDT )i,j = exp(−ω‖xi − xj‖22). (3.36)
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3.2 Previous related work and the industrial standard

The parameters φ, ω > 0 are varied in the different figures, while the thermal diffusion
coefficient and variance, k, σ2, are fixed equal to 1. At each time t, the true heat potential
in the domain is equal toUt,x+Zt,x. Intuitively, we expectUt,x → −Zt,x+some constant,
as k � φ. The constant must ensure that

∫
[0,1]×[0,1]

Ut,xdV = 0, as we have allowed for
no inflow boundaries, and is therefore equal to

∫
[0,1]×[0,1]

Zt,xdV . This is apparent in
Figure 3.6 and 3.7. Simulating from the stationary solution may be achieved by running
the linear system (3.22) for some time.
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Figure 3.4: φ = 1, ω = 1: Stationary Ut,x, with Zt,x also displayed.

Reference model

To compare the proposed model, we use a different Gaussian process. We model the
difference between the true temperature, Ut,x, and the deterministic modelled temperature,
u(t, x), by (3.2), as a stationary Ornstein-Uhlenbeck process. If we let Ut, ut ∈ Rm be
the true temperature and modelled temperature at the measurement locations x1, . . . , xm,
respectively, we can express Ut − ut,

d(Ut − u(t)) = −φ(Ut − u(t))dt+DdBt; U0 − u0 ∼ N
(

0,
DDT

2φ

)
, (3.37)

where (DDT )i,j = σ2κ(‖xi − xj‖2), for some covariance function κ(., .).

3.2 Previous related work and the industrial standard
At the time of hand computations, Neher and McGrath (1957), outlined an iterative scheme
for computing the load capacity of buried electric cables. This has more or less been the
industrial standard used in determining the load capacity in steady state operation. The
scheme corresponds to fixing the conductor temperature at its maximum tolerable value
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Figure 3.5: φ = 1, ω = 10: Stationary Ut,x, with Zt,x also displayed.

and the thermal properties of the surroundings at their worst case, and then compute the
steady state solution of the cable soil system. This is the same as computing the steady
state of the simplified temperature model (3.14), when the appropriate thermal capacities
and resistances are used. The solution involves the constant applied current and the tem-
perature of the other cable components; provided the steady state temperature of the other
cable components are below their maximum value, the computed current is the cable load
capacity. Further details may be found in IEC 60287.

When dealing with varying conditions, the industrial standard for dynamic current
ratings IEC 60853 use the solution of the decoupled heat problem given in (3.7), when a
varying load profile is applied. In this context, the model we have proposed is a stochastic
extension of this method, where we model the error between the true temperature and the
model by a Gaussian process. Some important cables are also equipped with temperature
measurement devices, which fit very well with the model we propose.

Some further comments on model choice

Initially, it was attempted to include uncertainty in the thermal parameters directly. State
and parameter inference were in this case performed using sequential Monte Carlo meth-
ods. It was recognized that, compared to parameter inference for linear state space pro-
cesses, this was very inconvenient. Similarly to when including uncertainties in the ther-
mal parameters (e.g. say that the diffusion coefficient is some stochastic process) the linear
formulation (3.22) also allows modelling uncertain heat flow which do not break the con-
servation laws. Note that, in this problem, there is also travel of heat due to travel of
moisture (convection), and so a model including uncertainty only in the thermal diffusion
coefficient is not fully representative anyways, while the convection diffusion equation
would possibly complicate the model unnecessarily.
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Figure 3.6: φ = 0.1, ω = 1: Stationary Ut,x, with Zt,x also displayed.
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Figure 3.7: φ = 0.1, ω = 10: Stationary Ut,x, with Zt,x also displayed.
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Chapter 4
Application to Tronsholen-Skeiane
Measurements

In this chapter, we apply the proposed model to real soil heat measurements. We start by
presenting the measurements and the measurement setup.

4.1 Tronsholen-Skeiane measurements

This section presents some of the data collected at Tronsholen-Skeiane. In Figure 4.1
the measurement setup at the location of Figure 1.1 is displayed. Along three probes,
temperature and humidity measurements are made evenly distributed, at an hourly rate.
The measurements are displayed in Figure 4.1 and 4.2. Note the clear correlation with air
temperature and the temperature measurements, particularly those along the vertical probe.
The correlation between the temperature of the measurement devices closest to the ground
surface and the air temperature is 0.84, decreasing to 0.77, at the bottom of the vertical
probe. The top vertical soil temperatures has a daily periodic component which decays as
we move further down. For the locations closest to the cables (7,8), the daily periodicity
is again apparent. This is due to the periodicity of the cable load; power consumption has
a 24 hour period, and peaks during popular household dinner times.

It is worth pointing out that there is a clustering in the vertical temperatures. This is
perhaps due to the fiber sheath or some other installation feature. Furthermore, the tem-
perature of the top soil layers seem very stable for a longer period of time around January.
This period was subject to a lot of snowfall, which we note from the soil moisture mea-
surements in Figure 4.2, and the fact that the top soil temperature is fixed and equal to
zero. Even though the air temperature varies greatly, the soil temperature remains seem-
ingly unchanged. It is likely isolated from heat contribution from the ground surface by
snow. Studying the horizontal temperature measurements, we find that there is very little
variation in temperature in the horizontal direction on the other hand.

In Figure 4.2 the current in the middle cable during this period is displayed. There were
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Chapter 4. Application to Tronsholen-Skeiane Measurements

no current in the rightmost cable during this period, while the leftmost cable had a similar
current profile. In the same figure, thermal conductivity and soil humidity measured just
above the middle cables are displayed, in addition to the rainfall during the period. There
is a clear relationship between thermal conductivity and soil moisture content. The soil’s
ability to transport heat increases with its moisture content, and the effect lingers. This
is due to the soil generally becoming more compressed after being exposed to moisture.
Note that, even though humidity increases thermal conductivity, it also increases the soil’s
thermal capacity, and so the effect of humidity on the thermal diffusion coefficient is a bit
more involved.

Measurement setup

In the proceeding we assume that the center of the trefoil cable installation in Figure 4.1
is 1m below the ground surface. Setting the vertical coordinate to 0 at the ground surface,
the horizontal coordinate to 0 at the center of the trefoil installation, it follows that the
bottom of the cable trench has vertical coordinate −1 − (1 + 1√

3
)r ≈ 1 − 1.58r, where

r = 0.05m is the radius of the cable. In Figure 4.3 the middle part of the measurement
setup is displayed. The location of the measurement devices along the vertical probe is
found by matching the 15’th measurement location with that of the 8’th; the correlation
between measurement location 8 and 15 are 0.9993. We obtain,

x
(8−i)
vertical = (−2r, 0.0865 + 0.1i− 1− 1.58r), i = 0, . . . , 7, (4.1)

while the second coordinate of the horizontal devices are −1 + (1 + 2√
3
)r ≈ −1 + 2.15r,

and so the locations are approximately,

x
(8−i)
horizontal = (0.1i, 2.15r − 1), i = 0, . . . , 7. (4.2)

The cable centers of the middle are located at

x
(1)
cable = (−r,−1− 0.58r),

x
(2)
cable = (0,−1 + 1.15r),

x
(3)
cable = (r,−1− 0.58r).

(4.3)

There are, however, uncertainties associated with these coordinates. They are guesses
based on no knowledge other than Figure 4.1.

Model setup

For the sake of not introducing too much systematic error into our results, and since the
horizontal heat flow is seemingly not very large, we limit ourselves only to consider the
vertical measurement devices. Furthermore, we ignore the leftmost and rightmost cables,
as they are too far from the measurement devices to have any significant impact on the
measured temperature when the cable load has been this low. That leaves the middle
trefoil installation to be included, which consists of three equal cables with identical load
profiles. It follows that we get a system consisting of one vertical and one radial solution.
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Figure 4.1: Measurement setup with some of the measurements collected at Tronsholen-Skeiane.
The measurements devices are numbered from top to bottom and right to left, respectively. Source:
SINTEF Energi.
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xcable(1) xcable(3)

Figure 4.3: The middle part of the trefoil installation. The measurement locations along the probes
are numbered from 1 to 16.

For simplicity, we ignore random heat flow in the radial direction, so that the stochastic
part of the system (3.26) is only due to vertical heat flow, while the deterministic part
(3.25) takes into account both the vertical heat flow, and radial.

It follows that we have a mean parameterized by the thermal diffusion coefficient,
β (we have replaced k to consistently use greek letters for parameters), and the soil air
boundary flow parameter ρ, in addition to the cable heat loss per squared kilo Ampere, α.
That is, we assume for simplicity that the cable loss term is proportional to the squared
current, with proportionality constant α. In terms of the notation used in (3.22), we set,

d2(M)i,j =


−β − ρ, i, j = 1,

−2β, i = j,

β, j = i+ 1, or j = i− 1,

(4.4)

where d is the distance between grid nodes. The Kirchoff matrix K ∈ Rn×n is equal to
M except at the top left and bottom right entries; to avoid introducing random heat flow
into the system, we must set,

d2(K)1,1 = −β,
d2(K)n,n = −β.

(4.5)

This choice of K maintain the interpretation of Zt,x as the error in the heat potential.
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Furthermore, we must concatenate a column vector to the right side of the system matrix,
and a row vector to the bottom, in order to allow an independent Ornstein-Uhlenbeck
process determine the random heat flow into the system. The column vector has top entry
1/d, and bottom entry −φ2, while all other entries of the vectors are zero.

In the following we construct the spatial covariance of Zt ∈ Rn using two different
covariance functions. A squared exponential, such that

(DDT )i,j = σ2
1 exp(−ωd2(i− j)2), (4.6)

and the Ornstein-Uhlenbeck covariance,

(DDT )i,j = σ2
1 exp(−ωd|i− j|), (4.7)

for i, j = 1, . . . , n, and parameters σ2
1 , ω > 0. Gaussian processes with squared exponen-

tial covariance function are infinitely mean square differentiable, and so the interpretation
of Zt,x as the error in the heat potential should be meaningful also as the scheme reso-
lution becomes very fine (see Abrahamsen (1997)). The Ornstein-Uhlenbeck covariance
function does not have this property however, but we include it for the sake of comparison
(the linear stochastic system is nevertheless always well defined). Similarly to the system
matrix, we must add a row and column to the matrix CCT in (3.22) in order to include the
independent Ornstein-Uhlenbeck process at the soil air boundary. The bottom right entry
of which then becomes σ2

2 . Finally, we set,

H = −φ1I ∈ Rn×n, R = σ2
3I ∈ R8×8. (4.8)

In summary, we have a state of dimension 2n+1, containing Ut ∈ Rn the true vertical
temperatures, Zt ∈ Rn the error in the heat potential, and Lt ∈ R, the independent
Ornstein-Uhlenbeck process used as noise at the soil air boundary. The parameters of the
latter process are σ2

2 , φ2 > 0. In comparing the model proposed above, we have a ”general
purpose” Gaussian process, as noted in Chapter 3. It has the same parameterized mean as
the proposed model, but is just a simple Ornstein-Uhlenbeck process with different choices
of spatial covariance.

4.1.1 Synthetic example
Before we start working on the real measurements we illustrate the properties of the pro-
posed model with a synthetic example. It is relatively simple, ignoring any random heat
flow from the top soil layers, and radiation terms. The parameter values used in the syn-
thetic example are displayed in Table 4.1. In Figure 4.4 we have simulated a realization of
the soil temperature using the two different spatial covariance functions. The temperatures
are from the top soil layer (1), down to a depth of 1.5m (8), where we have used the ac-
tual air temperature and cable load measurements from Tronsholen-Skeiane. Even though
the choice of parameter values may seem random at first glance, their values will become
more clear as we move on to the real measurements in the next section. For the moment,
it suffices to treat them without any frame of reference.

In Figure 4.5 the filtered (first 3000 observations) and forecasted (remaining) estimates
at the vertical temperature measurement devices are displayed, using squared exponential
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spatial covariance. As the forecasts run for some time, we note that the process tends to
its stationary distribution. In which case, the variance is the steady state variance, and the
forecasted mean is just the deterministic modelled mean by (3.25). From the forecasts at
the 7. measurement device, it is possible to spot a slight heat contribution from the cables
in the form of a small periodic component.

Synthetic test example parameters
Parameter Value Unit

β 3.× 10−3 m2h−1

σ2
1 3.× 10−3 ◦C2h−2

φ 3.× 10−3 1
σ2

3 5.× 10−5 ◦C2

ρ 1.× 10−3 m2h−1

ω 10. m−1

η1 5. ◦C
η2 5. ◦C
δ −1000 h
α 2.× 10−2 ◦C(kA)−2h−1

Table 4.1: Parameter values for the synthetic example.

Distribution of parameter estimates

In Figure 4.6, 2000 samples of ML estimates computed by repeated simulation and es-
timation using the parameters displayed in Table 4.1 and a squared exponential spatial
covariance are displayed. The samples are plotted against their asymptotic distributions
given by (2.59), where the Fisher information matrix has been approximated by the Hes-
sian evaluated at an ML estimate using a finite difference approximation. The correspon-
dence between the finite sample distribution and asymptotic distribution is good, owing
to the fact that the simulated time series are long. We have set T = 5814, and used the
external variable measurements from Tronsholen-Skeiane.

4.1.2 Real data
The aim of this section is to check if the proposed model is an appropriate model for soil
heat dynamics. In order to do so, we study how different scheme resolutions and depths of
boundary conditions affect the model when real soil temperature measurements are used.
In addition, the results are compared with the reference model.

Model comparison, effect of scheme resolution, depth, and spatial covariance

In Table 4.2 we have estimated the parameters of the model with squared exponential
spatial covariance using the hourly temperature measurements for two different choices of
model depth (l), 1.5m and 3m, and three different numbers of grid nodes (n), 20, 30, 40
(only the latter two for the deepest model). The radial problem has fixed maximum radi
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Figure 4.4: Synthetic example: A realization of the vertical soil temperature profile.

equal to 0.5m, outside of which the temperature is set to zero, and uses the same number
of grid nodes. Increasing the number of grid nodes should then give a more accurate
model for the mean and covariance. Increasing the vertical depth should allow for a more
accurate physical model. In Table 4.3, the same parameter estimates are displayed for
the Ornstein-Uhlenbeck spatial covariance model. Table 4.4 displays the estimates of the
reference model using 1.5m depth and 20 grid nodes. For all models, the initial condition
has mean 14◦C for the vertical problem, and 0◦C for the radial. For simplicity, we have
used a diagonal matrix with entries 4 as initial variance for the proposed model, while we
have used the steady state variance as initial condition for the reference model.

Interpretation of estimated parameters

From the analysis of the measurements we pointed out that the thermal diffusion coeffi-
cient varies with soil humidity. It also depends on type of soil; if it is sandy, or coarse, all
of which varies around the cables. In fact, typical values of soil thermal diffusion coeffi-
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Figure 4.5: Synthetic example: Filtered and forecasted soil temperatures at the measurement loca-
tions.
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Figure 4.6: Synthetic example: Sample of 2000 ML estimates on simulated measurements, com-
pared with their asymptotic distribution (black line).
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Proposed model (squared exponential spatial covariance)
l 1.5m 3m
n 20 30 40 30 40

β̂ 2.63× 10−3 2.45× 10−3 2.49× 10−3 2.70× 10−3 2.53× 10−3

σ̂2
1 8.79× 10−3 8.35× 10−3 8.19× 10−3 8.61× 10−3 8.32× 10−3

φ̂1 3.44× 10−3 4.63× 10−3 4.55× 10−3 6.69× 10−3 5.16× 10−3

σ̂2
3 8.19× 10−5 7.96× 10−5 8.00× 10−5 7.54× 10−5 8.02× 10−5

ρ̂ 4.36× 10−3 2.42× 10−3 1.21× 10−3 6.55× 10−3 5.60× 10−3

ω̂ 22.91 23.13 21.68 30.35 23.55
η̂1 3.22 3.37 3.35 5.72 5.05
η̂2 9.13 8.88 9.02 2.32 3.20

δ̂ −739.75 −789.65 −766.64 −1101.06 −497.59
α̂ 1.68× 10−2 1.70× 10−2 1.70× 10−2 1.70× 10−2 1.70× 10−2

σ̂2
2 1.21× 10−2 1.14× 10−2 7.27× 10−3 1.39× 10−2 1.81× 10−2

φ̂2 1.74× 10−1 1.89× 10−1 2.10× 10−1 1.58× 10−1 1.58× 10−1

AIC −237696 −237890 −237896 −238378 −238902

Table 4.2: Proposed model estimates using squared exponential spatial covariance.

Proposed model (Ornstein-Uhlenbeck spatial covariance)
l 1.5m 3m
n 20 30 40 30 40

β̂ 5.30× 10−3 4.64× 10−3 4.05× 10−3 4.60× 10−3 4.87× 10−3

σ̂2
1 3.59 3.59 3.91 4.92 3.91

φ̂1 5.54× 10−3 6.11× 10−3 7.59× 10−3 9.20× 10−3 6.89× 10−3

σ̂2
3 4.39× 10−5 4.32× 10−5 3.24× 10−5 4.33× 10−5 4.47× 10−5

ρ̂ 1.17× 10−3 7.64× 10−4 6.10× 10−4 1.98× 10−3 1.20× 10−3

ω̂ 2.50× 10−3 2.31× 10−3 2.00× 10−3 3.04× 10−3 2.21× 10−3

η̂1 4.19 4.29 4.46 6.47 6.94
η̂2 7.87 7.70 7.35 2.64 2.13

δ̂ −931.15 −975.74 −1093.09 −2342.39 −1583.01
α̂ 2.11× 10−2 2.19× 10−2 2.14× 10−2 1.86× 10−2 2.19× 10−2

σ̂2
2 9.03× 10−4 8.81× 10−4 1.03× 10−3 1.37× 10−3 9.83× 10−4

φ̂2 1.41× 10−1 1.31× 10−1 1.21× 10−1 1.29× 10−1 1.30× 10−1

AIC −238196 −238886 −238571 −242737 −239434

Table 4.3: Proposed model estimates using Ornstein-Uhlenbeck spatial covariance.
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Reference model
Param. Squared exponential Ornstein-Uhlenbeck
β̂ 3.26× 10−3 4.83× 10−3

σ̂2
1 72.38 7.98× 10−1

φ̂ 48.74 1.49× 10−1

σ̂2
3 3.94× 10−3 8.41× 10−24

ρ̂ 4.70× 10−4 1.88× 10−3

ω̂ 18.71 2.39× 10−2

η̂1 1.07 4.68
η̂2 11.45 7.99

δ̂ −584.15 −2656.05
α̂ 8.61× 10−2 1.45× 10−2

AIC 43978 −182182

Table 4.4: Reference model parameter estimates.

cients ranges between 1× 10−3m2h−1 and 1× 10−2m2h−1, depending on soil type and
moisture content. Hence, there is no ”true” thermal diffusion coefficient for the system.
The estimate should instead be interpreted as some effective thermal diffusion coefficient.
This estimate is in turn apparently very dependent on the choice of model.

It is worth pointing out that the parameter estimates of the proposed model do not
seem to change very much and systematically with scheme resolution. We do not expect
the estimate of ρ to remain unchanged when resolution changes. This is because ρ must
incorporate all heat flow at the boundary, since the radiation term has been omitted for
simplicity, in which case the scaling by 1/d2 in (3.11) is not entirely meaningful. Scaling
by 1/d would possibly make more sense, in which case we expect ρ to decrease with n,
as is the case. When model depth increases, we expect the constant part of the boundary
condition at−l, η1, to increase, while the periodic part, η2, to decrease. This is apparent in
the estimates of the proposed models displayed in Table 4.2 and 4.3. As η2 decrease, the
influence of δ on the model decreases, and there are large uncertainties associated with the
estimate of this parameter, as we can see from the proposed model estimates using depth
3m.

If we for example underestimate the distance between the top vertical measurement
device and the soil air boundary, we could expect to find an estimate of ρ which is smaller
than β, since it must represent the thermal resistance of the missing soil layers. If we on
the other hand have overestimated the same distance, we might find a very large estimate
of ρ, as the model wants the temperature of the top soil layer to effectively be set equal
to the air temperature. In both of the scenarios above, the estimate of the noise process
at the soil air boundary would be very different. Its variance, σ2

2 would have to be large
to cope with a large ρ, while it would not need to if ρ was small. From this discussion it
could be argued that, using this parameterization, it would be reasonable to deliberately
underestimate the distance between the ground surface and the top measurement device.
However, doing so would underestimate the thermal capacity of the top soil layers, and so
should be done with caution.

The model using Ornstein-Uhlenbeck spatial covariance achieves slightly higher AIC
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values than the model using squared exponential spatial covariance. However, these val-
ues vary inconsistently among different scheme resolutions and depths. Furthermore, it
seems to be much harder to find minimizers of the objective using this spatial covariance.
It becomes very hard to address parameter uncertainty when we struggle finding global
maximizers of the likelihood. Using squared exponential spatial covariance on the other
hand, it seems we always converge quickly to a minimizer of the objective. It is clear that
the reference models do not fit the measurements at all. Their AIC values are very low
compared to the proposed model. In terms of model diagnostics, these models are very
far off as well. In the next section, we make some necessary further improvements to the
proposed model with squared exponential spatial covariance.

Forecasts and their reliability

In Table 4.5 we have estimated the parameters of two models ignoring the snowy period
(last 2000 observations). Both models use a squared exponential spatial covariance, a
depth of 1.5m, and 20 grid nodes. After some trial and error, we also find that the results
are generally better provided we move the ground surface 5cm closer to the measurement
setup, so this has been done as well. The two models displayed in the table differ by the
radiation term in (3.12).

In Figure 4.7 the filtered and forecasted estimates for the squared exponential model
with no radiation term using all observations are displayed. It is clear that the snowy period
in winter poses a bit of a challenge for the model. In Figure 4.8, the filtered and forecasted
estimates are displayed for the first model in Table 4.5. They appear marginally better
looking, with a smaller steady state variance than the model including the snowy period.
The steady state standard deviation of the temperature at cable depth is 0.66◦C for the
model including all observations, and 0.44◦C for the one ignoring the snowy observations.

In Figure 4.9, filtered and forecasted estimates are displayed for the model including
radiation in Table 4.5. It is worth pointing out that we consistently get an estimated γ
(parameter to scale the inflow radiation when it is cloudy) between 0.4 and 0.5 when
fitting different models using the radiation term, which makes sense. We used the rainfall
measurements to determine if it was cloudy, even though the converse is not true. The
estimate of µ2 on the other hand rarely seems significant, which is hard to justify from a
physical perspective. This seems to be the case for the estimates displayed in Table 4.5
as well. The steady state standard deviation for the temperature at cable depth using this
model is 0.35◦C. The scaled innovations for the model including radiation are plotted in
Figure 4.10 and their distribution in Figure 4.11. For all models, these diagnostic plots are
very similar. As we can see from the histogram and Q-Q plot, the Gaussian assumption
on the innovations is not correct. We also note that the innovations are not completely
uncorrelated either, as we move down the vertical measurement probe.

In practical application, parameter uncertainty must be included in the forecasted tem-
perature. This can be achieved by sampling parameter values from the approximate asymp-
totic distribution (2.59) using the ML estimate, θ̂, as mean, and the Hessian of the negative
log likelihood evaluated at the ML estimate as an approximation to the Fisher information
matrix. For every sampled set of parameters, sample the future temperatures using the
system (3.22). Then choose among the samples the 2.5% largest upper and lower future
temperatures. The resulting bound is an approximation to the true 95% prediction inter-
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val for the temperature. In this setting, the small confidence bounds of the temperature at
the 7. measurement device in Figure 4.7, 4.8 and 4.9 are a bit deceiving; as we can see
from the asymptotic standard deviations in Table 4.5, there are relatively large uncertain-
ties associated with the parameters related to the boundary condition at 1.5m depth, η1, η2,
which are 0.5m below this point.

Out of sample testing is naturally an important part of validating the reliability of our
model. If we estimate the parameters ignoring the snowy part of the observations, and
then attempt to forecast the snowy part of the observations, our model is far off. The pit
falls of our model, when it comes to out of sample testing, are not necessarily owed to the
uncertainty in the estimated parameters (provided we do not include a lot of parameters),
but possibly due to the dynamics of the entire system changing with time. As for the
snowy period, this can be solved appropriately using a time invariant system. That is, we
”cut off” heat flow into the system from the soil air boundary when snow is present, and
set the top boundary soil temperature equal to zero. This can be done by setting the air
temperature equal to zero, and letting ρ take a very large value. The noise parameters of
the boundary, σ2

2 , φ2, must be changed appropriately.

Model Without radiation With radiation
Param. Estimate Sd. (asym.) Estimate Sd. (asym.)
β̂ 2.13× 10−3 4.10× 10−5 2.12× 10−3 4.75× 10−5

σ̂2
1 1.17× 10−2 5.47× 10−4 1.16× 10−2 6.04× 10−4

φ̂ 1.30× 10−2 1.37× 10−3 1.53× 10−2 1.28× 10−3

σ̂2
3 7.63× 10−5 1.31× 10−6 7.57× 10−5 1.30× 10−6

ρ̂ 4.73× 10−3 5.90× 10−4 4.74× 10−3 6.82× 10−4

ω̂ 24.96 5.05× 10−1 25.29 5.18× 10−1

η̂1 4.40 1.39 4.93 1.26
η̂2 7.50 1.42 7.15 1.33

δ̂ −832.12 3.01 −983.92 2.48
α̂ 9.40× 10−3 6.44× 10−4 9.34× 10−3 6.44× 10−4

σ̂2
2 9.69× 10−3 1.73× 10−3 9.52× 10−3 1.97× 10−3

φ̂2 1.76× 10−1 1.82× 10−2 1.97× 10−1 1.83× 10−2

µ̂1 − − 1.15× 10−1 1.99× 10−2

µ̂2 − − 7.04× 10−14 6.46× 10−13

µ̂3 − − 2.31× 10−1 3.46× 10−2

γ̂ − − 4.14× 10−1 1.33× 10−1

AIC −136385 −136504

Table 4.5: Final model estimates with asymptotic standard deviation.

Discussion and further comments

The goal of the study was to suggest a simple model capable of making confident forecasts
of the cable temperature and its uncertainty. As noted in the previous section, the model
diagnostics are not perfect. However, they are not very far off. We are able to get partly
uncorrelated innovations, in addition to reasonably valued parameter estimates, and very
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Figure 4.7: All observations: Filtered and forecasted soil temperatures at the measurement loca-
tions.

45



Chapter 4. Application to Tronsholen-Skeiane Measurements

−
5

0
5

10
15

20
25

1. measurement device

Date

Te
m

pe
ra

tu
re

 [°
C

]

Measured temperature
Modelled temperature
95% confidence bounds

2015−07 2015−08 2015−10

−
5

0
5

10
15

20
25

3. measurement device

Date

Te
m

pe
ra

tu
re

 [°
C

]

Measured temperature
Modelled temperature
95% confidence bounds

2015−07 2015−08 2015−10

−
5

0
5

10
15

20
25

5. measurement device

Date

Te
m

pe
ra

tu
re

 [°
C

]

Measured temperature
Modelled temperature
95% confidence bounds

2015−07 2015−08 2015−10

−
5

0
5

10
15

20
25

7. measurement device

Date

Te
m

pe
ra

tu
re

 [°
C

]

Measured temperature
Modelled temperature
95% confidence bounds

2015−07 2015−08 2015−10

Figure 4.8: Ignoring the snowy period: Filtered and forecasted soil temperatures at the measurement
locations.
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Figure 4.9: Ignoring the snowy period and including radiation: Filtered and forecasted soil temper-
atures at the measurement locations.
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Figure 4.10: Real data: Scaled residuals at the vertical measurement devices.
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Figure 4.11: Real data: Scaled innovation sample, and it’s Q-Q plot using the squared exponential
model.

good looking forecasts. Comparing the simplicity of the model with the complexity of
the problem, this is almost surprising. The estimates we find, being maximum likelihood
estimates, also have appealing properties in terms of their uncertainty, which speaks to the
reliability of the model.

Maximizing the likelihood is performed reasonably quickly. Using automatic differ-
entiation, a gradient computation takes on average 2 seconds for the simplest model used
above (n = 20, 12 parameters, 8 · 5814 observations). For the same model, using a finite
difference approximation takes 18 seconds. The former also scales much better with in-
creasing numbers of parameters. The time it takes for the optimization routine to converge
depends on initial guess, and how well the proposed model matches the measurements.
All implementations are in C++ where we have used the Stan Math Library.

It is important to point out that in order to appropriately address the problem of de-
termining the cable load capacity, the model should be tested on data where the cable
temperature has taken higher values, and exhibited larger variations. Since the heat flow
in our data set was mainly in the vertical direction, a vertical one dimensional stochastic
heat flow model sufficed. As radial heat flow becomes more significant, this might not be
the case. The radial heat problems are nonlinear, and including random heat flow in the
radial direction, we get a nonlinear stochastic system. In Chapter 3 we outlined how this
can be handled.

4.2 Conclusion and final remarks
We have studied a Gaussian process for modelling soil heat flow. It is the stationary solu-
tion of a linear stochastic system based on the heat equation with additive noise. The noise
was random heat fluxes in the soil, defined in terms of the gradient field of a stationary,
spatially smooth, Gaussian Markov process. A fast and reliable framework for identifying
the parameters driving this process has been established, and tested using simulated and
real measurements. The real data example consisted of soil temperature measurements
from an electric cable installation, and was related to the problem of determining cable
load capacity.
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Chapter 4. Application to Tronsholen-Skeiane Measurements

The model appears to be a good contribution to extending the dynamic current rating
standard. We found that it worked fine, especially compared to simpler models, even
though the Gaussian assumption was not entirely correct. A natural extension of the work
would be to test the model on data generated from cables with higher temperatures and
temperature variations. This makes the heat dynamics nonlinear, in which case a nonlinear
stochastic system or a linear system with some conservative parameter values would have
to be used. Validating the model in these cases is necessary in order to properly address
the problem of determining the load capacity.

We finally point out a key aspect of the proposed model, namely the fact that it is very
simple, both mathematically and computationally. Filtering and maximum likelihood pa-
rameter estimation is done exactly and efficiently, and implementing the latter is relatively
easy when automatic differentiation is used. In this context it is hard to justify using a more
complicated model. Moreover, it is possibly an appropriate model for a lot of stochastic
heat flow phenomena.

50



Bibliography

Abrahamsen, P., 1997. A Review of Gaussian Random Fields and Correlation Functions.
Technical report. Norsk regnesentral.

Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions
on Automatic Control 19, 716–723.

Brockwell, P.J., Davis, R.A., 1991. Time Series: Theory and Methods. Springer.

Brockwell, P.J., Davis, R.A., 2002. Introduction to Time Series and Forecasting. Springer.

Carpenter, B., Hoffman, M.D., Brubaker, M., Lee, D., Li, P., Betancourt, M., 2015. The
Stan Math Library: Reverse-Mode Automatic Differentiation in C++. Documentation
of C++ library.

Davis, M.H.A., Vinter, R.A., 1985. Stochastic Modelling and Control. Chapman and Hall.

Goodrich, R.L., Caines, P.E., 1979. Linear system identification from cross sectional
nonstationary data. IEEE AC-24, 403–411.

Gupta, N.K., Mehra, R.K., 1974. Computational aspects of maximum likelihood estima-
tion and reduction in sensitivity function calculations. IEEE AC-19, 774–783.

Hairer, M., 2004. An introduction to stochastic PDEs. Lecture notes. University of War-
wick.

Hamilton, J.D., 1994. State-space models. Handbook of Econometrics 4, 3041–3077.

IEC 60287, 2001. Calculation of the Current Ratings. Standard. International Electrotech-
nical Commission. Geneva, Switzerland.

IEC 60853, 1989. Calculation of the Cyclic and Emergency Rating of Cables. Standard.
International Electrotechnical Commission. Geneva, Switzerland.

Ilstad, E., 2009. TET4195 High voltage equipment cable technology. NTNU Department
of electric power engineering.

51



Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME - Journal of Basic Engineering 82, 35–45.

Kalman, R.E., Bucy, R.S., 1961. New results in linear filtering and prediction theory.
Journal of Basic Engineering 83, 95–108.

Neher, J.H., McGrath, M.H., 1957. The calculation of the temperature rise and load capa-
bility of cable systems. IEEE 73, 752–764.

Nocedal, J., Wright, S.J., 2006. Numerical Optimization. Springer.

Rauch, H.E., Tung, F., Striebel, C.T., 1965. Maximum likelihood estimates of linear
dynamic systems. AIAA 3, 253–264.

Shumway, R.H., Stoffer, D.S., 1982. An approach to time series smoothing and forecasting
using the EM algorithm. Jounal of Time Series Analysis 3, 253–264.

Øksendal, B., 2000. Stochastic Differential Equations. Springer-Verlag.

52



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Øyvind Stormark Auestad

Identifying Soil Heat Dynamics

Master’s thesis in Industrial mathematics

Supervisor: Henning Omre

August 2020


	Summary
	Table of Contents
	Introduction
	Problem formulation
	Thesis structure
	Main definitions and notation

	Framework
	State space process
	Filtering, smoothing and forecasting
	Kalman recursions

	Linear stochastic systems
	Parameter inference
	Model selection


	Soil Cable System
	Model
	Source term, and extension to non-point sources
	Linear stochastic system
	Properties of the solution

	Previous related work and the industrial standard

	Application to Tronsholen-Skeiane Measurements
	Tronsholen-Skeiane measurements
	Synthetic example
	Real data

	Conclusion and final remarks

	Bibliography

