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Abstract

One percent of all Norwegian women will develop cervical cancer by the age
of 75. It is the third most common cancer in women of ages 25 to 49. While
the Nordic mass-screening programs for cervical cancer have a proven e�ect in
reducing the incidence and mortality of the disease, it remains a challenge to
minimize under-treatment and over-screening. In this thesis, we consider the
early prediction of cervical cancer as a forecasting problem where the screening
history of a single female is encoded as a sparse vector and used as a predic-
tor. As the data is sparse, irregular, and heavily skewed, we employ state-
of-the-art matrix factorization techniques along with temporal regularization
to deduce robust trends in the data. We validate the method on synthetic
data and identify critical challenges associated with our approach. The pro-
posed classi�ers are used to predict cervical cancer one year ahead in time
in data collected by the Cancer Registry of Norway. Our results show that
the classi�ers meaningfully discern developing cases of cervical cancer and at-
tain an AUC of 0.78. Finally, we propose future directions of the project.
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Sammendrag

En av hundre norske kvinner kommer til å utvikle livmorhalskreft innen en
alder av 75. Kreften er den tredje mest hyppige blant kvinner i alderen 25 til
49. De nordiske screeningprogramme for livmorhalskreft har en påvist e�ekt
for å redusere forekomst og dødelighet av sykdommen. Likevel forblir det en
utfordring å minimere underbehandling og overscreening. I denne oppgaven
anser vi prediksjon av livmorhalskreft som et prognoseproblem. Vi oversetter
en kvinnes screeninghistorikk til en glissen vektor og bruker denne som regressor
for å predikere kvinnens fremtidige utvikling. Det resulterende datagrunnlaget
er glissent, ujevnt observert og skjevfordelt. For å håndtere disse problemene
implementerer vi toppmoderne metoder innen matrisefaktorisering. Vi validerer
metoden på syntetiske data og kommenterer kritiske utfordringer knyttet til vår
tilnærming. Vi bruker prediksjonsmodellene til å forutsi livmorhalskreft i data
fra Kreftregisteret. Våre resultater viser at modellene identi�serer kvinner med
økt risiko for sykdommen og oppnår en AUC på 0.78. Til slutt foreslår vi
potensielle videre utviklinger av prosjektet.
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Chapter 1

Introduction

1.1 Cervical Cancer Screening

Cervical cancer ranks third among the most frequent types of cancer for Norwe-
gian women of ages 25 to 49. It is estimated that 1.0% of Norwegian women will
develop cervical cancer by the age of 75 [1]. To reduce the incidence and mor-
tality of cervical cancer, the Norwegian Cervical Cancer Screening Programme
(NCCSP) was launched in the late 1960s and is currently in e�ect. In recent
years the NCCSP and its sibling programs in Denmark, Sweden, and Finland
have been identi�ed as key contributors to the low incidence and mortality of
cervical cancer in the Nordic countries. It is estimated that in the absence of
these programs, the prevalence of cervical cancer would be doubled [2].

Most cervical cancer screening programs, the NCCSP included, are char-
acterized by population-wide regular screening. The recommended screening
interval length, i.e., the time between two screenings, is typically homogeneous
for all females. Considerable research has been devoted to investigating the re-
duction of incidence and mortality o�ered by a shortened interval. To preempt
developing cases of cervical cancer, it should be short but not excessively so
as this leads to over-screening and increased expenditure. Studies [3, 4] have
found the triennial (every three years) screening interval to be a cost-e�ective
compromise o�ering a high degree of protection.

The idea that all women should follow the same interval length is currently
being challenged. It is proposed that a data-driven and personalized screening
program can o�er similar or increased protection at reduced over-screening and
expenditure. The personalization should adapt the interval length to the fe-
male's probability of developing cervical cancer. The idea has gained increased
traction as signi�cant variation has been demonstrated in the protection o�ered
by a �xed interval length across age-groups [5, 4, 6]. While a given interval
length may o�er su�cient protection for women between the ages of 40 to 69,
the same length may be insu�cient for women between the ages of 20 to 39. By
using age and previous screening history as risk factors, it may be possible to

1



2 CHAPTER 1. INTRODUCTION

separate the Norwegian population into low- and high-risk groups.

1.2 The DeCipher Project

The maturity of the Nordic screening programs for cervical cancer creates an
ideal environment for exploratory work in the development of a personalized
screening program. Speci�cally, the wealth and quality of the data amassed by
the NCCSP enable the use of data-driven methods. The development and test-
ing of such methods is the goal of the ongoing DeCipher project. The project is
funded by the Research Council of Norway and conducted in collaboration be-
tween SimulaMet, the Cancer Registry of Norway, Lawrence Livermore National
Laboratory, and Karolinska Institutet [7].

�We aim at developing a data-driven framework to provide a per-
sonalised time-dependent risk assessment of disease initiation and
identify subgroups of individuals and possible biomarkers, which can
lead to similar disease progression. The DeCipher results will allow
for improvement of individuals' preventive cancer healthcare while
reducing the cost of screening programs.� [7]

As part of the DeCipher project, an introductory study was conducted to in-
vestigate if the PAtient reCord densiFIER (PACIFIER) algorithm [8] could be
used as a tool in the early prediction of cervical cancer. While PACIFIER was
designed for the domain of coronary heart disease and end-stage renal disease,
the introductory study showed an indication that the algorithm is applicable
also for cervical cancer [9]. In a direct continuation of this introductory study,
we extend the ideas of PACIFIER into a full-�edged prediction algorithm for
cervical cancer.

1.3 Encoding Screening Data

Central in this thesis is the use of a Norwegian population-based dataset com-
prised of 500.000 screenings gathered from 80.000 women. The data is collected
by the Cancer Registry of Norway in the period 1992 to 2015 as part of the
NCCSP and contains histological exams, cytological exams, and cervical cancer
exams. All exams consist of a string representing the type of test and a resulting
high-level diagnosis.

These strings, while informative to a medical practitioner, are intractable
from a data science point of view. Histology and cytology are di�erent means
with the same intent: to check for the development of cervical cancer or pre-
cancerous changes to the cells of the cervix. The diagnoses of a histological
exam and a cytological exam may di�er yet still indicate the same status of
the female. In our project, we are interested only in the status itself and not
whether it was assessed through histology or cytology. By mapping the diag-
noses of the di�erent exams to a common set of integers, we derive a dataset
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Table 1.1: Overview of the mapping from an exam diagnosis to a cervical cancer
state. We map the diagnoses of the three exam types, histology (HIST), cytology
(CYT) and cancer exam (CAN), to the cervical cancer state. Diagnoses without an
encoding are removed from the dataset.

Exam type Diagnosis Grade State
CYT Normal Normal 1
CYT ASC-US Low 2
CYT LSIL Low 2
CYT ASC-H High 3
CYT AGUS/ACIS High 3
CYT HSIL High 3
CYT Cancer Cancer 4
CYT Metastasis - -
CYT Unsatisfactory - -
HIST NILM Normal 1
HIST CIN1 Low 2
HIST CIN2 High 3
HIST CIN3 High 3
HIST ACIS High 3
HIST Unknown morphology - -
HIST Unsatisfactory - -
CAN Squamous cell carcinoma Cancer 4
CAN Adenocarcinoma Cancer 4
CAN Other cancers Cancer 4
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that is signi�cantly easier to handle using a data-driven model. Simultaneously
the simpli�ed dataset remains representative of the prospect that the female
will develop cancer in the upcoming future. The mapping was developed in
collaboration with medical experts at the Cancer Registry of Norway and can
be seen in its entirety in Table 1.1. The mapped variable is denoted the female's
cervical cancer state or simply state.

De�nition 1.1. The cervical cancer state / state st ∈ S = {1, 2, 3, 4} of a
female is a condensed description of the female's overall health in relation to
cervical cancer. The index t represents the female's age. The state st = 1
denotes normal, st = 2 denotes a low-grade state, st = 3 denotes a high-grade
state and st = 4 denotes onset cancer.

We let a screening result represent a three-month interval such that the
entire screening history of a female can be encoded as a vector. If the female
had a single screening in the three months corresponding to a particular entry,
we set it to be the mapped state of the screening. If the female had several,
we set the entry to be the most severe. Conversely, if the female had none, the
entry is set to zero and interpreted as missing. By using the same procedure
for all females, the raw dataset is converted to an N ×T matrix where N is the
number of females, and T is the largest age di�erence between any two females
measured in periods of three months.

It is challenging to deduce the disease development of a female from very
few screenings. At the same time, our methods scale with the number of rows
in the matrix. To test our algorithm in an optimistic environment and reduce
the computational cost of running it, we restrict our attention to females for
whom we have six or more screenings. In other words, we remove females
with �ve or fewer screenings. The screening histories of the remaining 38001
Norwegian women are stored in a 38001 × 321 matrix referred hereafter to as
�the Screening Dataset�. Of the entries in the Screening Dataset, 97.12% are
zero and interpreted as missing. Of the nonzero entries, 92.96% of the entries
contain the normal state, 4.66% contain the low-grade state, 2.34% contain
the high-grade state, and 0.04% contain the cancer state. We remark that the
Screening Dataset is extremely sparse and highly imbalanced over the states.
Also, the nonzero entries are mostly located at younger and middle ages.

1.4 Matrix Factorization

It is the extreme sparsity along the time-dimension that complicates the use
of data-driven methods. Classical methods in time series analysis involve the
extraction of derived features from the history of the object of prediction. In cer-
vical cancer screening, this history consists of only a small number of unevenly
spaced screenings. The sparsity is of such a degree that classical methods fail to
extract most, if not all, the features. While this can be handled through the de-
velopment of specialized feature-based methods, we instead use it as motivation
to borrow inspiration from another rapidly emerging �eld.
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Data sparsity arises in the commercial context of recommending products to
customers based on their spending history. While the spending history is typ-
ically extremely sparse and irregular, the customer's preferences can be recon-
structed by the association with other customers of similar spending patterns.
Collaborative �ltering is a class of methods developed to automatically predict
the interests of a user by collecting preferences or taste information from many
users. The commercial nature of the problem has inspired considerable interest.

Zhou et al. [8] recognized that collaborative �ltering is not limited to com-
merce and that the concept of product preference is similar to that of phenotype
in medicine. The correct treatment of a female can be inferred by the associa-
tion with other females of similar disease progression. With modi�cations, the
methods of collaborative �ltering could also be applied in a medical context.
Of particular interest is the class of methods named matrix factorization (MF)
methods. These methods implement the assumption that the phenotypes of
all females can be described as a weighting of a small number of phenotypic
archetypes. The previously mentioned PACIFIER algorithm, which is an MF
method, was applied in the early prediction of coronary heart disease and end-
stage renal disease and found to outperform classical methods.

1.5 Thesis Overview

The purpose of this thesis is the development and testing of a prediction model
based on matrix factorization for cervical cancer. We initiate our approach by
de�ning the theoretical background for applying matrix factorization to cervical
cancer screening data in Section 2. We demonstrate that the MF formulation
can be derived as a relaxation of matrix completion. Interestingly, an equivalent
model can be formulated in a probabilistic context. In Section 2.2 we reveal
that by modelling the likelihood between the female's state and an underlying
continuous-valued latent risk, the MF problem can be obtained as a result of
maximum a posteriori (MAP) estimation.

De�nition 1.2. The latent risk or simply risk mt ∈ R of a female at time t
determines the distribution of the female's cervical cancer state. The latent risk
pro�le m ∈ RT describes the latent risk of a female at a uniformly spaced grid
of time.

We make the fundamental assumption that the latent risk pro�les of all
women develop smoothly in time. To account for this, we in Section 2.3 ex-
tend the probabilistic model to enforce smooth temporal trends. For the �rst
time, we introduce the smooth probabilistic matrix factorization (SPMF) and
convolutional probabilistic matrix factorization (CPMF) models. We proceed
by describing how the MAP estimate of the latent risk matrix can be found
using the LMaFit [10] algorithm, which is an alternating minimization scheme,
in Section 2.4.

To predict future cervical cancer state, we must further equip the models
with some mechanism of classi�cation. Section 2.5 describes how the screening
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Figure 1.1: Illustration of the prediction scheme. The model associates the screening
history of a female to speci�c latent risk pro�les. In turn, these associations are used
to forecast the future development of the female's latent risk and cervical cancer state.
If a high-grade or cancer state is forecast, the female can be recommended to follow a
shortened screening interval or some other action.

history of a female can be associated with the latent risk of a training population
and how this association, in turn, can be used to forecast the future development
of the female's latent risk and state. Figure 1.1 illustrates this process. Also,
we re�ect upon the relative severity of the cervical cancer states. Founded in
our re�ections, we argue that the problem can be reduced to a dichotomy where
the females are either considered as sick or healthy concerning cervical cancer.
We describe this new context and introduce the binary SPMF (B-SPMF) and
binary CPMF (B-CPMF) classi�ers.

In Section 3, we describe a method for generating synthetic data replicating
the sparsity and irregularity of the Screening Dataset. We highlight essential
characteristics of the Screening Dataset by comparison to the synthetic data.
Moreover, we investigate the inner-workings of the training procedure of our
classi�ers and inspect whether the LMaFit method successfully reconstructs
the latent risk matrix of synthetic data in Section 4.

Finally, we use the SPMF and CPMF classi�ers to predict future cervical
cancer state one year ahead in time. Section 5 describes our results using the
classi�ers on simulated data and the Screening Dataset. We further switch to
the binary context and implement a model bias in the B-SPMF and B-CPMF
classi�ers to preempt developing cases of cervical cancer. Section 6 describes
our results on simulated data and the Screening Dataset. Lastly, we summarize
our �ndings and suggest directions for future development in Section 7.

The results of the SPMF and CPMF classi�ers for the early prediction of cer-
vical cancer, along with those of an approach based on geometric deep learning,
have been submitted to an international conference [11].



Chapter 2

Matrix Factorization

The matrix factorization model can be derived using its roots in matrix comple-
tion. Matrix completion (MC) is the recovery of an underlying matrix M from
only a subset Ω of its entries, denoted the matrix' observation mask. In this
project, we consider real-valued and longitudinal matrices of dimensions N and
T , M ∈ RN×T . The observation mask is then a subset of all row-time combina-
tions, Ω ⊂ {0, 1, . . . , N−1}×{0, 1, . . . , T−1}. The matrix is observed at indices
(i, j) ∈ Ω and missing otherwise. In practice, any missing entry must be imple-
mented as some numerical encoding. To correspond with previous literature on
matrix completion this encoding is chosen as zero. A matrix representation of
the observation mask is de�ned as

mat(Ω) =

{
1 (i, t) ∈ Ω
0 otherwise.

(2.1)

This allows the de�nition of a projection of any N × T matrix onto the obser-
vation mask as

PΩ(X) = mat(Ω) ◦X =

{
Xit (i, t) ∈ Ω
0 otherwise,

(2.2)

where ◦ is the Hadamard product. The density of the observation mask is
de�ned as

|Ω| = 1

N T

N∑
i=1

[mat(Ω)]ij . (2.3)

2.1 Matrix Completion

To introduce the �eld of matrix completion we �rst consider the observed matrix
Y to be a direct partial observation of the underlying matrix,

Y = PΩ(M) (2.4)

7
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such that its entries are real-valued, Yij ∈ R for (i, j) ∈ Ω. In this case the by
far most common approach to matrix completion is a mathematical application
of Occam's razor; we seek the lowest rank matrix that is in agreement with the
observed data

arg min
M

rank(M)

subject to PΩ(Y ) = PΩ(M).
(2.5)

In the early advancements of matrix completion, this formulation was found
to be NP-hard and therefore of little practical use. For the general case, all
currently known algorithms that solve (2.5) require exponential time in the
dimensions N and T in both theory and practice [12]. The pessimism induced
by this result lasted until the mid-2000s, at which point it was shown that
much simpler formulations were in many cases also capable of recovery if the
underlying matrix is of low rank [13, 14]. In a landmark paper, Candes and
Recht developed a nuclear norm minimization (NNM) formulation (2.6) that
took into account that the observed entries may be perturbed by some noise
and showed that if the noise level is small the error can be expected to be
similarly small [15]. We restate the NNM formulation as

arg min
M

‖M‖∗
subject to ‖PΩ(Y −M)‖F ≤ ρ,

(2.6)

where the nuclear norm ‖X‖∗ =
∑

k σk is the sum of the singular values. The
Frobenious norm is de�ned as

‖X‖F =

√√√√ N∑
i=1

N∑
j=1

X2
ij . (2.7)

and the parameter ρ ∈ R determines the level of noise in the observations.
The constrained formulation (2.6) is for some value α ∈ R equivalent to the
Lagrangian formulation

arg min
M

1

2
‖PΩ(Y −M)‖2F + α‖M‖∗ (2.8)

The choice of the nuclear norm was not random; The NNM problem (2.6) is the
tightest convex relaxation of the rank minimization problem [15]. The solution
to (2.8) can be found using e.g. the Fixed Point Continuation (FPC) algorithm
of [16]. Even though solvers of the NNM problem (2.8) are vastly more e�cient
than solvers of the rank minimization problem, they are still un�t for truly large-
scale problems. The FPC algorithm and most other solvers of (2.6) bear the
cost of repeated computation of the full or partial SVD of a N × T matrix [10].
To avoid this, the authors of [10, 17, 18] impose the additional assumption that
M is of rank at most R and thus allows the rank decomposition M = UV T

where U ∈ RN×R and V ∈ RT×R. Inserted into (2.8) this yields another NNM
problem

arg min
U,V

1

2
‖PΩ(Y − UV T )‖2F + α‖UV T ‖∗. (2.9)
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The purpose of assuming the decomposition M = UV T is that we can now use
Lemma 1 of [13].

Lemma 1 [13]. For any matrix X the following are all equal:

1. The minimum
min
U,V

‖U‖F ‖V ‖F ,
subject to X = UV T

2. The minimum
min
U,V

1
2

(
‖U‖2F + ‖V ‖2F

)
subject to X = UV T

3. The nuclear norm ‖X‖∗,

The lemma states that for the NNM problem (2.9) there exists the neighboring
Matrix Factorization (MF) problem

arg min
U,V

‖PΩ(Y − UV T )‖2F + α
(
‖U‖2F + ‖V ‖2F

)
. (2.10)

The introduction of the rank decomposition in (2.9) creates a problem that is
non-convex. As a result of this, numerical solvers of (2.10) may become stuck
in local minima and a numerical solution should be allowed only if found to
be reasonable. At the same time, (2.10) can be quickly solved even if N or T
are large. Notice that letting either variable U or V be �xed, minimizing the
objective

F (U, V ) = ‖PΩ(Y − UV T )‖2F + α
(
‖U‖2F + ‖V ‖2F

)
(2.11)

as a function of the remaining variable is a standard linear least-squares problem.
The MF problem (2.10) can be e�ciently solved by the alternating minimization
procedure in which U, V are iteratively updated by

U (l+1) = arg min
U

F (U, V (l))

and
V (l+1) = arg min

V
F (U (l+1), V ).

Such a procedure monotonically decreases the objective (2.11), which is also
bounded below by 0. As a consequence, the value of the objective is guaranteed
to convergence. Note that providing a reasonable a priori upper bound R of the
rank of M is in many practical applications challenging.

The use of an MF formulation in the recovery of large yet low-rank matrices is
already a merited approach. The Incremented-Rank PowerFactorization (IRPF)
algorithm, the Low-rank Matrix Fitting (LMaFit) and the Scaled Alternating
Steepest Descent (ScaledASD) algorithms, all of which solve a formulation sim-
ilar to (2.10), were found to produce similar or more accurate recovery than
solvers of NNM formulations at signi�cantly reduced running time [10, 17, 18].
In particular, The Low-rank Matrix Fitting (LMaFit) algorithm was found to
outperform the SVD-based APGL of [19] and the Fixed Point Continuation with
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Approximate SVD (FPCA) of [16] at a fraction of the CPU time for real and syn-
thetic data. Recovery was similar to that of the APGL and FPCA algorithms,
even in the case that R was overestimated to be K = �oor[1.50 · rank(M)] [10].

The success and speed of these algorithms, LMaFit in particular, has moti-
vated the use of an MF formulation in the medical domain. In a 2014 paper,
Zhou et al. implemented an extension of the LMaFit algorithm for the densi�ca-
tion of electronic medical records (EMRs). The feature vectors extracted from
the densi�ed EMRs were used in the early prediction of congestive heart fail-
ure and end-stage renal disease. When used as input to a secondary prediction
model, the feature vectors extracted from the densi�ed EMRs outperformed the
feature vectors derived using a range of classical imputation methods [8]. In this
medical setting, such a decomposition has the added bene�t of implementing
the intuitive idea that all females' disposition for illness can be expressed as a
linear combination of at most R basic pro�les (phenotypic archetypes). In other
words, the MF approach can be used not only to gain additional insight into the
individual females but also to discover patterns shared by the entire population.
Building on the success of Zhou et al., we will implement a very similar model
in the early prediction of cervical cancer.

2.2 Introducing a Probabilistic View

To introduce the classical derivation of the MF method, we had to assume that
Y was real-valued. The Screening Dataset, on the other hand, contains either
of the states

Yit ∈ S = {1, 2, 3, 4}, (i, t) ∈ Ω. (2.12)

In the following section, we argue that the LMaFit algorithm can be applied
to an observed matrix containing the integers one through four under certain
assumptions on the latent structure of the data. To achieve this, we lend inspi-
ration from the probabilistic matrix factorization (PMF) approaches of [20, 21].
In these, a probabilistic relation is assumed between the underlying matrix M
and the observed matrix Y such that the unknown M can be recovered us-
ing maximum a posteriori (MAP) or Markov Chain Monte Carlo estimation
techniques.

We imagine that the observed state matrix Y is a partially observed version
of the complete state matrix S,

Y = PΩ(S), (2.13)

and that there exists an entrywise probabilistic relation between S and the
latent risk matrix M .
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(A1) We assume that the probability of female i being in a cervical cancer
state at time t, Sit, is determined by the sampled truncated Gaussian
distribution

p(Sit |Mit, θ) ∝ exp[−θ(Sit −Mit)
2], Sit ∈ S (2.14)

where θ is a distribution parameter.

(A2) We assume that the probability that female i attends a screening at time
t is independent of previous screenings.

p(Ωit |Ωi,t−1, . . . ,Ωi,1, Si,t−1, . . . Si,1) = p(Ωit) = q (2.15)

where q ∈ [0, 1].

The assumptions listed above are not expected to hold true in the Screening
Dataset. Most importantly, we expect the observation of a cancer, high-grade
or even low-grade state to alter the future screening attendance of the female.
Even so, we retain these assumptions to produce an optimization problem that
we can solve with the resources available. The likelihood in (A1) yields the
Frobenius norm in the discrepancy term. As a result, the subproblems in the
alternating minimization schemes remain LLS problems. By assuming (A2), the
mask enters the posterior probability only as a constant factor. If, on the other
hand, we had to account for the conditional dependence of screening attendance,
the complexity of MAP estimation would be much greater.

Finally, we assume that the latent risk matrix M is of low rank and can be
represented by the decomposition

M = UV T . (2.16)

The relation between the state matrix, the latent risk matrix and the decompo-
sition U , V is illustrated in Figure 2.1. For cervical cancer, the time-component
V can be interpreted as R basic disease trajectories. The coe�cient matrix can
be interpreted as a female-speci�c weighting of the trajectories in V .

Under (A1) the subsequent states of a female depend only on her latent
risk pro�le and the observed mask. We compute the likelihood of the observed
pro�le of a single female as

p(Yi |Ui, V,Ωi, θ) =

T∏
t=1

[p(Yit | [UiV
T ]t, θ)]

Ωit

=
∏
t∈Ωi

exp
[
−θ(Yit − [UiV

T ]t)
2
]
,

(2.17)

and similarly for a population of N independent females

p(Y |U, V,Ω, θ) =

N∏
i=1

T∏
t=1

[p(Yit | [UiV
T ]t)]

Ωit

=
∏

(i,t)∈Ω

exp
[
−θ(Yit − [UV T ]it)

2
]
.

(2.18)
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Figure 2.1: Illustration of the assumed relation between the state matrix, the latent
risk matrix, the basic disease trajectories and the female coe�cient matrix.

Using the deduced likelihood we derive the posterior probability of U, V condi-
tioned on the observed matrix as

p(U, V |Y,Ω, θ) ∝ p(Y |U, V,Ω, θ)π(U)π(V ) (2.19)

where π(U) and π(V ) are the priors of U and V . To produce a formulation
equivalent to (2.10), we �rst assume that the entries of U and V follow a Gaus-
sian prior Uij , Vij ∼ N (0, σ2). Inserting these yields the posterior probability

p(U, V |Y,Ω, θ) ∝
∏

(i,t)∈Ω

exp
[
−θ(Yit − [UV T ]it)

2
]

·
N∏
i=1

K∏
k=1

exp

[
−U

2
ik

σ2

] T∏
t=1

K∏
k=1

exp

[
−V

2
tk

σ2

]
.

(2.20)

By standard means of MAP estimation we consider instead the logposterior

ln p(U, V |Y,Ω, θ) ∝ Ω

2
ln θ −

∑
(i,t)∈Ω

θ(Yit − [UV T ]it)
2

− (N R) lnσU −
N∑
i=1

K∑
k=1

U2
ik

σ2

− (T R) lnσV −
T∑

t=1

K∑
k=1

V 2
tk

σ2
,

(2.21)

which we recognize in its simpli�ed form

ln p(U, Y |Y,Ω, θ) ∝ −θ‖PΩ(Y − UV T )‖2F −
1

σ2

(
‖U‖2F + ‖V ‖2F

)
. (2.22)
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The MAP estimate of the decomposition is found by maximizing (2.22) with
respect to U and V . We recognize this to be a matrix factorization problem
equivalent to (2.10) with slightly modi�ed regularization parameters. We have
shown that, under certain assumptions, matrix factorization can safely be ap-
plied also to cervical cancer screening data.

2.3 Temporal Regularization

In the context of cervical cancer, we have prior belief that the R basic disease
trajectories are temporally smooth. Large and sudden jumps in the latent risk
of a female are considered unlikely and entries in the recovered M should be
in some proximity of their neighbors along the time dimension. To induce such
trends also in our latent risk matrix estimate we modify the assumed prior on
π(V ).

2.3.1 The SPMF Model

In the �rst model, referred to as Smooth Probabilistic Matrix Factorization
(SPMF), we let the logprior

lnπ(U) + lnπ(V ) ∝ λ1

(
‖V ‖2F + ‖U‖2F

)
+ λ2‖DV ‖2F (2.23)

be proportional not only to the Frobenius norms of U and V but also to the
Frobenius norm of the �nite-di�erence approximation DV where

D =



−1 1
−1 1 (0)

. . .
. . .

−1 1
(0) −1 1

0


. (2.24)

This model will induce a constant level of smoothness along the time dimension
of the basic pro�les. Consider a scenario in which a net change along the time
dimension in the basic trajectories is required to allow for the discrepancy term
to be reduced. As the �nite di�erences in the third term of (2.23) are squared
directly, the model will spread this net change in V evenly along the time
dimension to reduce the size of the logprior. Under this new prior the MAP
estimate is found as the solution to

arg min
U,V

‖PΩ(Y − UV T )‖2F + λ1

(
‖U‖2F + ‖V ‖2F

)
+ λ2‖DV ‖2F . (2.25)

2.3.2 The CPMF Model

In some cases, we want to center the net change in the basic pro�les around
certain time points of interest. The second model, referred to as Convolutional
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Probabilistic Matrix Factorization (CPMF), implements this by including the
linear mapping K in the logprior

lnπ(U) + lnπ(V ) ∝ λ1

(
‖V ‖2F + ‖U‖2F

)
+ λ2‖KDV ‖2F , (2.26)

where K is de�ned by

Kij = exp(−|i− j|). (2.27)

In this latter case, the �nite di�erences are squared after being convolved along
the time dimension. As a result, the �nite-di�erence of a large and sudden
jump in a basic pro�le will only be squared after being distributed along the
time dimension. The convolution reduces the e�ect of the jump in the logprior.
For that reason, the CPMF model will lend itself to a small number of sudden
jumps in the basic pro�les if this reduces the discrepancy term. The MAP
estimates of U, V in the CPMF model are found as the solution to

arg min
U,V

‖PΩ(Y − UV T )‖2F + λ1

(
‖U‖2F + ‖V ‖2F

)
+ λ2‖KDV ‖2F . (2.28)

Notice that (2.25) is the same as (2.28) if K is the identity mapping. An
algorithm solving (2.28) for an arbitrary K can be used to implement both the
SPMF and CPMF model. We refer to the process of estimating the latent risk
matrix using either of the models as training the model.

2.4 Training the SPMF / CPMF Models

In this section, we describe in detail the solution of (2.28) using the IRPF [17]
and LMaFit [10] algorithm and argue that the latter is computationally tractable.
Both of these rely on an alternating minimization scheme in which U and V are
updated iteratively.

2.4.1 The IRPF Algorithm

Implementing the IRPF algorithm for solving (2.28) we de�ne the objective

F (U, V ) = ‖PΩ(Y − UV T )‖2F + λ1

(
‖U‖2F + ‖V ‖2F

)
+ λ2‖KDV ‖2F , (2.29)

such that U, V can be iteratively updated as the solutions to the subproblems

U (l+1) = arg min
U

F (U, V (l)) (2.30)

V (l+1) = arg min
V

F (U (l+1), V ). (2.31)

Notice that (2.30) is a linear least squares (LLS) problem with an optimality
criterion

[mat(Ω) ◦
(
UV (l)T

)
]V (l) + µ1U = [mat(Ω) ◦ Y ]V (l)T (2.32)
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that is decoupled over the rows of U . This means that the solution of (2.32)
can be computed row-wise by

U
(l+1)
i,: = V (l)Tdiag(mat(Ω)i,:)Yi,:

[
V (l)Tdiag(mat(Ω)i,:)V

(l) + λ1IR

]−1

.

(2.33)
Similarly (2.31) is a LLS problem with optimality criterion

[mat(Ω) ◦
(
V U (l+1)T

)
]U (l+1) + λ1V + λ2D

TKTKDV

= [mat(Ω) ◦ Y ]U (l+1),
(2.34)

which we recognize to be a Sylvester equation of the form AX + XB = C.
The naive approach to solving a Sylvester equation is through vectorization.
We de�ne vec(·) to be the �attening of a matrix to vector form by stacking
the columns successively and unvec(·) as its inverse operation. By de�ning the
matrix

HV = (U (l)T⊗IT )diag(vec(Ω))(U (l+1)⊗IT )+IR⊗(λ1IT +λ2D
TKTKD) (2.35)

the optimality criterion (2.34) can be rewrittten in vectorized form

HV vec(V )vec
[
PΩ(Y )TU (l)

]
. (2.36)

This equation is explicitly solved for V (l+1) by

V (l+1) = unvec
(
H−1

V vec
[
(mat(Ω)T ◦ Y T )U (l)

])
. (2.37)

Unfortunately, the solution of the latter subproblem becomes problematic when
applying the IRPF algorithm to the Screening Dataset. For the number of
females, N = 38001 and the size of the time-dimension T = 321, the matrices
involved in the computation of HV are too large to �t in RAM for most modern-
day computers. Even if it were not so, the solution of a (RT ) × (RT ) system
at every iteration incurs a sizeable cost to the running time of the algorithm.
While both problems can be mitigated by using a specialized solver, we instead
use it as motivation for implementing the LMaFit algorithm.

2.4.2 The LMaFit Algorithm

As opposed to IRPF, the Low-rank Matrix Fitting (LMaFit) algorithm can
easily be implemented without vectorization and is therefore more tractable in
cases whereN is large and the complexity of matrix-matrix operations dominate.
This is achieved by the additional relaxation from (2.28) to the constrained
problem

arg min
U,V,Γ

‖Γ− UV T ‖2F + λ1

(
‖U‖2F + ‖V ‖2F

)
+ λ2‖KDV ‖2F

subject to PΩ(Y ) = PΩ(Γ).
(2.38)
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Observe that the projection onto the mask is applied only in the constraint.
After relaxation the alternating minimization scheme now involves the solution
to the three subproblems

arg min
U

‖Γ(k) − UV (k)T ‖2F + λ1‖U‖2F (2.39a)

arg min
V

‖Γ(k) − U (k+1)V T ‖2F + λ1‖V ‖2F + λ2‖KDV ‖2F (2.39b)

arg min
Γ

‖Γ− U (k+1)V (k+1)T ‖2F
subject to PΩ(Y ) = PΩ(Γ).

(2.39c)

While these may seem no simpler to solve than before, we can now leverage the
similarity of these subproblems to those in PACIFIER [8]. In similar fashion as
Zhou et al. we compute the eigenvalue decompositions

Q1Λ(1)QT
1 = U (k+1)TU (k+1) + λ1I (2.40a)

Q2Λ(2)QT
2 = λ2D

TKTKD, (2.40b)

and assign
Ξ = QT

2 (S(k)TU (k+1))Q1 (2.41a)

Ṽij =
Ξij

Λ
(1)
ii + Λ

(2)
jj

. (2.41b)

Then the subproblems (2.39a)-(2.39c) are explicitly solved by (2.42a)-(2.42c).

U (k+1) = (Γ(k)V (k))
(
V (k)TV (k) + λ1I

)−1

(2.42a)

V (k+1) = Q2Ṽ Q
T
1 (2.42b)

Γ(k+1) = PΩc(U (k+1)V (k+1)T ) + PΩ(Y ) (2.42c)

The matrix V (k)TV (k) is symmetric positive semide�nite such that for λ > 0,
the matrix (V (k)TV (k) + λ1I) is positive de�nite and thus invertible. Using
(2.42a), (2.42b) and (2.42c), we summarize an alternating minimization scheme
for solving (2.38) in Algorithm 1. In this thesis we initialize the R basic trajec-

Algorithm 1: LMaFit [10]

Estimate rank as R;

Initialize V (0), Γ(0);
repeat

Update U (k+1) using (2.42a);

Update V (k+1) using (2.42b);

Update Γ(k+1) using (2.42c);

until convergence criterion;
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tories
V

(0)
tr = 1 + 3 · r

R
, ∀t, r = 0, . . . , R (2.43)

as uniform over time but of increasing latent risk. The placeholder matrix is
initialized simply as Γ(0) = Y . The convergence criterion is chosen to be

‖U (k+1)V (k+1)T − U (k)V (k)T ‖2F
‖U (k+1)V (k+1)T ‖2F

≤ ε, (2.44)

with ε = 10−4. Checking the convergence criterion is costly and therefore only
done every 50th iteration. It is important to note that correct recovery of U, V
depends on the rank estimate R and the regularization parameters.

2.5 Prediction

Recall that in formulating the regularized problem as a result of MAP estima-
tion, we had to assume the sampled Gaussian likelihood (A1) and the inde-
pendence of screening participation (A2). In the following, we explicate how
these assumptions can be used to derive a prediction scheme for the future cer-
vical cancer state. Also, we argue that early prediction of cervical cancer can
be reduced to a binary problem and derive a prediction scheme in this latter
context.

2.5.1 Predicting Cervical Cancer State

Initially we view the early prediction of cervical cancer state as a multiclass
classi�cation problem. Let y ∈ ({0} ∪ S)T denote the screening history of a
given female encoded as described in Section 1.3 and let st ∈ S denote the
cervical cancer state of the female at a future time t. Under (A1) and (A2), the
conditional probability of st given y can be computed as

p(st |y, θ) ∝
∫
m

p(st |m, θ) · p(m |y, θ)dm

p(st |y, θ) ∝
∫
m

p(st |m, θ) · p(y |m, θ) · π(m) dm.

(2.45)

In the derivation of (2.28), we assumed a prior on π(m). Even after inserting
the assumed form of the prior and simplifying the integral, it is of such high
dimensionality that its computation is intractable. Instead, we can imagine that
we have at our disposal a training set with an observed matrix Y (train) consisting
of the encoded screening histories{

Y
(train)
1,: , Y

(train)
2,: , . . . , Y

(train)
N,:

}
.

These do not contain but are sampled from the same population as y. Training
the SPMF / CPMF model on this set yields the latent risk matrix estimate
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M̂ (train). We can then view the rows of the estimated latent risk matrix of
the training set as samples from the prior distribution π(m). Moreover, we can
approximate the conditional probability (2.45) as the integral over the empirical
prior de�ned by the samples

p̂(st |y, θ) ∝
N∑
i=1

p(st | M̂ (train)
i,: , θ) · p(y | M̂ (train)

i,: , θ). (2.46)

We �nish the conditional probability estimate by inserting for the sampled Gaus-
sian likelihood

p̂(st |y, θ) ∝
N∑
i=1

exp[−θ(st − M̂ (train)
it )2] p(y | M̂ (train)

i,: ) (2.47)

where st ∈ S. Using the probability estimates, we can predict the future cervical
cancer state of the given female by

ŝt = arg max
st

p̂(st |y, θ) · ast (2.48)

where ast is a bias term. We refer to the Smooth Matrix Factorization (SPMF)
classi�er as the scheme in which the latent risk matrix of the training set is esti-
mated using the SPMF regularization model and predictions are computed using
(2.51). Similarly we refer to the Convolutional Matrix Factorization (CPMF)
classi�er as the scheme in which the training set is estimated using the CPMF
regularization model and predictions are computed using (2.51). The prediction
parameter θ and the regularization parameters λ1,λ2 and R are referred to as
the hyperparameters of the classi�ers.

2.5.2 The Di�culty of The Multiclass Bias

The medical nature of the problem implies that wrongfully predicting females
of a high-grade or cancer state to the low-grade or normal state is signi�cantly
worse than the other way around. To avoid under-screening, we can set a higher
bias towards the high-grade and cancer states. However, for the multiclass
problem, this begs the question in what manner these should be prioritized.
While it is unfortunate that the algorithm fails to predict a high-grade or cancer
state, it is di�cult to argue how harmful a missed cancer is in comparison to a
missed high-grade state.

To circumvent this challenge, we can narrow the scope of what we want to
predict. We are most interested in predicting the sudden transmission from a
state indicating the female is healthy to a state indicating that the female is
sick. Basing ourselves on discussion conducted as part of the DeCipher project,
we argue the following: Both the normal and low-grade states indicate that the
female is healthy. Females diagnosed with the low-grade state are expected to
regress to normal. Conversely, both the high-grade and cancer states indicate
that the female is sick. The high-grade state implies an immediate risk of
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developing cervical cancer even though it has not fully developed. With the
intent of predicting whether action will be required at a future time, we can
reduce the number of states to two: healthy and sick.

2.5.3 The Binary Prediction Model

We adopt a simpli�ed view of the early prediction of cervical cancer and refer to
females of the normal or low-grade state as healthy and women of the high-grade
or cancer state as sick. For a given female, we create the variable bt ∈ {0, 1}
encoding the binary disease status of the female at time t,

bt =

{
1, st ∈ {3, 4}
0, st ∈ {1, 2}. (2.49)

We compute binary probability estimates

p̂b(bt |y, θ) =

{
p̂(3 |y) + p̂(4 |y), bt = 1
p̂(1 |y) + p̂(2 |y), bt = 0,

(2.50)

by mapping over the state probability estimates of (2.46). The subscript b is
included to di�erentiate these estimates from those in the multiclass context.
As before we use the probability estimates to derive binary predictions

b̂t =

{
1, p̂b(1 |y, θ) ≥ δ
0, otherwise,

(2.51)

where δ ∈ [0, 1] is a bias towards the sick state. We refer to the Binary Smooth
Matrix Factorization (B-SPMF) classi�er as the scheme in which the latent risk
matrix of the training set is estimated using the SPMF regularization model and
predictions are computed using (2.51). Similarly we refer to the Binary Convo-
lutional Matrix Factorization (B-CPMF) classi�er as the scheme in which the
latent risk matrix of the training set is estimated using the CPMF regulariza-
tion model. The binary classi�ers permit the same hyperparameters as in the
multiclass context.

Now the bias term is a single variable and more easily interpreted. A focal
point of this thesis is that in the proposed binary classi�ers, the bias can be
chosen freely to match the intended behavior of the classi�er.
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Chapter 3

Simulation

The Screening Dataset, as illustrated in Figure 3.1, is extremely sparse, integer-
valued, and its nonzero observations are irregularly spaced along the time di-
mension. This poses a signi�cant challenge in the training procedure of the
classi�ers. When applied to real data, we do not know the ground truth latent
risk matrix and cannot ensure that the models behave as intended. To inves-
tigate the convergence of the algorithm, we �rst construct a simulation model
that can produce data subject to the same challenges as the Screening Dataset
but for which we know the ground truth.

In this section, we describe the Discrete Gaussian Distribution (DGD) and
Hidden Markov (HMM) simulation models for generating the complete state
matrix. We design the former as part of this thesis with the probabilistic ma-
trix factorization classi�ers in mind. The DGD model adheres to (A1) and
samples the states from the underlying latent risk through the sampled Gaus-
sian distribution. The second model is a model developed by Soper et al. [22]
and previously trained on data collected by the NCCSP. It was designed to pro-
duce complete state matrices replicating the rate of transmission from normal
to pre-cancerous states in the Nordic population.

Furthermore, we describe a model for simulating screening attendance, i.e.,
simulating the observation mask. The model should reproduce the irregularity
and sparsity of the Screening Dataset. Combining the mask simulation model
with either the DGD or HMM, we generate synthetic observed state matrices
by simulating the complete state matrix and projecting it onto the simulated
observation mask.

3.1 Discrete Gaussian Distribution

In the DGD simulation model, the ground truth latent risk matrix is chosen as
a weighting of R predetermined basic disease trajectories. We choose R = 5
and determine the basic disease trajectories by

Vtk = exp
[
−10−3(t− ck)2

]
, (3.1)

21
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Figure 3.1: Visualization of the Screening Dataset and the observed state matrices
of the DGD and HMM models. The matrices are uniformly undersampled along with
the patient- and time-dimension to produce 100 rows and 200 columns. A colored
square represents an observed screening whereas a white square represents a missing
entry.

where c = (70, 95, 120, 145, 170). The value 10−3 is chosen such that the basic
disease trajectories undergo a moderately narrow peak of high latent risk. In
addition the trajectories are temporally smooth. The entries of the coe�cient
matrix U are sampled from the standard exponential distribution, Uik ∼ Exp(1).
To satisfy (A1), the synthetic complete state matrix is entrywise sampled from
the latent risk matrix through the sampled Gaussian likelihood

p(Sit |Mit, θ) ∝ exp
[
−θ(Sit −Mit)

2
]
, Sit ∈ S, (3.2)

where the kernel parameter θ = 2.5. This value was chosen to yield a proportion
of the high-grade and cancer states similarly small as in real screening data. The
likelihood is discrete and we sample the states using inverse transform sampling.

3.2 Hidden Markov Model

The Hidden Markov (HMM) model di�ers from the DGD model in that there
exists no latent risk matrix M . Instead, the complete state matrix is sampled
using a set of transmission probabilities. The model was developed by Bradel
et al. and is described [22]. Therefore, we provide only a high-level overview
of the model. The complete state matrix S is sampled row-wise. For a single
female, we sample the initial state s0 ∈ S with the probabilities of Table 5
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Figure 3.2: Visualization of the complete state matrices of the DGD and HMM mod-
els. The matrices are uniformly undersampled along the patient- and time-dimension
to produce 100 rows and 200 columns.

in [22]. Further, we sample the time spent in this state is a random variable
with cumulative distribution determined by Proposition 1 of [22]. Upon exiting
the initial state, we sample the state st from the discrete distribution determined
by the intensities in Table 6 and Table 7 in [22], which depend on the female's
age and state. We now consider the second state of being the initial state and
repeating the given steps. The entire process is repeated until the accumulated
time interval exceeds T , at which point we have generated the complete state
vector of a single female. This process is repeated N times to generate the
complete state matrix.

Observe from Figure 3.2 that the DGD and HMM models produce complete
state matrices of a di�erent nature. In the former, the females frequently tran-
sition from normal to low-grade and vice versa. On average, the sampled states
correspond to the latent risk from which they were sampled. In HMM data,
such transitions occur only once or twice in the entire lifetime of a simulated
female.

3.3 Simulating Screening Attendance

As the �nal step in the generation we simulate the observation mask Ω. To
satisfy (A2) this can be done using

P ((i, j) ∈ Ω) = ε, (3.3)

where ε ∈ [0, 1] is the intended sparsity of the resulting mask. However this
assumes that the probability of a patient choosing to undergo a screening is
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constant. In other words, it is independent of past screening outcomes and the
time spent since the last screening. This o�ends our intuition and we instead
argue that past screenings a�ect the patient`s future screening participation. To
simulate this behavior we devise a discrete random process where the screening
probability is determined by the outcome of the last remembered screening,

P ((i, t+ 1) ∈ Ω) =


p0, t− t′ > ν
p1, Yit′ = 1, t− t′ ≤ ν
p2, Yit′ = 2, t− t′ ≤ ν
p3, Yit′ = 3, t− t′ ≤ ν
p4, Yit′ = 4, t− t′ ≤ ν.

(3.4)

The index
t′ = arg max

t̃≤t
(i, t̃) ∈ Ω, (3.5)

is the time of the last observed entry, ν is a memory parameter of the patients
and ps ∈ [0, 1] is the probability of undergoing a screening given the result of
last remembered screening. The screening probability is determined solely by
the most recent remembered screening result. In the case that the patient had
no screenings within the memory period [t− ν, t− 1], the probability is set to a
base probability p0 ∈ [0, 1]. In this thesis we let the memory parameter ν = 10
and the probabilities

p0 = 0.01 · ξ
p1 = 0.03 · ξ
p2 = 0.08 · ξ
p3 = 0.12 · ξ
p4 = 0.04 · ξ.

(3.6)

be constants multiplied by the global sparsity parameter ξ ∈ [0, 1
0.12 ]. In the

Screening Dataset we found the probability of screening to be increased after
an observed low- or high-grade state. The parameters of (3.6) where chosen
as we observed them to recreate this e�ect in the simulated data. Using this
parametrization, the sparsity of the mask can be varied by altering the global
sparsity parameter ξ. At the same time, the simulated behavior remains largely
the same.

In the illustration of the Screening Dataset in Figure 3.1, we observe that
after some time-index, there are no further observations for a speci�c female.
This phenomenon, referred to as censoring, is caused by a multitude of reasons.
We recall that the NCCSP recommends regular screening only for women of
the ages 25 to 69. The censoring a�ects the training of the models as the
future development of that female is then completely unknown. We extend the
simulation model to incur the same loss of information in the synthetic data.
We sample censoring times from a Beta-binomial with parameters α = 4.57
and β = 5.47, which we obtained by �tting the distribution to the censoring
times in the Screening Dataset using maximum likelihood. Figure 3.3 shows the
empirical distribution of the Screening Dataset and the �tted distribution. All
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Figure 3.3: Empirical PMF of censoring in the Screening Dataset along with the
PMF of the �tted Betabinomial distribution. The two distributions are compared
using a quantile-quantile (Q-Q) plot.

Table 3.1: The distribution of cervical cancer states in the Screening Dataset and
synthetic data generated by the HMM and DGD models. The frequencies are listed
as percentages.

Dataset \ State 1 2 3 4

SD 92.964 4.656 2.344 0.036
DGD 43.881 51.587 4.454 0.078
HMM 86.540 8.734 4.724 0.002

observations after the censoring time t
(ct)
i of a particular female are removed

from the simulated mask. We note that synthetic datasets are generated with
censoring unless explicitly speci�ed otherwise.

3.4 Comparison

Figure 3.1 shows a visual comparison of DGD data, HMM data, and real screen-
ing data. Observe that the mask simulation model successfully reproduces the
sparsity and irregularity of the Screening Dataset. As the probability of screen-
ing is higher after previously observing a low- or high-grade state, there is a
clustering behavior around such observations. The censoring e�ect is also ap-
parent in the simulated data.

Table 3.1 shows the distribution over the states of the three types of data.
While the HMM and Screening Data are dominated by the normal state, the
DGD contains an equally large proportion of the low-grade state. In addition the
three datasets di�er somewhat in the proportion of the high-grade and cancer
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Table 3.2: The rates of transmission between the states in the Screening Dataset
and synthetic data generated by the HMM and DGD models. The rates are listed as
percentages normalized by the �From� state / row.

SD

From \ To 1 2 3 4
1 95.820 3.225 0.931 0.024
2 62.166 27.900 9.858 0.076
3 46.339 10.970 42.239 0.451
4 40.000 2.222 55.556 2.222

DGD

From \ To 1 2 3 4
1 58.600 40.720 0.678 0.002
2 31.158 63.740 5.084 0.018
3 5.331 59.182 34.497 0.989
4 0.439 14.474 68.860 16.228

HMM

From \ To 1 2 3 4
1 98.709 1.176 0.114 0.001
2 11.157 87.278 1.565 0.000
3 0.866 2.307 96.802 0.025
4 100.000 0.000 0.000 0.000

state.
The simulated data di�er also in the rate of transition between the states.

Table 3.2 the rate of transition to a given state categorized and normalized by
the current state. Across all datasets, there is a tendency to remain in the
normal state. It is interesting that females of a low- or high-grade state in the
Screening Dataset also display a tendency to regress directly to the normal state.
We do not observe this trend in the simulated datasets; in both HMM and DGD
data, females of a high-grade or cancer state are more likely to transition into
the low-grade state.

In this section, we have described two methods for generating sparse, integer-
valued, and irregularly observed data. We were able to replicate the sparsity and
clustering behavior of the observation mask. However, the generated synthetic
data di�er from real data in distribution and transitionary behavior.



Chapter 4

Reconstructing the Latent

Risk Matrix

In this section, we investigate if we reconstruct the latent risk matrix by training
the SPMF and CPMF models. To measure reconstruction at a speci�c point
we de�ne the pointwise absolute error (PAE)

[PAE]it = |Mit − [UV T ]it| (4.1)

as the di�erence in absolute value between the estimated latent risk and ground
truth at the point in question. To measure reconstruction across an entire
dataset, we de�ne the reconstruction mean-squared error (recMSE)

recMSE =
‖PΩc(M − UV )‖2F

(1− |Ω|) . (4.2)

as the sum of all squared di�erences between the latent risk estimate and ground
truth latent risk at the unobserved entries. The recMSE is a measure of how
well the model extrapolates the temporal trends of the observed entries into
points of time where we have no information of the patients. Both measures
can only be computed if the ground truth latent risk matrix M is known. For
that reason, we investigate reconstruction only for simulated DGD data.

4.1 Convergence

We simulate the fully observed state matrix S according to the DGD model with
N = 10000 and simulate screening attendance with global sparsity parameter
ξ = 0.6 both with and without censoring. Finally, we train the SPMF and
CPMF models on the resulting state matrix Y .

Figure 4.1 shows recMSE as a function of iteration number in Algorithm 1.
We note that the training procedures of the two SPMF and CPMF models are

27
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Figure 4.1: Convergence in the training procedure of the SPMF and CPMF models
for DGD data. The objective and recMSE are plotted on separate log-log scales as a
function of iteration number in Algorithm 1.
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identical. Therefore the following applies to both. We observe that for data sim-
ulated without censoring, the objective and recMSE converge to their respective
lower bounds within the �rst three hundred iterations. The convergence crite-
rion is satis�ed at the exact point where subsequent iterations yield no visible
decrease in the recMSE. Interestingly, introducing censoring in the simulated
data changes the convergence behavior. For censored data, the training can
be divided into two phases. In the �rst phase, the objective rapidly decreases,
whereas the recMSE only undergoes a moderate decrease. This continues until
the algorithm has run for 1000 iterations. In the second phase, the convergence
rate of the recMSE increases despite there being no visible decrease in the ob-
jective. This implies that when training the models on the Screening Dataset,
convergence cannot be determined from the reduction in the objective. To avoid
early termination, the criterion in (2.44) is instead based on the norm of the
di�erence between subsequent estimates of the latent risk matrix. Even so, ap-
plying this rule to DGD data with censoring terminates the algorithm despite
subsequent iterations yielding a small but signi�cant decrease in the recMSE.

4.2 The E�ect of Data Sparsity

The sparsity of the Screening Dataset is a central theme in this thesis. With that
in mind, it is interesting to study if the sparsity of the observed state matrix
Y a�ects the recMSE obtained. Figure 4.2 shows the PAE of the estimated
latent risk matrices of the CPMF model trained on DGD data with varying
sparsity parameters. We �rst consider the sparsest example (Ω = 0.04). Even
though the algorithm has converged, there remains a considerable di�erence
between the ground truth and the reconstruction. This is expected as certain
rows contain almost no nonzero observations. From only a few entries, the
algorithm is not able to estimate the coe�cient matrix. We increase the density
(Ω = 0.08) and observe the PAE to decrease in a localized fashion. Some rows
now contain additional screenings, and the algorithm can use these to estimate
the corresponding latent risk pro�les correctly. Other rows display no change
even though the dataset, as a whole, contains more nonzero entries. Finally, as
the density becomes high (Ω = 0.33), estimation is accurate for all but some
rows. The censoring e�ect still complicates reconstruction for higher ages, but
the e�ect is weakened.

From the examples above, we suspect that the model's ability to reconstruct
the latent risk matrix depends continuously on the density of the data. Figure
4.3 con�rms this and shows that the rate of convergence is sublinear for DGD
data. Interestingly, the CPMF model outperforms the SPMF model across all
densities. We recall the true basic disease trajectories of the DGD data in
Section 3.1. The �exibility of the CPMF allows the estimated basic disease
trajectories to undergo a net change over a short time interval. While this was
implemented to accommodate the spurious jumps in the Screening Dataset, it
turns out to be amenable also to the sharp peaks in the true basic disease
trajectories of DGD data. The regularization towards such peaks in the CPMF
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Figure 4.2: Pointwise absolute error (PAE) of reconstruction attained by training the
CPMF model on three examples of DGD data. The data is simulated with N = 10000
and ξ ∈ {0.6, 1.0, 3.0} (left to right). The model is trained with hyperparameters
R = 5, λ1 = 1, λ2 = 1000.
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the DGD data. The data is simulated with N = 10000 and ξ ∈ [0.2, 2.0]. The model
is trained with hyperparameters R = 5, λ1 = 1, λ2 = 1000.
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enables the model to achieve more accurate reconstruction.
In this section, we have demonstrated that the SPMF and CPMF models

successfully reconstruct the latent risk matrix from the sparse, integer-valued,
and irregularly observed state matrices generated by the DGD simulation model.
We found the censoring e�ect described in Section 3.3 to negatively a�ect the
convergence of the algorithm and demonstrated that the models' ability to re-
construct depends on the sparsity of the input in a continuous fashion.
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Chapter 5

Predicting Cervical Cancer

State

Early prediction of cervical cancer state can be viewed as a multiclass classi�ca-
tion problem. In the following section, we use the proposed SPMF and CPMF
models described in Section 2 to perform such classi�cation. The performance
of the models is evaluated on the simulated datasets and the Screening Dataset.

5.1 Preprocessing

As the prediction scheme requires a pretrained latent risk matrix estimate, pre-
dicting cervical cancer state is a two-step process. In the �rst step, the SPMF
/ CPMF models are trained using a training set to produce a latent risk matrix
estimate. The trained model is then used to assign the most likely future state
for a prediction population. Neither the simulated datasets nor the Screening
Dataset are preassigned to a training/prediction population, but we can create
such a division using a row-wise split

Y =

[
Y (train)

Y (pred)

]
(5.1)

where Y (train) ∈ ({0}∪S)N1×T , Y (pred) ∈ ({0}∪S)N2×T and N1 +N2 = N . To
replicate a scenario in which the prediction algorithm is of diagnostic usefulness,
its input should consist only of past observed states. To create such input we
must from the prediction set extract a regressor matrix, de�ned by

[Y (regressor)]ij =

{
[Y (pred)]ij j < ti −∆t

0 j ≥ ti −∆t.
(5.2)

where ∆t ∈ N is the size of the smallest prediction window. In this thesis this
is set to ∆t = 4. Observe that the rows of the regressor matrix Y (regressor) is
nonzero only prior to the prediction window. This ensures that when predicting

33



34 CHAPTER 5. PREDICTING CERVICAL CANCER STATE

the future cervical cancer state for a given patient we rely only on the subset
of that patient's screening history recorded at least ∆t periods before the time
of prediction. By setting ∆t = 4 we replicate the scenario in which we want to
predict the cervical cancer state of a patient at least one year ahead in time.

To assess the accuracy of the classi�cation procedure we extract also the
true labels as

yi = Y
(pred)
iti

. (5.3)

such that the predictions can be compared to the true labels. In the extraction
of both the regressor matrix and the true labels, the time of prediction ti is
chosen as the last observed entry for that patient. The probability estimates

p̂(yi |Y (regressor)
i , θ) (5.4)

computed using (2.46) are used to assign class probability estimates for patient
i at time ti. Basing ourselves in the arguments made in Section 2.5.2 we in this
multiclass context choose to forego a bias and compute predictions simply as
the estimated maximum posterior probability state

ŷi = arg max
yi∈S

p̂(yi |Y (regressor)
i , θ). (5.5)

We create the split (5.1) using two strategies. The �rst is used for simplicity
and ease of interpretation and consists of choosing N1 = d0.8 ·Ne, i.e., choosing
the training set to be the �rst 80% of the rows in the dataset. In the second
strategy, we implement 5-fold cross-validation for increased accuracy in the
measured performance. This divides the dataset evenly into �ve partitions,
assigns four of the partitions to the training set, and assigns the remaining to
the prediction set. We then train the model on the training set and evaluate
it on the prediction set. We increment the index of the prediction partition
sequentially and repeat the entire process for a total of �ve runs. Finally, we
average the performance measures attained on the �ve partitions to yield a
single result.

5.2 Metrics

To evaluate the success/failure of the multiclass classi�ers we make use of the
visual confusion matrix tool and two scoring metrics. A confusion matrix details
the number of patients assigned to the di�erent classes categorized by the class
of the true label. The row of an entry speci�es the true class and the column
speci�es the predicted class. For the classi�cation of cervical cancer state, an
example is shown in Table 5.1. The confusion matrix provides a complete
view of the classi�cation results. To score the overall success/failure of the
classi�cation schemes, we extract from the confusion matrix two informative
summary metrics. The accuracy of a classi�cation scheme

ACC =

∑
k

Tk∑
k

Tk +
∑

k

∑
l Fkl

, (5.6)
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Table 5.1: A template confusion matrix.

Predicted
1 2 3 4

T
ru
e

1 T1 F12 F13 F14

2 F21 T2 F23 F24

3 F31 F32 T3 F34

4 F41 F42 F43 T4

is classical and describes the ratio of the number of total observations that were
correctly predicted. A perfect algorithm will achieve an accuracy of ACC = 1
and thus we may seek an algorithm that is as close to this as possible. However,
the accuracy lends itself to trivial solutions when the classes are imbalanced. We
saw in Section 3 that of the nonzero entries in the Screening Dataset, 93% of the
entries described a normal state. Thus even the trivial solution of predicting the
future cervical cancer state to be normal for all patients regardless of screening
history can be expected to achieve an accuracy of 0.93. To rely not only on the
accuracy we also implement the Gorodkin RK statistic [23]

RK =

∑
k

∑
l

∑
m

Tk Flm − FklFmk√∑
k(
∑

l Fkl)(
∑

k′ 6=k

∑
l′ Fk′l′)

√∑
k(
∑

l Flk)(
∑

k′ 6=k

∑
l′ Fl′k′)

, (5.7)

which is a generalization of the Matthews correlation coe�cient to the multiclass
problem. The RK statistic is designed to favor non-trivial solutions also in the
case of heavily imbalanced data.

5.3 Baselines

We compare the performance of the SPMF and CPMF classi�ers to a set of
easily implementable baseline models.

5.3.1 The Forward Fill Baseline

The Forward Fill (FF) baseline is de�ned by

ȳi = Y
(regressor)
ili

(5.8)

where li < ti − η is the index of the last nonzero entry in the regressor vector

Y
(regressor)
i . In this manner, FF predicts the future cervical cancer state to be

equal to the state observed at the last screening. The forward �ll scheme is
well-founded in the context of cervical cancer as it assumes the state of the
patient will remain in place and be the same at a later time. Recall from Table
3.2 that we observed this often also to be the case. Still, the FF is of little value
in practice; If a patient has recently been screened to the high-grade or cancer
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state, then the scenario that we want to prevent has already occurred. Rather
it is of interest to predict the sudden transmission from a normal or low-grade
state to a high-grade or cancer state before it is realized. The FF will never
predict such a development.

5.3.2 The Oracle Baseline (DGD)

For the data simulated by the DGD model, we can use the ground truth latent
risk matrix M to formulate an additional baseline. The Oracle baseline

ỹi = arg max
yi

p(yi |M (pred)
it , θ) = dM (pred)

it − 0.5e. (5.9)

is aptly named as it can only be used in the arti�cial example in which the latent
risk matrix Mit is known. The Oracle predicts the highest posterior probability
state under (A1) and (A2).

5.4 Prediction of State in DGD data

We simulate the fully observed state matrix S as in Section 3.1 with N = 10000.
Moreover, we simulate screening attendance as in Section 3.3 with global sparsity
parameter ξ = 0.6. We preprocess the resulting observed state matrix Y as
described in Section 5.1.

The confusion matrices of the SPMF, CPMF, FF and Oracle classi�ers are
shown in Table 5.2-5.5. The SPMF and CPMF classi�ers display similar results;
both successfully predict a large portion of the females of a normal or low-
grade states. At the same time, both misclassify most females of a high-grade
state to low-grade. We recall the parameter choices required to reproduce the
characteristics of the Screening Dataset using the DGD simulation model. To
yield only a small number of the high-grade or cancer states, the vast majority of
the latent risk pro�les were chosen to be centered around a low risk. As a result,
the few high-grade or cancer states will have originated from latent pro�les of
low risk. In other words, the classi�ers wrongly predict the low-grade state as
this is actually most likely. We con�rm this by comparing the performance to
that of the Oracle classi�er. The MF classi�ers perform almost as well as the
Oracle, and also the latter misses most of the high-grade and cancer states.

Let now the global sparsity parameter ξ used in the simulation of screening
attendance vary. This alters the density of the observed state matrix Y and
allows us to investigate in what manner the density of the dataset a�ects the
predictive performance of the SPMF and CPMF classi�ers. We observe from
Figure 5.1 that the accuracy and RK of the classi�ers increase with increasing
density. The increase is rapid for lower densities, whereas it is moderate for
larger densities. This behavior illustrates a point of signi�cant interest. The
density of the Screening Dataset lies in the region where the SPMF / CPMF
classi�ers experience a rapid performance increase. If the data we have available
for the early prediction of cancer is enlarged, even just slightly, the accuracy with
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Table 5.2: Confusion matrix of the SPMF classi�er applied to synthetic DGD data
generated with N = 10000 and ξ = 0.6. The SPMF algorithm was trained using
R = 5, λ1 = 1, λ3 = 1000, and predictions were computed using θ = 2.5.

Predicted
1 2 3 4

T
ru
e

1 821 306 0 0

2 209 468 2 0

3 4 20 3 0

4 1 2 1 0

Table 5.3: Confusion matrix of the CPMF classi�er applied to synthetic DGD data
generated with N = 10000 and ξ = 0.6. The CPMF model was trained using R =
5, λ1 = 1, λ3 = 1000, and predictions were computed using θ = 2.5.

Predicted
1 2 3 4

T
ru
e

1 818 309 0 0

2 198 477 4 0

3 3 21 3 0

4 1 2 1 0

Table 5.4: Confusion matrix of the FF baseline applied to synthetic DGD data
generated with N = 10000 and ξ = 0.6.

Predicted
1 2 3 4

T
ru
e

1 741 382 4 0

2 203 443 32 1

3 3 18 6 0

4 1 0 3 0

Table 5.5: Confusion matrix of the Oracle baseline applied to synthetic DGD data
generated with N = 10000 and ξ = 0.6.

Predicted
1 2 3 4

T
ru
e

1 847 280 0 0

2 155 524 0 0

3 1 22 4 0

4 0 1 3 0
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Figure 5.1: Accuracy and RK of the SPMF classi�er as a function of density in
synthetic DGD data. The data is simulated with N = 10000 and ξ ∈ [0.31, 3.16]. The
model is trained with hyperparameters R = 5, λ1 = 10, λ2 = 100 and predictions are
computed using the hyperparameter θ = 2.5.

which we can do so may improve signi�cantly. We recall that when encoding
the raw screening data, a time resolution of three months was chosen. In future
extensions of this project, it is a compelling thought to increase the time step
to six months or even a year.

5.5 Predicting of State in HMM data

We simulate the fully observed state matrix S as in Section 3.2 with N =
10000 and simulate screening attendance as in Section 3.3 with global sparsity
parameter ξ = 0.6. Moreover, we preprocess the resulting observed state matrix
Y as described in Section 5.1.

Table 5.6 and Table 5.7 show the confusion matrices of the SPMF and FF
classi�ers. We see that the SPMF algorithm successfully predicts females across
all states. This may lead us to believe that the model has successfully estimated
the future development of the females and assigns the most likely future state.
Unfortunately, this need not be the case. We recall from Section 3.2 that the
data simulated according to the HMM model were characterized by an extreme
tendency to remain in the same state as was observed at the most recent screen-
ing. Thus the only trend that the SPMF algorithm needs capture is that the
state will largely remain in place. By comparing the results to the FF baseline,
we discover that the FF performs at least as well for the normal, high-grade,
and cancer state and better for the low-grade state.

We argue that one should at this point question the validity of using the
SPMF / CPMF classi�ers on data generated by the HMM model. The clas-
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Table 5.6: Confusion matrix of the SPMF classi�er applied to synthetic HMM data
generated with N = 10000 and ξ = 0.6. The SPMF algorithm was trained using
R = 5, λ1 = 1, λ3 = 1000, and predictions were computed using θ = 5.5.

Predicted
1 2 3 4

T
ru
e

1 1504 14 3 0

2 45 51 1 0

3 2 2 20 0

4 0 0 0 0

Table 5.7: Confusion matrix of the FF baseline applied to synthetic HMM data
generated with N = 10000 and ξ = 0.6.

Predicted
1 2 3 4

T
ru
e

1 1498 20 3 0

2 29 67 1 0

3 1 1 22 0

4 0 0 0 0

si�ers are founded on the premise that a female's probability of developing
cervical cancer follows the weighting of a small number of basic trajectories.
If the classi�ers are to outperform the FF baseline, these trajectories need to
follow some development from low- to high risk or vice versa; the trajectories
should at some point undergo a transition. While the HMM simulation model is
implemented to include such age-dependence, this transitionary behavior is lost
when the simulated screening attendance masks the complete state matrix. If
one observes no or little a priori evidence that there is transitionary behavior in
the dataset, one should also challenge the use of the SPMF and CPMF models.
Based on these arguments, we refrain from conducting additional experiments
on data simulated according to the HMM model.

5.6 Prediction of State in Screening Data

The Screening Dataset is preprocessed as described in Section 5.1. Table 5.8,
Table 5.9 and Table 5.10 show the confusion matrices of the SPMF, CPMF and
FF classi�ers. The three classi�ers behave very similarly, and all assign the
vast majority of the patients to the normal state. Unlike for DGD data, none
of the classi�ers consistently predict females of the low-grade, high-grade, or
cancer states. We recall from Section 3.4 that the rates of transition between
the four states in the Screening Dataset are di�erent from those in DGD data.
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Table 5.8: Confusion matrix of the SPMF classi�er applied to the Screening Dataset.
The SPMF was trained using R = 5, λ1 = 1, λ3 = 1000, and predictions were computed
using θ = 5.5.

Predicted
1 2 3 4

T
ru
e

1 6583 99 16 0

2 82 10 0 0

3 32 3 2 0

4 11 2 0 0

Table 5.9: Confusion matrix of the CPMF classi�er applied to the Screening Dataset.
The CPMF was trained using R = 5, λ1 = 1, λ3 = 1000, and predictions were com-
puted using θ = 5.5.

Predicted
1 2 3 4

T
ru
e

1 6588 94 16 0

2 82 10 0 0

3 29 8 0 0

4 11 2 0 0

Table 5.10: Confusion matrix of the FF baseline applied to the Screening Dataset..

Predicted
1 2 3 4

T
ru
e

1 6582 71 44 1

2 78 11 3 0

3 28 5 4 0

4 8 5 0 0
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While simulated females in DGD data largely transition to neighboring states,
the females in screening data transition to neighboring but also directly to and
from the normal state. The normal state is the most likely scenario even for
females of increased latent risk. Therefore the SPMF and CPMF classi�ers,
unless otherwise coerced, predict the normal state.

It is relevant to investigate whether the poor results are a consequence of the
hyperparameters used. Ideally, we would evaluate the model on the Screening
Data over an exhaustive range of possible combinations to fully eliminate the
possibility that the models can be tuned to improve performance. However,
the classi�ers use four hyperparameters, and due to restrictions on time and
computational resources, we limit ourselves to exploring them in a two-and-two
fashion. We study model performance as a function of the parameters θ,R
when the regularization parameters λ1, λ2 are �xed and similarly as a function
of λ1, λ2 when θ,R are �xed.

Let initially λ1 = 1, λ2 = 1000. Table 5.11 lists the performance of the SPMF
and CPMF models for a selection of the hyperparameters θ,R. Interestingly,
we observe that the accuracy of the algorithm increases as θ decreases. For a
small θ, the likelihood term in (2.47) is large even when the regressor pro�le and
the estimated latent risk pro�le di�er signi�cantly. This has a middling e�ect;
the prediction for a certain patient is a�ected strongly by all the estimated
latent risk pro�les in the training set. As the Screening Dataset is dominated
by the normal state, this draws the predictions towards the normal state for all
patients. If we use accuracy to deduce the best choice of hyperparameters, we
select a trivial classi�er. We instead turn our attention to the RK statistic. This
is greatly improved as θ = 0.5 is increased to θ = 10.5. For both models, the
RK statistic increases as the rank estimate is increased from R = 1 to R = 5.
However, the statistic remains constant when the rank is further incremented.
As the running time of the training procedure depends on the rank estimate, it
should be kept small to reduce the computational cost of training the model.

Let now θ = 5.50 and R = 5 be �xed. Figure 5.2 displays the performance
of the SPMF classi�er as a function of the regularization parameters. The RK

statistic is maximized for λ1 = 0.51 and λ2 = 3831. Neighboring hyperparame-
ters o�er similar performance. The regular spacing of the level curves indicates
that the performance is unimodal, which would imply that it cannot be further
improved by tuning the regularization. Figure 5.3 displays the performance of
the CPMF classi�er. The RK statistic is maximized for λ1 = 0.51 and λ2 = 562.
The level curves are slightly shifted but similar to those of the SPMF classi�er.
Also for the CPMF classi�er the level curves lead us to believe that the perfor-
mance is unimodal around the maximizer.

In this section, we have seen that neither the SPMF nor the CPMF classi�ers
improve upon the FF baseline in the prediction of cervical cancer state for the
Screening Dataset. The classi�ers behave in a foreseeable manner in response
to variations in the hyperparameters, but we found no combination leading to
performance exceeding that of the forward �ll strategy.
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Table 5.11: Accuracy and RK of the SPMF and CPMF classi�ers applied to the
Screening Dataset as a function of the hyperparameter θ,R.

Metric SPMF

r \ θ 0.5 3.0 5.5 8.0 10.5

ACC

1 0.974 0.953 0.949 0.947 0.946
3 0.973 0.956 0.950 0.947 0.945
5 0.974 0.962 0.958 0.954 0.952
7 0.975 0.965 0.962 0.959 0.958
9 0.975 0.966 0.963 0.961 0.959

RK

1 0.021 0.061 0.070 0.070 0.071
3 0.034 0.085 0.092 0.097 0.099
5 0.024 0.091 0.111 0.119 0.119
7 0.022 0.097 0.110 0.114 0.119
9 0.025 0.096 0.113 0.121 0.123

Metric CPMF

r \ θ 0.5 3.0 5.5 8.0 10.5

ACC

1 0.974 0.953 0.949 0.948 0.947
3 0.973 0.956 0.950 0.947 0.945
5 0.974 0.960 0.957 0.954 0.953
7 0.974 0.961 0.957 0.955 0.954
9 0.974 0.961 0.957 0.955 0.954

RK

1 0.022 0.060 0.070 0.069 0.070
3 0.029 0.088 0.094 0.102 0.105
5 0.026 0.090 0.102 0.120 0.122
7 0.028 0.092 0.101 0.119 0.123
9 0.024 0.091 0.100 0.119 0.124

Metric FF

ACC 0.9644

RK 0.137
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Figure 5.2: RK of the SPMF classi�er attained for the Screening Dataset as a func-
tion of the hyperparameters λ1, λ2. The model is trained with R = 5 and predictions
are computed using θ = 5.5.
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Figure 5.3: RK of the CPMF classi�er attained for the Screening Dataset as a func-
tion of the hyperparameters λ1, λ2. The model is trained with R = 5 and predictions
are computed using θ = 5.5.
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Chapter 6

Binary Prediction of Cancer

As described in Section 2.5.3 we now reduce the problem to a dichotomy. In the
binary context, the female is classi�ed either as healthy or sick. In all following
examples we preprocess the observed state matrix of the relevant dataset using
the steps described in Section 5.1. The exception to this being that we rede�ne
the true labels as

bi =

{
1, Y

(pred)
iti

∈ {3, 4}
0, Y

(pred)
iti

∈ {1, 2}.
(6.1)

We predict the binary state of the females in the relevant dataset with the
B-SPMF and B-CPMF classi�ers described in Section 2.5.3. Speci�cally, we
predict the positive binary state if the binary probability estimate

b̂i =

{
1, p̂b(1 |Y (regressor)

i ) ≥ δ
0, otherwise.

(6.2)

exceeds the chosen bias δ ∈ [0, 1]. We will vary the bias throughout the following
section to illustrate interesting properties of our proposed classi�ers.

6.1 Metrics

To evaluate the success of the classi�ers we again make use of the binary confu-
sion matrix. This is similarly de�ned as in the multiclass context but with only
two classes. An example is shown in Table 6.1. Two important metrics can be
extracted from the binary confusion matrix. The sensitivity (SENS) of a binary
classi�er

SENS =
TP

TP + FN
, (6.3)

is de�ned as the number of females correctly predicted as sick divided by the
number of females who were sick at the time of prediction. As an example let
SENS = 0.40. This implies that the classi�er correctly predicted 40% of the sick

45
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Table 6.1: A template binary confusion matrix.

Predicted
0 1

T
ru
e 0 TN FP

1 FN TP

females. Conversely, the classi�er wrongly predicted the remaining 60% to be
healthy. To reduce the incidence and mortality of cervical cancer in the screening
population, the sensitivity of the algorithm should be as large as possible. The
speci�city (SPEC)

SPEC =
TN

TN + FP
, (6.4)

is another important metric de�ned as the number of females correctly predicted
as healthy divided by the number of females who were healthy at the time of
prediction. As an example let SPEC = 0.90. This implies that the classi�er
correctly predicted 90% of the healthy females. The remaining percentage of
females were wrongfully predicted to be sick. To reduce over-treatment and
program expenditure, the speci�city of the binary classi�cation algorithm should
be as large as possible.

The essential feature of the probabilistic classi�ers is that we can tune the
bias δ of (6.2) to yield a compromise between sensitivity and speci�city. We
encourage the classi�er to predict the females to be sick by setting the bias
parameter to be small. This is expected to yield a high sensitivity but reduce
the speci�city of the algorithm. By letting the bias vary, we can study the
number of sick females we can correctly specify for any given speci�city. We
conduct this using the Receiver Operating Characteristic (ROC) curve, which
plots the sensitivity of the classi�ers as a function of their speci�city. In practice,
there typically exists a constraint demanding that the speci�city is above a
speci�c limit. In this thesis, we assume this limit to be 0.75. By following the
ROC curve, we �nd the maximum number of developing cases of cancer we can
preempt under the speci�ed constraint.

When evaluating the performance of our classi�ers for a particular selection
of hyperparameters, we use a metric that is independent of the choice of bias.
The Area Under Curve (AUC) is found as the area under the ROC curve. The
metric ranges from 0.5 to 1, where the former describes random guessing, and
the latter describes a perfect classi�er.

6.2 Baseline

The previous baselines are slightly modi�ed for use in the binary context.
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6.2.1 The Binary Forward Fill Baseline

We de�ne the Binary Forward Fill baseline (B-FF) by

IRi =

{
1, Y

(regressor)
ili

≥ 2

0, Y
(regressor)
ili

< 2,
(6.5)

where as before li < ti− η is the index of the last nonzero entry in the regressor
vector. The B-FF predicts all patients who had a low-grade state at their last
screening to be positive.

6.2.2 The Binary Oracle Baseline (DGD)

The Oracle baseline is modi�ed to de�ne the Binary Oracle baseline (B-Oracle)

ĨRi =

{
1, p(3 |M (pred)

it ) + p(4 |M (pred)
it ) ≥ η,

0, p(3 |M (pred)
it ) + p(4 |M (pred)

it ) < η
(6.6)

where η ∈ [0, 1] is also a bias parameter. As in the multiclass context, the
B-Oracle baseline predicts treatment as if the latent risk of the patient were
fully known and therefore predicts the binary outcome with highest posterior
probability under (A1) and (A2).

6.3 Binary Prediction in DGD Data

We produce DGD data by simulating the fully observed state matrix S as in
Section 3.1 with N = 10000 and simulating screening attendance as in Section
3.3 with global sparsity parameter ξ = 0.6. Furthermore, we extract the training
matrix, the regressor matrix and the true labels are extracted as described above.

We initially assign a weak bias towards the sick state. Table 6.2-Table 6.5
show the results of the B-SPMF and the B-CPMF classi�ers along with those
of the B-FF and B-Oracle baselines. By shifting the predictions in favor of the
sick state we increase the number of females predicted to be sick. As a direct
result the sensitivity is increased and the speci�city is decreased. This particular
bias value is chosen as it leads the matrix factorization classi�ers to achieve the
same speci�city as the B-FF. Similarly the bias of the B-Oracle is chosen to
match the speci�city of the other two. If we force the restriction that the four
classi�ers produce the same speci�city, the B-SPMF, B-CPMF, and B-Oracle
achieve a much higher sensitivity than the B-FF baseline. In other words if the
classi�ers are competing under similar terms, the matrix factorization classi�ers
outperform the B-FF baseline and are only slightly outperformed by the B-
Oracle baseline.

It is interesting to see whether we can successfully predict more positive cases
if we further decrease the bias. Figure 6.1 shows the sensitivity and speci�city of
the B-SPMF, B-CPMF, and B-Oracle classi�ers as a function of their respective
bias parameters. As the bias is increased from zero, the speci�city rapidly
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Table 6.2: Binary confusion matrix of the B-SPMF classi�er applied to DGD data
with bias δ = 0.15. We trained the B-SPMF classi�er using R = 5, λ1 = 1, λ2 = 1000
and computed predictions using θ = 2.5.

Predicted
0 1

T
ru
e 0 1769 37

1 17 14

Table 6.3: Binary confusion matrix of the B-CPMF classi�er applied to DGD data
with bias δ = 0.15. We trained the B-SPMF classi�er using R = 5, λ1 = 1, λ2 = 1000
and computed predictions using θ = 2.5.

Predicted
0 1

T
ru
e 0 1767 39

1 16 15

Table 6.4: Binary confusion matrix of the B-Oracle classi�er applied to DGD data
with bias η = 0.20 applied to synthetic DGD data.

Predicted
0 1

T
ru
e 0 1768 38

1 16 15

Table 6.5: Binary confusion matrix of the B-FF baseline applied to DGD data.

Predicted
0 1

T
ru
e 0 1769 37

1 22 9
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Figure 6.1: Sensitivity and speci�city of the B-SPMF and B-Oracle classi�ers at-
tained on synthetic DGD data as a function of the bias parameters. The data was
simulated with N = 10000 and ξ = 0.6. We trained the B-SPMF classi�er hyperpa-
rameters R = 5, λ1 = 10, λ2 = 100 and computed predictions using θ = 2.5.

increases. The sensitivity, on the other hand, does not decrease correspondingly
fast. This implies that by choosing the bias appropriately, we can retain a
high speci�city while at the same time achieving high sensitivity. The possible
compromises between sensitivity and speci�city are found along the ROC curves
of the classi�ers shown in Figure 6.2. If we assume that constraints demand
a speci�city above 0.75, we could use the B-SPMF to attain a sensitivity of
0.84. The B-SPMF and B-CPMF display similar sensitivity for all values of
the speci�city, but the latter attains a marginally higher AUC. The B-Oracle
baseline outperforms both classi�ers.

We have observed that the bias parameter of the matrix factorization clas-
si�ers can be modi�ed to predict females of a sick state in DGD data. Even
though the B-SPMF and B-CPMF classi�ers receive as input a regressor history
that is considerably sparse and irregular, the methods performed nearly as well
as the B-Oracle.

6.4 Binary Prediction in Screening Data

Finally, we investigate if the results of the previous section carry over to the
Screening Dataset. This would imply that by implementing a matrix factoriza-
tion classi�er and carefully selecting the bias, we can predict developing cases
of cervical cancer one year ahead in time.

We extract the training matrix, regressor matrix and true labels as described
above. Initially we set the bias parameter δ = 0.0025. Table 6.6-6.8 show the
confusion matrices of the B-SPMF and B-CPMF classi�ers along with those of
the B-FF baseline. For this particular choice of bias, both matrix factorization
classi�ers behave similarly as the B-FF baseline. The speci�city of the three
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Figure 6.2: ROC curves of the B-SPMF and B-Oracle classi�ers attained on synthetic
DGD data simulated with N = 10000 and ξ = 0.6. We trained the B-SPMF classi�er
with hyperparameters R = 5, λ1 = 10, λ2 = 100 and computed predictions using
θ = 2.5.

Table 6.6: Binary confusion matrix of the B-SPMF classi�er applied to the Screening
Dataset data with bias δ = 0.0025. We trained the B-SPMF classi�er using R =
5, λ1 = 1, λ2 = 1000 and computed predictions using θ = 5.5.

Predicted
0 1

T
ru
e 0 7300 235

1 50 16

Table 6.7: Binary confusion matrix of the B-CPMF classi�er applied to the Screening
Dataset using a bias δ = 0.0025. We trained the B-CPMF classi�er with R = 5, λ1 =
1, λ2 = 1000 and computed predictions using θ = 5.5.

Predicted
0 1

T
ru
e 0 7360 175

1 52 14

Table 6.8: Binary confusion matrix of the B-FF baseline applied to the Screening
Dataset.

Predicted
0 1

T
ru
e 0 7386 149

1 49 17
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Figure 6.3: ROC curves of the B-SPMF and B-CPMF classi�ers attained on the
Screening Dataset. Both classi�er are trained with hyperparameters R = 5, λ1 =
1, λ2 = 1000 and predictions are computed using the hyperparameter θ = 5.5.

is high, and most of the healthy females are correctly predicted to be healthy.
Conversely, the sensitivity is low, and many of the sick females are wrongfully
predicted to be sick. Unlike for DGD data, the proposed classi�ers do not
achieve a higher sensitivity if the speci�city is matched to that of the B-FF.
As in the multiclass context, the transitionary behavior in the Screening Data
obfuscates the temporal trends in the data.

However, the essential feature of the matrix factorization classi�ers is that we
can choose the bias to yield an arbitrary sensitivity. The problem of the forward
�ll strategy is that it is constrained to a single level of speci�city/sensitivity.
There are no parameters we can tune to make the B-FF classi�er more sensitive
to the sick state. Therefore, it is of lesser importance that the classi�ers do not
outperform the B-FF baseline for a single �xed speci�city.

We consider the ROC curves of the B-SPMF and B-CPMF classi�ers in
Figure 6.3. The purple line indicates that if we allow the speci�city to be as low
as 0.77, we can attain a sensitivity of 0.63. In other words, if we accept that we
will, on average, subject 25% of the healthy population to increased screening,
then we can, on average, assign 63% of the sick population to similarly increased
screening. To decide what increased screening entails is outside the scope of
this thesis. However, we do conclude that using the females' previous screening
history, the B-SPMF, and B-CPMF classi�ers meaningfully discern females who
should be subjected to such and females for whom this is unnecessary.

Judging by Figure 6.3, the B-CPMF appears to outperform the B-SPMF
classi�ers consistently. However, we recall from Section 5.1 that a single ROC
curve is computed using a split containing only 20% of the data. To compare
the two classi�ers thoroughly, we compute their AUC using cross-validation for
several possible combinations of the hyperparameters.

Let initially λ1 = 1 and λ2 = 1000. Table 6.9 shows the AUC of the B-SPMF
and B-CPMF classi�ers for a selection of the hyperparameters θ and R. The
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Table 6.9: AUC of the B-SPMF and B-CPMF classi�ers applied to the Screening
Dataset as a function of the hyperparameters θ,R. Both classi�ers are trained with
hyperparameters λ1 = 1 and λ2 = 1000.

Metric B-SPMF

r \ θ 0.5 3.0 5.5 8.0 10.5

AUC

1 0.751 0.760 0.760 0.759 0.760
3 0.716 0.773 0.782 0.782 0.779
5 0.733 0.773 0.773 0.766 0.757
7 0.735 0.773 0.773 0.765 0.756
9 0.735 0.772 0.769 0.757 0.745

B-CPMF

r \ θ 0.5 3.0 5.5 8.0 10.5

AUC

1 0.749 0.760 0.760 0.760 0.760
3 0.727 0.775 0.784 0.786 0.786
5 0.735 0.778 0.784 0.784 0.781
7 0.735 0.777 0.782 0.780 0.776
9 0.735 0.777 0.782 0.780 0.776

AUC of the B-SPMF classi�ers is maximized for R = 3 and its performance
actually decreases if the rank estimate is increased beyond this point. The ad-
ditional regularization a�orded by the low rank restricts the model from being
over�tted in the training procedure and thus leads to a higher AUC. If using
the kernel parameter value θ = 8.0, the di�erence in AUC for rank estimate
R = 3 and R = 9 is a considerable 0.025. The AUC of the B-CPMF is max-
imized for R = 3, but for higher ranks the decrease in AUC is not as drastic
as for the B-SPMF. In other words, the convolutional model is more resistant
to overestimation in the rank parameter. We recall that small changes in the
basic disease trajectories weigh disproportionately heavy in the regularization
of the CPMF model. As a result these small changes are removed entirely if
they do not signi�cantly contribute to the reduction of the discrepancy term.
We hypothesize that this reduces the model's susceptibility to over�tting.

It may seem odd that the models achieve an AUC of 0.760 even for a rank
estimate R = 1, in which case the model deduces only a single basic disease
trajectory. However, the model is at liberty to decide U , the females' coe�cients.
Even though there is only a single trajectory, this trajectory may be scaled
di�erently from female to female. As a result, the females' estimated latent risk
pro�les may be entirely di�erent.

Let now θ = 5.5 and R = 5 be �xed. Figure 6.4 displays the AUC of
the B-SPMF classi�er as a function of λ1 and λ2. The AUC is maximized for
λ1 = 2.15 and λ2 = 10000 and remains high for a wide selection of neighboring
parameters. Figure 6.5 similarly displays the AUC of the B-CPMF classi�er,
which is maximized for λ1 = 2.15 and λ2 = 1468. Also in this case the AUC
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Figure 6.4: AUC of the B-SPMF classi�er attained for the Screening Dataset as
a function of the hyperparameters λ1, λ2. The model is trained with R = 5 and
predictions are computed using θ = 5.5.
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Figure 6.5: AUC of the B-CPMF classi�er attained for the Screening Dataset as
a function of the hyperparameters λ1, λ2. The model is trained with R = 5 and
predictions are computed using θ = 5.5.
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remains high for a wide selection of neighboring parameters. It appears that
the level curves of the B-CPMF classi�ers are identical but shifted towards
smaller values of λ2 in comparison to the B-SPMF classi�er. In other words, the
convolutional model requires less temporal regularization to attain its highest
AUC. The di�erence in maximal performance attained by the models is too
small to be nuanced.



Chapter 7

Closing Remarks

This is a pioneering work. By implementing matrix factorization in cervical
cancer screening data, we derive robust temporal trends in the latent risk of
the Norwegian population. We adopt a binarized view of the early prediction
of cervical cancer and develop the B-SPMF and B-CPMF classi�ers, which we
use to successfully predict cervical cancer one year ahead in time. To the best
of our knowledge, no similar work has previously been done.

The two matrix factorization classi�ers display a similar ability to the binary
disease state. However, the latter exhibits a desirable increased resistance to
over�tting. If the rank of the dataset is overestimated, predictive performance
in the B-CPMF classi�er is only slightly decreased. Therefore, proper tuning of
the model is a more manageable task.

Throughout this thesis, we have discussed several shortcomings of our model
assumptions. Recall that we were not able to match the distribution over the
states in the synthetic DGD data with that in the Screening Dataset. Speci�-
cally, if we matched the proportions of high-grade and cancer state in DGD data
to real data, the proportion of the normal state would no longer match. We
argue that the mismatch between the DGD simulation model and the real data
testify that the sampled Gaussian kernel is not the best choice of likelihood. At
the same time, implementing another likelihood removes the Frobenius-norm in
the discrepancy term in (2.28). As a consequence, the LMaFit algorithm cannot
be applied. We speculate that it will be di�cult to replicate the computational
e�ciency of the LMaFit when �nding the MAP estimate under an alternative
likelihood.

We believe increased performance can be achieved by re�ning the priors
assumed on the basic disease trajectories and the coe�cient matrix. In an
extension of this thesis, total variation (TV) regularization penalty can be used
to promote piecewise constant basic disease trajectories. This resonates with
the idea that the latent risk of a female will stay constant throughout speci�c
life periods. The escalation in latent risk may result from a sudden change
in lifestyle and, as such, best be represented by a piecewise constant function
rather than a smooth development. Currently, we allow the latent risk pro�le
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of a female to be a weighting of all the basic disease trajectories. Intuitively we
argue that a female should be assigned only to a single or few trajectories to
correspond with the concept of phenotype. To induce sparsity in the coe�cient
matrix, one can replace the Frobenius-norm penalty by the `1 penalty. This
is implemented in PACIFIER but was foregone for practical concerns. If the
Frobenius penalty on the coe�cient matrix is replaced, the subproblem will
need to be solved iteratively. As a consequence, the computation complexity of
the algorithm as a whole will increase. We believed it to be critical that the
model could be rapidly trained in this initial phase of the project and, therefore,
implemented the more straightforward Frobenius-norm penalty.

Finally, a more accurate risk assessment of cervical cancer may require more
data. We have seen that making predictions for cervical cancer screening data
is incredibly challenging. Even more challenging is to do so using only past
screening results. Cervical cancer is associated with several physical risk factors,
notably HPV infection [24] and smoking [25, 26]. By factoring in these variables,
we can potentially predict Norwegian females' sudden transmission to the high-
grade or cancer states even more accurately.
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