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Abstract

In this thesis the distribution of freshwater fish in Norwegian lakes is estimated
by using data from two standardized data sets and one opportunistic data set in
addition to environmental covariates to create a combined model. The model used
is a Bayesian hierarchical model and model fitting is done using Integrated nested
Laplace approximation (INLA), a tool for fast Bayesian inference. The use of INLA
allows for the use of Gaussian random fields in the model, and parameterization of
this random field is analysed. The combined model is shown to be better than all
individual models for three of the four species examined.
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Sammendrag

I denne oppgaven blir fordelingen av ferskvannsfisk i norske innsjøer estimert ved
å bruke data fra to standardiserte datasett og ett opportunistisk datasett sam-
men med miljøbaserte kovariater til å lage en kombinert modell. Modellen er en
Bayesiansk hierarkisk modell, og modelltilpasning blir utført med integrert nøstet
Laplace approksimasjon, et verktøy for å utføre rask Bayesiansk inferens. Bruken
av INLA gjør åpner opp for å bruke romlige Gaussiske stokastiske felter i mod-
ellen, og parametrisering av disse feltene blir analysert. Forskjellige typer data blir
utforsket, og resultatene fra den kombinerte modellen blir sammenlignet med resul-
tater fra modeller basert p̊a de individuelle datasettene. Den kombinerte modellen
f̊ar bedre resultater enn de individuelle modellene for tre av de fire artene som
undersøkes.
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Chapter 1
Introduction

Species distribution models (SDMs) are widely used in statistical ecology in order
to model the distribution of species over a given area, and to predict how these
species will be distributed in the future. SDMs are built using data sets containing
observations of the species of interest in addition to environmental covariate data for
the geographical areas being examined. In recent years there has been a lot of focus
on how the observation data is being collected and in what way the different types
of data should be used to create the best models (Miller et al., 2019). Observations
gathered from sampling where a set of guidelines for sample location, effort and
method is followed is usually called standardized data. This type of data is usually
preferred for modelling as it makes comparison between areas, times and different
data sets easier. With standardized data it is also more feasible to account for
uncertainty in observations and various types of sampling bias.

For most species however, the majority of available data is of the non-standardized
type as there are a lot less requirements for recording such data. Museum records
and Citizen science data are examples of this type of data. Non-standardized data
could be missing information about exact location, time, sampling effort and more,
which makes estimating uncertainty in observations more difficult. As this type
of data is often more opportunistic than standardized data, it is also more often
heavily affected by sampling bias; citizen science data for example is biased towards
more densely populated areas.

While non-standardized data is usually considered weaker and less informative
than standardized data, it is much easier to collect as it does not require large
scale complex surveys. The vast amount of non-standardized data available means
there is still a lot of knowledge to be gained from it. The development of methods
to combine different types of data in recent years (Miller et al., 2019) is therefore
important, as this allows SDMs to be built in ways that utilizes the strengths and
diminishes the weaknesses of the different data types.

In this thesis the topic of data integration will be explored by implementing
a model that can estimate species distributions by combining data from multiple
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data sets. The model will be used on observation data of freshwater fish species
in Norwegian lakes from three different data sets. The modelling will follow a
Bayesian approach, where all model parameters are given prior distributions based
on prior knowledge. This type of modelling makes it possible to get uncertainty
estimates for all parameters included in the model. The Bayesian approach also
opens up the use of the Integrated nested Laplace approximations (INLA) method
for model fitting (Rue et al., 2009), which allows for fast inference with complex
models allowing for the use of spatial random fields.

Chapter 2 presents the data of freshwater fish observations used in this thesis.
The environmental covariates used to model the distributions are also examined. In
Chapter 3 the theoretical background needed to explain the modelling is presented,
and Chapter 4 shows the model details and the model variations that are tested.
Chapter 5 presents the results from the model analysis, while Chapter 6 is used to
discuss the results and possible improvements to the model.

2



Chapter 2
Data

2.1 Data preparation

This thesis uses data on observations of freshwater fish in Norwegian lakes from
three different data sets. For all the data sets, the data is filtered based on the
following steps:

1. Species not in list of Norwegian freshwater fish, as described by SNL (Pethon
and Vøllestad, 2019), are removed from the data.

2. The coordinates of all observations are matched to the closest lake, and all
observations further than 10 meters from the closest lake are removed.

3. All observations with no time variable are removed.

To ensure there is enough data of each species to do proper inference, only
observations of the four most prevalent species will be modelled and analysed,
and observation numbers mentioned here will only account for these species. The
four species of interest here will be Trout, Arctic Char, Perch and Minnow. The
number of observations of these species is shown in Figure 2.1. Observations of
other freshwater species will still be used to create pseudo-absences, which will be
explained later.

2.2 Nordic fish status survey

The Nordic fish status survey data set consists of 54 species surveyed over lakes
in Fennoscandia, including the 734 Norwegian lakes that are used here. 98% of
the data is from 1996. The data were downloaded from GBIF1. The data set
is based on presence/absence data, meaning both presences and absences of a

1https://gbif.vm.ntnu.no/ipt/resource?r=fish status survey of nordic lakes
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Figure 2.1

species are recorded for all lakes. After the filtering described in Section 2.1 the
data set consists of 1439 presences and 1870 absences. The data were collected
by questioning fishermen/locals/etc., which means it is considered a standardized
data set. Because of this and the fact that this is the only data set where absences
are recorded, the Nordic fish status survey is considered the main data set in this
thesis.

2.3 Transcribed gillnet test fishing

The gillnet test-fishing data set is based on transcriptions of gillnet test-fishing re-
sults from Norwegian grey literature (technical reports) in the time period between
1970 and 1998. These data were downloaded from GBIF2. For each test-fishing
event the number of caught fish of each species is recorded, meaning the data set
consists of count data. There are however no absences explicitly recorded in the
data. Pseudo-absences have therefore been added to the data set by assuming that
a species is absent in a given lake if the species has not been recorded there, while
one or more other species have been recorded in the lake. After filtering, the data
set consists of 966 presences, and 3494 absences have been added with the described
method.

2https://gbif.vm.ntnu.no/ipt/resource?r=transcribed gillnet test fishing data norway

4



2.4 Citizen science observations from Artsobser-
vasjoner

The data set from Artsobservasjoner (Artsobs) includes observations from as early
as the 1960s all the way to 2020, but the majority of the observations are from
the time period 1995-2019. The data were downloaded from GBIF3. The data set
consists of Citizen Science data in the form of presence-only observations, mean-
ing it is non-structured data recorded by various observers. Because of this it is
assumed that the data from Artsobs is likely to have a stronger effect of sampling
bias than the other data sets. Following the same reasoning as with the Gillnet
data, pseudo-absences have been added to the Artsobs data set. This attempt
at ”upgrading” the data from presence-only to presence/absence will be examined
later. After data preparation the data set consists of 1267 presences, and 7025
absences have been added.

Figure 2.2: Lakes with observations of trout in the three data sets Survey, Gillnet and
Artsobs. Blue points indicate an observed presence of the species, red points indicate an
observed absence.

3GBIF.org (18 March 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.nrjqsx
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Figure 2.3: Lakes with observations of arctic char in the three data sets Survey, Gillnet
and Artsobs. Blue points indicate an observed presence of the species, red points indicate
an observed absence.

Figure 2.4: Lakes with observations of perch in the three data sets Survey, Gillnet and
Artsobs. Blue points indicate an observed presence of the species, red points indicate an
observed absence.
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Figure 2.5: Lakes with observations of minnow in the three data sets Survey, Gillnet
and Artsobs. Blue points indicate an observed presence of the species, red points indicate
an observed absence.

2.5 Covariates

The covariates used in modelling are:

• Longitude, in degrees

• Latitude, in degrees

• Land surface temperature during summer, in degrees Celsius times ten

• Human Footprint Index, score between 0 and 50

• Distance to nearest road, in meters

• Lake area, in square meters (on the log-scale)

While the longitude and latitude of a lake are not environmental covariates, they
are known to often be correlated with the distribution of freshwater fish. These
covariates are also often correlated with the temperature, especially the latitude,
and as such are often considered proxies for this environmental covariate. The land
surface temperature during summer is taken from the article by Metz (2014) and is
based on data from 2010. This covariate can be seen as a proxy for the temperature
in the lakes, which is often an important factor for whether a species is found in
an area or not.

The Human Footprint Index is a score based on the combination of eight differ-
ent human impact variables which approximate the impact from humans on nature.
These variables include human population density, nearby roads and farmlands, and
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HFI is measured for grid cells of one square kilometer (Venter et al., 2016). The
HFI data is from 2009 and is downloaded from https://wcshumanfootprint.org.
HFI and distance to nearest road are included as covariates in an attempt to model
the effect of human population distribution on the data. A lake being more ac-
cessible to humans is often thought to lead to more observations, especially in
non-standardized data sets.

The lake area is included as the intensity of a species distribution is believed
to increase approximately linear as a function of the lake area. The lake area is
included on the log-scale since the intensity is modelled as a log-linear function of
the covariates, as described in Section 3.2.1.

Figure 2.6 shows the correlation between the covariates. It is clear that there
is significant correlation between all covariates excluding the lake area. This is not
great, as correlated covariates can lead to higher variability, and the correlation
can make it difficult to distinguish which covariates are significant to the model.
The effects of the correlated covariates will be examined more in Chapter 5.

Figure 2.6: Pairs-plot of the covariates used in modelling. The lower triangle of the
matrix shows the values of the covariates plotted against each other. The upper triangle
shows the correlation values of the covariates from -1 to 1.

8
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Chapter 3
Theory

Most species distribution models attempting to integrate different data types do
so using spatial point processes (Miller et al., 2019), (Isaac et al., 2019). A spatial
point process can be used to model the expected distribution of a species at a
location s in space by having points be generated independently from a random
process. λ(s) describes the expected density of points at the location s, which
can be modelled as the intensity of a Poisson process. This Poisson point process
can then be described as a function f(λ(s), X, φ) of environmental covariates X
and other parameters φ that would influence the species distribution. A major
advantage of using spatial point processes over other modelling approaches is that
there is no need to discretize the data, as the parameters of the model do not depend
on the spatial scale (Dorazio, 2014). This is convenient when using data from
data sets with differing spatial resolution, which is often the case when integrating
standardized and non-standardized data.

3.1 Bayesian hierarchical models

The distribution of a species can be modelled by a Poisson point process, but this
distribution cannot be directly observed, as that would require observing every
single individual inside the area of interest. Because of this, there is need for a
modelling structure that can be used to estimate a hidden process using this type
of imperfect data. Bayesian hierarchical models are used to create a layered depen-
dence structure consisting of observation models, process models and parameter
models, in descending order. One or more observation models will be used to
describe how the observational data were produced, including information about
possible sampling bias and detection probability. A process model will model the
hidden (or latent) process of interest and its uncertainty. Finally, a parameter
model will give all the unknown parameters of the model probability distributions
that can be controlled by hyperparameters. If π(b) is the distribution of a random
variable B, the Bayesian hierarchical model system is based on
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Observation model: π(y|x,θ)
Process model: π(x|θ)
Parameter model: π(θ)

where y is the observation data, x is the latent process and θ is the list of unknown
parameters. REF!!!!!!! In Bayesian statistics the parameter model π(θ) is called
the prior distribution and reflects any knowledge of the distribution prior to the
use of any observation data. This prior knowledge is used together with the data
to construct the posterior distribution, which is the joint distribution of x and θ
given y, using Bayes’ theorem REF!!!!!!!!!

π(x,θ|y) =
π(y|x,θ)π(x|θ)π(θ)

π(y)
(3.1)

The goal of Bayesian inference in the context of species distribution models is
thus to use any prior knowledge of the species and covariates and combine it with
the observations from available data sets to estimate the posterior distribution of
the species of interest.

When integrating different data sets there will be one observation model for each
data set, and all these models will be conditional on the same latent process. With
Yd being the data from data set d, the likelihood for the data is Pr(Yd|λ(s), θd)
where θd is a set of parameters effecting the observation model. This leads to a
joint likelihood approach, where each data type is used to fit a likelihood for a set
of shared parameters describing the latent process. These parameters are set to
be equal across the different likelihoods, and the parameter estimates are the ones
that best fit the likelihoods all together (Miller et al., 2019). This approach makes
it possible to create a set of estimators for the species distribution which is based
on all the different data sources. Based on these definitions of the latent process
and the observation models, the full likelihood for the state-space model is

L(Yd|X,φ, θd) ∝ f(λ(s), X, φ)

M∏
d=1

Pr(Yd|λ(s), θd) (3.2)

3.2 Distribution and observation models

3.2.1 Process model

Modeling the actual distribution of the species can be done in different ways, one
of which is by using point process models. Here the species density is modeled with
a continuous surface, where higher density at a location corresponds to a species
being more likely to exist at said location. The specific case of point process models
for freshwater fish is unique in the sense that the density of the continuous surface
will be forced to zero at all points outside of lakes, as freshwater fish naturally
can not exist at these points. Modelling the process as a continuous point process
opens up the possibility of using some methods developed for continuous models,
even though the restriction on observations to discrete lakes might advocate for
the use of discrete methods.
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In this thesis the continuous surface is modeled as a log-Gaussian Cox process
with intensity λ(s) at location s (Møller and Waagepetersen, 2004). The intensity
is formulated as a log-linear function of i = 1, .., P covariates with corresponding
fields Xi(s) and unknown parameters βi

log λ(s) = η(s) =

P∑
i=1

βiXi(s) + u(s) (3.3)

u(s) is a spatial field that is included to model the effects that are not explained
by the covariates. u(s) creates spatial autocorrelation between observations and
will be modelled as a Gaussian Markov Random Field (Rue and Held, 2005) in
such a way that u(s) will have Matérn covariance defined as Cov(u(si), u(sj)) =
σuCorr(u(si), u(sj)) where σ2

u is the marginal variance and

Corr(u(si), u(sj)) =
21−ν

Γ(ν)
(κ||si − sj ||)νKν(κ||si − sj ||) (3.4)

Fixing ν = 1 and parameterising the covariance as θ = {log(τ), log(κ)} with τ
being a parameter for the local variance, yields the marginal variance as

σ2
u =

1

4πτ2κ2
(3.5)

which gives

log(τ) =
− log(4πσ2

uκ
2)

2
(3.6)

The model can be expanded to include the time dimension by adding an AR(1)
term to the right hand side of (3.3)

η(s, t) =

P∑
i=1

βiXi(s, t) + ρη(s, t− 1) + u(s, t) (3.7)

where ρ is the parameter of the AR(1) series and u(s, t) is separable. The
inclusion of the time dimension to the model will due to time constraints not be
examined further in this thesis.

3.2.2 Presence-only observation model

The observation process for the presence-only data is based on the assumption that
the observations come from a thinned point process, modelled as a random sample
of where the species actually appear. If the probability of observing an individual is
q(s) then the observation intensity is φ(s) = q(s)λ(s). The parameter q(s) is usually
not known and is therefore estimated. In most data sets however, this thinning is
not done evenly across the geographic area but heavily affected by sampling bias.
For example, observations can be weighted towards more densely populated areas
or areas that are more attractive for research. These biases can heavily devalue
the information gained from presence-only data, and it is important to account for
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this in some way, or at least be aware of the effect. Symmonds (2020) shows that
it’s possible to attach a second spatial field ζ(s) to only the presence-only data to
help account for the sampling bias. This spatial field is intended to describe the
spatial variation which is not explained by the either the covariates or the shared
spatial field u(s).

3.2.3 Presence/absence observation model

Integrating one or more data set consisting of presence-absence data would be
a natural extension of the model based on presence-only data. As described by
Isaac et al. (2019) presence-absence data is usually modeled as a Bernoulli random
variable giving the probability of observing at least one individual at a given lake
as

Pr(N(s, t) > 0) = p(s, t) = 1− e−η(s,t) (3.8)

which on log scale for η gives the inverse of the complimentary loglog link
function

log(−log(1− Pr(N(s, t) > 0))) = η(s, t) (3.9)

where η(s, t) = pt
∫
s
λ(s)ds. Because the area of the lake is very small compared to

the whole region, the intensity surface is unlikely to change significantly. The inten-
sities can therefore be assumed constant within each lake, and η(s, t) ≈ ptA(s)λ̄(s)
with A(s) being the area of the lake.

3.2.4 Point count observation model

An extension of the presence-absence data would be count data. While presence-
absence data only provides information about whether a species has been observed
or not in a given lake, count data also provides the number of individuals observed
for each observation period. The number of individuals observed then follows a
Poisson distribution given by

Pr(N(s, t) = r) =
η(s, t)re−η(s,t)

r!
(3.10)

with η(s, t) defined in the same way as with the presence-absence data.

3.2.5 The intercept and effort

The total abundance N of a species in the region of interest is given as the integral
of the intensity λ of the process model over said region. The model is designed
on the assumption that not all individuals in the region are being observed, and
as such it can be difficult to estimate this integral. The probability p of observing
each individual of the species, which is often also too difficult to estimate, can help
find the total abundance as

N =

∫
λ(s)ds =

∫
elog(p)+η(s)ds (3.11)
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Equation (3.11) shows that imperfect species detection (p < 1) affects the model
by changing the intercept of η. While not being able to estimate p means we cannot
estimate the total abundance, this also means that we don’t need to model the
intercept precisely as it cannot be estimated. This also means that any covariates
that are known to be constant across a data set do not need to be estimated, as they
cannot be separated from the intercept. The observation time t, the probability
of observation p and the area of the observation site A(s) are parameters that can
be combined into a parameter called effort, E(s) = ptA(s), and these parameters
can sometimes be assumed constant dependent on the data set. If any parameters
of the effort varies in an unknown way, said parameters should be included as
additional terms to be estimated in the model. If the parameters vary in a known
way however, for example the area of observation A(s) being the area of a lake, this
can be included as a known term by adding log(A(s)) as an offset in the model.

3.3 Model fitting with INLA

In order to perform any form of statistical inference, the model above needs to
be fitted to the data. The hierarchical structure and the possible large number of
parameters in the model makes Bayesian modelling a natural choice. Due to the
possibility of high model complexity, as well as the importance of including spatial
autocorrelation in the model, computational efficiency is important when it comes
to model fitting. Markov Chain Monte Carlo (MCMC) methods have traditionally
been the most used way to fit Bayesian Hierarchical models, but recently developed
methods using Integrated Nested Laplace Approximation (INLA) have been proven
able to give similar results with significantly lower computation time (Rue et al.,
2009). While MCMC is sampling based, INLA closely approximates the posterior
distribution and solves the necessary integrals numerically.

To be able to use INLA to do inference on a model, it needs to be a latent Gaus-
sian model where the latent field is a Gaussian Markov Random Field (REF?). The
class of latent Gaussian models consist of models where all elements of the predictor
η, and therefor η itself, are assumed to be Gaussian. A Gaussian Markov random
field is a random field where all finite-dimensional distributions are Gaussian (REF,
Stein?), and all points in the field have the Markov property, i.e. points that are
not in the same neighborhood are considered independent of one another.

To approximate the Gaussian random field in a computationally efficient way,
the INLA-package can use stochastic partial differential equations (SPDE), where
the stochastic terms are Gaussian white noise. The SPDE is solved numerically
and discretized on a triangulated mesh grid. This is implemented in the INLA-
package, where a particular SPDE called the linear fractional SPDE is used to give
a Gaussian random field with Matérn covariance function when solved (Lindgren
et al., 2011), (Hem, 2017).

13



Chapter 4
Method

As described in Section 3.3 INLA will be used to do inference in this thesis, and this
will be carried out using the R-package R-INLA. The models used for this inference
is shown in Section 4.1. To find the model best suited to examine the effect of data
integration, comparing different model variations will be done in three steps.

First modelling of the non-standardized data from Artsobservasjoner is tested
to see whether adding absences to the data improves the model. After that the
INLA default prior distributions for the Gaussian random field are compared to
using Penalized Complexity prior distributions, and different hyperparameters are
examined. More details on prior distributions being tested is given in Section 4.2.
Finally the full model based on all three data sets with the preferred configurations
from the previous two comparisons is compared to individual models based on only
one data set. This is done to examine the effects of integrating multiple data sets
into one full model and whether this leads to improved inference. Model validation
is carried out by cross-validation as described in Section 4.3.

4.1 Model

The models used for inference is based on the theory in Chapter 3, and the models
for the different data types used is shown here.

As described in Section 3.2.3 for presence/absence data, for a location s, the
linear predictor in the model is given as

η(s) = β0 + βlonXlon + βlatXlat + βtempXtemp + βHFIXHFI

+βroadXroad + βarea log(Xarea) + u(s)
(4.1)

with y(s) ∼ Bernoulli(µ(s)), η(s) = log(− log(1−µ(s))) and where β0 is a data set
specific intercept. u(s) is the Gaussian random field described in Section 3.2.1.
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For presence-only data:

η(s) = β0 + βlonXlon + βlatXlat + βtempXtemp + βHFIXHFI

+βroadXroad + βarea log(Xarea) + u(s) + ζ(s)
(4.2)

with y(s) ∼ Poisson(µ(s)), η(s) = log(µ(s)) and where β0 is a data set specific in-
tercept. u(s) and ζ are Gaussian random fields, where ζ is included while modelling
presence-only data to help account for the sampling bias (Symmonds, 2020).

4.1.1 Mesh

As described in Section 3.3 the SPDEs approach in INLA requires a mesh grid
to discretize the SPDEs on. The mesh used in all models in this thesis can be
seen in Figure 4.1. This mesh consisting of 5852 nodes is divided into an inner
and outer part, where the observations are found inside the finer inner grid, and
the rougher outer grid is used to avoid numerical issues with the SPDEs due to
boundary effects.

Figure 4.1: The mesh used for solving the stochastic partial differential equations in all
models in this thesis. The total number of nodes in the mesh is 5852.

4.1.2 Artsobs - Poisson versus Bernoulli

The data from Artsobservasjoner includes presences only, which is usually consid-
ered worse than a data set including absences as well. As described in Chapter 2
however, because the observations are in discrete areas (lakes), it is possible to add
absences to this data set. This is done by assuming a species is absent in a lake
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if there is no recording of the species, and some other species is observed in that
lake. A model where the Artsobs data is modelled as a thinned Poisson process
based on presence-only data will be compared to a model where it is modelled by
a Bernoulli process based on the data including absences. It is worth noting that
while absences can be added to the data in this way, the data is still unstructured
and likely suffers from sampling bias. Because of this, the spatial field ζ is kept in
the model also when the data is modelled as presence/absence data.

4.1.3 Gillnet data

As described in Section 2.3, the Gillnet data set consists of count data, which in
theory by Section 3.2.4 can be modelled using a poisson process. However due to
numerical and programming issues, modelling the count data unfortunatly did not
work as intended. Because of this, absences is added to the Gillnet data set, and
the data is modelled as presence-absence data for the remainder of this thesis.

4.2 Priors

4.2.1 Covariate fixed effects

The coefficients of the longitude and latitude fixed effects βlon and βlat are given
Gaussian priors with mean 0 and default variance 1000. The coefficients of the
other fixed effects, βtemp, βHFI , βroad, βarea are given Gaussian priors with mean
0 and variance 1. This is an attempt to emphasize the value of these covariates over
the longitude and latitude. These covariates are actual environmental covariates
expected to affect the underlying process, while longitude and latitude are often
considered proxies for other effects like temperature.

4.2.2 Spatial random field

It is of interest to see how the priors of the Gaussian random field u affect the
results. In all model variations both fields are assumed to have mean 0, but the
parameters of the covariance function of u are given different prior distributions
and hyperparameters, and the results of these variations are investigated. Four
different configurations of parameters are tested, and in all these model variations
the field ζ uses the INLA default priors, as analysing the effects of ζ is outside
the scope of this thesis. The four model variations and the parameters differing
between them are shown in Table 4.1.

Param. Prior-model 1 Prior-model 2 Prior-model 3 Prior-model 4
ρu INLA default PC(2, 0.5) PC(10, 0.5) PC(2, 0.5)
σu INLA default PC(1, 0.1) PC(1, 0.1) PC(0.01, 0.1)

Table 4.1: Table describing prior distributions and hyperparameters used by the covari-
ance function of the Gaussian random field u in the four model variations. PC(·, ·) has
different interpretation for the range and standard deviation.
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The INLA default priors are set based on the mesh, and so the model here have
a unique set of default priors. In addition to this the priors are based on various
parameters which make the priors complicated to state. There will therefor be no
attempt at stating the default priors in this thesis, but they will still be used to
make comparisons. More details on INLA default priors can be found in Lindgren
(2012).

The penalized complexity (PC) prior has been established as a suitable option
for GRFs with Matérn covariance, and it’s often used instead of the more compli-
cated default priors. The PC prior attempts to reduce overfitting by penalizing
complexity in the prior distribution (Hem, 2017). From Fuglstad et al. (2019) the
PC prior for a GRF with Matérn covariance in two dimensions is given by

π(θ, ρ) = λ̃1λ̃2ρ
−2 exp(−λ̃1ρ−1 − λ̃2σ), σ > 0, ρ > 0, (4.3)

where definitions P (ρ < ρ0) = α1 based on the range ρ and P (σ > σ0) = α2

based on the standard deviation σ can be found by setting

λ̃1 = − log(α1)ρ and λ̃2 = − log(α2)

σ0
(4.4)

With little actual prior knowledge of the spatial autocorrelation effects of fresh-
water fish, it is hard to know what prior distributions to set on the range and
standard deviation of the random field u. A prior median range of 2 degrees as
chosen in Prior-model 2 is expected to capture short to medium-scale spatial vari-
ation relative to the domain that is Norway. Prior-model 3 is included to see how
the model is affected if the random field is given a much larger prior range. Prior-
model 4 is included in the same way to see the effects of reducing the prior standard
deviation of u.

4.3 Model validation

Ideally one would have an additional data set of standardized data available to use
as validation data, but a suitable data set is not available. As a substitute, the
different model variations will be validated by cross-validation. This means that a
fraction of the data is left out when fitting the model, and the model attempts to
predict the left out data. To reduce the amount of spatial bias in this validation
process the domain is divided in rectangular blocks, and the blocks are randomly
assigned to five-folds. One fold at the time is chosen as the test set while the other
four folds become the training set. Test set data from all data sets are withheld from
the model, and the model is evaluated by its ability to predict the test data from
the Survey data. Only the Survey data set is being predicted, as it is considered the
most reliable data source. This is important since the model should be evaluated
by its ability to reconstruct the species intensity without the sampling bias that
is likely present in the presence-only data (Fithian et al., 2015). The validation
statistic used is the deviance, defined as twice the log-likelihood of the model.

17



Chapter 5
Results

5.1 Artsobs as presence absence

Before any further modelling can be done, a choice needs to be made whether or
not absences should be added to the Artsobs data set. As described in Chapter 2,
these absences are added by assuming that a species is absent in a lake if it has not
been observed there, while some other species has. A full model of all data sets
where Artsobs has absences is compared to a similar full model where Artsobs has
only presences. This comparison is done by cross-validation as described in Section
4.3, and the marginal predicted deviance is the validation statistic.

The results from the cross-validation is that the full model has a marginal pre-
dicted deviance of 466.7 when the Artsobs data is presence-only and 317.0 when
the Artsobs data includes absences. The difference of 149.7 is significant and indi-
cates that the model is improved by the addition of absences. Figure 5.1 shows a
significant difference of modelling with and without absences. The model for Art-
sobs without absences shows little to no spatial pattern and looks more like noise,
while the model with absences shows a clearer spatial effect. This is also reflected
in the posteriors for the full model, where the model with absences estimates high
intensity in the west and lower in the east, while the model without absences esti-
mates a more flat intensity. Due to these results, the Artsobs data set will include
the generated absences in all further analysis in this thesis.

5.2 Priors

Some Bayesian models can be very sensitive to the prior distribution and hyperpa-
rameters used. Because of this, examining the effects the prior distributions have
on the posteriors is important. Four models were fit, from here on referred to as
models 1-4, with prior distribution and hyperparameters as described in Table 4.1.
All other parameters were kept equal for all four models, including modelling the
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(a) Posterior means with Artsobs having presences only.

(b) Posterior means with Artsobs including pseudo-absences.

Figure 5.1: Posterior means of the estimated intensity λ = exp(η) of trout for the full
model and the model based only on the Artsobs data set. Note that as the probability of
detection is not known, the plots show relative intensity. The spatial fields are given the
default prior distributions.

data from Artsobs as presence/absence, as concluded in the previous section. Due
to time and computational constraints, this prior analysis was done using only data
on the species trout. The marginal predicted deviances from doing cross-validation
with the four models as described in Section 4.3 is shown in Table 5.1.

Parameter Prior-model 1 Prior-model 2 Prior-model 3 Prior-model 4
Deviance 317.0 285.5 316.4 61.0

Table 5.1: The marginal predicted deviance values for the prior-models defined in Table
4.1. All values are obtained by cross-validation and predicting on the Survey data set.

As the deviance depends on the data being predicted, the deviance values of
the models relative to one another should be of interest, not the absolute value.
As models with lower deviance is preferred, it is clear from the table that model 4
is the best model according to the cross-validation, with model 2 being the second
best. The difference between the two models is that model 4 puts the PC(0.01, 0.1)
prior on the standard deviation σu, forcing it to be much smaller than in model 2.
It’s clear from Figure 5.2c that the posterior standard deviation of model 4 has far
less than 10% of the density at values larger than 0.01, suggesting that the data
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pulls the posterior towards lower values.
Figure 5.2a shows that the posterior ranges of models 1-3 are all quite similar

with little difference in modes, even though the range in model 3 is given a much
larger prior than model 2. This could indicate that the data prefers a lower range,
which could also explain the higher deviance in model 3. The posterior range of
model 4 has both a lower mode and a flatter curve than the other models. The
flatter curve is likely due to the prior forcing a low variance on the spatial field,
making the posterior of the range more vague to compensate. The density being
non-zero at values closer to 100 is somewhat worrying, since at these values the
random field is capturing effects from outside the domain of the data, which is not
desired. However as the part of the density at these higher values is small, whether
this is significant or not could be argued.

(a) Posterior distributions of the range ρu.
The x-axis is shown on the log-scale.

(b) Posterior distributions of the standard
deviation σu for prior-models 1-3.

(c) Posterior distributions of the standard
deviation σu for prior-model 4. The x-axis
is shown on the log-scale.

Figure 5.2: Posterior marginal distributions of the range ρ and the standard deviation
σ of the random field u for the prior-models defined in Table 4.1 for the species trout.

Figure 5.3 shows the estimated regression coefficients for all the covariate fixed
effects included in the models for trout. Similar plots for the other three species
are included in Figure A.1, A.2 and A.3. Once again models 1-3 give very similar
results, with only small differences in both point estimates and confidence intervals
for the coefficients. Also here model 4 deviates from the rest, estimating stronger
effects of longitude, latitude and distance to road. Combined with the results from
Figure 5.2 this could indicate that model 4 is more heavily influenced by the fixed
effects and relies less on the random field u, as compared to models 1-3. It is worth
noting that model 4 gives notably smaller confidence intervals for the estimates of
multiple covariate effects. In general it is also encouraging to see that all models
are somewhat in agreement on the significance and magnitude of the fixed effects.
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Figure 5.3: Posterior distributions of regression coefficients for fixed effects of the prior-
models defined in Table 4.1 for the species trout, with posterior means and 95% confidence
intervals.

Taking all the previous results into consideration, model 2 is similar to model
1 and 3, while also offering a notably lower deviance value. Thus the choice of the
best prior-model for further analysis is between model 2 and 4. Model 4 having
large variation in the posterior range and very low posterior standard deviation
makes it somewhat hard to interpret. However, the smaller confidence intervals for
the fixed effects and in particular the significantly lower deviance in comparison to
the other models is desirable. Because of this, the priors of model 4 will be used
in all the models of the next section.

5.3 Data integration

The main goal of this thesis is to examine the effect of combining multiple data
sets to create one model, which hopefully models the species distribution better
than models based on the individual data sets. In addition to models for the
three individual data sets, full models were fit combining the data from all data
sets. The prior distribution from Prior-model 4, being ρu ∼ PC(2, 0.5) and σu ∼
PC(0.01, 0.1), was used on the Gaussian random field u in all models. The models
were validated by cross-validation as described in Section 4.3. It is important to
note that due to time and computational constraints there has been no attempt at
fitting models combining only two data sets.The results of the validation can be
seen in Table 5.2.
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Notably, the full model outperformed the individual models in all cases except
for trout, where the Survey model had better results. Survey outperformed Gillnet
for trout and perch, with it being the other way around for char and minnow. The
Survey model was notably worse at predicting the minnow species, which will be
looked at more later. In general it is difficult to conclude which of the individual
models did best based on this validation.

It is however evident that the model based only on Artsobs data is by far
the worst, having the highest deviance value for all species. This result is not
surprising, as this is the only data set consisting of non-standardized data. This
shows that the non-standardized data is still effected by sampling bias, even after
adding pseudo-absences and the second spatial field ζ.

Parameter Survey Gillnet Artsobs
Trout -11.1 14.2 287.0
Char 18.2 2.6 663.0
Perch 18.4 31.0 83.1
Minnow 127.2 15.8 947.5

Table 5.2: Difference in marginal predicted deviance from the full model for each of the
three individual data set models, for each of the four species of interest. All deviance
values are obtained by cross-validation and predicting on the Survey data set.

The posterior mean and standard deviation of the Gaussian random fields u
and ζ used in the full model for trout is shown in Figure 5.4. Similar plots for
the other three species can be found in Figure A.5, A.6 and A.7 in the Appendix.
The posterior mean of u is low in the south-east compared to the west, which
is somewhat reflected in the posterior mean of the intensity in Figure 5.5. The
standard deviation of u is however very high compared to the mean, indicating
that the model might be influenced more by the fixed effects than the random
field.

Figure 5.5 shows the the posterior means of the estimated intensity of trout. All
models show trout in most of Norway, with a lower mean in Finnmark in the north-
east and in the south-east around Oslo. All four posterior means look reasonably
similar, although there is some difference, mainly the mean of the Survey model
being a bit more even than that of the other models.

Figure 5.6 shows that outside of a few differences, the four models mostly agree
on the distributions of regression coefficients for fixed effects when modelling trout.
Once again the Artsobs model looks the weakest with large confidence intervals,
while the full model usually has the smallest intervals. All models agree on negative
effects of longitude, likely due to the lower density of trout in the north-eastern
parts of Norway.
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Figure 5.4: Posterior mean and standard deviation of the random fields u and ζ for the
trout species.

Figure 5.5: Posterior means of the estimated intensity λ = exp(η) of trout for the full
model and the three individual data set models. Note that as the probability of detection
is not known, the plots show relative intensity.
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Figure 5.6: Posterior distributions of regression coefficients for fixed effects of the models
using individual data sets, as well as the full model in grey shading, with posterior means
and 95% confidence intervals. All models are for the species trout.

Figure 5.7 shows that the Artsobs model estimates the intensity of arctic char
to be moderately high in most of the country, although higher in the north. The
other three models show a much lower intensity in the southern half of Norway,
more clearly showing that although the species exists in the south, it is way more
prevalent in the north. The Artsobs model not being able to catch this effect is
likely because the non-standardized data is biased towards the larger cities and
more populated areas in the south. This can also explain the reason for the weak
validation result of the Artsobs model when predicting char, as shown in Table 5.2.

From Figure 5.8 it can be seen that the full model indicates a strong positive
effect of longitude on arctic char, corresponding to the higher intensity in the
north-eastern part of Norway. The negative effect of latitude and positive effect
of temperature is surprising however, as arctic char is known to usually appear in
colder areas in the north. These unexpected effects are likely because temperature
and latitude are negatively correlated, as shown in Section 2.5.
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Figure 5.7: Posterior means of the estimated intensity λ = exp(η) of arctic char for
the full model and the three individual data set models. Note that as the probability of
detection is not known, the plots show relative intensity.

Figure 5.8: Posterior distributions of regression coefficients for fixed effects of the models
using individual data sets, as well as the full model in grey shading, with posterior means
and 95% confidence intervals. All models are for the species arctic char.
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The data in Figure 2.4 show that Perch is mainly found in the south-east of
Norway, and this is clearly reflected in the plot of the full model in Figure 5.9.
While the Artsobs model estimates a higher density in the south-east as expected,
the scale of the mean is very large compared to the other models. This is explained
by Artsobs estimating way larger coefficients for the fixed effects than the other
models, shown in Figures 5.10 and A.13. The Survey and Gillnet models seem to
be heavily affected by lake area, creating the darker dots in the figure. The plot of
the fixed effects reflect this, where especially Gillnet models a very large negative
effect of lake area. This effect is difficult to explain, and it can be seen that the
full model estimates the effect of area to be zero.

Figure 5.9: Posterior means of the estimated intensity λ = exp(η) of perch for the full
model and the three individual data set models. Note that as the probability of detection
is not known, the plots show relative intensity.
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Figure 5.10: Posterior distributions of regression coefficients for fixed effects of the
models using individual data sets, as well as the full model in grey shading, with posterior
means and 95% confidence intervals. All models are for the species minnow. The plot is
zoomed in around zero to better see the values close to zero.

There are clearly some issues with modelling minnow, especially for the Survey
model. The scale of the intensity is extremely large compared to the other models,
and Figure 5.12 shows that the model estimates large coefficients for the fixed
effects compared to the other three models. The problems with modelling minnow
is likely a combination of the correlation between the covariates and a lack of data,
as minnow is the least reported species of the four examined here.

27



Figure 5.11: Posterior means of the estimated intensity λ = exp(η) of minnow for the
full model and the three individual data set models. Note that as the probability of
detection is not known, the plots show relative intensity.

Figure 5.12: Posterior distributions of regression coefficients for fixed effects of the
models using individual data sets, as well as the full model in grey shading, with posterior
means and 95% confidence intervals. All models are for the species minnow. The plot is
zoomed in around zero to better see the values close to zero.
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Chapter 6
Discussion and conclusion

The goal of this thesis was to implement a model that combines data from multiple
data sets in order to estimate the distribution of freshwater fish in Norway. The
goal was also to compare the results from this combined model to models based on
individual data sets, to examine the value of data integration for freshwater fish
data and species distribution modelling in general. For most species the full model
presented in this thesis estimates the species distributions better than any of the
individual models, and the data integration is seen as a success.

It is shown that most of the covariate effects used in the model are significantly
correlated, and this affects the results. Correlated covariates provide less relevant
information to the model, and the regression coefficients of the correlated covariates
tend to have higher variance. Because of this it is more difficult to know which
covariates affect the species distribution, which can lead to issues when applying
the model to other data because of potential overfitting. The model could possibly
be improved by removing some of the correlated covariates or replacing them with
other less correlated covariates.

For some species the fixed effects estimates are very unstable for models based
on individual data sets, while the estimates of the combined model are more stable
with shorter confidence intervals. This might indicate that the data integration
helps create clearer and more stable estimates, although more research is likely
needed to confirm that this effect is due to the data integration.

The prior analysis done indicates that the model is sensitive to the prior distri-
butions chosen on the parameters of the Gaussian random field. It is shown that
the model performs significantly better when the standard deviation of the field is
given a smaller prior distribution, but this also drastically changes the posterior
range of the field. It is interesting to see that the model performs best when the
spatial field is very vague. This could indicate that the field and the fixed effects
give similar explanations, and that the model performs better when the spatial
field is used to explain small scale autocorrelation only. These results show that it
is important to examine the effects of different hyperparameter values for both the
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range and the standard deviation, and perhaps also other prior distributions like
the Log-Gaussian prior used by Hem (2017).

It is very unfortunate that the modelling the Gillnet data using the Poisson
distribution did not succeed, as there is likely valuable information to be gained
from the point count data. While the Gillnet data contributed to the full inte-
grated model as a presence/absence data set, more future work should be aimed
at modelling the point counts correctly to improve the model further.

The value of adding absences to the non-standardized data set from Artsobser-
vasjoner was measured, and the addition of absences clearly improved the model.
While this means that all three data sets were modelled as presence-absence data,
the weakness of non-standardized data is still visible in the results. The strength
of non-standardized data is usually the larger amount of available data, but as the
data sets used in this thesis are of similar size that strength is not a part of this
model. Adding more of this type of data would therefore be useful to improve the
model and utilise the non-standardized data better.
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Appendix

Figure A.1: Posterior distributions of regression coefficients for fixed effects of the
prior-models defined in Table 4.1 for the species arctic char, with posterior means and
95% confidence intervals.
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Figure A.2: Posterior distributions of regression coefficients for fixed effects of the prior-
models defined in Table 4.1 for the species perch, with posterior means and 95% confidence
intervals.

Figure A.3: Posterior distributions of regression coefficients for fixed effects of the
prior-models defined in Table 4.1 for the species minnow, with posterior means and 95%
confidence intervals.
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Figure A.4: Posterior distributions of regression coefficients for fixed effects of the
prior-models defined in Table 4.1 for the species minnow, with posterior means and 95%
confidence intervals. The plot is zoomed in around zero to better see the values close to
zero.

Figure A.5: Posterior mean and standard deviation of the random fields u and ζ for the
arctic char species.
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Figure A.6: Posterior mean and standard deviation of the random fields u and ζ for the
perch species.

Figure A.7: Posterior mean and standard deviation of the random fields u and ζ for the
minnow species.
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Figure A.8: Difference in marginal predicted deviance from the full model for each of
the three individual data set models, for each of the four species of interest. All deviance
values are obtained by cross-validation and predicting on the Survey data set.

(a) Posterior distributions of the range ρu.

(b) Posterior distributions of the standard
deviation σu for prior-models 1-3.

(c) Posterior distributions of the standard
deviation σu for prior-model 4.

Figure A.9: Posterior marginal distributions of the range ρ and the standard deviation
σ of the random field u for the prior-models defined in Table 4.1 for the species arctic
char.
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(a) Posterior distributions of the range ρu.
(b) Posterior distributions of the standard
deviation σu.

Figure A.10: Posterior marginal distributions of the range ρ and the standard deviation
σ of the random field u for the prior-models defined in Table 4.1 for the species perch.

(a) Posterior distributions of the range ρu
for prior-models 2 and 4.

(b) Posterior distributions of the range ρu
for prior-model 1.

(c) Posterior distributions of the range ρu
for prior-model 3.

Figure A.11: Posterior marginal distributions of the range ρ of the random field u for
the prior-models defined in Table 4.1 for the species minnow.
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(a) Posterior distributions of the standard
deviation σu for prior-models 2 and 4.

(b) Posterior distributions of the standard
deviation σu for prior-model 1.

(c) Posterior distributions of the standard
deviation σu for prior-model 3.

Figure A.12: Posterior marginal distributions of the standard deviation σ of the random
field u for the prior-models defined in Table 4.1 for the species minnow.

Figure A.13: Posterior distributions of regression coefficients for fixed effects of the
models using individual data sets, as well as the full model in grey shading, with posterior
means and 95% confidence intervals. All models are for the species minnow.

39



Figure A.14: Posterior distributions of regression coefficients for fixed effects of the
models using individual data sets, as well as the full model in grey shading, with posterior
means and 95% confidence intervals. All models are for the species minnow.
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