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Abstract

In this thesis, we jointly model brain cancer incidence and mortality in Norway over the
last 50 years, in order to discover underlying geographical and temporal patterns in the
disease. The incidence and mortality counts for brain cancer can be very scarce for certain
age groups or time periods. The survival rate of brain cancer in Norway is quite low.
Hence, it is assumed that incidence and mortality are correlated and therefore analysed
jointly in order to borrow strength between the two disease processes and increase the
effective sample size. This enables the inclusion of both gender-specific and age-specific
components in addition to a shared spatial random effect scaled with an outcome-specific
parameter. This is useful since the data is provided for both genders in the time period
1969 to 2018, subdivided into 18 counties, 9 age groups and 10 time periods. Spatial
and spatio-temporal modelling in this thesis is done using a Bayesian approach, where the
inference is based on the integrated nested Laplace approximations (INLA) methodology.
We have used a hierarchical structure, which takes into account the spatial dependency
between neighbouring counties. The analyses were separated into a sole spatial modelling
of the most recent period 2014–2018 and a spatio-temporal modelling of the entire period
1969–2018.

The age-specific component in the model was especially interesting to include, due
to brain cancer being the second most common cancer in small children, after leukaemia.
The results for the spatial modelling in 2014–2018 showed a change in the age effect for
both incidence and mortality for the youngest children. This change was most noticeable
for the mortality. These results show that the age effect is not homogeneous for all age
groups. Hence, the age effect is necessary to include. For the spatio-temporal modelling
in the entire period 1969–2018, the shared spatial effect showed a noticeable geographical
pattern with a general increasing trend from north to south. There was clearly a lower
spatial effect in the north, especially in Finnmark, and increasing to the southern counties
Vest-Agder and Aust-Agder. These spatial results were not as apparent in the modelling
from the recent period. For the entire period 1969–2018 the spatial effect for incidence
and mortality were almost identical for both genders, with the spatial effect for women
mortality being slightly larger for mortality than for incidence . However, for the single
period 2014–2018, the spatial effect for women was clearly stronger for incidence than
mortality. The temporal effect was higher in 2018 than it was in 1969. However, the last
couple of years show an interesting decrease for the incidence.
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Sammendrag

I denne oppgaven modelleres både insidens og dødelighet for hjernekreft i Norge over de
siste 50 årene. Dette er gjort for å prøve å oppdage underliggende geografiske- og tidsmes-
sige trender hos sykdommen. Insidens- og dødelighetstall for hjernekreft kan være svært
små for noen aldersgrupper eller tidsperioder. I tillegg er overlevelsesraten for hjernekreft
ganske lav. På grunn av dette er det antatt at det er korrelasjon mellom insidens og
dødelighet, noe som gjør at man kan låne informasjon mellom de to sykdomsprosessene
for å kunne øke den effektive utvalgsstørrelsen. Dette gir mulighet for å inkludere både
kjønns- og aldersspesifikke komponenter i tillegg til den romlige effekten som er skalert
ved hjelp av en utfallsspesifikk parameter. Dette er gunstig ettersom dataene er gitt for
begge kjønn i perioden 1969 til 2018, og inndelt i 18 fylker, 9 aldersgrupper og 10 tidspe-
rioder. Både den romlige modelleringen og rom-tid-modelleringen er gjennomført ved
en Bayesiansk tilnærming, der inferensen utføres ved hjelp av “integrated nested Laplace
approximations” (INLA). Videre er det brukt en hierarkisk struktur, som gir en mulighet
til å ta hensyn til romlig avhengighet mellom nabofylker. Analysene er delt inn i romlig
modellering av den nyligste tidsperioden, 2014–2018, og rom-tid-modellering av perioden
1969–2018.

Det er spesielt interessant å inkludere den aldersspesifikke komponenten i modellene,
siden hjernekreft er den nest vanligste krefttypen for små barn, etter leukemi. Resultatene
for den romlige modelleringen av perioden 2014–2018 viste en endring i alderseffekten
for både insidens og dødelighet for aldersgruppene 0–9 og 10–19. Denne endringen var
mest tydelig for dødelighet. Resultatene viser at alderseffekten ikke er homogen for alle
aldersgrupper, som nødvendiggjør inkluderingen av denne effekten. Den romlige effekten
for rom-tid-modelleringen for perioden 1969–2018 viser et tydelig geografisk mønster
med en generelt økende trend fra nord til sør. Det er en tydelig lavere romlig effekt i
det nordligste fylket Finnmark, som var økende til de sørligste fylkene Vest- og Aust-
Agder. Disse romlige resultatene var derimot ikke like merkbare i modelleringen for den
nyligste perioden. For perioden 1969–2018 så man at den romlige effekten for insidens og
dødelighet var omtrent identiske for begge kjønn, mens for perioden 2014–2018 var den
romlige effekten for kvinner tydelig sterkere for insidens enn for dødelighet. Videre ser en
at tidseffekten er høyere i 2018 enn den var i 1969. Likevel ser en en interessant nedgang
for insidens de siste årene.
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Chapter 1
Introduction

National cancer registries in industrial countries possess almost complete information
about the frequency of new cases, the incidence, and mortality stratified by for example
gender, age and certain subnational geographical areas. The Cancer Registry of Norway
(https://www.kreftregisteret.no/) is one of these nearly complete registries. In this thesis,
we analyse Norwegian brain cancer data provided as gender-specific incident cases and
deaths in 18 counties (fylker) for 9 age groups over a 50 year period. The objective of the
thesis is divided into two main parts. The first objective is to analyse data on brain cancer
incidence and mortality in Norway in the period 2014–2018, in order to understand more
about its geographical distribution. The second objective is to analyse the brain cancer
incidence and mortality data in Norway in the entire fifty year period 1969–2018 to learn
more about the spatio-temporal distribution of the disease.

For brain cancer, there are few known causes for the disease. The main contributors
to brain cancer are either genetics or high exposure to ionized radiation (Savage; 2018).
The genetic risk factor concerns several gene changes that cause rare inherited syndromes.
These conditions promote tumour formation, which includes for instance neurofibromato-
sis and Li-Fraumeni syndrome. People with these gene changes have an increased risk of
brain cancer. However, these conditions only cause about 5% of tumours (Savage; 2018;
American Cancer Society; 2020). Further, Savage (2018) points out that brain cancer oc-
cur most commonly in white people, and has the highest incidence in the northern Europe.

According to the latest incidence and mortality data for brain and other nervous system
cancer from GLOBOCAN, there were diagnosed 162 534 new cases in males and 134 317
new cases in females worldwide in 2018 (Ferlay et al.; 2018). This represents a rate of
3.9 cases per 100 000 for men and a rate of 3.1 cases per 100 000 for women, by World
standard. In Norway 440 and 445 new cases in males and females, respectively, were
diagnosed in 2018 (Cancer Registry of Norway; 2019). This represents an incidence rate
of 6.4 cases per 100 000 in males and 4.5 cases per 100 000 in females, by World standard
(explained in chap. 2)(Ferlay et al.; 2018). In Europe there were 35 276 new cases of
brain cancer for males and 29 363 new cases for females in 2018, which corresponds to
rates of 6.7 cases per 100 000 in males and 4.7 cases per 100 000 in females, by World
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standard (Ferlay et al.; 2018). According to Storstein et al. (2011) the Norwegian brain
cancer incidence is increasing and the number of new cases per year has almost doubled
since 1980, which he sees as most likely due to an increasing number of elders in the
population along with better diagnostics.

The main inspiration for this thesis is an article by Etxeberria et al. (2018) which uses
integrated nested Laplace approximations (INLA) to do Bayesian inference for spatial
modelling of brain cancer data from two northern regions of Spain. The methodology
presented in this article will be used to analyse the Norwegian brain cancer data. This
includes two main models with corresponding extensions. The first model has two com-
ponents, one structured spatial component and one age component. The second model in-
cludes the same components, as well as an additional unstructured spatial component. The
extensions for both models include changing the modelling of the age effect and adding
an overdispersion component. The Bayesian inference in this thesis is carried out using
hierarchical models, which allows for the accounting of the spatial dependency between
the neighbouring counties.

As in the Etxeberria et al. (2018) article, there is assumed a high correlation between
incidence and mortality when it comes to brain cancer in Norway. This is done due to
the relatively high mortality in brain cancer. This correlation is advantageous for the joint
modelling of incidence and mortality in these small areas, as it is used to increase the
effective sample size by borrowing strength from both disease processes, i.e. incidence
and mortality. This means that if there is a noticeable connection between incidence and
mortality, methods that make use of the correlation between these processes could be used
to improve estimates and discover underlying disease patterns (Etxeberria et al.; 2018, p.
2952). This is advantageous because of the scarcity of this type of cancer. The increased
sample size allowed the authors to include more variables, like age group and gender,
in the models. This way of modelling is interesting because incidence and mortality are
modelled jointly and then linked through a shared spatial effect, which is allowed to vary
in strength by using a scaling factor, δ.

In chapter 2 the data is presented along with a preliminary explanatory analysis of the
data. A theoretical introduction to spatial statistics and integrated nested Laplace approx-
imation (INLA) follows in chapter 3. Further, several different approaches and models
have been introduced in the field of disease mapping over the years. Three articles on this
topic with particular relevance for this thesis, as well as the Etxeberria et al. (2018) article,
will be introduced in chapter 4. The methodology introduced by Etxeberria et al. (2018)
is applied to the Norwegian brain cancer data from 2014–2018, combined with relevant
extensions, in chapter 5. This is followed by a spatio-temporal continuation in chapter 6,
which uses the entire data set from 1969–2018. The thesis is wrapped up in chapter 7, with
a discussion and summary of the main results and future work.
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Chapter 2
Brain Cancer in Norway

This thesis uses data from the Cancer Registry of Norway (https://www.kreftregisteret.no/
1). The interpretation and reporting of these data are the sole responsibility of the authors,
and no endorsement by the Cancer Registry of Norway is intended nor should be inferred.

The data provided are gender specific brain cancer incidence and mortality counts from
18 Norwegian counties (fylker) over 50 years with corresponding population counts. The
data was provided from the data delivery unit at the Cancer Registry of Norway on March
5th 2020. The brain cancer data includes both brain and central nervous system tumors
(International Classification of Diseases-10, C70–C72), but is referred to only as brain
cancer in the following sections. Both the incident cases and deaths are given by gender.
Further, the data is subdivided into 9 age categories of 10 year intervals (0–9, 10–19, . . . ,
70–79, 80+) and into 10 calendar periods, in 5 year intervals (1969–1973, 1974–1979, . . . ,
2014–2018). These rough intervals for age and year are chosen to accommodate standards
of data protection and anonymity. On January 1st 2018 Norway went from having 19 to 18
counties, with the merging of Nord-Trøndelag and Sør-Trøndelag. The last time period,
2014–2018, includes data from the entire year of 2018. Because of this, the data was
provided for only 18 counties, where the data from these two counties are both found in
Trøndelag, for the entire period 1969–2018.

In table 2.1 an excerpt of the brain data is presented. This table includes all columns
used in the analyses in chapters 5 and 6. In the first column, Gender, we find the gender
index, which takes the value 1 for men and 2 for women, and in the second column,
Agegroup, the age group indices are found. Column 3, Fylke, includes all the names of the
18 counties. In column 4, inci mort, we find the index inci mort, which takes the value 1
if the value of the sixth column, Cases, is an incidence count, and the value 2 if the case
is a death. Column 3 coincides with column 5, i, which takes the values 1 to 36, where
each county takes the value 1–18 for incidence and 19–36 for mortality. The counties
are numbered alphabetically. Column 7, Population, includes the values of the population
counts for each of the age groups in each county. Each of the 10 time periods are found in
column 8, Period, where period 1 is 1969–1973, 2 is 1974–1978, etc.

1The data was recieved March 5th 2020
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The data is first sorted by inci mort, followed by Fylke, then by Agegroup in each
county and lastly by Gender. As the table shows, the first half of the rows in the data
set is for the incidence data and the second half contains all the information related to the
mortality data. For each county, we have 180 lines of data because of the 10 time periods
and the 9 age groups for each gender. The last 8 columns in the table are added to the data
matrix in order to do the analyses. These will be explained further in chapter 5 and 6.

2.1 The most recent period: 2014–2018
The initial thought when analysing the data was to aggregate over all time periods. How-
ever, the way the data is subdivided into age groups and time periods made this diffi-
cult. The incident cases and deaths are not problematic, because these are only counted
once. The population counts, on the other hand, will be counted twice with the use of this
method. This is due to the different sizes of the age groups and time periods. Hence, initial
spatial analysis focuses on the period 2014–2018. This means that for the spatial analysis,
all the data from time period 10 is extracted from table 2.

One definition used in the thesis concerns the age-standardized rates. Age-standard-
ization is a way of adjusting rates, in order to minimize the effects of differences in age
composition when comparing rates for different populations (Cancer Registry of Norway;
2019). In other words, the World standard means using the World population.

In the entire period 1969–2018 a total of 34195 (47% males and 53% females) incident
cases and 12938 (58% males and 42% females) deaths were reported according to the data
from the Cancer Registry of Norway. For the period of 2014–2018, the reported incident
cases were 5086 (47% males and 53% females) and reported deaths were 1962 (59% males
and 41% females).

Figures 2.1 and 2.2 show the spatial distribution of crude incidence and mortality rates
per 100 000 for men and women in the period 2014–2018. In these figures, the data is
aggregated over all age groups. The purpose of these plots was to draw attention to the
spatial trends in the data. In figure 2.1 the incident rates are shown, with males on the left
and females on the right. Similarly, figure 2.2 shows the mortality rates on the same form.

The figures suggest that brain cancer is more common for women than men, as there
seems to be more observed cases in women than in men in most of the counties. For
women the rates range from 15 to 28, while the rates for men only range from 15 to 22.
For Telemark and Buskerud, the rates appear higher for men than women, but otherwise
the incidence rates for women are slightly above the rates of men. Further, an opposite
pattern can be observed for the mortality rates, with higher mortality rates for men than
women. Comparing the incidence and morality trends with the total number of observed
cases and deaths in Norway in the period 1969–2018, these trends coincide. However,
comparing the incidence trend to the global trend from 2018 presented by GLOBOCAN,
by World standard (Ferlay et al.; 2018), these trends do not coincide as the World trend is
higher incidence rates for men than women. Further, if we look at the age-standardized
incidence rates per 100 000, by Norwegian standard, the general trend has been higher
rates for women than men since the middle of the 90s (Cancer Registry of Norway; 2019).

The counties Telemark and Buskerud seem to have the highest incidence rates for men,
followed close by Nordland. For women, Oppland and Vestfold seem to have highest rates,
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Figure 2.1: Spatial distribution of crude incidence rates per 100 000 for brain cancer in both men
and women in Norway in the period 2014–2018, aggregated over the age groups
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Figure 2.2: Spatial distribution of crude mortality rates per 100 000 for brain cancer in both men
and women in Norway in the period 2014–2018, aggregated over the age groups

closely followed by Troms and Nordland. Further, several neighbouring counties, apart
from the ones with the highest rates, seem to have quite similar rates. For the mortality
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for women Vest-Agder, Møre and Romsdal and Hedmark clearly have the highest rates,
while for men it is Telemark, Oppland and Hedmark. For women Finnmark tend to have
low rates, which is more clear for mortality, but noticeable in both disease processes. The
lowest incidence rates for men are found in Aust-Agder and Møre and Romsdal, while for
mortality the lowest rates can be found in Aust-Agder, Oslo and Østfold. The incidence
rate for men have a clear increasing trend from Finnmark to Nordland. The incidence rates
for both genders have an increasing trend from Møre og Romsdal to Rogaland. Apart from
this, it is hard to find a general trend in this explanatory plot of the data.
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Figure 2.3: Norwegian brain cancer incidence and mortality rates per 100 000 in each age group for
men and women in the period 2014-2018, aggregated over all counties.

Figure 2.3 shows incidence and mortality rates per 100 000 for each age group. In
this figure, the data is aggregated over all districts in order to highlight the age trend.
The rates are shown for men in the grey bars and for women in the black bars. For the
age groups 10–19 to 70–79, we see a steady increase in the incidence rates for both men
and women. However, between age group 70–79 and 80+ the incidence rates decrease
for women. The mortality rates show a similar trend for both genders as for incidence,
but here the increase is between age group 10–19 and age group 70–79 for both genders,
not just women. Between the oldest two age groups, a slight decrease in the mortality
trend can be seen in both genders, with a more apparent trend for women. Note that the
trend is different for incidence and mortality for elderly people, which is interesting and
will be investigated further. In the youngest age group we observe both higher incidence
and mortality rates than in age group 10–19. This may be explained by the fact that brain
cancer is the second most common cancer in young children after leukaemia, as Etxeberria
et al. (2018) presents in their article. This can also be seen for Norwegian children in the
period 2014–2018, as presented in Cancer in Norway 2018 (Cancer Registry of Norway;
2019). In this incidence plot, the rates for women are higher than the rates for men in the
age groups 30–39 to 70–79, which coincide with the previous plot. For mortality rates, the
rates for men are higher than the rates for women, except for the youngest age group.
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2.2 Historic data from 1969–2018
In figure 2.4a and 2.4b the brain cancer rates over time are shown for all 18 counties. These
plots show the incidence and mortality rates per 100 000 for the entire period 1969–2018,
aggregated over all age groups. The incidence rates are shown in red and the mortality
rates are shown in blue. The plots are made using the package geofacet in R, where a
grid of the Norwegian counties must be specified. The grid in these figures are visually
organized to resemble the geographical location of the counties, possibly at the expense
of showing the true county borders. Further, the structure of neighbouring counties is
of importance, as this thesis assumes correlation between neighbouring counties. Hence,
even though the three northern most counties share a border, they do not in this plot.

In both plots, the relationship between incidence and mortality is more noticeable than
when we only look at one of the time periods. This can be seen in most of the counties for
both genders, by similar shapes in the incidence and mortality curves, with incident rates
laying above the death rates. However, there is an exception to this, where the mortality
peeks above incidence for a given point in time. This can be seen in Sogn og Fjordane
in the early 1980s for men. Meaning, that the total number of people who died of brain
cancer is larger than people that got diagnosed with it for this exact time period.

Furthermore, an increasing trend in the rates for both disease processes and both gen-
ders over time can be seen for most of the counties. Even though some of the rates seem
to fluctuate from period to period, the general trend appear to be increasing from 1969 to
2018. For a couple of the counties, it is hard to see if the overall trend is increasing. This
concerns Oslo for both genders, as the rates for 2014–2018 for this county do not appear
to differ a lot from the rates for 1969–1973. The increase in time is harder to notice for
mortality, as these rates are significantly lower than the incidence rates. It can also look as
if the incidence rates are starting to decrease in the latest time periods. However, this can
also just be an example of the fluctuation of the rates, rather than a sign of a decreasing
rate in time.

In these plots, similarities for neighbouring regions are present. In Trøndelag for in-
stance, the male incidence and mortality lines look similar to its neighbours, Møre og
Romsdal, Oppland, Hedmark and Nordland. Another example is Hordaland for women,
with the neighbours Rogaland, Telemark, Buskerud and Sogn og Fjordane. These similar-
ities are also noticeable for several other counties.

Further in this thesis we will first investigates the spatial distribution of brain cancer in
Norway in the time period 2014–2018, then look into the spatio-temporal distribution in
the entire period 1969–2018. For the spatial modelling in the period 2014–2018, it would
be interesting to see if there exist any underlying geographical patterns in the disease more
recognizable than in figures 2.1 and 2.2. Further, the possible pattern seen in the age group
plot in figure 2.3 will be investigated later in the thesis. For the entire period of 1969–2018,
it would be equally interesting to discover some underlying temporal trend as looking into
the spatial distribution.
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Figure 2.4: Norwegian brain cancer incidence (red) and mortality (blue) rates per 100 000 in all
counties for men (a) and women (b) in the period 1969–2018
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Chapter 3
Introduction to Spatial Statistics

Statistical inference is the process of analysing, interpreting data and drawing conclusions
from the data along with remaining uncertainty (Held and Sabanés Bové; 2014, p. vii).
There are two main types of statistical inference, frequentist and Bayesian inference, where
this thesis focuses on the latter. Spatial statistics has become popular the last few decades,
mainly due to the advances in computational tools, which have increased the availability
of geo-referenced data. As an example, when the interest is to evaluate the incidence
of a particular disease across a country, the data can often only be available for small
areas for several years. This is where spatial statistics comes in handy; by considering
the possible geographical patterns of the disease, like similarity between neighbouring
regions, researchers can apply this to improve the estimation of incidence in the regions
(Blangiardo and Cameletti; 2015, pp. 1–3).

Before the year 2000 the Bayesian approach was not a common method to use in real
case studies with spatial data, and therefore mostly found in theoretical models. This
was because it did not exist any numerical, analytical or simulative computational tools
to compute the posterior distribution, in the cases where it was not directly available in
the form of a known distribution. This changed with the development of the Markov
chain Monte Carlo (MCMC) methods around year 2000, as the first Bayesian method
which could be applied to spatial data. MCMC methods enabled researchers to perform
Bayesian computation on complex models on large data sets without having to simplify
the structures (Blangiardo and Cameletti; 2015, pp. 2–3). The idea behind MCMC is to
simulate a Markov chain, designed such that it will converge to the posterior distribution.
When the convergence is achieved, one can draw random samples, which can be used to
estimate posterior values (Held and Sabanés Bové; 2014, pp. 269–270).

However, because of the continuous advances in data collection, there is an increas-
ing availability of big data sets, which has become an issue for the MCMC methods.
The MCMC have a computational burden, which can lead to several days of computing
time to perform Bayesian inference. To overcome this issue Rue et al. (2009) introduced
integrated nested Laplace approximation (INLA), which is a deterministic algorithm for
Bayesian inference for the class of latent Gaussian models which is both fast and accurate
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(Blangiardo and Cameletti; 2015, p. 3). The remaining part of the section will focus on
spatial modelling, Bayesian inference and the INLA methodology, which is necessary to
understand the rest of the thesis.

3.1 Bayesian inference

As mentioned, the introduction of Bayesian methods for spatial data allowed the use of
larger data sets and more complex models. One of the benefits of using a Bayesian ap-
proach in spatial statistics is that it accounts for the uncertainty within the estimates and
predictions, as well as its flexibility and capability to deal with problems like missing data
(Blangiardo and Cameletti; 2015, p. 3). Furthermore, it allows for borrowing strength
over neighbouring regions by smoothing in a straightforward manner. Bayesian inference
can be carried out using statistical models. The main focus in this thesis are hierarchical
models. Below, Bayesian inference and hierarchical structure will shortly be explained.

Bayesian inference is one method of doing inference based on Bayes’ theorem. In
contrast to frequentist inference, were the focus mainly lies on the fixed, but unknown
parameter θ, Bayesian inference treats the θ as a random variable with a prior distribution
f(θ), which contains information about prior beliefs. Hence, in Bayesian inference we can
estimate parameters based both on prior knowledge as well as the data, whereas frequentist
inference is only based on the data. After observing the data, Bayes’ theorem is used to
get the posterior distribution;

f(θ | data) =
f(data | θ)f(θ)∫
f(data | θ)f(θ)dθ

=
f(data | θ)f(θ)

f(data)
(3.1)

which is the most important quantity in Bayesian inference (Held and Sabanés Bové; 2014,
pp. 167–172). In equation 3.1 we condition on data, which is more commonly denoted
as Y = y. Here, y = (y1, . . . , yn) are the observed realizations of the random variable
Y with density function f(y | θ). Moreover, f(y | θ) is the likelihood function and
f(θ) is the marginal likelihood, which does not depend on θ. This implies that 1/f(y) is
the normalizing constant, which ensures that the posterior distribution f(θ | y) is a valid
density function and integrates to 1.

In Bayesian inference it is relatively easy to construct and estimate hierarchical models.
This is one of the important qualities of the Bayesian approach. One of the purposes of
hierarchical models is the methodological purpose. When data is drawn from clusters
within a population, as neighbourhoods, they are no longer independent. Therefore, data
observation drawn from the same cluster will be more related to each other than they
will be to observations from other clusters. To atone for the biases introduced when the
assumption of independence is violated, one could choose to construct hierarchical models
(Lynch; 2007, pp. 231–233).

Equation 3.1 has a simple hierarchical structure of two levels. The first level is the
conditional distribution for the data under the parameter, f(y | θ). The second level is the
marginal, prior, distribution for the parameter, f(θ).

Further, this hierarchical structure can be extended with another hierarchical level. The
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updated posterior distribution would look like:

f(x,θ | y) =
f(y | x,θ)f(x | θ)f(θ)

f(y)

where the knowledge of x is expressed through the hyperparameters, θ. In the Bayesian
hierarchical structure, this model has three stages:

Level 1: y | x,θ ∼ f(y | x,θ) (likelihood)
Level 2: x | θ ∼ f(x | θ) (latent field)
Level 3: θ ∼ f(θ) (hyperparameters)

where the first level is the likelihood for the data y, the second level is the latent field, x,
and the last level is the hyperparameters, θ.

3.1.1 Integrated nested Laplace approximations (INLA)
Integrated nested Laplace approximation (INLA), is a method of doing Bayesian infer-
ence based on analytical approximations and numerical integration. This is in contrast to
Markov chain Monte Carlo (MCMC), which is a sampling-based approach. One of the
reasons for using INLA rather than MCMC is the computational advantage. INLA is a
three stage hierarchical model with the stages being the observations, y, the latent Gaus-
sian field, x, and the hyperparameters, θ. The models used in INLA-based inference are
known as latent Gaussian models (LGM). LGMs are a subset of all Bayesian hierarchical
models with a structured additive predictor, η, where all latent elements are assumed to be
Gaussian (Rue et al.; 2009). LGMs consist of three elements: a likelihood model, a latent
Gaussian field and a vector of hyperparameters. A LGM can be written as:

y | x,θ ∼
∏

π(yi | ηi,θ)

x | θ ∼ N(0,Q−1(θ)) (latent Gaussian field)
θ ∼ π(θ) (hyperparameters)

whereQ(θ) is the precision matrix (inverse covariance matrix) of the latent Gaussian field
(Martino and Riebler; 2020, pp. 1-2), and η = (η1, . . . , ηn) can be described as:

ηi = µ+
∑
j

βjzij +
∑
k

wkf
k(uik)

where µ is the intercept, z are the fixed effects with coefficients β, w are the known
weights for the unknown functions, {fk}, of the covariate u, which is used to model the
random effects of u (Rue et al.; 2009). The latent components of η are gathered in the
latent Gaussian field, x, and given as x = {η, µ,β, {f1}, {f2}, . . .}. This is done such
that one element yi depends on the latent field through only through ηi, which simplifies
the computations needed (Martino and Riebler; 2020).

In the INLA framework the interest lies in approximating the marginal posterior com-
ponents of the latent field π(xi | y) or the marginal posterior of the hyperparameters

13



π(θj | y). These can further be used to make approximate summary statistics, such as
posterior means, variances or quantiles. The marginal posteriors are denoted as;

π(xi | y) =

∫ ∫
π(x,θ | y)dx−idθ =

∫
π(xi | θ,y)π(θ | y)dθ

π(θj | y) =

∫ ∫
π(x,θ | y)dxdθ−j =

∫
π(θ | y)dθ−j

Here, the integrals with respect to x is usually highly multidimensional and difficult to
solve, while the integrals with respect to θ are relatively small and solvable with numerical
integration. Because of this, some of the fundamental work in INLA lies in making clever
approximations to the posterior for the hyperparameters π(θ | y) and the full-conditional
density π(xi | θ,y) (Martino and Riebler; 2020, pp. 2–3).

3.1.2 Penalized complexity (PC) priors

As mentioned, for Bayesian inference we have hyperparameters, which are specified in
θ. For these hyperparameters, we need to assign a prior distribution. One type of priors
that has recently been proposed for Bayesian inference are penalized complexity (PC)
priors (Simpson et al.; 2017). These are weakly informative and proper prior distributions,
which means that they include specific prior information and have a density function that
integrates to unity (Held and Sabanés Bové; 2014, pp. 180–191).

The idea of the PC prior is to penalize model complexity in order to avoid overfitting
(Simpson et al.; 2017). This means that models are penalized if they include parameters
that are not supported by the data. According to Simpson et al. (2017, p. 9) an overfitting
prior will produce a more flexible model than might be necessary. This will make the base
model, the simplest model, have almost no support in the prior and therefore in the pos-
terior. The consequence of using an overfitting prior is that we cannot determine between
flexible models supported by data and models that are flexible due to the choice of priors.

Simpson et al. (2017) introduce four principles for constructing a prior distribution for
a flexibility parameter θ, e.g. precision (τ ), standard deviation (σ), correlation (ρ), . . . .
In principle 4, User-defined scaling, it is determined that λ, a hyperparameter selected by
the user, can be selected by controlling the prior mass in the tail, which is a condition on
the form: P (f(θ) > U) = α. Here, f(θ) is a transformation of the flexibility parameter,
θ, U is a reasonable, user-defined upper bound that specifies the “tail event”, and α is the
weight we put on this event (Simpson et al.; 2017, p. 13). The PC prior for the standard
deviation, θ = σ, results to be an exponential prior:

π(σ) = λ exp(−λσ)

where λ determines the magnitude of the penalty for deviating from the base model. See
Simpson et al. (2017) for details on the derivation. In a similar way λ for the standard
deviation can be determined by the user by specifying U and α such that P (σ > U) = α,
which would imply that λ = − ln(α)/U . Here, U > 0 and 0 < α < 1.
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3.2 Spatial modelling
A spatial trend is often beneficial to include in a statistical model when working with
spatial data, as this extra information can improve the understanding of the data and may
lead to biased estimates if ignored. Blangiardo and Cameletti specifies three types of
spatial data; area or lattice data, point-referenced (or geostatistical) data and spatial point
patterns (2015, p. 173). Area or lattice data is commonly used in disease mapping. Data
used in disease mapping are discrete observations, as they are counts of disease incidence
or deaths in pre-specified, usually non-overlapping, areas. For area or lattice data, the
observations are found in an areal unit with well-defined boundaries. Here, we will focus
on the area data, where the boundaries are irregular and typically based on administrative
boundaries, such as districts and counties. Such spatial models can be described using
a Bayesian framework, by the use of hierarchical structure, which can take into account
spatial dependency based on neighbourhood structure. (Blangiardo and Cameletti; 2015,
pp. 173–176). This neighbouring structure, R, proposed by Besag et al. (1991), can be
defined as:

Rij =

 ni, if i = j
−1, if i ∼ j
0, otherwise

(3.2)

where i ∼ j denotes that area i and area j are neighbours, i.e. they share a border (Blan-
giardo and Cameletti; 2015). Further, for each row i, the column entry j is equal to 0 if
areas i and j are not neighbours or −1 if i and j are neighbours. The diagonal of row i
contains the number of neighbours j, denoted by ni. By distinguishing the geographical
relationship between the different districts, we can borrow strength from the neighbouring
districts.

One of the methods commonly used in disease mapping is the Besag-York-Mollié
(BYM) method, proposed by Besag et al. (1991). To explain this, we assume that, for each
area i = 1, . . . , n, the observed cases yi conditioned on the rate, λi, are Poisson distributed
with Eiλi, where Ei are the expected cases. A log linear model can be specified on the
linear predictor, ηi:

ηi = log λi = µ+ ui + vi (3.3)

where µ is the intercept and v, the area-specific unstructured random effect, is modelled
with an exchangeable structure, meaning v | σ2

v ∼ N(0, σ2
vI). The u = (u1, . . . , un)

is an area-specific structured random effect, which can be modelled using the following
distribution:

π(u | σ2
u) ∝

(∣∣∣∣ 1

σ2
u

R

∣∣∣∣∗
)1/2

exp

(
− 1

2
uT
(

1

σ2
u

R

)
u

)

This formulation for u is often called the intrinsic conditional autoregressive (ICAR). The
ICAR together with the exchangeable random effect from equation 3.3 forms the BYM
model. Even if all areas are connected, i.e. no islands, no proper joint distribution for
u exists, as the covariance matrix is not positive definite and therefore does not have full
rank. To resolve this issue a constraint,

∑n
i=1 ui = 0, summing over all areas i = 1, . . . , n,

can be applied to u.
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Specifying a BYM model in R-INLA can be done either by f(. . ., model =
"bym", . . .), or by specifying the two BYM components separately using f(. . .,
model = "besag", . . .) for the spatial structured component (ICAR) and f(. . .,
model = "iid", . . .) for the unstructured component (exchangeable) (Blangiardo
and Cameletti; 2015, p. 182). The besag model in R-INLA is the same as the ICAR.
Therefore, from now the term besag will be used. An extension of the besag model,
u, is called besag2, which is used for weighted spatial effects of two outcomes such as
incidence and mortality. This model is also used by Etxeberria et al. (2018) (see section
4.1) and in this thesis. The model is described by x = (δu,u/δ), where u = (u1, . . . , un)
is the regular besag model and δ > 0 is the weight parameter (see http://www.r-inla.org/
models/latent-models for more information). An alternative formulation to model two out-
comes could be x = (u, a · u), with a > 0 as a weight for the second outcome. However,
there is no pre-specified model for this available in INLA.
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Chapter 4
Literature Review

This chapter will present short summaries of four articles. These are in the field of disease
mapping and are all relevant for this thesis. The first article is the main inspiration for this
thesis. The methodology introduced in this article by Etxeberria et al. (2018) is further
applied to the Norwegian data in chapter 5. Further, the next three articles give an overall
insight in previous advancements in this field, which will be linked to the Etxeberria et al.
(2018) article.

4.1 Etxeberria et al. (2018): Joint modelling of brain can-
cer incidence and mortality

The first article is Joint modelling of brain cancer incidence and mortality using Baye-
sian age- and gender-specific shared component models by Etxeberria et al. (2018). This
article is the most important one for this thesis, as the methodology from the paper is
used to analyse the Norwegian brain cancer data in the next chapter. The Etxeberria et al.
(2018) paper uses a Bayesian approach to explore the possible geographical patterns for
brain cancer incidence and mortality. It focuses on two northern regions of Spain, Navarre
and Basque Country (BC), which are further divided into 27 districts. The article features
these two regions due to the high incidence rate, which are among the highest in Europe.
This is interesting because the average incidence rate in all of Spain is below the European
average (Etxeberria et al.; 2018).

The data used is incident cases and deaths in brain and central nervous system cancer
in both genders collected from the 27 district in Navarre and Basque Country in the period
1990-2008. The authors have organized their data from 5 year intervals into the age groups
0–9, 10–29, 30–49, 50–64, 65–74, 75–84 and 85+, because of the similar behaviour they
saw in these groups. The goal of the article was to discover the geographical patterns of
incidence and mortality on brain cancer for the different age-groups from the two northern
districts of Spain during the period 1990–2008. In addition to geographical patterns, the
high mortality in small children is highlighted. As brain cancer is the second most frequent
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cancer in children, there is an interest in unveiling this age-dependence in the analysis.
The model in this article is described like this;

Iijg| λIijg ∼ Poisson(EIijgλIijg),

and
Mijg| λMijg ∼ Poisson(EMijgλMijg)

where Iijg and Mijg are the observed number of incident cases and deaths in region i
(i = 1, . . . , 27), gender g (g = 1 for males and g = 2 for females), and age group j
(j = 1, . . . , 7).
Here Edijg is the population at risk, logEdijg are offsets, λdijg are the rates and log λdijg
can be modelled using different expressions. Here, d = I,M is the disease index, for
incidence and mortality, respectively. In the article they introduce 10 individual models
and their gender specific equivalent, noted by an asterisk. Here, two of the models are
introduced in detail, as the model 3∗ is the one used to analyse the Spanish data and both
model 3∗ and model 8∗ will be used in the analysis of the Norwegian data.

Model 3*: log λIijg = δgu
∗
ig + αIj

log λMijg =
1

δg
u∗ig + αMj

Model 8*: log λIijg = δgu
∗
ig + vIi + αIj

log λMijg =
1

δg
u∗ig + vMi + αMj

where g represents gender and δg is the gender-specific spatial parameter.
Here, u∗ = (u∗1,m, . . . , u

∗
n,m, u

∗
1,f , . . . , u

∗
n,f )T is a spatial random effect for male

and female over the n = 27 districts. The u∗ assumed to follow a multivariate normal
distribution u∗| C ∼ N(0,C−). The covariance matrix C− is defined as;

C− =

(
σ2
u∗
m
R− 0

0 σ2
u∗
f
R−

)
This matrix includes the two variance components σ2

u∗
m

and σ2
u∗
f

that allows for individual
smoothing for each gender, and the spatial neighbourhood matrix, R. This matrix can
be explained as in equation 3.2. The − indicates the Moore-Penrose generalized inverse,
which is used becauseR is not full rank and hence does not have a regular inverse.

Further, the α = (α1,1, . . . , α1,7, α2,1, . . . , α2,7)T is the disease-specific age effect
and v = (v1,1, . . . , v1,n, v2,1, . . . , v2,n)T is the spatially unstructured random effect for
incidence and mortality. Both of these effects are assumed to follow a multivariate normal
distribution α | σ2

α ∼ N(0, σ2
α(I2 ⊗ I7)) and v | σ2

v ∼ N(0, σ2
v(I2 ⊗ In)), where

I2, I7 and In are the 2 × 2, 7 × 7 and n × n identity matrices. Here, n is the number
of districts; in this article equal to 27. When analysing the data in the article, penalized
complexity (PC) priors were chosen for the hyperparameters. They were chosen with the
upper bound parameter U = 1 and weight parameter α = 0.01.
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The best model from this article was the model 3∗. By the use of this model, they
estimate the gender and age-specific incidence and mortality rates and analyse of their
geographical distribution in Navarre and Basque Country. They discover a geographical
pattern in the brain cancer, which is more profound for incidence than mortality and for
males than for females. Another key result from the article, is the ones from the youngest
age group. For this age group, they observe clear West–East spatial pattern for incidence,
whereas for the mortality rates the spatial pattern is more low-rate homogeneous. This in-
crease in incidence rates for this age group is not observed in other tumours, which makes
it particularly interesting. Moreover, they show that the difference between incidence
and mortality rates are more noticeable for the youngest age group than for the other age
groups. A final result found in the article, is the decrease in rates between the two oldest
age groups.

4.2 Colonna et al. (1999): Cancer incidence prediction
based on mortality

The second article is by Colonna et al. (1999), and the first ever to estimate the incidence
of cancers in different regions in France. The main idea is to estimate the national cancer
incidence in France by only having knowledge of the incident cases in a small part of the
population. Only about 10% of the French population is covered by, so called, cancer
registries. The relationship between cancer incidence and mortality, found in these cancer
registries, is used in combination with national mortality data to obtain cancer incidence
estimations for a given point in time. This article has a slightly different purpose than this
thesis and the other articles in this chapter. However, the interesting aspect of the article
lies in the assumption that there exists a relationship between incidence and mortality. This
same assumption is made in both the article by Etxeberria et al. (2018) and in this thesis.

The cancer registries covers breast cancer incidence for women and colorectal cancer
incidence separated by gender obtained from nine French administrative departments. The
national mortality data is obtained from 21 administrative regions. The method used ap-
plies the incidence/mortality ratio from the cancer registry areas to regional mortality data
to estimate regional incidence rates at three time points (1985, 1990, 1995), which is used
to estimate an incidence trend. To validate their results, they use a leave-one-out method
on the cancer registries for all nine departments, and compare the estimated incidence with
the true incidence (Colonna et al.; 1999).

Colonna et al. (1999) conclude in this article that the breast cancer incidence has in-
creased considerably between 1985 and 1995, where there is a noticeably higher increase
in the north of France than in the south. They also notice a slight increase in colorectal
incidence, but to a lesser extent. Because the approach and model from this article is not
the same as in the article by Etxeberria et al. (2018) and in this thesis, I use a notation by
Held et al. (2006) to explain the model. The model is described like this;

Mijt|λMijt ∼ Poisson(EijtλMijt), and: Iijt|M̂ijt, λIijt ∼ Poisson(M̂ijtλIijt),

with: with: (4.1)

log λMijt = u1i + u2it+ α1j + α2jt log λIijt = α̂1j + α̂2jt
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where Mijt is the observed mortality counts, Iijt denotes the incidence counts, Eijt is the
population counts and λijt denotes the rates, in district i, for age group j and for year t.
Further, M̂ijt is the estimated deaths from the left hand side of 4.1. For the mortality, we
use u1i and u2i to denote the district effects, and α1j and α2j to denote age group effects.
Further, the α̂1j and α̂2j is used for the age group effect in the incidence/mortality ratio. In
the log mortality, log λMijt, it is assumed that the time trends in each district and age group
can be additively decomposed into linear trends for each district and linear trends for each
age group. Equivalently, it is assumed that the log incidence-mortality ratio, log λIijt, is
linear in each age group.

One of the advantages with the approach in this article, is the exploitation of the close
relationship between incidence and mortality. Because of this, countries can get infor-
mation about incidence when they lack nationwide coverage by cancer registries. This
information can be applied to how the countries should distribute health resources. Even
though the estimations may not be perfect, it may be beneficial for making decisions about
health care. Etxeberria et al. (2018) shares this advantage of assuming that incidence and
mortality are linked, but uses it to increase the effective sample size and include more
variables in their analyses of geographical patterns.

Albeit the lack of incident data might be disadvantageous. In this case, only 10 %
of the French population is covered by cancer registries. In an ideal world, one would
have incidence data from the entire population, but then the use for estimation would be
redundant. This lack of coverage could make the process of drawing proper conclusions
difficult.

4.3 Held et al. (2005): Joint analysis of diseases with shared
risk factors

In this next article, Held et al. (2005) uses a Bayesian approach to jointly analyse more than
two diseases with shared risk factors in order to identify common geographical patterns.
This is an extension of already existing frameworks, both Bayesian and non-Bayesian,
for the joint modelling of two diseases. The authors use a Bayesian approach with an
extended BYM model for four diseases (oral, oesophagus, larynx and lung cancers), with
a log relative risk, λid, for each disease. The model can be described like:

yid| λid ∼ Poisson(Eidλid), d = 1, . . . , 4

where yid and Eid are the observed and expected number of cases in district i for disease
d, with log relative risks:

λi1 ∼ N(µ1 + u1ia1,1 + u2ia2,1, σ
−2
1 )

λi2 ∼ N(µ2 + u1ia1,2 + u2ia2,2, σ
−2
2 )

λi3 ∼ N(µ3 + u1ia1,3 + u2ia2,3, σ
−2
3 )

λi4 ∼ N(µ4 + u1ia1,4, σ
−2
4 )

The λid represents the log relative risks in area i for the four diseases d, σd are the cor-
responding standard deviations and ak,d are weights to allow for different risk gradient of
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the shared components for the diseases. The ak,d, where k = 1, 2 represents the number of
shared components, is defined under the restriction

∑nd

d=1 log ak,d = 0, with nd denoting
the number of relevant diseases for field k. The first three diseases, oral, oesophagus and
larynx cancer, have two shared spatial components, while lung cancer only share u1 with
the other diseases. In this case, u1 represents spatial differences in tobacco consumption
and u2 corresponds to spatial differences in alcohol consumption.

In the article, they use the information about tobacco and alcohol consumption and
the geographical variances in the consumption as a way of identifying possible common
spatial patterns in the diseases themselves. They emphasize the correlation between heavy
smoking and heavy drinking in the oral, larynx and oesophagus cancers, as they are known
as the major risk factors and seem to act synergistically (Held et al.; 2005, p. 68).

Two of the assumptions made in the article, is that these shared risk factors have a
spatial structure and that all components are independent of each other. However, if some
of the components have any spatial correlation, this will manifest in the spatial patterns
and the spatial analysis will not just be a result of the shared latent risk factors.

One advantage of joint modelling proposed in the article, which is similar to one of
the advantages of the Colonna et al. (1999) approach, is the possibility of gaining further
understanding about the diseases and in particular the spatial patterns. This could for
instance be beneficial in the providing of health care services.

The approach introduced in this article, is quite similar to the one used by Etxeber-
ria et al. (2018) in the way that similarities are exploited in order to identify common
geographical patterns in diseases. Held et al. (2005) focuses on several diseases and the
relationship between their risk factors, while Etxeberria et al. (2018) focuses on the rela-
tionship between the disease processes within one disease. However, for both articles, the
joint analysis can be highly beneficial in order to unveil the geographical patterns.

4.4 Martinez-Beneito (2013): A more general approach
to multivariate disease mapping

In the last article, by Martinez-Beneito (2013), the main idea is to introduce a framework
for disease mapping that brings together already existing models. This can be seen as a
more general and extended framework than the one presented by Held et al. (2005). The
multivariate disease mapping problem is formulated as:

yid ∼ Poisson(Eidλid)

where yid is the observed cases, Eid is the expected cases and λid is the relative risk, all
for the i-th geographical unit and for the d-th disease. In this model rid satisfies:

log λid = µd + uid

where the article emphasizes that different disease mapping models mostly differ in how
uid is defined and how spatial and multivariate dependences in diseases are defined
(Martinez-Beneito; 2013). The article shows that u will follow a prior distribution de-
scribes like this:

vec(u) ∼ NID(0,Σb ⊗ Σw)
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where Σb ⊗ Σw denotes the Kronecker product of the between-disease (b) and within-
disease (w) covariance matrices and vec(u) for within disease dependence can be de-
scribed by:

vec(u) = (Σ̃b ⊗ II)vec(R), where: u = Σ̃w ε Σ̃Tb = (Σ̃w ε)Σ̃Tb = RΣ̃Tb

with covariance matrix:

cov(vec(u)) = Σb ⊗ (D −W )−1

where the tilde denotes the operator which returns the lower triangular matrix of the
Cholesky decomposition, D = diag(n1, . . . , nI), where n is the number of neighbours,
and Wij is equal to 1 if i and j are neighbours and 0 otherwise (Martinez-Beneito; 2013).
R is a matrix whose columns have the desired spatial distribution, which is assumed to fol-
low an intrinsic conditional autoregressive (ICAR) distribution. The ICAR is often used
in disease mapping models to describe a wider range of geographical patterns (Blangiardo
and Cameletti; 2015).

This article proposes a general framework for disease mapping, both within and be-
tween dependence in diseases. However, in this last summary, the focus is only on the
within dependence. This is due to the similarity with the models used by Etxeberria et al.
(2018). For example, looking at the covariance matrix, the (D−W ) is equal to the neigh-
bourhood matrix, R, used in the spatial modelling by Etxeberria et al. (2018). This is
because both articles use an ICAR model for the spatial distribution.

In this chapter four different articles on the subject of disease mapping have been
introduced, and are therefore relevant for this thesis. The second article focused on both
the geographical distribution of cancer incidence as well as the trend over time, where the
most interesting aspect is the use of the link between incidence and mortality. The other
two articles mainly focused on introducing more general frameworks for modelling spatial
patterns in one or more diseases. These last two articles are also mentioned by Etxeberria
et al. (2018), which reinforces the relevance for implementing them in this thesis.
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Chapter 5
Spatial modelling of brain cancer in
Norway in 2014–2018

This chapter analyses the Norwegian brain cancer data from 2014–2018 using two of the
models presented in the article by Etxeberria et al. (2018), including several possible ex-
tensions. A comparison of the models will be presented, followed by the results from the
best model.

Using the notation from chapter 4, Iijg and Mijg are the observed number of incident
cases and deaths in region i (i = 1, . . . , 18), gender g (g = 1 for males and g = 2 for fe-
males), and age group (j j = 1, . . . , 9). The analyses in the section has been performed in
the statistical computing language R, where the INLA methodology has been implemented
using the package R-INLA (see www.r-inla.org).

5.1 Applying the models from Etxeberria et al. (2018)
This first section will apply the models as presented in the article by Etxeberria et al.
(2018). The first part is dedicated to the main model used in their article, which is called
model 3∗ and contains two components, which is a structured spatial component and an
age component. The second part uses model 8∗, which contains an additional compo-
nent, v, that includes the spatially unstructured random effects for incidence and mortality.
Since these models are applied only to the last period in the data set, 2014–2018, we only
use the part of the table 2.1 from section 2 where the Period = 10.

As mentioned in chapter 2, the column 5, i, is a regional index, which ranges from
1 to 36. This is because the model besag2, used to model the weighted spatial effect
in R-INLA, is defined to have dimension 2n, where n is the size of the neighbourhood
structure and the number of regions. Norway has 18 counties, so 2n = 36. In addition
to columns 1–8 explained in chapter 2, the analyses in this section includes column 9,
10, 13, 14 and 15. Columns 9 and 10 include the indices i male and i female, which are
the gender-specific regional indices. The i male takes the value of i if the observation
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corresponds to male, that is, if g = 1, and the value NA if the observation corresponds to
female (g = 2). Equivalently, i female takes the value of i if the observation corresponds to
female and the value NA if the observation corresponds to male. The mu, found in column
13, represents intercept values needed when running the besag2 model. This is specified
to be both gender-specific and outcome-specific. In other words, mu = 1 if the Cases are
both incidence and male, mu = 2 if the Cases are incidence and female, mu = 3 if the
Cases are mortality and male and finally, mu = 4 if the Cases are mortality and female.
Columns 14 and 15 will be further explained in subsection 5.1.2 for model 8∗.

5.1.1 Modelling with a structured spatial component and age group

Model 3∗ is the simplest of the two models; containing only two components, the gender-
specific spatial random effects and the age-outcome-specific effects. These components
are the same as defined on page 18.

There are three different variances in this model as mentioned in section 4.1; σ2
u∗
m

, σ2
u∗
f

and σ2
α. INLA is working and retrieving results using the precision parameters, which are

the inverse of the variances, i.e. τu∗
m

= 1/σ2
u∗
m

, τu∗
f

= 1/σ2
u∗
f

and τα = 1/σ2
α (Martino

and Riebler; 2020). Internally, the log precisions are used to have a numerically stable
parametrization. The priors are defined on the precisions, and the first set of priors on
the hyperparameters, are PC priors. Here used with parameters U = 1 and α = 0.01,
i.e. P (σ > 1) = 0.01. When plotting and interpreting the results, the standard deviation
will be used instead of the precisions. This is because the standard deviation is easier to
interpret and the natural scale when using PC priors.

Putting this model in the LGMs framework specified in section 3, where y will cor-
respond to the observed cases of I and M , the latent Gaussian field is {δm, δf , u∗1,1, . . . ,
u∗18,1, u

∗
1,2, . . . , u

∗
18,2, u

∗
19,1, . . . , u

∗
36,1, u

∗
19,2, . . . , u

∗
36,2, α1,1, . . . , α1,9, α2,1, . . . , α2,9}.

The model has five hyperparameters {δm, δf , σ2
u∗
m
, σ2
u∗
f
, σ2
α}.

Implementing the model in R-INLA

In the R-code 5.1 most of the code to make the model 3∗ in R-INLA can be seen.
In line 4, the extraction of the data from time period 2014–2018 from the full data set,
BrainData, is seen. This is stored in the data set BrainData10. Lines 7–19 covers
the neighbourhood structure, which is stored in the variable g in line 7. This is accessed us-
ing the inla.read.graph(), which takes in the neighbourhood structure as an graph
object. Further, line 9–19 shows the information contained this structure. In line 9 the
total number of regions, n = 18, is found. The first number listed in lines 10–19 indicates
the region, while the following numbers on each line denotes the number of neighbours
followed by the neighbours. Further, line 10 shows the information about region 1. The
line starts with the number 1, indicating that it is region 1. Next, we find the number 5,
meaning region 1 has 5 neighbours. These neighbouring regions are then listed in increas-
ing order. For region 1, the neighbours are regions 2, 4, 6, 10 and 11. Likewise, line 11
indicates that region 2 only has 1 neighbour, which is region 1. Moreover, line 22 defines
the prior for the hyperparameters. This is a PC prior stored in pcprec and specified by
"pc.prec", with U = 1 and α = 0.01 specified in param.
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The model is specified in line 25–29. This is stored in formulaBrain3. Cases is
specified as the response variable and −1 is added to remove the intercept. The f() is
used to specify the LGM for the random effect and the hyperprior, i.e. the prior for the
hyperparameters, for its corresponding hyperparameters (Martino and Riebler; 2020). The
f(i male, . . .) and f(i female, . . .) corresponds to the spatial effect u∗ig in the
model. For these variables the besag2 model is used, as this is a model for weighted
spatial effect, where the weight is the δg , with δg > 0. This is reasonable to use in order
to fit the shared spatial component models. Here, the besag2 model is described by x =
(δgu

∗,u∗/δg). The neighbourhood structure, g, for the spatial effects is included in the
graph argument and the hyperprior, pcprec, is specified in hyper. The logical option
scale.model determines that the model u∗ should be scaled to have a generalized
variance equal to 1. This is done because it makes prior specification easier. The constr
= TRUE is a sum-to-zero constraint, needed because the covariance matrix is not full rank.

R-code 5.1: Code specifying the original model 3*

1 #READ R-INLA PACKAGE
2 library(INLA)
3 #EXTRACTING THE LAST TIME PERIOD FROM THE FULL DATA SET
4 BrainData10 = BrainData[BrainData$Period == 10,]
5
6 #READ THE NEIGHBOURHOOD STRUCTURE
7 g = inla.read.graph("nb-inla.txt")
8 #The neighbourhood structure contains the following information:
9 18

10 1 5 2 4 6 10 11
11 2 1 1
12 3 3 12 15 17
13 4 7 1 7 10 11 13 15 18
14 .
15 .
16 .
17 16 2 5 9
18 17 2 3 12
19 18 2 4 15
20
21 #PC PRIOR
22 pcprec = list(prec=list(prior = "pc.prec", param=c(1, 0.01)))
23
24 #FORMULA FOR THE MODEL 3*
25 formulaBrain3 = Cases ˜ - 1 + mu + f(i_male, model = "besag2",
26 graph = g, hyper = pcprec, constr = TRUE, scale.model = TRUE) +
27 f(i_female, model = "besag2", graph = g, hyper = pcprec,
28 constr = TRUE, scale.model = TRUE) + f(Agegroup, model = "iid",
29 hyper = pcprec, constr = T, replicate = inci_mort)
30
31 #INLA EXECUTION
32 results3 = inla(formulaBrain3, family="Poisson", data=BrainData10,
33 E = Population, control.predictor=list(compute=TRUE))
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Furthermore, the f(Agegroup, . . .) is equivalent toαdj , which is the same disease-
specific age effect as in section 4.1. This is fitted as an independent random noise model,
i.e. an iid model with N(0, σ2

α). In this part the constr = T is a sum-to-zero con-
straint. replicate = inci mort is used to generate iid replicates of this model with
the same hyperparameters. Here, inci mort defines how the observations are grouped
into the replicated effects, that is, by incidence and mortality. The replicating is done
because the age-outcome specific effect αdj is assumed to be the same for both genders.

In lines 32–33, in results3, the INLA execution of the formula object is put in the
main function inla(). The first argument is the formula, formulaBrain3. Next, the
Poisson distribution is defined in the family argument. The data is set to BrainData10,
as specified in line 4. The next argument is the parameter E = Population, which
specifies the population as an offset. The last argument specifies that the marginals for
the linear predictor should be computed, which is needed for the extracting of the shared
spatial effect presented below.

Extracting the shared spatial effect

In R-INLA the default output when using the besag2 model, is x = (δgu
∗,u∗/δg).

In this case, the first part of the output, x, corresponds to spatial effect for incidence and
the second part corresponds to the spatial effect for mortality. However, the interest in this
thesis lies in the shared spatial field, not in the spatial effect for different disease processes.
The only component separating the spatial field for incidence and mortality is the gender-
specific weighting parameter δg . Therefore, we want to remove this part of the output in
order to only be left with the shared spatial effect, u∗. In order to do this we needed to
specify the control.predictor=list(compute=TRUE), which enables the us-
age of the inla.posterior.sample(), in the INLA call in the R-code 5.1.

R-code 5.2: Code for extracting the shared spatial field

1 ##function for extracting the besag2 weight
2 fun = function(){
3 a.x.male = i_male
4 a_male = theta[2]
5 a.x.female = i_female
6 a_female = theta[4]
7 nn = length(a.x.male)
8 n = nn %/% 2L
9 #undo the effect of ’a’

10 return(c(a_male, a_female, a.x.male[1:n]/a_male,
11 a_male*a.x.male[n+1:n], a.x.female[1:n]/a_female,
12 a_female*a.x.female[n+1:n]))
13 }
14
15 ##making samples of the result
16 samp = inla.posterior.sample(100, results3)
17
18 ##evalutating the samples with the function above
19 xtrct = inla.posterior.sample.eval(fun, samp)
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As the desired output is not already included in R-INLA, we have to extract it our-
selves. The outputs for i male and i female are the default outputs, from which we need to
extract the spatial effect without δm and δf . This is done by first generating 100 samples
from the approximated posterior of the model fitted in line 31–32 of the R-code 5.1. To
do this we use of the R-INLA function inla.posterior.sample(). These samples
are then put into the function inla.posterior.sample.eval(), which evaluates
each sample within a specific function. How this is done can be seen in R-code 5.2.

In lines 2–13 we find the actual function for extracting the weights, which is called
fun. Lines 3–6 specifies the model results, where a.x.male and a.x.female stores
the result sample values for the spatial effects and a male and a female stores the result
samples values of the two δg’s. Lines 7–8 stores the length of a male in nn and half of
this length in n. The effect of the weights are undone in lines 10–12. In line 16 we find the
generating of the 100 samples of the results of the model, which is stored samp. These
100 samples are evaluated using the fun-function and stored in xtrct, which is found
in line 19.

In other words, this function takes samples for i male, i female, δm and δf and returns
(i male/δm) and (i female/δf ) for first half of the values of i male and i female, and
returns (i male×δm) and (i female×δf ) for the second half of the values. The first n
values and the last n values should be the same up to numerical error. When doing this,
we counteract the effect of δg for each of the 100 samples, and are left with only the shared
spatial effects for men and women. This will further be utilized to make plots of the best
model in section 5.4.

Estimated posterior values of the hyperparameters

Table 5.1 shows the posterior summary information for the standard deviations and weight
parameters. In particular, it shows the estimated posterior mean, standard deviation and
median with corresponding 95% quantiles for the hyperparameters. The values are ob-
tained by extracting the results on precision scale from R from results3$summary.
hyperpar, and then transformed to standard deviation scale by the use of the R-INLA
formulas inla.tmarginal() and inla.zmarginal(). Here the first formula is
used to transform the estimated posterior values of the hyperparameter to standard devia-
tion scale, while the latter is used to extract the summary information about the hyperpa-
rameters.

Table 5.1: Estimated posterior summary estimates of the hyperparameters in model 3*

Hyperparam. Mean SD 0.025 quant 0.5 quant 0.975 quant
σu∗

m
0.071 0.029 0.028 0.067 0.142

δm 0.983 0.226 0.609 0.960 1.493
σu∗

f
0.101 0.033 0.050 0.097 0.179

δf 1.446 0.274 0.977 1.422 2.053
σα 1.036 0.159 0.769 1.019 1.393

In this table, we see that the posterior means of the standard deviation of the spatial
effect for male and female are 0.071 and 0.101, respectively. The estimated value of their
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corresponding standard deviations are 0.029 for men and 0.033 for women. Both these
standard deviations look acceptable. The means for both parameters are over twice as big
as the standard deviations, which is a good sign, as the range of the values probably should
not reach into negative values. Further, the posterior mean of the standard deviation of the
age effect is quite close to 1 with a value of 1.036, with a corresponding standard deviation
of 0.159. This is also an acceptable value. However, the value of the standard deviation
for the age effect is much larger than the standard deviations for the spatial effect. This
might indicate that it is more variation for age than for space and that the age effect is less
smooth than the spatial effect.

Moreover, we see that the gender-specific spatial weight parameters δm and δf are
equal to 0.983 and 1.446, respectively. The weight parameter for males, δm is much closer
to 1 than the weight parameter for females. This might indicate that the shared spatial field
for incidence and mortality is more similar for males than it is for females. The large value
of the mean of the weight parameter for women might indicate that the spatial effects for
incidence and mortality are somewhat different. As we have assumed correlation between
incidence and mortality, a mean closer to 1 would be preferable. This will be further
investigated in section 5.3.

5.1.2 Extending by an unstructured spatial component
Model 8∗ includes an extra component vdi, in addition to the components we find in model
3∗. In the model comparisons in Etxeberria et al. (2018), this model only performs slightly
worse than model 3∗. Because of this, it would be interesting to add v when analysing the
Norwegian data to see if it could improve the estimates, or if the performance is worse, as
in the article.

As mentioned in chapter 4, the vdi component represents the spatially unstructured
random effects, which here is symmetrically added. This means that it is added for both
disease processes, but it is not gender-specific as u (Etxeberria et al.; 2018). The compo-
nents u and α are defined in the same way as in model 3∗.

For this model we need columns 14 and 15 from table 2.1; the columns i incidence
and i mortality. The column i incidence takes the values of i when the entry in Cases is an
incident count, meaning as long as inci mort is 1. Similarly, i mortality takes the values
i − 18 when inci mort is 2. In other words, both i incidence and i mortality takes the
values from 1 to 18 for each of the 18 counties.

Putting this model in the LGMs framework, the latent Gaussian field is {δm, δf , u∗1,1,
. . . , u∗18,1, u

∗
1,2, . . . , u

∗
18,2, u

∗
19,1, . . . , u

∗
36,1, u

∗
19,2, . . . , u

∗
36,2, , v1,1, . . . , v1,18, v2,1, . . . ,

v2,18, α1,1, . . . , α1,9, α2,1, . . . , α2,9}. The model has seven hyperparameters {δm, δf , σ2
u∗
m
,

σ2
u∗
f
, σ2
α, σ

2
v1 , σ

2
v2}.

Implementing the model in R-INLA

In the R-code 5.3, the formulaBrain8 can be seen in line 8–14. This is just an exten-
sion of formulaBrain3 with the additional components f(i incidence, model
= "iid", hyper = pcprec) and f(i mortality, model="iid", hyper
= pcprec). The other components used to implement model 8∗ in R-INLA are exactly
the same as defined in section 5.1.1.
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R-code 5.3: Code for imprementing the original model 8*

1 #THE SAME NEIGHBOURHOOD STRUCTURE AS IN MODEL 3*
2 g = inla.read.graph("nb-inla.txt")
3
4 #PC PRIOR
5 pcprec = list(prec=list(prior="pc.prec", param=c(1, 0.01)))
6
7 #FORMULA FOR THE MODEL 8*
8 formulaBrain8 = Cases ˜ -1 + mu + f(i_male, model = "besag2",
9 graph = g, hyper = pcprec, constr = TRUE, scale.model = TRUE) +

10 f(i_female, model = "besag2", graph = g, hyper = pcprec,
11 constr = TRUE, scale.model = TRUE) + f(Agegroup, model="iid",
12 hyper=pcprec, constr = TRUE, replicate=inci_mort) +
13 f(i_incidence, model = "iid", hyper = pcprec, constr = TRUE) +
14 f(i_mortality, model = "iid", hyper = pcprec, constr = TRUE)
15
16 #INLA EXECUTION
17 results8 = inla(formulaBrain8, family="Poisson", data=BrainData10,
18 E=Population, control.predictor=list(compute=TRUE))

As in model 3∗, the data used in model 8∗, is only from the period 2014–2018. There-
fore, the data used here is also BrainData10. Since v is included for both disease
processes, we need to specify one component for incidence and one for mortality in the
formula. The models are specified to be iid since the component is an unstructured ef-
fect. The PC priors for the hyperparameters and neighbourhood structure are the same as
in model 3∗. The results from this model is stored in results8, as seen in line 17–18.

Estimated posterior values of the hyperparameters

Table 5.2 shows all the estimated posterior summary information of the standard deviations
and weight parameters for this model. This includes the estimated posterior mean, standard
deviation and median with corresponding 95% quantiles. As for model 3∗, the values are
found on standard deviation scale.

Table 5.2: Estimated posterior summary estimates of the hyperparameters in model 8*

Hyperparam. Mean SD 0.025 quant 0.5 quant 0.975 quant
σu∗

m
0.058 0.033 0.017 0.051 0.141

δm 0.916 0.256 0.505 0.886 1.500
σu∗

f
0.074 0.038 0.024 0.066 0.169

δf 1.230 0.321 0.701 1.198 1.953
σα 1.036 0.159 0.769 1.019 1.393
σv1 0.083 0.032 0.037 0.078 0.160
σv2 0.035 0.025 0.006 0.029 0.097

This table show quite different values than the model 3∗. Here, the posterior mean
of the standard deviation of the spatial effect for males and females are 0.058 and 0.074,
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respectively. These values are smaller and more similar than for model 3∗. However,
the standard deviations are much larger compared to the means for this model than the
former. Especially for men, the mean is less than twice the value of the standard deviation.
Moreover, the estimated posterior value for the weight parameter for women is closer to
1 than for model 3∗, indicating that the shared spatial field might be more similar for this
model.

For the standard deviations of the unstructured spatial effect, v1 indicates incidence
and v2 indicates mortality. The mean and standard deviation for incidence have acceptable
values. However, for the mortality, the standard deviation is very similar to the mean,
which might indicate a problem with this model. Due to this, improvements could be
made to this model as well. Moreover, the posterior values of the standard deviations for
the unstructured effect are so small, almost close to zero. This might indicate that these
random effects are not that important after all.

5.2 Introducing possible changes to the original models
In the previous section, it was specified that not all the estimated posterior values for the
hyperparameters were ideal. This was both due to large means of the standard deviations,
as well as large values for the female weight parameter. In this section different changes to
the two models from section 5.1, will be presented. This includes fitting different models
for the age effect, changing the priors for the hyperparameters and adding an unstructured
effect to account for everything not captured by the other model components.

5.2.1 Prior choices
For model 3∗ and model 8∗ from section 5.1, the priors specified for the hyperparameters
were the same as used in the article by Etxeberria et al. (2018). However, the parameters
for these priors might be too rigid, as they impose a constraint saying that the probability
of the standard deviation of the hyperparameter being larger than 1 should be equal to
0.01. In addition, the posterior values of the standard deviations in both models from the
previous section show some difference in the values for the spatial effect and the age effect.
Because of this, it might make sense to use the different priors in the model.

Using different priors for the different hyperparameters

One possible improvement to the models presented above might be to change the param-
eters for the PC priors. Below we find a proposed improvement to the original priors for
the hyperparameters.

R-code 5.4: Code for implementing the new set of priors to both model 3* and 8*

1 #PRIOR FOR THE SPATIAL EFFECTS
2 pcprec1 = list(prec=list(prior=’pc.prec’, param=c(1, 0.05)))
3
4 #PRIOR FOR THE AGE EFFECT
5 pcprec2 = list(prec=list(prior=’pc.prec’, param=c(3, 0.1)))
6
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7
8 #FORMULA AND INLA EXECUTION OF MODEL 3*
9 formulaBrain3b = Cases ˜ -1 + mu + f(i_male, model = "besag2",

10 graph = g, hyper = pcprec1, constr=TRUE, scale.model = TRUE) +
11 f(i_female, model = "besag2", graph = g, hyper = pcprec1,
12 constr=TRUE, scale.model = TRUE) + f(Agegroup , model = "iid",
13 hyper = pcprec2, constr = TRUE , replicate = inci_mort)
14
15 results3b = inla(formulaBrain3b, family = "Poisson",
16 data=BrainData10, E = Population, control.predictor =
17 list(compute=TRUE))
18
19 #FORMULA AND INLA EXECUTION OF MODEL 8*
20 formulaBrain8b = Cases ˜ -1 + mu + f(i_male, model = "besag2",
21 graph = g, hyper = pcprec1, constr = TRUE, scale.model = TRUE) +
22 f(i_female, model = "besag2", graph = g, hyper = pcprec1,
23 constr = TRUE, scale.model = TRUE) + f(Agegroup, model="iid",
24 hyper=pcprec2, constr = TRUE, replicate=inci_mort) +
25 f(i_incidence, model = "iid", hyper = pcprec1, constr = TRUE) +
26 f(i_mortality, model = "iid", hyper = pcprec1, constr = TRUE)
27
28 results8b = inla(formulaBrain8b, family = "Poisson",
29 data = BrainData10,E=Population, control.predictor =
30 list(compute=TRUE))

R-code 5.4 displays an alternative to the original priors for the hyperparameters.
Here, two other PC priors are defined. The first one can be seen in line 2 and is stored in
pcprec1. For this prior, the limitations are slightly more liberal than for the original, by
defining the probability of the standard deviation of the hyperparameter being larger than
1 to be equal to 0.05, i.e. P (σ > 1) = 0.05. The pcprec1 prior is used to the structured
spatial effect in both model 3∗ and model 8∗, as well as for the unstructured spatial effect
in model 8∗. This can be seen in lines 8–13 and 19–26, where the new formulas for both
models can be found.

Further, in line 5 an alternative prior for the age effect is shown. This is also a PC
prior, which is stored in pcprec2. For this prior, the parameters are specified to be equal
to 3 and 0.1, meaning U = 3 and α = 0.1, i.e. P (σ > 3) = 0.1. In other words, the
probability of the standard deviation of the hyperparameter being larger than 3 is set to
be equal to 0.1. The reason for the wider definition of the prior for the age group is that
posterior value of the standard deviation of the age effect is significantly larger than for
the spatial effects.

5.2.2 Adding an unstructured component for overdispersion
None of the models presented so far includes a component to account for all other un-
structured effects which cannot be explained by the specific components. Therefore, we
now propose adding an overdispersion component. The purpose is to address unstructured
heterogeneity that is not captured by the other model components. For model 3∗, this can
be added like this:
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Model 3*: log λIijg = δgu
∗
ig + αIj + zIijg

log λMijg =
1

δg
u∗ig + αMj + zMijg

where zdijg represents the overdispersion, where z | σ2
z ∼ N(0, σ2

zIN ), with N being the
number of rows in the data matrix, i.e. BrainData10. Equivalently, it can be added to
model 8∗. How this component is added, can be seen in R-code 5.5 below.

R-code 5.5: Code for the original model 3* with the added overdispersion component

1 #FORMULA FOR THE MODEL 3* with overdispersion
2 formulaBrain3c = Cases ˜ -1 + mu + f(i_male, model = "besag2",
3 graph = g, hyper = pcprec, constr = TRUE, scale.model = TRUE) +
4 f(i_female, model = "besag2", graph = g, hyper = pcprec,
5 constr = TRUE, scale.model = TRUE) + f(Agegroup, model = "iid",
6 hyper = pcprec, constr = T, replicate = Inci_mort) +
7 f(z_row, model = "iid", hyper = pcprec)
8
9 #INLA EXECUTION

10 results3c = inla(formulaBrain3c, family = "Poisson",
11 data = BrainData10, E = Population, control.predictor =
12 list(compute=TRUE))

The overdispersion component can be seen in line 7 in the R-code 5.5. It is added
to R-INLA by the use of column 16, z row, from table 2.1. This column takes the values
of each row, meaning that for the full data set, it takes the values 1 to 6480. For the data
set used, BrainData10, it takes the values 1 to 648, as this data set is ten times smaller
than the full set. This is modelled using an iid model, since it is an unstructured effect.

5.2.3 Changing the age effect model

In model 3∗ as specified by Etxeberria et al. (2018) an iid model has been used for the age
effect when doing the analysis. The age effect has also been assumed equal for males and
females. This small section will look into using other models for the age effect in both
model 3∗ and 8∗. The code examples shown below will only be for model 3∗, but the same
changes can be made to model 8∗. This will be done when comparing all the models in
section 5.3.

Introducing the random walk of order 2

A possible change to modelling the age effect is changing the iid model to an second order
random walk model (rw2), assuming that effects for neighbouring time-points are similar.
Given a time ordered vector α = (α1, . . . , αT ), a random walk is defined as a model of
order r such that, for a given t, αt only depends on the previous t−r elements (Blangiardo
and Cameletti; 2015, pp. 132–134). Hence, the second order random walk is a model of
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order 2 defined such that αt only depends on the previous t−2 elements. The second-order
increments in the second-order random walk are defined as:

∆2αt = (αt − αt+1)− (αt+1 − αt+2) ∼ N(0, σ2
α)

where t = 1, . . . , T − 2 and σα is the standard deviation (Rue and Held; 2005, ch. 3).
The second-order increments can be seen as an estimation of a second-order derivative of
continuous time function, making the rw2 model a good model for representing smooth
curves. The rw2 is flexible because of its stability to addition of a linear trend and its
Markov properties, making it computationally convenient (Lindgren and Rue; 2008). The
density of an second order random walk is:

π(α) ∝ 1

σ
(T−2)
α

exp

(
− 1

2σ2
α

T−1∑
t=2

(αt−1 − 2αt + αt+1)2
)

=
1

σ
(T−2)
α

exp

(
1

2
αTQα

)
with α = (α1, . . . , αT )T (Lindgren and Rue; 2008; Rue and Held; 2005). The precision
matrix is given as (Rue and Held; 2005, ch. 3):

Q =
1

σ2
α



1 −2 1
−2 5 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 6 −4 1

1 −4 5 −2
1 −2 1


Modelling using a rw2 model

The first change done to the age effect, is changing the iid model to a rw2 model. This is
the only change made to the model, which is done to the formula part in the R-code. In
the R-code 5.6 this change can be seen in line 5–6. The same change can be made for
model 8∗, but this is not showed.

R-code 5.6: Code for model 3* with rw2 model for the age effect

1 #FORMULA FOR THE MODEL 3* with rw2 model on age effect
2 formulaBrain3d = Cases ˜ -1 + mu + f(i_male, model = "besag2",
3 graph = g, hyper = pcprec, constr = TRUE, scale.model = TRUE) +
4 f(i_female, model = "besag2", graph = g, hyper = pcprec,
5 constr = TRUE, scale.model = TRUE) + f(Agegroup, model = "rw2",
6 hyper = pcprec, constr = T, replicate = Inci_mort)
7
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8 #INLA EXECUTION
9 results3d = inla(formulaBrain3d, family = "Poisson",

10 data = BrainData10, E = Population, control.predictor=
11 list(compute=TRUE))

Changing to gender specific age effect

The second change done to the model for age effect, is changing from joint age effect
to separate age effect for each gender. For this model, we need columns 11 and 12,
agegroup male and agegroup female, from table 2.1 in section 2. The agegroup male
takes the values of the Agegroup if the gender is male, i.e. if Gender = 1, and NA other-
wise, and the agegroup female takes the value of the Agegroup if the gender is female, i.e.
if Gender = 2, and NA otherwise.

R-code 5.7: Code for model 3* with two separate rw2 models for the age effect

1 #FORMULA FOR THE MODEL 3* with two rw2 models on age effect
2 formulaBrain3e = Cases ˜ -1 + mu + f(i_male, model = "besag2",
3 graph = g, hyper = pcprec, constr = TRUE, scale.model = TRUE) +
4 f(i_female, model = "besag2", graph = g, hyper = pcprec,
5 constr = TRUE, scale.model = TRUE) + f(agegroup_male,
6 model = "rw2", constr = TRUE, hyper=pcprec) +
7 f(agegroup_female, model = "rw2", constr = TRUE, hyper=pcprec)
8
9 #INLA EXECUTION

10 results3e = inla(formulaBrain3e, family = "Poisson",
11 data = BrainData10, E = Population, control.predictor=
12 list(compute=TRUE))

The separate age effect is added to the formula for model 3∗ in R-code 5.7. In
line 5–7 these age effects can be seen, where it can be seen that the first arguments are
agegroup male and agegroup female. For the separate age effects for men and
women a random walk of order 2 was chosen for both age effects. As for the previous
change in the age effect model, these separate age effect for male and female can be used
for model 8∗ as well.

5.3 Using model choice criteria to choose the best models
In this section, the model changes and improvements suggested in the previous section will
be compared to the original models using several model choice criteria. Before starting the
comparison of the different models, the model choice criteria will be briefly introduced.

5.3.1 Model choice criteria

For the comparison of the different models, three model choice criteria will be used. These
are the Deviance Information Criterion (DIC), the Watanabe–Akaike Information Criterion
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(WAIC) and the Logarithmic Score (LS). These are the same criteria used by Etxeberria
et al. (2018).

The Deviance Information Criterion (DIC)

The first model choice criterion is the deviance information criterion (DIC), introduced by
Spiegelhalter et al. (2002). For the use in INLA, this is defined as:

DIC = D(x̂, θ̂) + 2pD

where x̂ and θ̂ are the posterior expectations of the latent effects and the hyperparameters,
where posterior means are used for the latent field and posterior mode for the hyperpa-
rameters (Gómez-Rubio; 2020, ch. 2). Further, the D() is the deviance, which can be set
equal to −2 times the log-likelihood, and pD is the effective number of parameters, which
is defined as the posterior expected deviance (Spiegelhalter et al.; 2002). According to
Spiegelhalter et al. (2002), the DIC can be considered as a Bayesian measure of fit, which
is penalized by the complexity term pD.

However, Plummer (2008) emphasizes that the approximations made using DIC only
will be valid when the effective number of parameters in the models are significantly
smaller than the number of independent observations. Because of this, the use of DIC
in disease mapping might not be optimal, as this assumption usually does not hold. In
other words, in disease mapping there are often models where pD is the same order as n.
This will further lead to under-penalization of more complex models (Plummer; 2008).
Despite of this, the DIC will be used in the model comparisons, but because of its possible
limitations, it will be used with care and together with other criteria. This criterion is cal-
culated directly by R-INLA when setting control.compute=list(dic=TRUE) in
the INLA function call.

The Watanabe–Akaike Information Criterion (WAIC)

The Watanabe-Akaike information criterion (WAIC) was introduced by Watanabe (2010)
under the name widely applicable information criterion. The definition for WAIC is
slightly more complicated than for the DIC, but essentially the WAIC also computes the
deviance by the use of the log-likelihood of the posterior. In addition, the WAIC can also be
seen as an improvement on the DIC for Bayesian models. Moreover, the posterior distribu-
tion is used in its entirety, making the WAIC fully Bayesian, and it is asymptotically equal
to Bayesian cross-validation (Vehtari et al.; 2017). This criterion is calculated directly in
the result part by R-INLA when setting control.compute=list(waic=TRUE).

The Logarithmic Score (LS)

The last method logarithmic score (LS), is a so-called proper scoring rule (Gneiting and
Raftery; 2007). A scoring rule is proper if the expected score is minimized, with respect to
the true data-generating distribution, Y0 ∼ f0, if the posterior distribution f is equal to the
data-generating distribution f0 (Held and Sabanés Bové; 2014, pp. 311–312). This score
is defined as:
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LS(f(y), y0) = − log f(y0) (5.1)

Here, f(y) is the predictive distribution, and y0 are the observed values.
In this thesis we do not do predictions, and therefore we do not have a predictive

distribution. In order to calculate the LS, the conditional predictive ordinates (CPO) are
used. In INLA the CPOs are calculated using approximate leave-one-out cross-validation.
For this case the CPOs are defined as:

CPOi = π(yobsi | y−i)

where yobsi are the actually observed values, the y−i denotes the observations y with the
i-th component omitted and π() is the posterior predictive distribution (Held et al.; 2010,
pp. 91–110). In INLA, the leave-one-out cross-validation does not actually leave out ob-
servations one by one, but rather approximate the leave-one-out cross-validation. In other
words, INLA does not actually rerun the model for each observation, but approximates the
resulting density. Further, we get the LS from the CPO like:

LS = −
∑
i

log CPOi

where we sum over all CPO values and the rest of the definition is equal to the predic-
tive definition in equation 5.1. In R-INLA the CPOs are calculated directly by setting
control.compute=list(cpo=TRUE). From the CPO values, the LS can be calcu-
lated as LS = -sum(log(results3$cpo$cpo)).

5.3.2 Comparing models with structured spatial component and age
group

In this part, comparisons of the variations of model 3∗ will be shown. The criteria shown in
the previous section will be used to find the best model. The different prior values for the
hyperparameters showed extremely small variations in the model choice criteria. Because
the difference where so small, the original priors will first be used to do the comparison of
the different models. After getting the best model, the best prior based on the estimated
posterior values will be chosen.

Table 5.3: Comparing the different versions of model 3∗

Model DIC WAIC LS
M3∗iid 3092 3103 1552
M3∗rw2 3092 3103 1552
M3∗sep 3109 3120 1561
M3∗iid,z 3078 3084 1548
M3∗rw2,z 3078 3084 1548
M3∗sep,z 3090 3096 1556

Table 5.3 shows a comparison of the various changes introduced to model 3∗, includ-
ing the original model 3∗. This comparison shows every model with the PC priors with
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parameters U = 1 and α = 0.01. In the table, M3∗iid represent the original model 3∗,
M3∗rw2 represents the model with a rw2 model for the age effect, and M3∗sep is the model
with the separate age effect. Further, M3∗iid,z , M3∗rw2,z and M3∗sep,z represent the same
models with the overdispersion component, zdijg , added.

From this it can be seen that the model M3∗iid,z and M3∗rw2,z performs equally well.
The performance of the iid models for the age effect are almost identical as the rw2 models.
However, we will move forward with M3∗rw2,z as this is one of the best performing models
and the rw2 model is a smoother model than the iid. This model has an overall good
performance in all model choice criteria, implicating that it is probably the best alternative
to the model 3∗. In the table, the criteria for this model is highlighted in bold.

The different prior values for the hyperparameters showed extremely small variations
in the model choice criteria. For this reason, the estimated posterior mean and standard
deviation for standard deviation of the hyperparameters for the M3∗rw2,z are displayed with
this prior change side by side with the original prior. This is done in order to check if the
prior changes have an impact on the values rather than the model choice criteria. This can
be seen in table 5.4.

Table 5.4: Comparing the estimated posterior means and standard deviations of the hyperparameters
of the best model with different priors

PC(1, 0.01) PC(1, 0.05) & PC(3, 0.1)
Hyperparameter mean SD mean SD
σu∗

m
0.059 0.030 0.061 0.030

δm 0.994 0.250 0.992 0.247
σu∗

f
0.083 0.033 0.085 0.034

δf 1.319 0.289 1.312 0.287
σα 0.288 0.072 0.312 0.084
σz 0.119 0.022 0.119 0.022

This table displays the original PC prior with parameters U = 1 and α = 0.01 on the
left and the updated PC priors on the right, with parameters U = 1 and α = 0.05 for the
spatial effect and the overdispersion, and U = 3 and α = 0.1 for the age effect. For all
hyperparameters, it is clear that the estimated posterior means and standard deviations are
quite similar for both sets of priors. It is only small difference in the last decimal place
for most of the values. Hence, the results are not particularly prior sensitive, which is
a positive result. As the results are so similar, the second set of priors, P (1, 0.05) and
P (3, 0.1), are chosen for the remainder of the thesis as they are more tailored towards the
application.

5.3.3 Comparing the models with the additional unstructured spatial
effect

In this part, comparisons of the variations of model 8∗ will be shown. The criteria pre-
sented in section 5.3.1 will be used to find the best model. The results from this compar-
ison can be seen in table 5.5, with all 6 different combinations of the model. As the best
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model from the previous comparison showed improvement with the two different PC pri-
ors, we use the same priors when comparing the models in this section. The unstructured
and structured spatial effects have PC priors with parameters U = 1 and α = 0.05. Like in
the previous comparison, the PC prior with U = 3 and α = 0.1 is fitted for the age effect.

In these tables, the indices are changed in comparison to the previous section. This
is done in order to make the tables easier to read. Here, the index A takes the values Ai,
Ar and As for the iid model, the rw2 model and the separate model for the age effect,
respectively. Further, the index vi is added for the unstructured spatial effect, which can
be modelled using an iid model. Finally, the z indicated the overdispersion component as
previously.

Table 5.5: Comparing the different versions of model 8∗

Model DIC WAIC LS
M8∗Ai,vi

3093 3104 1553
M8∗Ar,vi

3093 3104 1553
M8∗As,vi

3109 3121 1561
M8∗Ai,vi,z

3087 3099 1551
M8∗Ar,vi,z

3079 3087 1548
M8∗As,vi,z

3090 3098 1556

Out of all 12 different models, the best model can be seen in bold in table 5.5. This
is the model 8∗ with rw2 model for the age effect, iid models for the unstructured spatial
effect and the overdispersion component. In the table it is clear that many of the models
have almost equal performance. However, this model has the lowest WAIC and lowest LS,
making it the best performing model. This could be debatable since many of the models
have almost the same performance, but this model is chosen on the basis of the slightly
lower values.

5.4 Results

In this section the results of the two best models from section 5.3 can be seen. Even though
model 8∗ has one component more than model 3∗, these versions of the models performed
so similarly that only the spatial effect of the version of model 3∗ will be plotted, as
no additional information on the spatial effect was seen in plot of the more complicated
model. Further, when talking about model 3∗ and model 8∗, it implies the best models
from the previous section.

Figure 5.1 shows the average of the samples for the shared spatial effect for the brain
cancer incidence and mortality per 100 000 in both men and women. In the figure, we find
the shared spatial effect for men on the left and for women on the right. These values are
extracted as explained in section 5.1.1. In other words, the plot shows exp(u∗). Further,
the figures show the plots on the same colour scale, with values ranging from 0.85 to 1.15.
Both genders are plotted on the same scale as a way to emphasize the differences in the
shared spatial effect between the genders.
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Figure 5.1: Estimated posterior mean of the gender-specific shared spatial random effects for men
and women for all counties in 2014–2018

The figure clearly shows a larger variation in the spatial effect for females than for
males. This can be seen from the plots, as the spatial effect has values in the entire range
from 0.85 to 1.15 for women, whereas for men most of the values are all closer to 1. This
suggests that the spatial effect for men is not as strong as for women. It should be pointed
out that the range for women is not huge, but significantly larger than for men. Signs
of regional trends, with increasing rates from north to south, can be observed for both
genders. For both genders, this trend can be observed along the western coast, from Møre
og Romsdal to Rogaland. For males, this trend is also slightly apparent in the northern
most counties, from Finnmark to Nordland. However, this is not equally noticeable. No
general regional trend can be seen for either gender.

However, one trend found in the plots for both genders, is the similarities among bor-
dering counties. In other words, the plots show almost no sharp increases or decreases
in rates between neighbouring counties, but rather smooth transitions. This coincide with
the assumption of similarities between neighbouring regions. There is, however, some
exception from this smoothness as well. For women, there are noticeable exceptions be-
tween Trøndelag and Nordland and between Troms and Finnmark, where the transitions
between the counties are more rough. Overall, the similarities between the counties are
more visible for men than for women.

Table 5.6 presents the estimated posterior summary information of the hyperparame-
ters of the adapted model 3∗, which includes a rw2 model for the age effect and overdisper-
sion. Here we find the posterior mean, standard deviation and median with the correspond-
ing 95% quantiles. For the standard deviation of the spatial effect we have a posterior mean
of 0.061 with a standard deviation of 0.030 for men and a mean of 0.085 with standard
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Table 5.6: Estimated posterior summary estimates of the hyperparameters in the adapted model 3*
with rw2 model for age effect and overdispersion

Hyperparam. Mean SD 0.025 quant 0.5 quant 0.975 quant
σu∗

m
0.061 0.030 0.018 0.056 0.134

δm 0.992 0.247 0.588 0.965 1.554
σu∗

f
0.085 0.034 0.034 0.080 0.166

δf 1.312 0.287 0.830 1.286 1.952
σα 0.312 0.084 0.185 0.299 0.511
σz 0.119 0.022 0.079 0.118 0.165

deviation of 0.034 for women. Hence, both means are over twice as large as their standard
deviations. The small standard deviations of the spatial effect corresponds to high preci-
sions. This would indicate that we have a smooth spatial effect. Moreover, the standard
deviations for the age effect and overdispersion look rather good, with reasonable means
and standard deviations significantly smaller than their means. Comparing the standard
deviation of the age effect of this updated model with the values of the original model 3∗,
this standard deviation is smaller than in the original. Hence, the age effect of the updated
model is smoother than the age effect in the original model.
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Figure 5.2: Posterior marginal distribution for the hyperparameters of the adapted model 3∗ (solid
black curves) and the adapted model 8∗ (dotted grey curves) on the standard deviation scale, with
vertical lines for the posterior means (dotted) and medians (solid).

Further, the estimated means for δm is almost equal to 1, indicating that the shared
spatial field for men seem to be near identical for incidence and mortality. However, for
females, δf is reasonably larger than 1, as in the original model from section 5.1.1. Never-
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theless, for this improved model the estimated value is closer to 1 than the original model.
This indicates that the shared spatial field for women in the improved model is more sim-
ilar than in the original. As we have assumed that a relationship between incidence and
mortality exists, this is a positive result and strengthens the improved model.

In figure 5.2 we find the posterior marginal distributions of the hyperparameters on
standard deviation scale. In these plots, the solid black curves represent the model 3∗

and the dotted grey curves represent model 8∗. As the model 3∗ performed better than
model 8∗, this figure is included in order to show some of the differences between the
two models. In the bottom two plots, we find the standard deviations of the unstructured
spatial effect, v1 and v2 , which is only found in model 8∗. In the top row, the posterior
marginal distributions for the standard deviation of the spatial effects are displayed and
in the middle row we find the standard deviation of the age effect and the overdispersion.
Further, in the vertical lines, the posterior means and medians are found, where the means
are the dotted lines and the medians are the solid lines, again separated by colour for the
two models.

For the hyperparameters for the spatial effect for females, we see that the median
and mean lie close together for model 3∗, but has a larger gap for model 8∗. For the
spatial effect for males, this distance between the median and mean is similar, with the gap
being slightly narrower for model 3∗. For the age effect the means and medians appear
to be equal for both models. For the overdispersion the distances between the means and
medians seem almost the same, where the distribution of model 3∗ is shifted further to
the right than model 8∗. However, both curves show signs of being symmetrical. Both
the hyperparameters for the structured and the unstructured spatial effect show posterior
marginals that are right skewed. For the structured spatial effect, model 3∗ has a much
more symmetrical shape than model 8∗. For the age effect and the overdispersion, the
curves are practically equal in shape for both models.
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Figure 5.3: Estimated posterior median with 95% quantiles of the rw2 effects for age groups in the
adapted model 3∗, for incidence (left) and mortality (right)
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In figure 5.3 we see the median of the rw2 effect for the age groups, for both in-
cidence and mortality. As with figure 5.1, this figure is shown only for model 3∗ be-
cause of the similarities in the results for model 3∗ and model 8∗. This is made using
results3$summary.random$Agegroup, where result3 is the result of the best
model 3∗. Because the same age effect is assumed for men and women, these figures
regards both genders. In these plots the red line indicates the median and the grey area
surrounding this, is the 95% quantile region. In the plot, the ages 5–85 on the x-axis cor-
responds to the mid-values of the age groups 0–9, . . ., 80+ in the data, where 5 = 0–9, 15
= 10–19, etc.

In the incidence plot on the left, there is clearly an increasing trend between age group
10-19 and age group 70–79. Between age group 70–79 and 80+ the trend looks like it
has slightly flattened out. Looking back at the explanatory plot of the age groups, the
trend kept increasing for men, but decrease for women from age group 70–79. This might
explain the flattening of the curve. A similar trend can be seen in the mortality plot, on
the right, between age groups 10–19 and 70–79. This is a similar pattern as seen in the
exploratory plot of the crude incidence and mortality rates shown in figure 2.3 in section 2.
This might suggest that the oldest men and women are more likely do die of other causes
than of brain cancer.

For both disease processes there is a change in the effect between the youngest children
and the children in age group 10–19. For incidence the age effect is increasing in a slower
rate than for the the following age groups. For mortality the age effect for the youngest
children is higher than for the children in the next age group. This can be seen by the small
dip in the curve in the left part of the lines. This trend is also shown in the article by Etxe-
berria et al. (2018), who points out that most cancer types usually have increasing rates
from age group 0–9 to 10–19. The shape of the curve for the youngest age groups is in-
teresting, as there are usually not many cancer types where this trend is present. However,
since brain cancer is the second most common cancer type in small children, this trend
might be reasonable. The sharp curve for mortality will also implicate that the youngest
children are more likely to die of brain cancer than the adolescents in age group 10–19.
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Chapter 6
Spatio-temporal modelling of brain
cancer in Norway from 1969–2018

The previous chapter investigated the spatial patterns of brain cancer in Norway for the
period 2014–2018, which does not allow us to say anything about the temporal variations.
However, investigating the temporal variations from 1969–2018 could be equally interest-
ing and important.

Therefore, this chapter will analyse the Norwegian brain cancer data over all time
periods, from 1969–2018, using the best of the models presented in the spatial modelling
in section chapter 5, with the added time component. For this section, the index t is needed
for the modelling. This index represents time and have the range t = 1, . . . , 10, for the 10
time periods in 1969–2018.

6.1 Adding the temporal component and space-time in-
teraction

For this analysis, the entire data set, BrainData, is required. From table 2.1 column 8,
Period, is used in order to account for the time. In this column, 1 represents the period
1969–1973, 2 is 1974–1978, etc. The model used in this section can be described like this:

Model T: log λIijgt = δgu
∗
ig + αIj + βIt + zIijgt

log λMijgt =
1

δg
u∗ig + αMj + βMt + zMijgt

where βdt is the time component, which is assumed to follow a multivariate normal dis-
tribution β | σ2

β ∼ N(0, σ2
β(I2 ⊗ I10)). The βdt is, as mentioned, simply added to

the best model 3∗ from the previous chapter. The only interaction between the spatial
and temporal part accounted for, is the overdispersion component, making a quite simple
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spatio-temporal model. One could of course use a more complex spatio-temporal model,
for instance by adding a more complex space-time interaction. The temporal component
is only specific for disease and time. In other words, the same time effect is assumed for
both genders, for all counties and all age groups. The model has seven hyperparameters
{δm, δf , σ2

u∗
m
, σ2

u∗
f
, σ2
α, σ2

β , σ2
z}

The R-code 6.1 contains the code for this model. As in all previous models, the
neighbourhood structure is the same as first explained in section 5.1.1, and can be seen
in line 2 in this code. Further, the priors for the hyperparameters are shown in lines 4–5.
Because the best model 3∗ from section 5.3 used the two priors pcprec1 and pcprec2,
this will be done for this time model as well. The pcprec1, with parameters U = 1 and
α = 0.05, will be used for the spatial component and the overdispersion, while pcprec2,
with parameters U = 3 and α = 0.1, will be used both for the age and time components.

R-code 6.1: Code for implementing the model with the added time component over all time periods

1 #NEIGHBOURHOOD STRUCTURE
2 g = inla.read.graph("nb-inla.txt")
3 #PC PRIOR
4 pcprec1 = list(prec=list(prior=’pc.prec’, param=c(1, 0.05)))
5 pcprec2 = list(prec=list(prior=’pc.prec’, param=c(3,0.1)))
6
7 #FORMULA WITH TIME
8 formulaTime = Cases ˜ -1 + mu + f(i_male, model="besag2",
9 graph=g, hyper=pcprec1, constr=TRUE, scale.model=TRUE) +

10 f(i_female, model="besag2", graph=g, hyper=pcprec1,
11 constr=TRUE, scale.model=TRUE) + f(Agegroup, model="rw2",
12 hyper=pcprec2, constr=TRUE, replicate=inci_mort) +
13 f(Period, model="rw2", hyper=pcprec2, constr=TRUE,
14 scale.model=TRUE, replicate=inci_mort) +
15 f(z_row, model = "iid", hyper = pcprec1)
16
17 #INLA EXECUTION
18 resultsTime = inla(formulaTime, family = "Poisson",
19 data = data.frame(BrainData), E=Population,
20 control.predictor = list(compute=TRUE))

In lines 8–15 the formula for the model is found, which is stored in formulaTime.
As previously, both −1 and mu is added for the intercept, where −1 is added in order to
remove the default intercept and mu is the pre-specified intercept needed in the model.
Further explanation on mu can be found in section 5.1.1. The models for the spatial effect
are modelled with the besag2 as before, and can be seen in lines 8–11. The age effect
can be seen in lines 11–12 and are modelled using a rw2 model, as this was used in the
best performing model in the spatial section. In lines 13–14 the time component can
be seen, f(Period, model = "rw2", ...). This is also modelled using a rw2,
and uses the same prior as the age effect. Time is also modelled using a sum-to-zero
constraint, constr = TRUE, for the same reasons as the other components. In addition,
replicate = inci mort is used to generate replicates of this model with the same
hyperparameters. Here, inci mort defines how the observations are grouped into the
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replicated effects, that is, by incidence and mortality. The replicating is done because we
assume that the time effect is disease-specific, but the same for both genders. Lastly, in
line 15 the overdispersion component is added. This is modelled using an iid model, with
pcprec1 used as the prior.

In lines 18–20, the INLA execution of formulaTime is stored in resultsTime.
Here, the data is specified to be the entire data set BrainData. The rest of the arguments
are defined in the same way as in chapter 5.

6.2 Results from the spatio-temporal model
Table 6.1 comprises the estimated posterior values of the hyperparameters from this model.
These posterior values are the posterior mean, standard deviation and median with corre-
sponding 95% quantiles.

Table 6.1: Estimated posterior summary estimates of the hyperparameters in the spatio-temporal
model on standard deviation scale

Hyperparam. Mean SD 0.025 quant 0.5 quant 0.975 quant
σu∗

m
0.062 0.019 0.032 0.059 0.104

δm 0.997 0.163 0.712 0.985 1.352
σu∗

f
0.061 0.021 0.029 0.058 0.111

δf 0.933 0.184 0.643 0.908 1.361
σα 0.407 0.085 0.269 0.396 0.602
σβ 0.141 0.029 0.093 0.137 0.208
σz 0.188 0.008 0.172 0.188 0.205

For this model, the estimated posterior mean of the standard deviation of the spatial
effect for males is 0.062 with a standard deviation of 0.019. This is very similar to the
values for females, which are 0.061 for the mean with a standard deviation of 0.021. This
might indicate that the spatial effects for men and women are quite similar. Further, the
standard deviations are significantly smaller than their means, indicating that the model is
a good fit. As in section 5.4, these small values of the standard deviations of the spatial
effect will correspond to high precisions, indicating a smooth spatial effect. The values for
the age effect, the overdispersion and the time effect are also satisfactory. The standard
deviations of the time effect and the overdispersion have quite small values, which might
indicate that these effects are quite smooth. The standard deviation of the age effect is
the largest of the standard deviations and has almost the same value as for the model for
the single time period. This might indicate that it is more variation in age than the other
components and that the age effect is still not as smooth as the other effects.

One thing worth noticing is that the gender-specific spatial weight parameters for male
and female are more similar than for the spatial model of a single time period. These
values are very high and close to 1 for both genders, which reinforces our assumption of
the spatial field being similar for incidence and mortality. In the spatial analyses the weight
parameter for females was larger than 1, which was not ideal. However, now the results
for this parameter are more satisfactory.
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Figure 6.1 displays the posterior marginal distributions of the hyperparameters of the
time model on standard deviation scale. In this figure we find the standard deviations of the
spatial effects on the top row, the standard deviaitons of the age effect and the time effect
in the middle row and the overdispersion in the bottom row. As for the posterior marginal
figure in section 5, the dotted line represents the mean and the solid line represents the me-
dian. For all these plots, the lines for the mean and the median lie very close together and
close to laying on top of each other. The curves of these marginal distributions are more
symmetrical than the ones from the spatial results, even though some of the curves still are
slightly right skewed. Overall the shape of these curves look rather good, suggesting that
the fitted model might be a good fit.
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Figure 6.1: Posterior marginals distribution for the hyperparameters of the spatio-temporal model
on the standard deviation scale, with vertical lines for the posterior means (dotted) and medians
(solid).

Figure 6.2 displays the posterior mean of the gender-specific shared spatial effect for
both men and women. This values are extracted from the result in the same way as ex-
plained in section 5.1.1, in order to only show the spatial effect without the gender-specific
spatial parameter δg . As mentioned before, this parameter is the only parameter separating
the spatial field for incidence and mortality. These plots show clear signs of a regional
trend, which is increasing from north to south. This can be seen in both plots from Finn-
mark and all the way down to Aust-Agder and Vest-Agder. For men this trend is more
noticeable, with only one clear exception in Trøndelag. Apart from Trøndelag, we see that
the effect is gradually increasing from very low in Finnmark to quite high in Vest-Agder.
For women, the trend is not equally visible, but it looks as if the effect is increasing from
Finnmark to Aust-Agder, with slightly lower effect in Buskerud and Telemark. Interest-
ingly, one of the lowest effects are found in Østfold for both genders, which is one of the
few thing that corresponds to the explanatory plots in section 2.
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Figure 6.2: Estimated posterior mean of the gender-specific shared spatial random effects for the
spatio-temporal model, for men and women for all counties.

Moreover, the similar effects between neighbouring counties is very visible in these
plots. This can be seen be the smooth colour changes between the neighbouring counties.
Of course, Trøndelag stands out here as well for men, as it did for the regional trend.
However, most of the other counties share this pattern. There is also a big increase in the
effect for males between Finnmark and Troms, seen as a sharp transition from one county
to the other.

Figure 6.3 displays the rw2 effect for the age groups, for incidence on the left and mor-
tality on the right. As in the age effect plot in the previous section, the red line represents
the estimated posterior median of the age effect for each age group and the grey area is the
corresponding 95% quantile region. On the x-axis the 9 age groups are shown, denoted by
the mid-values of each age group, i.e. 5 is age group 0–9, 15 is age group 10–19, etc. This
plot is made from resultsTime in the same way as previously.

In the plot for incidence, the effect is clearly increasing between age group 10–19 and
age group 60–69. Between age group 60–69 and 70–79 the curve is still increasing, but at
a much slower rate than in the previous age groups. This is followed by a decrease in the
effect between the two oldest age groups. This is a different result than the one from the
spatial analysis from 2014–2018, where the effect only flattened out between these two
age groups. This is quite interesting and might indicate over time, the effect is lower for
the oldest age group, but in 2014–2018 there were perhaps a slight increase in the disease
for the oldest men and women. Further, between age group 10–19 and 80+, the trend for
mortality is almost identical to the trend from 2014–2018, with a steady increasing effect
that decreases between the oldest age groups. This might indicate the the mortality trend
has been overall stable, or perhaps the period 2014–2018 coinciding so well could just be
coincidental, and choosing another period might not fit so well with the overall trend. The
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Figure 6.3: Estimated posterior median with 95% quantiles of the rw2 effects for age groups, for
incidence (left) and mortality (right)

decreasing trend in both incidence and mortality between the to oldest age groups are quite
similar to the ones displayed by Etxeberria et al. (2018).

Further, the sharp decrease in the mortality effect between the two youngest age group
is more noticeable in this figure than in the one from 2014–2018. However, both curves
have the same shape, with the higher effect for the youngest children. Moreover, the trend
between these age groups in the incident effect is slightly different in this plot compared to
the plot in the previous section. For 2014–2018 the effect was increasing slowly between
these age groups, whereas for this plot, the effect is decreasing between age group 0–9
and 10–19. This v-shaped pattern is similar to the rates shown by Etxeberria et al. (2018),
which, according to them, is not a common pattern in other cancer types.

Overall, the 95% quantile band of this model is much narrower than for the single
period model in the previous chapter, indicating less uncertainty in the effect. Moreover,
the range of the age effect for both incidence and mortality for the single period model is
slightly larger than for this model. This might indicate that is is more variability between
the age groups in the single period model than in this model.

Figure 6.4 shows the estimated posterior median with corresponding 95% quantiles for
the time effect. In the left plot the time effect for incidence is shown, and in the right we
see the mortality. These time effect are naturally plotted against the time, which are shown
in the x-axis. In the plot, the mid-values of the time periods are shown on the x-axis, i.e.
1971 corresponds to the period 1969–1973, 1976 corresponds to period 1974–1978, etc.
Because the same time effect is assumed for men and women, these figures regards both
genders. In these plots the red line indicates the median and the grey area surrounding this,
is the 95% quantile region.
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Figure 6.4: Posterior median with corresponding 95% quantiles of the time effect for both incidence
and mortality.

In the time plot for incidence the effect is steadily increasing between the first and the
eighth period, meaning from 1969–2008. However, from 2008 and until 2018 the effect is
gradually decreasing. This might correspond to the decrease seen in the last and second
to last period in the time plots in section 2. In 2011 Storstein et al. remarked that the
incidence rates in Norway were increasing, which correspond to the increasing effect up
to 2008 in this incidence plot. From this plot, it could look the the effect is decreasing, as it
has decreased the last couple of time periods. However, it is hard to say if it will continue
to decrease, since we do not know how the disease will evolve in the future.

For the mortality on the right side of the figure, the trend is slightly different. Overall
the effect is increasing from 1969 to 2018, but it has a very different curve than the inci-
dence. Here, we see a steep increase between 1971 (1969–1973) and 1986 (1984–1988),
followed by a slight decrease to 1991 (1989–1993). Then the effect is increasing to 2006
(2004-2008), followed by a flattening of the curve. This suggests that the death rates might
have started to stabilise in the last ten years, but it might also just be a saddle point as in
period 1989–1993.
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Chapter 7
Discussion and Summary

The main novelty of this thesis is both to understand more about the geographical distri-
bution of brain cancer in Norway in the period 2014–2018, as well as understanding more
about both its geographical and temporal distribution in the entire 1969–2018 period. The
high correlation between incidence and mortality in brain cancer has been taken advantage
of, allowing us to borrow strength from both disease processes.

The main results in this thesis are separated into the spatial results from the recent pe-
riod 2014–2018 and the spatio-temporal results from the entire period 1969–2018. This is
done because one of the main interests was to apply the methodology presented by Etxe-
berria et al. (2018) for Norwegian data. However, since we could only use the recent period
when doing this, we also wanted to extend the models by adding a temporal component
and space-time interaction. As mentioned earlier, the entire data set could not be used to
apply the Etxeberria et al. (2018) methodology, as this is based on aggregating their data
over all time periods. Aggregating was not possible in our case as the time periods and
age groups were given on different scales, causing a problem with the population counts
with the aggregation.

For the main spatial models for the period 2014–2018, we compared several models
with and without an unstructured spatial effect using three different model choice criteria,
i.e. DIC, WAIC, LS. The best versions of these comparisons were named model 3∗ and
model 8∗. Model 3∗ included a structured shared spatial component scaled by a outcome-
specific weight parameter, an age effect and an overdispersion component, and model 8∗

had the same components as model 3∗, but with an added unstructured spatial effect. In
both these models the outcomes are modelled jointly and then linked through a shared
spatial effect, which is allowed to vary in strength by using the outcome-specific weight
parameter, δg . The estimated posterior values of δg were given for both males and females,
and a value close to 1 would indicate that the spatial effects for incidence and mortality
are similar. Most of the results for both models were similar enough that presenting them
for both models seemed redundant. Model 3∗ had also slightly better model choice criteria
performance, therefore the results were only presented for this model.

For the structured spatial effect in all models, we have assumed that the neighbouring
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counties are correlated in such a way that we can borrow strength from the neighbouring
regions in order to distinguish underlying geographical patterns. The assumed neighbour-
ing patterns were hard to notice in the explanatory plots in the data section, but in the
results from the spatial analysis the effects between neighbouring counties have clearly
smooth transitions. Overall, for the period 2014–2018, the spatial effect was stronger for
females than for males. However, the range of effects for both genders were not partic-
ularly big, making quite a flat effect nevertheless. The small range of the effects may
be due to shared spatial effect, which is assumed equal for incidence and morality. The
reported incident cases in the period 2014–2018 were larger for females than males, but
the reported deaths in the same period were larger for males. This opposite trend in the
reported cases might cause the flatness in the shared spatial effect for both genders.

Another interesting result from model 3∗ are the age effect results. Here, a change of
rates between the youngest age groups was observed. For incidence this was seen by a
more gentle increase between the two youngest age groups than the following age groups,
and for mortality the effect was decreasing between the same two age groups. However,
in the modelling of the entire period 1969–2018, this decrease was seen in both incidence
and mortality. This trend is similar to the trend found by Etxeberria et al. (2018), which
is interesting and might indicate that the trend from the north of Spain and Norway are
quite similar. This might be reasonable since brain cancer is the second most common
cancer type in small children in both countries. Further, the curve observed for mortality
might implicate that the youngest children are more likely to die of brain cancer than
the adolescents in age group 10–19. Moreover, the mortality effect showed a decrease
between the two oldest age groups. Brain cancer has a 5 year relative survival rate of
around 60 percent for men and 75 percent for women in Norway today (Cancer Registry
of Norway; 2019). These are not terrible survival odds, but this survival rate includes both
non-malignant and malignant brain tumours, where the latter has a much lower survival
rate than the former. As a result of this, perhaps a big part of the patients in the 80+ group
who die of brain cancer have a malignant type while those diagnosed with the other type
rather die of other causes. Both the results for the youngest and oldest age groups are
interesting and the reason for the changes in the curves could possible be further explained
by an epidemiologist.

The second analysis performed in this thesis, was the spatio-temporal modelling over
all time periods. This model showed much better estimations of the hyperparameters than
the sole spatial models. This could be seen by the standard deviations being smaller than
in the spatial analysis and the weight parameter for females being much closer to 1. The
temporal component and the spatio-temporal interaction used in this model made quite
a simple model. Due to the short period of time this thesis had to be completed (one
semester), there was not enough time to compare other models with for example more
complex space-time interaction and choose the best one. However, in future work this
might be a natural extension of this spatio-temporal approach.

In the time model, the results were quite interesting. Firstly, the shared spatial effect
for men and women were very similar. The standard deviations of the spatial effect for
both genders were practically identical and both outcome-specific weight parameters were
close to 1. For men, the mean of the weight parameter was 0.997, indicating that the spatial
effect for incidence and mortality were almost equal. For women, this value was 0.933,
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indicating a slightly stronger effect for mortality than for incidence. Secondly, the shared
spatial effect for this model showed a clear regional trend, from north to south. This could
be seen in the figures by the clear increasing effects from Finnmark in the north to Vest-
Agder in the south. In the introduction, it was mentioned that the highest incidence was
found in northern Europe. By World standard rates, it could be seen that Norway in 2018
had slightly lower rates than the rest of Europe, but significantly higher than the World
average. It is interesting that Norway, which lies in northern Europe, had a lower rate than
Europe as a whole, and maybe the low rates in northern Norway can explain this. As the
only known causes of brain cancer are genetics and high exposure to ionized radiation, it
is hard to say anything about the reasons for the trend seen in Norway. This could however
possibly be explained by an epidemiologist, which may be a natural next step further on.

The second interesting result from the spatio-temporal section, is the temporal effect.
For incidence it was shown that the time effect is strictly increasing up to 2008, before it
started to decrease to 2018. This increase in incidence trend can be linked to the claim by
Storstein et al. (2011) presented in the introduction. In 2011 they said that the incidence
of Norwegian brain cancer is increasing and that the number of cases per year has almost
doubled since 1980. In the time trend, we see an steeply increasing curve from 1980 to
2008. Storstein et al. (2011) explained the increase by an increasingly older population
in Norway and better diagnostic tools. After 2008 in our time effect plot, the trend is
decreasing. As mentioned earlier, it is hard to say if this is the start of a decreasing trend
or just a bump in the general increasing trend. The Norwegian population is probably still
getting older, as the age wave of the so-called boomers is only in the beginning. Because
of this, it might be strange that the time trend is decreasing, and might be explained by
the second reason mentioned by Storstein et al. (2011), i.e. diagnostics. In other words,
improvements done to diagnostics today may not be as substantial as they were in the past.
This might explain the decrease in the trend. However, I have not found any literature to
support this claim.

Moreover, the mortality time trend also showed an increasing trend from 1969–2018,
but not as dramatic as the incidence. As mentioned previously, the trend for mortality
showed a small saddle point in the early 1990s, followed by an small increase, which
seemed to be flattening out for the last two time periods. The flattening of the curve might
be explained by the continuous medical advancements in cancer treatments. However,
since this type of cancer is quite low survival rate and the incidence show signs of a de-
crease, this might also explain the flattening of the curve for mortality. In other words,
since incidence and mortality are assumed linked in this thesis, the decrease in incidence
would probably cause a decrease or flattening in mortality.

One issue found in the thesis, was the large value of the weight parameter for females
in the sole spatial model. As the assumption was that the shared spatial field between
incidence and mortality was very similar, the value of 1.312 indicated quite a large dif-
ference in the spatial effect for incidence and the spatial effect for mortality. However,
the results were not too outrageous, which meant that the results could still be presented
as the shared spatial field. In the plot of the spatial effect the smaller range of the spatial
effect for men than women was mentioned. This might be explained by this difference
in the female spatial effects for incidence and mortality. Moreover, this small issue with
the weight parameter was gone in the spatio-temporal modelling. As the spatio-temporal
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model takes in more data than the spatial model, the problem with the weight parameter
might just be caused by the small amount of data used.

Further future work would be to investigate alternative models for the spatial structure.
The way the besag2 is defined, i.e. (δgu,u/δg), makes interpreting the results a bit
confusing. The interpretation of the weight parameter is quite complex, because of the
weights being multiplied to both parts of the results. The interpretation of this is not
completely intuitive, as it might had been with a model with weight parameter appearing
for only one outcome. As mentioned in section 3, one alternative could be to use a model,
where only the second outcome in the result is scaled by a weight parameter, i.e. (x̃, ax̃).
Such a model would make the interpretation of the results somewhat easier, as the results
for mortality, in this case, would only be the results for incidence scales by a factor a > 0.
However, such a model does not exist pre-specified in R-INLA. Another interesting model
could be to assume a separate besag or ICAR model for incidence and mortality, but
group them using a correlation parameter (see Riebler et al. (2012) for an application of
correlated random walk models).

Summing up, the models in this thesis include gender-specific, age-specific and time-
specific components in the analyses of the geographical and temporal distribution of the
disease. The assumed relationship between the two disease processes are beneficial for
investigating the amount of the spatial patterns common for both disease processes and the
amount specific for each one. However, the models presented are not perfect and show
some problems, as specified above. This is especially true for the sole spatial model, while
the spatio-temporal model appear to quite good for the purpose of this thesis. Future work
would be beneficial in order to improve the results.
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Appendix

7.1 Challenges along the way
Working with this thesis, I’ve encountered a few challenges out of my control. These are
presented below.

7.1.1 Challenges due to the COVID-19 pandemic situation
This year the world has become the victim of a pandemic, namely the COVID-19 virus. On
February 26th the virus reached Norway, with the first detected case in Tromsø. Approxi-
mately two weeks later, Norway went into sort of a shutdown. The government introduced
several interventions in order to be able to control the virus, one of these was the closing
of the universities. This meant that I, along with all my fellow master degree students, lost
access to my reading room place and had to work with the thesis from home.

In the beginning this turned out a bit difficult. Being a person who likes to separate
work from leisure, I’ve become used to going to school at the same time every day and
doing my work there, before going home and having free time. However, now I had to
work with my thesis in the same room I use to relax. This required some adjustment, since
there was no environmental change between work and other things. At school I have a
large desk and a comfortable chair in a quiet room, while in my small apartment, I only
have a tiny dining table and dining chairs. This is not an optimal working environment for
my taste, but after some time I adjusted to the situation just fine.

In addition to this, all the communication with my supervisor now had to be done by
Skype. This was also an adjustment in the beginning, as we used to meet almost weekly
in person. Not all supervision is equally easy over Skype, but after some time we found a
way that worked.

All in all, apart from a few bumps in the road in the beginning, the new everyday
life has grown on me and it has been a learning experience to deal with these unexpected
circumstances.

7.1.2 Discovering errors in the software
The second challenge I encountered in this thesis was an error in the programming soft-
ware R. As explained in the thesis, all my results are produced using R-INLA. Within this
package, I used a model called besag2 in order to model the structured spatial effect in
the models. However, when starting to analyse the first results made using this model,
we discovered that the precisions for spatial effect were extremely small. They were so
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small that we suspected something was wrong. At first I only looked for errors in my own
code, trying to figure out if the low precisions were made by me somehow. Yet, when I
found no errors in my part of the code, we started suspecting the besag2. This was rein-
forced when I tested the model using the regular besag model instead of besag2, and
got much larger, and more normal, precision values. When comparing the regular besag
to the weighted version, besag2, the differences in precisions ranged from 1.75 · 10−3

for the besag2 to around 1.5 for the besag. The difference should not be that large,
so we reached out to Håvard Rue, the creator of R-INLA, who found an error for the
besag2 model. Therefore, I had to wait for him to fix the errors in the model before I
could continue my analyses.

Table 7.1: Estimated posterior values of the hyperparameters in model 3* before the fix

Hyperparam. Mean SD 0.025 quant 0.5 quant 0.975 quant
τu∗

m
0.00175 0.00057 0.00083 0.00169 0.00302

δm 0.97015 0.00251 0.96507 0.97020 0.97495
τu∗

f
0.00161 0.00053 0.00073 0.00156 0.00277

δf 0.97070 0.00305 0.96416 0.97095 0.97606
τα 1.11285 0.34314 0.56623 1.07263 1.90328

In table 7.1 we see the precision values before the fix of the besag2 model in
R-INLA. And in figure 7.1 the standard deviation for the hyperparameters is shown, when
using the errored besag2 model. Here we see the spatial components have standard de-
viations with means around 24, which corresponds to variances of 576. This is very big
and not ideal, as it probably suggest that something is wrong; which it was.
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Figure 7.1: The standard deviation of the flawed besag2 model
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7.2 Learning experiences
As mentioned in the preface, this thesis is only a 30 point master thesis. Before this thesis,
I had one reading course, which introduced me to Bayesian inference, spatial statistics and
INLA. Before this, all other courses taken in my five year period at NTNU, have not been
as relevant for my thesis and more relevant for my general understanding of statistics.

As most of this thesis was all new to me in the fall 2019, I have learned a lot by working
on it. However, it took some time getting comfortable with everything being used in the
thesis.

Before this fall, I had not heard of INLA, even though I thought I was quite familiar
with R. It was especially the INLA part that took some time to learn, both theoretical
background, but also to understand every component needed to be used in R-INLA for
the thesis.

Working with this thesis has taught my a great deal about spatial statistics, Bayesian
inference, priors and INLA. I have probably almost learned something new every day
working with the thesis.
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