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Abstract
In this thesis, we propose and analyze a novel discretization for the numerical
solution for the coupled bulk-surface problems, where a diffusion-reaction
equation in a bulk domain is coupled to a corresponding equation on the
boundary of the bulk domain. We develop a higher cut Discontinuous
Galerkin method (cutDGM) for the coupled bulk-surface problems by com-
bining discontinuous Galerkin method with cut finite element technologies,
for when the mesh does not fit to the boundary. Instead, the physical domain
is embedded into a larger domain, which is easy to mesh. The finite element
spaces needed to represent the respective surface and bulk problems are
constructed by the finite element spaces from the background mesh to the
surface and bulk domain, using the same mesh and space to discretize the
surface and bulk problem. We encounter a challenge in handling small cut
elements that can severely effect the properties of the underlying scheme.
For instance, the stability and approximation properties are highly sensitive
to the relative positioning of the boundary in the background mesh. As a
remedy, we develop stabilizations applied on elements in the vicinity of the
embedded boundary domain. This enables us to show geometrically robust
stability and optimal convergence properties.
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Sammendrag
I denne oppgaven foreslår og analyserer vi en ny diskret-gjøring for den
numeriske løsningen av koblede bulkoverflate-problemer, hvor en diffusjon-
sreaksjonsligning i et bulkdomene er koblet med en korresponderende
ligning på randen av bulkdomenet. Vi utvikler en høyere ordens skåret
diskontinuerlig Galerkin-metode (skåretDGM) for koblede bulkoverflate-
problemer ved å kombinere diskontinuerlig Galerkin med skårne endelig
element-metoder der nettet ikke passer til randen. Det fysiske domenet blir
istedenfor bygget inn i et større domene hvor det er enkelt å bruke et nett.
De endelige elementrommene som behøves for å representere de respektive
overflate- og bulkproblemene konstrueres av de endelige elementrommene
fra bakgrunnsnettet til overflaten og bulkdomenet, ved å benytte det samme
nettet og det samme rommet for å diskret-gjøre overflaten og bulkproblemet.
Vi møter en utfordring når vi skal håndtere potensielle små skårne elementer
som kan ha en drastisk effekt på egenskapene til det underliggende skjemaet.
For eksempel er stabilitets- og tilnærmingsegenskaper svært følsomme for
den relative plasseringen av randen i bakgrunnsnettet. For å bøte på dette
utvikler vi stabiliseringer som vi anvender på elementer i nærheten av det
innebygde randdomenet. Dette lar oss vise geometrisk robust stabilitet, og
optimale konvergensegenskaper.1

1Der det mangler etablerte oversettelser av konseptene jeg har benyttet i oppgaven
og nevner i dette sammendraget, har jeg foreslått norske oversettelser basert på tyske og
svenske konvensjoner. For de engelske begrepene viser jeg til den engelske versjonen av
sammendraget, i ’Abstract’.
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Chapter 1

Introduction

In this thesis, we seek to propose and analyze a novel discretization for the
numerical solution for the so-called coupled bulk-surface problems. Numer-
ical solution of the coupled bulk-surface systems poses several challenges.
One may face a system of partial differential equations on domains of dif-
ferent topological dimensionality, which needs to be accommodated by the
numerical method at hand. Remeshing of the computational domain might
be the only resort. This is a costly solution, even for stationary domains,
as they can be rather complex. A possible remedy to the mesh generation
challenges is introducing the so-called unfitted finite element methods to
avoid creating meshes that are fitted to the domain boundary, and instead em-
bedding the domain in background mesh that is easy to mesh. A challenge is
that potentially small cut elements are troublesome and affects the robustness
of such methods. The unfitted discontinuous Galerkin methods handles such
small elements in a stable way. In the CutFEM, the description of the bulk
and surface geometry is decoupled from the definition of the finite element
mesh. The same finite element space can be used to discretize both the bulk
PDE and the surface PDE. A higher order discontinuous Galerkin methods
combined with cut finite element technologies allows for the mesh to not fit
the boundary, to allow for complex geometries to be embedded in a fixed
background mesh. We aim to develop a higher order cut Discontinuous
Galerkin method (CutDGM) for the coupled bulk-surface problems.
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1.1 Background
The coupled bulk-surface partial differential equation (PDE) can be used to
model problems involving phenomena that takes place on both the surface
(or interface) and in the bulk domains. Consequently, the PDEs has gained
a large interest as they arise in physical, biological and geological applica-
tions. A prominent use case is in modeling cell mobility [41, 45], where the
cellular metabolism and signaling are mediated by trans membrane recep-
tors that are able to diffuse in the cell membrane [49], [48]. Another case
is the transport contaminants in fractured porous media when large scale
fracture networks are modeled as 2D geometries embedded into a 3D bulk
domain [21, 35]. Immiscible incompressible two-phase flows with surfac-
tants departs from the interface problem for the Navier-stokes equations.
When an injected surfactant into the two phase flow system, the surfactant
will be transported and diffused through the bulk phases and accumulate at
the interface. When transported, we have a multidimensional surface bulk
problem for the concentration c of the surfactant. Consider

∂tcΩ + u · ∇cΩ −∇ · (k∇cΩ) = 0, in Ωi(t),

[k∇cΩ · n] = jcoupling, on Γ(t),

∂tcΓ + u · ∇cΓ −∇Γ · u−∇Γ · (kΓ∇ΓcΓ) = jcoupling on Γ(t),

for jcoupling represents the adsorption/desorption law at the interface. The
diffusivity is denoted by k. A challenge is to properly account for the
exchange between two surfactant forms. Topological changes may occur
as the coupling between dissolved form in the bulk and absorbed form on
the interface involve computations of the gradient of the bulk surfactant
concentration on a moving interface. The call for methods allowing for the
interface to be arbitrarily located with respect to a fixed background mesh,
see figure 1.1. Naturally, the coupled bulk-surface PDE arises in modeling
incompressible multi-phase flow problems with surfactants [22, 28, 39, 29].

1.2 Numerical Methods for Coupled Bulk-Surface
Problems

When aiming to solve the coupled bulk-surface problem numerically, the
computational methods encounter several challenges. Some initial work of

2



fitted finite element discretizations of coupled bulk-surface problems and
stabilization of coupled bulk-surface problems are to be found in [17]. Some
unfitted continuous finite element schemes are formulated in [11, 27, 33]
[16, 44, 43, 26] [23]. One challenge we encounter is when coupling PDEs
on domains of different dimensionality. Another challenge is when dealing
with moving interface where the system evolve significantly over time. An
example is when simulating complex droplet systems, the system might
undergo large or even topological changes, see figure 1.1.

Although it is tempting to suggest remeshing as a remedy, it is not
desirable as it being a costly solution. To avoid remeshing, there is a call
for suitable methods that allow for the interface to be arbitrarily located,
independently of a fixed background mesh. Hence, geometrically unfitted
methods were introduced as they provide an extension of the classical
finite element approach. The method was successfully employed to solve
boundary and interface problems on complex and evolving domains [3, 47].
The methods avoid creating meshes that are fitted to the domain boundary,
by embedding the domain in a fixed and easy to mesh background mesh, see
figure 1.2 for illustration of a domain in an unfitted mesh. One challenge for
the unfitted DGMs is robustness when embedding geometry cuts arbitrarily
through the background mesh.

Figure 1.1: Here we see complex droplet systems in a fitted mesh. Illustrating that
even for relatively simple initial surface geometry, it might evolve significantly over
time leading to highly distorted meshes.

The so-called cut finite element methods (CutFEM), is designed such that
the finite elements and the associated discrete approximation at the boundary
and interface are cut, hence the name. The CutFEM provides a discretization
as independent as possible of the geometric description [4, 33] and it can
handle complex shaped elements. The method represents the boundary in the
background mesh, and the same mesh is used to represent the approximation

3



Figure 1.2: As the background mesh is unfitted, the unfitted methods allow for a
droplet to move freely in the computational mesh.

solution of the coupled bulk-surface problem [15, 33]. General finite element
formulation for the approximation is built in for bulk and the surface, thus it.
Although the mesh is used to define proper approximation spaces, it does
not represent the domain geometry accurately. The Lagrange multipliers or
Nitsche-type methods [40] are two proper methods to impose boundary or
interface conditions, and complex geometries are embedded into an easily
generated mesh. The cut finite element method was initially developed
considering the weak imposition of boundary conditions for the Poisson
problem on unfitted meshes [9, 10]. The CutFEMs are desirable method as
the retain the accuracy and robust of the standard finite element method. This
is thanks to stabilization techniques that can ensure that the approximation
accuracy and the condition number are independent of the boundary intersect
the mesh

Extending ideas from CutFEM framework, a novel cut discontinuous
Galerkin method (CutDGM) for the coupled bulk-surface is developed. The
cut discontinuous Galerkin method (CutDGM) is based on unfitted variant
of the symmetric interior penalty method with piecewise discontinuous
polynomials that are defined on the background mesh. The CutFEM together
with added so-called ghost penalty stabilization ensures stability of the
CutDGM. Employing the ghost penalties, the fitted discontinuous Galerkin
methods are extended to handle unfitted geometries [30].

1.3 Outline of This Paper

In this work, we aim to formulate the stabilized, higher order cut discon-
tinuous Galerkin method (CutDGM) for the discretization of the coupled

4



bulk surface problem on a given bounded domain Ω. The coupled diffusion-
reaction system will serve as the guiding prototype example in developing
a cut finite element method, based on a discontinuous Galerkin approach
to discretize coupled bulk-surface PDEs without time-dependency of the
domains or of the PDEs. In chapter 2, we review and formulate the strong
and weak formulation for PDE under consideration. In chapter 3 we review
unfitted finite element methods, where we first look into Nitsche’s method
for Dirichlet problem. We review some important trace inequalities, inverse
inequalities and energy-norms which are needed to prove the coercivity of
the discrete bilinear form. Furthermore, Nitsche’s method for an interface
problem is formulated. This forms the basis to introduce the discontinuous
Galerkin method (DGM) and furthermore the cut discontinuous Galerkin
method for the Poisson problem. Then, we discuss the role of the so-called
ghost-penalty. In chapter 4, we define some computational domains, the
active background meshes consisting of elements with intersection with the
respective domain. Then, we formulate the higher order CutDGM for the
coupled bulk-surface problems. In chapter 5, we analyze the stability of
the CutDGM, ensured by the so-called ghost penalty stabilization in the
vicinity of the embedded surface. We formulate proofs for the coercivity
of the bilinear forms and discus the design of stabilization terms for higher
order CutDGM. A particular attention is paid to development of new ghost
penalties for the surface related bilinear forms, which work also for higher
order approximation spaces. At last, in chapter 6 we formulate the a priori
error estimates for the method established by some suitable approximation
operators.
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Chapter 2

The Coupled Bulk-Surface
Problem

We seek to analyze a discretization for the nummerical solution for the
coupled bulk-surface problems. Before we ca embark on this however, it is
necessary to introduce some basic notations.

2.1 Notation
Let the domain Ω ∈ Rd with C∞ and let Γ denote a compact boundary
equipped with a normal field nΓ → Rd and exterior unit normal n. Let ρ be
the signed distance function such that ρ(x) = ± dist(x,Γ) with the distance
being strictly negative for x ∈ Ω and positive otherwise. Denote the tubular
neighborhood Uδ(Γ) = {x ∈ Rd : |ρ(x)| < δ} for 0 < δ < δ0, where δ0 is
positive and small enough, see figure 2.1. A point x ∈ Uδ can be mapped by

x = p(x) + ρ(x)n(p(x)),

to the unique point p(x) ∈ Γ for some distance dist(x,Γ) = |p(x)− x| [24,
Sec. 14.6]. Let the tangential gradient∇Γ on the surface Γ is defined be

∇Γ = PΓ∇,

where ∇ is the Rd gradient. The projection of Rd onto the tangential plane
Γ at a point x ∈ Γ is given by

PΓ = PΓ(x) = I − nΓ ⊗ nΓ

6



[17, sec. 1]. Let Hs(W ) be the standard Sobolev spaces defined on W .
We employ the notation (·, ·)s,W and ‖ · ‖s,W to denote the associated inner
products and norms and sometimes write (·, ·)W and ‖ · ‖W for the inner
products and norms associated with L2(W ), with W being a measurable
subset of Rd. For a collection of geometric entities, the norm ‖ · ‖P is to be
understood as ‖ ·‖P =

∑
P∈P , for some well defined norm ‖ ·‖P . Similarly,

for the scalar products we write (·, ·)P . Consequentially, we use the notation
‖ · ‖2

P∩W =
∑

P∈P ‖ · ‖P∩W to denote the sum of all the corresponding cut
parts for any W ⊂ Rd.

Figure 2.1: The figure shows the Γ (in red) with exterior unit nΓ. The region
around illustrates the tubular neighborhood Uδ(Γ), where for each point in the
tubular neighborhood there is a unique closest point on Γ.

2.2 Model Problem

We need to establish the strong and weak formulation of the coupled bulk-
surface problems. Consider a continuous prototype problem of the coupled
bulk-surface problems. We seek to briefly review the strong and weak form.
The strong form of the bulk-surface problem can be stated as follows: find

7



functions uΩ : Ω→ R and uΓ : Γ→ R such that they satisfy the following

−∆uΩ + uΩ = fΩ in Ω, (2.1)
∂nuΩ = cΓuΓ − cΩuΩ on Γ, (2.2)

−∆ΓuΓ + uΓ = fΓ − ∂nuΩ on Γ, (2.3)

where cΩ, cΓ are positive constants and the functions fΩ : Ω → R and
fΓ : Γ→ R are given. The Laplace-Beltrami operator on Γ is

∆Γ = ∇Γ · ∇Γ,

where ∇Γ is the tangent gradient defined above, and ∂nv = n · ∇v. Let
uΓ ∈ C1(Γ). Then the tangential gradient∇ΓuΓ is defined by

∇Γ = PΓ∇,

where PΓ = PΓ(x) = I − nΓ(x)⊗ nΓ(x) denotes the projection of Rd onto
the tangential space at point x ∈ Γ and I denotes the identity matrix.

2.3 Weak Form
In this section we derive the weak form for the coupled bulk model problem
[18]. To derive a weak formulation of the bulk problem we multiply (2.1)
by a test function vΩ ∈ H1(Ω). Applying Green’s formula and integrating
by parts, we obtain

(∇uΩ,∇vΩ)Ω − (∂nuΩ, vΩ)Γ + (uΩ, vΩ)Ω = (f, vΩ)Ω.

For the surface we multiply (2.2) by vΓ ∈ H1(Γ) (test function on the
surface). Integrating by parts and together with the coupling condition (2.2)
we obtain

(∇uΩ,∇vΩ)Ω + (uΩ, vΩ)Ω + (cΩuΩ − cΓuΓ, vΩ)Γ = (fΩ, vΩ)Ω, (2.4)
(∇uΓ,∇vΓ)Γ + (uΓ, vΓ)Γ − (cΩuΩ − cΓuΓ, vΓ)Γ = (fΓ, vΓ)Γ. (2.5)

To obtain the final bilinear form a(·, ·) we choose the test function vΩ to
be cΩvΩ, vΓ to be cΓvΓ and sum up equations (2.4) and (2.5). Let the
bulk function spaces be VΩ = H1(Ω) and the surface function space be

8



VΓ = H1(Γ). Hence, the total space is denoted by V = VΩ × VΓ. For
simplicity we introduce the short hand notations

u = (uΩ, uΓ) ∈ V,
v = (vΩ, vΓ) ∈ V.

The variational problem for the coupled bulk-surface problem is then: Find
u ∈ V such that ∀v ∈ V

a(u, v) = l(v),

where

a(u, v) = cΩaΩ(uΩ, vΩ) + cΓaΓ(uΓ, vΓ) + aΩΓ(u, v),

l(v) = cΩ(fΩ, vΩ)Ω + cΓ(fΓ, vΓ)Γ,

with

aΩ(uΩ, vΩ) = (∇uΩ,∇vΩ)Ω + (uΩ, vΩ)Ω,

aΓ(uΓ, vΓ) = (∇uΓ,∇vΓ)Γ + (uΩ, vΩ)Γ,

aΩΓ(u, v) = (cΩuΩ − cΓuΓ, cΩvΩ − cΓvΓ)Γ.

We seek to show existence and uniqueness by apply the Lax-Milgram theo-
rem [19] to the variational problem stated earlier [17]. To do this we must
show the boundedness and coercivity of the bilinear form a and the bounded-
ness of the linear form l over the space V . Let the appropriate energy norm
be |||v||| =

√
a(v, v). First, a is bounded, that is to say, the following holds:

a(v, w) ≤ cΩ|||uΩ||||||vΩ|||+ cΓ|||uΓ||||||vΓ|||+ ‖(cΩuΩ − cΓuΓ, cΓvΓ − cΓvΓ)‖
≤
√

2 max{cΩ, cΓ}|||u||||||v|||+
√

2c2
T max{cΩ, cΓ}2|||u||||||v|||

≤ CB|||u||||||v|||,

where the constant ct arises from a trace inequality, see [19]. The coercivity
follows as

a(v, v) =cΩ|||v|||2Ω + cΓ|||v|||2Γ + |||cΩv − cΓv|||Γ
≥
√

2 min {cΩ, cΓ}|||v|||2

≥ Cc|||v|||2,

for positive cΩ,cΓ. The boundedness of l follows directly from the Cauchy-
Schwarz inequality.

9



Chapter 3

Unfitted Finite Element Method

In this chapter we will look into the so-called geometrically unfitted finite
element methods. In unfitted FEMs, the underlying finite element mesh can
be chosen independently of the actual physical geometry, where the mesh
is only used to construct the proper approximation spaces. The method
has gained much attention since it provides a remedy to mesh generation
challenges, by avoiding creating fitted meshes to the domain boundary, and
instead embedding the domain into an easy-to-generated background mesh.
The choice of the FEM based approximations, is independently of the actual
physical geometry, in other words, unfitted. As the embedded geometry
is allowed cut arbitrarily through the background mesh, a main challenge
is imposing boundary or interface condition on an unfitted boundary or
interface in a robust way, that is without significantly affecting the approxi-
mation properties of the finite element method. Nitsche’s method is used to
properly impose boundary or interface conditions, and for the unfitted case
the method can handle complex geometries. In combination, the unfitted
discontinuous Galerkin method is introduced and provides a method for com-
plex and evolving domains, including two-phase flows. In unfitted DGM,
small cut elements are merged with neighboring elements, where the local
shape functions are extended from the large element to the small cut element.
Hence, the unfitted DGM provides an alternative stabilization mechanism to
ensure that the discrete systems are well-posed and well-conditioned.

10



3.1 Nitsche’s Method for Dirichlet Problem
Let Ω ⊂ Rd denote the open physical domain and bounded domain and
Γ = ∂Ω. Let T h be a quasi uniform 1 background mesh which covers the
domain Ω consisting of shape regular elements {T}. For each element T
the local mesh size is hT = diam(T ), and mesh size parameter for T h is
with mesh size parameter h = maxT∈T h{hT} > 0.

Figure 3.1: The figure illustrates the computational domains Ω the boundary Γ for
the boundary value problem (3.1)

In this section we will look into Nitsche’s method as a way to weakly
enforce Dirichlet boundary conditions arising in Poisson’s equation. The
method resembles a mesh dependent penalty method with added consistency
terms involving the normal derivatives across the interface. Let us review
the classical Nitsche method for Poisson’s problem with weak Dirichlet
conditions [40]. Consider the Poisson problem of the following form: Find
a function u : Ω→ R such that{

−∆u = f in Ω,

u = g on Γ,
(3.1)

for given functions f and g. Let the finite element approximation space

1Quasi-uniformity is mainly assumed to simplify the overall presentation.
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consisting of piecewise continuous polynomials of order k to be

V h = {v ∈ C(Ω) : v|T ∈ Pk(T ) ∀T ∈ T h},

where Pk denotes the polynomial spaces consisting of piecewise polynomials
of order k on the respective mesh. Sometimes, for the sake of differentiation,
we write Pkdc(T

h) to denote the finite element space of discontinuous piece-
wise polynomials on the background mesh and Pkc(T h) for the continuous
case. The trace mesh on the boundary is

E h = {E : E = T ∩ Γ, T ∈ T h}.

Nitsche’s method for (3.1) reads as follows: Find uh ∈ V h ⊂ H1(Ω) such
that

ah(u, v) = lh(v), ∀v ∈ V h,

where the bilinear and linear form are

ah(u, v) = (∇u,∇v)− (∂nu, v)Γ − (u, ∂nv)Γ + (γh−1u, v)Γ, (3.2)

lh(v) = (f, v) + (γh−1g, v)Γ − (g, ∂nv)Γ, (3.3)

respectively, for some constant γ > 0. In the bilinear form (3.2), the first
term corresponds to the standard Galerkin form. The second term result from
integration by parts for some test function v 6= 0 on the boundary. The third
term enforces the Dirichlet constraint uh − g. In the linear form(3.3), the
second term is a symmetrization term, whereas the last term represents the
so-called penalization term. Nitsche’s method is consistent with the original
problem. To show stability of the method, some important inequalities and
norms are introduced.

3.1.1 Trace Inequalities and Inverse Inequalities
For vh ∈ Pkdc(T

h) the generalized trace and inverse inequalities are

‖∂jnvh‖2
∂T . hi−j−1‖∇ivh‖2

T ∀T ∈ T h, 0 ≤ i ≤ j, (3.4)

‖∇jvh‖2
T . hi−j‖∇ivh‖2

T ∀T ∈ T h, 0 ≤ i ≤ j, (3.5)

respectively. For elements T that are intersected by the boundary Γ

‖∂jnv‖Γ∩T . hi−j−1/2‖∇iv‖T ∀T ∈ T h, (3.6)

‖∇jvh‖T . hi−j‖∇ivh‖T .

12



3.1.2 Stability Analysis

To show stability of Nitshce’s method, we need to show coercivity and
continuity of the bilinear form. Discrete coercivity of the method is ensured
due to the penalty term, as the penalty parameter γ has to exceed some lower
bound related to the inverse inequality. The coercivity proof will set the
basis for us to later introduce the unfitted cut finite elements. First we need
to define the appropriate energy norms

|||v|||2ah = ‖∇v‖2
Ω + ‖h−1/2v‖2

Γ, v ∈ V h, (3.7)

|||v|||2ah,∗ = |||v|||2ah + ‖h1/2∂nv‖2
Γ, v ∈ H2(Ω) + V h.

We seek to establish coercivity of the bilinear form (3.2), that is, to show
ah(v, v) ≥ C|||v|||. Let u = v. Combining ε-scaled Young’s inequality
together with the inverse inequality (3.5) for i = j = 1 [40, 8], we get

ah(v, v) = ‖∇v‖2
Ω − 2(v, ∂nv) + γ‖h−1/2v‖2

Γ

≥ ‖∇v‖2
Ω − 2‖h1/2v‖Γ‖h−1/2∂nv‖Γ + γ‖h−1/2v‖2

Γ

≥ ‖∇v‖2
Ω − ε‖h1/2∂nv‖2

Γ + (γ − ε−1)‖h1/2v‖2
Γ

≥ ε− CI
ε
‖∇v‖2

Ω + (γ − ε)‖h−1/2v‖2
Γ

≥ min {1− CIε−1, γ − ε}|||v|||2ah
≥ C|||v|||2ah

for constant C independent of h and |||·|||ah defined in (3.7). Let ε be large
enough such that 1 − ε−1C ≥ C > 0. The choice of the parameter γ
should be large enough to extend control over v on the boundary, ε ≤ γ
and 1

2
ε < CI , e.g. 2CI < ε ≤ γ. Thus positive definiteness is shown and

Nitsche’s method is conditionally stable. The parameter γ has to exceed
a lower bound that depends on a constant CI extending from the inverse
inequality. This constant will depend on the shape regularity of the elements
of the underlying finite element mesh and on the polynomial degree. By
Cauchy-Schwarz inequality, the continuity of the bilinear form follows

ah(v, w) ≤ C|||v|||ah,∗|||w|||ah ,

∀v ∈ V h +H2(Ω), w ∈ V h and some positive constant C.
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Remark 1 (Equivalency of the norms). Note that for the discrete functions
v ∈ V h, the two norms |||·|||ah and |||·|||ah,∗ are equivalent, and coercivity can
be extended to the energy norm with an additional control term to account
for the flux.

3.2 Nitsche’s Method for Interface Problems
In this section we will look into Nitsche’s method for interface problems.
For the Dirichlet boundary condition, Nitsche’s method is used to handle the
interface conditions. Let the domain Ω be as before, but with an artificial
interface Γ such that Ω = Ω1 ∪ Ω2, where the subdomains Ω1, Ω2 are
divided by an interface Γ = Ω̄1 ∩ Ω̄2. In other words, the function space is
discontinuous along Γ. Consider the modified Poisson problem for a regular
function u ∈ Ω1 ∪ Ω2

−α∆u = f in Ω1 ∪ Ω2, (3.8)
u = 0 on ∂Ω,

[u] = 0 on Γ, (3.9)
[α∂nu] = 0 on Γ, (3.10)

where αi is the diffusivity in Ωi. The jump of u on Γ is [u] := u1|Γ − u2|Γ
for the restriction of u to the domain Ωi i.e. ui = u |Ωi . For any piecewise
discontinuous function w and possibly vector valued, the jump across an
interior face F ∈ F h is given by

[w]|F =w+
F − w

−
F , (3.11)

and the weighted average flux for w(x)± = limt→0+ w(x− tn±F ).
Let T h

Ωi
denote shape regular triangulations fitted to Ωi, such that T h

Ω1
⊂

T h and T h
Ω2
⊂ T h. Let u = (u1, u2) ∈ V h = V h

1 × V h
2, where on each

domain Ωi we define the space of piecewise polynomial functions

V h
i = {v ∈ C(Ωi) : v|T ∈ Pk(T )∀T ∈ T hi }, k ≥ 1.

The set containing shape regular elements bordering to the interface for T h
1

is

F h = {F : F = T ∩ Γ, T ∈ T h
1 },

14



and similarly for T h2 . Classically, Nitsche’s method for the Poisson problem
can be formulated by integrating by parts for each subdomain Ωi

(αi∂nui, ∂nvi)Ωi − (αi∂nui, vi)Γ = (f, vi)Ωi ∀vi ∈ Vi, i = 1, 2.

Taking the sum over the boundary (interface) terms, we get

2∑
i=1

(αi∂nui, vi)Γ = ({α∂nu}, [v])Γ + ({v}, [α∂nu]).

Note that the mean {·} represents the mean, where for any convex com-
bination ω∂nw1 + (1 − ω)∂nw2 for 0 ≤ ω ≤ 1 such that {α∂nw} =
ωα∂nw1 + (1− ω)α∂nw2. Now, the Nitsche’s method can be formulated as:
Find uh ∈ V h such that

ah(u, v) = l(v) ∀V h,

where the bilinear and linear form are

ah(u, v) =
2∑
i=1

(αi∇uhi ,∇vhi )Ωi − ({α∂nuh}, [vh])Γ

− ([α∂nu
h], {vh})Γ + γ(h−1[uh], [vh])Γ, (3.12)

lh(vh) =
2∑
i=1

(fi, v
h
i )Ωi ,

respectively, for a sufficiently large γ. The second term in (3.12) represent
the consistency, the third term is the symmetry term and the last term
represents the penalty term. Note that from (3.8) we have [α∂nu] = 0, hence
we can write

2∑
i=1

(fi, v
h
i )Ωi =

2∑
i=1

(αi∇uhi ,∇vhi )Ωi − ({α∂nu}, [v])Γ.

3.3 The Symmetric Interior Penalty Method for
the Poisson Problem

In this section we present the discontinuous Galerkin method (DGM) pro-
posed in [1, 2] to deal with interface problems [42, 46]. As with Nitsche’s
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method, the method enforces the Dirichlet interface conditions in a weak
sense and can be used to construct fictitious domains methods. Due to the
discontinuity of the finite element space, additional terms in the weak form
are necessary to enforce the proper continuity conditions between adjacent
elements. Recall that in Nitsche’s method for the interface problem the
interface is given, and the discrete function space is defined such that it
is discontinuous along the interface. To deal with interface problems for
discontinuous function space along the interface, Nitsche’s method is used
to enforce interface conditions in a weak sense [31, 32].

Now let T h denote shape regular triangulation fitted to the whole domain
Ω and let V h = P2(T h) = {v ∈ L2(Ω) : v|T ∈ Pk(T )∀T ∈ T h}. The
approximation uh is discontinuous between all triangulation pair T1 and T2,
and fulfills some interface conditions on the interface F ∈ F , between T1

and T2 [51, 7].
The continuous solution u of the strong Poisson problem, satisfies the

interface conditions (3.9) and (3.10). We thus apply the same technique as in
Nitsche’s method for interface problems, to enforce the interface conditions
weakly at each face F ∈ F h. Note that ∂nu is continuous. For the interface
problem (3.8), the discontinuous Galerkin method reads as follows: Find
uh ∈ V h such that

ah(uh, vh) = lh(v), ∀v ∈ V h,

where the bilinear is

ah(u, v) = (∇u,∇v)T − ({∂nu}, [v])F − (∂nu, v)Γ

− ([u], {∂nv})F − (u, ∂nv)Γ − (γh−1[u], [v])F + (γh−1u, v)Γ,

and the linear form is

lh(v) = (f, v)− (g, ∂nv)Γ + (γh−1g, v)Γ,

for some γ > 0. The method is consistent and satisfies the Galerkin orthog-
onality condition [1, 2]. Observe that the discontinuous Galerkin method is
Nitsche’s method in the guise.
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3.4 Cut Discontinuous Galerkin for Poisson Prob-
lem

In this section we review the novel cut discontinuous Galerkin method
(CutDGM) for the Poisson problem with given boundary conditions [30].
The method provides an approach that is able to handle unfitted geometries.
The method is based on an unfitted variant of the symmetric interior penalty
method with piecewise discontinuous polynomials on the background mesh.
We will look into the role of the so-called ghost penalty in the stability of
the method.

3.4.1 Weak Form of the Poisson Problem

Recall the definition of the averages and the jump across an interior face, and
define the discrete bilinear and linear form for the Poisson problem (3.1),

ah(v, w) =(∇v,∇w)T h∩Ω − (∂nv, w)Γ − (v, ∂nw)Γ

+ γ(h−1v, w)Γ − ({∂nv}, [w])Fh∩Ω

− ([v], {∂nw})Fh∩Ω + γ(h−1[v], [w])Fh∩Ω,

lh(v) =(f, v)T h∩Ω − (∂nv, g)Γ + γ(h−1g, v)Γ,

∀v, w ∈ V h, and recall the notation ∂nv = ∂nv. Thus, the DGM based on
symmetric interior penalty for the Poisson problem can be stated as: Find
uh ∈ V h such that

Ah(uh, v) = ah(uh, v) + sh(uh, v) = lh(v), ∀v ∈ V h, (3.13)

where sh is the stabilization term usually active only on elements on the
vicinity of Γ. The method must fulfill the approximation qualities of the
classical symmetric interior penalty method on fitted meshes. Therefore, the
bilinear form is augmented with a stabilization term sh. The stabilization
term ensures that the bilinear form Ah, as defined in (3.13), is coercive and
bounded with respect to an appropriate discrete energy norm. It ensures that
the associated system matrix is well-conditioned. To ensure these qualities,
some assumption are needed. We want to look at stability of the proposed
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cutDGM, but first let us introduce natural discrete norms.

|||v|||2ah = ‖∇v‖2
T h∩Ω + ‖h−1/2[v]‖2

Fh∩Ω

|||v|||2Ah = |||v|||2ah + |v|2sh ,
|||v|||2ah∗ = |||v|||2ah + ‖h1/2{∂nv}‖2

Fh∩Ω

+ ‖h1/2∂nv‖2
Γ, ∀v ∈ H2(T h) + V h,

|||v|||2Ah,∗ = |||v|||2ah,∗ + |v|2sh ∀v ∈ H2(T h) + V h,

for |v|2
sh

= sh(v, v). We need to show coercivity and boundedness of the
bilinear form Ah with respect to the discrete energy norm |||·|||Ah . That is we
want to show that

|||v|||2Ah . Ah(v, v), ∀v ∈ V h,

Ah(u, v) . |||v|||Ah|||v|||Ah∀v, w ∈ V h.

Figure 3.2: Computatioal domains for the boundary value problem (3.1). (Left)
The domain Ω embedded in an unfitted background mesh. (Right) The background
mesh and the active part of the mesh defines the approximation space. The face-
based ghost (3.15) penalties are illustrated as dashed figures
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3.4.2 The Ghost Penalty
Stability of the method requires that the inverse inequalities extend control
over arising issues. When analyzing the stability of the symmetric inte-
rior penalty method, one makes use of the inverse inequality ‖∂nv‖F ≤
CIh

−1/2‖∇v‖T for some v ∈ Pk(T ). Converting this inverse inequality to
cut faces F ∩ Ω 6= F does not hold, as the ratio |F∩Ω|d−1

|T∩Ω|d
between d − 1

dimensional surface area of F ∩ Ω and d-dimension volume of T ∩ Ω can
become arbitrarily large, and the system matrix will have little (almost
vanishing) contribution of certain degrees of freedom. Hence,

‖nF · ∇vh‖F∩Ω 6 CIh
−1/2‖∇vh‖T ,

‖nΓ · ∇vh‖Γ∩Ω 6 CΓh
−1/2‖∇vh‖T ,

are the available inverse inequalities, where CΓ depends on the local curva-
ture of Γ. To make use of the estimates above, we need to extend the control
of the relevant norms |||·|||ah from the physical domain Ω, to the entire active
mesh T h. This is the key idea of employing ghost penalty. We need to
control the normal flux on the cut geometries F h ∩ Ω and Γ ∩ Ω.

The first part of the energy norm is controlled by ghost penalty term sh

when the following holds:

‖∇v‖2
T h ≤

(
‖∇v‖2

Ω + |v|2sh
)
, ∀v ∈ V h, (3.14)

for some hidden constants depending on the polynomial order k, the di-
mension d and the shape-regularity of the active mesh. The ghost penalty
provides us with

h‖nF · ∇vh‖2
Fh∩Ω 6 Cg‖∇vh‖2

T h 6 CI

(
‖∇vh‖2

Ω + |vh|2sh
)
,

h‖nΓ · ∇vh‖2
Γ 6 Cg‖∇vh‖2

T h 6 CΓ

(
‖∇vh‖2

Ω + |vh|2sh
)
.

If (3.14) holds, then

‖h1/2∂v‖2
Γ + ‖h1/2∂v‖2

Fh∩Ω ≤ C

(
‖∇v‖2

Ω + |v|2sh
)
≤ C|||v|||2Ah

for some constant

C = Cg(CΓ + CI).

19



Hence,

|||v|||ah,∗ . |||v|||Ah , ∀v ∈ V h

depending on the dimension d, the polynomial order k, the shape regularity
of T h and the curvature of Γ, A ghost penalty for faces (4.1) is motivated
by the following proposition:

Proposition 3.1. Let T1, T2 a triangulation pair with a common face F . The
following inequality holds:

‖v‖2
T1

. ‖v‖2
T1

+
k∑
i=0

(h2j+1([∂jnv], [∂jnv])F

for some hidden constant depending on the shape-regularity of T h, the
polynomial order k, and the dimension d. See [38] for proof.

Proposition 3.2 (Face-based ghost penalty). A possible ghost penalty is as
shown in [30],

‖v‖2
T h . ‖v‖2

Ω +
k∑
j=0

(h2j+1([∂jnv], [∂jnv])Fh
g
,

‖∇v‖2
T h . ‖∇v‖2

Ω +
k∑
j=0

(h2j−1([∂jnv], [∂jnv])Fh
g
, (3.15)

for hidden constant depending on the shape-regularity of T h, the polynomial
order k, and the dimension d.

The role of this stabilization is to ensure that the bilinear form is coercive
and bounded with respect to appropriate energy-norms, and that the system
matrix is well-conditioned. To obtain these properties the stabilization
has to satisfy certain assumptions; semi-norm extension, L2-norm, weak
consistency and inverse inequality.

The discrete form is coercive and stable with respect to that discrete
norm, in other words

|||v|||2Ah . Ah(v, v), v ∈ V h,

Ah(v, w) . |||v|||Ah|||v|||Ah , v, w ∈ V h,

ah(v, w) . |||v|||ah∗ |||v|||ah , v ∈ H2 + V h and w ∈ V h,

with all hidden constants as before, and not dependent on the particular cut.
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Proof. Let w = v and recall an ε-Young inequality 2ab ≤ ε + ε−1b2, we
obtain

AhΩ(v, v) = ‖∇v‖2
Ω + |v|2sh − 2({∂nv, [v]})Fh∩Ω − 2(∂nv, v)Γ∩Ω

γ‖h−1/2[v]‖2
Fh∩Ω + γ‖h−1/2v‖2

Γ

≥ ‖∇v‖2
Ω + |v|2sh + γ‖h−1/2[v]‖2

Fh∩Ω + γ‖h−1/2v‖2
Γ

− 2({∂nv, [v]})Fh∩Ω − 2(∂nv, v)Γ∩Ω

≥ (1− εC)(‖∇v‖2
Ω + |v|2sh)

+ (γ − ε−1)
(
‖h−1/2[v]‖2

Fh∩Ω + γ‖h−1/2v‖2
Γ

)
≥ 1

2
|||v|||2Ah ,

for some constant C and a choice of ε = 1/2C and γ = 4C.

The ghost penalty ensures stability independent of the particular cut
configuration. The crucial inverse inequalities stated in section 3.1.1 and
used in the stability analysis of Nitsche’s method and DGM do not hold in
the unfitted case.
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Chapter 4

A Higher Order Cut
Discontinuous Galerkin Method
for Coupled Bulk-Surface

In this chapter we extend the cut finite element method (CutFEM) and
formulate a stabilized cut discontinuous Galerkin method (cutDGM) for
the coupled bulk-surface model problem (2.1). The cutDGM method is
based on the classical unfitted symmetric interior penalty method with
piecewise discontinuous polynomials defined on the background mesh. We
aim to extend ideas from CutFEM framework to synthesize a higher order
of the cutDGM for coupled bulk-surface PDEs, which allows for a minimal
extension of existing fitted discontinuous Galerkin formulation to handle
unfitted geometries. To formulate our higher order method, we need to depart
from the P1-based cutDGM for coupled bulk-surface problems presented in
[37].

To formulate the higher order cutDGM for the coupled bulk-surface
problem, we need to decouple the description of the geometry from the
approximation spaces, that is, from the computational mesh. We aim to
embed the geometry of the domain into a fixed background mesh. The
same mesh constructs the finite element spaces for the surface and bulk
approximations. First we introduce some computational domains needed to
formulate the discrete bilinear form for the bulk and surface form.
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4.1 Computational Domains
Recall the assumptions on the background mesh T h and the computational
domains in section 2.1, and the previous chapter for definitions of the back-
ground mesh T h. Let ρh be a continuous, piecewise linear approximation
of the distance function ρ. Hence the bulk domain is given by

Ωh = {x ∈ Ω : ρh(x) < 0}.

In this work we will for simplicity reasons consider exact geometry repre-
sentation and integration, that is Γh = Γ. Hence, all errors related to the
geometry approximation are neglected. The domain Ωh is enclosed by Γ.

Assumption 1 (Assumptions of the discrete surface). Usually one defines
the discrete surface Γh as the zero level set of ρh, then the discrete surface

Γh = {x ∈ Ω : ρh(x) = 0},

with nh e piecewise constant exterior unit normal. For Γh a polygon consist-
ing of flat faces with piecewise defined constant exterior unit normal:

- Γh ⊂ Uδ0(Γ) and the closest point mapping p : Γh → Γ is a bijection
for mesh step 0 < h ≤ h0.

- The following estimates hold

‖ρ‖L∞(Γh) . hk+1, ‖n− nh ◦ p‖L∞(Γ) . hk.

These assumptions are satisfied for ρh being the Lagrange interpolant
of ρ and can be fulfilled in cases where dist(Γh,Γ) � hk+1.

If we define ρh = Ihρ, for the Lagrange interpolation Ih, we need to handle
the geometry error by the so-called Strang-typed lemma. The lemma reveals
that the two sources for the overall error is the interpolation error and
the error caused by the mismatch of the smooth surface Γ and its discrete
counterpart Γh.

Many of the computational domains needed for the bulk problem are
familiar from reviewing the Poisson problem in chapter 3. For the final
discretization only the active background meshes are needed. Recall the
meshes defined for the cut discontinuous Galerkin method for the Poisson
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problem. Now, denote the active background meshes for the bulk problem
T h

Ω to be the set consisting of all elements in T h that intersect Ω. For the
surface problem, the active mesh T h

Γ for the surface problem, to be the
subset of elements that intersect the boundary Γ, that is

T h
Ω = {T ∈ T h : T ◦ ∩ Ωh 6= ∅},

T h
Γ = {T ∈ T h

Ω : T ∩ Γh 6= ∅},

respectively. Here, T ◦ denotes the topological interior of an element T .

Remark 2. The active mesh T h
Ω covers Ω due to the elements {T} are

closed by definition. Also, that T h
Ω does not contain any element which

intersects only with the boundary Γh but not with the interior Ωh and that
T h

Γ ⊂ T h
Ω .

The set of interior faces in the active background mesh is given as before

F h
Ω = {F = T+ ∩ T− | T+, T− ∈ T h

Ω }.

The corresponding set of interior faces for the active mesh T h
Γ is

F h
Γ = {F = T+ ∩ T− : T+, T− ∈ T h

Γ }.

Assumption 2. For Γ smooth, we can use the closest point projection to
extend any function on Γ to the tubular neighborhood, by extending the
normal field can be extended to the tubular neighborhood Uδ0 . There exists
a δ0 > 0 such that there is a (unique) closest point projection

p : Uδ(T )→ Γ,

for some 0 < δ < δ0, and subset
⋃
T∈T h

Γ
⊆ Uδ0(Γ).

For the active bulk mesh T h, the set of interior faces that belong to
elements intersected by the surface is denoted by

F h,g
Ω = {F = T+ ∩ T− ∈ F h

Ω : T+ ∈ T h
Γ ∨ T− ∈ T h

Γ },

where the face normals n±F are given by unit normal vectors perpendicular
to the face F and pointing exterior to the elements T+ and T−.

F h
g = {F ∈ F h : T + ∩ Γ 6= ∅, T− ∩ Γ 6= ∅}. (4.1)
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Considering intersetions of Γ with individual elements of the active mesh
T h

Γ , we define the set of surface faces and the corresponding edges

K h = {K = Γh ∩ T : T ∈ T h
Γ },

E h = {E = K+ ∩K− : K+, K− ∈ K h},

where for each edge E ∈ E h, the co-normals n±E are give uniquely by the
unit vector field. Each element in E ∈ E is tangential to the surface element
K±, that is, perpendicular to E and outward pointing with respect to K±.
See figure 4.1 for illustration of the set of geometric entities.

Figure 4.1: Ilustration of the computational domains for the bulk-surface problem.
(Left) The active mesh defines, in purple, is used to define the approximation space
for the bulk solution. The dashed lines represent face-based ghost penalty for the
bulk problem (as in figure 3.2 and (3.15)). (Right) The corresponding computational
domain for the discretization of the surface.
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4.2 The CutDGM for the Coupled Bulk-Surface
Problem

Before we formulate the cut DGM for the finite element space of discontinu-
ous polynomials on the active background mesh: VΩ and VΓ

V h
Ω := Pk(T h

Ω ) =
⊕
T∈T h

Ω

Pk(T ),

V h
Γ := Pk(T h

Γ ) =
⊕
T∈TΓ

Pk(T ),

where Pk denotes the polynomial spaces consisting of piecewise polynomials
up to degree k on the respective active mesh. We will also need notation of
average and fluxes of piecewise defined functions,

{nF · w} =
1

2
n+
F · (w

+
F + w−F ) =

1

2
(n+

F · w
+
F − n

−
F · w

−
F )

=
1

2
nF · (w+

F + w−F ),

where w is possibly vector-valued. Note that for the flat Euclidean case,
this definition coincides with the standard definition. The jump for w
on the interior face F ∈ F is defined as earlier in (3.11) for w(x)± =
limt→0+ w(x− tn±E). For the surface, the co-normal vectors n+

E and n−E are
generally not co-linear. We therefore define the standard and the weighted
average flux for w on K h by

{w} =
1

2
(w+

E − w
−
E),

{nE · w} =
1

2
(n+

E · w
+
E − n

−
E · w

−
E),

respectively. The jump across an interior face E ∈ E h is given similarly to
(3.11), now denoted [w]|E .

The cutDGM for the bulk problem is similar to the cutDGM for the
Poisson problem. The discrete bilinear and linear form of the bulk

ahΩ(vΩ, wΩ) = (∇vΩ,∇wΩ)T h
Ω ∩Ωh + (vΩ, wΩ)T h

Ω ∩Ωh + γΩ(h−1[vΩ], [wΩ])Fh
Ω

− ({∂nF vΩ}, [wΩ])Fh
Ω∩Ωh − ([vΩ], {∂nFwΩ})Fh

Ω∩Ωh ,

lhΩ(vΩ) = (fΩ, vΩ)Ωh ,
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respectively. The cutDGM for the surface sub-problem is similar to the
cutDGM formulation for the bulk sub-problem. For the surface problem the
discrete, discontinuous Galerkin counterpart for the surface is given by

ahΓ(vΓ, wΓ) = (∇ΓhvΓ,∇ΓhwΓ)K h + (vΓ, wΓ)T h
Γ ∩Γh + γΓ(h−1[vΓ], [wΓ])E h

− ({∂nEvΓ}, [wΓ])E h − ([vΓ], {∂nEwΓ})E h ,

lΓh(v) = (fΓ, vΓ)Γh .

Finally, the discrete, discontinuous Galerkin counterpart for the coupling
terms of the bilinear is as in the continuous form

ahΩΓ(v, w) = (cΩvΩ − cΓvΓ, cΩwΩ − cΓwΓ)Γh .

The appropriate total space is V h = V h
Ω × V h

Γ . The cut discontinuous
Galerkin method for the coupled bulk-surface problem reads as follows:
Find uh = (uhΩ, u

h
Γ) ∈ V h = V h

Ω × V h
Γ such that ∀ v ∈ V h,

Ah(u, v) := ah(u, v) + sh(u, v) = lh(v), (4.2)

where

ah(v, w) = cΩa
h
Ω(vΩ, wΩ) + cΓa

h
Γ(vΓ, wΓ) + ahΩΓ(v, w),

sh(v, w) = cΩs
h
Ω(vΩ, wΩ) + cΓs

h
Γ(vΓ, wΓ),

lh(v) = cΩl
h
Ω(vΩ) + cΓl

h
Γ(vΓ).

Due to the unfitted nature of the method, we encounter similar small cut
challenges as for the bulk problem. Recall that for the bulk problem the
stability was ensured by the term sh. Similarly, for the surface problem
we efficiently restrict our finite element functions to a lower dimensional
surface when only considering ahΓ. Thus, a norm that is solely associated
with ahΓ does not give sufficient control over v ∈ V h

Γ . Similar to the bulk
problem, the purpose of the stabilization shΓ is to remedy these defects of an
unstabilized cutDGM.

4.3 Norms and Coercivity
The natural discrete energy norms for the bulk problem are given by

|||v|||2AhΩ = ‖∇vΩ‖2
Ωh + ‖vΩ‖2

Ωh + ‖h−1/2[vΩ]‖2
Fh + shΩ(vΩ, vΩ), (4.3)

|||v|||2AhΓ = ‖∇ΓhvΓ‖2
Γh + ‖vΓ‖2

Γh + ‖h−
1
2 [vΓ]‖2

E h + shΓ(vΓ, vΓ), (4.4)
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respectively, with the semi-norm induced by the coupling bilinear ahΩΓ to
define

|||v|||2Ah = cΩ|||vΩ|||2AhΩ + |||vΩ|||2AhΓ + ‖cΩvΩ − cΓvΓ‖2
Γh .

28



Chapter 5

Stability Analysis

In this chapter we will look into the stability properties of the CutDGM
for the coupled bulk-surface problem. The main goal is to show that the
proposed CutDGM method is stable, independent of the position of the
geometry in the background mesh. The stable method should also handle
potentially small cut elements in the theoretical analysis. We will transfer
stability and approximation properties from the continuous cutFEM scheme
to the discontinuous Galerkin discretization. We will need to design and
add the appropriate stabilization terms to ensure discrete coercivity and
boundedness of the bilinear form with respect to certain discrete energy-
norms. We seek to show this in a geometrically robust manner, that is, the
involved constants are independent of the intersection between the unfitted
boundary and the mesh, i.e. irrespective of the particular cut configuration.

We aim to show stability and coercivity of the bilinear form Ah =
ah(·, ·)+sh(·, ·) with respect to the associated energy norms. In other words,
we need to demonstrate coercivity properties for the bulk and the surface
bilinear forms individually. That is, we want to show that

|||vΩ|||2h,Ω . AhΩ(vΩ, vΩ), ∀ vΩ ∈ V h
Ω ,

|||vΓ|||2h,Γ . AhΓ(vΓ, vΓ), ∀ vΓ ∈ V h
Γ ,

together with

Ah(v, v) = AhΩ(vΩ, vΩ) + AhΓ(vΓ, vΓ) + ahΩΓ(v, v)

& cΩ|||vΩ|||2h,Ω + cΓ|||vΓ|||2h,Γ + ‖cΩvΩ − cΓvΓ‖2
Γh ,

leads us to the following proposition:
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Proposition 5.1. The discrete bilinear form Ah is coercive with respect to
the discrete energy norm:

|||v|||Ahh
2 . Ah(v, v), ∀ v ∈ V h.

5.1 Discrete Coercivity of the Bulk Form Ah
Ω

In this section we will discuss the stability analysis for the bulk problem.
We aim to show that the ghost-penalty enhanced discrete bilinear form
AhΩ = ah(·, ·) + shΩ(·, ·) is coercive with respect to the natural discrete
energy-norm (4.3).

Let v ∈ Pk(T h) be a discrete function. Recall the inverse inequality
from classical symmetric interior penalty method

‖nF · ∇v‖2
F ≤ hi−j−1CI‖∇v‖2

T ,

where the face F is a part of the element boundary ∂T , and for some inverse
constant CI depending on the dimension d, the shape regularity of T h and
the degree k. We seek to formulate a corresponding inverse inequality of the
following form

‖nF · ∇jv‖F∩Ωh ≤ CIh
i−j−1/2
T ‖∇iv‖T∩Ωh .

Depending of the cut configuration, the ratio between the face area and
the element volume |F |/|T | can become arbitrarily large and the inverse
inequality does not hold. To use the simple inequality of the following form

‖nF · ∇jv‖F∩Ωh ≤ CIh
i−j−1/2‖∇iv‖T , (5.1)

some control over the terms is necessary.
To make use of the inequality (5.1), we need extend the control of the

term ‖∇v‖Ωh , in the associated energy norm, from the physical domain to
the entire active mesh T h

Ω . As this is the role of the ghost penalty, we state
some needed assumption in the following lemma:

Lemma 5.2. Let v ∈ V h
Ω , the following hold

‖∇v‖2
T h

Ω
.
(
‖∇v‖2

Ωh + |v|2shΩ
)
. ‖∇v‖2

T h
Ω
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for hidden constants depending only on the shape regularity of T h Thus,

‖h1/2nF · ∇v · v‖2
Fh

Ω∩Ωh . ‖∇v‖
2
Ωh + |v|2shΩ . |||v|||2AhΩ , (5.2)

for some constants depending only on the dimension d, polynomial order k
and the shape regularity of T h. Note that |v|2

shΩ
= shΩ(v, v).

We refer to [10, 36, 38] for the detailed proof of this lemma.
Now, we are ready to show coercivity of AhΩ with an analogous approach

as in the proof for symmetric interior penalty methods. To show discrete
coercivity of the bulk form, is to show that the proposition stated in 5.3
holds.

Proposition 5.3. The discrete bulk form AhΩ is coercive with respect to the
discrete energy norm ||| · |||h,Ω, that is,

|||v|||AhΩ . AhΩ(v, v), ∀ v ∈ V h
Ω ,

Proof. First, set uΩ = vΩ in the bilinear form AhΩ. The lemma 5.2 together
with ε-Young inequality of the form 2ab 6 εa2 + ε−1b2 and the inverse
inequality (5.1) yields

AhΩ(v, v) = ‖∇v‖2
Ω − 2({nF · ∇v}, [v])Fh

Ω∩Ω + γΩ‖h−1/2[v]‖2
Fh

Ω

+ ‖v‖2
Ω + |v|2shΩ

≥ ‖∇v‖2
T h

Ω
− ε‖h1/2{nF · ∇vΓ}‖2

Fh
Ω
− ε−1‖h−1/2[v]‖2

Fh
Ω

+ γΩ‖h−1/2[v]‖2
Fh

Ω
+ ‖v‖2

Ω + |v|2shΩ
≥ (1− εCI)‖∇v‖2

T h
Ω

+ (γΩ − ε−1)‖h−1/2[v]‖2
Fh

Ω

+ ‖v‖2
Ω +

1

2
|v|2shΩ

& |||v|||2AhΩ .

This holds for a small enough choice of ε, that is 0 < ε . 1/(2CI) and
γΩ > ε−1. E.g. choose ε = 1

2
CI and γΩ = 4CI , then 1 − εCI = 1

2
and

γΩ − ε−1 = 2CI = 1
2
. Hence, AhΩ(v, v) ≥ 1

2
|||v|||AhΩ

Note that one by simply applying Cauchy-Schwartz inequality,

AhΩ(v, w) . |||v|||AhΩ|||w|||AhΩ∀v, w ∈ V h.
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To ensure stability, the appropriate ghost penalty must be designed such
that it ensures coercivity of the bulk for higher order. The appropriate ghost
penalty shΩ for the bulk form is given by the face-based ghost penalty in
(3.15) for k > 1. For the sake of visualization, the appropriate ghost penalty
for k = 1 the ghost penalty is stated

shΩ(vΩ, wΩ) = µΩh
−1([vΩ], [wΩ])Fh

Ω,g
+ τΩh(nF · [∇vΩ], nF · [∇wΩ])Fh

Ω,g
,

for some positive parameters µΩ and µΓ.

5.2 Discrete Coercivity of the Surface Form Ah
Γ

In this section we will discuss the stability analysis for the surface problem.
Recall that the role of the ghost penalty is to establish stability, hence the
discrete coercivity of the bilinear form AhΓ with respect to the natural energy
norm |||·|||AhΓ in (4.4). We will follow an outline that is analogous to the bulk
problem.

For the coercivity proof in terms of a suitable discrete energy norm, we
need to control the flux term ({nE · ∇Γv}, [w])∂Kh with respect to a suitable
discrete energy norm. Note that for the bulk problem we simply had that

‖nF · ∇jv‖2
F∩Ωh . hi−j−1‖∇iv‖2

T .

This motivated the introduction of the ghost penalty where we gained control
of the term, such that

‖h1/2nF · ∇Γv‖2
Fh∩Ω . ‖∇Γv‖2

T h . ‖∇Γv‖2
Ω + |v|2shΩ .

In the surface problem, we encounter similar challenges when we aim to
control the normal flux on E h. That is, the following inequality does not
hold for a constant that is independent of the cut configuration

‖h1/2nE · ∇Γv‖∂K . ‖∇Γv‖K h .

Let us assume that the ghost penalty shΓ satisfies the following inequality

h−1‖∇v‖2
T h

Γ
. ‖∇Γv‖2

K h + |v|2shΓ . (5.3)

In the following lemma, we will show how to control the co-normal flux
term nE · ∇Γv for v ∈ V h

Γ in terms of a stabilized energy norm, and show
that this is indeed the role of the stabilization term shΓ.
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Lemma 5.4. For v ∈ Pkdc(T
h) we have

h‖nE · ∇Γv‖2
∂K h . ‖∇Γv‖2

K h + |v|2shΓ
Proof. The main point of the lemma is to show that:

h−1‖∇v‖2
T h . ‖∇Γv‖2

Γh + |v|2shΓ .

First, we observe that h‖nE · ∇Γv‖2
∂K ≤ h‖∇Γv‖2

∂K . Applying the cut
version of the inverse estimate (3.6) and then the standard inverse estimate,
we obtain

h‖nE · ∇Γv‖2
∂K h . ‖∇v‖2

T h
Γ
. h−1‖∇v‖2

T h
Γ
.

Now the control of the normal flux is provided by the stabilization term
shΓ and we are ready to show coercivity of the bilinear form AhΓ, that is, to
prove the following proposition

Proposition 5.5. The discrete surface form AhΓ is coercive with respect to
the discrete energy norm |||·|||2AhΓ , that is,

|||v|||2AhΓ . AhΓ(v, v), ∀ v ∈ V h
Γ ,

Proof of 5.5. The outline of this proof is in principal identical to the proof
for the bulk form. Let u = v in AhΓ. First, we apply the ε-young’s inequality
of the form 2ab ≤ εa2 + ε−1b2. Collecting the terms, and together with the
inverse inequality stated in lemma 5.4 , we have that for v ∈ V h

Γ

AhΓ(v, v) = ‖∇Γv‖2
Γ − 2({nE · ∇Γv}, [v])∂K h + γ‖h−1/2[v]‖2

∂K h

+ |v|2shΓ + γ‖h−1/2[v]‖2
∂K h + |v|2shΓ

≥ ‖∇Γv‖2
Γ − ε‖h1/2nE · ∇Γv‖∂K h − ε−1‖h−1/2[v]‖2

∂K h

+ γ‖h−1/2[v]‖2
∂K h + |v|2shΓ

≥ (1− Cε)(‖∇Γv‖2
Γ + |v|shΓ) + (γ − ε−1)‖h−1/2[v]‖2

∂K h

& |||v|||2AhΓ
for 1 − Cε > 0 where ε is small enough, and a choice of γ large enough.
For a choice of Cε = 1/2 we have γ − ε−1 > 0. Thus, we choose γ such
that γ − ε−1 > 0. All hidden constants depend only on the dimension d,
polynomial degree k, shape regularity of T h and the curvature of Γ but are
not dependent on the particular cut configuration.
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5.2.1 Design of shΓ
Now, an important question arises for the design of the ghost penalty shΓ.
Recall that for the bulk problem it was found that the appropriate stabilization
term shΩ for Pk(T h

Ω ) is the face-based ghost penalty (3.15). The main goal
is to show that (5.3) holds. Let us follow the same reasoning as for the bulk
form and write the stabilization term shΓ for P1

dc(T
h

Γ ) to be equivalent to shΩ
for k = 1, that is

shΓ(vΓ, wΓ) = µΓh
−2([vΓ], [wΓ])Fh

Γ
+ τΓ(nF · [∇vΓ], nF · [∇wΓ])Fh

Γ

where µΓ, τΓ > 0 are positive parameters. This definition holds for P1
dc(T

h).
This is indeed the appropriate stabilization for polynomial order k = 1 as
shown in [13]. For higher order, it is tempting to suggest that shΓ for Pkdc(T

h
Γ )

is defined similarly to (3.15)

shΓ(v, w) =
k∑
j=0

h(2(j−1)([∂jnv, [∂
j
nw]])Fh , (5.4)

k > 1. By contradiction it can be shown that (5.4) is not a proper ghost
penalty for the surface problem, hence it does not ensure stability. The
counterexample to consider is a circle given by Γh = {(x, y) ∈ R2 :
x2 + y2 − 1 = 0}. Let VΓ = P2(T h

Γ ) and vh := (x2 + y2 − 1) ∈ P2(T h
Γ ).

We look at the left hand side of (5.3) and observe that on Γ we have that

h−1‖∇v‖2
T h ≤ ‖∇Γhv

h‖2
Γh︸ ︷︷ ︸

=0

+
l∑

j=0

h2(j−1)([∂jnv
h], [∂jnv

h])T h︸ ︷︷ ︸
=0

= 0.

This cannot be zero, hence there is a contradiction and the ghost penalty
stated in (5.4) is not a suitable candidate for the surface form for K > 1.

We will now show that the ghost penalty

shΓ(vΩ, wΩ) = h−2([vΓ], [wΓ])Fh
Γ

+ (nF · [∇vΓ], nF · [∇wΓ])Fh
Γ

(5.5)

+ h−1(nΓ · ∇v, nΓ · ∇w)T h
Γ

is a suitable ghost penalty, leading to the discrete coercivity of the surface
form AhΓ.
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5.2.2 Analysis of shΓ
The goal remains to ensure coercivity and boundedness of AhΓ with an ap-
propriate stabilization term. The outline we follow is to extend some needed
estimates, inverse inequality and Poincaré estimate, from the continuous
case, to cover the discontinuous spaces Pkdc(T

h
Γ ).

Lemma 5.6. For continuous piecewise polynomials, v ∈ Pkc(T h
Γ ) it holds

that

h−1‖vh‖2
T h

Γ
. ‖vh‖2

K h + h‖nΓ · ∇Γv
h‖2

T h
Γ

(5.6)

h−1‖vh − λΓ(v)‖2
T h . ‖∇Γv‖2

K h + h‖nΓ · ∇Γv
h‖T h

Γ
. (5.7)

For proofs, see [14, 25]. The norm h−1‖vh − λΓ(vh)‖2
Γ does not give

sufficient control for v ∈ V h
Γ , and the Poincare estimate may not be fulfilled,

which again leads to us no the condition number estimates. This is another
role of the added ghost penalty term. We need the corresponding estimate for
the discontinuous case Pkdc(T

h
Γ ). The main idea of converting the lemma for

the discontinuous case is to transform v ∈ Pkdc(T
h

Γ ) to a ṽ ∈ Pkc(T h
Γ ) and

estimate terms involving the difference v− ṽ. To construct ṽ, we will use the
so-called Oswald interpolation operator Oh for k ≥ 1. The operator defines
a mapping O : Pkdc(T

h
Γ ) → Pmax{1,k}(T h

Γ ). The Oswald interpolation
operator for v ∈ Pkdc(T

h
Γ ) is constructed in each interpolation node xi by

the average value

Ohv(xi) =
1

card(T h(xi))

∑
T∈T h

Γ (xi)

v|T (xi)

for T h
Γ (xi) denoting the set of all elements T ∈ T h

Γ sharing the node xi. For
wh ∈ V h

dc = {v ∈ L2(Ω∗) : v|T ∈ Pk(T ), ∀T ∈ T h
Γ }, where Ω∗ is some

fixed Lipschitz-domain such that Ωh,∗ ⊆ Ω∗ for h > 1 it has been shown
that the fluctuation wh − Ohw

h is controlled in terms of jump-penalties.

Lemma 5.7. For piecewise constant function φ and for all wh ∈ V h
dc we

have

‖φ1/2(wh − Ohw
h)‖2

T .
∑

F∈Fi(T )

φTh‖[wh]‖2
F ,

where Fi(T ) denoting the set of all faces with F ∩ T 6= ∅, and all hidden
constant depends only on the shape regularity of the mesh order of the finite
element space and the dimension d.
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The proof of this lemma together with the construction of the Oswald
interpolator can be found in [7, 6]. In the following lemma we state and
prove the extended estimates to the discontinuous case.

Lemma 5.8. Let v ∈ Pkdc(T
h

Γ ), then

h−1‖v‖2
T h . ‖v‖2

Γ + ‖[v]‖2
Fh + h‖nΓ · ∇v‖2

T h

h−1‖v‖2
T h . ‖∇Γv‖2

Γ + ‖[v]‖2
Fh + h‖nΓ · ∇v‖2

T h (5.8)

Proof. To prove this lemma, we use the Oswald interpolant to reduce the
estimates in the stated lemma to their corresponding continuous counterparts
in lemma 5.6. First we define ṽ = Ov ∈ Pkc(T h

Γ ) ∩ H1(Ωh) for some
v ∈ Pkdc(T

h
Γ ). Hence

‖v‖2
T h

Γ
. ‖ṽ‖2

T h
Γ

+ ‖v − ṽ‖2
T h

Γ

. h‖ṽ‖2
K h + h2‖nΓ · ∇ṽ‖2

T h
Γ

+ ‖v − ṽ‖2
T h

Γ

. h‖v‖2
K h + h2‖nΓ · ∇v‖2 + ‖v − ṽ‖2

T h
Γ

+ h‖ṽ − v‖2
K h + h2‖nΓ · ∇(ṽ − v)‖2

T h
Γ

. h‖v‖2
K h + h2‖nΓ · ∇v‖2 + ‖ṽ − v‖2

T h
Γ

. h‖v‖2
K h + h2‖nΓ · ∇v‖2

T h
Γ

+ h‖[v]‖2
Fh .

Now, dividing by h we obtain the inverse inequality for the continuous case
stated in (5.6). Similarly, we want to prove the discrete Poincaré inequality
(5.7):

‖v − λΓ(v)‖2
T h

Γ
. ‖ṽ − λh(ṽ)‖2

T h
Γ

+ ‖v − ṽ‖2
T h

Γ

+ ‖λh(v)− λh(ṽ)‖2
T h

Γ

. h‖∇Γṽ‖2
K h + h2‖nΓ∇ · ṽ‖2

T h
Γ

+ ‖v − ṽ‖2
T h

Γ

+ ‖λh(v)− λh(ṽ)‖2
T h

Γ

. h‖∇Γ · v‖2
K h + h2‖nΓ · ∇v‖2

T h
Γ

+ h‖∇Γ(v − ṽ)‖2
K h

+ h2‖nΓ · ∇(v − ṽ)‖2
T h

Γ
+ ‖v − ṽ‖2

T h
Γ

+ ‖λh(v)− λh(ṽ)‖2
T h

Γ

. h‖∇Γ · v‖2
K h + h2‖nΓ∇ · v‖2

T h
Γ

+ I + II + III + IV (5.9)

36



We estimate the terms labeled I , II and III using inverse estimates and
lemma 5.7

I + II + III ≤ ‖∇(v − ṽ)‖2
T h

Γ

+ h2‖∇(v − ṽ)‖2
T h

Γ
+ ‖(v − ṽ)‖2

T h
Γ

(5.10)

. (h−2 + 2)‖v − ṽ‖2
T h

Γ
. h−1‖[v]‖2

Fh .

To estimate the last term IV , we make use of the following inequality

λh(v)− λh(ṽ) =
1

|Γ|

∫
Γ

(v − ṽ)dS ≤ 1

|Γ|1/2
‖(v − ṽ)‖Γ

.
1

h1/2|Γ|1/2
‖(v − ṽ)‖T h

Γ
,

and obtain

‖λh(v)− λh(ṽ)‖2
T h

Γ
.

1

h|Γ|
‖(v − ṽ)‖2

T h
Γ

(5.11)

. ‖v − ṽ‖2
T h

Γ
. h‖[v]‖2

Fh .

We obtain the desired Poincaré estimate (5.7) by combining the estimates
(5.9), (5.10), (5.11) and then dividing by h.

With the Poincare inequality in hand, we now return to lemma 5.4 and
design the appropriate shΓ.

Lemma 5.9. For v ∈ V h
Γ the following holds

h−1‖∇v‖2
T h

Γ
. ‖∇Γv‖2

K h + |v|2shΓ

Proof. Let v ∈ Pk−1
dc (T h

Γ ). It is not possible to control the left hand side
only by ‖∇Γv‖2

K h . We insert∇v into lemma 5.8 satisfying 5.4. Now,

h−1‖∇v‖2
T h

Γ
. ‖∇v‖2

K h + ‖[∇v]‖2
Fh + h‖nΓ∇(∇v)‖2

T h
Γ

= I + II + III.

We observe that the first I term can be written as

‖∇v‖2
K h = ‖∇Γv‖2 + ‖nΓ∇Γv‖2

K h

. ‖∇Γv‖2
K h + h−1‖nΓ∇Γv‖2

T h
Γ
.
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To estimate II , we first observe that∇v = nF · v + PF · v, where PF is the
face tangential part of the gradient and [pF∇v] = PF∇[v]. Hence,

‖[∇v]‖2
Fh = ‖[nF · ∇v]‖2

Fh + ‖[PF∇v]‖2
Fh

. ‖[nF · v]‖2
Fh .+ h−2‖[v]‖2

Fh .

Finally, to estimate III , let n̄ denote an elementwise constant normal field,
while the associated normal projection operator is n̄Γ. One can observe that
the parallel shifting n̄Γ − nΓ will vary with maximum h, in other words,
‖n− n̄‖L∞(T h

Γ ) . h. The constant normal derivative allows for change in
the order of differentiation, and we may write and estimate ‖n̄∇(∇v)‖2

T h
Γ

as ‖∇(n̄Γ · ∇v)‖2
T h

Γ
. h−1‖nΓ∇v‖T h

Γ
. Hence, we estimate the term III by

h‖nΓ∇(∇v)‖2
T h

Γ
. h‖n̄Γ∇(∇v)‖2

T h
Γ

+ h‖(nΓ − n̄Γ)∇(∇v)‖2
T h

Γ

. h‖∇(n̄Γ · ∇v)‖2
T h

Γ
+ h3‖∇(∇v)‖2

T h
Γ

. h−1‖n̄Γ∇v‖2
T h

Γ
+ h−1‖v‖2

T h
Γ

. h−1‖nΓ∇v‖2
T h

Γ
+ h−1‖(nΓ − nΓ)∇v‖2

T h
Γ

+ h−1‖v‖2
T h

Γ

. ‖nΓ∇v‖2
T h

Γ
+ h‖∇v‖2

T h
Γ

+ h−1‖v‖2
T h

Γ

. ‖nΓ∇v‖2
T h

Γ
+ h−1‖v‖2

T h
Γ︸ ︷︷ ︸

V

.

The boundedness of the last term V follows by the discrete Poincaré estimate
(5.8).

h−1‖v‖2
T h

Γ
≤ ‖∇Γv‖2

K h + h−2‖[v]‖2
Fh + h−1‖nΓ · ∇v‖2

T h
Γ
.

With this we conclude that

‖∇Γv‖2
K h + |v|2shΓ = ‖∇Γv‖2

K h + h−2‖[v]‖2
Fh

+ ‖[nF · ∇v]‖2
T h

Γ
+ h−1‖nΓ∇ · v‖2

T h
Γ

From this, we conclude that the stabilization term shΓ stated in (5.5) is
appropriate to ensure discrete coercivity for the surface problem.
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Chapter 6

A Priori Error Estimates

We aim to formulate and prove the main a priori estimates for the proposed
cutDGM. The stability analysis in the previous chapter provide a basis when
we derive a priori estimates of the error.

Usually, there are two main causes of error to consider, errors due to the
mismatch of the domain and its counterpart and the error due to approxi-
mation of the solution. In this tesis, we neglect the geometric error that is
possible to handle using a strang-tyoe lemma to qualify the geometric error
[13]. Here, we derive the a priori error analysis of the cut estimate by using
Galerkin orthogonality in combination with estimates for approximation
errors between solution u and projection πhu ∈ V h into the discrete space.

6.1 Boundedness
First we need to establish some needed norms and the boundedness. As
before, let v = (vΩ, vΓ) ∈ V h = V h

Ω × V h
Γ and recall the coercivity and

stability of the discrete form Ah with respect to the discrete energy norm
|||·|||Ah . Now, we define the energy norms for the function space V h + V to
be

|||v|||2Ah∗ := |||vΩ|||2Ah∗Ω + |||vΓ|||2Ah∗Ω + ‖cΩvΩ − cΓvΓ‖2
Γ,

where

|||vΩ|||2Ah∗Ω := |||vΩ|||2AhΩ + ‖h1/2{nF · ∇vΩ}‖2
T h∩Ω

|||vΓ|||2Ah∗Γ := |||vΓ|||2AhΓ + ‖h1/2{nE · ∇ΓhvΓ}‖2
∂K h .
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Thanks to the inverse trace inequalities stated in lemma 5.4 and (3.4), we
can observe that the following proposition holds.

Proposition 6.1. Let v ∈ V h, then∣∣∣∣∣∣vhΩ∣∣∣∣∣∣Ah,∗Ω
.
∣∣∣∣∣∣vhΩ∣∣∣∣∣∣AhΩ , ∀vhΩ ∈ V h

Ω∣∣∣∣∣∣vhΓ∣∣∣∣∣∣Ah,∗Γ
.
∣∣∣∣∣∣vhΓ∣∣∣∣∣∣AhΓ , ∀vhΓ ∈ V h

Γ .

where all hidden constants depend only on the dimension d, polynomial
order k, curvature of Γ and shape regularity of the active mesh.

Proof. We divide the proof of the boundedness for the bulk form and for the
surface form. First, we aim to show that

AhΩ(vΩ, wΩ) . |||uΩ|||Ah,∗Ω
|||vΩ|||AhΩ , ∀vhΩ ∈ V h

Ω .

We start with the bulk problem, and let vΩ ∈ V h
Ω and wΩ ∈ V h

Ω . By Cauchy-
Schwarz inequality in hand, we obtain

|AhΩ(vΩ, wΩ)| ≤ ‖∇vΩ‖T h
Ω ∩Ω‖∇wΩ‖T h

Ω ∩Ω

+ γ
1/2
Ω ‖h

−1/2[vΩ]‖T h
Ω ∩Ωγ

1/2‖h−1/2[wΩ]‖Fh∩Ω

+ ‖h1/2{nF · ∇vΩ}‖T h
Ω ∩Ω︸ ︷︷ ︸

I

‖h−1/2[wΩ]‖Fh∩Ω

+ ‖h1/2{nF · ∇wΩ}‖T h
Ω ∩Ω︸ ︷︷ ︸

II

‖h−1/2[vΩ]‖Fh∩Ω.

From the stabilization chapter, by (5.2), we can estimate the term II as

II ≤ ‖∇vΩ‖T h
Ω
. ‖∇vΩ‖Ω + |wΩ|shΩ ,

whereas the term I is part of the definition of |||·|||Ah,∗Ω
and we obtain

|AhΩ(vΩ, wΩ)| . |||AΩ|||Ah,∗Ω
|||wΩ|||AhΩ .

Now, the outline for the surface form is identical as for the bulk form, and
we can write

AhΓ(vΓ, wΓ) . |||vΓ|||Ah,∗Γ
|||wΓ|||AhΓ , ∀ vhΓ ∈ V h

Γ .
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The following lemma is a direct consequence of the boundedness of AhΩ
and AhΓ.

Lemma 6.2. [Boundedness] Let u to be such that v ∈ V h+V and w ∈ V h.
The discrete form Ah satisfies

Ah(v, w) . |||v|||Ah,∗|||w|||Ah ,

where all hidden constants depend only on dimension d, polynomial order k,
and the shape regularity.

6.2 Approximation Operators
In this section we construct the appropriate interpolation operators and
establish the interpolation estimates. We seek to construct the following
operator for the bulk and surface problem

πhΩ,Γ : VΩ × VΓ → V h
Ω × V h

Γ

which satisfies∣∣∣∣∣∣u− πhΩΓu
∣∣∣∣∣∣
Ah,∗

. hk(‖uΩ‖Hk+1(Ω) + ‖uΓ‖Hk+1(Γ))

whenever u ∈ VΩ×VΓ∩Hk+1(Ω)×Hk+1(Γ). This will be simply achieved
by combining approximation operators

πhΩ : VΩ → V h
Ω ,

πhΓ : VΓ → V h
Γ .

The construction of these approximation operators is the object of the fol-
lowing two sections.

6.2.1 Construction of an Approximation Operator for the
Bulk Problem

In this section we will construct suitable approximation operator for the
bulk problem. We need the orthogonal projection from the space of L2(Ω)-
functions to the finite element function space defined on the active back-
ground mesh T h

Ω , that is L2(Ω)→ V h. We need an extension from Ω to an
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enlarged domain denoted Ωe, where for the bulk problem we consider Rd.
For the Sobolev spaces Wm,q(Ω), 0 ≤ m < ∞, 1 ≤ q ≤ ∞ defined with
respect to the physical domain, an extension operator can defined as

(·)e : Wm,q(Ω)→ Wm,q(Rd),

which is bounded

‖ve‖m,q,Rd . ‖v‖m,q,Ω

for v ∈ Wm,q(Ω), see [50] for proof. The Sobolev space extend the domain
Ω to Ωe = Rd, where Ωe is assumed to be a fixed Lipschitz-domain such
that Ωe

h ⊂ Ωe for h . 1 for Ωe,h =
⋃
T∈T h

Ω
T . Let a suitable approximation

operator be defined as πh : Hk+1(Ωe,h) → V h
Ω , where the approximation

operator πh is the L2-projection defined by

(πhv, wh)T h
Ω

= (v, wh)T h
Ω
∀wh ∈ V h

Ω (6.1)

for a given v ∈ L2(Ωh,e). Since our finite element spaces are discontinuous,
the L2 projection is defined element-wise as

(πhv, wh)T = (v, wh)T ∀wh ∈ Pk.

The operator πh satisfies the (local) error estimates

‖v − πhv‖s,T . ht−s‖v‖t,T , 0 ≤ s ≤ t ≤ k + 1, ∀T ∈ T h
Ω

‖v − πhv‖s,F . ht−s−1/2‖v‖t,T , 0 ≤ s ≤ t− 1/2 ≤ k + 1/2,

∀F ∈ F h,

for v ∈ Hk+1(Ωe,h). Combining the extension operator with πh, we define
the fictitious domain counterpart πhΩ

πhΩ : Hk+1(Ω)→ V h
Ω ,

and requiring that the following holds

πhΩv = πh(ve) v ∈ Hk+1(Ω).
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From the approximation properties of πh and the extension operator (·), the
operator πhΩ satisfies the error estimates. Due to boundedness of he extension
operator, πhΩ satisfies the following

‖ve − πhΩv‖s,T h
Ω
. ht−s‖v‖t,Ω 0 ≤ s ≤ t ≤ k + 1

‖ve − πhΩv‖s,Fh . ht−s−1/2‖v‖t,Ω, 0 ≤ s ≤ t− 1/2 ≤ k + 1/2

In particular, for v ∈ Hk+1 the stability property

‖πhΩv‖s,T h
Ω
. ‖v‖s,Ω

holds. Consequently, we can estimate the approximation error in the energy
norm |||·|||Ah,∗:

Lemma 6.3. Let v ∈ Hk+1(Ω). The approximation error of πhΩ satisfies

∣∣∣∣∣∣ve − πhΩv∣∣∣∣∣∣Ah,∗Ω
. hk‖v‖Hk+1(Ω).

This also applies to the surface problem.

6.2.2 Construction of an Approximation Operator for the
Surface Problem

We follow an analogous outline for the surface problem as for in the previous
section for the bulk problem. We seek to construct a suitable operator, to
extend functions on the boundary Γ to a small tubular neighborhood with
thickness 0 < δ < δ0 dependent only on the domain, and δ0 being a constant.
That is to say, we want to construct the operator L2(Γ) 3 v → L2(Uδ(Γ)) 3
ve, defined by

ve(x) = v(p(x)),

where p is the closest point projection, defined in 2.1. Let Sobolev spaces
Wm,q(Γ) for 0 ≤ m < ∞, 1 ≤ q ≤ ∞ be defined with respect to the
physical domain. By coarea-formula [20]∫

Uδ

f(x)dx =

∫ δ

−δ

(∫
Γ(k)

f(y)Γ(y)

)
dk.
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Thus we have that
∫
Uδ
|ve|2 ∼ δ

∫
Γ
|v|2, and so the extension operator is

bounded as

‖ve‖m,q,Uδ(Γ) . δ1/2‖v‖m,q,Γ,

for v ∈ Hk+1(Γ) and ve = v(p(x)) ∈ Hk+1(Uδ0(Γ)) and hidden constant
dependent only on the curvature of Γ [13]. We define the subset Γe,h =⋃
T∈T h

Γ
T ⊂ Uδ0(Γ) and define the interpolant

πh : Hk+1(Γe,h)→ V h
Γ

analogously as in (6.1) for the L2 projection πhΓ(v) = πh(ve). The fictitious
domain counterpart πhΓ as

πhΓ : Hk+1(Γ)→ V h
Γ .

Now, we can estimate the approxiamtion error in the |||·|||Ah,∗Γ
-norm.

Lemma 6.4. For v ∈ Hk+1(Γ) we have that∣∣∣∣∣∣ve − πhΓv∣∣∣∣∣∣Ah,∗Γ
. hk‖v‖Hk+1(Γ)

We refer to [12, 5] for the proof of this lemma.

6.3 A Prior Error Estimate
With the introduced properties in hand, Galerkin orthogonality and utilizing
the estimates for the approximation errors u and the projection πhΩΓV h into
the discrete spaces, we can derive the a priori error estimate in the appropriate
energy norm |||·|||Ah,∗ . Hence we introduce the following theorem:

Theorem 6.5 (A priori Error Estimates). Assume that u = (uΩ, uΓ) ∈
Hk+1(Ω) × Hk+1(Γ) is the solution to the coupled bulk surface problem
(2.1)-(2.3) and let uh = (uhΩ, u

h
Γ) ∈ V h

Ω × V h
Γ be the solution to the discrete

form (4.2). Then it holds that∣∣∣∣∣∣u− uh∣∣∣∣∣∣
Ah,∗

. hk
(
‖uΩ‖Hk+1(Ω) + ‖uΓ‖Hk+1(Γ)

)
,

with constants independent of the particular cut configuration.
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Proof. Note that the discrete coercivity only holds for vh, uh ∈ V h and not
for (uΩ, uΓ) ∈ H1(Ω) × H1(Γ). Hence, we decompose the error u − uh
into two parts, the discrete error eh and the projection error eπΩΓ.

u− uh = u− πhΩΓu︸ ︷︷ ︸
eπ

+πhΩΓu− uh︸ ︷︷ ︸
eh

.

Hence the triangle inequality gives us the following inequality for the ap-
proximation error estimate:∣∣∣∣∣∣u− uh∣∣∣∣∣∣

Ah
≤ |||eπ|||Ah,∗ +

∣∣∣∣∣∣eh∣∣∣∣∣∣
Ah
≤ |||eπ|||Ah,∗ + C

∣∣∣∣∣∣eh∣∣∣∣∣∣
Ah
.

Due to norm equivalency |||·|||Ah,∗ ∼ |||·|||Ah , to show the error estimate∣∣∣∣∣∣u− uh∣∣∣∣∣∣
Ah,∗

. hk
(
‖uΩ‖Hk+1(Ω)+‖uΓ‖Hk+1(Γ)

)
it is, thanks to 6.4, enough

to estimate the discrete error eh. With the Galerkin orthogonality in hand,

Ah(uh, vh) = lh(v
h),

Ah(u, vh) = lh(v
h),

Ah(uh − u, vh) = 0, ∀vh ∈ V h,

together with coercivity and boundedness estimates, we obtain∣∣∣∣∣∣eh∣∣∣∣∣∣2
Ah

. Ah(uh − πhΩΓu, e
h) = Ah(u− πΩΓu, e

h)

. |||u− πΩΓu|||Ah,∗ ·
∣∣∣∣∣∣eh∣∣∣∣∣∣

Ah,∗

. hk
(
‖uΩ‖Hk+1(Ω) + ‖uΓ‖Hk+1(Γ)

)∣∣∣∣∣∣eh∣∣∣∣∣∣
Ah
,

where in the last line we used the boundedness from lemma 6.2 and the
interpolation estimate from 6.4. Thus, dividing by ‖eh‖Ah gives the desired
discrete error estimate∣∣∣∣∣∣eh∣∣∣∣∣∣

Ah
.
∣∣∣∣∣∣πhΩΓu− u

∣∣∣∣∣∣
Ah,∗

. hk
(
‖uΩ‖Hk+1(Ω) + ‖uΓ‖Hk+1(Γ)

)
.

Remark 3. Here we assume that the stability terms shΩ andshΓ are strongly
consistent. The hidden constants includes stability, continuity and consis-
tency constants that are independent of h and of the particular cut configu-
ration.
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Chapter 7

Conclusion and Outlook

In this work, we have developed a novel, higher order cut discontinuous
Galerkin method for the coupled bulk-surface problems on a given bounded
domain Ω. First, the Nitsche’s method was reviewed for the Poisson problem
and for the interface problem. This motivated us to look into the standard
discontinuous Galerkin methods, specifically for the Poisson problem. This
in turn established the basis needed to introduce the cutDGM for the Poisson
problem with given boundary conditions. We then reviewed the role of the
ghost penalty in ensuring stability of the overall cutDGM. The discontinuous
piecewise polynomials are employed on a background mesh. Introducing
the active parts of the mesh, for Ω and Γ consisting of elements intersecting
with the respective domain. Then the higher order cutDGM was formulated
for the coupled bulk-surface problems. Suitable stabilization terms were
discussed and designed for the surface and bulk form, and appropriate
stabilization terms for the higher order were shown.

Although not shown here, geometrically robust condition number esti-
mates can be proven by following the techniques developed in [37].

Further research should include a theoretical extension to handle geome-
try approximation of the surface, that is when Γh 6= Γ. A possible way for
this to be done is by using a Strang-type lemma to qualify the geometric
error, see e.g. [33]. It is needed to show higher order convergence rate,
hence a higher order approximation Γh of Γ is needed. Some possible tech-
niques are described in [47, 34]. Also, it would be of interest to illustrate
the higher order convergence properties by some numerical experiments and
simulations. With the theoretical tools developed in this thesis, extensions
to test more complicated stationary diffusion-advection-reaction equations
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are within reach. Finally, a challenge for the future is the combination of the
presented method with time-stepping methods to treat coupled surface-bulk
problems on moving domains.
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[40] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-
Problemen bei Verwendung von Teilräumen, die keinen Randbedin-
gungen unterworfen sind. Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, 36(1):9–15, July 1971.

[41] I. L. Novak, F. Gao, Y.-S. Choi, D. Resasco, J. C. Schaff, and B. M.
Slepchenko. Diffusion on a curved surface coupled to diffusion in the
volume: Application to cell biology. Journal of computational physics,
226(2):1271–1290, 2007.

[42] J. Oden, I. Babuska, and C. Baumann. A discontinuous hp finite
element method for diffusion problems. Journal of Computational
Physics, 146(2):491–519, 1998.

[43] M. A. Olshanskii, A. Reusken, and J. Grande. A finite element method
for elliptic equations on surfaces. SIAM J. Numer. Anal., 47(5):3339–
3358, 2009.

[44] M. A. Olshanskii, A. Reusken, and X. Xu. A stabilized finite element
method for advection–diffusion equations on surfaces. IMA J. Numer.
Anal., 34(2):732–758, 2014.

[45] A. Rätz. Turing-type instabilities in bulk–surface reaction–diffusion
systems. Journal of Computational and Applied Mathematics, 289:142–
152, 2015.

[46] B. Rivière, M. F. Wheeler, and V. Girault. A priori error estimates for
finite element methods based on discontinuous approximation spaces
for elliptic problems. SIAM Journal on Numerical Analysis, 39(3):902–
931, 2002.

52



[47] R. I. Saye. High-order quadrature methods for implicitly defined
surfaces and volumes in hyperrectangles. SIAM Journal on Scientific
Computing, 37(2):A993–A1019, 2015.

[48] I. F. Sbalzarini, A. Hayer, A. Helenius, and P. Koumoutsakos. Simula-
tions of (an)isotropic diffusion on curved biological surfaces. Biophys-
ical Journal, 90(3):878–885, 2006.

[49] P. Schwartz, D. Adalsteinsson, P. Colella, A. P. Arkin, and M. Onsum.
Numerical computation of diffusion on a surface. Proceedings of
the National Academy of Sciences of the United States of America,
102(32):11151–11156, 2005.

[50] E. Stein. Singular Integrals and Differentiability Properties of Func-
tions. Princeton University Press, 1970.

[51] C. Winkelmann. Interior penalty finite element approximation of
Navier-Stokes equations and application to free surface flows. PhD
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