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Abstract

The detection of faults in salient pole synchronous generators is crucial to ensure reli-
able production in hydroelectric power plants where these machines are located. A single
inter-turn short-circuit (ITSC) in the rotor winding can create hot spots that induce insu-
lation failure its neighbours, eventually causing the entire rotor pole winding to fail. This
can also cause further mechanical faults caused by vibrations from the resulting uneven
magnetic field. This can be avoided if ITSCs are detected early. This thesis examines if
machine learning and signal processing can be used for on-line condition monitoring to
reveal ITSC in salient pole hydropower generators. This was done by creating several ma-
chine learning classifiers to detect ITSC faults, utilising data sets that were constructed
using signal processing tools.

A data set for machine learning was built using signal processing techniques to ex-
tract features from measurements of a salient pole synchronous generator operated under
several different severities of ITSC fault. The features extracted were the power spectral
density of integer multiples of the generator’s mechanical frequency extracted by fast
Fourier transform (FFT), discrete wavelet transform energies, and time series feature ex-
traction based on scalable hypothesis tests (TSFRESH). Using this data set, a wide range
of classifiers were trained to detect the presence of ITSC faults. The classifiers evaluated
were logistic regression, K-nearest neighbours, radial basis function support vector ma-
chine (SVM), linear SVM, XGBoost decision tree forest, multi-layer perceptron (MLP),
and a stacking ensemble classifier including all of the aforementioned. The classifiers were
optimised using hyper-parameter grid searches. In addition, some feature selection and
reduction algorithms were assessed such as random forest feature selection, TSFRESH
feature selection, and principal component analysis.

Out of 475 features investigated, high decomposition level relative wavelet energy fea-
tures, aggregate linear trend features, approximate entropy features, and change quantile
features were the most useful features. FFT derived features performed poorly. Correla-
tion to the target value was a strong indication that features will be useful in classification
and could thus be used to screen a large number of potential features at the risk of missing
features with non-linear relationships.

A general trend during optimisation was that linear machine learning models per-
formed well and that the performance of non-ensemble classifiers increased as the com-
plexity decreased. The best performance was yielded by a stacking classifier using the
optimised Logistic Regression, SVM, MLP, and XGBoost classifiers as base-classifiers,
and logistic regression as the meta-classifier. It correctly classified 84.48 % of samples in
the hold-out data set, and 84.56 % of the faulty samples present were correctly classified
as such. Of the samples that were classified as faulty, 92.74 % were correctly classified.
The worst performance was exhibited by the K-nearest neighbours classifier, performing
worse than random chance. This demonstrates that ITSC faults are suited to be detected
using machine learning, however, these results should be confirmed on larger data sets
that include other incipient faults.
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Sammendrag

Deteksjon av feil i synkrongeneratorar med utprega polar er avgjerande for å sikre pålite-
leg produksjon i vasskraftverka der desse maskinene er lokalisert. Ei enkelt kortslutning
mellom vindingar (ITSC på engelsk) i rotorfeltviklinga kan forårsake varmeutvikling som
induserer isolasjonssvikt hos nabovindingane, og til slutt får heile rotorpolens vikling til å
svikte. Det kan òg forårsake ytterlegare mekaniske feil grunna vibrasjonar som stammar
frå det resulterande ujamne magnetfeltet. Dette kan unngåast om ein oppdagar ITSC
tidleg. Denne oppgåva undersøker om maskinlæring og signalbehandling kan brukast til
on-line overvaking av maskintilstand for å avsløre ITSC i vasskraftgeneratorar. Det vart
gjort ved å trene fleire maskinlæringsmodellar til å oppdage ITSC-feil, med utgangspunkt
i datasett som vart konstruert ved hjelp av signalbehandlingsverktøy.

Eit datasett for maskinlæring vart laga ved bruk av signalbehandlingsteknikkar for
å trekke ut trekk frå målingar av ein synkrongenerator med utprega polar som drivast
under forskjellige grader av ITSC-feil. Trekka som vart trekt ut var frekvenskomponen-
ten til heiltalmultiplar av generatorens mekaniske frekvens ekstrahert med fast Fourier
transform (FFT), diskrete wavelet-transformasjonsenergiar, og tidsserietrekkekstraksjon
basert på skalerbare hypotetestar (TSFRESH). Ved hjelp av dette datasettet vart fleire
maskinlæringsmodellar trent opp til å oppdage ITSC-feil. Maskinlæringsmodellane som
vart evaluert var logistisk regresjon, K-nearest neighbours (KNN), radial basisfunksjon
support vector machine (SVM), lineær SVM, XGBoost-beslutningstre-skog, fleirkappa
perceptron (MLP) og ein stabelmodell av alle dei nemnde modellane. Modellane vart
optimalisert ved hjelp av hyperparameterrutenettsøk. I tillegg vart tre trekkval og -
reduksjonsalgoritmar evaluert.

Av 475 trekk som vart undersøkt, var relative wavelet-energiar (RWE) for høge nedbry-
tingsnivå, aggregerte lineærregresjonstrekk, omtrentlege entropitrekk og endringskvantile
funksjoner dei mest nyttige funksjonane. FFT-avleidde trekk presterte dårleg. Korre-
lasjon med målverdien var ein sterk indikasjon på at trekk vil vere nyttige i klassifiseringa
og kunne dermed brukast til å saumfare eit stort tal potensielle trekk, med fare for å gå
glipp av trekk med ulineære forhold til målverdien.

Ei generell trend under optimaliseringa var at lineære maskinlæringsmodellar presterte
bra, og at ytinga til modellane auka etter kvert som kompleksiteten gjekk ned. Den beste
ytinga vart oppnådd av ein stabel av dei optimaliserte logistiske regresjon-, SVM-, MLP-
og XGBoostmodellane som grunnlærarar og logistisk regresjon som metalærar. Stabelen
klassifiserte 84,48% av prøvene i hold-out datasettet riktig, og 84,56% av dei prøvane
med feil i vart riktig klassifisert. Av prøvane som vart klassifisert som feil, var 92,74%
korrekt klassifisert. KNN hadde den dårlegaste ytinga. Dette viser at ITSC-feil kan bli
oppdaga ved bruk av maskinlæring, men desse resultata bør bekreftast på større datasett
som inkluderer andre typar feil.
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Chapter 1

Introduction

Salient pole synchronous machines are the machines most commonly used in hydroelec-
tric plants [1], and so are ubiquitous throughout the Norwegian power system. In fact,
hydroelectric generation accounted for 95 % of the total electric energy produced in Nor-
way in 2018 [2]. Failure of the synchronous generators that generate the electricity the
Norwegian society is run on can incur not only a great expense in restoring the plants,
but also a large cost to society. These machines are under ever-increasing operational
demands as intermittent power sources enter the power system. The proper running
and maintenance of synchronous machines, and by extension the timely detection and
diagnosis of their faults, is very important. Hydroelectric generators can suffer failure as
a result of undetected incipient faults that induce larger faults. The state-of-the art in
on-line fault detection in salient pole synchronous generators is still lacking in this respect.

Machine learning and its associated techniques have quickly matured in recent years.
New techniques, coupled with ever increasing computational resources, have made possi-
ble new approaches to asset management and monitoring. In the transition from reactive
to predictive maintenance, it is vital with accurate estimations of the machine states.
This involves integrating sensors, signal analysis, and decision-making algorithms. The
potential benefits to society are immense, estimated by McKinsey Digital to reach a total
potential economic value of 11 trillion USD in 2025 [3], and the power generation sector
is no exception.

By applying on-line condition monitoring, incipient machine faults can be detected
in real-time and faults can be detected before they cause unscheduled stops and further
damage to the machine.

1.1 Project description and scope

The aim of this thesis is to judge the applicability of machine learning in an on-line
condition monitoring system for detection of inter-turn short-circuits in salient pole syn-
chronous machine rotor field windings. To this end, measurement series of the air-gap
magnetic field in a synchronous machine operating under varying known fault conditions
are analysed using signal analysis tools to extract features. These features are then used
to train a classifier to identify the fault conditions of the machine. The approach taken is
exploratory, testing a wide range of methods for every part of the process. The research
questions are specifically:
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Which features of the ones generated are most useful?

Which machine learning models perform best?

Is a single air-gap magnetic field sensor sufficient for reliable ITSC fault detection or are
more sensors required?

To answer these questions, a fault classification system builder has been created that
includes:

− Automatic sample processing and segmentation from longer sample series

− A feature extraction process capable of processing and organising an arbitrary num-
ber of samples

− Exploratory data analysis that gives insight into data distribution and feature re-
dundancy

− A feature selection process that employs several feature selection methods

− A process to assess the usefulness of feature selection, select the best machine
learning model among several, and assess the performance of the final model

− A final classifier to detect ITSC faults

1.2 Limitations
The COVID-19 pandemic limited the scope of this thesis. The outbreak of disease,
and subsequent closing of the university, hindered the planned gathering of experimental
data and turned time spent preparing for experiments into wasted time. It was initially
planned to gather a large data set including measurements of several incipient faults
of differing severity and different combinations of faults. This would be done using a
large sensor suite that integrated concurrent readings of air-gap magnetic field, voltage
over and current through stator and rotor windings, and stator vibration measurements.
The machine was also to be run in several distinct load conditions for each fault condition.

In place of that data, an inter-turn short-circuit data set gathered from the same
machine in 2019 was used [4]. This limits what can be investigated. The data set con-
tains measurements done only for two load conditions, no-load and full-load, and one
fault type, inter-turn short-circuits. Only one sensor type, Hall-effect sensors, was used.
Machine learning is fuelled by data, and its lack is severe impediment.

The limitations this imposes include, but are not limited to, the following:

− Only one fault condition, inter-turn short-circuits, can be investigated.

− How the results are affected by other incipient faults cannot be investigated.

− Only one type of sensor, air gap mounted Hall-effect sensor, can be evaluated.
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− A comparison of the usefulness of different sensors cannot be done.

− The robustness of the classifier in the face of differing load conditions cannot be
tested.

− The performance of the classifiers, as well as the ability to accurately assess their
performance, suffers for lack of data.

1.3 Structure of the report
Chapter 1, this chapter, introduces the area of study and motivates the need for this thesis
work. Furthermore, it describes the objective, scope, limitations and research questions
of the work. Directly relevant previous work at NTNU is also summarised.

Chapter 2, Theoretical background, is a review of signal processing and machine learn-
ing techniques. The signal processing techniques explained are fast Fourier transform,
continuous wavelet transform, and discrete wavelet transform. In addition some core
concepts of supervised machine learning are explained along with logistic regression, k-
nearest neighbours, support vector machines, decision tree learning, and artificial neural
networks.

Chapter 3, Method and results, describes the construction of a classification system.
This includes data acquisition and management, feature extraction and selection, deploy-
ment of contending machine learning models, and a final model selection.

Chapter 4, Discussion, is a discussion of the applicability of the machine learning tech-
niques in light of the theory and models developed in Chapter 3.

Chapter 5, Conclusion, concludes the report, and makes recommendations for further
research.

Appendix A lists the data available.

Appendix B contains the code for the implementations realised in Chapter 3.

Appendix C is an overview of the features calculated by the TSFRESH feature extraction
algorithm.

1.4 Previous work
A Master’s thesis investigating the use of magnetic flux monitoring for the purpose of
detecting inter-turn short-circuits, eccentricity and broken damper bars was performed
in the spring of 2019 at the Department of Electrical Engineering, NTNU. In the thesis,
hall-effect sensors were placed onto stator teeth in opposite ends of the airgap to measure
the magnetic field during operation of a 14-pole 100 kVA machine. The frequency spectra
of the measurements taken with and without induced faults were compared to identify
differences. A finite element method simulation of the same faults indicated that they
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are possible to identify based on the sensor measurement series frequency spectra, but
imperfections in the generator obfuscated the fine changes induced by low severity faults.
It was found that the harmonics fk = k

fsynch

p
Hz in the interval 0 to 200 Hz increased

with greater number of turns short-circuited. The measurements also indicated that both
dynamic and static eccentricity could be detected using the method, while damper bar
breakage is not discernible at synchronous operation. The author suggested the signals be
investigated further with signal processing tools capable of distinguishing non-stationary
frequency components and artificial intelligence techniques [4].

In a specialisation project conducted in the fall of 2019, the signals gathered in [4] were
investigated further using signal processing tools. The signal processing techniques in-
vestigated were fast Fourier transform, short-time Fourier transform, continuous wavelet
transform, discrete wavelet transform and Hilbert-Huang transform. Furthermore, a
review of was conducted of support vector machines, decision tree learning, k-nearest
neighbours, and artificial neural networks to evaluate their suitability for the task. To
determine if the signal analysis tools could be used to detect a rotor field winding inter-
turn short-circuit fault, they were applied to air gap magnetic field measurements of a
healthy machine and a faulty machine with 10 rotor winding turns short-circuited oper-
ating at full load. The fault could be detected in the short-time Fourier and continuous
wavelet transforms as a weakening of the 50-100 Hz frequency band. The continuous
wavelet transform additionally showed characteristic arching below 25 Hz in the faulty
signal. The instantaneous, Teager and hierarchical wavelet energies of the discrete wavelet
transform were elevated in the faulty case [5].
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Chapter 2

Theoretical background

In this chapter, a theoretical background is lain for the thesis work. This is done in three
parts. First is a short section about incipient faults and condition monitoring, second is
an examination of the signal processing techniques used for feature generation and lastly
is a review of machine learning techniques and considerations. As this master’s thesis
concerns the same subject matter as a specialisation project by the same author, some
theory is adapted from the aforementioned specialisation project report written autumn
2019 [5].

2.1 Incipient faults

The fault in focus in this thesis is what is termed an incipient fault. Incipient faults
are the faults that do not themselves significantly compromise the performance of the
machine, but that could lead to larger faults and eventual machine failure. Specifically,
we will look at methods to detect inter-turn short-circuits in the field winding.

2.1.1 Rotor field winding inter-turn short-circuits

The rotor winding inter-turn short-circuit (ITSC) is the failure of isolation between turns
in the rotor winding coil so that the number of turns in the coil is effectively reduced
[1]. This can be due to overheating causing damage to the isolation, thermal deformation
or mechanical stresses [6], [7]. The fault can then propagate to cause the rotor winding
to be further short-circuited and eventually a short to ground [7]. Another issue that
could arise from the uneven magnetic field is uneven mechanical stresses that further
compromise other machine components [7]. The pole-drop test is the most commonly
applied off-line test to detect short-circuited turns in the field winding [7]. It is done
by applying low voltage AC to terminals of the field winding and measuring the volt-
age across each pole. A faulty pole will have a lower voltage across it compared to the
other poles [6], [7]. The disadvantage of this test is that it requires the machine to be
taken off-line. Off-line tests require shut-down of the machine and are therefore expen-
sive. They also occur while the machine is at a standstill and therefore faults that are
induced due to rotational forces can become invisible during the tests [7]. To find the
faults present during operation, it is necessary to conduct on-line monitoring and tests [7].
On-line condition monitoring for diagnosing rotor winding ITSC is often done using flux
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probe measurements, where the magnetic field registered by a flux probe placed on a sta-
tor tooth in the air gap of the machine is analysed by comparison to a healthy case [6], [8].

2.1.2 Condition monitoring

To predict the need for maintenance in machines and to avoid breakdowns, condition
monitoring systems are used. The machines are monitored so that one can detect faults
in the machine by recognising shifts in trends among the monitored characteristics. The
field concerns itself with the modelling of the machines, application of measurement
equipment, and the analysis of that data to predict trends [9].

Condition monitoring systems include sensors, data acquisition, fault detection and
diagnosis. Sensors are the hardware that is placed onto the machine to measure some
physical characteristic. Data acquisition is the collection of techniques that pre-process
the sensor outputs to ensure that the data produced can be of use. Fault detection is the
comparison of data series to what is expected. This can be done by comparing the data
to a model of the machine and/or by employing feature extraction methods, i.e. signal
processing, to create a signature that is examined for fault indications. Diagnosis is the
post-processing of the abnormal signals to determine the type and severity of the fault [9].

Condition monitoring techniques should be non-invasive, making the least possible
intervention in the machines they monitor.
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2.2 Signal processing tools

The field of digital signal analysis is ever broadening as new techniques mature and com-
putational resources enable these tools to be applied closer and closer to real time. Signal
processing is the act of taking raw data and applying some mathematical operations upon
them to thereby gain insight into its components. There are several techniques that do
this and their applications depend upon their capacity to handle certain signal properties.

2.2.1 Fast Fourier transform

The Fourier transform represents a target function as its constituent harmonic compo-
nents, its Fourier series. The Fourier transform is a convolution operation as shown in
(2.1). A Fourier series is a periodic function and thus a true representation of the target
function requires that the function also be periodic. Many functions are not periodic and
are defined only within a range. This constraint is met by all measurement series, as a
measurement series is necessarily undefined outside of the experiment. The Fourier trans-
form is then applied with the assumption that the defined function range is one period of
said function. The requirements that a signal must fulfil to be Fourier transformed is that
it is absolutely integrable and that within any finite time interval it has a finite number of
minima, maxima and discontinuities [10]. These conditions are fulfilled for all real signals.

x̂(ω) =
1√
2π

∫ ∞
−∞

x(t)e−jωtdt =
1

2
a0 +

∞∑
k=1

(akcos(2πkt) + bksin(2πkt)) (2.1)

To apply the Fourier transform to discrete signals, the discrete Fourier transform
(DFT) was formulated. It involves converting a discrete time signal recorded at fixed
sampling intervals into a discrete representation of the signal in the frequency domain,
and the fast Fourier transform (FFT) is a commonly applied approach to achieve the DFT
[11]. FFT is computationally efficient, reducing the complexity of DFT from O(N2) to
O(N · log(N)), where N is the total number of samples [11]. The resulting spectral
representation of the time signal is a collection of periodic components in the frequency
domain, each with a specific frequency, amplitude and phase angle. The DFT of a se-
quence of samples {x(k)} is calculated using equation 2.2 [10].

X(s) =
N−1∑
n=0

x(k) · e−i2π
sk
N (2.2)

The FFT is used by itself, and often as an initial analysis to gain an overview of the
frequencies present in the signal. Alternating current machines are systems that lend
themselves well to analysis by Fourier transform due to their stationarity. The Fourier
transform analyses the entire input signal at once and thus the time information is lost
[10]. Hence, it is not suited for analysing non-stationary signals if the frequencies’ tem-
poral location is of interest.
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2.2.2 Continuous wavelet transform

The continuous wavelet transform is a technique that extracts frequency components
from a signal by convolution. The transform convolutes the signal with a wavelet instead
of running the Fourier transform [12]. The wavelet has compact support, this means
that it is a signal that starts and ends in zero and the integral along its axis is zero [12].
The wavelet is therefore effectively also the windowing function of the operation. The
wavelets can be stretched and compressed by changing the scaling factor, a, which enables
the convolution integral to pick out different frequencies. The convolution computation
is as given in (2.3), adapted from [12]. The notation presented is for continuous wavelet
transform of a continuous signal, the discrete signal case is similar. The convolution is
applied along the signal for several values of a and the result is combined into a scalogram
that depicts the signal components.

X(a, b) =

∫ ∞
−∞

x(t)Ψ∗a,bdt (2.3)

Here the signal to be analysed is denoted by x(t), and the wavelet is given by Ψ∗a,b
which is dependent upon the coefficients a and b that adjust the scale of the wavelet and
its temporal centre, respectively. The wavelet equation is shown in (2.4).

Ψa,b(t) =
1√
a

Ψ

(
t− b
a

)
(2.4)

The mother wavelet, Ψ, is the shape of the wavelet, and there are several different of
mother wavelets available. The choice of mother wavelet depends on the characteristics
of the signal one is investigating and the properties of interest. For example, the Morlet
wavelet is used to pick out smooth variations while the Haar wavelet is more suited to
pick out sudden transitions [13]. The Morlet and Haar wavelets are shown respectively
in figures 2.1 and 2.2. A rule of thumb is that one looks for a mother wavelet that is
similar in shape to the signal being analysed.

Figure 2.1: The Morlet wavelet. Figure 2.2: The Haar wavelet.
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2.2.3 Discrete wavelet transform

The discrete wavelet transformation (DWT) is built upon the same principle as the con-
tinuous wavelet transform, that convolution by mother wavelet can extract interesting
features from the signal, but its implementation is very different. A very common im-
plementation of DWT is the filter bank implementation. The algorithm functions as a
cascade of filters, where each filter corresponds to a level or scale. Each level is composed
of a high- and low-pass filter in parallel followed by a downsampling by 2, see figure 2.3.
The signal is run through both branches and the result from the high-pass filtering plus
downsample is stored as detail coefficients of that level while the results from the low-pass
filtering plus downsample, known as the approximation coefficients, are passed to the next
level as its input signal. The DWT is several filters set in succession as shown in figure 2.4.

Figure 2.3: One level of the DWT.

This continues until the desired number of decompositions are made. The last low-pass
filtering is returned along with the rest of the decompositions. The filters are derived from
the chosen mother wavelet. The filters can be kept the same length, 2 for Haar wavelet,
since the signal is downsampled in each level. The operations necessary are therefore
halved in each level. The filter is shifted by a whole filter length for each application,
ensuring no overlap or redundancy.

Figure 2.4: A filter bank of cascading filters, equivalent to a 3-level DWT.

The frequencies contained within each decomposition level in a 3-level DWT of a sig-
nal sampled with sample rate fsamp is given in Table 2.1.

DWT is much faster than CWT due to the downsampling in each stage, and can be as
quick as O(n). This is faster than even the FFT with O(N · log(N)). CWT gives better
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Table 2.1: The frequencies contained within each DWT decomposition level
of a signal of length N and sample rate fsamp.

Level Frequencies Number of coefficients

3 0 to
fsamp

8

N

8
fsamp

8
to

fsamp
4

N

8

2
fsamp

4
to

fsamp
2

N

4

1
fsamp

2
to fsamp

N

2

temporal resolution since it can shift the filter only by one sample, but DWT results in
much lower storage requirements. When processing many samples in applications such
as generating training data for machine learning, this can be important. Features such
as mean, median, standard deviation, variance, skewness, kurtosis, entropy and various
energies can be extracted from the DWT decompositions to be used in machine learning
applications. Energy contents such as the Instantaneous Wavelet Energy (IWE), Tea-
ger Wavelet Energy (TWE), Hierarchical Wavelet Energy (HWE) and Relative Wavelet
Energy (RWE) give an indication of the energy in each frequency band, and can serve
to differentiate faulty from healthy conditions in asynchronous machines [14]. Results
from [5], indicated that Inter-Turn Short-Circuit (ITSC)s are accompanied by consis-
tently higher IWE, TWE and HWE of the frequency bands 6-12 Hz and 12-24 Hz than
the healthy signal.

A note about nomenclature: Even though the technique is called discrete wavelet
transform, in signal processing applications both CWT and DWT are implemented dis-
cretely. The difference is that CWT is defined continuously and ideally performs an
infinite number of shifts of infinitesimal length, while DWT is expressly a discrete algo-
rithm and shifts the length of the wavelet.

Wavelet energies

Given a K-level DWT of a signal where each decomposition level contains Nj coefficients
wj(r), r = 1..Nj, several energies can be extracted that reflect some property of the fre-
quency bands.

Instantaneous wavelet energy is a good indicator of the amplitude in each decomposi-
tion level. It applies a conventional signal energy calculation, and is computed as shown
in (2.5).

IWEj = log10

(
1

Nj

Nj∑
r=1

(wj(r))
2

)
(2.5)

Teager wavelet energy is more noise robust and can be computed as shown in (2.6).
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TWEj = log10

(
1

Nj

Nj−1∑
r=1

|(wj(r))2 − wj(r − 1) · wj(r + 1)|

)
(2.6)

Hierarchical wavelet energy analyses the centre of each decomposition level. Since
DWT downsamples by 2 in each level, the signal may have had to be padded to fit into
an integer number of filter applications. This can cause end-effects that affect the energies
of IWE and TWE, HWE avoids this effect by ignoring the first and last portions of the
coefficients. HWE is given by (2.7), where NJ is the number of coefficients in the level
over the current level.

HWEj = log10

(
1

Nj

Nj+NJ
2∑

r=
Nj−NJ

2

(wj(r))
2

)
(2.7)

To compare the energy distribution among the frequency bands, the relative wavelet
energy can be taken of the wavelet energies. The RWE of each decomposition level is
as shown in (2.8) [15]. Ej (2.9) is the energy of each level and Etotal (2.10) is the sum
of energies across all K levels. RWE has been used successfully with artificial neural
networks [15].

RWEj =
Ej
Etotal

(2.8)

Ej =

Nj∑
r=1

(wj(r))
2 (2.9)

Etotal =
K∑
j=1

Ej (2.10)
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2.3 Machine learning

Machine learning is a part of the field of artificial intelligence and concerns itself with
enabling machines to learn to solve problems without being explicitly programmed [16].
There are three main types of machine learning: supervised, unsupervised, and rein-
forcement learning [17]. Supervised learning trains a model to classify a sample into
one of several pre-defined groups or approximate some unknown value from a sample.
Unsupervised learning takes in unstructured data and looks for patterns in the data.
Reinforcement learning is the training of a model to take the correct action in order to
maximise some reward. For the purpose of detecting and diagnosing faults, supervised
learning is most suited. The strength of machine learning is that one only pre-processes
the data and selects the model type and parameters, and then the model is trained based
on the training data. Machine learning also offers advantages over many traditional fault
detection techniques in that the fault detection can be automated once the model is
trained and that the models will be tailored to each application, predicated upon the
availability of data.

2.3.1 Supervised learning

Classification models predict to which class among those labelled in the training set a
sample belongs to, while regression models seek to predict a value. An electrical engi-
neering use case of this that illustrates the difference between classification and regression
could be to predict the power consumption in a neighbourhood. If the task is predict if the
load will be above a certain threshold, it is a classification task. If the task is to estimate
how many kilowatts will be consumed, it is a regression task. To do be able to do this,
the models are trained using labelled training data. Labelled training data are samples
with known classes or target values associated with them. Supervised learning models are
often simply referred to as predictors or classifiers. Some examples of supervised learning
models are support vector machines, decision tree machines, artificial neural networks,
and K-nearest neighbours. When training a predictor, it naturally becomes well suited
to classify the training data but may not classify new samples very well. The goal of any
predictor is to be as general as possible, this means that it maintains its predictive power
across a range of inputs. The phases of creating a classifier can be divided into feature
selection, balancing, training and validation, and testing.

2.3.2 Feature generation and selection

The data is the basis of any machine learning model. To avoid having a too complex model
it is desirable to limit the size of each sample, and an additional non-informative feature
can actually degrade the performance of the model [18]. To generate these features, the
signal processing methods presented in Section 2.2 can be used in concert with discipline
knowledge. From a frequency spectrum generated by a signal processing method, one
would select the frequencies of the signal that are most informative and generate some
features from that. This could be the energy spectrum of a certain decomposition level
in discrete wavelet transform, the intensity of some side-band frequencies relative to a
harmonic frequency, or any other property of the signal or its transforms. Methods also
exist to generate features automatically from a time series, a notable example that is also
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capable of feature selection is the TSFRESH feature generation package shown below.
With all the features generated, selecting the best among them can make the data more
amenable to visual representation, reduce the storage requirements, and reduce training
times to improve prediction performance [18]. If the features that are generated initially
are good, this step will not impact the data meaningfully. Another feature selection tech-
nique is Random Forest feature selection, described closer in section 2.3.10 about decision
tree learning.

Time series feature Extraction based on scalable hypothesis tests (TSFRESH)

An algorithm to extract features from time series, called FeatuRe Extraction based on
Scalable Hypothesis tests (FRESH) is proposed in [19]. Its intent is to automate time
series feature extraction while implementing feature selection. The process is highly par-
allelised, enabling fast high-volume feature extraction while selecting the most relevant
features for the prediction task. A feature is assessed to be relevant if the feature is
not statistically independent from the target predictions. This was done by using the
statistical inference technique of hypothesis testing which computes a p-value between
each feature and the target that quantifies the probability that the feature is not relevant
for predicting the target. The features are then selected amongst by rejecting all features
with a p-value above a threshold. The algorithm is recommended to be used in concert
with principal component analysis to further reduce the number of features.

Figure 2.5: The feature extraction and selection process [19].

The FRESH algorithm was integrated into a algorithmic feature generation package,
called Time Series FeatuRe Extraction based on Scalable Hypothesis tests (TSFRESH)
[20]. TSFRESH is able to generate a total of 794 time series features, using 63 time series
characterisation methods as well as apply feature selection methods. TSFRESH run time
scales linearly with the number of features extracted, the number of samples, and the
number of different time series. It does not scale linearly with respect to the length of the
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time series for some more advanced features such as calculation of the sample entropy.
Adjusting the calculated features can drastically impact the run time of the algorithm.
The researchers showed that TSFRESH worked well to extract relevant features from
ensembles of torque sensors in a robot to determine failure of execution of a task as well
as an industrial data set from steel production.

2.3.3 Balancing the data set

Depending on the training data set available and the design of the classifiers, it may be
necessary to balance the data set if one of the classes are over-represented [21]. This can
be due to one class being more frequently observed. In the context of electrical machines,
it can reasonably be expected to be able to generate more sample series of machines run-
ning without fault than with a fault if the data is drawn from industry. Another reason
that data sets can be imbalanced is due to the design of the classifiers. It may be due
the use of "one-versus-all" classifiers, where the classifiers attempt to separate each class
from the rest. If five classes occur with similar frequency in the data set, i.e. the data
set is balanced at the outset, the "one-versus-all" method would make the training data
imbalanced for each of the classifiers. To rectify imbalanced classes, some approaches
commonly taken are: collecting more data, weighting the classes according to their fre-
quency, using evaluation metrics that correct for imbalance, and resampling [21].

2.3.4 Training and testing

The general process of making a predictor is to choose the model/algorithm, initialise it
with random learning variables and define a cost function. The variables are what are
trained in a model and the cost function defines how each variable affects the output.
Before starting the training procedure, the data set is split into a training and test set as
shown in 2.6. The models are then trained by applying gradient descent to minimise the
cost function. This is done by introducing labelled samples from the training set to the
predictor and comparing the model output to the sample label and adjusting the weights
to nudge to output in the correct direction. This continues until either there are no more
samples in the training set or until some early stopping criteria is met. The reason early
stopping can be desirable is that the model can be over-fitted to the data and give worse
predictions for samples outside of the training set if allowed to continue. When the model
is trained, its performance is evaluated using a test set of samples not used in the training
of the model. How well it predicts the labels of the test set, decides the performance of
the model.

Since data sets are not entirely uniform, the results of the train/test procedure are
affected by the way the data is split. One split may by chance give very good test
results, while another does the opposite. This could result in selecting a model that
generalises poorly even though it performs well on the test set. To counter this, k-fold
cross-validation, as seen in figure 2.7, can be used [22]. k-fold cross-validation takes in a
data set and makes several splits, or folds. Each fold is composed of a training set and a
validation set. For each fold, the model is trained on the training set and its performance
measured on the validation set. The models performance is then the average performance
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Figure 2.6: Train/test split of a data set.

across all the folds, and the performance is more likely to reflect the true performance of
the model on unseen data.

Figure 2.7: Three-fold cross-validation. Each fold is composed of a training
and validation set.

If there are several candidate models or model configurations to choose from, the
train/test or cross-validation procedure can be repeated for each one and the best one
can be selected. However this presents an issue: In selecting the model based on its
performance on the test set, the test set is effectively included in the model. The perfor-
mance estimate of the model is therefore likely to be optimistic. This is known as The
Optimism Principle, which states that selecting the model on the data that gave it birth
will likely work better for these data than for almost any other data that will arise in
practice [22]. Since what is of interest when testing a new model is its performance on
new and unseen data, a part of the data set should be set aside to be used only to assess
the performance of the model. This is known as a hold-out dataset, as shown in figure
2.8. The entire model selection and tuning process is then done without the hold-out
data set, which is only used to evaluate the performance of the final model(s).

2.3.5 Evaluation metrics

There are several ways to evaluate the performance of classifiers, and they give differing
results. Perhaps the simplest method is to count the number of correct classifications and
divide by the total number of samples. This is what is called the accuracy of the classifier,
shown in (2.11). It says something about the performance of the classifier, but has trouble
with unbalanced data sets. Given an unbalanced electric machine measurement data set
containing 99% of samples of healthy machines and 1% of samples of faulty machines, a
classifier that always classifies a sample to be healthy would have a 99% accuracy. This
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Figure 2.8: Cross-validation with a hold-out data set.

Table 2.2: The confusion matrix.

Actual
True False

Predicted True True positive (TP) False positive (FP)
False False negative (FN) True negative (TN)

is obviously a poor classifier as it would never correctly classify a single faulty machine.
This is addressed by including other measurements that also emphasise the misclassified
samples. Some popular measures that do this are the F-score and Receiver Operating
Characteristic Area Under the Curve (ROC AUC). They work by combining sensitivity,
specificity, and precision.

accuracy =
TP + TN

TP + FP + FN + TN
(2.11)

A useful tool to talk about these measures is the confusion matrix for a binary clas-
sifier that classifies samples as belonging to the class, true, or not belonging to the class,
false. It is shown in table 2.2. The confusion matrix contains the number of samples that
are: correctly classified as belonging to the class, true positive (TP); incorrectly classified
as belonging to the class, false positive (FP); incorrectly classified as not belonging to
the class, false negative (FN); and correctly classified as not belonging to the class, true
negative (TN).

Sensitivity, shown in (2.12), is a measure of how well the model picks up on the class,
essentially the probability that the class is detected. It is the number of correctly classi-
fied samples belonging to the class, divided by all occurrences of the class.

sensitivity =
TP

TP + FN
(2.12)

Specificity, shown in (2.13), gives an impression of the model’s capacity to correctly
classify false samples. It is the number of true negatives divided by the total number of
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actual false samples.

specificity =
TN

TN + FP
(2.13)

Precision, shown in (2.14), is the ratio of true positives divided by the total number of
samples classified as true. A high precision gives confidence that the classifier has made
a correct prediction when it returns true.

precision =
TP

TP + FP
(2.14)

Each of these has pit-falls when faced with unbalanced data sets and classifiers that
classify all samples as either true or false. To balance the possible pitfalls, the F-score
is especially good for unbalanced classes and the ROC AUC is a better metric for more
balanced data sets. The F-score is defined as the harmonic mean of precision and sensi-
tivity, it weighs the reliability of a classification together with its chance of detecting the
class [23]. The F-score is shown in equation (2.15).

Fβ − score =
(β2 + 1) · precision · sensitivity

β2precision+ sensitivity
(2.15)

If β = 1, it is what is referred to as the F1-score or simply F1 as shown in (2.16) [23].

F1 − score = 2 · precision · sensitivity
precision+ sensitivity

(2.16)

The weighted F1 score calculates an F1 score for each class, faulty and healthy, mul-
tiplies each score with the prevalence of each class, adds them together, and divides the
sum by the total number of samples. The weighted F1 function of two classes, a and b,
of na and nb samples each is shown in (2.17).

F1,weighted =
F1,a · na + F1,b · nb

na + nb
(2.17)

A classifier will often not return a 1 for true and a 0 for false, it will return some
number in the interval between 0 and 1. How the sample is classified according to that
is given by the threshold set. If the threshold is 0.5, any value above or equal to 0.5 will
classify the sample as true and vice versa. The Reciever Operating Characteristic curve
(ROC) is the sensitivity plotted against (1-specificity) for every threshold between 0 and
1, the ROC AUC is the total area under the ROC as shown in figure 2.9.

2.3.6 Ensemble learners

Ensemble learners are learners that combine several weak learners that may have poor
performance to create a strong learner with good performance. There are a few methods
of accomplishing this, mainly bagging, boosting, and stacking.

Bagging is short for bootstrap aggregating. It can be done with any learning algo-
rithm, but is most common with decision tree algorithms. It is done by creating several
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Figure 2.9: The ROC AUC is the area shaded blue.

bootstrap data sets from the training set and training a model using each bootstrapped
data set. To create a bootstrapped data set of size N, N samples are drawn with replace-
ment from the original data set. All the models are then combined and their classifications
are aggregated. This means that a sample is classified by each model within the ensem-
ble and the ensemble’s classification is the mean or majority vote of its constituent models.

Boosting is similar to bagging in that it returns majority vote or mean predictions of
several weak learners, but the way the models are generated is different. Where bagging
uses a completely random process, boosting generates models consecutively to improve
upon the predictions of the last model trained. This is done by first training a single
model on the data set. The first model is placed into the ensemble that now consists of
one model. The ensemble then makes predictions on the training data set. The samples
that the ensemble classified poorly are given additional emphasis in the training of the
next model to go into the ensemble, thereby improving the ensemble where it performs
worst. This is continued until the ensemble has reached the desired size. The weighting
of samples can be done by adding a weight to each sample denoting its importance in the
cost function or by oversampling them into a bootstrapped set. This makes the ensemble
focus on the hard-to-classify samples. Often the ensemble weights its constituent models
according to their performance when aggregating the prediction.

Stacking is to train a meta-learner, which is a model that is trained to interpret the
outputs of several other models, to make a prediction based on the predictions of sev-
eral other learners. The learners that provide predictions to the meta-learner are termed
base-learners. It usually outperforms the base-learners it is trained upon. Each of the
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base-learners are first fitted to the training set, and their predictions upon the training set
are used as the training set for the meta-learner. The base-learners can be any machine
learning model that returns predictions. This provides a benefit in that by including dif-
ferent models as base-learners, the weaknesses of one model can be remedied by another.

2.3.7 Logistic regression

Logistic regression estimates the probability that a sample belongs to a class [17]. It does
this by fitting a logistic function to samples in a two-class training set X = {xn, dn}Nn=1

of N samples. Each sample xn = (x1n, ..., x
p
n) is a vector composed of p features with a

class d = 0, 1. The logistic function is defined as in (2.18), and the output range of the
logistic function is between 0 and 1 for all inputs.

p(xN+1) =
eβ0+β1·x

1
N+1+...+βp·x

p
N+1

1 + eβ0+β1·x
1
N+1+...+βp·x

p
N+1

(2.18)

To estimate the regression coefficients β0, β1, ..., βp, the maximum likelihood method
is generally used. This finds the most likely regression coefficients based on the training
set. When an unknown sample xN+1 is introduced into the function, it returns a value on
the interval of 0 to 1. This is the probability that the sample belongs to the class d = 1.
Since a logistic function only approaches 0 and 1 asymptotically, a decision threshold θ
is introduced. It is the threshold above which a sample is classified as belonging to class 1.

p(xN+1) > θ =⇒ dN+1 = 1

p(xN+1) < θ =⇒ dN+1 = 0
(2.19)

By raising or lowering θ, the classifier can be made more or less conservative. In the
case of fault detection in electric machines, the classifier may return the probability that
there exists some fault condition in the machine. If there is a high cost associated with
conducting maintenance on the equipment, a high θ could be justified as it will only
classify the samples with a very high probability of having a fault as faulty. On the other
hand, if there are dire consequences if a fault goes undetected, θ could be lowered.

2.3.8 K-nearest neighbours

K-Nearest Neighbours (KNN) is a supervised learning algorithm that compares a sample
to a labelled data set to predict its class or value. It does this by calculating the distance
from the sample to be classified to the samples in the training set. The class of the sam-
ple is then determined to be the most frequent class of its k nearest neighbours. When
using KNN for regression, the value of the sample is set to the average of its k nearest
neighbours. It is a non-generalising model since it is not in any real sense trained, it
only compares samples to the training set. An illustration of KNN is showed in figure
2.10. The sample x is to be classified into one of the three classes in the training set
with k = 5. Its distance to every sample in the training set is computed. Among the
5 nearest neighbours, there were 3 "O"’s, and 2 "-"’s. The sample x then classified as
belonging to the category "O". The KNN suffers from noise as local topography can
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disturb classification, this is seen in the illustration that the classification would change
if k = 3. This is both a strength and weakness of the KNN as it works well with uneven
class borders, but can misclassify samples easily due to outliers in the training set. To
remediate this and simultaneously increase the speed of the algorithm, Condensed Near-
est Neighbours (CNN) which selects prototypes from the data that best represent each
class in the training set is put forward.

Figure 2.10: An illustration of KNN.

2.3.9 Support vector machine

The Support Vector Machine (SVM) is a supervised learning algorithm intended to clas-
sify samples by placing them into a Euclidean space subdivided by hyper-planes. Each
sub-space corresponds to a specific class, and the sample is classified according to its
position in the sample space. SVMs do this by finding an optimal hyper-plane in the
data space that best separates between the different classes that maximises the margin
between classes. Given a two-class sample set X = {xn, dn}Nn=1 of N linearly separable
samples and classes d = ±1, we would like to find the hyper plane with maximum margin
separating the two classes for the purpose of correctly classifying an unknown sample,
xN+1, as shown in figure 2.11. The hyper-plane is defined by (2.20), the parameters w
and b define it completely and are what the SVM seeks to optimise. It does this by
finding the support vectors, xs±, at the frontiers between the two classes that give the
widest margins. New samples are classified by evaluating them in (2.21) and assigning
them a class.

wTx + b = 0 (2.20)
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f(xN+1) = wTxN+1 + b

f(xN+1) > 0 =⇒ dN+1 = 1

f(xN+1) < 0 =⇒ dN+1 = −1

(2.21)

The machine described is so far a linear classifier and can only correctly classify
linearly separable sets. To handle non-linearity, kernels are introduced. A kernel is a
processing trick that "adds" a dimension by performing a non-linear operation on the
samples. Examples of kernels are the polynomial and hyperbolic tangent kernels, shown
in (2.22) and (2.23) respectively. The tuneable parameters in these kernels are p, β0,
and β1. To save computation and memory, the kernels are used to evaluate the distance
between the samples in the new dimension without actually mapping the samples into it.

K(xi,xj) = (xTi xj + 1)p (2.22)

K(xi,xj) = tanh(β0x
T
i xj + β0) (2.23)

Figure 2.11: An illustration of an SVM distinguishing between two classes.
The hyper-plane is the bold black line and the margins are illustrated by the
dotted lines. The support vectors are circled.

2.3.10 Decision tree learning

A decision tree is a hierarchical structure composed of several nodes branching out from
a root node and ending in leaves. In a binary decision tree, which is most common in
machine learning applications, each node has two branches. Each node is an evaluation
of some information into true or false, and a branch is followed according to the result
of the evaluation. The new node is then evaluated, this continues until a leaf is reached.
The leaves contain the decisions of the decision tree. The maximum number of decisions,
i.e. the number of nodes in the longest branch, is the depth of the tree. A decision tree
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is shown in figure 2.12. As is apparent in the decision tree shown, the features evaluated
can be both continuous (temperature) and Boolean (presence of rain).

Figure 2.12: An illustration of a decision tree deciding if a person should go
outside. Shown in the figure are the root node (a), branches (b), and leaves
(c).

In decision tree learning, an optimal decision tree is fitted to the training data. This
is done by evaluating the predictive power of each feature using an impurity measure and
selecting the feature with lowest impurity as a node. There are several impurity measures
(information gain, gain ratio, gini-index, variance reduction, etc.). If the decision tree is
allowed to be very large, it can grow to make perfect predictions on the training data as
there is effectively a branch for every sample. This creates a decision tree that generalises
poorly as it struggles to classify new samples, it is over-fitted. To combat over-fitting
random forest are introduced.

Random forest

A random tree is grown like a normal decision tree, only it uses bagging to combine
several trees generated from bootstrapped data sets into a forest. To further improve the
generalisation capability of the forest, each tree is trained on a randomly selected subset
of the features. This creates a forest of full-size trees that is less prone to over-fitting.
Each tree has an equal vote in the final classification. To further improve performance,
boosting is introduced.

Random forests can also be used for feature selection. Each tree, t, in the random
forest assigns a feature importance to each of the features in its feature subset. It does
this assessing the misclassification rate on its out-of-bag (OOB) samples, OOBt. These
samples are the ones that were not included in the bootstrapped data set and hence
has not been used to construct the tree. This is the baseline for the tree’s performance,
denoted by errOOBt. It then takes the feature column of feature j, designated Xj, in the
OOB samples and randomly permutes the values in the column. The misclassification
rate is then assessed anew on this randomly permuted OOB sample set, OOBj

t . The new
misclassification rate is denoted errOOBj

t . If errOOBj
t is unchanged after the feature

was scrambled, feature j is deemed to be less important. If it deteriorates, on the other
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hand, the feature is important. This is repeated for every feature, Xj, for every tree, t,
in the forest of T trees. The feature importance of each feature, V I(Xj), is the average
importance across the entire forest as shown in (2.24) [24].

V I(Xj) =
1

T

T∑
t=1

(errOOBj
t − errOOBt) (2.24)

Boosted trees

Boosted decision tree models are very strong classifiers. The first practical boosting al-
gorithm, AdaBoost, was created in 1995 and is still useful today. AdaBoost, short for
adaptive boosting, is a forest of stumps [25]. A stump is a tree with just a root node and
two leaves. The stumps are made sequentially and weighted according to their predictive
performance. The samples are also given a weight, initially equal, that is increased if
the samples are misclassified by the last stump that was generated. The weights of the
stumps are calculated as given in (2.25), where the total error is the sum of the weights
of the misclassified samples.

StumpWeight =
1

2
· log

(
1− TotalError
TotalError

)
(2.25)

The weights of each sample are then adjusted as shown in (2.26). The scalar a is
either 1 or -1 depending on if the sample was misclassified or correctly classified by the
stump, respectively. When every sample has been adjusted, all the sample weights are
normalised.

NewSampleWeight = OldSampleWeight · ea·StumpWeight (2.26)

A bootstrapped data set of equal size to the original is made, where the probability
that each sample is drawn is proportional to its weight. The weights in the new data set
are set to be equal. This new data set is used to train a new stump. The hard-to-classify
samples are then given extra emphasis by being more numerous in the data set. The
process is continued until the forest is complete. AdaBoost has now been superseded by
modern alternatives as boosted trees outperform boosted stumps [26]. Popular modern
boosting algorithms are XGBoost, CatBoost, and LightGBM. They use what is known
as gradient boosting.

Gradient boost decision trees

XGBoost is extremely popular and does very well in Kaggle competitions as over half
the winning implementations in 2015 made use of XGBoost [27] [28]. Kaggle is an inter-
national on-line machine learning platform where machine learning experts compete to
implement the best machine learning algorithms with a given data set. XGBoost provides
the option to increase tree depth and is heavily optimised by use of parallel processing.
It is a quick and powerful algorithm [28]. CatBoost and LightGBM are still considered
frontier algorithms, but are set to outperform XGBoost in some respects. LightGBM is
an extremely optimised boosting algorithm that is especially suited to extremely large
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data sets as it can achieve a 20 times speed increase with nearly the same accuracy [29].
CatBoost is an algorithm that seeks to reduce target leakage and therefore increase gen-
eralisation in the models, it was shown that CatBoost could outperform XGBoost and
LightGBM on several popular machine learning tasks [28].

2.3.11 Artificial neural network

An Artificial Neural Network (ANN) is an approach to machine learning inspired by bi-
ology. It is composed of individual neurons that are organised into layers. Each layer
connects to the next, from the input to the output layer. A neuron receives several in-
puts, xk, that are weighted with weights, wk, and one fixed input, x0. The fixed input is
weighted by the weight, b, called the bias. The sum, v, of contributions of the weighted
inputs and the bias are passed to the activation function, φ. The result is the output
y = φ(v). A neuron is shown in figure 2.13. The number of layers, the number of neurons
in each layer and the activation function are the hyperparameters that are selected by
the researcher before the learning algorithm is initiated. The weights and biases of each
neuron are fitted in the training process.

Figure 2.13: An artificial neuron.

Perceptron

The perceptron, the simplest ANN model, was first proposed in by Rosenblatt in 1958
[30]. It is a single layer ANN and so only contains the output layer. A single layer per-
ceptron is shown in figure 2.14. It could classify some problems, but it was shown that
it is only capable of correctly classifying linearly separable classes.

Multi-layer perceptron

A Multi-Layer Perceptron (MLP) is able to classify nonlinear problems. It introduced
greater complexity by adding one or more hidden layers between the input and output.
This results in a universal approximator, meaning it can approximate any continuous

24



2. THEORETICAL BACKGROUND 2.3. MACHINE LEARNING

Figure 2.14: A single layer perceptron consisting of inputs (a), neurons (b),
and outputs (c).
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function. While the output layer is constrained by the problem, the hidden layers can
have as many or few neurons per layer as the problem requires. Figure 2.15 shows a
3-layer MLP.

Figure 2.15: A fully connected 3-layer perceptron consisting of inputs (a),
the first hidden layer (b), the second hidden layer (c), and outputs (d).

Activation function

The activation function used in the neuron impacts the performance of the model and
the computational load of training. Some examples are the Heaviside (2.27), ReLu (2.28)
and hyperbolic tangent (2.29) activation functions.

φ(v) = max

(
0,

v

|v|

)
(2.27)

φ(v) = max(0, v) (2.28)

φ(v) = tanh(v) (2.29)

The utility of an activation function is that it adds non-linearity to aid in decision
making and it is necessary that the activation function is at least piece-wise differentiable
to be able to train the model by error back-propagation. The most popular activation
function is the ReLU as it adds non-linearity and eases the numerical burden imposed by
continuous functions such as the hyperbolic tangent.

Training

MLPs are usually trained using error back-propagation. An output, oj, is dependent on
neurons in every previous layer and the input as shown in (2.30). L is the number of
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layers in the MLP and wji is the weight on the connection from neuron i to neuron j.

oj = y
(L)
j = φj

(∑
i

wjiφi

(∑
k

wikφk

(
...φr

(∑
m

wrmxm

))))
(2.30)

The error, ej, of the output compared to the target value, dj, is given as (2.31).

ej = dj − y(L)j (2.31)

The error energy, E , summed over the entire output is given by (2.32).

E =
1

2

∑
j

e2j (2.32)

Since E is a linear combination of differentiable functions, there exists for every weight
wji a derivative of E . The weights wji[k] of epoch k can then be adjusted for epoch k+ 1
by way of gradient descent as shown in (2.33). The learning rate, η, is set for each layer
and usually decreases nearer to the output. This continues until E [k] approaches a con-
stant value.

wji[k + 1] = wji[k]− η δE [k]

δwji[k]
(2.33)

Other artificial neural networks

There are many other ANNs, some examples are convolutional neural networks that are
suited to classify images, auto-encoders that can be used for compression, anomaly detec-
tion and generative models, and radial base function network that substitute the weights
of ANNs for vector coordinates.
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Chapter 3

Method and results

In this chapter the procedure of data acquisition, data management, feature extraction,
and constructing the classifier is described along with its results. Since application of ma-
chine learning is a somewhat exploratory process, the considerations that justify choices
made throughout the process are included in amongst the method and results.

3.1 Laboratory measurements
The data set is composed of two concurrent Hall-effect sensor readings taken of a salient
pole synchronous generator running at synchronous speed with several different ITSC-
fault severities induced. The machine, the sensors attached and the measurements are
described in this section.

The measurements were taken as a part of the master’s thesis work of Ingrid Lin-
nea Groth. It was initially planned to conduct original experiments with more sensors
and greater variation of operating conditions, but this proved impossible due to COVID-
19-related restrictions on laboratory work. The experiments from which the data was
gathered are only briefly recapitulated here for ease of reading, the reader is referred to
I. L. Groth’s master’s thesis for a more detailed description [4].

The experimental generator

The machine, Brutus, is a 100 kVA experimental generator with 14 salient poles, con-
structed to resemble generators commonly situated in Norwegian hydroelectric power
plants. It is shown in Figure 3.1.
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Figure 3.1: Brutus, the laboratory generator in the NTNU Smart Grid lab-
oratory [4].
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Its nameplate values are given in Table 3.1 and some defining features of its topogra-
phy are given in Table 3.2.

Table 3.1: The rated values of Brutus. [4]

Nameplate values

Nominal power 100 kVA
Nominal voltage 400 V
Nominal current 144.3 A
Nominal speed 428 rpm
Nominal frequency 50 Hz
Nominal power factor 0.90
Nominal exc. current 103 A
No-load exc. current 53.2 A
Xd 2.040 Ω
Xq 2.075 Ω

Table 3.2: The topography of Brutus. [4]

Topography

Number of poles 14
Number of slots 114
Damper bars per pole 7
Winding connection Wye
Winding layout Double-layer
Turns per field winding pole 35
Outer stator diameter 780 mm
Outer rotor diameter 646.5 mm
Nominal air gap length 1.75 mm

The generator is purpose-made to be run with any of several incipient faults induced.
The faults that are possible to induce are:

• Inter-turn short-circuits by short-circuiting 1, 2, 3, 7 or 10 turns in the field windings
of two opposing poles.

• Broken damper bars by removing damper bars from their slots.

• Static eccentricity by offsetting the stator frame from the centre of the rotor’s
rotational centre.

Several load conditions can be tested by applying resistive and inductive loads in par-
allel or series. This enables the generator to be run in several distinct load conditions
with several types of faults or combinations of faults. The rotor is shown in Figure 3.2.

Experiments

The generator was driven through a gear box by a 90 kW, 400 V induction motor with
four poles and rated speed of 1482 rpm supplied by a three-phase 60 kVA laboratory
converter. The prime mover, gear box and Brutus are shown in Figure 3.3. The speed
of the induction motor during all tests was set so that the frequency of the generator’s
electrical output was 50.004 Hz, nearly exactly 50 Hz.

Two Hall-effect sensors were placed into the air gap, glued onto stator teeth, at dia-
metrically opposing ends of the stator. The sensor wires were shielded and the sampling
was done using a 16-bit Tektronix MSO 3014 oscilloscope with 10 and 50 kHz sampling
rate. Using this set-up, the generator was run in one of two different load conditions with
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Figure 3.2: The rotor of Brutus. Terminals used to short-circuit rotor winding
turns are visible exposed on either side of the shaft. [4]

Figure 3.3: Brutus connected to the induction motor through a gear box. [4]
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differing degrees of inter-turn short-circuits applied. The conditions termed full and no-
load are shown in Table 3.3. Please note that the full-load condition is not the maximum
load of the generator, but rather the maximum power that the laboratory converter was
able to provide.

No-load Full-load

Output power None 65 kVA
Power factor None 0.93
Exc. current 56 A 84 A
Exc. voltage 10.5 V 14.7 V

Table 3.3: Full and no-load test conditions. [4]

The measurements series available are summarised in Table A.1 in Appendix A. Each
measurement series is 100 000 samples long, irrespective of sampling rate. If each sensor
is considered as an independent measurement series of the same machine state and the
two sampling rates of the same machine state are equal, a total of 48 measurement series
were available from the 24 experiments performed. Each one of these 2 and 10 second
measurement series encompass many mechanical periods of the machine, a prerequisite
to be certain that any fault is captured in the measurement series.
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3.2 Data pre-processing
The data was processed to appear similar to something one would sample in a production
environment. The code written for loading the data into Python can be seen in Appendix
B.1.

In a production deployment of the fault detection system, the measurement series
would need to be windowed with the classification run on a sliding window on the last
electrical periods to be able to detect faults in near real-time. Since incipient faults are
not critical, a long window length of several mechanical periods is possible. The minimum
viable window length is 1 mechanical period, as this is the window length necessary to en-
sure that any fault will pass the sensors. An excessively long window length is prohibitive
since it will add little new information and slow down feature extraction. However, the
window length should be long enough to remediate end effects in signal processing tools
that suffer from them. End effects can be alleviated by analysing a concatenated series
if the signal is assumed to be periodic. Since the machine has 7 pole pairs, 7 electrical
periods will capture 1 complete mechanical period.

The measurement series before windowing will be called original sample series (OSS),
while the measurement series after windowing will be called reduced sample series (RSS).
Each RSS will have features extracted from it to be used as a sample in the data set used
to train the classifiers. To reduce non-fault-related variations in the RSS, the OSS are
cut at rising zero-crossing to have integer electrical periods in each RSS.

Due to the scarcity of data, it is desirable to create several RSS from each OSS.
The system is stationary in its steady state and RSS cut from the same OSS will thus
be similar. By skipping one electrical period after each captured RSS length of integer
mechanical periods, the faults will pass each sensor an electrical period earlier in each
contiguous RSS. This is done to provide training samples with faults in every position
possible as shown in Figure 3.4. An RSS length of 7 electrical periods, or 1 mechanical
period, was chosen to produce the maximum number of RSS possible.
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Figure 3.4: Two consecutive RSS cut from the same OSS. They are each of
7 electrical periods, with a 1 electrical period between the two. Note the
smaller negative peak occurring in periods 4 and 3 occurring of the first and
second RSS respectively. The one period shift between each RSS makes the
fault indication appear one position earlier.
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A visual inspection of all of the OSS showed continuous measurement series without
sudden jumps in values that would have indicated sensor malfunction or data corruption.
Furthermore, there were no missing values in the data sets. The data quality is excellent.
The data set is, however, slightly imbalanced, with 65.9 % of samples of faulty case.
In total 24 experiments were conducted, each of which sampled with two sensors and
two sampling frequencies. The samples will later be split into train/test sets according
to their OSS. Measurements taken of the same machine state with the same sensor are
assigned to the same OSS, irrespective of their sampling frequency. If measurements are
from different machine states or different sensors, they are assigned to different OSS. This
is done because the OSS that the data belongs to will be used later when splitting the
data set into training/validation/hold-out data sets. The code written to partition OSS
into RSS is shown in Appendix B.2.
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3.3 Feature extraction

Raw time series are very sensitive to small perturbations and thus not suited to be used
directly as tabular training data. Features are therefore extracted from each RSS. These
features are then used as a basis for feature selection and, finally, as training data. The
feature extraction methods used were fast Fourier transform, discrete wavelet transform
energies and TSFRESH feature extraction. In total 475 distinct features were extracted.
The code written for the feature extraction process can be seen in Appendix B.3.

3.3.1 Fast Fourier transform

The frequency content of each RSS was extracted by FFT. Previous comparisons done in
the specialisation project of FFTs of healthy and faulty signals showed that the faulty sig-
nal had a marked increase in harmonic frequency components at intervals of fm = 50

7
Hz,

the mechanical frequency of the generator, outside of the odd multiples of fundamental
frequency compared to the healthy case [5]. The frequency components of integer multi-
ples of fm up to 500 Hz was extracted as features, see (3.1). The FFT implementation is
shown in Appendix B.3.1.

fk,extracted = k · fm = k · 2fsync
p

, k = 0, 1, 3, ... (3.1)

3.3.2 DWT wavelet energies

Wavelet energies were good indicators of inter-turn short-circuits in the specialisation
project and were decided to be included as features [5]. An algorithm was written to au-
tomatically extract and store the Haar wavelet energies of an indefinite number of RSSes.
A 12-level-decomposition, Haar wavelet DWT was taken of each RSS and instantaneous,
Teager, hierarchical, and relative wavelet energies were computed for each decomposition
level. The implementation is shown in Appendix B.3.2.

An issue with DWT is its end effects, which are worsened substantially in each de-
composition level as the length of the data series that is transformed is effectively halved
in each decomposition level with the Haar wavelet. The adverse effects are diminished
as the length of the data series increases since the portions affected by end effects are
proportionally smaller. Therefore, each RSS was concatenated to 4 times its length be-
fore the discrete wavelet transform was taken. This exploits the assumption that the
generator behaviour is stationary and relieves the issue of end effects. In addition, every
10 kHz RSS was upsampled to 50 kHz before running the DWT. Upsampling ensures
that each DWT decomposition level contains the same frequencies for every RSS, even
if it was originally sampled with different sampling rates. The frequencies within each of
the 12 decomposition levels are shown in Table 3.4.
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Table 3.4: The frequencies contained within each decomposition level of a 12
level DWT.

Level Frequencies [Hz]

A12 0 - 6
D12 6 - 12
D11 12 - 24
D10 24 - 48
D9 48 - 97
D8 97 - 195
D7 195 - 390
D6 390 - 781
D5 781 - 1562
D4 1562 - 3125
D3 3125 - 6250
D2 6250 - 12500
D1 12500 - 25000

3.3.3 TSFRESH

A comprehensive feature extraction was done using TSFRESH. Every feature as detailed
in Appendix C was extracted, except for the FFT features. TSFRESH’s FFT features
were not included because FFTs with informative frequency bins were already computed
as detailed above and TSFRESH did not offer the ability to select frequencies of interest.
Since many of the features generated by TSFRESH are sensitive to the length of the
sample series analysed, the 50 kHz measurement series were downsampled by a factor of
5 to 10 kHz before feature extraction. This also saved on computation time, reducing it
to 4.7 seconds to generate all the features for a single RSS. The implementation is shown
in Appendix B.3.3.

38



3. METHOD AND RESULTS 3.4. EXPLORATORY DATA ANALYSIS

3.4 Exploratory data analysis

Features’ correlation to the target value and their variance are indicators of how useful
they may be to make classifications. In addition, it is likely that some features are re-
dundant if the features are strongly correlated with each other. These are some of the
things one looks for in an Exploratory Data Analysis (EDA) as performed in this section.
Before the EDA, the output from the feature extraction in Section 3.3 was formatted
using the implementation shown in Appendix B.4. The EDA itself was performed using
the implementation shown in Appendix B.5. Any invariant features were removed before
the EDA, reducing the number of features from 475 to 417.

A qualitative inspection of the features show that most features have a mean close to
zero, with some features’ mean far in excess of this. The same is true for the standard
deviation, some features have much greater variability than the norm. Plots of the fea-
tures’ means and standard deviations can be seen in Figures 3.5 and 3.6. This indicates
that the features need to be standardised to work with some methods. Standardisation
is a requirement for many techniques and learners, among them PCA, KNN, and SVM
with radial bias [17]. Exactly which specific features’ mean and standard deviation de-
viate from the rest is not of interest in this regard, since the existence of any in the set
necessitates standardisation.
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Figure 3.5: Calculated mean values across all samples for each feature. A few
features have far larger means than the others. The plot is divided by red
lines into three portions. The first portion from the left is the FFT-derived
features, the second from the left is the DWT energy feature portion and the
last is the collection of TSFRESH generated features.

The Pearson correlation of each feature to target values, that is how correlated the fea-
ture is to the number of ITSCs applied to the poles, showed largely uncorrelated features
with a few exceptions. DWT energy features had many correlated features, and some
TSFRESH generated features were strongly correlated. The FFT-generated features were
largely uncorrelated. An overview of features’ correlation to number of ITSCs is shown
in Figure 3.7. Both negative and positive correlations are useful for classification, but
correlation only shows linear relationships. There may be nonlinear relationships that
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Figure 3.6: Standard deviation across all samples for each feature. The plot
is divided by red lines into three portions. The first portion from the left is
the FFT-derived features, the second from the left is the DWT energy feature
portion and the last is the collection of TSFRESH generated features.

are not revealed by this test. The features with an absolute Pearson’s correlation above
0.3 are shown in Table 3.5. This result is in agreement with the conclusions reached in
[5], where an increase in DWT energy was a strong indication of ITSCs.
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Figure 3.7: An overview of feature correlations. The plot is divided by red
lines into three portions. The first portion from the left is the FFT-derived
features, the second from the left is the DWT energy feature portion and the
last is the collection of TSFRESH generated features.

The correlations above indicates that there are several relevant features. However,
many of these may be redundant if these relevant features are strongly correlated amongst
themselves. An effective visual method to investigate this is to construct a correlation
matrix, in which each feature’s correlation to every other is shown. Figure 3.8 shows the
correlation matrix of the features. The centre diagonal line is the features’ correlation to
themselves, which is necessarily 1. On either side of the diagonal are mirror images of the
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Table 3.5: The features most correlated to number of ITSCs.

Feature Correlation

TWE, decomposition level 9 0.890734
TWE, decomposition level 8 0.886363
IWE, decomposition level 10 0.861306
RWE, decomposition level 10 0.856935
RWE, decomposition level 11 0.826443
HWE, decomposition level 10 0.811841
TWE, decomposition level 10 0.810356
IWE, decomposition level 11 0.786659
TWE, decomposition level 11 0.556887
TSFRESH, longest strike above mean 0.549258
TSFRESH, Approximate entropy, (m=2, r=0.7) 0.412482
TWE, decomposition level 12 0.407188
TSFRESH, Longest strike below mean 0.395404
HWE, decomposition level 11 0.359168
TSFRESH, Approximate entropy, (m=2, r=0.1) 0.300201

inter-feature correlations. Here we see that both FFT and DWT features are strongly
correlated amongst themselves, while TSFRESH exhibits this to a lesser degree. With
this large a correlation between the features, investigating feature selection and reduction
methods is merited.

Since there is a high degree of correlation between the features, a Principal Compo-
nent Analysis (PCA) would give an indication of how variable the samples are. Fewer
principal components necessary to capture a given percentage of original variance in-
dicates that the data set contains many features of low variance or high inter-feature
correlation. A PCA of the data set was made to to span 95 % of the variance within the
data set, resulting in 31 principal components . Of the 31 principal components, 85 % of
the variance was contained within the 10 first components. This indicates that many of
the features are uninformative or strongly correlated to each other, coinciding with the
results from the correlation analysis.

High-dimensional data sets are unsuited to plot directly. To visualise the data set and
gain some intuition about its distribution, the high-variance principal components of the
PCA can be plotted. A plot of the data set along the two first principal components is
shown in Figure 3.9. The plot shows 16 distinct clusters, 24 if healthy and faulty clusters
are counted separately, where faulty and healthy sample distributions overlap in most.
There does not appear to exist any clear decision boundary along which faulty can be
discriminated from healthy. A consequence of this may be that SVM and KNN classifiers
perform poorly on the data set.
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Figure 3.8: The feature correlation matrix. Darker colour indicates a higher
correlation between the features. The red lines separate FFT features (left-
/top), wavelet energy features (middle), and TSFRESH features (right/bot-
tom).
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Figure 3.9: Samples plotted along the first and second principal component.
Each point represents one sample, with red samples representing faulty ma-
chine condition samples and blue samples representing healthy machine con-
dition samples.
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3.5 Feature selection
Two feature selection methods, random forest feature selection and TSFRESH, were ap-
plied to the feature data set. Please note that before any feature selection was undertaken,
a hold-out data set was extracted from it. This was to prevent any target leakage that
could result from selecting features based on the entire data set and inadvertently pro-
viding the classifiers with features selected for their hold-out data set relevance. Since
samples originating from the same OSSes are so similar, the split was also done in a way
so as to ensure that no samples originating from the same OSS were split among the
hold-out and remainder data sets. The hold-out set contains 15 % of the total samples,
and will be used to assess the performance of the final classifier. The feature selection
implementation can be seen in Appendix B.6.

3.5.1 Random forest feature selection

The random forest feature selection was done using a forest of 1000 decision tree estima-
tors, which was trained on the training set using Gini impurity as the splitting criterion.
During training, every feature is assigned an importance based on its impurity. All fea-
tures of greater than mean importance were selected, the remainder discarded. This
resulted in a feature reduction from 417 to 81 features.

3.5.2 Time series feature extraction based on scalable hypothesis
tests (TSFRESH)

Using the feature extraction module included in TSFRESH, a subset of features deemed
relevant was extracted. Taking into account the correlations discovered during the EDA,
TSFRESH was configured to assume dependent features. False discovery rates in the
interval 0.001, 0.01, 0.05, and 0.1 were tried, this resulted in a similar amount of features.
The false discovery rate settled upon was 0.05, the rate used in [31]. This resulted in a
feature reduction from 417 to 301 features.

3.5.3 Summary

The three versions of the feature data set, hereby termed feature data sets A, B and C,
are summarised in Table 3.6. By comparing the performance of classifiers trained upon
the different collections of features, some insight into which features are most useful for
classifying the fault can be gleaned and which feature selection algorithms are most useful
with this data. In a final version of the fault detection system, this knowledge could be
used to selectively compute only the most useful features.

Table 3.6: The three data sets taken into machine learning.

Set Selection method Num. features

A None 417
B Random forest 81
C TSFRESH 301
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3.6 Fault detection

The following section details the development of a classifier intended to detect the pres-
ence of ITSCs using the data sets previously created. With the exception of XGBoost, all
classifiers were implemented from Scikit-Learn version 0.23.1. The implementation can
be seen in Appendix B.7.

This is done in four phases:

1. Selection of the feature data set

2. Hyperparameter optimisation of single machine learning models

3. Evaluation of stacking classifiers

4. Final classifier selection and evaluation on hold-out data set

The first objective, selection of the feature data set, was accomplished by evaluating
the results of training a host of different classifiers on each data set. The classifiers chosen
were:

• Logistic Regression

• Logistic Regression with PCA

• KNN

• KNN with PCA

• Radial basis function SVM

• Radial basis function SVM with PCA

• Linear SVM

• Linear SVM with PCA

• XGBoost

• Multi-Layer Perceptron

• Stacking classifier

By implementing logistic regression, SVM and KNN with and without a Principal
Component Analysis, the effectiveness of PCA in this application can be gauged as well.
PCA was not combined with XGBoost because PCA reduces the interpretability of the
model, a key strength of decision trees. The stacking classifier combines the other models,
with the exception of KNN and KNN with PCA. The KNN models were excluded because
of their long prediction time and poor performance relative to the other classifiers. The
architecture of the Stacking classifier is shown in Figure 3.10.
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Figure 3.10: The stacking classifier as implemented. It combines the outputs
of all the base classifiers via a logistic regression model to make the final
classification.

Initial hyperparameter choices

The hyperparameter settings of each classifier are shown in Table 3.7. The classifiers not
shown in Table 3.7 use default parameters. None of these hyperparameters have been at-
tempted to be optimised, only given reasonable rule-of-thumb values. Note that the PCA
was identically executed in all four applications with the same setting as used in the EDA.

Metrics

The metrics selected are sensitivity and precision. These metrics were chosen due to
their lower susceptibility to imbalanced classes, and because they are useful metrics to
not only gauge the probability that a fault would be detected but also the confidence that
the detection is correct. The reasoning being that it is as important to a power plant
operator to avoid false alarms as it is to be alerted of every possible fault.

Cross-validation

This heuristic selection method is vulnerable to random chance. To address this vulnera-
bility, cross-validation is used. The data sets were previously, during the feature selection
process, split into a hold-out test data set and a remainder data set. Since the results of a
single train/test cycle can be very dependant upon the split of the samples, the classifiers
were evaluated by their average performance across a 5-fold Cross-Validation (CV). This
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Table 3.7: A summary of the hyperparameters used to compare feature data
sets and classifiers. The table is not exhaustive, but includes the most im-
portant hyperparameters. The hyperparameters not included were kept as
the default for their respective software libraries.

Classifier Hyperparameter Setting

KNN K 20
Weight Uniform

SVM (rfb)
Kernel Radial basis function

Gamma 1

Number of features
PCA Spanned variance 95%

XGBoost Eta 0.3
Max depth 6

Neural net

Number of hidden layers 2
Num. neurons 1st layer 200
Num neurons 2nd layer 100
Num neurons 3rd layer 14
Activation function ReLU

produces 5 folds of CV-train and CV-validation sets drawn from the remainder data set
of the initial split. The folds are identical across all classifiers and feature data sets.

The cross-validation split the samples in the remainder data set according to the
OSS they belonged to, ensuring that there are no samples from the same OSS in both
training and validation sets as RSSes from the same OSS were deemed to be too similar.
The objective is to train a classifier to identify faults, not to identify from which OSS the
samples are drawn. To check this assertion, the classifiers were evaluated once using cross-
validation with random splitting. This resulted in classifiers with near perfect accuracy,
an indication that the OSS-dependent split was necessary.

Standardisation

Logistic Regression, KNN and SVM are sensitive to the variance of the samples, this is
addressed by applying standardisation. Each cross-validation split was standardised to
zero-mean and unity variance. The mean and variance of every feature was calculated
from the CV-train set. Both CV-test and CV-validation sets were standardised using the
CV-train means and variances.

Results

This procedure was repeated for every classifier on every feature data set and performance
metrics were gathered. The results are presented in Table 3.8. This method of model
fitting was used for every classifier evaluation at later stages of the classifier development.
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Table 3.8: A summary of the results of Logistic Regression, KNN, SVM
(radial base function kernel), SVM (linear), Logistic Regression with PCA,
KNN with PCA, SVM (radial base function kernel) with PCA, SVM (linear)
with PCA, XGBoost, MLP and stack classifiers trained on each data set.
Average scores across all classifiers for each data set is also included.

Data set Classifier Sensitivity Precision ROC AUC

A

Logistic Regression 0.8853 0.7722 0.6774
Logistic Reg. with PCA 0.8622 0.8131 0.7179
KNN 0.8269 0.6747 0.5288
KNN with PCA 0.8201 0.6775 0.5335
SVM (rbf) 0.8492 0.7050 0.5834
SVM (rbf) with PCA 0.8538 0.6312 0.4453
SVM (linear) 0.8859 0.7612 0.6705
SVM (linear) with PCA 0.8576 0.8176 0.7175
XGBoost 0.8518 0.7766 0.6788
Multi-layer Perceptron 0.8833 0.7390 0.6420
Stack 0.8652 0.8191 0.7179
Average classifier score 0.8583 0.7443 0.6285

B

Logistic Regression 0.8675 0.7772 0.6721
Logistic Reg. with PCA 0.8140 0.7394 0.6279
KNN 0.8074 0.7237 0.6053
KNN with PCA 0.8392 0.7207 0.6075
SVM (rbf) 0.8117 0.7029 0.5728
SVM (rbf) with PCA 0.8149 0.6453 0.4761
SVM (linear) 0.8790 0.7925 0.6905
SVM (linear) with PCA 0.7878 0.7392 0.6155
XGBoost 0.8407 0.7193 0.5938
Multi-layer Perceptron 0.8702 0.7322 0.6233
Stack 0.8712 0.7981 0.6955
Average classifier score 0.8367 0.7355 0.6164

C

Logistic Regression 0.8966 0.7998 0.7092
Logistic Reg. with PCA 0.8663 0.8082 0.7271
KNN 0.8282 0.6743 0.5287
KNN with PCA 0.8222 0.6756 0.5306
SVM (rbf) 0.8531 0.7226 0.6062
SVM (rbf) with PCA 0.8492 0.6327 0.4477
SVM (linear) 0.8972 0.8106 0.7389
SVM (linear) with PCA 0.8615 0.8162 0.7289
XGBoost 0.8313 0.7816 0.6747
Multi-layer Perceptron 0.8859 0.7643 0.6869
Stack 0.8714 0.8485 0.7627
Average classifier score 0.8603 0.7577 0.6492
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3.6.1 Feature selection and reduction performance

For selection of the best feature data set, three things are taken into account. Firstly,
the feature data set with the best average performance across the different classifiers is
superior. Any aid to classification performance should be pursued. Secondly, the one
with more consistent scores, i.e. smaller variance in the results from cross-validation, is
preferred. Thirdly, the feature data set with fewest features is superior if the performance
is similar among all the sets. This is due to two reasons: a smaller number of features
reduces training and prediction time, and fewer features reduce the risk of overfitting to
the data.

Figure 3.11 shows a rough summary of the performances of the classifiers on each
feature data set. It appears that the choice of data set does not greatly affect the per-
formance of the classifiers, and the variance of the results is large. However, feature data
set C, the TSFRESH feature selection data set, slightly outperforms the rest on every
averaged metric. Data set C is thus preferred, and will be utilised from this point onward.

As for feature reduction, i.e. application of PCA, every classifier suffered a drop in
performance in nearly every metric when PCA was applied. Of special note is that radial
basis function SVM with PCA had an ROC AUC consistently lower than 0.5, which in-
dicates that it performed worse than chance. Due to this, PCA was abandoned. It might
still have been justified on grounds of reducing training and prediction time if there were
more features or an extremely large number of samples, but no such considerations were
necessary.

3.6.2 Hyperparameter optimisation and selection

Since a classifier’s performance is heavily dependent upon its hyperparameters, all the
candidate classifiers were optimised before selecting among them. The optimisation pro-
cedure was a 5-fold cross-validating grid search. In this procedure, a hyperparameter grid
is defined that contains a range of values for each of the hyperparameters to be optimised.
The grid search algorithm then executes a cross-validation of the classifier for every pos-
sible combination of these hyperparameters. The mean cross-validation performance is
calculated for each hyperparameter combination, and the hyperparameter combination
that yields the best performance on the chosen performance metric is selected.

Depending on the complexity of the classifier and the number of hyperparameters to
be optimised, the grid search can span thousands of hyperparameter combinations. Since
the data set contains so few samples, the training time of each hyperparameter combina-
tion was short and a large hyperparameter grid could be investigated. The performance
metric used was F1-score because it combines sensitivity and precision.

A broad search of the scientific literature yielded few recommendations on hyperpa-
rameter grids for grid searches. In lieu of scientific literature, industry expertise was
sought out by consulting Kaggle. Kaggle is a site where companies submit data sets with
accompanying machine learning problems and post rewards for the best solution, and the
winning implementations are open to the public. The hyperparameter grids chosen are
therefore interpolations between hyperparameters chosen in winning implementations of
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Figure 3.11: The performances across all classifiers on each feature data set
are shown in box-and-whisker plots. The boxes extend from the upper to
the lower quartile of the distribution, the centre line in each box denotes the
median score, and the whiskers envelope the greatest and lowest scores.
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the respective algorithms on similar problems from Kaggle. Similar problems were de-
fined as tabular data sets with between 50 and 800 feature columns and between 50 and
5 000 samples, preferably with high cardinality.

The hyperparameter grids that were tested are shown in Table 3.9. The search grid
sizes increase with the complexity of the classifiers. KNN, SVM, and Logistic Regression
have 175, 50, and 175 different hyperparameter combinations each, while XGBoost boasts
2304 different combinations. This is because XGBoost, being an ensemble classifier, re-
quired a larger set of hyperparameter variations to do a thorough grid search. Finally,
256 different combinations of hyperparameters were tried for the MLP.

Table 3.9: Hyperparameter search grids for Logistic Regression, KNN, SVM,
and XGBoost classifiers. Note that l1 and l2 are Lasso and ridge regression,
respectively. rbf and linear kernels correspond to radial basis function and
linear SVMs. Regarding hidden_layer_sizes: In a configuration of (a,b,c),
the depth of the MLP is determined how may numbers there are, in this case
three hidden layers deep. Each of these layers have a, b, and c neurons each
in order of increasing distance from the input layer.

Classifier Hyperparameter Values Description

Log. Reg. C 10k, k = −10,−9.5, ..., 10 Inverse of regularisation strength
penalty "l1", "l2" Penalisation norm

KNN n_neighbors 1, 3, 5, ..., 351 Number of nearest neighbours

SVM
C 10k, k = −1, 0, 1, 2, 3 Inverse of regularisation strength
gamma 10k, k = 0,−1,−2,−3,−4 Inverse of regularisation strength
kernel "rbf", "linear" Kernel type

XGBoost

learning_rate 0.01, 0.2, 0.3, 0.5 Learning rate
n_estimators 100, 400, 700, 1000 Number of trees in ensemble
max_depth 3, 10, 15, 25 Maximum tree depth
col_sample_bytree 0.8, 1 Per tree column subsampling ratio
subsample 0.6, 0.8, 1 Sample subsampling ratio
reg_alpha 0.7, 1, 1.3 L1 regularisation term on weights
reg_lambda 0, 0.5, 1 L2 regularisation term on weights

MLP

activation ’identity’, ’logistic’, ’tanh’, ’relu’ The activation function
batch_size 200, 133, 66, 32 Size of minibatches
max_iter 200, 500, 1000, 1200 The maximum number of epochs

hidden_layer_sizes (50,25,3), (100,50,7), Size and number of hidden layers(200,100,14), (300,150,21)

The hyperparameter sets with the greatest mean performance across 5-fold cross-
validation for each classifier are presented in Table 3.10. Table 3.11 shows the scores
of these classifiers across several metrics. Of the optimised classifiers, the XGBoost and
KNN are outperformed by the others. KNN’s accuracy was 64.0% in an imbalanced data
set of 65.9% majority class. This performance is worse than that of a dummy classifier
that classifies randomly or always classifying samples as the majority class. Furthermore,
KNN is entirely non-generalising with a k = 1, implying that the algorithm is not well
suited for this problem at all since this was the best result from a grid search of k-values
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from 1 to 351.

Table 3.10: The best hyperparameters found from the grid search.

Classifier Hyperparameter Value

Logistic Regression C 108.5

penalty l2
KNN n_neighbors 1

SVM
C 10
gamma 1
kernel linear

XGBoost

colsample_bytree 0.800
learning_rate 0.500
max_depth 3
n_estimators 100
reg_alpha 1.300
reg_lambda 0
subsample 1

Multi-layer Perceptron

activation identity
batch_size 200
hidden_layer_sizes (50, 25, 3)
max_iter 200

Table 3.11: The accuracy, sensitivity, precision, F1-score and ROC AUC of
the best models found in the hyperparameter grid search.

Classifier Accuracy Sensitivity Precision F1-score ROC AUC

Logistic Regression 0.7986 0.8740 0.8376 0.8506 0.7606
KNN 0.6395 0.8350 0.6990 0.7501 0.5723
SVM 0.7940 0.8854 0.8247 0.8501 0.7500
XGBoost 0.7438 0.8576 0.7846 0.8142 0.6927
Multi-layer Perceptron 0.7958 0.9022 0.8170 0.8542 0.7340

3.6.3 Stacking classifiers

Since a stacking classifier improved the performance during the feature data set selection,
the same approach is made again using the optimised classifiers. Four stacking classifiers
were made with different meta-classifiers, Logistic Regression, MLP, gradient boosting
forest, and a random forest classifier. The gradient boosting forest classifier was chosen
over XGBoost as a meta-classifier due to greater compatibility with Sci-kit Learn’s stack-
ing framework. Since XGBoost is also a variant of gradient boosting forest, it should
return similar results at the expense of computing power. The stacks all include the
optimised Logistic Regression, SVM, MLP, and XGBoost classifiers as base classifiers.
KNN was again excluded due to its poor performance and slow prediction time. Results
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are shown in Table 3.12.

Table 3.12: The results from the stacking classifier comparison.

Meta-classifier Accuracy Sensitivity Precision F1-score ROC AUC

Logistic Regression 0.7840 0.8701 0.8260 0.8432 0.7472
Multi-layer Perceptron 0.7479 0.8057 0.8276 0.8107 0.7267
Gradient boosting forest 0.7663 0.8268 0.8304 0.8255 0.7314
Random Forest 0.7704 0.8216 0.8388 0.8265 0.7440

Of the stacking classifiers, the Logistic Regression stacking classifier outperformed the
others by a large margin. The best stacking classifier is shown in Figure 3.12.

Figure 3.12: A stacking classifier with Logistic Regression as its meta-
classifier.

Comparing the performance of the best stacking classifier with that of the best non-
ensemble classifier, a somewhat surprising result surfaces. The logistic regression classifier
alone on average slightly outperforms the stacking classifier of which it is a part of across
the cross-validation folds.

3.6.4 Final classifier

An advantage of stacking classifiers is that they often generalise better than single clas-
sifiers, and they usually outperform their base classifiers. However, the hyperparameters
of the meta-classifier have not been optimised on the training set as is the case with the
simple logistic regression classifier. To gauge their performance on unseen samples, both
are trained on the entire training set and tested on the hold-out data set. The results are
presented in Table 3.13. On the hold-out set, the stacking classifier outperforms the sim-
ple logistic regression classifier. The stacking classifier could likely be further improved by
running a grid-search for the optimal hyper parameters of the logistic regression meta-
classifier, but this was too computationally expensive to complete within a reasonable
time frame without a large, time-consuming refactoring of the code base.

The logistic regression stacking classifier has coefficients that weigh each of its base-
classifiers. Since all the base-classifiers return predictions in the same interval, from 0 to
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Table 3.13: The results of the best of the single and stacking classifiers on
the hold-out data samples.

Classifier Accuracy Sensitivity Precision F1-score ROC AUC

Logistic Regression 0.7569 0.6961 0.9435 0.8011 0.7986
Logistic Reg. stack 0.8448 0.8456 0.9274 0.8846 0.8443

Table 3.14: The base-classifier coefficients of the logistic regression classifier
used as meta-classifier in the stacking classifier. The models are ranked in
order of importance to the final prediction.

Rank Base-classifier Coefficient

1 SVM 3.464
2 XGBoost 1.365
3 Logistic regression -1.042
4 Multi-layer Perceptron 1.036

1, the absolute magnitude of the coefficients is correlated with how large an emphasis is
placed on each particular base-classifier. The coefficients of each base-classifier are shown
in Table 3.14.

3.6.5 Feature usefulness

From both logistic regression and XGBoost classifiers it is possible to extract feature
importances. In the logistic regression classifier, they correspond to the weights associated
with the features as described in Section 2.3.7, and in XGBoost they are the average gain
across all splits the feature was used in. The most important features for the XGBoost
and logistic regression classifiers are shown in Tables 3.15 and 3.16.
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3.7 Fault severity assessment
An attempt was also made to determine fault severity using some of the same method-
ology as above. This was done by creating several one-versus-all classifiers that tried
to determine the severity of the fault. This means that the final classification is really
made by a collection of several binary classifiers that each check if the sample belongs to
a certain class, for example the no fault class. The final classification chooses the class
with the associated binary classifier with the greatest confidence that the sample belongs
to its class.

The objective of these classifiers was to assess the fault severity of a sample by clas-
sifying it as one of several defined fault severities. The exceptions were XGBoost, KNN
and MLP classifiers, which are capable of multi-class classification without employing
the one-versus-all technique. Since there were so few experiments done, only the no
fault condition had more than four experimental cases, it was immediately obvious that
it would be fruitless to attempt to determine the exact fault severity due to data con-
straints. Effectively 4 samples of each case were present in the data set, not counting
different sampling rates as separate samples. In an attempt to remediate this, the classi-
fiers were made to classify samples into either no fault, low severity, moderate severity or
high severity. These degrees of severity were defined so as to split the available samples
as evenly as possible between the severity classes while still being informative. They are
as shown in Table 3.17.

The resulting classifiers gave either terrible predictions that were near random guesses
when the RSS were split according their OSS as detailed in Section 3.5, or close to perfect
predictions when the RSS were split randomly.

Table 3.17: The severity degrees of the classifier defined by the number of
ITSCs. The rightmost column contains the number of experiments done in
that state.

Severity case ITSCs Number of experiments

No fault 0 16
Low severity 1 to 6 12
Moderate severity 7 to 10 8
High severity Above 10 12
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Chapter 4

Discussion

In this chapter, the results from Chapter 3 are discussed in light of the theory presented
in Chapter 2 and recommendations for further work are made.

4.1 Data management and pre-processing

The RSS length was chosen to maximise the number of samples from each OSS, exploiting
the assumption that the captured signal is stationary and that the signal could be cut
easily in zero-passing to capture integer electrical periods. This was possible due to the
periodic nature of the air-gap magnetic field. If the same technique is applied to signals
originating from other sensor types mounted to the machine such as vibration or stray
magnetic field sensors, this may not be the case.

There were two Hall-effect sensors mounted in the generator that made measurements
concurrently. The measurements from these sensors have been treated as independent
and were assigned to separate OSSes. The motivation for this is, like many decisions in
this thesis, to maximise the information extracted from the source data. The justification
that the sensors make effectively independent measurements of the same machine state
is that their idiosyncrasies and differences in mounting would affect the measurements.
One would expect to see improbably high detection rates if they were too similar, but
this was not observed.

The classifiers’ performance varied greatly between folds of the same cross-validation
run and a leap in classification performance occurred when evaluating the final classifiers
on the hold-out set. This highlights some issues with small data sets. With so few OSSes
to draw from, the splitting of the data set changes the data in the training set drastically.
This could also be the reason for the change in performance in the final evaluation. The
logistic regression classifier that had performed well previously lost performance when
introduced to more data, while the logistic regression stacking classifier improved its per-
formance by relying primarily on its linear SVM base-classifier. Which classifier performs
best is thus very dependent upon which parts of the data set it is trained on. The best
classifier found for the data set generated in this thesis was the logistic regression stack-
ing classifier presented in Section 3.6.4, but that would likely change with introduction
of more data.

Since performance varies between CV-folds, it was important to split the data set in
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the same way for every cross-validation for every classifier and feature data set to ensure
direct comparability between the results.

4.2 Feature extraction and importance

Some of the features that TSFRESH calculate are very computationally demanding. TS-
FRESH’s computation time to generate all the features for a single RSS was 4.7 seconds
on a system with a Intel Core i5-6200U CPU. This would allow a monitoring system of
comparable computational power to gauge the machine’s condition roughly once every 5
seconds. Nevertheless, including all the features increased the chance that useful features
were not overlooked.

Approximate entropy, change quantiles, entropy, and aggregated linear trend lines are
the 4 most computationally intensive features among the TSFRESH generated features
[20]. These features are more than 2 orders of magnitude more computationally inten-
sive than the average TSFRESH feature [20], and were included among the most useful
features for both the optimised logistic regression and the optimised XGBoost classifiers.
Considering that the computation time of the DWT wavelet energy and FFT features
were insignificant compared to TSFRESH generated features, there is little room to re-
duce feature extraction time. Due to the non-critical nature of incipient faults, however,
a condition monitoring system that diagnoses the machine once every 5 or 10 seconds
could be sufficient.

The range of classifiers investigated was intentionally broad, including both linear and
non-linear models. The best performers after the grid search were linear models such as
the logistic regression, SVM with a linear kernel, and MLP with the identity activation
function. It is worth noting that even though Multi-Layer Perceptrons are generally non-
linear models, they are linear if the activation function is linear. This is in accordance
with the EDA that showed a great deal of linear correlation between the target and sev-
eral features.

This raises an interesting proposition. The features included in the feature data set
for this thesis were the most promising of the ones discovered in [5]. The heuristic used
to distinguish useful features in [5] was to compare the features’ magnitude to the fault
severity, effectively looking for a linear relationship to fault severity. This means that
since there was a selection bias for linearly correlated features when deciding which fea-
tures to include, it is only to be expected that linear classifiers can do well on the data set.
An implication of this is that features that were discarded in [5] should be investigated
anew by inclusion into a feature set for machine learning.

The most useful features among the ones investigated were the high decomposition
level DWT RWE features, aggregate linear trend features, approximate entropy features,
and change quantile features. TSFRESH generated features performed similarly as the
wavelet energy and FFT features did. Correlation to the target value was a strong indi-
cation that features would be useful in classification and could thus be used to screen a
large number of potential features without having to train classifiers. Screening in such
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a manner would come at the risk of missing non-linear relationships as mentioned above.

4.3 Feature selection and target leakage

Due to the small size of the data set, the feature selection algorithms were run on the
entire data set excluding the hold-out data set. This likely affected the cross-validation
results of the classifiers run on the feature selected data sets. Since the feature selection
algorithms selected the best features based on all the samples that could appear in each
CV-fold, some target leakage occurred. This can cause optimistic cross-validation results.
This does not, however, affect the results from the hold-out data set since it was set aside
before feature selection.

An alternate approach that would eliminate the aforementioned target leakage is to
eliminate the hold-out data set and run a feature selection step as part of each cross-
validation fold. This would eliminate target leakage and allow feature selection on a data
set of similar size, but it has another draw-back. Without a hold-out data set, the final
evaluation of the classifiers would be done on the same samples that were used to choose
among the classifiers and their hyper-parameters. This would introduce another source
of target leakage and the final evaluation of the classifiers performance on unseen samples
would be unrealistically optimistic, something that was avoided with the approach taken.

4.4 Classifier selection

The classifier performances increased markedly as a result of the grid search. However,
a general trend among the optimised classifiers was that the less complex classifiers per-
formed better. An example of this is that the optimised hyperparameters of MLP were
of the smallest number of neurons included in the search with the identity function as
activation function. The hyper-parameters with the greatest performance were, with the
exception of the optimised logistic regression classifier, on the lower-complexity-extremes
of their associated search-grids. Another grid search with more low-complexity hyper-
parameters could likely have yielded better results.

4.4.1 Performance

The performance of the classifiers developed in this thesis has been to some standards
unimpressive, which is to be expected when the source data set is reasonably diverse and
small. With a small data set comes the challenge of maximising the information extracted
from it. As has been mentioned earlier is this report, this involves correct handling of
data set splitting and avoiding target leakage. A close to 100 % accuracy is in this regard
an indication of mishandled data management, as was exemplified when non-optimised
classifiers achieved nearly perfect predictions when samples were randomly split.
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4.5 Real-world validity
An experimental generator was used to generate the data set. Even though it is con-
structed to resemble hydropower generators, it still has its own unique geometry, its
sensors were mounted in a certain way and position, it is placed in a laboratory that is a
noisy electromagnetic environment, and it is not driven by an actual turbine. All of these
discrepancies with any one production hydropower generator makes any classifier trained
on measurements taken from the experimental generator useless on machines other than
Brutus. While this is nearly universally true for machine learning models, it is worth
mentioning that a new model must be made for each machine.

The measurement series that were used contained very little diversity of fault types,
fault severities, and operating conditions. This reduces the robustness of the classifier
since it can more easily mistake novel operating conditions for fault conditions. Further-
more, it was concluded in [4] that the machine had a 3% dynamic eccentricity at the time
the measurements were taken. The eccentricity was thus a constant influence throughout
these measurements and would not interfere with the creation of the classifiers, but it
reduced the generality of the results gathered in this thesis. The classification rates and
the features that worked best are for an eccentric machine, and these features may not be
as useful in a machine without eccentricity. This is something that could be rectified by
making measurements as originally intended for this thesis, with a variety of operating
conditions and faults. A real generator operates under a multitude of load conditions and
any evaluation of features should be done using data that reflects this diversity.

The experimental generator was not driven by turbine, but rather an induction mo-
tor. Turbines can introduce vibrations into the generator that could affect the features
found to work well here. Some of these are hydraulic imbalance [32], cavitation [33], and
runner blade damage [32]. These sources of vibration can affect the air-gap magnetic field
in a number of ways as they introduce torque variations to the shaft. While cavitation
induced vibrations are usually wide band, high-frequency noise, hydraulic imbalance and
runner blade damage induced vibrations occur at multiples of the mechanical frequency
of the rotor. Since the mechanical frequency of the turbine and the generator is neces-
sarily a common frequency, the state of the turbine would affect the frequency content
of features based on the mechanical frequency of the generator’s rotor. The FFT feature
set generated for this thesis would be particularly susceptible to this.

4.6 Real-world applicability
Two prerequisites exist to apply a fault classification system like the one created in this
thesis to a production machine. The machine would have to be outfitted with a Hall-
effect sensor in the air-gap, and measurements of the machine in several different load
and fault conditions would need to be taken prior to developing the classifier. The sensor
itself is small relative to the air-gap of a production machine, and should not be difficult
to install, considering it was successfully installed in a much smaller machine. It is, how-
ever, unlikely that a production machine could be run with induced faults to construct
the data set necessary.
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This approach is thus not practical for real-world applications with a few possible
exceptions. If the machine is itself of a standardised make and model, then it could be
possible to gather sensor data of faulty operation in one or a few machines to train a
classifier that could be used in other machines of the same type. Generators can have
imperfections that stem from production and/or assembly in addition to differences in the
connected turbines that could interfere with the classification. To how great an extent
this would be a problem is speculative. Many of the features generated for this thesis are
dependent upon machine geometry such as the number of poles, which is shared among
machines of a similar make. It would nevertheless be an expensive method of gathering
data due to the cost of generators and the small production runs. Some suggestions of
how to make more generalised classifiers are presented in the next section.

4.7 Suggested methods

In this section two suggestions for methods of extending fault detection to more machines
are presented in increasing order of complexity.

4.7.1 Anomaly detection

Anomaly detection is to develop a model of the machine in healthy operating state, and
treat deviations from the model as fault indications. This is feasible to implement in pro-
duction machines since the training data is only data of the healthy machine operation in
different load conditions, something much more easily obtained than fault condition mea-
surements. A machine learning model that could be suited for this is the auto-encoder. It
is a multilayered neural net where the input and output layers are of the same size, with
smaller intervening layers. The auto-encoder is forced to discard some input information
since the intervening layers are smaller than the input layer. It is trained using back-
propagation to reconstruct the input in the output layer until it does so with a low error
rate. A normal state is then encoded into the neurons of the model. Anomalous inputs
would thus be reconstructed poorly and incur a high reconstruction error, indicating an
anomaly. The simplest model to produce would also be the least informative. It would
only indicate that there is an anomalous operating condition, not what that condition is.
This model could use features similar to the ones generated in this thesis, but should have
a great deal of healthy training data that spans every acceptable operating condition to
reduce the false-positive rate.

4.7.2 Simulated data generation

One of the greatest hindrances to developing fault detection classifiers for industry ma-
chines is the lack of labelled fault data. This could be addressed by use of a simulation
that includes the generator along with any sensors mounted to it. The finite element
simulation could be calibrated against measurements of the real machine, so that the
simulation generates sample series in agreement with sample series of healthy operation
of the machine. To generate faulty measurement series, the same simulation modified to
include induced faults would be used. Sample series from simulated faulty and healthy
operation would then be used to train the fault classifier. This would be more easily
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implemented in industry since there is very little labelled data of fault conditions in ex-
isting machines. In addition the method is very non-invasive, requiring only the sensor
installation in the generator. The model’s false-positive performance could be assessed
by making predictions on a healthy data set gathered from the machine, but a major
challenge is that there would not exist faulty testing data from the real machine to assess
its efficacy in making true fault detections.
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Chapter 5

Conclusion

This thesis has investigated how signal processing and machine learning tools can be
used to detect inter-turn short-circuits in rotor field windings. To do this, a fault detec-
tion system was implemented to detect ITSC faults based on measurements from a single
Hall-effect sensor mounted on stator tooth inside the air-gap of a salient-pole synchronous
generator. This was done in three stages, data pre-processing, feature extraction and se-
lection, and classifier development. The objectives were specifically to investigate which
features are most useful, which machine learning models perform best in this task, and
lastly if a single air-gap magnetic field sensor is sufficient for reliable fault detection or if
more sensors are required.

The features extracted were power spectral density of integer multiples of the gen-
erator’s mechanical frequency extracted by FFT, DWT wavelet energies, and the entire
TSFRESH feature extraction suite excluding their FFT features. The most useful fea-
tures were the Relative Wavelet Energy features and some of the TSFRESH features as
presented in Tables 3.15 and 3.16. The performance of TSFRESH generated features
paralleled that of the DWT features and surpassed that of the FFT features, indicating
that automatic feature extraction is useful for these tasks.

Linear machine learning models were best suited for fault detection on this data set,
especially the logistic regression and linear SVM classifiers. KNN was not suited, and
did worse than random chance. The performance decreased somewhat on averaged cross-
validation when the classifiers were stacked, but generalised better when tested on the
hold-out data set. The best classifier was an ensemble stacking classifier with logistic
regression as the meta-classifier taking inputs from logistic regression, XGBoost, linear
SVM, and MLP classifiers as base-classifiers.

The results indicate that ITSC fault classification using machine learning on air-gap
magnetic field measurements from a single sensor can yield good results. The logistic
regression stacking classifier had an accuracy of 0.8448, a sensitivity of 0.8456, and a
precision of 0.9274. This means that the classifier correctly classified 84.48 % of all the
samples in the hold-out data set, and 84.56 % of the faulty samples present were correctly
classified as such. Of the samples that were classified as faulty, 92.74 % were correctly
classified. Since a large portion of faults go undetected, this fault detection system should
therefore not be relied upon as the only detection system. However, if the system alerts
of a fault, it would warrant investigation since it is likely to be correct. This is predicated
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upon a similar performance on out-of-set samples. Assuming similar performance from
this classifier on novel samples is naive due to its limited training data. The robustness
of the classifier could likely be improved by creating a more diversified data set.

5.1 Further work
Further work suggested is:

• Combine air-gap magnetic field readings from Hall-effect sensors with concurrent
readings from sensors such as voltage over and current through stator and rotor
windings, and stator vibration to assess the benefit of combining sensors.

• Implement an anomaly detection system using an auto-encoder.

• Implement an anomaly detection system using an artificial recurrent neural network
such as long short-term memory (LSTM) or gated recurrent units (GRU).

• Create a classification algorithm trained on fault condition measurements from a
simulation of the machine and compare its predictions with real measurements of
known fault conditions from the physical machine. This would be more easily
implemented in industry since there is very little labelled data of fault conditions
in existing machines and is very non-invasive.

• Implement a regression model to gauge fault severity.

• Investigate if performance improves when more DWT wavelet energy features using
other wavelets is included.

• Implement a convolutional neural network using CWT scalograms or STFT spec-
trograms as base-classifiers in an ensemble along with the models implemented here.

• Implement feature extraction using order analysis to account for changes in machine
speed. Order analysis is a technique to adjust the sample series in such a way so
that it is referenced to for example the mechanical speed of the machine. The
features extracted would thus be similar even at different machine speeds. This
could enable detection of incipient faults such as broken damper bars that rely on
acceleration in the machine to be apparent.
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Appendix A

Available data

A summary of the available measurement series is presented in Table A.1.

Table A.1: The measurement series available as well as the machine condition.
Second and third columns are the number of turns short-circuited in the field
windings of poles 13 and 6, respectively. Each test condition was sampled
simultaneously with two sensors.

Case Pole 13 Pole 6 Sample rate Loading Comment
1 0 turns 0 turns 10 kHz No-load Cold machine
2 0 turns 0 turns 50 kHz No-load Cold machine
3 0 turns 0 turns 10 kHz Full-load Cold machine
4 0 turns 0 turns 50 kHz Full-load Cold machine
5 10 turns 0 turns 10 kHz Full-load -
6 10 turns 0 turns 50 kHz Full-load -
7 10 turns 0 turns 10 kHz No-load -
8 10 turns 0 turns 50 kHz No-load -
9 7 turns 0 turns 10 kHz No-load -
10 7 turns 0 turns 50 kHz No-load -
11 7 turns 0 turns 10 kHz Full-load -
12 7 turns 0 turns 50 kHz Full-load -
13 3 turns 0 turns 10 kHz Full-load -
14 3 turns 0 turns 50 kHz Full-load -
15 3 turns 0 turns 10 kHz No-load -
16 3 turns 0 turns 50 kHz No-load -
17 2 turns 0 turns 10 kHz No-load -
18 2 turns 0 turns 50 kHz No-load -
19 2 turns 0 turns 10 kHz Full-load -
20 2 turns 0 turns 50 kHz Full-load -
21 1 turns 0 turns 10 kHz Full-load -
22 1 turns 0 turns 50 kHz Full-load -
23 1 turns 0 turns 10 kHz No-load -
24 1 turns 0 turns 50 kHz No-load -
25 10 turns 10 turns 10 kHz No-load -
26 10 turns 10 turns 50 kHz No-load -
27 10 turns 10 turns 10 kHz Full-load -

Continued on next page
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A. AVAILABLE DATA

Case Pole 13 Pole 6 Sample rate Loading Comment
28 10 turns 10 turns 50 kHz Full-load -
29 10 turns 3 turns 10 kHz Full-load -
30 10 turns 3 turns 50 kHz Full-load -
31 10 turns 3 turns 10 kHz No-load -
32 10 turns 3 turns 50 kHz No-load -
33 3 turns 10 turns 10 kHz No-load -
34 3 turns 10 turns 50 kHz No-load -
35 3 turns 10 turns 10 kHz Full-load -
36 3 turns 10 turns 50 kHz Full-load -
37 0 turns 0 turns 10 kHz Full-load Warm machine
38 0 turns 0 turns 50 kHz Full-load Warm machine
39 0 turns 0 turns 10 kHz No-load Warm machine
40 0 turns 0 turns 50 kHz No-load Warm machine
41 0 turns 0 turns 10 kHz No-load Reversed direction of rotation
42 0 turns 0 turns 50 kHz No-load Reversed direction of rotation
43 0 turns 0 turns 10 kHz Full-load Reversed direction of rotation
44 0 turns 0 turns 50 kHz Full-load Reversed direction of rotation
45 0 turns 0 turns 10 kHz Full-load Reversed polarity of excitation
46 0 turns 0 turns 50 kHz Full-load Reversed polarity of excitation
47 0 turns 0 turns 10 kHz No-load Reversed polarity of excitation
48 0 turns 0 turns 50 kHz No-load Reversed polarity of excitation
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Appendix B

Implementation

This appendix contains the code implementation as written. Imports and dependencies
are not included. The complete implementation with accompanying scripts and depen-
dencies is also available in a more accessible form at GitHub, access to which can be given
upon request. Note that these are Jupyter Notebook files and not ".py", so Jupyter Note-
book in addition to Python is necessary to run them. In the interest of transparency and
reproducibility, the entire implementation is included.
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B.1. DATA MANAGEMENT B. IMPLEMENTATION

B.1 Data management
The following code loads a data set from several CSV files into a data frame, labels and
groups each measurement series.

1 import pandas as pd
2 import numpy as np
3 import math
4

5 import math
6

7 def add_CSV(CSV_dataframe , label , description , file_path , channels_of_interest ,OSSid):
8 # Appends a measurement series extracted from a CSV onto a provided DataFrame.
9 # label is the number of short circuited turns.

10 # description is a description of the machine state.
11 # channels_of_interest are which columns in the CSVs that contain measurements.
12

13

14 # Finding the sampling frequency.
15 description_file = pd.read_csv(’{0}. csv’.format(file_path),sep=’:’,header=None ,

nrows =3)
16 sampling_freq = int(math.ceil ((1/( float(description_file.iloc [1 ,1]))))) # All of

this is needed to read the text and convert it into an integer.
17

18 # Extracting sample series.
19 measurements = pd.read_csv(’{0}. Wfm.csv’.format(file_path),sep=’;’,header=None)
20 CSV_dataframe = CSV_dataframe.append ({’measurements ’:measurements ,
21 ’channels_of_interest ’:channels_of_interest ,
22 ’condition ’:label ,
23 ’description ’:description ,
24 ’sampling_freq ’:sampling_freq ,
25 ’OSSid’:OSSid},ignore_index=True)
26

27 return CSV_dataframe
28

29

30 data_set_file_path = ’Data sets/ingrid15052019/’ # Location of measurement CSV’s in file
hierarchy.

31 file_paths = [’{0}{1} ’.format(data_set_file_path , i) for i in range (2 ,49+1)] # Generate
all the file paths.

32 channels_of_interest = [3,4] # The columns in the CSVs that contain measurements.
33 df_CSVs = pd.DataFrame(columns =[’measurements ’,’channels_of_interest ’,
34 ’condition ’, ’description ’,’sampling_freq ’,’OSSid’])
35

36 labels = [0,0,0,0,10,10,10,10,
37 7,7,7,7,3,3,3,3,
38 2,2,2,2,1,1,1,1,
39 20,20,20,20,13,13,13,13,
40 13,13,13,13,0,0,0,0,
41 0,0,0,0,0,0,0,0] # The number of ITSC of each measurement series.
42 OSSids = [0,0,2,2,4,4,6,6,
43 8,8,10,10,12,12,14,14,
44 16,16,18,18,20,20,22,22,
45 24,24,26,26,28,28,30,30,
46 32,32,34,34,36,36,38,38,
47 40,40 ,42,42,44,44 ,46,46]
48 descriptions = []
49

50 for label in labels:
51 if label == 0:
52 descriptions.append(’Healthy ’)
53 else:
54 descriptions.append(’Faulty ’)
55

56

57 for i in range(len(file_paths)):
58 df_CSVs = add_CSV(df_CSVs , labels[i], descriptions[i], file_paths[i],

channels_of_interest , OSSids[i])
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B.2 Data segmentation

The following code contains functions which segment the OSSes into RSSes in the man-
ner described in Section 3.2. Each original sample series is partitioned into 7-period-long
reduced sample series and stored along with their conditions, sampling frequency and
other identifiers.

1 def is_valid_crossing(position , data_series , validation_length):
2 # Checks that the series of samples after "position" are all positive.
3 is_valid = True
4 validation_position = position
5 sum_of_samples = 0.0
6 for i in range(validation_length):
7 current_sample = data_series[position + i]
8 sum_of_samples += current_sample
9 if (( current_sample < 0) or (sum_of_samples < 0)):

10 validation_position += i
11 is_valid = False
12 break
13

14 return is_valid , validation_position
15

16

17 def find_zero_crossing(search_from , data_series ,
18 sampling_period , validation_ratio):
19 # Finds and returns the first rising zero crossing in the signal after ...
20 # the time "search_from", using zero -crossing.
21 # "data_series" is the list structure with the signal.
22 # "sampling_period" is the signal ’s sampling period.
23 # "validation_ratio" is the length of the validation check , given in ...
24 # "synchronous_periods ". Should be between 0.1 and 0.35.
25

26 current_pos = int(search_from/sampling_period)
27

28

29 while (data_series[current_pos] > 0): # Fast forward to a lightly zero -crossing
point.

30 current_pos += 1
31 while (data_series[current_pos] < 0):
32 current_pos += 1
33 current_pos -= 10
34

35 validated_crossing = False # True if "current_pos" is a validated zero -crossing ,
False otherwise.

36 validation_length = int ((0.02/ sampling_period)*validation_ratio)
37

38 while not validated_crossing: # Iterate through the samples looking for a zero -
crossing.

39 has_crossed_upwards = False # True if "current_pos" has just risen above zero ,
reset every cycle.

40

41 while not has_crossed_upwards:
42 if (data_series[current_pos] > 0):
43 has_crossed_upwards = True
44 else:
45 current_pos += 1
46

47 validated_crossing , current_pos = is_valid_crossing(current_pos ,
48 data_series ,
49 validation_length)
50

51 if not validated_crossing:
52 current_pos += 1
53

54 crossing_int = current_pos
55 crossing_time = crossing_int*sampling_period
56

57 return crossing_time , crossing_int
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58

59

60 def return_period(data_series , search_from =0,
61 sampling_freq =50000 , synchronous_periods =7):
62 # synchronous_periods refer to the electrical periods. The mechanical rotation

period of the machine is 7.1333 Hz. We need at least 50/7.13 = 7 to capture an
entire period of rotation.

63 # data_series is a list of values.
64 time_window = synchronous_periods *0.02 # The number of electrical periods within the

window we’re looking at.
65 sampling_period = 1/ sampling_freq
66 start_time , start_int = find_zero_crossing(search_from , data_series ,
67 sampling_period , 0.1)
68 end_time , end_int = find_zero_crossing(start_time + time_window - 0.005,
69 data_series , sampling_period , 0.1)
70

71 data_snippet = data_series[start_int:end_int]
72

73 time_series = np.linspace(0, end_time - start_time , len(data_snippet)).tolist ()
74 return (start_time , end_time), (start_int , end_int), data_snippet , time_series
75

76

77 def partition_sample_series(raw_data , OSSid , condition ,
78 data_frame=False , description=None ,
79 sampling_freq =50000 , synchronous_periods =7,
80 channels_of_interest =[1], skip_one=True ,
81 RSS_per_CSV = -1):
82 # Partitions a multichannel dataframe containing time -series data into ...
83 # several several smaller times -series of synchronous_periods length.
84 # Continues until the end of the OSS or RSS_per_CSV.
85 # raw_data is the imported sample data.
86 # OSSid is the sample series number.
87 # data_frame is the data structure the data is added to.
88 # skip_one is an option to skip one electrical period before capturing next sample.
89 # synchronous_periods is the number of electrical periods in each RSS.
90 # RSS_per_CSV is the number of RSS to extract from each OSS. If ...
91 # set to -1, it will extract until end of OSS.
92

93 number_of_samples = raw_data.shape [0]
94 RSSid = 0
95 for channel in channels_of_interest:
96

97 if (RSS_per_CSV < 0):
98 number_of_RSS = float(’-inf’)
99 else:

100 number_of_RSS = 0
101

102 end_int = 0
103 if channel == 3:
104 data_series = [-i for i in raw_data.iloc[:,channel ]] # This is due to the

sensors being mounted with opposite polatity in the machine.
105 else:
106 data_series = [i for i in raw_data.iloc[:,channel ]]
107 while (end_int + (synchronous_periods + 0.5) *0.02* sampling_freq <

number_of_samples):
108 #print(’number_of_RSS is {0}, RSS_per_CSV is {1}, channel is {2}’. format(

number_of_RSS , RSS_per_CSV , channel))
109

110 end_time = end_int/sampling_freq
111 start_end_time , start_end_int , data_snippet , time_series = return_period(

data_series , search_from=end_time ,
112

sampling_freq=sampling_freq ,
113

synchronous_periods=synchronous_periods)
114 if skip_one:
115 end_int = start_end_int [1] + int(sampling_freq *0.015) # The 3/4 period

added shifts the sampling window to make fault conditions appear at new locations in
each consecutive RSS.

116 else:
117 end_int = start_end_int [1] - int(sampling_freq *0.003)
118

119 samples = pd.DataFrame ({’time’:time_series ,’data’:data_snippet })
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120

121 data_frame = data_frame.append ({’OSSid’:OSSid ,
122 ’RSSid ’:RSSid ,
123 ’sampling_freq ’:sampling_freq ,
124 ’condition ’:condition ,
125 ’description ’:description ,
126 ’samples ’:samples}, ignore_index=True)
127 RSSid += 1
128 number_of_RSS += 1
129 if (number_of_RSS >= RSS_per_CSV): # Stop creating RSS when RSS_per_CSV is

reached.
130 break
131 OSSid += 1
132 return data_frame , OSSid

The functions above were applied in the following manner:

1 RSS_data_frame = pd.DataFrame(columns = [
2 ’OSSid ’, ’RSSid’,
3 ’sampling_freq ’,
4 ’condition ’,
5 ’description ’,
6 ’samples ’
7 ])
8

9 OSSid = 0
10 for i, CSV in df_CSVs.iterrows (): # For every OSS extracted from the CSV files.
11 # Partition into RSSes.
12 RSS_data_frame , OSSid = partition_sample_series(
13 CSV[’measurements ’],
14 CSV[’OSSid ’],
15 CSV[’condition ’],
16 data_frame=RSS_data_frame ,
17 description=CSV[’description ’],
18 channels_of_interest=CSV[’channels_of_interest ’],
19 sampling_freq=CSV[’sampling_freq ’],
20 synchronous_periods =7,
21 RSS_per_CSV = -1
22 )
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B.3 Feature extraction
The code for feature extraction is included below.

B.3.1 FFT

The following code applies an FFT to each RSS and stores the results as described in
Section 3.3.1.

1 from scipy.fftpack import fft
2 from scipy import signal
3 from cmath import exp , pi
4

5

6 def FFT(data_series , sampling_freq , window=’hann’, plot = False):
7 # Performs an FFT of the data_series.
8 # window is the window function name. Reference: https :// docs.scipy.org/doc/scipy/

reference/signal.windows.html#module -scipy.signal.windows
9 samples = len(data_series)

10

11 if window:
12 w = signal.get_window(window , samples)
13 else:
14 w = np.ones(samples)
15 FFT_raw = fft(data_series*w)
16

17 FFT_transform = np.abs(FFT_raw [: samples //2])/max(np.abs(FFT_raw [: samples //2]))
18 FFT_frequencies = np.linspace(
19 0.0,
20 sampling_freq /(2.0) ,
21 int(samples /2)
22 )
23

24 return FFT_transform , FFT_frequencies
25

26 def compute_all_FFTs(df, padded_sample_length =-1):
27 # Computes FFTs for every time series in the given data frame.
28 # df is the data frame containing the time series.
29 # padded_sample_length is the length to pad the signal to, ...
30 # this is done due to the FFT algorithm returning frequency ...
31 # bins according to the length of the input signal.
32

33 start = time.time()
34 FFTs = []
35

36 for index , sample in df.iterrows (): # Iterate through the data frame and apply the
FFT to each RSS.

37 # sample_length = int (0.14* sample[’sampling_freq ’])
38 if padded_sample_length > 0:
39 #print(sample_length)
40 pad_length = padded_sample_length -len(sample[’samples ’][’data’])
41 series = (np.pad(sample[’samples ’][’data’], (0, pad_length),’constant ’))
42 else:
43 series = sample[’samples ’][’data’]
44 FFTtransform , FFTfrequencies = FFT(series , sample[’sampling_freq ’])
45 FFT_trans_freq = {
46 ’frequencies ’:FFTfrequencies ,
47 ’transform ’:FFTtransform
48 }
49 FFTs.append(FFT_trans_freq)
50 df[’FFT’] = FFTs
51

52 end = time.time()
53 print("- FFT run time is %.4f seconds." % (end - start))
54 print("- Equivalent to %.2f seconds run time per sample." % ((end - start)/df.shape

[0]))
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55

56 def FFT_selected_frequencies(time_series , sampling_freq , frequencies , window=’hann’):
57 # This is an implementation of the DFT. It is less ...
58 # efficient than the FFT , but allows choice of ...
59 # frequencies of interest and does not necessitate ...
60 # padding of the signal.
61 # time_series is the signal to be analysed.
62 # sampling_freq is the sampline frequency of the signal
63 # frequecies is a list of frequencies of interest.
64 # window is the window
65

66 transform = []
67 N = len(time_series)
68 indices = [i for i in range(N)]
69

70 if window:
71 w = signal.get_window(window , N)
72 else:
73 w = np.ones(N)
74

75 windowed_time_series = time_series*w
76

77 for frequency in frequencies:
78 one_freq = 0 + 0j
79 for n in indices:
80 k = windowed_time_series[n]
81 i = exp(-2j*pi*n*( frequency/sampling_freq))
82 one_freq += k*i
83

84 transform.append(abs(one_freq))
85

86 transform = transform/max(transform) # Normalisation
87

88 return transform , frequencies

The functions above were applied to the output of the segmentation functions in the
following manner, note that the padded sample length is chosen so that the FFT returns
frequencies at exact 50/7 intervals:

1 compute_all_FFTs(RSS_data_frame , padded_sample_length =7002)

B.3.2 Discrete wavelet transform wavelet energies

The following code applies an DWT to each RSS described in Section 3.3.2. Wavelet
energies are extracted from each DWT and added as features.

1 import pylab
2 import pywt
3 import math
4 from scipy.signal import resample
5

6 def IWE(coeffs): # Instantaneous wavelet energy.
7 # coeffs is a DWT.
8

9 num_decomp = len(coeffs) # The number of decompositions.
10 energy_spec = [0. for i in range(num_decomp)]
11

12 for level in range(num_decomp): # For every decomposition level.
13 num_coeffs = len(coeffs[level ]) # The number of coefficients at the current

level.
14

15 for coeff in range(0,num_coeffs -1):
16 energy_spec[level] = energy_spec[level] + (coeffs[level ][ coeff])**2
17

18 energy_spec[level] = math.log10(energy_spec[level ]/ num_coeffs)
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19

20 return energy_spec
21

22 def TWE(coeffs): # Teager wavelet energy.
23 # coeffs is a DWT.
24

25 num_decomp = len(coeffs) #The number of decompositions.
26 energy_spec = [0. for i in range(num_decomp)]
27

28 for level in range(0,num_decomp -1): # For every decomposition level.
29 num_coeffs = len(coeffs[level ]) # The number of coefficients at the current

level.
30

31 for coeff in range(1,num_coeffs -1):
32 energy_spec[level] = energy_spec[level] + abs(( coeffs[level ][ coeff])**2 -
33 coeffs[level ][coeff -1]* coeffs[level][ coeff +1])
34

35 energy_spec[level] = math.log10(energy_spec[level ]/ num_coeffs)
36 return energy_spec
37

38 def HWE(coeffs): # Hierarchical wavelet energy.
39 # coeffs is a DWT.
40

41 num_decomp = len(coeffs) # The number of decompositions.
42 energy_spec = [0. for i in range(num_decomp)]
43

44 for level in range(0,num_decomp -1): # For every decomposition level.
45 num_coeffs = len(coeffs[level ]) # The number of coefficients at the current

level.
46

47 if level == 0:
48 for coeff in range(0,num_coeffs -1):
49 energy_spec[level] = energy_spec[level] + (coeffs[level ][ coeff])**2
50 else:
51 last_num_coeffs = len(coeffs[level -1])
52 for coeff in range(int((num_coeffs -last_num_coeffs)/2-1),
53 int(( num_coeffs+last_num_coeffs)/2-1)):
54 energy_spec[level] = energy_spec[level] + (coeffs[level ][ coeff])**2
55

56 energy_spec[level] = math.log10(energy_spec[level ]/ num_coeffs)
57 return energy_spec
58

59 def RWE(coeffs): # Relative wavelet energy.
60 # coeffs is a DWT.
61

62 num_decomp = len(coeffs) # The number of decompositions.
63 energy_spec = [0. for i in range(num_decomp)]
64

65 for level in range(0,num_decomp -1): # For every decomposition level.
66 num_coeffs = len(coeffs[level ]) # The number of coefficients at the current

level.
67

68 for coeff in range(0,num_coeffs -1):
69 energy_spec[level] = energy_spec[level] + (coeffs[level ][ coeff])**2
70

71 energy_spec[level] = energy_spec[level]/ num_coeffs
72 total_energy = sum(energy_spec)
73 return [i/total_energy for i in energy_spec]
74

75 def compute_wavelet_energies(time_series , wavelet=’haar’, level =12):
76 # Computes the wavelet energies of the time series DWT.
77 # time_series is the measurement series to be analysed.
78 # wavelet is the selected wavelet , by default ’haar ’.
79 # level is the number of decomposition levels.
80

81 wavelet_energies = {’IWE’:[],’TWE’:[],’HWE’:[],’RWE’:[]} # Empty dictionary to hold
the wavelet energies.

82

83 # Since the measurements are taken of a stationary system , ...
84 # a single measurement series can be repeated in succession.
85 # This is effectively padding with the measurement itself.
86 # This is necessary for the proper functioning of the algorithm.
87 DWT_coeffs = pywt.wavedec(time_series , wavelet , mode=’periodic ’, level=level , axis
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=-1)
88

89 wavelet_energies[’IWE’] = IWE(DWT_coeffs) # Each function returns a list of the
energies of each level.

90 wavelet_energies[’TWE’] = TWE(DWT_coeffs)
91 wavelet_energies[’HWE’] = HWE(DWT_coeffs)
92 wavelet_energies[’RWE’] = RWE(DWT_coeffs)
93

94 for energy_type in wavelet_energies:
95 wavelet_energies[energy_type ]. reverse ()
96

97 return wavelet_energies
98

99 def compute_all_wavelet_energies(df, wavelet=’haar’, level =12):
100 # Iterates through the data frame to compute wavelet energies ...
101 # for every time series.
102 # df is the dataframe containing the time_series.
103 # wavelet is the selected wavelet , by default ’haar ’.
104 # level is the number of decomposition levels.
105

106 start = time.time()
107 wavelet_energies = []
108

109 num_RSS = df.shape [0]
110 print_interval = int(num_RSS /100)
111

112 for index , sample in df.iterrows (): # Iterate through the data frame and extract
wavelet enegies from each RSS.

113

114 if (sample[’sampling_freq ’] == 10000):
115 # The 10k sampling frequency time series are upsampled to 50k...
116 # to facilitate reusing the code for both sampling frequencies ...
117 # and so that the wavelet energies represent the same frequency ...
118 # ranges.
119 sample_length = 5*len(sample[’samples ’][’data’])
120 time_series = resample(sample[’samples ’][’data’], sample_length) # Upsampled

by a factor of 5.
121 time_series = np.tile(time_series , 4) # Repeated 4 times , equivalent to 4

mechanical periods.
122 else:
123 time_series = np.tile(sample[’samples ’][’data’], 4) # Repeated 4 times ,

equivalent to 4 mechanical periods.
124

125 wavelet_energies.append(compute_wavelet_energies(time_series ,
126 wavelet=wavelet ,
127 level=level))
128 if (index%print_interval == 0 or (index +1)== num_RSS): # To not spam print

statements.
129 # Print the progress
130 num_length = len(str(num_RSS)) # Formatting aid
131 print(’\rCalculation is {0:6.2f}% complete. Wavelet energies calculated for

RSS number {1:{3}} out of {2}.’.format( ((( index +1)/num_RSS)*100), index+1, num_RSS ,
num_length), end=’’ ) # To see progress.

132

133

134 df[’wavelet_energies ’] = wavelet_energies
135 end = time.time()
136 print("- DWT run time is %.4f seconds." % (end - start))
137 print("- Equivalent to %.2f seconds run time per sample." % ((end - start)/df.shape

[0]))

The functions above were applied to the output of the segmentation functions in the
following manner:

1 compute_all_wavelet_energies(RSS_data_frame)
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B.3.3 TSFRESH

The implementation of TSFRESH as described in Section 3.3.3 is shown below. Note that
the majority of the code is related to properly formatting the output of the segmentation
functions.

1 from tsfresh import extract_features , extract_relevant_features
2 from tsfresh.feature_extraction import ComprehensiveFCParameters , MinimalFCParameters ,

EfficientFCParameters
3 from scipy.signal import resample
4 from numpy import linspace
5

6

7 def return_data(df):
8 # Iterates through the RSS data frame and yields a single time step ...
9 # consecutively.

10 # df is the RSS data frame.
11

12

13 identity = 0
14 for index , sample in df.iterrows ():
15

16 single_sample = pd.DataFrame(columns = [’id’, ’time’, ’flux’])
17 sample_length = len(sample[’samples ’][’data’])
18 if (sample[’sampling_freq ’] == 50000):
19 # The 50k sampling frequency time series are downsampled to 10k...
20 # to facilitate reusing the code for both sampling frequencies ...
21 # and so that the wavelet energies represent the same frequency ...
22 # ranges.
23 downsampled_length = int(sample_length /5)
24 single_sample[’time’] = linspace(sample[’samples ’][’time’].iat[0], sample[’

samples ’][’time’].iat[-1], num=downsampled_length)
25 single_sample[’flux’] = resample(sample[’samples ’][’data’],

downsampled_length) # Downsampled by a factor of 5.
26 single_sample[’id’] = {’id’:([ identity ]* downsampled_length)}[’id’]
27 else:
28 single_sample[’time’] = sample[’samples ’][’time’]
29 single_sample[’flux’] = sample[’samples ’][’data’]
30 single_sample[’id’] = {’id’:[ identity ]* sample_length }[’id’]
31

32 identity += 1
33 yield single_sample
34

35 def compute_TSFRESH(df, extraction_settings):
36

37 if extraction_settings is None:
38 extraction_settings = EfficientFCParameters ()
39

40 # Reformatting to fit with TSFRESH
41 time_series_df = pd.concat(return_data(df), ignore_index=True , sort=False)
42

43

44 start = time.time()
45 if __name__ == "__main__":
46 tsfresh_df = extract_features(time_series_df , column_id=’id’, column_sort=’time’

,
47 default_fc_parameters=extraction_settings ,
48 impute_function= None)
49

50 end = time.time()
51 print("- TSFRESH run time is %.4f seconds." % (end - start))
52 print("- Equivalent to %.2f seconds run time per sample." % ((end - start)/df.shape

[0]))
53

54 return tsfresh_df

The functions above were applied to the output of the segmentation functions in the
following manner:
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1 settings = ComprehensiveFCParameters ()
2 settings.pop(’fft_coefficient ’, None) # Removing fourier calculations since FFTs of the

most interesting frequencies are computed above.
3 settings.pop(’fft_aggregated ’, None)
4 tsfresh_df = compute_TSFRESH(RSS_data_frame , settings)
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B.4 Formatting
The outputs from feature extraction was passed into formatting where the FFT, TS-
FRESH and DWT features are formatted into the same data structure. This was done
as shown below.

1 def initialise_ML_data_frame(source_df , target_df , two_class=True):
2 # This function initialises a data frame to hold the ML...
3 # features that is suitably formatted for the purpose.
4 # source_df is the source data frame.
5 # target_df is the target data frame to be initialised.
6 # two_class is true if a boolean classification is sought after ...
7 # and false if it will be used for multi class classification.
8

9 column_labels = [’label’,’OSSid’]
10 sample_dict = {k:[ ] for k in column_labels} # Makes an empty dictionary.
11

12 for index , sample in source_df.iterrows (): # Iterated through all the RSS with
associated FFTs.

13

14 # Adds the OSS id and target label.
15 sample_dict[’OSSid’]. append(sample[’OSSid ’]) # The OSS that the RSS was taken

from.
16 sample_dict[’label’]. append(sample[’condition ’]) # The label , i.e. the fault

condition.
17

18 if two_class: # Make labels boolean is two class is true.
19 for i in sample_dict[’label’]:
20 if i > 0:
21 i = 1
22

23 for k in column_labels:
24 target_df[k] = sample_dict[k]
25

26 def insert_FFTs(source_df , target_df , freq_range =500, two_class=True):
27 # This function extracts the FFTs for every RSS from the source data ...
28 # frame and inserts them into a target data frame that is returned.
29 # source_df is the source data frame.
30 # target_df is the data frame the FFTs are inserted into. If none is...
31 # provided , it will make one.
32

33 column_labels = []
34

35 if (target_df.empty):
36 initialise_ML_data_frame(source_df , target_df , two_class=two_class)
37

38 source_df.query(’condition ==1’)
39

40 for i in source_df.query(’sampling_freq ==50000 ’).iloc [0][’FFT’][’frequencies ’]:
41 if (i > (freq_range +1) ):
42 break
43 column_labels.append("FFT__ {0:.1f}_Hz".format(i))
44

45 sample_dict = {k:[ ] for k in column_labels} # Makes an empty dictionary.
46

47 for index , sample in source_df.iterrows (): # Iterates through all the RSS with
associated FFTs.

48

49 # Normalising the FFT if not done already.
50

51 if sample[’sampling_freq ’] == 50000:
52 RSS_FFT_values = [sample[’FFT’][’transform ’][k] for k in range(len(

column_labels))]
53 else:
54 RSS_FFT_values = [sample[’FFT’][’transform ’][k*5] for k in range(len(

column_labels))]
55 # To only include the integer multiples of the mechanical ...
56 # frequency because the 10000 Hz samples have 5 times more freq bins in...
57 # the relevant freq range than the 50k Hz samples.
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58

59 norm = max(RSS_FFT_values) # Normalising the FFT.
60 RSS_FFT_values = RSS_FFT_values/norm # Normalising the FFT.
61

62 for i in range(len(column_labels)): # Adds the FFT values.
63

64 sample_dict[column_labels[i]]. append(RSS_FFT_values[i])
65

66

67

68 for k in column_labels:
69 target_df[k] = sample_dict[k]
70

71 def insert_TSFRESH(source_df , target_df , ts_df , two_class=True):
72 # Inserts the TSFRESH features into a target data frame that is returned.
73 # TSFRESH_df is the source data frame.
74 # target_df is the data frame the features are inserted into. If none is...
75 # provided , it will make one.
76

77 if (target_df.empty):
78 initialise_ML_data_frame(source_df , target_df , two_class=two_class)
79

80 for col in ts_df.columns:
81 target_df[col] = ts_df[col]
82

83 def insert_DWT_energies(source_df , target_df , energy_types =[], levels =[], two_class=True
):

84 # Inserts the DWT features into a target data frame.
85 # source_df is the source data frame.
86 # target_df is the data frame the features are inserted into. If none is...
87 # provided , it will make one.
88 # energy_types is a list of strings of the types of wavelet energies to...
89 # include. The options are IWE , TWE , HWE and RWE.
90 # levels is a list of integers of the decomposition levels to include.
91

92 if (target_df.empty): # Initialises the target_df if it not already.
93 initialise_ML_data_frame(source_df , target_df , two_class=two_class)
94

95 if not energy_types: # Includes all wavelet energies if no subset is selected.
96 energy_types = list(source_df[’wavelet_energies ’][0]. keys())
97 if not levels: # Includes all decomposition levels if no subset is selected.
98 levels = [i for i in range(len(source_df[’wavelet_energies ’][0][ energy_types

[0]]))]
99

100 column_labels = [] # Wavelet energy key list.
101 for energy_type in energy_types:
102 for level in levels:
103 column_labels.append(’DWT__ {0}{1} ’.format(energy_type ,level))
104

105

106 sample_dict = {k:[] for k in column_labels} # Makes an empty dictionary.
107

108 for index , sample in source_df.iterrows (): # Iterates through all the RSS with
associated DWT energies.

109 for energy_type in energy_types:
110 for level in levels:
111 keyword = ’DWT__ {0}{1} ’.format(energy_type , level)
112 energy = sample[’wavelet_energies ’][ energy_type ][ level]
113 sample_dict[keyword ]. append(energy)
114

115 for k in column_labels:
116 target_df[k] = sample_dict[k]

The functions above were applied to the output of the segmentation functions in the
following manner:

1 two_class = False # Whether its boolean or multiclass.
2 ML_df = pd.DataFrame () # Initialises an empty data frame.
3

4 insert_FFTs(RSS_data_frame , ML_df , freq_range =500, two_class=two_class) # Adds frequency
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magnitudes.
5

6 energy_types = [’IWE’, ’TWE’, ’HWE’, ’RWE’] # The energy types to include.
7 levels = [i for i in range(0, 12+1)] # The decomposition levels to include.
8 insert_DWT_energies(RSS_data_frame , ML_df , energy_types=energy_types , levels=levels ,

two_class=two_class) # Adds DWT energies.
9

10 insert_TSFRESH(RSS_data_frame , ML_df , tsfresh_df , two_class=two_class) # Adds TSFRESH
features.
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B.5 Exploratory data analysis

In this appendix section, the code for the EDA is presented. Since the EDA is a series
of smaller tests and procedures, it is shown below not as a monolithic block of code but
rather as smaller code snippets with explanatory text associated.

B.5.1 Feature pruning

Uninformative features were removed. Any feature that was constant across all samples
would not aid in classification and was removed to save training/classification time. The
code is shown below.

1 # All features with zero variance are removed using a query statement.
2 ML_dataset_no_var = ML_dataset_raw.loc[:, ML_dataset_raw.var() != 0.0]
3

4 # Print the number of features removed , the total remaining number of features , and a
list of the removed features.

5 print(’{0} constant features were removed.’.format(ML_dataset_raw.shape [1] -
ML_dataset_no_var.shape [1]))

6 print(’Number of samples is {0}. Number of features is now {1}, down from {2}.’.format(
ML_dataset_no_var.shape[0], ML_dataset_no_var.shape[1]-2, ML_dataset_raw.shape [1] -2)
)

7 print(’The features removed were:\n’)
8 for removed_feature in ML_dataset_raw.columns[ML_dataset_raw.var() == 0.0]:
9 print(removed_feature)

This yielded the output as shown below. The 50 Hz component of the FFT, the lowest
levels of Teager, hierarchical and relative wavelet energies, and 54 of the features generated
by TSFRESH were invariant and were thus removed from the data set.

58 constant features were removed.
Number of samples is 3552. Number of features is now 417, down from 475.
The features removed were:

FFT__50.0_Hz
DWT__TWE0
DWT__HWE0
DWT__RWE0
flux__augmented_dickey_fuller__autolag_"AIC"__attr_"usedlag"
flux__autocorrelation__lag_0
flux__large_standard_deviation__r_0.05
flux__large_standard_deviation__r_0.1
flux__large_standard_deviation__r_0.15000000000000002
flux__large_standard_deviation__r_0.2
flux__large_standard_deviation__r_0.25
flux__large_standard_deviation__r_0.30000000000000004
flux__large_standard_deviation__r_0.4
flux__large_standard_deviation__r_0.45
flux__large_standard_deviation__r_0.5
flux__large_standard_deviation__r_0.55
flux__large_standard_deviation__r_0.6000000000000001
flux__large_standard_deviation__r_0.65
flux__large_standard_deviation__r_0.7000000000000001
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flux__large_standard_deviation__r_0.75
flux__large_standard_deviation__r_0.8
flux__large_standard_deviation__r_0.8500000000000001
flux__large_standard_deviation__r_0.9
flux__large_standard_deviation__r_0.9500000000000001
flux__number_crossing_m__m_-1
flux__number_crossing_m__m_1
flux__partial_autocorrelation__lag_0
flux__range_count__max_0__min_1000000000000.0
flux__ratio_beyond_r_sigma__r_10
flux__ratio_beyond_r_sigma__r_2
flux__ratio_beyond_r_sigma__r_2.5
flux__ratio_beyond_r_sigma__r_3
flux__ratio_beyond_r_sigma__r_5
flux__ratio_beyond_r_sigma__r_6
flux__ratio_beyond_r_sigma__r_7
flux__symmetry_looking__r_0.0
flux__symmetry_looking__r_0.05
flux__symmetry_looking__r_0.1
flux__symmetry_looking__r_0.15000000000000002
flux__symmetry_looking__r_0.2
flux__symmetry_looking__r_0.25
flux__symmetry_looking__r_0.30000000000000004
flux__symmetry_looking__r_0.35000000000000003
flux__symmetry_looking__r_0.4
flux__symmetry_looking__r_0.45
flux__symmetry_looking__r_0.5
flux__symmetry_looking__r_0.55
flux__symmetry_looking__r_0.6000000000000001
flux__symmetry_looking__r_0.65
flux__symmetry_looking__r_0.7000000000000001
flux__symmetry_looking__r_0.75
flux__symmetry_looking__r_0.8
flux__symmetry_looking__r_0.8500000000000001
flux__symmetry_looking__r_0.9
flux__symmetry_looking__r_0.9500000000000001
flux__value_count__value_-1
flux__value_count__value_1
flux__variance_larger_than_standard_deviation

B.5.2 Rough inspection

Below is the code for a rough inspection of the features to spot outliers.

1 # Calculates the mean , standard deviation , minimum , maximum and the 25%, median and 75%
quartile of each feature across all samples.

2 description = ML_dataset_no_var.describe ()
3
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4 # Plots the mean , standard deviation , minimum , maximum and the 25%, median and 75%
quartile of each feature across all samples.

5 for j in range(1, description.shape [0]):
6 fig = plt.figure(1, figsize =(15 ,5))
7 value_type = description.index.values[j]
8 print(value_type)
9 col = description.take([j])

10

11 plt.plot([i for i in range(description.shape [1])], description.take([j]).transpose ()
, ’o’, markersize =3)

12

13 ax = fig.axes [0]
14 ax.set_xlabel(’Features ’)
15 if value_type == ’mean’:
16 ylabel = ’Mean’
17 elif value_type == ’std’:
18 ylabel = ’Standard deviation ’
19 else:
20 ylabel = value_type
21

22 ax.set_ylabel(’{0}’.format(ylabel))
23 plt.show()
24 fig.savefig(’Report_figures/method_EDA_feature_ {0}. eps’.format(value_type),
25 dpi=None , facecolor=’w’, edgecolor=’w’,
26 orientation=’portrait ’, papertype=None , format=None ,
27 transparent=False , bbox_inches=None , pad_inches =0.1,
28 frameon=None , metadata=None)

B.5.3 Correlation

Below is the code for calculation and visualisation of Pearson’s correlation. This code
generated Figures 3.5 and 3.6.

Calculation of the correlations between all features, including the target values.

1 from sklearn.preprocessing import StandardScaler
2

3 # Scales all feature columns for standard mean and variance.
4 scaler = StandardScaler ()
5 scaler.fit(ML_dataset_no_var)
6 ML_dataset_no_var_scaled = pd.DataFrame(scaler.transform(ML_dataset_no_var), columns=

ML_dataset_no_var.columns)
7

8 # Calculates auto - and inter correlations of all the features and stores the results to
a matrix

9 correlations = ML_dataset_no_var_scaled.iloc [: ,:]. corr()

Printing the features with the highest correlation to the target value.

1 # The correlation to the target value , i.e. the number of ITSC’s.
2 corr_to_target = correlations.iloc[0, 1: ML_dataset_no_var.shape [1]]
3

4 # Prints the 20 features most correlated with the target.
5 print("20 features most correlated with the target :")
6 print(corr_to_target.abs().sort_values(ascending=False).head (20))

This gave an output as shown below.

20 features most correlated with the target :
DWT__TWE9 0.890734
DWT__TWE8 0.886363
DWT__IWE10 0.861306
DWT__RWE10 0.856935

xix



B.5. EXPLORATORY DATA ANALYSIS B. IMPLEMENTATION

DWT__RWE11 0.826443
DWT__HWE10 0.811841
DWT__TWE10 0.810356
DWT__IWE11 0.786659
DWT__TWE11 0.556887
flux__longest_strike_above_mean 0.549258
flux__approximate_entropy__m_2__r_0.7 0.412482
DWT__TWE12 0.407188
flux__longest_strike_below_mean 0.395404
DWT__HWE11 0.359168
flux__approximate_entropy__m_2__r_0.1 0.300201
flux__linear_trend__attr_"pvalue" 0.250902
flux__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.4 0.217445
flux__cid_ce__normalize_True 0.211657
flux__time_reversal_asymmetry_statistic__lag_1 0.210167
flux__partial_autocorrelation__lag_1 0.206603
Name: label, dtype: float64

The code below generates and saves a plot of feature correlation to the target value. This
code generated Figure 3.7.

1 fig = plt.figure(1, figsize =(19 ,8))
2

3 plt.plot([i for i in range(1, ML_dataset_no_var_scaled.shape [1])], corr_to_target , ’o’,
markersize =6)

4 plt.axvline(x=72.5, color=’r’) # Demarking FFT and DWT portions.
5 plt.axvline(x=120.5 , color=’r’)# Demarking DWT and TSFRESH portions.
6

7 ax = fig.axes [0]
8 ax.set_xlabel(’Features ’)
9 ax.set_ylabel(’Correlation ’)

10

11 plt.show()
12 fig.savefig(’Report_figures/method_EDA_correlation.eps’,
13 dpi=None , facecolor=’w’, edgecolor=’w’,
14 orientation=’portrait ’, papertype=None , format=None ,
15 transparent=False , bbox_inches=None , pad_inches =0.1,
16 frameon=None , metadata=None)

The code below generates and saves a plot of the correlation matrix. This code generated
Figure 3.8.

1 fig = plt.figure(1, figsize =(19 ,16))
2 plt.matshow(correlations.abs(), fignum=1, vmax=1,vmin=0,cmap=’Blues’)
3 plt.axvline(x=70.5, color=’r’,lw=3) # Demarking FFT and DWT portions.
4 plt.axvline(x=120.5 , color=’r’,lw=3)# Demarking DWT and TSFRESH portions.
5 plt.axhline(y=70.5, color=’r’,lw=3) # Demarking FFT and DWT portions.
6 plt.axhline(y=120.5 , color=’r’,lw=3)# Demarking DWT and TSFRESH portions.
7 ax = fig.axes [0]
8 ax.set_ylabel(’Features ’)
9 ax.set_title(’Features ’, fontsize =20)

10

11 plt.colorbar ()
12 plt.show()
13

14 fig.savefig(’Report_figures/method_EDA_correlation_matrix.eps’,
15 dpi=None , facecolor=’w’, edgecolor=’w’,
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16 orientation=’portrait ’, papertype=None , format=None ,
17 transparent=False , bbox_inches=None , pad_inches =0.1,
18 frameon=None , metadata=None)

B.5.4 PCA and visualisation

Below is the code to compute a PCA and visualise its two first principal components.

Computing a PCA and printing the principal component variance.

1 from sklearn.decomposition import PCA
2 from sklearn.preprocessing import StandardScaler
3

4 # The data set is first copied.
5 X_PCA_dataset = ML_dataset_no_var.copy()
6

7 # Seperating into features and targets
8 y_PCA_dataset = X_PCA_dataset.pop(’label’)
9

10 # Remove OSSid labelling.
11 X_PCA_dataset.pop(’OSSid’)
12

13 # Standardising the data set and putting it into a pandas DataFrame.
14 scaler = StandardScaler ()
15 X_PCA_dataset = pd.DataFrame(scaler.fit_transform(X_PCA_dataset),
16 columns=X_PCA_dataset.columns ,
17 index=X_PCA_dataset.index)
18

19 # Initialising PCA model that conserves 95% of the variance , which is correlated with
information.

20 pca = PCA (.95)
21

22 # The PCA is fit on the data set.
23 pca.fit(X_PCA_dataset)
24

25 # Prints the variance ratios of the principal components generated.
26 print(’The PCA made {} PCA components to encompass 95% of data set variance.’.format(pca

.n_components_))
27 print(’The explained variance ratios are:’)
28 (pca.explained_variance_ratio_ *100)

This produced the following output.

The PCA made 31 PCA components to encompass 95% of data set variance.
The explained variance ratios are:

array([36.20323537, 15.44963767, 9.78029715, 7.75185411, 4.90343163,
3.30030116, 2.73598296, 1.95832954, 1.56094035, 1.37906103,
1.1014838 , 0.92292232, 0.82971246, 0.70810316, 0.63638894,
0.60981849, 0.57711614, 0.48254183, 0.47041873, 0.43192233,
0.40552671, 0.39160754, 0.35448156, 0.30238909, 0.29136357,
0.27726808, 0.26090209, 0.25614311, 0.25024009, 0.24036458,
0.23920348])

The code below transforms the feature set and plots the positions of each sample in the
first and second principal component plane. This code generated Figure 3.9.
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1 import matplotlib
2

3 # Plotting healthy and faulty samples along the first two principal components.
4

5 # The labels are changed from number of ITSCs to 1 for faulty and 0 for healthy.
6 for i in y_PCA_dataset:
7 if i < 0:
8 i= 1
9

10 # The data set is transformed into PCA space.
11 X_PCA_dataset_transformed = pca.transform(X_PCA_dataset)
12 x = X_PCA_dataset_transformed [:,0]
13 y = X_PCA_dataset_transformed [:,1]
14

15 # Each sample is shown as blue or red if it is healthy or faulty respectively.
16 label = y_PCA_dataset
17 colors = [’blue’,’red’]
18

19 # The first and second principal components are plotted against each other.
20 fig = plt.figure(figsize =(13 ,12))
21 plt.scatter(x, y, c=label , alpha = 1, cmap=matplotlib.colors.ListedColormap(colors))
22

23 ax = fig.axes [0]
24 ax.set_xlabel(’First principal component ’)
25 ax.set_ylabel(’Second principal component ’)
26

27 # The figure is saved.
28 fig.savefig(’Report_figures/method_EDA_PCA.eps’,
29 dpi=None , facecolor=’w’, edgecolor=’w’,
30 orientation=’portrait ’, papertype=None , format=None ,
31 transparent=False , bbox_inches=None , pad_inches =0.1,
32 frameon=None , metadata=None)
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B.6 Feature selection
In this appendix section the code for the feature selection implementation is shown along
with the code for pre-selection data set splitting.

1 # Before any feature selection , the data set must be split into training and test sets.
2 # This is to prevent that the features that we select are based on the test set , ...
3 # thereby including information from the test set into the training process.
4 # It is important that they are independent. If they are not , the results of the ...
5 # classification will be overly optimistic and unrealistic. In a production setting ...
6 # there would obviously not be future samples available when features are selected.
7

8 from sklearn.model_selection import GroupShuffleSplit
9

10 def split(dataset):
11 # Splits the dataset into test and train.
12

13 dataset.head()
14

15 dataset_copy = dataset.copy()
16

17 gss = GroupShuffleSplit(n_splits=1, test_size =0.15 , train_size=None , random_state =1)
# Split into training and testing sets , random_state is set to 1 so that the split

is equal for each split.
18

19 y = dataset_copy.pop(’label ’)
20 groups = dataset_copy.pop(’OSSid’)
21 X = dataset_copy
22

23

24 train_idx , test_idx = None , None
25

26 for train_idx , test_idx in gss.split(X, y, groups):
27 train_idx = train_idx
28 test_idx = test_idx
29

30 X_train = X.iloc[train_idx]
31 X_test = X.iloc[test_idx]
32

33 y_train = y.iloc[train_idx]
34 y_test = y.iloc[test_idx]
35

36 group_train = groups.iloc[train_idx]
37 group_test = groups.iloc[test_idx]
38

39 # Resetting indices to ease later work.
40 X_train.reset_index(drop=True , inplace=True)
41 X_test.reset_index(drop=True , inplace=True)
42 y_train.reset_index(drop=True , inplace=True)
43 y_test.reset_index(drop=True , inplace=True)
44 group_train.reset_index(drop=True , inplace=True)
45 group_test.reset_index(drop=True , inplace=True)
46

47

48 return X_train , X_test , y_train , y_test , group_train , group_test

B.6.1 Random forest feature selection

Below is the code for feature selection using random forest.

1 from sklearn import ensemble
2 from sklearn.feature_selection import SelectFromModel
3

4 # The data set is first split before any feature selection.
5 X_train_RF , X_test_RF , y_train_RF , y_test_RF , group_train_RF , group_test_RF = split(

ML_dataset)
6
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7 # A random forest ensemble is trained on the data.
8 sel = SelectFromModel(ensemble.RandomForestClassifier(n_estimators = 1000, criterion=’

gini’))
9

10 # The features that were most usefull for the RF are selected.
11 selected_feats_RF = X_train_RF.columns [(sel.get_support ())]
12

13 # The data set is pruned to only contain the selected features.
14 X_train_RF = X_train_RF.loc[:, selected_feats_RF]
15 X_test_RF = X_test_RF.loc[:, selected_feats_RF]
16

17 # The feature -selected data sets are stored in a tuple.
18 RF_data = (X_train_RF , X_test_RF ,
19 y_train_RF , y_test_RF ,
20 group_train_RF , group_test_RF)

B.6.2 TSFRESH

Below is the code for feature selection using the TSFRESH feature selection algorithm.

1 from tsfresh.feature_selection.relevance import calculate_relevance_table
2

3 # The data set is first split before any feature selection.
4 X_train_tsfresh , X_test_tsfresh , y_train_tsfresh , y_test_tsfresh , group_train_tsfresh ,

group_test_tsfresh = split(ML_dataset)
5

6 # The TSFRESH algorithm determines which features are relevant and which are not.
7 relevance_table = calculate_relevance_table(X_train_tsfresh ,
8 y_train_tsfresh ,
9 hypotheses_independent=False ,

10 ml_task=’classification ’,
11 fdr_level =0.05)
12

13 # A list of the relevant features is generated.
14 selected_feats_tsfresh = X_train_tsfresh.columns[relevance_table[’relevant ’]]
15

16 # The relevant features are extracted from the non -feature -selected data sets.
17 X_train_tsfresh = X_train_tsfresh.loc[:, selected_feats_tsfresh]
18 X_test_tsfresh = X_test_tsfresh.loc[:, selected_feats_tsfresh]
19

20 # The feature -selected data sets are stored in a tuple.
21 tsfresh_data = (X_train_tsfresh , X_test_tsfresh ,
22 y_train_tsfresh , y_test_tsfresh ,
23 group_train_tsfresh , group_test_tsfresh)
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B.7 Fault presence detection
In this appendix section the code the classifier construction, evaluation and selection is
shown along with the code for exporting results into LaTeX.

B.7.1 Boolean target values

In this code, the target labels are changed to only indicate fault presence instead of fault
severity. Fault detection is binary classification and the severity of the fault needs to be
changed to a Boolean indication of fault.

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 plt.rcParams.update ({’font.size’: 20}) # Setting the font size of the plots to 20. Use

plt.rcdefaults () to reset to default.
5

6 # Remove fault severity from target values.
7 # Target equals 1 indicates fault , and 0 indicates no fault.
8

9 def make_target_list_boolean(y_set):
10 # Replace non -zero values with 1.
11

12 for i in range(len(y_set)):
13 if y_set[i] != 0:
14 y_set[i] = 1
15 else:
16 y_set[i] = 0
17

18 def make_dataset_targets_boolean(dataset_tuple):
19 # This function replaces any target value ...
20 # other than 0 with 1.
21

22 X_train , X_test , y_train , y_test , group_train , group_test = dataset_tuple
23

24 make_target_list_boolean(y_train)
25 make_target_list_boolean(y_test)

The functions above were applied to the output of the feature selection process in the
following manner:

1 for dataset in datasets: # Go through every data set.
2 make_dataset_targets_boolean(dataset)

B.7.2 Classifier cross-validation pipeline

The following code implements the classifier cross-validation training and evaluation used
to evaluate classifiers in this thesis. It is created to be able to easily test several models
and reduce code repetition.

1 import time
2 from sklearn.metrics import accuracy_score , precision_score , recall_score , f1_score ,

roc_auc_score
3 from sklearn.model_selection import GroupKFold
4 from sklearn.preprocessing import StandardScaler
5

6 def single_set_run(X_train , X_test ,
7 y_train , y_test ,
8 classifier , results_dict):
9

10 # Scaling the data so that it is more suited for SVM and KNN
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11 scaler = StandardScaler ()
12 scaler.fit(X_train)
13 X_train_scaled , X_test_scaled = scaler.transform(X_train), scaler.transform(X_test)
14

15 # Training model
16 classifier.fit(X_train_scaled , y_train)
17

18 # Making predictions
19 start = time.time()
20 y_pred = classifier.predict(X_test_scaled)
21 end = time.time()
22 total_prediction_time = (end - start)*1000
23 prediction_time_per_sample = total_prediction_time/len(y_pred)
24

25

26 # Rating predictions
27 results_dict[’Accuracy ’]. append(accuracy_score(y_test , y_pred))
28 results_dict[’Sensitivity ’]. append(recall_score(y_test , y_pred))
29 results_dict[’Precision ’]. append(precision_score(y_test , y_pred))
30 results_dict[’F1-score’]. append(f1_score(y_test , y_pred))
31 results_dict[’ROC AUC’]. append(roc_auc_score(y_test , y_pred))
32 results_dict[’Pred. time per sample ’]. append(prediction_time_per_sample)
33

34 return results_dict
35

36

37 def train_and_test_classifiers(dataset_tuple , classifiers):
38 # This function takes in training and test sets along with accompanying ...
39 # labels and groupings and trains several classifiers on them. It uses ...
40 # K-fold validation and prints out the average metrics for each classifier.
41 # dataset_tuple is a tuple containing X_train , X_test , y_train , y_test , ...
42 # group_train and group_test , in that order.
43 # classifiers is a list of tuples with a string in the first position and...
44 # a classifier or pipeline in the second position.
45

46

47 # Extract data from tuple
48 X_train , X_test , y_train , y_test , group_train , group_test = dataset_tuple
49

50

51 results = pd.DataFrame ()
52

53

54 for classifier in classifiers:
55

56

57 cv_results = {
58 ’Accuracy ’:[],
59 ’Sensitivity ’:[],
60 ’Precision ’:[],
61 ’F1-score’:[],
62 ’ROC AUC’:[],
63 ’Pred. time per sample ’:[]
64 }
65

66 # Do group k-fold split
67 group_kfold = GroupKFold(n_splits =5)
68 cv_split = group_kfold.split(X_train , y_train , group_train) # Creates several

splits into training and validation sets.
69

70 print(’\nClassifier is {}’.format(classifier [0]))
71

72 for train_index , val_index in cv_split:
73

74 X_train_cv , X_val_cv = X_train.iloc[train_index], X_train.iloc[val_index]
75 y_train_cv , y_val_cv = y_train[train_index], y_train[val_index]
76

77 cv_results = single_set_run(
78 X_train_cv , X_val_cv ,
79 y_train_cv , y_val_cv ,
80 classifier [1], cv_results
81 )
82
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83 print(’CV results are:’)
84 print(pd.DataFrame(cv_results).describe ().loc[’mean’ ,:])
85

86 test_results = {
87 ’Accuracy ’:[],
88 ’Sensitivity ’:[],
89 ’Precision ’:[],
90 ’F1-score’:[],
91 ’ROC AUC’:[],
92 ’Pred. time per sample ’:[]
93 }
94

95 test_results = single_set_run(X_train , X_test ,
96 y_train , y_test ,
97 classifier [1], test_results)
98

99

100 print(’Test results are:’)
101 print(test_results)
102

103 results[classifier [0]] = [cv_results.copy(), test_results.copy()]
104

105 return results

B.7.3 Feature data set comparison

The following code is the implementation of the feature data set comparison, here a col-
lection of classifiers are compared across the individual data sets.

In the code below, all the non-optimised models are initialised.

1 from sklearn.linear_model import LogisticRegression , LassoCV
2 from sklearn import svm
3 from sklearn.neighbors import KNeighborsClassifier
4 from xgboost import XGBClassifier
5 from sklearn.decomposition import PCA
6 from sklearn.pipeline import Pipeline
7 from sklearn.neural_network import MLPClassifier
8 from sklearn.ensemble import StackingClassifier
9

10

11 k = 20 # The number of nearest neighbors
12 knn = KNeighborsClassifier(n_neighbors=k, weights=’uniform ’)
13

14 logreg = LogisticRegression(max_iter= 10000)
15

16 SVM_rbf = svm.SVC(kernel = ’rbf’, gamma =’auto’, probability=True)
17

18 SVM_linear = svm.SVC(kernel = ’linear ’, probability=True)
19

20 pca_and_logreg = Pipeline(steps =[
21 (’pca’, PCA (.95)),
22 (’logreg ’, LogisticRegression(max_iter= 10000))
23 ])
24

25 pca_and_knn = Pipeline(steps =[
26 (’pca’, PCA (.95)),
27 (’knn’, KNeighborsClassifier(n_neighbors=k))
28 ])
29

30 pca_and_svm_linear = Pipeline(steps=[
31 (’pca’, PCA (.95)),
32 (’svm’, svm.SVC(kernel = ’linear ’, probability=True))
33 ])
34

35 pca_and_svm_rbf = Pipeline(steps=[
36 (’pca’, PCA (.95)),
37 (’svm’, svm.SVC(gamma = ’auto’, probability=True))
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38 ])
39

40 xgbooster = XGBClassifier ()
41

42 neural_net = Pipeline(steps=[
43 (’NN’,MLPClassifier(hidden_layer_sizes =(200 ,100 ,14), max_iter =1000, random_state =1))
44 ])
45

46 stack = StackingClassifier ([ # A stacking classifier combining
47 (’Logistic Regression ’, logreg),
48 (’Logistic Reg. with PCA’, pca_and_logreg),
49 (’KNN’, knn),
50 (’KNN with PCA’, pca_and_knn),
51 (’SVM (rbf)’, SVM_rbf),
52 (’SVM (rbf) with PCA’, pca_and_svm_rbf),
53 (’SVM (linear)’, SVM_linear),
54 (’SVM (linear) with PCA’, pca_and_svm_linear),
55 (’XGBoost ’, xgbooster),
56 (’Neural net’, neural_net)
57 ])
58

59

60 classifiers = [
61 (’Logistic Regression ’, logreg),
62 (’Logistic Reg. with PCA’, pca_and_logreg),
63 (’KNN’, knn),
64 (’KNN with PCA’, pca_and_knn),
65 (’SVM (rbf)’, SVM_rbf),
66 (’SVM (rbf) with PCA’, pca_and_svm_rbf),
67 (’SVM (linear)’, SVM_linear),
68 (’SVM (linear) with PCA’, pca_and_svm_linear),
69 (’XGBoost ’, xgbooster),
70 (’Neural net’, neural_net),
71 (’Stack’, stack)
72 ]

These classifiers were evaluated all the data sets in the following manner:

1 results = []
2

3 dataset_names = [
4 ’no_selection_data ’,
5 ’RF_data ’,
6 ’tsfresh_data ’
7 ]
8 for dataset_tuple in datasets:
9 print(’\n\nDataset is {}’.format(dataset_names.pop (0)))

10 results.append(train_and_test_classifiers(dataset_tuple , classifiers))

The results from this returns are then visualised into box plots using the following code.
This generated the plots in Figure 3.11.

1 # Taking the average of every classifier over the data set and plotting into a boxplot.
2 metrics = [
3 ’Accuracy ’,
4 ’Sensitivity ’,
5 ’Precision ’,
6 ’F1-score’,
7 ’ROC AUC’,
8 ’Pred. time per sample ’
9 ]

10

11 # Gather metrics for each data set.
12 dataset_metrics = { k:[] for k in metrics}
13 dataset_metrics[’Dataset ’] = []
14

15 dataset_names = [’A’, ’B’, ’C’]
16

17 for metric in metrics: # For every metric.
18
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19 for ds_num in range(len(results)): # For every feature data set.
20 r = results[ds_num]
21

22 avg_list = []
23

24 for classifier in r.columns: # For every classifier.
25 avg_list.append (((r[classifier ])[0])[metric ])
26 for num in avg_list:
27 for ft in num:
28 dataset_metrics[metric ]. append(ft)
29 if metric == ’Accuracy ’:
30 dataset_metrics[’Dataset ’]. append(dataset_names[ds_num ])
31

32 plot_structure = pd.DataFrame(dataset_metrics)
33

34 import seaborn as sns
35 #sns.set(style=" whitegrid ")
36

37

38 for metric in metrics:
39 fig = plt.figure(figsize =(16 ,10))
40

41 sns.set(style="whitegrid", font_scale =2.5)
42 fig.axes [0] = sns.boxplot(
43 x=plot_structure["Dataset"],
44 y=plot_structure[metric],
45 color=sns.color_palette("Blues")[2],
46 saturation =0.8
47 )
48 ax = fig.axes [0]
49 ax.set_xlabel(’Feature data set’)
50 ax.set_ylabel(metric)
51 plt.ylim ((0.35 ,1.02))
52

53

54 plt.show()
55 fig.savefig(
56 ’Report_figures/results_model_detection_dataset_ {}. pdf’.format(metric),
57 dpi=None , facecolor=’w’, edgecolor=’w’,
58 orientation=’portrait ’, papertype=None , format=None ,
59 transparent=False , bbox_inches=’tight ’, pad_inches =0,
60 frameon=None , metadata=None)

The numeric values of the results were aggregated and printed to Latex using the code
in the following snippet. This generated Table 3.8.

1 metrics = [
2 ’Accuracy ’,
3 ’Sensitivity ’,
4 ’Precision ’,
5 ’F1-score’,
6 ’ROC AUC’
7 ]
8

9 result_columns = [’Data set’, ’Classifier ’]
10 for k in metrics:
11 result_columns.append(k)
12

13 dataset_names = [’A’,’B’,’C’]
14 dataset_summary = []
15

16 dataset_summary = pd.DataFrame(columns=result_columns)
17

18 for i in range(len(results)): # For every feature data set.
19 r = results[i]
20 for classifier in r.columns: # For every classifier.
21 append_dict = {k:[] for k in result_columns}
22 append_dict[’Data set’] = dataset_names[i]
23 append_dict[’Classifier ’] = classifier
24 for metric in metrics: # For every metric.
25 append_dict[metric] = np.mean (((r[classifier ])[0])[metric ])
26 dataset_summary = dataset_summary.append(append_dict , ignore_index=True)
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27

28 # Adding the average classifier score for the feature data set.
29 avg_dict = {
30 ’Data set’: dataset_names[i],
31 ’Classifier ’:’Average classifier score ’
32 }
33 for k in metrics:
34 avg_dict[k] = np.mean(dataset_summary[k].iloc[-len(r.columns):])
35 dataset_summary = dataset_summary.append(avg_dict , ignore_index=True)
36

37 # Showing a summary of training results for each feature data set.
38 print(dataset_summary)
39

40 # Printing results to latex format for inclusion in the thesis.
41 print_columns = [result_columns[k] for k in [0,1,3,4,6]]
42 latex_print = dataset_summary.to_latex(
43 columns=print_columns ,
44 label=’tab:label’,
45 float_format="%.4f",
46 multirow=True ,
47 escape=False ,
48 index=False ,
49 header =[’\\ textbf {{{0}}} ’.format(k) for k in print_columns]
50 )
51

52 print(latex_print)

B.7.4 Hyper-parameter optimisation

To select a classifier, each one is optimised using grid search CV. The implementation is
shown in this section.

In the script below, each classifier is initialised and the hyperparameter search grid is
defined and initialised.

1 # The initalising the models.
2 logreg = Pipeline ([
3 (’scaler ’, StandardScaler ()),
4 (’logreg ’, LogisticRegression(max_iter= 10000))
5 ])
6 knn = Pipeline ([
7 (’scaler ’, StandardScaler ()),
8 (’knn’, KNeighborsClassifier ())
9 ])

10 SVM_clf = Pipeline ([
11 (’scaler ’, StandardScaler ()),
12 (’svm’, svm.SVC(probability=True))
13 ])
14 xgbooster = XGBClassifier(
15 objective=’binary:logistic ’
16 )
17 neural_net = Pipeline(steps=[
18 (’scaler ’, StandardScaler ()),
19 (’neural_net ’,MLPClassifier(max_iter =1000 , random_state =1))
20 ])
21

22 # Creating parameter grids for each model , the combinations ...
23 # of hyperparameters to search through.
24 logreg_paramgrid = {
25 ’logreg__C ’: np.power (10.0, np.arange(-10, 10 ,0.5)),
26 ’logreg__penalty ’:[’l1’,’l2’,’elasticnet ’, ’none’]
27 }
28

29 knn_paramgrid = {
30 ’knn__n_neighbors ’: np.arange (1,351 ,2) # Every odd integer between 1 and 51.
31 }
32
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33 SVM_clf_paramgrid = {
34 ’svm__C ’: [0.1, 1, 10, 100, 1000] ,
35 ’svm__gamma ’: [1, 0.1, 0.01, 0.001 , 0.0001] ,
36 ’svm__kernel ’: [’rbf’, ’linear ’] # Note that both rbf and linear kernels are

included.
37 }
38

39 xgbooster_paramgrid = {
40 ’learning_rate ’: [0.01 ,0.2 ,0.3 ,0.5] ,
41 ’n_estimators ’: [100, 400, 700, 1000],
42 ’colsample_bytree ’: [0.8, 1],
43 ’max_depth ’: [3,10,15,25],
44 ’reg_alpha ’: [0.7, 1, 1.3],
45 ’reg_lambda ’: [0, 0.5, 1],
46 ’subsample ’: [0.6, 1]
47 }
48

49 neural_net_paramgrid = {
50 ’neural_net__hidden_layer_sizes ’:[(50 ,25 ,3) ,(100,50,7) ,(200 ,100 ,14) ,(300 ,150 ,21)],
51 ’neural_net__activation ’:[’identity ’, ’logistic ’, ’tanh’, ’relu’],
52 ’neural_net__batch_size ’:[200 ,133 ,66 ,32] ,
53 ’neural_net__max_iter ’:[200 ,500 ,1000 ,1200]
54 }
55

56

57 # All the classifiers are stored in a list along with a descriptive ...
58 # label and their search grid.
59 classifiers = [
60 (’Logistic Regression ’, logreg , logreg_paramgrid),
61 (’KNN’, knn , knn_paramgrid),
62 (’SVM’, SVM_clf , SVM_clf_paramgrid),
63 (’XGBoost ’, xgbooster , xgbooster_paramgrid),
64 (’Artificial Neural Network ’, neural_net , neural_net_paramgrid)
65 ]

The grid search is then implemented as shown below. This returns a list with optimised
classifiers and their hyper-parameters.

1 from sklearn.model_selection import GridSearchCV
2

3 dataset = datasets [2] # The TSFRESH feature data set.
4 X_train , X_test , y_train , y_test , group_train , group_test = dataset # Extract data from

tuple
5

6 classifier_results = pd.DataFrame(columns =[
7 ’Classifier ’,
8 ’Grid search result ’
9 ])

10

11 for classifier_tuple in classifiers:
12

13 description , classifier , paramgrid = classifier_tuple
14 group_kfold = GroupKFold(n_splits =5)
15 scoring_fit=’f1_weighted ’
16

17 grid_search = GridSearchCV(
18 estimator=classifier ,
19 param_grid=paramgrid ,
20 cv=group_kfold ,
21 n_jobs=-1,
22 scoring=scoring_fit ,
23 verbose=2,
24 refit=True ,
25 return_train_score=True
26 )
27

28 grid_search.fit(X_train , y=y_train , groups=group_train)
29 appendix = {
30 ’Classifier ’:description ,
31 ’Grid search result ’:grid_search
32 }
33
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34 classifier_results = classifier_results.append(
35 appendix ,
36 ignore_index=True
37 )

The best hyper-parameters were printed to Latex using the code in the following snippet.
This generated Table 3.10.

1 #Print out the best parameters for each classifier and structure into a table.
2 best_classifier_parameters = pd.DataFrame(columns =[
3 ’Classifier ’,
4 ’Hyperparameter ’,
5 ’Value ’
6 ])
7

8 for classifier in classifier_results.iterrows ():
9

10 name = classifier [1]. loc[’Classifier ’]
11 parameters = classifier [1]. loc[’Grid search result ’]. best_params_
12

13 for HP in list(parameters.keys()):
14 best_classifier_parameters = best_classifier_parameters.append ({’Classifier ’:

name ,’Hyperparameter ’:HP, ’Value’:parameters[HP]}, ignore_index=True)
15

16 column_headings = best_classifier_parameters.columns
17

18 latex_print = best_classifier_parameters.to_latex(
19 columns=column_headings ,
20 label=’tab:label’,
21 caption=’Caption.’,
22 float_format=lambda x: ’%.3f’ % x,# ’%.4f’,
23 escape=False ,
24 index=False ,
25 header =[’\\ textbf {{{0}}} ’.format(k) for k in column_headings]
26 )
27

28 print(latex_print)

The optimised classifiers were evaluated and their results printed to Latex using the code
in the following snippet. To compare the best solutions of the classifiers tested, they are
evaluated on a 5-fold cross validation set. Note that the models used are the best models
found in the grid search above. This generated Table 3.11.

1 optimised_classifiers = []
2

3 for classifier in classifier_results.iterrows ():
4

5 name = classifier [1]. loc[’Classifier ’]
6 clf = classifier [1]. loc[’Grid search result ’]. best_estimator_
7 optimised_classifiers.append ((name ,clf))
8

9 # Running all the classifiers to score them.
10 optimised_results = train_and_test_classifiers(datasets [2], optimised_classifiers)
11

12 # The metrics of interest
13 metrics = [
14 ’Accuracy ’,
15 ’Sensitivity ’,
16 ’Precision ’,
17 ’F1-score’,
18 ’ROC AUC’
19 ]
20

21 result_columns = [’Classifier ’] # Creating the table columns
22 for k in metrics:
23 result_columns.append(k)
24

25 optimised_classifier_summary = pd.DataFrame(columns=result_columns)
26
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27 for classifier in optimised_results.columns: # For every classifier.
28 append_dict = {k:[] for k in result_columns}
29 append_dict[’Classifier ’] = classifier
30 for metric in metrics: # For every metric.
31 metric_list = []
32 metric_list.append(np.mean ((( optimised_results[classifier ])[0])[metric ]))
33 append_dict[metric] = np.mean(metric_list)
34 optimised_classifier_summary = optimised_classifier_summary.append(append_dict ,

ignore_index=True)
35

36 print(optimised_classifier_summary)
37

38 # Print to LaTeX for inclusion into the thesis.
39 print_columns = result_columns [:]
40 latex_print = optimised_classifier_summary.to_latex(
41 columns=print_columns ,
42 label=’tab:label’,
43 float_format="%.4f",
44 escape=False ,
45 index=False ,
46 header =[’\\ textbf {{{0}}} ’.format(k) for k in print_columns]
47 )
48

49 print(latex_print)

The features that are most important for predictions in XGBoost and Logistic Regression
are extracted using the implementation below. This generated Tables 3.15 and 3.16.

1 feats_and_coeffs = pd.DataFrame ()
2 feats_and_coeffs[’XGBoost ’] = (optimised_classifiers [3][1]. feature_importances_).copy()
3 feats_and_coeffs[’XG features ’] = datasets [2][0]. columns.copy()
4

5 XGBoost_coeffs = (feats_and_coeffs.sort_values(’XGBoost ’,ascending=False , inplace=False
)).reset_index(drop=True)

6

7 print(XGBoost_coeffs)
8

9 feats_and_coeffs = pd.DataFrame ()
10 feats_and_coeffs[’Log. Reg.’] = np.abs(optimised_classifiers [0][1][1]. coef_ [0]).copy()
11 feats_and_coeffs[’LR features ’] = datasets [2][0]. columns.copy()
12

13 logistic_coeffs = (feats_and_coeffs.sort_values(’Log. Reg.’,ascending=False , inplace=
False)).reset_index(drop=True)

14

15 print(logistic_coeffs)
16

17 feat_summary = pd.concat ([ logistic_coeffs , XGBoost_coeffs], axis =1)
18 feat_summary[’Rank’] = [k+1 for k in feat_summary.index]
19 print(feat_summary)
20

21 feat_summary = feat_summary.iloc [:20 ,[4 ,1 ,3]]
22

23 print(feat_summary.to_latex(
24 columns=feat_summary.columns ,
25 label=’tab:label’,
26 caption=’Caption.’,
27 float_format=lambda x: ’%.3f’ % x,# ’%.4f’,
28 escape=False ,
29 index=False ,
30 header =[’\\ textbf {{{0}}} ’.format(k) for k in feat_summary.columns]
31 ))

B.7.5 Stacking classifiers

The stacking classifiers were initialised, trained and evaluated as shown in the imple-
mentation below. Note that datasets[2] is a reference to the TSFRESH feature data
set.
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1 optimised_classifiers = []
2

3 for classifier in classifier_results.iterrows ():
4

5 name = classifier [1]. loc[’Classifier ’]
6 clf = classifier [1]. loc[’Grid search result ’]. best_estimator_
7

8

9 if name != ’KNN’: # Don’t add KNN.
10 optimised_classifiers.append ((name ,clf))
11 print(name)
12 print(clf)
13

14 from sklearn.ensemble import GradientBoostingClassifier , RandomForestClassifier
15

16 meta_gradient_boost = GradientBoostingClassifier ()
17

18 meta_random_forest = RandomForestClassifier ()
19

20 meta_neural_net = Pipeline(steps=[
21 (’neural_net ’,MLPClassifier(hidden_layer_sizes =(15 ,7), max_iter =1000 , random_state

=1))
22 ])
23

24 stack = [
25 (’Stacking classifier LR’, StackingClassifier(optimised_classifiers)),
26 (’Stacking classifier ANN’, StackingClassifier(optimised_classifiers ,

final_estimator=meta_neural_net)),
27 (’Stacking classifier GBC’, StackingClassifier(optimised_classifiers ,

final_estimator=meta_gradient_boost)),
28 (’Stacking classifier RF’, StackingClassifier(optimised_classifiers , final_estimator

=meta_random_forest))
29 ]
30

31 stack_performance = train_and_test_classifiers(datasets [2], stack)

The results from the stacking classifier evaluation were printed to Latex as shown below.
This generated Table 3.12.

1 # The metrics of interest
2 metrics = [
3 ’Accuracy ’,
4 ’Sensitivity ’,
5 ’Precision ’,
6 ’F1-score’,
7 ’ROC AUC’
8 ]
9

10 result_columns = [’Classifier ’] # Creating the table columns
11 for k in metrics:
12 result_columns.append(k)
13

14 optimised_stacking_classifier_summary = pd.DataFrame(columns=result_columns)
15

16 for classifier in stack_performance.columns: # For every classifier.
17 append_dict = {k:[] for k in result_columns}
18 append_dict[’Classifier ’] = classifier
19 for metric in metrics: # For every metric.
20 metric_list = []
21 metric_list.append(np.mean ((( stack_performance[classifier ])[0])[metric ]))
22 append_dict[metric] = np.mean(metric_list)
23 optimised_stacking_classifier_summary = optimised_stacking_classifier_summary.append

(append_dict , ignore_index=True)
24

25 print(optimised_stacking_classifier_summary)
26

27 # Print to LaTeX for inclusion into the thesis.
28 print_columns = result_columns [:]
29 latex_print = optimised_stacking_classifier_summary.to_latex(
30 columns=print_columns ,
31 label=’tab:label’,
32 float_format="%.4f",

xxxiv



B. IMPLEMENTATION B.7. FAULT PRESENCE DETECTION

33 escape=False ,
34 index=False ,
35 header =[’\\ textbf {{{0}}} ’.format(k) for k in print_columns]
36 )
37

38 print(latex_print)

To extract the coefficients of the base-classifiers the code below was used. This generated
the information in Table 3.14.

1 print(stack[c][0]) # The name of the stacking classifier.
2 print(stack[c][1]. final_estimator_.coef_) # The meta -classifiers coefficients.
3 print(stack[c][1]. estimators_) # An overview of the base -classifiers
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B.8 Fault severity assessment
The code for fault severity assessment reused the code from fault presence detection,
but implemented another target adjustment to conform to Table 3.17 as shown below.
The classifiers were subjected to minor adjustments and implemented a one-versus-all
classifiers where necessary.

1 # Remove fault severity from target values.
2 # Target equals 1 indicates fault , and 0 indicates no fault.
3

4 def make_target_list_graded(y_set):
5 # Change to severity indications.
6

7 for i in range(len(y_set)):
8 if y_set[i] > 10:
9 y_set[i] = 3 # Extreme severity.

10 elif y_set[i] >= 7:
11 y_set[i] = 2 # Moderate severity.
12 elif y_set[i] >= 1:
13 y_set[i] = 1 # Low severity.
14

15 def make_dataset_targets_graded(dataset_tuple):
16 # This function replaces any target value ...
17 # other than 0 with 1.
18

19 X_train , X_test , y_train , y_test , group_train , group_test = dataset_tuple
20

21 make_target_list_graded(y_train)
22 make_target_list_graded(y_test)

The functions above were applied to the output of the feature selection process in the
following manner.

1 for dataset in datasets: # Go through every data set.
2 make_dataset_targets_graded(dataset)
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Appendix C

TSFRESH features

The following 23 pages describe the features calculated by TSFRESH. All of these fea-
tures were included, with the exception of TSFRESH’s Fourier transform features and
their accompanying aggregation functions. This is included to have a reference for the
features investigated in this thesis, since the feature extraction package may be sub-
ject to future change. This overview is also available in a searchable format at https:
//tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html un-
der the heading "tsfresh.feature_extraction.feature_calculators module".
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