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Summary

When young salmon, called smolts, migrate from the river to the ocean, the survival
rate can be reduced because of sea lice infection. Sea lice infection can make the migrat-
ing smolts more vulnerable to predators, and they can more easily get other infections.
Understanding where the smolts are at different times is important for initiating targeted
actions to reduce the infection risk. To do this, it is necessary to obtain reliable estimates
of the movement pattern of the salmon.

Data containing information about the position of salmon in Nordfjord during the mi-
gration period in 2017 were collected using acoustic telemetry. 118 salmon were equipped
with acoustic transmitters and 66 stationary receivers were placed in the river and fjord
system. The telemetry data gathered from this experiment were indicating the presence
and absence of the salmon in the vicinity of the receivers.

A state-space model was used to model the movement of each salmon independently,
and a particle filter was applied to estimate the movement pattern of the salmon based on
the acoustic telemetry data. In addition, a sequential fixed-lag smoother adjustment was
added to the particle filter.

The performance of the particle filter was compared to that of a sequential fixed-lag
smoother adjustment to the particle filter with different lags. An approximation of the root
mean square error and the effective sample size of the different models were compared.
By applying the particle filter without a smoother adjustment to the data, we got a low
root mean square error and a high effective sample size. This indicated that the predictions
were both precise and robust. The particle filter gave a total approximated root mean
square error of 5802 meters for all the salmon considered. With a sequential fixed-lag
smoother adjustment to the particle filter, the root mean squared error increased. Overall,
the particle filter algorithm seemed to work well on the data. The effective sample size
was high, which should ensure robust results.

The state-space model did not consider environmental variables like temperature and
salinity explicitly. Instead, the results of the particle filter were compared with data on
environmental variables. These factors are expected to have an effect on the behavior of
salmon. The correlations between the particle filter estimates and environmental variables
from the fjord were generally found to be weak and not significant.
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Sammendrag

Overlevelsesraten til migrerende laksesmolt kan reduseres på grunn av lakselussmitte.
Den kan gjøre smolten mer sårbar overfor rovdyr og øke risikoen for å bli smittet av andre
sykdommer. Innsikt i hvor smolten befinner seg til ulike tider er en viktig faktor for å
iverksette målrettede tiltak for å redusere risikoen for lakselussmitte. For å gjøre dette er
det viktig å ha tilgang på pålitelige og gode estimater av bevegelsesmønsteret til smolten.

Posisjonsdata for smolten i løpet av migrasjonsperioden i Nordfjord i 2017 ble samlet
ved hjelp av akustisk telemetri. 118 laks ble utstyrt med akustiske merker som sendte
ut signaler, og 66 stasjonære lyttebøyer som fanget opp slike signaler ble plassert i elv-
og fjordsystemet. Telemetridataen som ble hentet inn indikerer om laksen oppholdt seg
i nærheten av lyttebøyene til gitte tider. Fravær av deteksjoner på en lyttebøye tilsier at
laksen ikke var i nærheten av den angitte lyttebøyen på det aktuelle tidspunktet.

En tilstandsmodell ble benyttet for å modellere bevegelsen til laks, og et partikkelfilter
ble anvendt for å estimere bevegelsesmønsteret til laksen basert på telemetridataen. I til-
legg ble det lagt til en justering til partikkelfilteret i form av en sekvensiell glatter med en
fast forsinkelse.

Prestasjonen til partikkelfilteret ble sammenlignet med prestasjonen til glatteren med
ulik forsinkelse. Dette ble gjort ved å sammenligne en tilnærming av den gjennomsnittlige
kvadratiske feilen og den effektive utvalgsstørrelsen for de ulike modellene. Ved å benytte
partikkelfilteret uten en glatter ble det oppnådd en lav kvadratisk feil og høy effektiv utval-
gsstørrelse, noe som sikret både presise og robuste resultat. Ved å se på resultatet til alle
smoltene var den totale approksimerte kvadratiske feilen 5802 meter. Ved å legge til en
glatter til partikkelfilteret økte verdien av den gjennomsnittlige kvadratiske feilen. Totalt
sett ga modellen gode resultater for den aktuelle dataen. Den effektive utvalgsstørrelsen
var høy, noe som sikret robuste resultater.

Tilstandsmodellen som ble benyttet tok ikke eksplisitt hensyn til miljøvariabler som
temperatur og salinitet. Resultatet fra partikkelfilteret ble i stedet sammenlignet med data
som inneholdt informasjon om ulike miljøvariabler. Det er forventet at disse variablene
kan ha en innvirkning på laksens oppførsel. Korrelasjonene mellom estimatene fra par-
tikkelfilteret og miljøvariablene fra fjorden var generelt sett svake og ikke signifikante.
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Chapter 1
Introduction

Atlantic salmon are anadromous fish that begin their life in freshwater rivers. When the
salmon are between one and six years old and have a length of approximately 12-20 cm,
they are called smolts. At this stage of the life cycle, the salmon are ready to migrate from
freshwater to saltwater (Vøllestad, 2018). The average age for when the smolts migrate to
sea is three years (Jensen & Johnsen, 1989). Prior to the migration, the juvenile salmon
undergo physiological and behavioral transformations (Urke et al., 2013a). The physiolog-
ical changes include the development of an increased salinity tolerance. Juvenile salmon
actively swim against the water current, but the smolts develop a preference for moving
downstream, and hence out of the river system. The changes occur to enable the smolts
to enter the ocean at an appropriate time, avoid predation in the estuary and reduce the
risk of predation in the open waters. Migration takes place during the spring and may be
initiated by temperature and water flow (Høgåsen, 1998; Aas et al., 2011). The smolts
migrate to the ocean to grow and mature before they return to the river to spawn (Hoar,
1988; McCormick et al., 1998; Stefansson et al., 2012).

In 2017, a study of Atlantic salmon smolts in Nordfjord was performed by Urke et al.
(2018). One of the goals of the experiment was to study the migration timing and behavior
of Atlantic salmon and brown trout smolts by collecting acoustic telemetry data. Acoustic
telemetry is a popular tool for understanding and tracking migration of aquatic animals
(Kraus et al., 2018). The animals are marked with acoustic transmitters, and the tracking
can either be active or passive. In active tracking, the researcher usually uses a mobile
receiver to follow the tagged fish. When using passive tracking, the receivers are placed in
fixed locations in the environment (Brownscombe et al., 2019). By using this technique,
individual fish can be identified and placed in time and space. In this thesis, the focus
will be on evaluating the migration pattern of the salmon based on acoustic telemetry data
collected using passive receivers in the study performed by Urke et al. (2018).

When the salmon migrate through the middle and outer fjord areas, they can be ex-
posed to sea lice from the aquaculture industry in the area. The sea lice infection pressure
on the wild salmon is connected to the size of the aquaculture industry. To ensure that the
growth in the aquaculture industry is predictable and sustainable, especially with respect
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to the wild salmon population, the so-called traffic light system has been introduced. If
an area receives a green light, it means that the allowed production capacity of the aqua-
culture industry can be increased. A yellow light indicates that the production capacity in
the area can remain unchanged, while a red light means that it must be decreased. The
production capacity is a measure of the upper limit of the amount of salmon a farmer can
have in the ocean at any time (Ministry of Trade, Industry and Fisheries, 2019). Indicators
for the sustainability of the wild salmon should determine the allowed production in the
aquaculture. To lay the grounds for determining the lights in the different production areas
in Norway, Vollset et al. (2019) have evaluated the mortality of wild fish induced by sea
lice infection.

Sea lice infection is a problem among wild salmon, and it can reduce the survival rate
of the migrating smolts. Impaired fish can be subject to increased risk of predation and
have reduced growth and grazing ability (Thorstad et al., 2012; Miller et al., 2014). The
study by Vollset et al. (2019) concludes that the mortality of wild fish induced by sea lice
infection is high in the area from Nordhordaland to Stadt, where Nordfjord is located. As
a result, the area has received a red light, and the production capacity is to be reduced.

Studies have been performed to evaluate the risk of contagious diseases spreading in
the Nordfjord areas and to determine the infection risk in the different areas (Daae et al.,
2011). When the salmon reside in the middle and outer fjord areas, the sea lice infection
pressure from the aquaculture is presumed to be highest (Urke et al., 2018; Vollset et al.,
2019). Important factors for infection risk are the time spent in different areas and the time
of the migration. Today, the knowledge about the time and duration of the smolts’ stay in
the different parts of the fjord is limited (Haugen et al., 2014; Urke et al., 2018).

If the knowledge about the migration pattern of the salmon is increased, it enables a
more certain evaluation and possibly a better management of the salmon population in
Nordfjord. As a result of the red light, the aquaculture industry in Nordfjord must be
reduced. In addition, targeted actions can be initiated from the remaining aquaculture
industry in the periods where the salmon are in the areas considered to have the highest
infection risk. If there is knowledge about when and where the salmon will be, one can
create an improved surveillance program to monitor the condition of the salmon (Ugedal
et al., 2014; Urke et al., 2018).

The objective of this thesis is to study the migration and estimate the movement pattern
of Atlantic salmon using acoustic telemetry data. This is done by using a state-space
model for individual fish movement and by applying a sequential importance resampling
algorithm, a particle filter, to the data obtained in the experiment performed in Nordfjord
in 2017 (Urke et al., 2018). If we can create a robust and accurate prediction model, it
is possible to create more effective and targeted protection and surveillance programs of
the salmon. Today, passive receivers are used to detect the salmon. There is an ongoing
project to develop techniques to enable autonomous tracking of the salmon by placing a
receiver on a moving vessel. We can then perform adaptive sampling by using a prediction
model to determine how the vessel should move. This could ensure that we get more
detections during the migration, which can make the measurements and predictions more
accurate. A second objective of the thesis is to investigate if there is a correlation between
the estimated movement pattern and environmental data from the fjord.

In a related study performed by Johnson et al. (2008), a continuous-time correlated
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random walk for animal telemetry data is put into a state-space model, and a Kalman
filter is used for computing maximum likelihood estimates of the movement parameters.
A Kalman filter is also used to estimate errors, movement parameters and most probable
tracks for data collected on bigeye tuna near Hawaii (Siebert et al., 2003). Xydes et al.
(2013) present a particle filter method for estimating position and speed based on data
from acoustically tagged fish. A random walk is used to propagate the particles during the
prediction step, and detections of the fish were used for the correction step. In this thesis,
a particle filter is used to track the salmon. We actively use the presence data for the
importance distribution, and then the particle weights are updated using both the presence
and absence data. This approach seems to be well suited for the movement situation in
Nordfjord. In addition, a sequential fixed-lag smoother will be applied to the particle filter
estimates.

In Chapter 2, the case is more thoroughly described. The data are analyzed, prepared
and cleaned before a particle filter and sequential fixed-lag smoother are applied. The
theory behind sequential filtering and smoothing is presented in Chapter 3. A state-space
model and a particle filter for the salmon tracking problem are presented in Chapter 4. The
results when applying the state-space model to the data are presented in Chapter 5, with a
subsequent discussion in Chapter 6.
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Chapter 2
Case Description and Data Analysis

2.1 Description of the Case

Nordfjord is a drainage basin situated in Vestland and Innlandet, Norway, see Figure 2.1
(Norgeskart, 2019). According to the Norwegian Ministry of Climate and Environment,
Nordfjord is a national salmon watercourse (Ministry of Climate and Environment, 2019).
National watercourses are important for rebuilding the size and composition of the salmon
population, such that this in turn will secure the diversity and reproduction ability of the
species.

Figure 2.1: Map of Norway. The position of Nordfjord is marked with a black rectangle.
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In the experiment performed by Urke et al. (2018), acoustic telemetry was used to
register the migration of the fish. Acoustic telemetry is a popular tool for understanding
and tracking migration of aquatic animals (Kraus et al., 2018). Salmon were marked with
acoustic transmitters, and stationary receivers that capture signals from these transmitters
were placed in different parts of Nordfjord. By using this technique, individual salmon
was identified and placed in time and space. Acoustic telemetry works both in freshwater
and seawater, and it was therefore a well suited method for mapping the migration pattern
of salmon both in the river and in the fjord.

118 pre-smolt salmon were caught using electrical fishing and marked with acoustic
transmitters after standard methods (Urke et al., 2013b) in the period April 24 to 29, 2017.
The salmon were marked with two different types of transmitters. There were in total 53
salmon equipped with transmitters with a depth sensor. These tags emitted the ID of the
fish, in addition to information about the depth of the fish with a resolution of 0.2 meters.
The remaining 65 salmon were equipped with tags that only emitted the ID. In addition,
all transmitters emitted a check sum that was used to verify that the signals detected at the
receivers were from one of the transmitters used in the experiment.

66 stationary receivers (VR2W, Vemco: http://vemco.com/products/vr2w
-69khz/) were placed in the fjord before the salmon were released. The detection range
of a receiver depends on various factors. For example, areas with clear water, flat bottoms
and low current usually have the highest ranges, while areas with muddied water, rocky
bottoms and high current exhibit low ranges. In addition, extreme weather can reduce the
range significantly (Brownscombe et al., 2019; Vemco, 2019). The transmitter range will
also depend on the conditions of the water around the receivers, and it can vary between
a couple of meters up to 200-500 meters. The tags were programmed to emit information
with a periodic interval between 30 and 90 seconds (Urke et al., 2018). Due to the detection
range of the receivers, and the transmitter range of the tags, not all fish were registered
when they passed a receiver.

As presented in Figure 2.2, the receivers were placed in nine zones. UTM coordinates,
zone 32, are used. The zones can further be divided into three main parts: the inner, middle
and outer part of Nordfjord. The inner part consisted of the zones River, Estuary, Inner
and Utvik. Lote, Krokneset and Isane made up the middle part of the fjord while the zones
Maurstad and Outer made up the outer part.

2.2 Data Preparation
In addition to the data collected from the receivers during the experiment period, there are
also data about the receivers that contain the name, ID, coordinates and the zone of the
receivers. For analysis and plotting purposes, the receivers are sorted from the inner to the
outer parts of Nordfjord. In general, this is from east to west, but in some areas, we sorted
the receivers manually to account for turns in the fjord. By doing this, each receiver gets
assigned a numbered position. The IDs and the position of the receivers in Nordfjord, with
the coordinates given in UTM coordinates, can be seen in Figure 2.3 to 2.5. See Appendix
A.1 for a list of all the receivers with name, ID, coordinates, zone and position number. In
addition, information about all the fish in the study with at least one detection is presented
in Appendix A.2.
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Figure 2.2: Nordfjord with receivers. The receivers are placed in nine different zones. UTM coor-
dinates, zone 32, are used.

Figure 2.3: The inner part of Nordfjord with receivers. The name of the receivers are given in black,
while the ID and the position of the receivers are given in white. UTM coordinates, zone 32, are
used.
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Figure 2.4: The middle part of Nordfjord with receivers. The name of the receivers are given in
black, while the ID and the position of the receivers are given in white. UTM coordinates, zone 32,
are used.

Figure 2.5: The outer part of Nordfjord with receivers. The name of the receivers are given in black,
while the ID and the position of the receivers are given in white. UTM coordinates, zone 32, are
used.
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After combining the detection data with the information about the receivers, the data
contain information about the name, ID and coordinates of each receiver, the ID of the fish
registered and the date and time for each detection. A sample of the data is presented in
Table 2.1. The columns "Name" and "Receiver" refer to the name and ID of the receiver.
"Northing" gives the north coordinate of the receiver, and "Easting" gives the east coor-
dinate. UTM coordinates, zone 32, are used. "Transmitter" is the transmitter ID of the
detected fish and "Date & Time" gives the date and time of the detection. The transmitters
emit information with an interval between 30 and 90 seconds, but the interval between
each detection varies. Even though a fish is detected at the same receiver several times, the
time between registrations may be higher than 90 seconds because all transmitter signals
are not necessarily registered by the receivers. In addition to the fields presented in the
table, the data also contain information about the zone of the receivers, the sensor value of
the registrations and the length and weight of the fish.

Name Receiver Easting Northing Transmitter Date & Time
Run to foss 121330 385615 6867449 2935 2017-04-29 02:28:11
Run to foss 121330 385615 6867449 2935 2017-04-29 02:33:13
Run to foss 121330 385615 6867449 2935 2017-04-29 02:35:07
Run to foss 121330 385615 6867449 2935 2017-04-29 02:35:46
. . . . . . . . . . . . . . . . . .
Sætre 121196 383056 6866420 100 2017-04-30 00:28:01
Sætre 121196 383056 6866420 100 2017-04-30 00:28:47
Smaleveien 105128 382368 6866651 100 2017-04-30 01:24:08
Smaleveien 105128 382368 6866651 100 2017-04-30 01:27:06
. . . . . . . . . . . . . . . . . .

Table 2.1: A sample of the data.

2.3 Data Analysis
We next conduct data analysis for the study described in Chapter 2.2. Analysis of de-
tections at the different receivers are presented, together with analysis of the movement
pattern of the salmon on both a general basis and on an individual basis.

Detections at the different receivers

Of the 66 receivers placed in Nordfjord, 57 of them have at least one detection of a salmon
during 2017. The receivers placed in the river and estuary have registered most unique
salmon. At Sætre, 69 unique salmon are detected and 68 salmon are detected at Smaleveien
and Bill Dannat. The receivers Mindresunde, Soget, Ysteneset II, Kleppeneset, Maurstad
V, Rugsund, Vemmelsvika, Ulvesundet W and Ulvesundet E do not have any detections
during the period. Figure 2.6 shows the ratio of unique fish out of the total number of fish
detected at least once at each receiver. The receivers are numbered based on their position
in Nordfjord, as described in Chapter 2.2.
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Figure 2.6: Ratio of salmon detected at each receiver. The receivers are numbered by position.

Detection pattern of the migrating salmon

The cleaned data contain detections of 72 of the 118 tagged salmon. 49 salmon are de-
tected in the middle part, and 27 salmon are detected in the outer part of Nordfjord, as
presented in Table 2.2. The mean time between the first and last registration is found to
be approximately 10.5 days, while the median time is approximately 7.6 days. For the 27
salmon that are registered in the outer part of Nordfjord, the mean time between the first
registration and the last registration is 11.1 days and the median time is 7.9 days. This is
somewhat higher than the times found for all salmon. The results are presented in Table
2.3.

Number Percentage
Detected in inner fjord 72 61 %
Detected in middle fjord 49 42 %
Detected in outer fjord 27 23 %

Table 2.2: Number and percentage of fish detected in the inner, middle and outer parts of the fjord.

All fish Outer
Mean time 10.5 days 11.1 days
Median time 7.6 days 7.9 days

Table 2.3: The mean and median time between the first and last detection. The first column presents
the results for all fish. The last column presents the results when only the fish that are registered in
the outer parts of Nordfjord are considered.

The migration is triggered by an increase of water discharge (Urke et al., 2018). Figure
2.7 shows which dates the salmon are detected for the first time. The salmon mainly start
their migration in two periods, which can be seen from the figure. There is a small increase
in migrations on May 5 and 7, and a large increase in migrations on May 16. In Figure 2.8,
the dates of the first detections are presented when the salmon are divided into two groups
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based on whether or not they are registered in the outer part of the fjord. A higher ratio of
the salmon detected in the outer part of Nordfjord migrate before May 16 compared to the
salmon not detected in the outer part.
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Figure 2.7: Number of salmon registered for the first time at different dates.
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Figure 2.8: Number of salmon registered for the first time at different dates. The salmon are divided
into two groups, the ones that are detected in the outer part of the fjord, and the ones that are not.

11



The number of salmon detected for the last time at each date are presented in Figure
2.9. The dates for the when the salmon are last detected when dividing the salmon based
on whether or not they are registered in the outer part of the fjord are presented in Figure
2.10. There is a more unclear pattern to the display of the last detection dates compared
to the dates of the first detections, presented in Figure 2.7 and 2.8. Most salmon are only
registered in May, and only 8 of the 72 salmon are registered in June.
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Figure 2.9: Number of salmon registered for the last time at different dates.
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Figure 2.10: Number of salmon registered for the last time at different dates. The salmon are divided
into two groups, the ones that are detected in the outer part of the fjord, and the ones that are not.
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The total number of unique fish detected per day is presented in Figure 2.11. The main
part of the detections happens in May. After June, there are few salmon registered. After
June 16, we only have detections of one unique salmon. From Figure 2.10, we see that
this fish is among the salmon not detected in the outer part of Nordfjord.
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Figure 2.11: Number of unique salmon registered on each day in the migration period.

Sætre is the receiver where most salmon are registered, and this is where most of the
salmon are registered for the first time. Figure 2.12 and 2.13 compare the detections at the
receivers Sætre and Osen N. Sætre is placed in the beginning of the river, while Osen N
is in the estuary. The Euclidean distance between the receivers is approximately 4.3 km.
Figure 2.12 presents the number of unique fish registered at the two receivers at different
dates. At Sætre there are clear peaks for detections on May 5 and May 16, which coincide
with the dates for the first detections presented in Figure 2.7. At Osen N, the pattern is
similar, with peaks on May 6 and 7 and on May 17. This indicates that the salmon can
reach Osen N from Sætre in one day. By comparing Figure 2.7 and 2.12, we can see that
there are a higher number of unique fish registered at Sætre compared to the number of
fish first registered at the different dates. This is natural, as the first figure only counts the
fish that have not been registered at an earlier time. When counting the number of fish
registered at a specific receiver at a given date, all registrations that day are considered.

Figure 2.13 presents the total number of registrations at Sætre and Osen N. The dif-
ference from Figure 2.12 is that each fish can be counted several times. The number of
detections at Sætre is higher than at Osen N, which indicates that the salmon have a ten-
dency to spend more time in the beginning of the river compared to the estuary. Salmon
can be registered by a receiver before it starts migrating, and this can lead to a high number
of registrations in the upper parts of the river.
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Figure 2.12: Number of unique fish registered at Sætre and Osen N. The grey circles mark the two
detection peaks at the receivers.
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Figure 2.13: Total number of registrations at Sætre and Osen N.

Krokneset I is placed in the middle of the fjord, approximately 50.8 km from Sætre
when considering the Euclidean distance. From Figure 2.14 it is clear that there are fewer
salmon registered at this receiver compared to Sætre, and that the peaks for the most reg-
istered fish have the same pattern as at Sætre, but at a later date. The dates of the first
top are on May 5 and May 11 at Sætre and Krokneset I, respectively. The second top are
on May 16 at Sætre and on May 23 at Krokneset I. This can indicate that the salmon use
approximately one week to get from Sætre to Krokneset I.

Detection pattern of some specific fish

Figure 2.15 presents the detections of four unique fish. Fish ID 100 is first registered at
Sætre on April 30. It is detected in the outer part of the estuary on May 3, on the receiver
Neset. The last registration is on May 6 on the receiver Almenningsflua, in the outer part
of the fjord. Fish ID 42 has a similar pattern to fish ID 100, but it stays longer in the river
before it is detected in the estuary for the first time. The last detection is on Almenning, on
May 22, which is also among the outermost receivers. Both Fish ID 100 and 42 are first
detected in the beginning of May.
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Figure 2.14: Number of unique fish registered at Sætre and Krokneset I. The grey circles mark the
two detection peaks at the receivers.

From the data presented in Appendix A.2 it can be seen that the salmon with ID 157
is detected at 24 different receivers. This is the highest number of receivers for any of the
salmon. We see that fish ID 157 migrates in the second group and that it turns around
when it reaches Gåsholmen on May 27. It is last registered on Toftneset on June 6. Fish
ID 160 is also in the second migration group and it starts from the same position as the
three other salmon. It does not go further than Hundvikneset for the entire period.
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Figure 2.15: Detections of fish IDs 42, 100, 157 and 160.

Physical properties of the salmon

When the salmon are captured and tagged, their weight and length are recorded. The data
of all the salmon detected at least once during the migration are presented in Appendix
A.2. The mean weight of the 72 salmon is 20.2 g, with a standard error of 5.9 g. The
mean length is 135.1 mm, with a standard error of 11.5 mm. A total of 27 salmon are
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registered in the outer part of the fjord. The mean weight and length of these are 20.2 g
and 136.1 mm, respectively. The mean weight and length of the 45 salmon not detected in
the outer part are 20.2 g and 134.5 mm, respectively. Box plots of the weight and length
of the two groups are presented in Figure 2.16. By performing a Welch’s t-test (Welch,
1947; Heumann & Shalabh, 2016) with null hypothesis of the two means being identical,
the p-value is found to be 0.95 and 0.53 for the weight and length respectively. Hence, we
do not reject the null hypothesis, and we conclude that there are no significant difference
in the means of either weight or length.
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Figure 2.16: Box plots of the weight and length of the salmon. The salmon are divided into two
groups, the ones that are detected in the outer part of the fjord, and the ones that are not.

16



Chapter 3
Sequential Filtering and Smoothing
Methods

This chapter covers the theory behind Bayesian filtering and smoothing equations. This in-
cludes the theory behind the Kalman filter and smoother, the particle filter and a sequential
fixed-lag smoother. Bayesian filtering and smoothing equations are used to compute solu-
tions to linear Gaussian and non-linear/non-Gaussian state-space models (Särkkä, 2013).

3.1 Probabilistic State-Space Models
The states {x0,x1, . . . } of a time-varying system can be estimated by filtering and smooth-
ing methods when the states are indirectly observed through noisy measurements {z1, z2, . . . }.
The Bayesian formulation of optimal filtering is called Bayesian filtering, in which the
state of the system at a given time is estimated given the measurements up to this time.
Bayesian smoothing is a class of methods often considered to be a part of the Bayesian
filtering methods, where the current state of the system is estimated using both previous
and future measurements (Särkkä, 2013). In Bayesian filtering and smoothing, a collection
of dynamic variables that fully describes the system makes up the state of the system.

The case described in Chapter 2 can be considered a target tracking problem on which
we can use Bayesian filtering and smoothing to predict the state. We have a set of passive
receivers that detects signals from transmitters attached to the salmon. The state we want
to predict contains the position and velocity of the salmon. The available measurements
are only that of presence or absence in the vicinity of a receiver. Hence, the measurement
vector contains the coordinates of the receiver that the salmon have been in the vicinity of,
and not the actual position of the salmon. If we only consider the east and north direction,
not the depth, and we consider a specific fish with a measurement at time t, the state vector
xt and the measurement vector zt can be written as

xt =
(
Et Nt vE,t vN,t

)ᵀ
,

zt =
(
zE,t zN,t

)ᵀ
.

(3.1)
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A probabilistic state-space model describes the conditional dependence of the state of
the system, xt ∈ Rn, and the observed measurement, zt ∈ Rm. This behavior is illus-
trated in Figure 3.1. We start from a prior distribution p(x0). At time step t, the hidden
layer is xt and the observed layer is zt. The main goal is to estimate the hidden layers
x0:T = {x0,x1, . . . xT } given the observed measurements z1:T = {z1, z2, . . . zT }. In
Bayesian filtering, the goal at each time step t is to estimate the hidden layer xt based on
the observed measurements z1:t. In Bayesian smoothing, the hidden layer xt is estimated
based on the observed measurements up to a time step T > t, z1:T .

Hidden: x0 x1 x2 x3

Observed: z1 z2 z3

Figure 3.1: Illustration of a hidden Markov model, where zt refers to the observed layer and xt

is the hidden layer at time step t. The hidden layer, xt, is observed indirectly through the noisy
measurement, zt.

The Markov property of the sequence of states {xt : t = 0, 1, 2, . . . } says that
p(xt|x0:t−1), that is, the conditional density of xt at the present time step t given x0:t−1,
only depends on the state at the previous time step t − 1. Hence, it is conditionally inde-
pendent of what takes place at all time steps before t− 1:

p(xt|x0:t−1) = p(xt|xt−1). (3.2)

In Figure 3.1, this relation is indicated by the horizontal edges. The Markov property also
states that the past is independent of the future, given the present,

p(xt−1|xt:T ) = p(xt−1|xt), (3.3)

where T > t. If a sequence of states satisfies the Markov property stated in Equation (3.2)
and (3.3), the states form a Markov sequence.

The measurement zt at time step t, given the state xt, is conditionally independent of
the measurement and state histories if

p(zt|x0:t, z1:t−1) = p(zt|xt). (3.4)

This behavior is indicated by the vertical edges in Figure 3.1.
With conditionally independent data, this also holds for the conditional density of xt

at time step t given x0:t−1 and z1:t−1:

p(xt|x0:t−1, z1:t−1) = p(xt|xt−1), (3.5)

and for
p(xt−1|xt:T , zt:T ) = p(xt−1|xt). (3.6)
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Assuming the states form a Markov sequence and that the measurements are condition-
ally independent of the measurement and state histories, a probabilistic state-space model
can be written as a sequence of conditional probability distributions where p(xt|xt−1) is
the dynamic model of the state and p(zt|xt) is the measurement model, for the time steps
t = 1, 2, . . . .

3.2 Bayesian Filtering Equations
In Bayesian filtering, the goal is to compute the filtering distribution, that is the marginal
posterior distribution, of the state xt at each time step t given all the measurements up to
t:

p(xt|z1:t), (3.7)

where the observation vector from time 1 to t, including both 1 and t, is denoted by z1:t.
Assuming that the marginal posterior distribution of the previous time step is known,

p(xt−1|z1:t−1), the joint distribution of xt and xt−1 given z1:t−1 can be computed as

p(xt,xt−1|z1:t−1) = p(xt|xt−1, z1:t−1)p(xt−1|z1:t−1)

= p(xt|xt−1)p(xt−1|z1:t−1),
(3.8)

where the last equality comes from the Markov assumption of the states defined in Equa-
tion (3.5). Integrating over xt−1 gives

p(xt|z1:t−1) =

∫
p(xt,xt−1|z1:t−1)dxt−1. (3.9)

By inserting the result from Equation (3.8) into Equation (3.9), we get the following ex-
pression for the predicted distribution of the state xt:

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (3.10)

The filtering distribution of the state xt at time step t, given the measurements z1:t,
can be computed using Bayes’ rule

p(xt|z1:t) =
p(zt|xt, z1:t−1)p(xt|z1:t−1)

p(zt|z1:t−1)

=
p(zt|xt)p(xt|z1:t−1)∫
p(zt|xt)p(xt|z1:t−1)dxt

=
1

Zt
p(zt|xt)p(xt|z1:t−1),

(3.11)

where the second equality comes from the conditional independence of zt of the measure-
ment history, as defined in Equation (3.4). In the above equation, Zt is defined as

Zt =

∫
p(zt|xt)p(xt|z1:t−1)dxt. (3.12)
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If the state contains some discrete components, the corresponding integrals are replaced
with summations.

Equation (3.8) to (3.12) give the Bayesian filtering equations and can be summarized
as follows:

Initialization: The recursion starts from the prior distribution p(x0).
Prediction step: The predicted distribution of the state xt at time step t is given by

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (3.13)

Update step: The filtering distribution of the state xt at time step t is given by

p(xt|z1:t) =
1

Zt
p(zt|xt)p(xt|z1:t−1), (3.14)

where Zt is the following normalization constant

Zt =

∫
p(zt|xt)p(xt|z1:t−1)dxt. (3.15)

3.3 Bayesian Smoothing Equations

In Bayesian filtering, the measurements before and at the current time step are used. In
smoothing, all the measurements up to a certain time step are used, including future mea-
surements. The goal of Bayesian smoothing is to compute the marginal posterior distribu-
tion of the state xt at time step t, given all the measurements up to a time step T , where
T > t:

p(xt|z1:T ), (3.16)

which is also called the smoothed distribution of time step t.
Instead of conditioning on the measurements up to a fixed time step T , a fixed-lag

smoother is an alternative smoothing approach. This method uses a fixed delay L, called
a lag, between the measurement and the state estimation. The goal is then to estimate the
state xt given the smoothing density at time step t+ L, p(xt|z1:t+L). With this approach
it is not necessary to have all measurements up to a fixed time step T . The states can be
estimated in real time, only with a fixed delay. The theory behind the fixed-lag smoother
is presented in Chapter 3.7.

The distribution of xt+1 given z1:t can be expressed as

p(xt+1|z1:t) =

∫
p(xt+1|xt)p(xt|z1:t)dxt. (3.17)

Based on the model illustrated in Figure 3.1, the distribution of xt given xt+1 and z1:T is
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given by

p(xt|xt+1, z1:T ) = p(xt|xt+1, z1:t)

=
p(xt,xt+1|z1:t)
p(xt+1|z1:t)

=
p(xt+1|xt, zt:1)p(xt|z1:t)

p(xt+1|z1:t)

=
p(xt+1|xt)p(xt|z1:t)

p(xt+1|z1:t)
,

(3.18)

using Bayes’s rule and the Markov property of state xt, that is, p(xt|xt+1, z1:T ) =
p(xt|xt+1, z1:t). Hence, the joint distribution of xt and xt+1 given z1:T is

p(xt,xt+1|z1:T ) = p(xt|xt+1, z1:T )p(xt+1|z1:T )

= p(xt|xt+1, z1:t)p(xt+1|z1:T )

=
p(xt+1|xt)p(xt|z1:t)p(xt+1|z1:T )

p(xt+1|z1:t)
.

(3.19)

The marginal distribution of xt given z1:T is found by integrating over xt+1 in Equa-
tion (3.19):

p(xt|z1:T ) = p(xt|z1:t)
∫ [

p(xt+1|xt)p(xt+1|z1:T )

p(xt+1|z1:t)

]
dxt+1. (3.20)

Here, p(xt|z1:t) is the filtering distribution defined in Equation (3.11) and p(xt+1|xt) is
the model equation given in Equation (3.2). The smoothing distribution from the subse-
quent step is denoted by p(xt+1|z1:T ) and p(xt+1|z1:t) is the one-step prediction found
from Equation (3.17). The calculations are done in a backward recursion.

3.4 Kalman Filter
When the dynamic model and the measurement model of a system are linear Gaussian,
the closed form solution to the Bayesian filtering equations for the filtering model is the
Kalman filter. In probabilistic terms we have that

p(xt|xt−1) = N(xt|At−1xt−1,Qt−1),

p(zt|xt) = N(zt|Btxt,Rt),
(3.21)

where N(µ,Σ2) denotes the Gaussian distribution with mean µ and covariance Σ2. This
can be written using random variables directly:

xt = At−1xt−1 + qt−1,

zt = Btxt + rt.
(3.22)

In Equation (3.22), the state of the system is denoted by xt ∈ Rn and the measurement
by zt ∈ Rm. Moreover, At−1 is the transition matrix of the dynamic model, Bt is the
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measurement model matrix, qt−1 ∼ N(0,Qt−i) is the process noise and rt ∼ N(0,Rt)
is the measurement noise. The prior distribution of the state is Gaussian, x0 ∼ N(µ0,Σ0).

The Bayesian filtering equations for the linear filtering model in Equation (3.22) can be
evaluated on closed form and in the following paragraphs we will show that the resulting
distributions are Gaussian. If we have

p

((
x
z

))
= N

((
µx

µz

)
,

(
Σx Σxz

Σzx Σz

))
, (3.23)

then p(x) = N(µx,Σx), p(z) = N(µz,Σz) and the conditional distributions of x given
z and z given x are

p(x|z) = N
(
µx + ΣxzΣ

−1
z (z − µz),Σx −ΣxzΣ

−1
z Σzx

)
,

p(z|x) = N
(
µz + ΣzxΣ−1x (x− µx),Σz −ΣzxΣ−1x Σxz

)
.

(3.24)

If p(x) = N(µ,Σ) and p(z|x) = N(Bx+ u,R), then we know that the joint distri-
bution of x and z is

p

((
x
z

))
= N

((
µ

Bµ+ u

)
,

(
Σ ΣBᵀ

BΣ BΣBᵀ +R

))
. (3.25)

At time step t, the distribution of p(xt−1|z1:t−1) is known from the previous time step.
Then the marginal distribution of xt given z1:t−1 is

p(xt|z1:t−1) = p(At−1xt−1 + qt−1|z1:t−1)

= N(xt|µ−t ,Σ
−
t ),

(3.26)

where

µ−t = At−1µt−1,

Σ−t = At−1Σt−1A
ᵀ
t−1 +Qt−1.

(3.27)

To find the marginal distribution of xt given z1:t, we first find the joint distribution of xt

and zt given z1:t−1:

p(xt, zt|z1:t−1) = p(zt|xt)p(xt|z1:t−1)

= p(Btxt + rt|xt)p(At−1xt−1 + qt−1|z1:t−1)

= N(zt|Btxt,Rt)N(xt|µ−t ,Σ
−
t )

= N

((
xt

zt

) ∣∣µ′,Σ′) ,
(3.28)

where

µ′ =

(
µ−t
Btµ

−
t

)
,

Σ′ =

(
Σ−t Σ−t B

ᵀ
t

BtΣ
−
t BtΣ

−
t B

ᵀ
t +Rt

)
.

(3.29)
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Combining this result with Equation (3.24) we find the marginal distribution of xt given
z1:t

p(xt|zt, z1:t−1) = p(xt|z1:t)
= N(xt|µt,Σt),

(3.30)

where
µt = µ−t + Σ−t B

ᵀ
t (BtΣ

−
t B

ᵀ
t +Rt)

−1(zt −Btµ
−
t ) (3.31)

and
Σt = Σ−t −Σ−t B

ᵀ
t (BtΣ

−
t B

ᵀ
t +Rt)

−1BtΣ
−
t . (3.32)

Equation (3.26) to (3.32) can be summarized in the following way:

p(xt|z1:t−1) = N(xt|µ−t ,Σ
−
t ),

p(xt|z1:t) = N(xt|µt,Σt),

p(zt|z1:t−1) = N(zt|Btµ
−
t ,St),

(3.33)

where the parameters can be calculated in the following Kalman filter steps:

Prediction step:

µ−t = At−1µt−1,

Σ−t = At−1Σt−1A
ᵀ
t−1 +Qt−1.

(3.34)

Update step:

vt = zt −Btµ
−
t ,

St = BtΣ
−
t B

ᵀ
t +Rt,

Kt = Σ−t B
ᵀ
tS
−1
t ,

µt = µ−t +Ktvt,

Σt = Σ−t −KtStK
ᵀ
t .

(3.35)

The recursion is started from the prior mean µ0 and the prior covariance Σ0.

3.5 Kalman Smoother
A method for finding the closed form smoothing solution,

p(xt|z1:T ) = N(xt|µs
t ,Σ

s
t ), (3.36)

to the linear filtering model presented in Equation (3.22) is the Kalman smoother, also
called the Rauch-Tung-Striebel smoother (Särkkä, 2013). This is a backward recursion
started from p(xT |z1:T ) = N(µT ,ΣT ), where µT and ΣT are the mean and covariance
from the last time step computed by the Kalman filter in Equation (3.35).
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By Equation (3.25), the joint distribution of xt and xt+1 given z1:t is

p(xt,xt+1|z1:t) = p(xt+1|xt)p(xt|z1:t)
= p(Atxt + qt|xt)p(xt|z1:t)
= N(xt+1|Atxt,Qt)N(xt|µt,Σt)

= N

((
xt

xt+1

) ∣∣µ̃1, Σ̃1

)
,

(3.37)

where

µ̃1 =

(
µt

Atµt

)
,

Σ̃1 =

(
Σt ΣtA

ᵀ
t

AtΣt AtΣtA
ᵀ
t +Qt

)
,

(3.38)

and µt and Σt are the mean and covariance for time step t computed by the Kalman filter
in Equation (3.35). By the Markov property of the states and Equation (3.24) we have

p(xt|xt+1, z1:T ) = p(xt|xt+1, z1:t)

= N(xt|µ̃2, Σ̃2),
(3.39)

where

µ̃2 = µt +Gt(xt+1 −Atµt),

Σ̃2 = Σt −Gt(AtΣtA
ᵀ
t +Qt)G

ᵀ
t ,

Gt = ΣtA
ᵀ
t (AtΣtA

ᵀ
t +Qt)

−1.

(3.40)

Hence, the joint distribution of xt and xt+1 given all the data up to time step T , z1:T , is

p(xt,xt+1|z1:T ) = p(xt|xt+1, z1:T )p(xt+1|z1:T )

= N(xt|µ̃2, Σ̃2)N(xt+1|µs
t+1,Σ

s
t+1)

= N

((
xt+1

xt

) ∣∣µ̃3, Σ̃3

)
,

(3.41)

where

µ̃3 =

(
µs

t+1

µt +Gt(µ
s
t+1 −Atµt)

)
,

Σ̃3 =

(
Σs

t+1 Σs
t+1G

ᵀ
t

GtΣ
s
t+1 GtΣ

s
t+1G

ᵀ
t + Σ̃2

)
.

(3.42)

Finally, by Equation (3.24), the marginal distribution of xt is given as

p(xt|z1:T ) = N(xt|µs
t ,Σ

s
t ), (3.43)
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where

µs
t = µt +Gt(µ

s
t+1 −Atµt),

Σs
t = Σt +Gt(Σ

s
t+1 −AtΣtA

ᵀ
t −Qt)G

ᵀ
t .

(3.44)

Equation (3.37) to (3.44) can be summarized in the following backward recursion
equations:

Kalman smoother:

µ−t+1 = Atµt,

Σ−t+1 = AtΣtA
ᵀ
t +Qt,

Gt = ΣtA
ᵀ
t

(
Σ−t+1

)−1
,

µs
t = µt +Gt

(
µs

t+1 − µ−t+1

)
,

Σs
t = Σt +Gt

(
Σs

t+1 −Σ−t+1

)
Gᵀ

t .

(3.45)

The recursion is started from the last time step T , with µs
T = µT and Σs

T = ΣT .

3.6 Particle Filter
Methods based on sequential importance resampling can be a better alternative than Kalman
filter and smoother approaches, if, for example, the problem is non-linear or if some of the
state components are discrete (Särkkä, 2013). This is the case for presence-absence data.
For state-space models that are non-linear and non-Gaussian, the performance of Monte
Carlo methods have been shown to be better than the performance of classical sequential
techniques (Clapp & Godsill, 1999). Particle filter methods are one example of such a
method, and they are a class of Monte Carlo approximations to the solutions of Bayesian
filtering equations (Doucet & Johansen, 2008; Särkkä, 2013).

3.6.1 Monte Carlo Approximations in Bayesian Inference
Monte Carlo is a class of methods where statistical quantities are approximated by drawing
samples form the distribution and estimating the quantities by sample averages. Monte
Carlo methods provide a numerical method for calculating integrals of the form

E[g(x)|z1:T ] =

∫
g(x)p(x|z1:T )dx, (3.46)

where g : Rn → Rm is an arbitrary function and p(x|z1:T ) is the posterior probability
density of the state x given the measurements z1, . . . ,zT . Here, x is treated as a continu-
ous random variable, but it is possible to formulate analogous results for discrete random
variables.

In Bayesian inference, including Bayesian filtering, the main inference problem can
often be reduced into computation of expectations of the form in Equation (3.46). In Monte
Carlo methods, the target distribution p(x|z1:T ) is approximated by a set of samples that
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are distributed according to this distribution. We draw Np independent random samples
x(p) ∼ p(x|z1:T ), p = 1, . . . , Np, and the expectation is estimated as

E[g(x)|z1:T ] ≈ 1

Np

Np∑
p=1

g(x(p)). (3.47)

3.6.2 Importance Sampling
In many cases, the distribution p(x|z1:T ) is complex and high-dimensional, and thus it
is not possible to obtain samples directly from it. A solution to this is to use the impor-
tance sampling method, which relies on the introduction of an importance distribution,
p̂(x|z1:T ). This is an approximate distribution to the target distribution from which we
can easily draw samples. The support of the importance density p̂(x|z1:T ) is required to
be greater than or equal to the support of p(x|z1:T ), that is,

p(x|z1:T ) > 0 =⇒ p̂(x|z1:T ) > 0. (3.48)

The expectation over the posterior probability density p(x|z1:T ) can be decomposed
as ∫

g(x)p(x|z1:T )dx =

∫ [
g(x)

p(x|z1:T )

p̂(x|z1T )

]
p̂(x|z1:T )dx. (3.49)

We can draw a Monte Carlo approximation to the expression in the brackets in Equation
(3.49) by drawing Np samples from the importance distribution x(p) ∼ p̂(x|z1:T ), p =
1, . . . , Np. Because we sample from an approximation to the target distribution, we need
to correct the approximations by associating a weight with each of the samples. Hence,
the Monte Carlo approximation can be formed as

E[g(x)|z1:T ] ≈ 1

Np

Np∑
p=1

p(x(p)|z1:T )

p̂(x(p)|z1:T )
g(x(p))

=

Np∑
p=1

w̃(p)g(x(p)),

(3.50)

where the weights are defined as

w̃(p) =
1

Np

p(x(p)|z1:T )

p̂(x(p)|z1:T )
. (3.51)

This is a direct importance sampling method which requires us to be able to evaluate
p(x(p)|z1:T ). Bayes’ rule gives that

p(x(p)|z1:T ) =
p(z1:T |x(p))p(x(p))∫
p(z1:T |x)p(x)dx

. (3.52)
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In many cases, the normalization constant
∫
p(z1:T |x)p(x)dx cannot be evaluated di-

rectly. By also approximating the normalization constant by importance sampling, this
problem can be overcome:

E[g(x)|z1:T ] =

∫
g(x)p(x|z1:T )dx

=

∫
g(x)p(z1:T |x)p(x)dx∫
p(z1:T |x)p(x)dx

=

∫ [p(z1:T |x)p(x)
p̂(x|z1:T ) g(x)

]
p̂(x|z1:T )dx∫ [p(z1:T |x)p(x)

p̂(x|z1:T )

]
p̂(x|z1:T )dx

≈
1
Np

∑Np

p=1
p(z1:T |x(p))p(x(p))

p̂(x(p)|z1:T )
g(x(p))

1
Np

∑Np

j=1
p(z1:T |x(j))p(x(j))

p̂(x(j)|z1:T )

=

Np∑
p=1

 p(z1:T |x(p))p(x(p))
p̂(x(p)|z1:T )∑Np

j=1
p(z1:T |x(j))p(x(j))

p̂(x(j)|z1:T )

 g(x(p))

=

Np∑
p=1

w(p)g(x(p)).

(3.53)

The normalized weights can be written as

w(p) =
w∗(p)∑Np

j=1 w
∗(j)

, (3.54)

where the unnormalized weights are given by

w∗(p) =
p(z1:T |x(p))p(x(p))

p̂(x(p)|z1:T )
. (3.55)

Hence, an approximation to the posterior probability density can formally be written as

p(x|z1:t) ≈
Np∑
p=1

w(p)δ(x− x(p)), (3.56)

where δ(·) is the Dirac delta function (Arfken & Weber, 2005).

3.6.3 Sequential Importance Sampling
The importance sampling method can be modified such that it becomes possible to com-
pute an estimate of p(x0:t|z1:t) without modifying the previously simulated trajectories
{x(p)

0:t−1, p = 1, . . . , Np}. This is called sequential importance sampling (Doucet et al.,
2001). Importance sampling approximations to filtering distributions of the form described
in Chapter 3.1 can be found using sequential importance sampling.
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The sequential importance sampling algorithm uses a weighted set of particles
{(w(p)

t ,x
(p)
t ) : p = 1, . . . , Np} for representing the filtering distribution p(xt|z1:t).

The set of particles are samples from an importance distribution and their correspond-
ing weights. Hence, at every time step t, the approximation of an arbitrary function g(·)
can be calculated as the weighted sample average

E[g(xt)|z1:t] ≈
Np∑
p=1

w
(p)
t g(x

(p)
t ). (3.57)

The sequential importance sampling method can equivalently be interpreted as forming
the following approximation to the filtering distribution:

p(xt|z1:t) ≈
Np∑
p=1

w
(p)
t δ(xt − x(p)

t ). (3.58)

The posterior distribution of the states x0:t given the measurements z1:t can be ex-
pressed as

p(x0:t|z1:t) ∝ p(zt|x0:t, z1:t−1)p(x0:t|z1:t−1)

= p(zt|xt)p(xt|x0:t−1, z0:t−1)p(x0:t−1|z1:t−1)

= p(zt|xt)p(xt|xt−1)p(x0:t−1|z1:t−1)

(3.59)

by using the Markov properties of the model. As in Chapter 3.6.2, we draw samples from a
given importance distribution x(p)

0:t ∼ p̂(x0:t|z1:t). It is convenient to select the importance
distribution to be Markovian in the sense that

p̂(xt|x0:t−1, z1:t) = p̂(xt|xt−1, z1:t). (3.60)

Then it is only necessary to store the current states x(p)
t , and not the whole histories x(p)

0:t .
If we form the importance distribution for the states xt recursively as

p̂(x0:t|z1:t) = p̂(xt|x0:t−1, z1:t)p̂(x0:t−1|z1:t−1), (3.61)

and use the result in Equation (3.59), the importance weights can be computed as

w
(p)
t ∝

p(zt|x(p)
t )p(x

(p)
t |x

(p)
t−1)

p̂(x
(p)
t |x

(p)
0:t−1, z1:t)

p(x
(p)
0:t−1|z1:t−1)

p̂(x
(p)
0:t−1|z1:t−1)

. (3.62)

If we assume that the samples x(p)
0:t−1 have already been drawn from the importance

distribution p̂(x0:t−1|z1:t−1) and that the importance weights w(p)
t−1 have been calculated,

samples x(p)
0:t can be drawn from the importance distribution p̂(x0:t|z1:t) by drawing state

samples from time step t as x(p)
t ∼ p̂(xt|x(p)

0:t−1, z1:t). The importance weights from the
previous time step are proportional to the last term in Equation (3.62):

28



w
(p)
t−1 ∝

p(x
(p)
0:t−1|z1:t−1)

p̂(x
(p)
0:t−1|z1:t−1)

, (3.63)

and thus the weights satisfy the recursion

w
(p)
t ∝ w(p)

t−1
p(zt|x(p)

t )p(x
(p)
t |x

(p)
t−1)

p̂(x
(p)
t |x

(p)
0:t−1, z1:t)

. (3.64)

3.6.4 Sequential Importance Resampling
A problem in the sequential importance sampling algorithm described in Chapter 3.6.3 is
that it is common to encounter the situation where almost all the particles have zero or
nearly zero weights. This is called the degeneracy problem (Doucet & Johansen, 2008).
This problem can partially be solved by using a resampling procedure where we sam-
ple from {x(p)

t , p = 1, . . . , Np}, which have already been sampled from the importance
distribution. If we assume that the weights have been normalized, we select x(p)

t with
probability w(p)

t . The old set of Np samples is then replaced with this new set, and the
weights are set equal to 1/Np. This allows us to remove particles with very small weights,
and duplicate particles with large weights.

When we add a resampling step to the sequential importance sampling algorithm, we
obtain sequential importance resampling. This algorithm is usually referred to as the par-
ticle filter (Särkkä, 2013). Resampling introduces additional variance. Therefore it is most
sensible to only resample when it is actually needed. One way to implement this is to do
resampling on every nth step, where n is some predefined constant. This method is unbi-
ased. An alternative method is called adaptive resampling. Here, we only perform resam-
pling when the variance of the normalized weights are higher than some pre-determined
threshold. The effective sample size (ESS), also called the effective number of particles,

ESS ≈

 Np∑
p=1

(
w

(p)
t

)2−1 , (3.65)

can be used to assess the variability of the weights. In the expression, w(p)
t is the nor-

malized weights of particle p at time step t. Resampling is performed when the number
of effective particles is significantly less than the total number of particles, for example,
ESS < Np/10 or ESS < Np/2 where Np is the total number of particles (Doucet &
Johansen, 2008; Särkkä, 2013).

The sequential importance resampling algorithm, hereby called the particle filter algo-
rithm, can be summarized as follows:

At time t = 0: Draw Np samples from the prior distribution

x
(p)
0 ∼ p(x0) (3.66)

and give all particles equal weights, w(p)
0 = 1/Np for p = 1, . . . , Np.
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At time t = 1, . . . , T :

1. Draw samples x(p)
t from the importance distributions

x
(p)
t ∼ p̂(xt|x(p)

t−1, z1:t), p = 1, . . . , Np. (3.67)

2. Calculate new weights according to

w
(p)
t ∝ w(p)

t−1
p(zt|x(p)

t )p(x
(p)
t |x

(p)
t−1)

p̂(x
(p)
t |x

(p)
0:t−1, z1:t)

(3.68)

and normalize them to sum to unity.

3. If the ESS in Equation (3.65) is too low, perform resampling.

For time step t, samples are drawn according to Equation (3.67). This equation prop-
agates the particles forward in time. Based on the weights of the particles, the ESS is
calculated, and the particles may be resampled. This behavior is illustrated in Figure 3.2.
Black points represent particles at the current time step. Gray points are the particles at
the next time step, after they have been propagated one step. Light points with a line
around the points are particles that were not resampled at the current time step. In the
first window, we have five particles that have been propagated forward in time according
to Equation (3.67). The arrows illustrate the descendants of each particle. In the second
window, the gray particles from the first window are now the particles at the current time
step, and hence they are black. Resampling has been performed, and only three of the five
particles have been resampled. Two of the three particles have been resampled twice. The
particles are propagated forward in time, and the resulting particles are presented as gray
points. The remaining two particles are presented as light points, and they do not longer
contribute to the state estimation. In the final window, resampling has been performed for
the last time step.

Figure 3.2: Illustration of the propagation and resampling of particles in the particle filter for three
time steps. Black points represent particles at the current time step. Gray points are the particles
at the next time step, after they have been propagated one step. The lightest points illustrate the
particles that were not resampled.
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3.7 Sequential Fixed-Lag Smoother for Particle Filters
A smoother adjustment to the particle filter is relevant in the current situation. In smoothers,
more measurements are used to produce an estimate of the state xt, and hence we expect
smoothers to perform better than filters, that is, produce more accurate estimates of the
states (Anderson & Moore, 1979). For both the Kalman filter algorithm and the particle
filter algorithm, described in Chapter 3.4 and Chapter 3.6 respectively, the aim is to assess
the state xt from the filtering density p(xt|z1:t), as given in Equation (3.7).

If we allow a small delay between a measurement and the estimation of the corre-
sponding state, it will be profitable to perform fixed-lag smoothing rather than filtering
(Clapp & Godsill, 1999). For some fixed lag L, the fixed-lag smoother provides an es-
timate of a state xt based on noisy measurements z1, z2, . . . , zt+L. Hence, the goal of
the fixed-lag smoother is to simulate the state xt|t+L from the smoothing density at lag L,
p(xt|z1:t+L).

There are several fixed-lag smoother algorithms. The following sequential fixed-lag
smoother algorithm is presented by Nulsen et al. (2015), and it is used in the current
situation. If x(i)

t in the particle filter algorithm presented in Chapter 3.6.4 is obtained
by progressing the particle x(p)

t−1 forward according to Equation (3.67), x(i)
t is said to be

descended from x
(p)
t−1. The particle x(i)

t is also said to be descended from x
(p)
t−1 if it was

generated by drawing the state occupied by x(p)
t−1 in resampling.

From Equation (3.68), the importance weightsw(p)
t are proportional to p(zt|x(p)

t ). For
the sequential fixed-lag smoother, we want to express the updated weights w(p)

t|t+L in terms

of w(i)
t+L. The Chapman-Kolmogorov equations (Särkkä, 2013; Nulsen et al., 2015) give

w
(p)
t|t+L ∝ p(zt+L|x(p)

t )

=

∫
p(zt+L|xt+L)p(xt+L|xt+L−1) · · · p(xt+1|x(p)

t )dxt+1 · · · dxt+L,
(3.69)

where p(zt+L|x(p)
t ) is the probability of observing zt+L at time t + L given the state at

time t. Denote i← p as the particle i is descended from p. By using the following operator
approximation∫

p(xt+L|xt+L−1) · · · p(xt+1|x(p)
t )dxt+1 · · · dxt+L ≈

∑
i←p

(3.70)

and substituting it into Equation (3.69), we get

p(zt+L|x(p)
t ) ≈

∑
i←p

p(zt+L|x(i)
t+L)

∝
∑
i←p

w
(i)
t+L.

(3.71)

Hence, the weight of a particle p at time step t is updated when the particle filter reaches
time step t+ L according to
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w
(p)
t|t+L =

∑
i←p

w
(i)
t+L. (3.72)

This means that the weight of a particle at time t is determined by the weights of its
descendants at time t+L. In particular, this means that the weights of the particles at time
t without any descendants at time t+ L are set to zero.
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Chapter 4
Model Formulation for Salmon
Tracking

In the case described in Chapter 2, acoustic telemetry is used to register the presence of
fish in the vicinity of stationary receivers placed in Nordfjord. If we consider T aggregated
time intervals with equal length dt, we look at the time steps t = 0, . . . , T . To estimate the
position and velocity of a salmon given the detections, we use an importance resampling
algorithm, a particle filter, with Np particles. This is presented in Chapter 4.1. In Chapter
4.2, a sequential fixed-lag smoother adjustment to the particle filter is presented. Let x(p)

t

be the state vector for particle p at time t defined by

x
(p)
t =

(
E

(p)
t N

(p)
t v

(p)
E,t v

(p)
N,t

)ᵀ
, (4.1)

where E(p)
t and N (p)

t are the east and north coordinate respectively and v(p)E,t and v(p)N,t

are the velocity in the east and north direction for particle p. Collecting the particles, the
state vector at time t is represented by xt =

(
x
(1)
t x

(2)
t · · · x

(Np)
t

)
, with dimensions

4×Np.

Let the number of time intervals with detections be denoted by Nz . Hence, we have
that Nz ≤ T . A detection, also called a registration or a measurement, is referring to
a presence detection of a salmon at a receiver. The total number of receivers is denoted
by Nr, and yj are the coordinates of receiver j, for j = 1, . . . , Nr. Let Zt,j be 1 if we
have a detection at receiver j at time t and 0 if not. For all receivers at time t, we define
the detection vector Zt = (Zt,1, . . . , Zt,Nr

)
ᵀ. This is visualized in Figure 4.1a. In the

example presented in the figure, we have Z0 = Z1 = (1, 0, 0, . . . , 0)ᵀ. This means that
we only have detections at the first receiver for the first two time steps. At t = 3, we
have detections at two receivers, and Z3 = (1, 1, 0, . . . , 0)ᵀ. There can also be time steps
without any detections, then all entries in the vector will be equal to 0.
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(a) Visualization of Zt, for t = 0, . . . , T .
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(b) Visualization of zt, for t = 0, . . . , T .

Figure 4.1: Visualization of the detection vectors Zt and zt.

We define zt to be a vector containing the east and north coordinates of all receivers
with at least one detection in the interval (t − dt, t]. Hence, we have the relation zt =
{yj if Zt,j = 1, j = 1, . . . , Nr}. In general, this can be written as

zt =
(
zE,t,1 zN,t,1 · · · zE,t,Nz,t

zN,t,Nz,t

)ᵀ
, (4.2)

where Nz,t is the number of receivers with a detection at time step t. In Figure 4.1b, zt
is visualized. The example presented in Figure 4.1b corresponds with the one in Figure
4.1a. For the first time step, we only have detections at the first receiver. Hence, Nz,0 = 1,
and z0 = (zE,0,1, zN,0,1)ᵀ. Here, zE,0,1 is the east coordinate of receiver 1, and zN,0,1 is
the north coordinate. For t = 3, we haveNz,3 = 2 and z3 = (zE,3,1, zN,3,1, zE,3,2, zN,3,2)ᵀ.
We have that zE,3,1 and zN,3,1 are the east and north coordinate, respectively, for the first
receiver, and that zE,3,2 and zN,3,2 are the east and north coordinate, respectively, for the
second receiver.

With the measurement vector as defined in Equation (4.2), the measurement model of
the system can be expressed as follows:

zt = B̃x
(p)
t + r

(p)
t , (4.3)

which is the same as defined in Equation (3.22). Here, r(p)t ∼ N(0, R) is the measurement
noise which is independent of the state, with

R =

(
σ2
z 0

0 σ2
z

)
, (4.4)

where σ2
z is the variance in the measurement. Hence, the variance is the same for the

measurement in the east and north direction. The dimensions of rt are 2Nz,t × 1. The
measurement model matrix, B̃, is defined as

B̃ =
(
B B · · · B

)ᵀ
(4.5)

with

B =

(
1 0 0 0
0 1 0 0

)
. (4.6)

Hence, B̃ has dimensions 2Nz,t × 4.
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4.1 Properties of the Target and Importance Distributions
in the Particle Filter

For the particle filter algorithm, we need to have an expression for the target distribution
p(·) and the importance distribution p̂(·). When a salmon is in the vicinity of a receiver, we
have a certain detection probability. This means that the absence of a detection at a receiver
indicates that the salmon most likely is not close to this receiver. The target distribution
of the system should take both detections and the absence of detections into account. The
probability of having a detection at receiver j at time step t, given the predicted state at
this time, can be modelled as an exponentially decreasing function:

αt,j(yj |x
(p)
t ) = pmax exp

(
− 3

φ
‖yj −Bx

(p)
t ‖

)
, (4.7)

for each particle p = 1, . . . , Np. The variable pmax is a measure of the probability of
detecting a salmon at a certain receiver when the distance between the receiver and the fish
is equal to zero. Because of the experimental nature of the data collection, this probability
is smaller than one. The variable φ is a measure of the detection range of the receiver.
We know that exp(−3) is approximately equal to 0.05. This means that the factor −3/φ
ensures that if a salmon is closer than φ to a receiver, the exponential function has a value
greater than 0.05.

For the time steps twhere at least one Zt,j = 1, the target distribution can be expressed
as

p(Zt|x(p)
t ) =

Nr∏
j=1

αt,j(yj |x
(p)
t )I(Zt,j=1)(1− αt,j(yj |x

(p)
t ))I(Zt,j=0), (4.8)

which is the probability of having the detections Zt given the state x(p)
t for particle p.

The importance distribution is an approximate form of the target distribution. By using the
Markov properties of the model, it can be written as

p̂(x
(p)
t |x

(p)
0:t−1, z1:t) ∝ p̂(zt|x

(p)
t )p(x

(p)
t |x

(p)
t−1). (4.9)

For each time step t with a detection, we define

p̂(zt|x(p)
t ) ∝ exp

(
−1

2
(zt − B̃x(p)

t )ᵀR̃
−1

(zt − B̃x(p)
t )

)
, (4.10)

where

R̃ =


R 0 · · · 0
0 R · · · 0
...

...
. . .

...
0 0 · · · R

 (4.11)

with dimensions 2Nz,t × 2Nz,t and B̃ is as defined in Equation (4.5).
We can sample from p̂(x

(p)
t |x

(p)
t−1, z1:t) by linearly adjusting an unconditional sam-

ple. This will be explained in the following paragraphs. We let xu,t denote the uncon-
ditional sample at time t. We draw the initial state from an initial distribution xu,0 ∼
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N(µ0,Σ0),where µ0 and Σ0 are predefined. For t = 1, . . . , T , predictions of the state
are sampled according to the dynamic model of the system defined in Equation (3.22):

xu,t = Axu,t−1 + qt−1, (4.12)

where the transition matrix of the system is

A =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 (4.13)

and qt ∼ N(0,Q), with

Q =


σ2
x 0 0 0

0 σ2
x 0 0

0 0 σ2
v 0

0 0 0 σ2
v

 . (4.14)

Here, σx and σv and are the process noise for the position and velocity, respectively. The
predictions xu,t are independent of all measurements, and they will be referred to as the
unconditional predictions, or samples, at time t. We define xu,0:t to be the unconditional
state predictions for all particles at the time steps 0, 1, . . . , t, with dimensions 4(t+1)×Np.

The next step is to correct the unconditional predictions based on the detections at the
time steps t, where Zt,j = 1 for at least one receiver j. We denote the previous time step
with at least one detection t− and we consider the interval (t−, t]. The states before t−

should not be updated, as we have already conditioned on all the measurements up to, and
including, t−. If we assume that we only have one detection, that is, Nz,t = 1, then the
covariance matrix for the predicted, unconditional states and a given detection at time t
can be written as

Cov(x
(p)
u,t−+1:t, zt|Z0:t−) =


Σt−+1A

ᵀ · · ·AᵀBᵀ

...
Σt−2A

ᵀAᵀBᵀ

Σt−1A
ᵀBᵀ

ΣtB
ᵀ

 , (4.15)

with dimensions 4(t − t−) × 2. For each time step k, k = t− + 1, t− + 2, . . . , t, the
covariance matrices are given by Σk = AΣk−1A

ᵀ + Q. Neither Σk, A nor B are
dependent on the value of the detection zt. Hence, if we have several detections in the
same interval, the calculated covariances will be the same for all measurements. Hence,
for Nz,t ≥ 1, the covariance matrix is given by

Cov(x
(p)
u,t−+1:t, zt|Z0:t−) =


Σt−+1A

ᵀ · · ·AᵀBᵀ · · · Σt−+1A
ᵀ · · ·AᵀBᵀ

...
. . .

...
Σt−2A

ᵀAᵀBᵀ · · · Σt−2A
ᵀAᵀBᵀ

Σt−1A
ᵀBᵀ · · · Σt−1A

ᵀBᵀ

ΣtB
ᵀ · · · ΣtB

ᵀ

 ,

(4.16)
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which has dimensions 4(t − t−) × 2Nz,t. The variance matrix for the detections at time
step t is defined as

V ar(zt|Z0:t−) =


BᵀΣtB +R BᵀΣtB · · · BᵀΣtB
BᵀΣtB BᵀΣtB +R · · · BᵀΣtB

...
...

. . .
...

BᵀΣtB BᵀΣtB · · · BᵀΣtB +R

 . (4.17)

We know thatBᵀΣtB has dimensions 2×2, and hence the variance matrix has dimensions
2Nz,t × 2Nz,t.

We start the iteration by drawing the initial state from an initial distribution xu,0 ∼
N(µ0,Σ0), whereµ0 and Σ0 are predefined. The covariance is found fromCov(x

(p)
u,0, z0) =(

Σ0B
ᵀ · · · Σ0B

ᵀ) and the variance V ar(z0) is found from Equation (4.17). The
conditional state at the time step t = 0 is found by the following relation

x
(p)
0 = x

(p)
u,0 + Cov(x

(p)
u,0, z0)V ar(z0)−1(z0 − B̃x(p)

u,0 + r
(p)
0 ). (4.18)

For the following time steps up to T , we consider the time steps t with a detection, that is,
the time steps where Zt,j = 1 for at least one receiver j. The previous detection was at
time step t−. Unconditional predictions of the states are found according to the dynamic
model of the system defined in Equation (4.12) for the time steps (t−, t], that is xu,t−+1:t.
To find the conditional state at time step t, we condition on the detection at this time step,
zt:

x
(p)
t−+1:t = x

(p)
u,t−+1:t

+ Cov(x
(p)
u,t−+1:t, zt|Z0:t−)V ar(zt|Z0:t−)−1(zt − B̃x(p)

u,t + r
(p)
t ).

(4.19)

This relation is found by combining the properties stated above with the Kalman filter
prediction and update steps, summarized in Equation (3.34) and Equation (3.35). The
unconditional state found for time step t is replaced by the conditional state for time step
t. In the next iteration, t from the previous iteration is now set to t−, and hence the last
predicted conditional state is used as the basis when we draw unconditional samples for the
time steps (t−, t]. This is illustrated in Figure 4.2. We have three detections, one at each
receiver, marked as a black point. The path of five particles are plotted before and after
conditioning on the given detections. The first step is to condition on the first detection.
This can be seen from Figure 4.2a, as all particles have the same starting point. Then,
unconditional particles are sampled according to Equation (4.12) for all time steps up to,
and including, the second detection. In Figure 4.2b, we have conditioned on the second
detection. The resulting conditional prediction for the time step of the second detection is
the starting point for the next draw. In Figure 4.2c, unconditional particles are sampled
for all time steps from the second detection, up to, and including, the third detection.
Finally, as presented in Figure 4.2d, we condition on the third detection and update the
last unconditional state of all particles.
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(a) Unconditional states of 5 particles are
drawn after conditioning on the first detec-
tion.
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1e6 Unconditional path of 5 particles, given second detection

(b) The unconditional state of the time step
with the second detection is updated after
conditioning on this detection.
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1e6 Unconditional path of 5 particles, given second detection

(c) Unconditional states of 5 particles are
drawn after conditioning on the second de-
tection.
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1e6 Unconditional path of 5 particles, given third detection

(d) The unconditional state of the time step
with the third detection is updated after con-
ditioning on this detection.

Figure 4.2: Illustration of the unconditional states of 5 particles.

4.2 Particle Filter and Sequential Fixed-Lag Smoother
After drawing samples from the importance distribution, the next step of the particle filter
algorithm is to calculate the weights for each particle p according to Equation (3.68). At a
time step t with a detection, we consider all time steps from the previous detection up to
this, that is (t−, t]. Hence, the weights can be calculated as follows

w
(p)
t ∝ w(p)

t−

p(Zt|x(p)
t )p(x

(p)
t |x

(p)
t−1)

p̂(x
(p)
t |x

(p)
0:t−1, z1:t)

∝ w(p)
t−
p(Zt|x(p)

t )

p̂(zt|x(p)
t )

= w
(p)
t−

∏Nr

j=1

∏t
k=t−+1 αk,j(yj |x

(p)
k )I(Zk,j=1)(1− αk,j(yj |x

(p)
k ))I(Zk,j=0)

exp
(
− 1

2 (zt − B̃x(p)
t )ᵀR̃

−1
(zt − B̃x(p)

t )
) .

(4.20)

Finally, the weights are normalized to sum to unity and resampling is performed when the
criterion for the effective sample size is met.

Finally, a sequential fixed-lag smoother as described in Chapter 3.7 is applied. A fixed
lag of L time steps with detection is chosen. That is, we only count the time steps with at
least one Zt,j = 1, which are the time steps where we calculate weights. Hence, if L = 1,
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the weights for the time step t− is updated when we have calculated the weights for time
step t. In general, we let t∗ be the time step L time steps with detection before t. Based
on Equation (3.72), the weights wt∗ are updated according to

w
(p)
t∗|t =

∑
i←p

w
(i)
t . (4.21)

In this case, all particles are propagated forward in time according to the dynamic model
of the system, as defined in Equation (4.12). If the effective sample size is too low, resam-
pling is performed. If we perform resampling, a particle i is said to be a descendant of
particle p if it was obtained by resampling particle p. If resampling is not performed, i is a
descendant of p if it was obtained by propagating p forward in time. This is illustrated in
Figure 4.3. The edges illustrates descending particles. If we choose L = 2, the updated
weights can be calculated as follows:

w
(1)
t∗ = w

(4)
t ,

w
(2)
t∗ = w

(1)
t + w

(2)
t + w

(3)
t ,

w
(3)
t∗ = 0,

w
(4)
t∗ = 0.

(4.22)

w
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w
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w
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w
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w
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w
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t

w
(4)
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Figure 4.3: Illustration of the fixed-lag smoother.

4.2.1 Algorithm
With the covariance and variance as defined in Equation (4.16) and Equation (4.17) re-
spectively, and the detection probability αt,j(·) as defined in Equation (4.7), the particle
filter algorithm described in this chapter can be summarized as follows:
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At time t = 0:

1. Draw Np unconditional samples from the prior distribution

xu,0 ∼ N(µ0,Σ0). (4.23)

2. Condition on the detections z0

x
(p)
0 = x

(p)
u,0 + Cov(x

(p)
u,0, z0)V ar(z0)−1(z0 − B̃x(p)

u,0 + r0). (4.24)

for p = 1, 2, . . . , Np.
3. Calculate weights according to

w
(p)
0 ∝

∏Nr

j=1 α0,j(yj |x
(p)
0 )I(Z0,j=1)(1− α0,j(yj |x

(p)
0 ))I(Z0,j=0)

exp
(
− 1

2 (z0 − B̃x(p)
0 )ᵀR̃

−1
(z0 − B̃x(p)

0 )
) (4.25)

for p = 1, 2, . . . , Np and normalize them to sum to unity.
4. If the effective sample size in Equation (3.65) is too low, perform resampling as

described in Chapter 3.6.4

At time t = 1, . . . , T : Draw unconditional samples xu,t according to the dynamic
model of the system:

xu,t = Axu,t−1 + qt−1. (4.26)

If Zt,j = 1 for at least one receiver j, for j = 1, . . . , Nr, we define t− as the previous
time step where we had at least one detection, Zt−,j = 1, and perform the following:

1. Condition on the detections at time step t to find the conditional states for the
time steps (t−, t]:

x
(p)
t−+1:t = x

(p)
u,t−+1:t

+ Cov(x
(p)
u,t−+1:t, zt|Z0:t−)V ar(zt|Z0:t−)−1(zt − B̃x(p)

u,t + rt)
(4.27)

for p = 1, 2, . . . , Np.
2. Calculate new weights according to

w
(p)
t = w

(p)
t−

∏Nr

j=1

∏t
k=t−+1 αk,j(yj |x

(p)
k )I(Zk,j=1)(1− αk,j(yj |x

(p)
k ))I(Zk,j=0)

exp
(
− 1

2 (zt − B̃x(p)
t )ᵀR̃

−1
(zt − B̃x(p)

t )
)

(4.28)
for p = 1, 2, . . . , Np and normalize them to sum to unity.

3. If the effective sample size in Equation (3.65) is too low, perform resampling as
described in Chapter 3.6.4

4. Sequential fixed-lag smoother with lag L: Update the weights wt∗ by looking at
the descendants at time t:

w
(p)
t∗|t =

∑
i←p

w
(i)
t , (4.29)

where t∗ is the time step L time steps before t, when we only count time steps
with detections. Perform resampling based on the updated weights.
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Chapter 5
Results

5.1 Choice of Parameters
The goal of the state-space model described in Chapter 4 is to estimate the position and
velocity of the fish. The parameters σx, σv , σz , φ and pmax must be specified. So must the
prior distribution given by µ0 and Σ0. The mean of the initial state is set equal to

µ0 =
(
385615 6867449 −0.05 0.0

)ᵀ
, (5.1)

which is the coordinates to the receiver Run to foss. This is the receiver closest to the
release point. The initial velocity is set to -0.05 m/s in the east direction, and 0 m/s in
the north direction. This means that the salmon initially are expected to have a small drift
toward west. The initial variance matrix is

Σ0 =


5002 0 0 0

0 5002 0 0
0 0 0.032 0
0 0 0 0.032

 . (5.2)

A good method should have high effective sample size (ESS) and low root mean
squared error (RMSE). The effective sample size is defined in Equation (3.65). This is
a measure of the variability of the weights. If the ESS is high, a high proportion of the par-
ticles contributes to approximating the target distribution. This gives more robust results.
An approximation of the mean squared error of the prediction for a specific fish i is

ei =
1

Nz,i

Nz,i−1∑
t=0

(
(z̄E,i,t − x̄E,i,t)

2 + (z̄N,i,t − x̄N,i,t)
2
)
, (5.3)

where Nz,i is the total number of time intervals with detections for fish i. We let z̄E,i,t

and z̄N,i,t denote the mean easting and northing position, respectively, of all receivers with
a detection of fish i at time t. Because we do not know the true position of the salmon,
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this mean position is used as an approximation. The mean easting and northing position,
respectively, for all particles for fish i at time step t are denoted by x̄E,i,t and x̄N,i,t. The
estimate of the total mean squared error is

e =

N∑
i=1

ei, (5.4)

where N is the total number of fish. The approximated root mean squared error is then
given by

RMSE =
√
e. (5.5)

The models are run with a time interval of six hours and the parameter pmax is set to
0.95. The number of particles is 1000 and resampling is performed if ESS < Np/2. The
parameter φ is a measure of the detection range of a receiver and the transmitter range of
the acoustic tags. As described in Chapter 2.1, the range is highly dependent of the water
conditions, and can vary between a couple of meters up to 200-500 meters. The value of
φ affects the value of αt,j(·), which is the probability of having a detection at receiver j at
time step t, as defined in Equation (4.7). The value of α as a function of the distance from
the receiver is plotted in Figure 5.1 for different values of φ. The value of φ is set to 3000.
This value is based on the sensor quality, and it is adjusted for the sampling interval. In
addition, the value of φ should be high to ensure more robust estimates. A low value of φ
will lead to a low detection range for most particles, and the ESS will be low.
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Figure 5.1: Detection probability with different parameter values for φ.

In Table 5.1 and 5.2, the total approximated RMSE and the mean ESS are presented
for different values of σx, σv and σz when the models are run on a random selection of the
salmon. The particle filter algorithm without a sequential fixed-lag smoother is denoted by
L = 0, while L = 1 denotes the model where the sequential fixed-lag smoother with lag 1
is applied to the particle filter and so on. In general for all models, we see that the RMSE
is lowest when σz is low. This is natural, as the value of the variance in the detection, σ2

z ,
will affect how important a detection is for the estimation of the state. The ESS, on the
other hand, is higher with higher values of σz .
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For L = 0, 1, 2, 3, the RMSE is lowest for σx = 1000, σv = 0.03 and σz = 500.
For these parameter values, the ESS is between 41 and 54, which means that the model
estimates will not be robust. For L = 4, the RMSE is lowest for for σx = 1000, σv = 0.01
and σz = 500, which give an ESS of 54.

With σx = 1000, σv = 0.03 and σz = 2000, the RMSE is relatively low, and the
ESS is high for L = 0, 3, 4. For L = 1 and L = 2, the best alternatives are σx = 500,
σv = 0.03, σz = 2000 and σx = 1000, σv = 0.01, σz = 2000, respectively. These
parameter values give the lowest RMSE when we only consider the values that give an
ESS above 300. For all values of L, the ESS is relatively similar, varying between 321 and
328. The RMSE is lowest for L = 4 and second lowest for L = 0, with a value of 4254
and 4266, respectively. However, the ESS is 4 higher for L = 0 compared to L = 4.

σx: 500 500 500 1000 1000 1000
σz: 500 1000 2000 500 1000 2000

L = 0 RMSE 4182 7276 7088 3505 5807 4596
ESS 60 151 330 58 167 340

L = 1 RMSE 3763 7110 7200 3375 6474 4710
ESS 59 154 338 53 152 328

L = 2 RMSE 3940 7410 7317 3478 5534 4990
ESS 63 146 339 47 156 328

L = 3 RMSE 3837 7086 7053 3311 5794 7052
ESS 52 161 335 58 151 331

L = 4 RMSE 3824 7455 7248 3217 5758 5240
ESS 67 153 333 54 160 326

Table 5.1: RMSE and ESS for different values of σx, σz and L, with σv = 0.01 fixed.

σx: 500 500 500 1000 1000 1000
σz: 500 1000 2000 500 1000 2000

L = 0 RMSE 3687 5711 4889 3381 5407 4266
ESS 56 159 334 50 155 326

L = 1 RMSE 3595 6412 4404 3206 5606 5162
ESS 61 160 327 41 142 329

L = 2 RMSE 3247 5594 5693 3202 6005 5702
ESS 60 154 333 54 143 320

L = 3 RMSE 3467 6151 5282 3060 5799 4418
ESS 60 154 335 53 141 323

L = 4 RMSE 3791 5917 4908 3230 5704 4254
ESS 57 170 338 50 152 322

Table 5.2: RMSE and ESS for different values of σx, σz and L, with σv = 0.03 fixed.
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5.2 Estimated Movement Pattern
The goal of the particle filter and the sequential fixed-lag smoother is to estimate the po-
sition and velocity of the salmon. The results obtained for fish ID 100 with σx = 1000,
σv = 0.03 and σz = 2000 for L = 0 and L = 4 are presented in the following chapter.

Estimated position

Fish ID 100 is first registered on April 30. The last detection is on May 6. During the first
15 time steps, that is the first 90 hours of the migration, fish ID 100 is registered in the river
and in the estuary. In the first time step, it is detected at Sætre and Smaleveien. It remains
in the upper part of the river, and is registered at Sætre at time step 2, 3 and 4. In the 4th
time step, it is also detected at Holmane. At time step 5 and 8 it continues to be detected at
Holmane, before it is registered in the estuary for the first time at time step 13 . At the 16th
time step, it is detected both at Osen midt, Osen N and Neset. These are the last detections
in the estuary. After this, it is detected at Blakset at time step 18. At time step 21 and 22,
it is detected in the zone Lote. There are no detections in the zone Krokneset. The next
detection is in the zone Isane, at the receiver Åseneset, at time step 25. In the following
time step it is detected at Otteren, in the zone Maurstad. The last detection is at time step
27. This is at Almenningsflua, in the outer part of the fjord.

The mean position of all particles with L = 0, that is, the particle filter, is presented
in Figure 5.2 together with the standard error of the particle estimates. The mean position
is also presented on a map of Nordfjord in Figure 5.3. The equivalent results using a
lag of L = 4 are presented in Figure 5.4 and Figure 5.5. There are not any big, visible
differences in the results.
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Figure 5.2: Estimated position for fish ID 100 with the standard error of the particle estimates added
and subtracted to the mean with L = 0. Black and red dots illustrate receivers without and with any
detections, respectively. UTM coordinates, zone 32, are used.
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Figure 5.3: Estimated position for fish ID 100 plotted on a map of Nordfjord with L = 0. Black and
red dots illustrate receivers without and with any detections, respectively. UTM coordinates, zone
32, are used.
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Figure 5.4: Estimated position for fish ID 100 with the standard error of the particle estimates added
and subtracted to the mean with L = 4. Black and red dots illustrate receivers without and with any
detections, respectively. UTM coordinates, zone 32, are used.
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Figure 5.5: Estimated position for fish ID 100 plotted on a map of Nordfjord with L = 4. Black and
red dots illustrate receivers without and with any detections, respectively. UTM coordinates, zone
32, are used.

Estimated velocity

The mean estimated speed in meters per second for all particles in the east and north
direction with L = 0 are presented in Figure 5.6 and 5.7 , respectively. The standard
error of the particle estimates are added and subtracted to the mean and are also presented
in the figures. The estimated mean speed in the eastward direction is negative for all time
steps. This means that fish ID 100 moves westward, that is, toward the ocean, for the entire
migration period. The absolute value of the speed in the eastward direction is highest in
the beginning and in the end of the migration period. The estimated speed northward is
negative until approximately one day remains of the detection period. For the first days,
the speed is close to zero. After May 3, the absolute value of the speed increases.

For L = 4, the mean estimated speed for all particles in the east and north direction
are presented in Figure 5.8 and 5.9 , respectively. The estimated speed in the eastward
direction is negative at all time steps except for two. The absolute value of the eastward
speed is highest in the last part of the migration period. The northward speed starts out
negative, which means that the salmon moves southward. From the beginning of May until
May 4, the speed is positive. From May 4 to May 5, the speed is again toward south. The
last day of the migration, the salmon moves northward. The absolute value of the speed in
the north direction is highest on May 4.
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Figure 5.6: Estimated speed in east direction with the standard error of the particle estimates added
and subtracted to the mean with L = 0. The black dotted line is a reference line at zero speed.
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Figure 5.7: Estimated speed in north direction with the standard error of the particle estimates added
and subtracted to the mean with L = 0. The black dotted line is a reference line at zero speed.
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Figure 5.8: Estimated speed in east direction with the standard error of the particle estimates added
and subtracted to the mean with L = 4. The black dotted line is a reference line at zero speed.
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Figure 5.9: Estimated speed in north direction with the standard error of the particle estimates added
and subtracted to the mean with L = 4. The black dotted line is a reference line at zero speed.

For L = 0, the absolute value of the velocity in the east and north direction is presented
in Figure 5.10 together with the direction of the speed in Figure 5.11. Both are plotted
together with the standard error of the particle estimates added and subtracted to the mean.
The speed is given in body lengths per second. The speed is somewhat increasing in the
later stages of the migration period. Equivalently, the mean speed and direction for L = 4
are plotted in Figure 5.12 and Figure 5.13, respectively. The standard error of the particle
estimates are added and subtracted to the mean. The pattern of the speed and direction of
the speed are similar to the results for L = 0.
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Figure 5.10: Estimated speed with the standard error of the particle estimates added and subtracted
to the mean with L = 0.
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Figure 5.11: Estimated direction of the speed with the standard error of the particle estimates added
and subtracted to the mean with L = 0.
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Figure 5.12: Estimated speed with the standard error of the particle estimates added and subtracted
to the mean with L = 4.
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Figure 5.13: Estimated direction of the speed with the standard error of the particle estimates added
and subtracted to the mean with L = 4.
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Particles

The position of the particles after six different time steps are presented in Figure 5.14 with
L = 0. The particles are plotted with a different color at different time steps, and each
point represents one particle. A black cross represents a receiver with a detection.
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(a) Time step 1.
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(b) Time step 3.
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(c) Time step 8.
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(d) Time step 18.
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(e) Time step 25.
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(f) Time step 27.

Figure 5.14: Position of particles at different time steps with L = 0.

The mean of the initial state corresponds to the coordinates of the receiver Run to
foss, as presented in Equation (5.1). At the first time step, the particles are drawn around
this point with a variance given in Equation (5.2). Fish ID 100 is detected at Sætre and
Smaleveien, and in Figure 5.14a, we see that these receivers are further west than the
initial distribution of the particles. The particles at time step 3 are presented in Figure
5.14b, together with the position of the receiver Sætre, which has a detection at this time
step. We can see that the particles have moved westwards compared to Figure 5.14a. This
is due to the detections and the initial velocity in the westward direction. At time step 8,
fish ID 100 is detected at Holmane, as presented in Figure 5.14c. From time step 16 to
time step 17, the estimated position moves from the estuary to Utvik. There is a detection
at Blakset at time step 18, as presented in Figure 5.14d. In Figure 5.14e, we see that there
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have been detections in two zones, Lote and Isane. The particles after the final detection
at time step 27 are presented in Figure 5.14f.

The effective sample size as a function of time is presented in Figure 5.15 and Figure
5.16 for L = 0 and L = 4, respectively. The ESS is only calculated for the time steps with
detections. The values of the ESS around 200 or lower correspond to the time steps 7, 12,
15, 20 and 24. The results are very similar for the different models.
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Figure 5.15: Effective sample size with L = 0.
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Figure 5.16: Effective sample size with L = 4.
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Chapter 6
Discussion

This chapter covers a discussion of the results presented in Chapter 5. In Chapter 6.1, dif-
ferent models are compared when considering data for all fish in the study. The estimated
movement pattern for fish ID 100, presented in Chapter 5.2, is discussed in Chapter 6.2.
Further, the estimated velocity for all salmon are considered in Chapter 6.3. In Chapter
6.4, correlations between the estimated states and environmental data are considered.

6.1 Comparison of Models
In Chapter 5, a sequential fixed-lag smoother is applied to a particle filter for estimating the
position and velocity of salmon based on acoustic telemetry data. The lag of the smoother
is denoted by L. If L = 0, it means that there is no lag, and only the particle filter is
applied to the data. In Table 6.1, the total approximated root mean square error for all
salmon considered is presented, together with the mean effective sample size. Based on
the results in Chapter 5.1, σz is set to 2000 and three sets of parameter values for σx
and σv are tested for different values of L. To get both accurate and robust results, the
RMSE should be low and the ESS high. The ESS is similar for all parameter values and
values of L, varying from 320 to 336. For σx = 1000 and σv = 0.01, the sequential
fixed-lag smoother applied to the particle filter with lag L = 3 gives the lowest RMSE and
highest ESS. For σx = 1000 and σv = 0.01, the lowest value of the RMSE is obtained
with L = 2. Overall, the RMSE is lowest for L = 0, with σx = 1000, σv = 0.03 and
σz = 2000. That is, the particle filter without a sequential fixed-lag smoother adjustment.
Out of the three sets of parameters, this is the combination with the highest process noise.
With high process noise, the measurements have a high effect on the estimated state. This
means that a small amount of the data from previous time steps are used, and hence we do
not introduce a lot of bias. This could explain why the particle filter without a smoother
gives the highest RMSE. It is important to keep in mind that the RMSE is approximated
based on the mean position of the detections with receivers, which is not the true position
of the salmon at the given time step. If we knew the true position of the salmon, it is
possible that another model would be chosen as the optimal. In the following chapter, the
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results presented in Chapter 5.2 for L = 0 will be considered.

L = 0 L = 1 L = 2 L = 3 L = 4
σx = 1000, σv = 0.01 RMSE 7955 6739 6815 6414 8166

ESS 328 334 333 334 331
σx = 500, σv = 0.03 RMSE 8219 8067 7560 7570 7597

ESS 334 332 328 332 336
σx = 1000, σv = 0.03 RMSE 5802 6599 6903 6816 6951

ESS 325 320 322 325 318

Table 6.1: Total approximated root mean square error for all salmon and mean effective sample size
for different models.

6.2 Estimated Movement Pattern for a Specific Salmon
In Chapter 5.2, the estimated movement pattern of fish ID 100 is presented. The estimated
position, as presented in Figure 5.2, is highly dependent on the detections. If there are
detections at several receivers in the same time interval, the mean estimated position of
all particles tend to be close to the mean position of the receivers. The migration is from
east to west, and the estimated eastward velocity is estimated to be negative for all time
steps, as presented in Figure 5.6. The absolute value of the speed in the east direction is
highest toward the end. As we can see from Figure 5.7, the estimated northward velocity is
somewhat negative in the beginning, and mainly positive in the end of the migration. This
fits with the geography of Nordfjord, in the river and beginning of the fjord, the movement
of the salmon is mainly toward south. After Lote, the fjord mainly moves toward north.
Fish ID 100 reaches Finnvika, which is situated in Lote, at time step 21, after 5.25 days.
This corresponds to the results in the figure, where we see that the estimated speed in the
north direction turns positive during May 5. In Figure 5.10, the speed in body lengths per
second (bl/s) is presented. The mean speed is 0.51 bl/s with a standard error of 0.13 bl/s.
This is considerable lower than the mean progression speed of 1.3 bl/s found by Urke et al.
(2018) and 1.27 bl/s found in a study performed in the Romsdalsfjord system (Thorstad et
al., 2004). However, the results are similar to results obtained in other studies. In a study
of Atlantic salmon in River Eira on the west coast of Norway, the mean speed ranged from
0.49 to 1.82 bl/s (Finstad et al., 2005). The fjord migration of Atlantic salmon was also
studied by Thorstad et al. (2007), and the mean speed was found to be 0.53 bl/s.

6.3 Estimated Velocity
In the following chapter, the particle filter algorithm is applied to all salmon that are de-
tected in the outer part of Nordfjord, see Appendix A.2 for an overview of the fish in the
study. The parameters σx = 1000, σv = 0.03 and σz = 2000 are used, according to the
results presented in Chapter 6.1. The mean speed is found to be 0.48 bl/s, with a standard
error of 0.27 bl/s. This is similar to the results obtained for fish ID 100, and the predic-

54



tion is somewhat lower than the results obtained in previous studies (Thorstad et al., 2004;
Finstad et al., 2005; Thorstad et al., 2007; Urke et al., 2018).

In Figure 6.1 the mean speed, that is, the mean of the absolute value of the velocity in
the east and north direction, of all 27 salmon at different dates is presented together with
the standard error. The speed is given in body lengths per second (bl/s). The fjord can
be divided into different zones, as presented in Figure 2.2. The mean speed and standard
error in the different zones for all salmon considered are presented in Figure 6.2. The
zones denoted by "Utvik_Lote" and "Isane_Maurstad" represent the area from Utvik to
Lote and from Isane to Maurstad, respectively. For the remaining zones, the zone limits
are in the middle of the two subsequent zones.
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Figure 6.1: Mean speed at different dates for all fish considered with the standard error added and
subtracted to the mean. The black dotted line is a reference line at the mean speed.

Figure 6.2: Mean speed for all fish in different zones of Nordfjord with the standard error added
and subtracted to the mean. The black dotted line is a reference line at the mean speed.
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The salmon are divided into two migration groups based on the time of their first
detection. The first group consists of the salmon that are detected before May 15, the last
group are the salmon that are first detected on May 15 or later. In total, there are 27 fish
that are detected in the outer part of Nordfjord. Of them, 17 salmon are in the first group
and 10 are in the last group. In Figure 6.3, the mean speed at different dates for the two
different groups is presented. In Figure 6.3a, the results for both groups are plotted. The
mean speed for each group is presented separately in Figure 6.3b and Figure 6.3c for the
first and last group, respectively. Here, the the standard error is added and subtracted to
the mean.

In Figure 6.4, the mean speed in the different zones for the two groups are presented.
In Figure 6.4a, the results for both groups are plotted. The mean speed for each group is
presented separately in Figure 6.4b and Figure 6.4c for the first and last group, respec-
tively. Here, the the standard error is added and subtracted to the mean.

The results presented in Figure 6.3 and Figure 6.4 indicate that the mean speed of
the last group is somewhat higher than the speed of the first group. The mean speed for
the first group is 0.46 bl/sec, with a standard error of 0.23 bl/sec. The mean speed for the
last group is 0.51 bl/sec, with a standard error of 0.32 bl/sec. By performing a Welch’s
t-test (Welch, 1947; Heumann & Shalabh, 2016) with null hypothesis of the two means
being identical, the p-value is found to be 0.0029. Hence, on a 5 % level we accept the
alternative hypothesis that says that the mean speed of the first and last migration group are
statistically different. This means that according to the particle filter estimates, the speed
of the salmon in the last migration group is found to be significantly higher than the speed
of the salmon in the first migration group.

In Figure 6.1, we see that the estimated speed in the second half of the migration
period is lower than the mean speed. There is a peak around May 22. For the salmon in
the first migration group, the estimated speed is higher than the mean speed between May
5 and May 9. There are also small peaks at some of the later dates. The results can be seen
in Figure 6.3b. The results for the last migration group are presented in Figure 6.3c, and
we can see that the speed i highest in the first week. From May 24, the estimated speed is
lower than the mean speed.

The mean estimated speed from Utvik to Krokneset is higher than the mean speed, as
presented in Figure 6.2. There is also a small peak in Maurstad. For the salmon in the first
migration group, the estimated speed is highest i Maurstad. In addition, there are peaks in
the area from Utvik to Lote and in Isane, presented in Figure 6.4b. For the salmon in the
last migration group, the estimated speed increases in the areas from Utvik to Krokneset,
as can be seen from Figure 6.4c. The speed in the zones before and after are similar. In
previous studies it has been found that the swimming speed of migrating salmon increases
in the later stages of the migration, and there have been observed a pattern of increasing
speed with distance from the river (Davidsen et al., 2009; Jonsson & Jonsson, 2011; Urke
et al., 2013a). This does not coincide with the results found from the particle filter, as
presented in Figure 6.1 to Figure 6.4. Reasons for this can be differences in the local
environment and the topography of the fjords where the studies have been performed.
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(a) Mean speed for the first and last migration group at different dates.

29.04 01.05 05.05 09.05 13.05 17.05 21.05 25.05
Date

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sp
ee

d 
(b

l/s
)

Mean speed
First group
Std
Mean

(b) Mean speed for the first the migration group with the standard error added and subtracted to the mean. The
black dotted line is a reference line at the mean speed.
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(c) Mean speed for the last migration group with the standard error added and subtracted to the mean. The black
dotted line is a reference line at the mean speed.

Figure 6.3: Mean speed for the first and last migration group at different dates.
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(a) Mean speed for the first and last migration group in different zones of Nordfjord.

(b) Mean speed for the first migration group with the standard error added and subtracted to the mean. The black
dotted line is a reference line at the mean speed.

(c) Mean speed for the last migration group with the standard error added and subtracted to the mean. The black
dotted line is a reference line at the mean speed.

Figure 6.4: Mean speed for the first and last migration group in different zones.
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In Figure 6.5, the correlations between the weight and length of the salmon and the
estimated state are presented. The estimated position and speed in the east and north
direction is denoted by "Easting", "Northing", "Vel_East" and "Vel_North", respectively.
The absolute value of the velocity is denoted by "Speed". The variables "Weight" and
"Length" are the weight and length of the salmon. The correlation is found using the
Kendall rank correlation coefficient (Kendall & Gibbons, 1990). Correlations significant
on a 10 % level are marked with ∗. In general, the correlations are weak and few variables
have a significant correlation.
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Figure 6.5: The Kendall rank correlation between the estimated position and speed in east and north
direction, "Easting", "Northing", "Vel_East" and "Vel_North", the absolute value of the velocity,
"Speed", and the weight and length of the salmon. Correlations significant on a 10 % level are
marked with ∗.

The estimated speed in the east direction has a small, but significant, negative correla-
tion with the easting position. The estimated eastward speed will mainly be negative, as
we saw for fish ID 100 in Figure 5.6. This means that the speed in the eastward direction
increases when the salmon move toward west. Since the movement is mainly toward west,
it means that speed westward decreases as the salmon gets closer to the ocean. This is
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the opposite of what we would expect based on previous studies (Davidsen et al., 2009;
Jonsson & Jonsson, 2011; Urke et al., 2013a).

The estimated speed in the north direction is positively and significantly correlated
with the northing position. This indicates that the speed northward is higher when the
salmon are in the parts of the fjord further north. The northward speed has a negative
and significant correlation with the easting position. This indicates that the speed in the
north direction increases as the salmon move toward west. Since the movement is mainly
toward west, this is equivalent to the northward speed increasing with time, which is the
same pattern as we saw for fish ID 100, presented in Figure 5.7.

The speed, however, is not found to be significantly correlated with the easting or
northing position. The speed is negatively and significantly correlated with the estimated
speed in the east and north direction. This is natural as the eastward and northward speed
are mainly negative, and the speed is the absolute value of these variables. The speed
is found to have a very small and negative correlation with the weight, and a very small
and positive correlation with the length. The correlations are not found to be significant.
From an ecological view, we would expect there to be a positive correlation between these
variables (Aas et al., 2011).

The length is positively and significantly correlated with the easting position. This
may indicate that longer salmon tends to be detected further out in the fjord, which is
supported by previous studies finding that longer smolts tend to have a higher survival rate
(Saloniemi et al., 2004).

6.4 Environmental Data

The migration speed of salmon is dependent on the water temperature and salinity (Aas et
al., 2011). The state-space model described in Chapter 4 does not take environmental fac-
tors like temperature, salinity and seawater velocity into account. In the following chapter,
the results from the particle filter will be linked to SINMOD data, which are modelled
environmental data from SINTEF, to see if there is a significant correlation between these
variables and the estimated swimming speed.

The SINMOD data have a resolution of 800 meters. Data are available at different
depths, starting at 3 meters. The state-space models applied to the data does not take depth
into account. During the migration, salmon usually swim close to the surface, in the top
1 to 3 meters, with irregular dives (Aas et al., 2011; Urke et al., 2018). According to
Plantalech Manel-La et al. (2009), the mean swimming depth of Atlantic salmon in River
Eio was found to be 1.7 meters. Based on this, SINMOD data are extracted from the top
layer, that is, a depth of 3 meters.

The seawater temperature is lower in the river and inner parts of Nordfjord, as pre-
sented in Figure 6.6. The temperature increases with time. From Figure 6.7 it is clear that
the salinity is higher closer to the ocean. The salinity decreases in the river and inner parts
of the fjord with time. This is due to more melting water being discharged.
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Figure 6.6: Temperature at six different times during the migration period.

Figure 6.7: Salinity at six different times during the migration period.

The mean speed at different dates along with the mean temperature and salinity are
presented in Figure 6.8. SINMOD data are found from the grid point closest to the esti-
mated position. If there are no available SINMOD data at a given point, the corresponding
state is not used in the mean estimation. The estimated mean speed is high in the begin-
ning. For the first days the counts of detected salmon are low, and hence the estimates are
not reliable to represent the population. There is a peak in the estimated speed around May
22, which corresponds to the results presented in Figure 6.1. The temperature increases
with time. This is both due to the salmon being detected further out in the fjord in the
later stages of the migration period, and due to the general temperature increase during the
period. There is no clear pattern for the salinity.
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Figure 6.8: Mean estimated speed, water temperature and salinity at each day in the migration
period.

The Kendall rank correlations between the estimated speed from the particle filter and
the water temperature, salinity and velocity from SINMOD are presented in Figure 6.9.
Correlations significant on a 10 % level are marked with ∗.

The speed, in body lengths per second, is negatively and significantly correlated with
the water temperature. As presented in Chapter 6.3, the mean speed of the last migration
group is significantly higher than the mean speed of the first migration group. The mean
temperature at the estimated positions is found to be 4.7 ◦C for the first group and 5.6
◦C for the last group. By again performing a Welch’s t-test (Welch, 1947; Heumann &
Shalabh, 2016) with null hypothesis of the two means being identical, the p-value is found
to be 0.0012. Hence, we reject the null hypothesis, and we conclude that the mean tem-
perature for the first and last migration group are statistically different. This can indicate
that higher water temperature leads to increased swimming speed, which is the opposite
of the conclusion drawn from the negative correlation. We would expect the swimming
speed and water temperature to be positively correlated (Jonsson & Jonsson, 2011).

There is a small, negative correlation between swimming speed and salinity, but it is
not significant on a 10 % level. The mean salinity for the first and last migration group are
found to be 27.7 ppt and 24.2 ppt, respectively. The p-value of the Welch’s t-test is 0.0013,
and we accept the alternative hypothesis of the means being different. Hence, we can
conclude that the first group has been exposed to more saline water than the last group.
This is not consistent with the expectation that higher water salinity leads to increased
swimming speed (Aas et al., 2011).
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The northward water velocity is found to be negatively and significantly correlated
with the estimated speed. The correlation is very small. There is a positive correlation
between the eastward water velocity and the speed, but it is not significant. In a study
performed in the Romsdalsfjord system, the direction of the movement of the observed
salmon was not found to be dependent on the direction of the water current (Thorstad et
al., 2004).

In general, the correlation between the particle filter estimates and the environmental
data is low, and several of the variables does not have a significant correlation. These
results are consistent with the results found by studying Atlantic salmon on the Scottish
coast over a time span of 44 years. Here, the correlations between physical properties of
the salmon and environmental variables were found to be weak and generally not signifi-
cant (Bacon et al., 2009).
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Figure 6.9: The Kendall rank correlation between the estimated velocity, temperature, salinity and
seawater velocity. Correlations significant on a 10 % level are marked with ∗. The speed, given in
body lengths per second, is denoted by "Bl/sec". The eastward and northward seawater velocity is
denoted by "U_East" and "V_North", respectively.
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The data from SINMOD are simulated. Actual registrations of water temperature and
salinity are available from the location Haneholmen, with coordinates (347314, 6859034).
We have data available from April 1 to July 31 at Haneholmen, with one registration each
day at 10:00. The mean temperature from these registrations is 12.0 ◦C with a standard
error of 3.2 ◦C. For each of the registrations at Haneholmen, SINMOD data from the
time closest to the registration at Haneholmen is found. When averaging the data over all
simulations at 3, 6 and 10 meters depth, the mean temperature of the SINMOD data from
the grid point closest to the location of Haneholmen is found to be 5.8 ◦C with a standard
error of 1.4 ◦C. The mean salinity from the registrations at Haneholmen is 16.3 ppt with a
standard error of 7.4. By extracting the corresponding SINMOD data in a similar manner
as for the temperature, the mean salinity of the SINMOD data is found to be 24.4 ppt, and
the standard error is 2.0 ppt.

Temperature registrations are also available from Verpeide, with coordinates (300403,
6868886). We have registrations at 5 meters and 10 meters depth from May 26 to July 31,
with one registration at each day at 08:00. The mean temperature at 5 and 10 meters depth
is 12.1 ◦C and 11.6 ◦C, respectively, both with a standard error of 1.1 ◦C. SINMOD data
is extracted from the grid point closest to the location of Verpeide. The mean temperature
at both 6 and 10 meters depth is 6.9 ◦C, with a standard error of 0.6 ◦C.

The simulated temperature from SINMOD are considerable lower compared to real
data at both Haneholmen and Verpeide. The measured salinity at Haneholmen is lower
than the salinity from SINMOD. This could indicate that the SINMOD data are not suffi-
ciently accurate, which could affect the correlation estimates presented above.
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Chapter 7
Conclusion and Further Work

To obtain increased knowledge about the migration pattern of Atlantic salmon in Nord-
fjord, a state-space model for the salmon movement and the acoustic telemetry data was
suggested, and a particle filter and a sequential fixed-lag smoother were applied to data
collected in 2017. The goals of this project were to estimate the position and velocity of
the salmon in the period when they migrate from the river to the ocean, and also to inves-
tigate if there was a correlation between these estimates and environmental data from the
fjord.

118 salmon smolts were marked with acoustic transmitters and detected during the
spring of 2017 in Nordfjord. 61 % of the salmon were detected at least once during the
period. Only 23 % were detected in the outer fjord. The main part of the detections were
made in May, and the median time between the first and the last detection was approxi-
mately 8 days.

A state-space model was considered. Each salmon in the study was considered inde-
pendently of the others, and the detections of each specific salmon were the only factors
influencing the estimated position and velocity. The particle filter that was applied to the
data took both the presence and absence of data at the receivers into account. A fixed-lag
smoother with different lag was also applied to the particle filter.

A time step of six hours was used, which meant that there could be several detections
in the same interval. An approximation of the root mean square error (RMSE) was found
by considering the mean of the position of all the receivers with a detection, and com-
paring this with the mean predicted position for all particles. Hence, we did not compare
the prediction to the true position. This information was not available, and the receiver
positions were used to approximate the true position of the salmon. Another measure of
the model performance was the effective sample size (ESS). This is a measure of the vari-
ability of the weights. If a model has a high value of the ESS, the results of the model are
more robust.

The performance of the particle filter was compared to that of a sequential fixed-lag
smoother adjustment to the particle filter. A fixed lag of L = 1, 2, 3 and 4 were considered.
The ESS of all models were relatively similar. The lowest value of the RMSE was obtained
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by only applying the particle filter to the data, without a smoother adjustment. This gave
a RMSE of 5802 meters and an ESS of 325. However, the model performance varied
with different parameter choices. For a combination of parameters with less process noise
then the combination selected for L = 0, applying a fixed-lag smoother adjustment to the
particle filter improved the results.

By considering all the salmon that were detected in the outer part of Nordfjord during
the migration period, the mean migration speed obtained from the particle filter predictions
was found to be 0.48 bl/s, with a standard error of 0.27 bl/s. The salmon were divided into
two groups based on the first detection time. The mean speed was found to be 0.46 bl/s
and 0.51 bl/s for the salmon in the first and last group, respectively. This is somewhat
lower than what we would have expected based on results from related studies.

The state-space model did not consider environmental variables like temperature and
salinity explicitly. These factors are expected to have an effect on the behavior of salmon.
In this case, however, most correlations between the estimated speed and the environ-
mental variables were found to be weak and not significant. There was a small, negative
correlation between the estimated speed and temperature. The correlation was significant
on a 10 % level according to a Kendall rank correlation test. From an ecological view, we
would expect the swimming speed to be positively correlated with the water temperature.
We would also expect the speed to be positively correlated with the length and weight of
the salmon. Here, the correlation was not found to be significant on a 10 % level.

There can be high local variations of the sea water temperature and salinity. In addition,
the values are dependent on the depth. The state-space model did not consider depth. In
addition, the resolution of the simulated environmental data (SINMOD) was low and only
available at certain depths. When comparing the SINMOD data to real temperature and
salinity measurements from the same period, the values differed a lot. It is possible that
one, or several, of these reasons can be part of the explanation of why we did not see the
expected correlations between the filter estimates and the environmental variables.

Overall, the particle filter algorithm seemed to work well on the data. The ESS was
high, which should ensure robust results. The estimated movement pattern was highly
dependent on the detections, and the results looked similar for the particle filter and the
sequential fixed-lag smoother with different lags. A possible way to increase the model
performance could be to include the environmental variables and physical properties of the
salmon in the state-space model. There is ongoing work to develop techniques to enable
autonomous fish tracking by placing a receiver on a moving vessel. Combined with one of
the models presented in this thesis for predicting the position of salmon, this could make
it possible to perform adaptive sampling. This can in turn give more detections and more
accurate position measurements of the salmon.

In addition to including environmental variables in the model, the survival rate of the
salmon could be taken into account to increase the model performance. All salmon are not
expected to survive the migration to the outer fjord, and this should be taken into account.

The detection probability at a receiver given the predicted state of the system was ap-
proximated by an exponentially decreasing function. In practice, the detection probability
was found to be high up to a certain distance. After this point, the probability decreased.
It could be interesting to compare the performance of models with different expressions
for the detection probability.
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In this project, all detections were weighted equally. If a salmon was detected at two
receivers situated in close vicinity of each other, the velocity estimate should be more
reliable than it is for two receivers far away from each other. An approach to improve the
particle filter could be to give the detections different weights. In addition, no boundary
conditions were applied to the movement of the salmon. This meant that the particles
that were drawn to approximate the movement of the salmon could be outside the fjord.
Implementing boundary conditions of the fjord is another possible extension of the model.

By considering more data, the results would get more reliable. Experiments on the
migration pattern of salmon smolts in Nordfjord were also performed in 2018, 2019 and
2020. Performing analysis on data from several years and comparing results could give
more insight on the movement pattern of the salmon. It would also give a more holistic
perspective and more knowledge about the general behavior of the salmon.
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Appendix

A.1 Receiver Data
Each receiver has a name and a unique ID. In Table A.1, the columns "Easting" and
"Northing" give the UTM coordinates, zone 32, of the receiver and the column "Zone"
indicates which zone the receiver is situated in. The position is found from east to west,
with some manual sorting when needed, as described in Section 2.2.

Table A.1: Name, ID and position of receivers.

Name ID Easting Northing Zone Position
Mindresunde 109708 388756 6868757 River 1

Soget 106226 387182 6868044 River 2
Run to foss 121330 385615 6867449 River 3

Saetre 121196 383056 6866420 River 4
Smaleveien 105128 382368 6866651 River 5
Holmane 121323 381637 6865940 River 6

Bill Dannat 123472 380125 6865323 Estuary 7
Tenden 105707 379445 6864956 Estuary 8

Osen midt 121199 379297 6865006 Estuary 9
Osen N 121315 379078 6864758 Estuary 10
Neset 108205 378682 6864067 Estuary 11

Stavenesvika 105718 379535 6863534 Estuary 12
Aarholen Soerside tunell 104259 378296 6862231 Inner 13

Rake 123469 384006 6861495 Inner 14
Lovika Stake 119954 385503 6861596 Inner 15

Lovika Brygge 109700 386325 6861505 Inner 16
Olden 105130 384425 6858138 Inner 17

Faleide Soer 121218 374588 6862183 Inner 18
Faleide Nord 121195 374316 6863735 Inner 19

Utvik 121197 370165 6860034 Utvik 20
Blakset 105961 368853 6855155 Utvik 21

Ysteneset 122234 349502 6860366 Lote 22
Ysteneset II 123466 349165 6860583 Lote 23

Finnvika 121211 348318 6858839 Lote 24

Continued on next page
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Table A.1 Continued from previous page
Name ID Easting Northing Zone Position

Verpeneset 121212 347089 6859937 Lote 25
Anda 121316 346237 6860509 Lote 26

Rygg II 122236 348689 6852812 Lote 27
Lote 123473 345960 6862780 Lote 28

Kviteneset 121317 344029 6860617 Lote 29
Kleppeneset 121191 340999 6856671 Lote 30

Hyeneset 109698 341244 6861045 Lote 31
Hundvikneset 122247 338429 6864354 Krokneset 32

Hammeren 123474 336363 6862413 Krokneset 33
Djupdalsneset 105959 336019 6864237 Krokneset 34
Krokneset II 103442 333003 6862824 Krokneset 35
Krokneset I 109704 332379 6862458 Krokneset 36
Hjeltneset 105695 330611 6862065 Krokneset 37

Isane anlegg 122239 327691 6864528 Isane 38
Isane fk 122244 326996 6865728 Isane 39

Aaseneset 121203 328643 6866261 Isane 40
Eidsfjorden 104258 332568 6867224 Isane 41

Staarheim Oest 121214 326936 6868693 Isane 42
Staarheim Vest 102909 325736 6868623 Isane 43

Maaurstad S 121213 314102 6871027 Maurstad 44
Maurstad V 121202 313373 6871643 Maurstad 45

Otteren 105713 312779 6870186 Maurstad 46
Totland 122229 311261 6871456 Maurstad 47

Elde 105140 310094 6869281 Maurstad 48
K. stroemmen 106229 307763 6867270 Maurstad 49

Tofteneset 122231 306990 6869508 Maurstad 50
Rugsund 121327 305864 6865473 Outer 51

Almenningsflua 102912 303258 6869130 Outer 52
Almenning 102518 303020 6869731 Outer 53

Skorpeholmen 105715 301586 6867882 Outer 54
Skorpeholmen M 109699 301449 6867712 Outer 55
Skorpeholmen S 121204 301420 6867417 Outer 56

Tangane 121208 299910 6867040 Outer 57
Biskjelneset 122230 299416 6868425 Outer 58

Risoeya 105958 299139 6867085 Outer 59
Gangsoeya 121321 298421 6867538 Outer 60

Vemmelsvika 123475 298423 6868698 Outer 61
Vaageneset 102522 296403 6869234 Outer 62

Gaasholmen 122233 295679 6870070 Outer 63
Skavoeypollen 121219 296665 6870985 Outer 64
Ulvesundet W 121216 298162 6875094 Outer 65

Continued on next page
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Table A.1 Continued from previous page
Name ID Easting Northing Zone Position

Ulvesundet E 105698 297808 6875307 Outer 66

Concluded

A.2 Fish Data
In the study, 118 pre-smolt salmon are caught and marked with transmitters. 53 salmon
are equipped with transmitters with a depth sensor and have IDs between 26 and 160. The
transmitter IDs of the 65 salmon with regular transmitters have IDs between 1913 and
2957. In Table A.2, the first and registration times of the 72 salmon with at least one
detection in the processed data are presented. In addition, the weight (g) and length (mm)
are given. The column "Outer" has the value "Yes" if the salmon have been detected in the
outer part of the fjord, "No" if not.

Table A.2: ID, registration times and number of registrations for each fish.

ID First Registration Last Registration Weight Length Outer
27 2017-05-04 23:13:19 2017-05-13 06:34:40 16.7 129 Yes
28 2017-05-16 21:08:15 2017-05-17 18:39:36 30.3 152 No
29 2017-05-17 03:10:17 2017-05-23 07:26:01 22.2 137 Yes
30 2017-05-04 19:37:12 2017-05-09 15:21:06 23.4 148 No
31 2017-05-10 10:39:42 2017-05-23 08:45:23 42 167 No
32 2017-05-07 02:17:07 2017-05-23 04:41:20 21.1 130 No
34 2017-05-02 23:49:27 2017-05-10 15:59:33 24.5 147 Yes
35 2017-05-20 00:15:04 2017-05-28 20:10:30 24.8 143 No
36 2017-05-07 02:51:13 2017-05-27 09:56:11 20.7 136 Yes
37 2017-05-28 00:23:38 2017-06-16 02:54:13 27.6 155 Yes
38 2017-05-05 23:06:11 2017-05-13 20:07:00 29.2 154 Yes
39 2017-05-05 21:57:46 2017-05-12 08:19:00 25.7 144 No
40 2017-05-16 20:37:38 2017-05-27 03:06:02 23.4 138 Yes
42 2017-05-07 00:57:16 2017-05-22 06:33:52 18.6 138 Yes
44 2017-05-02 21:52:53 2017-05-13 12:54:23 16.6 128 No
92 2017-05-05 22:04:37 2017-05-06 21:05:26 32 158 No
95 2017-05-04 02:18:22 2017-05-07 07:46:06 33.7 164 No

100 2017-04-30 00:22:51 2017-05-06 18:22:01 16.8 136 Yes
128 2017-05-20 00:06:01 2017-06-14 13:54:48 18.7 128 Yes
129 2017-05-17 02:56:58 2017-05-22 17:59:27 20.5 136 No
130 2017-05-16 18:54:28 2017-05-17 11:08:35 20.4 126 No
133 2017-05-20 16:13:37 2017-05-28 01:52:42 19.9 132 Yes
137 2017-05-08 19:29:09 2017-05-20 07:14:55 25 149 No
138 2017-05-17 00:06:53 2017-05-27 10:07:46 19.5 132 Yes

Continued on next page

75



Table A.2 Continued from previous page
ID First Registration Last Registration Weight Length Outer
139 2017-06-10 21:27:40 2017-06-12 21:10:59 25.9 146 No
144 2017-05-02 02:09:40 2017-05-27 15:18:29 22.3 141 No
146 2017-05-05 22:30:58 2017-05-13 06:44:52 20 140 Yes
148 2017-05-06 23:03:59 2017-05-14 12:39:17 19.3 129 Yes
151 2017-05-20 18:36:22 2017-05-27 12:45:37 29.6 152 Yes
152 2017-05-03 00:07:22 2017-05-09 10:25:38 26.6 146 No
154 2017-05-17 00:44:06 2017-05-21 12:56:00 26.6 146 No
155 2017-05-27 21:30:57 2017-06-02 18:51:29 25.1 146 No
156 2017-05-07 23:46:23 2017-05-22 06:10:30 24.1 135 No
157 2017-05-17 02:20:56 2017-06-12 22:18:57 26 136 Yes
158 2017-05-18 22:20:32 2017-05-24 19:29:40 19.5 138 Yes
159 2017-05-07 20:30:07 2017-05-16 15:52:10 22.9 143 Yes
160 2017-05-16 21:06:41 2017-05-27 15:33:57 21.2 136 No

2898 2017-05-01 23:21:16 2017-06-06 02:35:18 13.5 124 No
2899 2017-05-06 17:26:15 2017-05-12 15:54:35 18.6 134 Yes
2900 2017-04-29 22:19:53 2017-07-15 01:35:10 12.6 121 No
2903 2017-05-16 00:55:30 2017-05-16 20:35:04 15.2 126 No
2905 2017-05-04 00:11:38 2017-05-08 16:22:37 15.4 122 Yes
2906 2017-05-18 01:20:28 2017-05-23 14:25:42 16.6 126 No
2908 2017-05-06 08:46:40 2017-05-17 15:18:16 15.7 135 No
2909 2017-05-07 01:49:58 2017-05-12 23:24:08 18.5 132 No
2914 2017-05-17 00:04:19 2017-05-26 15:55:00 18.7 131 No
2915 2017-05-16 22:40:54 2017-05-23 15:28:40 18.9 134 No
2916 2017-05-03 00:02:10 2017-05-10 11:48:49 14.2 128 Yes
2917 2017-05-17 01:48:30 2017-05-27 13:30:06 16.5 126 No
2919 2017-05-17 01:13:35 2017-05-20 14:16:28 12.8 120 No
2920 2017-05-16 20:33:39 2017-05-24 09:56:10 13.1 120 No
2921 2017-05-10 20:55:36 2017-05-27 05:28:39 25 150 Yes
2922 2017-05-05 19:44:05 2017-05-14 02:03:19 27.6 152 No
2925 2017-05-14 23:51:40 2017-05-21 10:55:38 17.6 132 No
2929 2017-05-16 22:43:30 2017-05-26 07:24:34 26 142 No
2931 2017-05-13 16:37:38 2017-05-21 17:36:21 15.2 121 No
2932 2017-05-17 00:19:19 2017-05-22 07:32:04 13.4 112 No
2934 2017-05-10 02:49:30 2017-05-17 09:57:53 17.6 132 No
2935 2017-04-29 02:28:11 2017-05-14 19:28:44 13.3 128 Yes
2939 2017-05-05 23:16:51 2017-05-12 02:01:42 18 133 Yes
2940 2017-05-01 01:50:45 2017-05-11 09:43:58 16.6 129 Yes
2941 2017-05-01 23:02:56 2017-05-06 02:45:55 16.2 130 No
2943 2017-05-03 23:42:24 2017-05-23 00:30:02 12.5 120 Yes
2947 2017-05-13 18:24:35 2017-05-20 16:55:05 14.4 121 No
2949 2017-05-01 08:24:42 2017-05-20 14:26:09 16 123 No
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Table A.2 Continued from previous page
ID First Registration Last Registration Weight Length Outer

2950 2017-05-16 22:47:08 2017-05-26 08:01:05 14 125 No
2952 2017-05-11 23:21:52 2017-05-19 13:38:30 13.3 124 No
2953 2017-05-25 22:23:01 2017-05-25 22:23:01 12.4 116 No
2954 2017-05-16 19:05:16 2017-05-23 09:12:49 15.7 131 Yes
2955 2017-05-16 23:06:35 2017-05-21 10:23:36 20.3 136 No
2956 2017-05-16 23:12:50 2017-05-20 11:18:58 14.6 122 No
2957 2017-05-07 23:04:13 2017-06-09 21:55:12 13 127 No

Concluded
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