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Abstract

The increasing deployment of distributed energy resources (DER), in combination with the
growing use of power-demanding devices, arise new challenges for the power system, including
supply and flexibility challenges on a local level. To meet these challenges, new local electric-
ity market designs employing local energy and flexibility features should be explored. In this
context, peer-to-peer (P2P) energy trade has emerged as a new way of exploiting local energy
production and storage to benefit both the local P2P sharing community and the power system
on a higher level.

This thesis proposes two different optimization based control system strategies, to be used on
a local market level, and investigates the performance of the strategies based on the total cost
of electricity during operation for the energy sharing region (ESR), or community, and for each
end-user within the ESR. The strategies are also evaluated based on to what degree they can
increase the self-consumption of power from DERs within the ESR, and derby decrease the
energy consumption from the main grid. The peak demand of such ESRs, or of end-users with
high energy demands, are of importance to the distribution system operator (DSO), as the
DSO dimensions the local grid according to the highest measured peak power demand. To
investigate the relationship between peak power demand and total electricity costs, a multi-
objective optimization (MOO) approach based on the ε-constraint method is also implemented.

The first optimization strategy introduced is the decentralized control system strategy, which has
as objective to minimize the total electricity costs for each end-user within an ESR. The second
strategy is the centralized control system strategy, which minimizes the total cost of electricity
for the whole ESR. In the decentralized strategy, the end-users can only utilize their own local
production and/or storage units and the main power grid to meet their energy demands. The
centralized strategy enables P2P energy trade among the end-users within the ESR, meaning
that P2P energy can be used in combination with energy from local production and/or storage
units and the main grid to meet the energy demand of each end-user within the ESR.

To examine the performance of the two optimization strategies, the strategies were applied to
two different cases. The first case concerns a community of 25 residential buildings in London,
UK, while the second case concerns three large industrial end-users at Forus, Norway. The
two strategies make supply-demand decisions for each of the cases according to their objective
function and associated restrictions.

The main results show that the centralized optimization strategy gives the lowest total costs
for the ESR with a cost reduction of 1.0-8.0% compared to the decentralized strategy. The
centralized strategy does also give the lowest costs for each of the end-users within the ESR, as
the P2P energy trade increases the ESR flexibility in addition to reducing the amount of energy
consumed from the main grid by 1.4-18.9%. It is observed that the difference in performance
between the decentralized and centralized strategies is dependent on the amount of DERs and
storage units in the specific case. A high amount of DERs and storage units minimizes the
difference in performance between the two strategies. The results from the MOO show that
there is a dependency between total electricity costs and peak power demand for the cases
studied and that a small increase in cost can reduce the peak power demand by a significant
amount.
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Sammendrag

Den økende bruken av distribuerte og fornybare energikilder, i kombinasjon med økende bruk
av kraftkrevende enheter, skaper nye utfordringer for dagens kraftsystem. Dette inkluderer
utfordninger knyttet til forsyning og fleksibilitet på lave nettnivåer. For å kunne møte disse
utfordringene bør nye utforminger av lokale elektrisitetsmarkeder som benytter lokal energi og
fleksibilitetsfunksjoner utforskes. I denne sammenhengen har peer-to-peer (P2P) energihandel
mellom sluttbrukere oppstått som en ny måte å utnytte lokal energiproduksjon og -lagere til
fordel for både lokale samfunn samt kraftsystemet på et høyere nettnivå.

Denne hovedoppgaven foreslår to ulike optimeringsbaserte styringssystemstrategier, til å bli
benyttet på det lokale markedsnivået, samt vurderer resultatene fra disse basert på total strømkost-
nad for det lokale samfunnet og for hver sluttbruker innad i dette samfunnet. Strategiene er
også evaluert basert på til hvilken grad de kan øke selvforbruket av lokalprodusert energi innad i
samfunnet og dermed redusere mengden energi som brukes fra kraftnettet. Effekttopper fra slike
lokale samfunn, eller fra sluttbrukere med høyt energiforbruk, er viktig for det lokale nettsel-
skapet, da nettselskapet dimensjonerer strømnettet i henhold til den høyeste effekttoppen. For
å utforske forholdet mellom effekttopper og total strømkostnad, har det blitt implementert en
optimeringsmetode som kan håndtere flere objektfunksjoner basert på ε-restriksjons metoden.

Den første optimeringsstrategien er den desentraliserte kontrollsystem strategien som har som
målfunksjon å minimere de totale strømkostnadene for hver sluttbruker innad i et lokalt sam-
funn. Den andre strategien er en sentralisert kontrollsystemstrategi, som minimimerer de totale
strømkostnadene for hele det lokale samfunnet. I den desentraliserte strategien kan sluttbrukere
benytte deres egne produksjons- og lagringsenheter, samt strøm fra kraftnettet for å møte deres
elektrisitetsbehov. Den sentraliserte strategien muliggjør for P2P strømhandel mellom slut-
tbrukere innad i det lokale samfunnet. Dette betyr at strøm fra lokale sluttbrukere kan benyttes
i kombinasjon med lokal produksjon og energilagere samt kraftnettet for å møte elektrisitetsbe-
hovet til hver sluttbruker innad i det lokale samfunnet.

For å kunne sammenlikne resultatene fra de to optimeringsstrategiene, har strategiene blitt
anvendt i to ulike caser. Den første casen er av et lokalt samfunn bestående av 25 bolighus i
London i Storbritannia. Den andre casen består av tre industrikunder med høye energibehov
lokalisert på Forus i Norge. De to strategiene tar beslutninger om kraftbehov og -tilførsel for
hver av casene basert på deres respektive objektfunksjoner og restriksjoner.

Resultatene viser at den sentraliserte optimeringsstrategien gir de laveste totale kostnadene
for det lokale samfunnet med en kostnadsreduksjon på 1.0-8.0% sammenliknet med den desen-
traliserte strategien. Den sentraliserte strategien gir også de laveste totale kostnadene for hver
sluttbruker innad i det lokale samfunnet, ettersom P2P strømhandel gir en økt fleksibiliteten
i tillegg til å redusere mengden energi som konsumeres fra kraftnettet med 1.4-18.9%. Det er
observert at forskjellen i ytelse mellom den desentraliserte og den sentraliserte strategien er
avhengig av mengden distribuert fornybar produksjon og lagringsenheter i den spesifikke casen.
En høy andel distribuert fornybar produksjon og lagringsenheter minimerer forskjellen mellom
de to strategiene. Resultatene fra optimeringsmetoden som håndterer flere objektfunksjoner
viser at det er avhengighet mellom de totale strømkostnadene og effekttopper for de studerte
casene, samt at en mindre økning i kostnad kan redusere effekttoppen med en betydelig mengde.
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1 | Introduction

1.1 Background and Motivation

The use of electricity as energy carrier, the deployment of distributed energy resources (DERs)
and the energy demand of end-users have increased over the last years. To reduce global warm-
ing, emphasis has been put on curtailing greenhouse gas emissions by utilizing more environ-
mentally friendly energy carriers and sources. Electricity can be used as a more nature-friendly
alternative compared to e.g. oil, gas and coal, provided that the electricity is produced by a
renewable energy source (RES), such as hydro, solar and wind.

Electrification of the transportation sector and the increased use of other power-demanding de-
vices have led to a demand increase by the end-users. For instance, several end-users, especially
in Norway, have replaced their fossil-fueled car with an electrical vehicle (EV) [22]. Industrial
end-users are also starting to join the electric transportation revolution, and are facilitating for
charging of larger EVs, electric vessels, etc. The heightened demand can put pressure on the
main power grid, as it is dimensioned for the current peak power demand. If the peak demand
increases, the local distribution system operator (DSO) must upgrade the grid to meet the new
peak. Such power grid upgrades can be very costly, and can in many situations be postponed if
the grid is utilized in a better way.

In recent years, several consumers have installed local production units and have thus become
prosumers, which can both draw power from and deliver power to the main grid. Some prosumers
and consumers have also installed local storage units, where power from production and/or from
the grid can be stored. The local production units are mostly photovoltaic (PV) installations
and wind turbines (WTs), while the storage units are usually in the form of a battery energy
storage system (BESS). Systems with a BESS unit can use different control system strategies in
deciding when the battery should be charged and when it should be discharged. The objective
of the control strategy varies depending on the choices of the consumer or prosumer. It is
often a desire to reduce the electricity and grid-related costs for the consumers and prosumers.
A reduction in cost can be achieved in different ways depending on the price model used for
energy consumption.

The usage of aforementioned systems with storage units can also possibly lead to grid update
deferral, given that they are used in such a way that the peak demand from the main grid is
lowered. The EVs can also be aggregated to be used as a storage unit to provide grid flexibility
through e.g. a vehicle to grid (V2G) solution. To have a sufficient effect on the peak power
demand from the grid, the consumers with production and/or storage units must have high
power demands, otherwise, several consumers with lower power demands must cooperate to
minimize their peak demand from the grid. With the Norwegian network tariff model, consumers
collectively have to pay for grid development, maintenance and operation. This means that a
grid update deferral can give lower future grid costs for the consumers and prosumers, as they
do not have to pay extra to cover the high investment costs.

In this thesis, two different optimization based control system strategies have been studied and
utilized in two different cases from two different countries. The first strategy aims at reducing the

1



Chapter 1 – Introduction

electricity and grid-related costs for each consumer and prosumer within a community separately
and is called the decentralized strategy. The second control strategy, called the centralized
strategy, looks at the consumers and prosumers as a community and aims at reducing the
costs for the whole community. The centralized strategy also grants peer-to-peer (P2P) trading
between the consumers and prosumers within the same community, as has been done in e.g.
Lüth et al. [19]. P2P trading allows the actors within a community to directly trade power with
each other without utilizing the main grid.

The two cases studied in the thesis are different from each other in many aspects. The first case
is a community of 25 houses located in London, UK. Some of the houses have installed local
production and/or storage units, while other houses have no production nor storage units. The
case data is from a project called Low Carbon London1.

The second case concerns a system of actors with high power demands located at Forus, Nor-
way. The case includes an airport, harbor and industrial area, and is a collaboration project
between Avinor, the Port of Stavanger, Forus Industrial Park, the local DSO Lyse Elnett among
others, called Elnett212. The airport, harbor and industrial park are planning on installing local
production and storage units.

None of the aforementioned control system strategies take into account the peak power demand
seen from the grid. To study the relationship between the total cost of electricity and the
peak power demand, a multi-objective optimization (MOO) model is studied and utilized on
the Elnett21-case and on a simplified version of the 25-houses case with only four houses. The
objectives of the MOO is to reduce the electricity and grid-related costs and to reduce the peak
demand from the grid.

1.2 Objectives and Problem Description

The thesis aims at assessing the value of different control system strategies utilized in different
cases, with the following research questions:

˚ What will the difference in total electricity costs for each individual consumer or prosumer
in a community be, when the objective is to reduce the individual consumer/prosumer
costs versus reducing the costs for the whole community?

˚ What are the advantages and disadvantages with local market optimization?

˚ Are the control system strategies case dependent, or do they have the same performance
independently of the case studied?

˚ How can multi-objective optimization be utilized to both reduce the peak demand and
total cost of electricity?

To answer the research questions, the aforementioned control system strategies will be studied
and used in the mentioned cases. The objective of the thesis is to:

˚ Give a brief review of related literature and a brief introduction to relevant theoretical
concepts, like P2P trade and optimization.

˚ Create the decentralized optimization model with the objective of minimizing the total
electricity costs for each individual consumer or prosumer within a community.

1More information on the Low Carbon London project can be found on the following webpage:
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households

2See https://www.elnett21.no for further information on the Elnett21-project.
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Chapter 1 – Introduction

˚ Make the centralized optimization model with the objective of minimizing the total elec-
tricity costs for the whole community, when P2P trade has been enabled.

˚ Create the MOO model with its two objectives of (i) minimizing the peak demand from
the main grid and (ii) minimizing the total electricity costs.

˚ Simulate the three models on the different cases and analyzing the results based on the
research questions.

The different system models have been implemented and solved using multi-period linear pro-
gramming with a problem-based approach in MATLAB. As all the different objective functions
and constraints are linear, MATLAB uses the default solver called linprog, which utilizes a dual-
simplex algorithm. The needed parameters for the different optimization problems have been
imported from Excel to MATLAB. MATLAB was chosen as the programming language to be
used in the thesis due to its numerous build in functions, its sophisticated linear programming
algorithms, and for its ability to easily generate plots.

1.3 Structure of the Thesis

The thesis starts by presenting the motivation for utilizing different control system strategies for
controlling end-user battery systems. Then, a theoretical background of the essential working
principles of the control strategies and important terms have been given.

Chapter 2, Theory and Related Literature, introduces important terms and concepts of the thesis
and presents the different optimization based control system strategies used. The chapter does
also give a brief review of related literature.

Chapter 3, 25-houses in London, UK, introduces the first case of the thesis consisting of several
residential buildings located in the UK. Then, the case data and model formulation are given
before presenting and analyzing the results from the two optimization approaches.

Chapter 4, Elnett21, Case in Norway, introduces the second case of large industrial end-users
in Norway. The chapter describes the case data and model formulation before presenting and
analyzing the results obtained from utilizing the two optimization approaches in the case.

Chapter 5, Multi-objective Optimization, gives a brief introduction to multi-objective optimiza-
tion and the ε-constraint method. Then, the method is applied to one of the end-users in the
Elnett21-case based on the decentralized market approach, before applying it to a simplified
version of the 25-houses case, i.e. the 4-houses case, based on the centralized market approach.

Chapter 6, Conclusion, presents the main findings and conclusions of the thesis and states the
main shortcomings and suggestions for further work.
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2 | Theory and Related Literature

This chapter gives an introductory overview of some of the important terms and concepts used
in the thesis, an overview of the different optimization based control system strategies applied,
and a brief literature review of selected articles.

2.1 Peer-to-Peer Trading

Peer-to-peer (P2P) trading is defined as the direct trading of electricity between consumers or
prosumers3, hereby collectively called end-users4, without the involvement of a third party. By
giving end-users the possibility of trading electricity directly, they can gain revenue for their
excess power and reduce their electricity expenses by utilizing a low-cost settlement system.
P2P trading can also encourage the deployment of distributed energy resources (DERs), as the
possible revenue and cost savings of P2P trading can improve the yield on investment in DERs
[19].

Figure 2.1 shows the difference between the conventional and a proposed P2P sharing paradigm.
Traditionally, consumers buy the necessary amount of power from a chosen retailer at a retail
price. Prosumers will buy power at retail price from a retailer when the prosumer demand
exceeds the production. When the prosumer production exceeds the demand, the surplus power
can be sold to a retailer at an export price. The export price is decided by the local feed-in tariff
(FIT) scheme and is usually set lower than the retail price to incentivize self-consumption5 [42].

In the proposed P2P energy sharing paradigm, the end-users within the same energy sharing
region (ESR) can trade P2P power amongst themselves [42]. To not involve a third party, the
consumers and prosumers within the same ESR must be electrically connected through a local
grid. The end-users within the same ESR are located in the same geographical region, to not
get a too large and costly local grid. This means that the ESRs will mostly consist of local
communities of prosumers and consumers.

To incentivize P2P energy trading, the price for buying P2P power should be set lower than the
price of buying power from the main grid, i.e. the retail price. Usually, the local pricing scheme
is set somewhere between the in-feed price of the grid and the electricity price of the main grid.
In this way, all consumers and prosumers within a P2P community will benefit from trading
energy P2P. After the end-users within the same ESR have traded power, the power deficit or
surplus is met through trading with a retailer. To keep track of energy sharing activities and to
specify rules for trading, like the implementation process and the core pricing model, an energy
sharing coordinator is needed. All power trading between the ESR and the retailer goes through
the energy sharing coordinator market operator [42].

3A prosumer is a type of consumer that both can consume and produce electricity locally.
4In this thesis, the term end-user is used as an umbrella term for consumers and prosumers of the power

system.
5Self-consumption is the ratio between locally produced power consumed on-site and the overall local produc-

tion [42].
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Chapter 2 – Theory and Related Literature

Figure 2.1: Illustrating the difference between the conventional market paradigm (a) and the
P2P sharing paradigm (b) [42].

2.2 Optimization Problem

Solving an optimization problem in mathematics means finding all the feasible solutions to the
problem and among these choosing the best solution. To be able to solve an optimization prob-
lem, the optimization problem type must be identified. There are several types of optimization
problems, like continuous or discontinuous problems, problems with or without constraints and
deterministic or stochastic problems. There can also be problems with one objective function,
several objective functions, or no objective function [23]. The optimization problems studied in
this thesis are all continuous, deterministic, with constraints and have either one or two objec-
tive functions. The objective functions and constraints are also linear, which makes it possible
to use linear programming to solve the different optimization problems.

An optimization problem is solved by utilizing a specific algorithm for finding the optimal
solution. There are many different types of solver algorithms, and the chosen algorithm for a
specific optimization problem is greatly dependent upon the problem type. The optimization
problems studied in this thesis require a solver that can solve an optimization problem with a
continuous, differentiable and linear objective function, real numbered optimization variables
and linear and equality constraints. Such a problem can be solved by using e.g. a dual-simplex
algorithm. The dual-simplex algorithm performs a simplex algorithm on the dual problem
instead of on the primal, original, problem. In the dual problem, the right-hand side of the
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restrictions in the primal problem is turned into parameters in the objective function, and the
parameters in the objective function of the primal problem are turned into the right-hand side
of the restrictions in the dual problem. Further, the parameter in front of the first decision
variable of the primal problem in the constraint equations that concern this variable, are turned
into different parameters on the left-hand side in the first restriction of the dual problem. The
second restriction of the dual problem is found by looking at the parameters in front of the
second decision variable in the constraint equations of the primal problem, and so on. Due
to the structure of the dual versus the primal problem, these problems are mathematically
equivalent, but the solving steps of the two problems differ. The different solving steps often
make it easier to solve the primal problem by solving the dual problem [21].

2.3 Control System Strategies

This section describes the three different optimization based control system strategies that have
been studied in this thesis and lists up the assumptions and simplifications related to the control
strategies. More case-specific assumptions and simplifications are given in section 3.3 for the
25-houses case and in section 4.3 for the Elnett21-case.

The last strategy, multi-objective optimization (MOO), has gotten its own dedicated chapter,
see chapter 5, and is therefore just briefly described in this section.

2.3.1 Assumptions and Simplifications
There have been made several assumptions and simplifications for all the different optimization
strategies and cases, to simplify the problems regarding computational effort and complexity.
The assumptions stated in the list below apply to all strategies and cases.

˚ Only operational costs have been taken into account when making the different objective
functions. Meaning it is assumed that all the production and storage units in the differ-
ent cases have been installed and that the investment, maintenance and other possible
costs, related to the production and storage units during the simulation period, have been
ignored.

˚ It is assumed that the needed smart grid technology, like smart meters, have been installed
in the ESR communities.

˚ Full bidirectional information exchange between the technological devices is assumed in
each ESR.

˚ It is assumed that the demand, production and electricity prices are known beforehand
and that there are no uncertainties in this data. This implies assuming a perfect forecast
model.

˚ All efficiencies are assumed to be constant for the whole simulation period, including the
efficiency factor for P2P energy trading.

˚ Degradation and possible standby losses of the batteries are neglected.

˚ Lifetime expansion of the batteries is not considered, which means that e.g. smart charging
or discharging of the batteries is not taken into account.

˚ No limits have been set on the amount of power that can be delivered from, or to, the main
or local grid at any time. This means that limits on transmission lines have been ignored
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and that an unlimited supply is assumed from the main grid. Possible grid congestion is
also ignored.

˚ Physical power system characteristics like reactive power effects, voltage levels, power flows
and balancing of frequency have not been looked at.

˚ The conversion and distribution losses occurring when selling power from DERs to the
main grid are neglected.

˚ For the strategies that have enabled P2P trading, it is assumed that the end-users within
the same ESR have a local grid for trading power with no grid usage costs and that all
the end-users put their DER units at disposal. The investment, maintenance and other
possible costs related to the local grid have been ignored.

2.3.2 Decentralized Control System Strategy
The decentralized control system strategy looks at each end-user in an ESR, or community,
individually. The objective of the strategy is to minimize the operational costs related to the
network tariff and electricity costs, i.e. the total cost of electricity, and the optimization is
done for each end-user individually. The decentralized strategy is inspired by the decentralized
operation strategy of Hidalgo-Rodríquez et al. [16], but it does not utilize binary restrictions
like the strategy used in the article.

The decentralized strategy has its pros and cons. An advantage of the strategy is that it does
not require information exchange with a third party, as each consumer or prosumer aims to
minimize their economic objective function [16]. Using this strategy, each individual end-user
will have the lowest total electricity costs possible, but the end-user can only utilize its own
production and/or storage units, given that the end-user has any. Another advantage of the
strategy is that each end-user is not dependent upon other consumers or prosumers, meaning
that possible uncertainties in prosumer production do only affect the prosumer itself.

A disadvantage of the approach can be that as each end-user is looked at separately, the total
costs for the whole ESR will be suboptimal. When P2P trading is disabled, the consumers that
do not have storage units will have to buy all the necessary power from the main grid. This
means that the decentralized control system strategy will give these consumers the same costs
as if the strategy was not used at all. Without P2P trading, the consumers without storage will
have no flexibility compared to the prosumers with or without storage units and the consumers
with storage units, and they will have a higher cost of electricity than they possibly would have
had if they could buy P2P power.

Another disadvantage of this control system strategy is that each consumer or prosumer will
try to buy power from the grid when the cost of electricity is low. This can lead to high peak
power demands of each end-user and of the whole ESR, if there are no cost terms related to the
peak demand of the ESR or the individual end-user.

2.3.3 Centralized Control System Strategy
This strategy looks at an ESR of consumers and prosumers as one entity, and the objective is
to minimize the total electricity costs during operation for the whole ESR. In the centralized
control system strategy, P2P trade has been enabled. The P2P power can only be sold and
purchased within the same ESR. As the centralized strategy only considers the total electricity
costs of an ESR, and not of the individual end-user within the community, the revenue for selling
P2P power and the cost of purchasing P2P power will cancel each other out. The cost of P2P
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trade has therefore been left out in the optimization models. To find representable costs for
the individual end-users trading power P2P within the ESR, the cost of P2P trade is added
after the optimization has been run. To minimize the total electricity costs of an ESR, all the
end-users within the same ESR must share their production, storage and demand information
with a so-called central unit, such that this unit can make decisions for the whole ESR. The
centralized strategy is based on Flexi User Market of Lüth et al. [19], and the strategy uses the
same market rules as applied in the Flexi User Market.

The main advantage of the centralized control system strategy is that the obtained solutions
will be optimal for the whole ESR. Meaning that the strategy will give the lowest possible costs
for the ESR, and not just the lowest costs of each end-user, like the decentralized control system
strategy. The enabling of P2P trade will provide flexibility to consumers without batteries.
Now, these consumers can both buy power from other peers and the main grid. The strategy
lets the ESR utilize their production and storage units in a way that will benefit the whole ESR
and not just the consumers with storage units or the prosumers with or without storage units.

The sharing of information can be a disadvantage of the centralized strategy, as it does not scale
well [16]. If there are a lot of end-users in an ESR, the central unit must process and keep track
of a lot of information. Even though the costs for the ESR are minimized with the centralized
strategy, it is not given that the strategy will give the lowest costs for each prosumer or consumer
within the sharing region. The consumers with no storage will get lower total electricity costs,
as they can buy P2P power. For prosumers and consumers having batteries, the total electricity
costs will depend both on the case, the electricity price, and the P2P trade price. Minimizing
the costs for the ESR can also lead to a high peak power demand, seen from the main grid if
there are no cost terms in the objective function related to the peak power demand.

2.3.4 Multi-objective Optimization
Multi-objective optimization (MOO) is an optimization approach that involves two or more
contradicting objective functions, which should be optimized simultaneously [7]. In this thesis,
the MOO is used to study the two objective functions (i) minimizing the total cost of electricity
and (ii) minimizing the peak power demand seen from the main grid. These objective functions
will be contradicting if minimizing the total electricity costs results in high peak demands, and
vice versa if minimizing the peak power demands lead to high total electricity costs. Whether the
objectives are contradicting or not will depend on the relationship between the total electricity
costs and the peak demand in the specific case that the MOO is applied to. The MOO approach
is further explained and used in chapter 5.

Table 2.1 summarizes the features of the three different optimization based control system
strategies studied in the thesis.
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Table 2.1: An overview of the different control system strategies utilized in the thesis.

Strategy Decentralized control
system strategy

Centralized control
system strategy

Multi-objective
optimization

Objective
Minimize total electricity
costs for each end-user
within an ESR

Minimize total electricity
costs for the whole ESR

(i) Minimize total electricity
costs for each end-user or
for the whole ESR
(ii) Minimize peak demand,
seen from the main grid,
of each end-user or of the
whole ESR

Power
sources Main grid, DER Main grid, DER, P2P trade Main grid, DER, P2P trade

Pros

(i) No information exchange
with a third party
(ii) Each end-user within an
ESR will pay the lowest
electricity costs possible
using their own DERs
(iii) No dependency between
end-users

(i) Optimal solution for
the ESR
(ii) Flexibility options for
all consumers and
prosumers within the ESR

Investigate the relationship
between peak power
demand and total
electricity costs for an
end-user or ESR

Cons

(i) Suboptimal solution for
the ESR
(ii) No flexibility options
for consumers without DERs
(iii) Possibly high peak
power demands for the ESR

(i) Information exchange
with a third party
(ii) Possibly high peak
power demands for the ESR

With contradicting
objectives, the optimal
solution cannot be reached
by both objectives
simultaneously

2.4 Related Literature

In the literature, there have been conducted studies of different optimization based control
system strategies and P2P energy trade. Here, just a selection of the existing related articles
is studied. This is to give an overview of what has already been achieved in the literature thus
far, and to see what possible contributions this thesis can add to the field.

In Hidalgo-Rodríquez et al. [16], a decentralized, centralized and hierarchical-distributed model
predictive control was tested on three different home-microgrids with flexible thermal loads.
All the home-microgrids have a PV-system, one or two storage types and load. In the article,
the used decentralized coordination strategy is similar to the decentralized strategy used in
this thesis. Both strategies try to minimize the economic objective function of each separate
consumer or prosumer, and both allow for power to be sold to the main grid. The centralized
coordination strategy in Hidalgo-Rodríquez et al. [16] has two terms in the objective function,
one to minimize total electricity costs of each of the three home-microgrids and one to minimize
the power peak at the point of common coupling (PCC) of the microgrids. The reduction of
the peak at the PCC is done by minimizing the instantaneous quadratic difference between
the power import and export. Compared to the centralized control strategy of this thesis, the
centralized coordination strategy of the paper does not allow P2P trading between the end-users.
Further, the simulations were only done over seven days and on one case with microgrids on the
residential level.

Lüth et al. [19] introduces two different market designs for P2P trading. The Flexi User Market
and the Pool Hub Market, where the market applied rules to a system with individually owned
batteries and to a system with one commonly owned battery, respectively. The same market
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rules applied to Flexi User in Lüth et al. [19] have been applied to the centralized control
strategy used in this thesis, as the strategy is inspired by the Flexi User Market. Unlike Flexi
User, the centralized strategy of this thesis does also allow for power to be exported to the
main grid. Lüth et al. [19] only tested two market rule types on one community of only four
different households of consumers and prosumers, and the peak demand of the community was
not considered.

Zepter et al. [41] explores the value of P2P trading by integrating prosumers in the day-
ahead and intraday markets and looks at how residential battery storage can arise demand-side
flexibility. The article compares the electricity costs of four different cases. The first case is the
base case used as a reference case with no battery storage and no P2P trading. The second
case has battery storage, but no P2P trading. The third case allows for P2P trading within the
community but has no batteries. The last case, case four, has both battery storage and P2P
trading. In all of the cases, the objective is to reduce total electricity costs for the community
in both the day-ahead and the intraday market stages. Besides that Zepter et al. [41] has an
objective function for both market stages, the centralized strategy of this thesis is similar to the
model used in the paper on the case with both battery storage and P2P trading. Both strategies
allow P2P trading and selling power to the main grid. The model of the paper is only applied to
a set of ten households, while the centralized strategy in this thesis is applied to 25 households
and to a second case with large end-users.

The last article reviewed is Sæther [31], which has not yet been published. In Sæther [31],
the value of P2P trading combined with different flexibility resources and on-site generation
is investigated for a Norwegian industrial site. The article uses three different market designs
to minimize the total electricity costs for the whole industrial cite. The first design, Flexible
buildings, does not allow P2P trading or shared flexibility. The second design, P2P energy
trade, allows both P2P trade between buildings and shared flexibility. While the last design,
P2P energy trade and central community storage, enables P2P trade and shared flexibility, like
the second strategy, in addition to making a shared community storage available. The first
market design is similar to the decentralized strategy, while the second design is similar to the
centralized strategy of this thesis. The difference between the market designs of Sæther [31] and
the control system strategies in the thesis is that Sæther puts a limit on the amount of power
that can be sold to the main grid, to not exceed the plus-customer limit6. The results from
Sæther shows that power is curtailed in the first market design, but not in the second design
due to enabling P2P trade. Limiting the amount of power that can be sold to the main grid can
give increased operational costs. In addition to putting a limit on the power that can be sold
to the main grid, Sæther does only use the market designs on one case.

To summarize, the reviewed articles have either applied different control system strategies, both
with and without P2P trading, to a community of residential buildings or to an industrial cite,
but not to both end-user types at the same time to compare the performance of the strategies
in different cases. The amount of end-users in the different article cases ranges from three to
ten. Having two different cases in two different countries, with different end-user types and up
to 25 end-users in the same ESR, or community, can give a better foundation for understanding
the mechanisms of the control system strategies and P2P trade. In addition, the thesis touches
upon the relationship between the total cost of electricity and the peak power demand seen from
the grid, which has not been looked at in any of the mentioned articles, through using a MOO
approach.

6See section 4.2.5 in chapter 4 for further information on the plus-customer limit.
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Table 2.2 gives an overview of the mentioned articles with a short explanation of the objective,
approach and findings of the different papers.

Table 2.2: Overview of the objective, approach and findings of some relevant articles.

P
ap

er

Optimal Operation of
Interconnected Home-
Microgrids with Flexible
Thermal Loads: A
Comparison of
Decentralized,
Centralized, and
Hierarchical-
distributed Model
Predictive Control

Local electricity
market designs for
peer-to-peer
trading: The role
of battery
flexibility

Prosumer integration
in wholesale
electricity markets:
Synergies of peer-to
-peer trade and
residential storage

Peer-to-Peer
electricity trading
in an Industrial site:
Value of peak load
reduction and shared
flexibility assets

O
b
je
ct
iv
e

Present and contrast three
different model predictive
control operations
(decentralized, centralized
and hierarchical-
distributed) for a system
of interconnected home-
microgrids.

Investigate the role
of battery storage
and how market
design rules affect
it.

Find the value of P2P
trading when integrating
prosumers in the day-
ahead and intraday
markets and see how
battery storage can
contribute to
demand-side flexibility.

Investigate the value
of P2P trading
combined with various
on-site flexibility
resources for an
industrial cite.

A
p
p
ro
ac
h

Made three different
optimization models
representing the different
coordination strategies for
the interconnected home-
microgrids, to e.g.
compare the resulting
power profiles.

Developed an
optimization model
for P2P trading to
evaluate the
benefits of end-
users using two
different market
designs;
decentralized versus
centralized storage.

Utilizes a two-stage
stochastic programming
approach to integrate a
sequenced decision-
making in the wholesale
system with uncertainty
of spot prices and
renewable generation.

Uses multi-period
linear programming
on three different
market designs;
(i) No P2P or
shared flexibility
(ii) P2P and shared
flexibility
(ii) Central storage
combined with (ii)

F
in
d
in
gs

The centralized strategy
can reduce power peaks
at the PCC and improve
the power balancing
among systems.

The combination of
flexibility from
storage and trade
features give
up to 31% savings
for the end-users.

P2P trade and battery
storage raises the self-
sufficiency of the
community, and can
lead to electricity bill
savings up to 60%.

Increased self-
consumption of the
industrial cite, reduced
peak power demand
and a total electricity
cost savings of 6.8-
11.0% when comparing
(ii) and (iii) with (i),
respectively.

C
it
at
io
n

D. I. Hidalgo-Rodríquez
et al. [16]

A. Lüth et al.
[19]

J. M. Zepter et al.
[41]

G. Sæther
[31]
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3 | 25-houses in London, UK

The 25-houses case is the first of the cases studied in this thesis. This chapter gives an intro-
duction to the case, presents the case data and model formulation before the results are given
and analyzed. Both the decentralized and the centralized control system strategies are applied
to the 25-houses case.

3.1 Introduction to the Case

The case concerns a system with 25 residential houses located in London, United Kingdom. The
system consists of heterogeneous consumers and prosumers with unique load demand patterns.
The prosumers produce electricity through a photovoltaic (PV) system and/or through using a
wind turbine (WT), and some of the end-users have a battery energy storage system (BESS)7.
The demand of the end-users is fixed, which means that no load can be shifted nor curtailed8.
All of the houses are connected to the main power grid and to a local grid that interconnects the
25 houses. Figure 3.1b shows the setup for the case with six of the 25 houses, with symbol expla-
nations given in fig. 3.1a. The system setup figure shows all the different house configurations
and the possible power flow directions within the system when P2P energy trading is enabled.
The house without production and storage units cannot sell power to the grid nor any peers,
as it has no power to sell. All the other house configurations have bidirectional connections to
both the local and the main power grid, meaning that they can both purchase and sell power
from or to other peers and the main grid.

(a) Symbol explanation. (b) System setup. Only six of the 25 houses are included.

Figure 3.1: The setup for the 25-houses case with P2P trading and explanation of the symbols.

7A battery energy storage system (BESS) describes a system that contains a battery and its needed compo-
nents, like a bidirectional inverter, monitors and controls, to be used in a power system [18].
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3.2 Case Data and System

The demand data used in the 25-houses case is historical data from the database of the Low
Carbon London project9. The project took readings of the energy consumption of 5,567 different
households, with and without local production units and BESS, within the Greater London area
[15]. For the 25-houses case, the demand of 25 different households, that were subject to a flat
rate tariff scheme of 14.23 p/kWh, from the project was used. The chosen households vary
in both average electricity demand and in demand pattern. The Low Carbon London project
measured the demand for each of the households every 30 minutes from November 2011 to
February 2014. The year of analysis for the 25-houses case is set to year 2012, and the analysis
period is April to June. A simulation period of three months was chosen instead of a year to
not get too long computational times. The demand data for the 25-houses case was taken from
April to June 2013 and not from 2012, as the demand data quality was better for year 2013
compared to year 2012. Table 3.1 shows an overview of the average monthly demand for each of
the 25 houses when looking at the demand data for the three specified months, and which houses
that have production and/or BESS units. The table does also show the nominal capacity of
the production units and the usable battery capacity of the storage units. A three-month-long
simulation period and a time step of 30 minutes give a total of 4,368 simulation steps.

Table 3.1: An overview of the average monthly demand, local production type and storage for
the different households.

House no. Average monthly
demand [kWh/month]

Production type
and capacity

Usable battery
capacity [kWh]

1 322 - -
2 483 2 kWp PV -
3 833 2.3 kW WT -
4 267 - -
5 692 4 kWp PV 4
6 288 - -
7 671 2 kWp PV -
8 649 2 kWp PV -
9 425 2 kWp PV -
10 374 - -
11 459 - -
12 228 - -
13 303 - -
14 265 - -
15 1,359 4 kWp PV, 2.3 kW WT 4
16 494 2 kWp PV -
17 353 - -
18 450 - -
19 264 - -
20 920 2 kWp PV, 2.3 kW WT -
21 462 - -
22 260 - -
23 806 4 kWp PV 4
24 468 2 kWp PV -
25 1,097 2 kWp PV, 2.3 kW WT -

8Shiftable load defines a load that can be time-shifted, but the shifted load must be met within a specific
period. Curtailable load represents a load that can be reduced without having to be replaced [26].

9More information on the Low Carbon London project can be found on the following webpage:
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
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Data used for the electricity prices and local production through PVs and WTs in the 25-houses
case is taken from Lüth et al. [19]. This is because the article studies a very similar case, but
with only four houses instead of 25. Lüth et al. [19] and the 25-houses case have many of the
same production and storage units, including 2.3 kW WTs, 4 kWp PV systems and battery
storage units with a usable capacity of 4 kWh. The 25-houses case also includes 2 kWp PV
systems. The PV system production given by Lüth was manipulated to have it fit with the 25-
houses case. This section describes what was done in the article to find prices and production
data.

The chosen pricing scheme for power consumption10 from the main grid will have a large impact
on the optimization results. For this specific case, the reference price data (RPD) time series is
based on the wholesale spot prices given by the former APX Group. The APX Group is now
owned by EPEX SPOT, which is the exchange for the power spot markets for several European
countries [10]. As the RPD stands for about one-third of the total electricity bill that the
UK end-users pay, the RPD time series was up-scaled to be representable for the price at the
residential level [19]. Price data from the simulation year 2012 was used for the 25-houses case.
Figure 3.2 shows the variation in the electricity prices during the three selected months, while
fig. 3.3a and 3.3b show the electricity prices for the first day of April and May 2012, respectively.
The figures show that the prices vary from hour to hour without any set pattern for how the
prices vary during the day. The figures do show that the prices usually are lower during the
night than during the day, which is common.
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Figure 3.2: Electricity price each hour for the months April to June 2012 for the 25-houses case.
The abscissa shows the hours within the three months, with one being the first hour in April
and hour 2184 being the last hour in June.

10When using the terms power consumption, power demand, power in-feed or similar in chapter 3, the term
power refers to the average power over the time step, 30 minutes, and not the actual power per second.
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(a) April 1st 2012.
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(b) May 1st 2012.

Figure 3.3: Prices for electricity bought from the main grid each hour for different dates.

In the 25-houses case, end-users can either sell power to other peers within the same energy
sharing region (ESR), if P2P trading is enabled, or to the main grid. If end-users sell power to
the main grid, they must pay a feed-in tariff (FIT) for utilizing the main grid for transporting
the sold electricity. From year 2012 to 2020, the FIT rate for the UK was 5.50 p/kWh [25].
When power is sold to the main grid in this case, the seller receives the dynamic wholesale spot
price minus the FIT.

When prosumers or consumers buy or sell P2P power, the local grid that interconnects the 25
houses is utilized. When trading P2P there will be conversion and line losses in the local grid,
which are assumed to be 7.6% (see [19]). To incentivize P2P trading, the price received when
selling P2P must be set higher than the price of selling to the main grid. Further, the price of
buying P2P must be lower than the price of buying from the grid. In Lüth et al. [19], the P2P
price was set to be 64% of the electricity price, as Lüth assumes that no grid costs occur when
using the local grid and that the grid costs account for about one-third of the electricity bill. As
the grid in-feed cost is set to be the electricity cost minus a fixed FIT, the P2P price cannot be
set to be e.g. 64% of the electricity price. The reason for this is that it then cannot be reassured
that the P2P price is between the electricity costs and in-feed costs for all time steps. Thus,
it has been assumed that the P2P price is 2.75 p/kWh lower than the electricity cost for the
25-houses case, which is right in the middle of the electricity cost and the in-feed cost.

The local production units, in the 25-houses case, include wind turbines and PV systems. All the
WTs in the case are of the same model type, while the PV systems have the same characteristics,
but different power ratings. The wind turbine type is a stall regulated turbine with a capacity
of 2.3 kW, while the PV system types have a rated power of 2 kWp or 4 kWp and efficiency of
21.4%11. All the installed PV systems have a tilt of 35˝, which is a recommended angle for PV
systems installed in the UK. The 2 kWp PV systems cover an area of 20.8 m2 [19], while the
area covered by the 4 kWp is assumed to be twice the size, i.e. 41.6 m2.

11The PV system data is based on the panel LG Solar LG370Q1C-V5 NeON R, see
https://www.lg.com/us/business/solar-panels/lg-lg370q1c-v5
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In the community of the 25 houses, there is a total of four 2.3 kW wind turbines and eleven PV
systems. Three of the PV systems have a power rating of 4 kWp, while the remaining eight PV
systems have a 2 kWp power rating. This gives an aggregated wind turbine capacity of 9.2 kW
and an aggregated PV system capacity of 28 kWp. The total aggregated capacity of renewable
production is then 37.2 kW.

The datasheet for the WT only provided discrete values for the power output for some wind
speeds. To get the power output from the turbine for all speeds, a polynomial curve was cal-
culated to fit the given data points. The production from the wind turbines was found by
combining the polynomial curve with wind speed data from 2012 taken from the UK Meteoro-
logical Office, from a station close to London [19]. The total WT production for the simulation
period was found to be 6.63 MWh, corresponding to 16.75% of the total community demand
in the period. As the data for the wind speed was taken from one measurement station, the
WT production is the same for each house that has a WT. Figure 3.4a and 3.4b show the
wind turbine production for April and June 1st, respectively, where it can be seen that the WT
production is the same for all WTs.
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(a) Wind turbine production for April 1st.
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(b) Wind turbine production for June 1st.

Figure 3.4: Wind turbine production for April and June 1st 2012 for the different houses12.

The PV system production every 30 minutes during the simulation period was found through
converting global horizontal irradiation data and temperature from HelioClim-3 archives13 and
MERRA-214, which gives global reanalysis data, for a pre-specified PV installation. To not
get the same PV system output for each house with a PV system, a function was created to
manipulate the production from the pre-specified PV installation within some set limits. The
used irradiation and temperature data for the case is from year 2006, as it was not possible to
obtain data in 30 minutes resolution for the year 2012 [19]. The total PV system production
for the simulation period is 12.33 MWh, corresponding to 31.16% of the total demand in the
period. The PV system production for April 1st is showed in fig. 3.5a, while the PV production
for June 1st is presented in fig. 3.5b.

12The production is the same for each household that has installed a wind turbine, due to wind data being
taken from the same measurement station.

13See http://www.soda-pro.com/nb/web-services/radiation/helioclim-3-archives-for-free for further informa-
tion.

14See https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ for further information.
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(a) PV system production for April 1st.
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(b) PV system production for June 1st.

Figure 3.5: PV system production for April and June 1st 200615for the different houses.

The BESS type used in the 25-houses case is a sonnenBatterie eco 8.0, which is a lithium iron
phosphate (LIP) battery that has a usable capacity of 4 kWh and an inverter with a nominal
power of 2.5 kW. The battery has a maximum efficiency of 98%, while the inverter has a
maximum efficiency of 96% [34]. It is assumed that the charging and discharging efficiencies
are constant and equal to the battery efficiency of 98%. The one-way efficiency, i.e. the battery
efficiency times the inverter efficiency, of the BESS is 94.08%, which gives a round-trip efficiency
of 88.51%. The round trip efficiency denotes the ratio of energy input to the energy retrieved
from the BESS. The usable battery capacity and the nominal power of the inverter result in a
full charging/discharging time of the battery type of approximately 100 minutes. As there are
three sonnenBatteries within the community, the aggregated battery capacity is 12 kWh.

The datasheet for the battery gave the usable capacity of the battery, which is assumed to be
the energy that the battery can provide when the nominal capacity is multiplied with the upper
and lower SOC limits. This means that the limits on SOC for the battery are already taken
into account for the sonnenBatterie eco 8.0.

3.3 Case Assumptions and Simplifications

Some assumptions were made in the 25-houses case to simplify the case. The assumptions listed
in section 2.3.1 in chapter 2 do also apply to the case, in addition to the assumptions and
simplifications listed below:

˚ The simulation year is 2012, but the energy demand and PV system production data
is from year 2013 and 2006, respectively. This is due to poor demand data quality for
year 2012 and that a 30-minute resolution for irradiation and temperature data was not
available for the simulation year.

˚ It is assumed that the limits on SOC have been accounted for in the datasheet of the
sonnenBatterie eco 8.0.

˚ The wind data for the different WTs is from the same measuring station.
15The horizontal irradiation and temperature data is from 2006, as it was not possible to obtain data for 2012

in a 30-minute resolution.
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3.4 Model Formulation

The optimization approaches used for the 25-houses case must make supply-demand decisions
for the different houses when the goal is to reduce the cost of electricity. To do this, a multi-
period linear programming model is used for each of the approaches, as the storage level in
the battery is dependent on the battery SOC from the previous time step. The multi-period
linear programming models make optimized decisions for the system every 30 minutes, time
step t, for the optimization horizon T . The two different approaches used for the 25-houses
case have different objective functions and restrictions. The first approach aims at reducing the
cost of electricity for each house and does not allow P2P energy trading. The second approach
aims to reduce the electricity cost of the community of 25-houses when P2P trading is enabled.
Both of the approaches have many of the same sets, scalars, parameters and variables in the
mathematical model, these are given in table 3.2. It should be noted that there is just one BESS
type in the case, which is used in the houses that have battery storage.

Table 3.2: Sets, scalars, parameters and variables used in the mathematical models for the
25-houses case.

Type Description Unit

Sets
t P T Time, t, within the optimization horizon T
h, p P H Houses, h, and peers, p, within the community of houses H

Scalars
ηc/ηd Charging/discharging efficiency of the battery -
ηinv BESS inverter efficiency -
Pinv Nominal power of the BESS inverter kW
Ebat Nominal capacity of the BESS battery kWh
SOC/SOC Maximum/minimum limits on the battery state of charge p.u.
θP2P Efficiency factor for converting and transferring P2P power -

Parameters
dem(t ,h) Demand of house h in time step t kW
res(t ,h) Renewable power production of house h in time step t kW
p(t)
G

Electricity price for power bought from the grid in time step t p/kWh
p(t)
Gto

In-feed price for power sold to the grid in time step t p/kWh

Variables
G(t ,h) Power drawn from the grid for house h in time step t kW
G(t ,h)

to Power delivered to the grid from house h in time step t kW
C(t ,h)/D(t ,h) Battery power charge/discharge of house h in time step t kW
S(t ,h) Battery energy storage level in house h in time step t kWh
I(t ,h) Total P2P power purchase of house h in time step t kW
I(t ,hÐp)
p P2P power purchase of house h from peer p in time step t kW

X (t ,h) Total P2P power sold from house h in time step t kW
X (t ,hÑp)
p P2P power sold from house h to peer p in time step t kW
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The objective function in both of the approaches is subject to several constraints. The mathe-
matical constraint-equations are different for the two models, but some of them have the same
objective. Both approaches must act by the power balance equation, which ensures that there
is a balance between the demand and supply for each node in every time step in the simulation.
The power balance equation must be fulfilled at all times to keep a stable system frequency.
Next, both approaches update the storage level of the battery by adding the battery charge to,
or subtracting the battery discharge from, the battery SOC from the previous time step. The
centralized approach has more constraints than the decentralized approach, as there must be
set rules for the P2P trade. As pointed out in section 2.3.3 in chapter 2, the P2P costs are not
included in the optimization for the centralized approach and have therefore been added after
running the optimization.

3.4.1 Approach 1 - Decentralized Strategy
The different houses must get their power demands met with power from local production, local
storage or power from the main grid. Only houses that have local production and/or battery
storage can utilize these as a power source in approach 1, as there is no P2P trading. Figure 3.6
shows the setup for the decentralized strategy for the 25-houses case.

Figure 3.6: Illustration of the setup of the 25-houses case without P2P trading used for approach
116. Only six of the 25 houses are illustrated.

The objective of the approach is to minimize the total cost of electricity for the optimization
horizon, T , for each individual house, h. This is done for each day separately within the simula-
tion period. As it would be unlikely to know the exact local production, demand and electricity
prices every 30 minutes if the simulation period is long when assuming a perfect forecast model.
Equation (3.1) shows the objective function for approach 1 for the 25-houses case. The equation
sums up the cost of grid consumption, G(t ,h), minus payback for power delivered to the grid,
G(t ,h)

to , for each time step within the simulation period. p(t)
G

and p(t)
Gto

denote the electricity price
and price for power delivered to the grid, respectively. All of the equations in section 3.4.1 hold
true for all h P H and t P T , and all variables are non-negative.

16See fig. 3.1a for an explanation of the symbols used in fig. 3.6.
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min
@ tPT
@ hPH

C(h)
tot ,A1

=

T∑
t

(
G(t ,h) ¨ p(t)

G
´ G(t ,h)

to ¨ p(t)
Gto

)
(3.1)

The objective function is subject to two constraints, the power balance equation and the equation
for the battery storage level. The power balance constraint says that the sum of power drawn
from the grid, G(t ,h), power produced by renewable units, res(t ,h), and battery discharge, D(t ,h),
must be equal to the sum of the power demand, dem(t ,h), power delivered to the grid, G(t ,h)

to , and
battery charge, C(t ,h), for each time step t P T and house h P H. Equation (3.2) shows the power
balance equation for approach 1.

G(t ,h) + res(t ,h) + D(t ,h)
looooooooooooomooooooooooooon

Supply

= dem(t ,h) + G(t ,h)
to + C(t ,h)

loooooooooooooomoooooooooooooon

Total demand

(3.2)

The battery storage level constraint says that the battery storage level, S(t ,h), is equal to the
storage level of the previous time step, S(t´1,h), plus the battery charge, C(t ,h), or minus the bat-
tery discharge, D(t ,h), in the current time step t. The amount of power charged to, or discharged
from, the battery is multiplied with the inverter efficiency, ηinv, and with the corresponding
charging or discharging efficiencies, ηc or ηd. Equation (3.3) shows the battery storage level
constraint.

S(t ,h) = S(t´1,h) + ηc ¨ ηinv ¨ C(t ,h) ´
1

ηd ¨ ηinv
¨ D(t ,h) (3.3)

A battery has limits on upper and lower storage levels, which are determined by the upper SOC,
SOC, and the lower SOC, SOC , limits and the nominal capacity of the battery, EBat . This is
showed in eq. (3.4). The battery SOC is a number P [0,1] [p.u.]. Further, the charging and
discharging of a battery is limited by the nominal power of the BESS inverter, Pinv, and the
inverter efficiency, ηinv, as showed in eq. (3.5) and (3.6).

Ebat ¨ SOC ď S(t ,h) ď Ebat ¨ SOC (3.4)

0 ď C(t ,h) ď ηinv ¨ Pinv (3.5)

0 ď D(t ,h) ď Pinv (3.6)

Power cannot be sold and purchased from the grid in the same time step and a BESS cannot
be charged and discharged at the same time. In this model, it will never be optimal to buy and
sell power from the main grid in the same time step, as the payback for selling power to the
grid always will be lower than the cost of buying power from the grid. Further, the charging
or discharging of the BESS are mutually exclusive events, because it will never be optimal to
charge and discharge the BESS at the same time due to efficiencies lower than 1 p.u. Based on
these facts, restrictions ensuring no simultaneous charging and discharging, or no simultaneous
selling and buying grid power, are not needed.
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3.4.2 Approach 2 - Centralized Strategy
In the centralized strategy, approach 2, the different houses can get their energy demands met
with the same sources as in approach 1, but in addition they can buy power from other houses
within the community, called peers, p. Figure 3.1b shows the setup of the 25-houses case using
approach 2 with the possible power flow directions.

The objective of the approach is to minimize the total cost of electricity for the whole community
within the optimization horizon. This is done separately for each day within the simulation
period, due to the aforementioned reasons in section 3.4.1. Equation (3.7) shows the objective
function of approach 2 for the 25-houses case. The grid consumption, G(t ,h), is summed up for
all of the houses and multiplied with the wholesale spot prices, p(t)

G
. The power sold to the main

grid, G(t ,h)
to , is summed for all the houses and multiplied with the in-feed price, p(t)

Gto
. All of the

equations in section 3.4.2 hold true for all h, p P H and t P T , and all variables are non-negative.

min
@ tPT
@ hPH

Ctot ,A2 =

T∑
t

((
H∑
h

G(t ,h)

)
¨ p(t)

G
´

(
H∑
h

G(t ,h)
to

)
¨ p(t)

Gto

)
(3.7)

The power balance equation used for this method is given in eq. (3.8). The equation is the same
as the power balance equation for approach 1, except that total P2P power purchase, I(t ,h), has
been added as a possible source of power, and that total amount of sold P2P power, X (t ,h), has
been added as a possible additional demand.

G(t ,h) + res(t ,h) + D(t ,h) + I(t ,h)
loooooooooooooooooomoooooooooooooooooon

Supply

= dem(t ,h) + G(t ,h)
to + C(t ,h) + X (t ,h)

looooooooooooooooooomooooooooooooooooooon

Total demand

(3.8)

Approach 2 has the same battery constraints as approach 1. This means that eq. (3.3) - (3.6)
also have been applied in approach 2. As for the first approach, no constraints are needed for
ensuring that power cannot be bought from, or sold to, the main grid in the same time step nor
for ensuring that simultaneous charging and discharging of a BESS cannot occur in the second
approach. This is because the grid prices and the BESS efficiencies are case dependent, and not
approach dependent.

The enabled P2P trading has to follow certain rules, which are added as restrictions to the
objective function. The total amount of sold P2P power, X (t ,h), from house h in time step t is
given by the sum of the electricity flows, X (t ,hÑp)

p , from the house to the peers p P H, as stated
in eq. (3.9).

X (t ,h) =
∑
p,h

X (t ,hÑp)
p (3.9)

The purchased power, I(t ,hÐp)
p , of house h from peer p is equal to the bought power, X (t ,hÑp)

p ,
times the efficiency factor for conversion and transmission of distributed generation to P2P sale,
θP2P, as showed in eq. (3.10).

I(t ,hÐp)
p = θP2P ¨ X (t ,hÑp)

p , @ p , h. (3.10)
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The total amount of P2P power, I(t ,h), bought by house h is given as the sum of all electricity
flows, I(t ,hÐp)

p , from the different peers p P P to the specific house h, as showed in eq. (3.11).

I(t ,h) =
∑
p,h

I(t ,hÐp)
p (3.11)

When taking the P2P losses into account and that the P2P power remains within the community,
the sum of all the purchased P2P power must be equal to the sum of all the sold P2P power
times the P2P efficiency factor, as showed in eq. (3.12).∑

h

I(t ,h) =
∑
h

θP2P ¨ X (t ,h), @t P T . (3.12)

3.5 Case Results and Analysis

The presented linear multi-period models for the decentralized and centralized control sys-
tem strategies for the 25-houses case are both implemented in MATLAB and solved using the
MATLAB-solver linprog. The linprog solver uses a dual-simplex algorithm, explained in sec-
tion 2.2 in chapter 2, to find the optimal solution for the objective function with its associated
constraints. The system parameters have been read from Excel into MATLAB, and MATLAB
was both used to solve the models and to generate plots and graphs presenting the results. Both
of the models are implemented and solved on a 64-bit macOS Catalina with Intel Core I5-6360U,
2 GHz CPU and 8 GB RAM.

The performance of the two different control system strategies is measured based on the elec-
tricity costs for each house and the total costs for the whole community of houses. The most
effective strategy is the one that gives the lowest total electricity costs. The total amount of
energy drawn from the main grid and the peak power demand of the community are also noted.

The results and analysis of the two different approaches have been divided into two separate
sections. Section 3.5.1 and 3.5.2 show the results and the result analysis for the decentral-
ized (approach 1) and the centralized (approach 2) approaches, respectively. In the last part,
section 3.5.3, the results of the different approaches are compared and discussed.

3.5.1 Approach 1 - Results
In the decentralized approach, each house has to make its own supply-demand decisions by
using its own local production and storage units, if the house has any, and power from the
main grid. The optimization aims at minimizing the electricity costs for each house separately
for each day within the 91 days long simulation period. In the 25-houses case, there are some
houses with both DERs and BESS, some houses with only DERs, and some houses that have no
local production nor storage. The houses with production and/or storage units are optimally
scheduled to utilize their resources before covering the possible power deficit with power from
the main grid. Possible surplus power from production is sold to the main grid. The houses
that do not have any production nor storage units must buy all the necessary power from the
main grid.

It took just over 3 minutes to run the optimization model on the 64-bit macOS Catalina for the
three stated months in MATLAB, and the optimization comprises 257,712 variables and 122,304
constraints for the simulation period. The total amount of energy drawn from the grid for the
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community of houses is 27,864 kWh, which corresponds to a cost of £3,918. The total amount
of energy that is fed to the main grid from the community of houses is 7,160 kWh, which gives a
total payback of £776. This means that the optimal solution for this method gives a total cost
of £3,142 for the community of houses. The optimal solution results in a peak power demand of
5.76 kW for house 25. If the houses are considered as a community, the community would have
a peak demand of 21.64 kW.

Figure 3.7 shows the power balance, see eq. (3.2), between supply and total demand for house
15 in week 24, 2013. House 15 has a WT, PV system and a BESS. The upper plot in the figure
displays how the average energy demand of the house in each time step, 30 minutes, is met with
power from DERs, BESS discharge and with power from the main grid, while the lower plot
shows that the total demand consists of the fixed energy demand of the house, power used to
charge the battery and power that is being sold to the main grid. The total demand, i.e. the
sum of the demand, battery charge and power sold to the grid, of the houses with DERs and/or
BESS is not fixed, it is only the actual energy demand of the house that is fixed. For the houses
that have both DERs and a BESS, the optimization will decide in which time steps power will
be used to charge the battery or sold to the main grid. While the houses that have DERs and
no storage, power will be sold to the main grid in time steps when the local production exceeds
the fixed demand of the specific house. From fig. 3.7, it can be seen that most of the demand
is met with local production. This is because utilizing self-produced energy has no costs in
the optimization. The PV production is highest in the middle of the day, as the sun is at its
highest at this time, while the production from the WT is more varying during the day and
night. Because of the relatively high local production, house 15 does not need to buy that much
power from the main grid. This results in low operating costs for the house, as it is the power
drawn from the main grid that gives costs in the simulations.
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Figure 3.7: The supply-demand decisions made when using approach 1 on house 15 in week 24,
2013.
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The optimization of the decentralized approach aims at reducing the electricity costs each day
for each house. This means that the houses with local production units try to maximize their
self-consumption and minimize grid consumption. If the demand exceeds the local production,
the houses with both DERs and BESS units will try to buy power from the main grid when the
electricity prices are low. If the local production exceeds the demand, the houses with DERs
and BESS units will try to sell power to the main grid when the in-feed costs are high, to get the
highest revenue. Figure 3.8 shows the electricity and in-feed costs for week 24. On the first day
of that week, the in-feed costs have two peaks, one right around 12 h and one at 18 h. When
comparing fig. 3.8 with 3.7, it can be seen that the battery is discharged and that power is sold
to the grid in those hours, to get the highest revenue for the sold power.
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Figure 3.8: The corresponding electricity and in-feed costs for week 24.

Figure 3.9 shows the storage level of the battery of house 15 during week 24. It can be seen
from the figure that the battery is fully charged when the local production exceeds the fixed
demand and that the battery is discharged when the electricity costs and in-feed costs are high.
In periods with low local production, like in the period 71 h to 78 h shown in fig. 3.7, the battery
is charged when the electricity cost is low, i.e. at 76 h and 77 h.

12 24 36 48 60 72 84 96 108 120 132 144 156 168

Time [h]

0

1

2

3

4

S
to

re
d

 e
n

e
rg

y
 [

k
W

h
] Battery storage level

12 24 36 48 60 72 84 96 108 120 132 144 156 168

Time [h]

5 

10

15

20

25

30

C
o

s
t 

[p
/k

W
h

]

Electricity cost In-feed cost
Figure 3.9: Storage level for the battery in house 15 for week 24, 2013.

3.5.2 Approach 2 - Results
Using the centralized approach on the 25-houses case means that the houses are looked at as
one community. The objective is to minimize the operational costs each day, i.e. optimization
horizon, during the analysis period for the community, and not for each house. In this approach,
it has been made possible to use P2P trading. Houses with DERs or BESS units can sell power
directly to other peers, and the P2P power can only be traded within the community.
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Running the optimization model for the three months took almost 40 minutes on the 64-bit
macOS Catalina. The long simulation time is due to that the optimization comprises 5,499,312
variables and 2,747,472 constraints. The total amount of energy drawn from the grid for the
community of houses using the second approach is 22,591 kWh, which gives a cost of £3,063.
1,369 kWh is fed to the main grid during the simulation period, giving a payback of £173.
This means that the optimal solution gives a total cost for the community of £2,890 for the
simulation period. The highest peak demand seen from the grid when looking at the 25 houses
as a community is 16.90 kW. If the houses are looked at separately, the highest peak is found
to be 5.68 kW for house 25. When it comes to P2P energy trading, a total of 6,697 kWh is sold
from peers and 6,188 kWh is bought from peers within the community. This results in a total
of 509 kWh of losses during the simulation period.

Figure 3.10 shows how the power balance, see eq. (3.8), between supply and total demand is met
with different energy sources for house 3 during week 18, 2013. House 3 has local production
through a WT and no battery storage. In time steps when the production exceeds the fixed
demand of the house, power is either sold to other peers or to the main grid. From the plots, it
can be seen that most of the excess power is sold to other peers. This is because it is economically
beneficial for the community to utilize production from DERs locally, rather than selling it to
the main grid. The optimization decides that power should be sold to the main grid instead of
to other peers in certain time steps, like around 108 h for house 3 in week 18, when e.g. the
local production is high compared to the total community demand and there is no need for P2P
power.
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Figure 3.10: Supply-demand decisions made when using approach 2 for house 3 in week 18,
2013.
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3.5.3 Comparison of the Results and Discussion
The results for the two different approaches are summarized in table 3.3. In the table, there
have also been added results for two reference approaches, which utilize either the decentralized
strategy, ref. A1, or the centralized strategy, ref. A2, but with no battery storage. The reference
approaches have been added to have a source of comparison for each of the approaches, in
addition to comparing them to each other.

Table 3.3: Results from the optimization using the two different control system strategies on
the 25-houses case, both with and without storage.

Strategy Ref. A1
(no storage)

A1: Decentralized
Comp. to ref. A1

Ref. A2
(no storage)

A2: Centralized
Comp. to: ref. A2 A1

Total costs [£] 3,246 3,142 -3.2% 2,994 2,890 -3.5% -8.0%
Cost for grid consumption [£] 4,037 3,918 -3.0% 3,202 3,063 -4.3% -21.8%
Revenues of selling to the grid [£] 791 776 -1.9% 208 173 -17.0% -77.7%
Grid consumption [kWh] 28,311 27,864 -1.6% 22,921 22,921 -1.4% -18.9%
Fed to main grid [kWh] 7,702 7,160 -7.0% 1,869 1,869 -26.7% -80.9%
Maximum community peak [kW] 18.49 21.64 -17.0% 16.90 16.90 0% -13.5%

The results in table 3.3 show that both the decentralized and centralized control system strategies
give lower costs when the battery storage units are present. For the decentralized approach,
the costs are reduced by 3.2% when storage is introduced, while the centralized approach gives
a cost reduction of 3.5% when storage can be utilized. If the total electricity costs using the
two approaches are compared, it can be seen that the centralized approach gives the lowest
total operational costs. The total electricity costs for the community are 8% lower when using
the centralized compared to the decentralized approach. It was expected that the centralized
strategy would give the lowest total costs of the two strategies, as the aim of the strategy is
to reduce the operational costs of the community, and not of the individual houses like the
decentralized strategy.

The operational costs for the individual houses during the 91 days long simulation period using
the different strategies are presented in fig. 3.11. The figure shows that the cost of the individual
houses actually is lower when using the centralized strategy for the 25 houses. The reason for
this is that the centralized approach allows P2P trading, unlike the decentralized strategy. The
P2P trading price is set to be right in between the in-feed cost and the grid electricity cost,
to incentivize P2P trading. This means that a higher revenue is gained when selling power to
other peers compared to selling to the main grid. The in-feed cost to the grid is set to be 5.5
p/kWh lower than the grid electricity price, which varies in each time step. This means that
the P2P trading price can take many different values and still be within the in-feed costs and
the electricity costs. It was chosen to set the P2P price to be right in the middle of the in-feed
price and the grid price, i.e. 2.75 p/kWh higher than the in-feed costs and thus 2.75 p/kWh
lower than the electricity cost. If the P2P price is increased or decreased within the set limits,
the costs of the individual houses will either increase or decrease depending on if the house has
both DERs and storage units, only DERs units or neither. When the P2P price is increased, it
is observed that houses with production from DERs and houses with both battery storage and
DER production get lower operational costs, while the houses without DERs and storage get
increased operational costs. This is because a higher P2P price gives a higher revenue for the
houses that sell P2P power, and thus a higher cost for the houses that buy P2P power.
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Figure 3.11: Total operational costs for each of the 25 houses using the decentralized and
centralized control system strategies.

To observe the influence of the different features of the two approaches, the energy supply and
total demand of the 25 houses were aggregated. Figure 3.12 shows the aggregated energy supply
for all of the 25 houses using the decentralized and centralized approaches for week 14 in year
2013. The corresponding aggregated total demand for the two approaches is showed in fig. 3.13.
The figures show that grid consumption decreases when going from the decentralized to the
centralized approach. For the simulation period, the grid consumption is decreased by 18.9%,
ref. table 3.3, when comparing the results from the centralized approach with the decentralized
approach. Further, it can be seen that less power is sold to the main grid in approach 2, as it
is possible to sell power to other peers. The amount of power sold to the grid is decreased by
80.9% compared to approach 1.
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Figure 3.12: The aggregated energy supply for all of the 25 houses using the first and second
approach for week 14, 2013.
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Figure 3.13: The aggregated total energy demand for all of the 25 houses using both approach
1 and approach 2 for week 14, 2013.

The share of the different sources of supply for the two approaches is presented in fig. 3.14,
while fig. 3.15 shows the share of the different demand types for the approaches. The aggre-
gated demand and local production of the houses are the same in both approaches. It is the
optimization approach that decides when the batteries should be charged or discharged and
when power should be bought from or sold to the main grid. For the centralized approach, the
optimization also decides how much power should be traded P2P. Figure 3.14 shows that when
P2P trading is introduced and a centralized approach is applied, the share of power coming from
the grid is reduced by 11.79% from the decentralized approach. While from fig. 3.15, it is seen
that the share of power sold to the grid is reduced by 11.86% when comparing the centralized
with the decentralized approach. The introduction of P2P trading causes more power to be sold
to other peers instead of to the main grid.
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Figure 3.14: The share of different sources of supply for the two approaches for the 25-houses
case17.
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Figure 3.15: The share of different types of demand for the two approaches for the 25-houses
case18.

In both strategies, neither the peak power demand seen from the main grid nor the supply peak,
when selling power to the main grid, are considered. This means that the two approaches can
give results with high peaks. When looking at the results for both approaches, it is observed
that the houses with production and storage units try to buy the necessary power from the main
grid in hours when the electricity prices are low, and sell power to the main grid when the in-feed
prices are high. This can be seen for both approaches for house 15 during an arbitrary week in
the simulation period through looking at fig. 3.7 in section 3.5.1 for the decentralized approach
and fig. A.1 in appendix A.1 for the centralized approach. If the figures are compared with the
corresponding electricity and in-feed prices for the specific week, see fig. 3.9 in section 3.5.1, it
is observed that the spikes in supply and demand seen from the grid are price dependent. As
the power demand of the community of 25 residential buildings is relatively low compared to
larger grid consumers, like e.g. industrial sites, the peak demand of the community does not
have a large overall impact when considering that the DSO has to dimension the grid based on
the highest peak demand seen from the main grid. If, on the other hand, the approaches are

17The aggregated local production accounts for different shares of the total supply in the two approaches, but
the aggregated production is the same in both approaches.

18The aggregated demand of the houses accounts for different shares of the total demand in the two approaches,
but the aggregated demand is the same for both approaches.
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applied to larger communities or to several communities in the same area, the peak demand
seen from the grid must be taken into consideration to not trigger possible costly grid updates.

Both control system strategies optimize the supply-demand decisions for each separate day
within the 91 days long period. It was chosen to use an optimization period of just one day,
due to the assumption of a perfect forecast model. Expanding the optimization period would
give more unrealistic results as it is unlikely to know the exact local production, demand and
electricity prices for a long period beforehand. The result of this is that the optimization results
won’t be optimal when looking at a period longer than one day. When observing the utilization
of the battery storage, it can be seen from fig. 3.9 in section 3.5.1 that the battery is emptied at
the end of each day. The optimization does not take the next day into account when optimizing
the use of the storage. To exploit the usage of the battery storage, the optimization approaches
could be changed to find the optimal solution for the whole 91-day long period in one go. To
get more realistic results, forecasting algorithms could be implemented in both approaches.

The simulation period is set to be three months long, ergo 91 days for the spring months April
to June, to reduce computational time. The months April to June were chosen because in this
period there is an overall increased production from the PV systems and an overall decrease in
the wind turbine production. It was desirable to have a certain amount of renewable production
to better see the effect of P2P trading on the results, as more local production implies that
the houses within the community will draw less power from the grid and that there will be
more flexibility for P2P trade. As the aggregated capacity of the PV system is higher than
the aggregated capacity of the wind turbines, the total renewable production will most likely
be higher in the spring and summer months compared to the fall and winter months. As the
production from the wind turbines is lower in the summer, the spring months were chosen so
that also the wind turbine production would be noticeable.
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The first two control system strategies, presented in section 2.3, were applied to a second case
with larger industrial end-users to observe how the results would turn out using a different type
of case. In this chapter, the Norwegian Elnett21-case is presented as well as the results obtained
when using the two strategies.

4.1 Introduction to the Case

The Elnett21-case is from the ongoing Elnett21-project19 (year 2019-2024), which is a collabo-
ration, research and development project between Avinor, Forus Industrial Park, Lyse Elnett,
Smartly and the Port of Stavanger. The partners are all located in the Stavanger region, Norway,
where Lyse Elnett is the local DSO. The project aims to find solutions to meet the increasing
power demands due to i.e. the electrification of the transportation sector [9].

The Norwegian Elnett21-case of this thesis addresses the three end-users Avinor, Forus Industrial
Park and the Port of Stavanger. Avinor operates the airport in Stavanger, Forus Industrial Park
concerns an area with a lot of office buildings and industries while the Port of Stavanger Group
operates Risavika Harbor, as well as some other harbors in the district. The airport, industrial
park and harbor are all planning to install local energy production and storage units as a part
of the Elnett21-project. The production units consist of wind turbines (WT) and photovoltaic
(PV) systems, while the storage units are battery energy storage systems (BESS) and a vehicle to
grid (V2G) solution where electric vehicles (EVs) can be used like a temporary battery storage.
The three end-users all have high energy demands, and it is assumed that 10% (see [14]) of the
energy demand of all the end-users is shiftable. Shiftable load is a type of flexible20 load that
can be shifted in time, but the total load must still be met within a certain time period [26].

In this thesis, it is assumed that the three end-users are supplied with power from the same
transformer station and that there is a local grid connecting the end-users, which makes it
possible to trade power between them locally. In reality, the three project participants are not
directly connected, and they are not supplied with power from only one transformer station.
Between them, there are several transformer- and substations, and there are a lot of transmission
cables and overhead lines. The end-users have been placed under the same bus beneath one
transformer to simplify the case. Figure 4.1 shows the system configuration of the Elnett21-case
with one transformer station which is connected to each of the end-users through a cloud. The
cloud can be considered as a "virtual bus", which is used to represent that the end-users are
directly connected in the Elnett21-case, but that they are not directly connected in reality. The
figure also shows the different types of DERs and storage units installed at the different locations
in the case.

19For further information on the Elnett21-project see https://www.elnett21.no
20A flexible load is a generic term for loads that can be changed in some kind of way. The flexible load can

either be shiftable or curtailable. The shiftable loads can be time-shifted, but the total load must be met within
a specific time interval. The curtailable loads represent flexible loads that can be reduced, without having to be
replaced [26].
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Figure 4.1: The used system configuration for the Elnett21-case. The cloud is used to show that
in the case, the end-users are connected through a local grid, but in reality they are not directly
connected.

32



Chapter 4 – Elnett21, Case in Norway

4.2 Case Data and System

The exact demand data for the end-users in the Elnett21-case was not given for any of the
project participants. Further, the airport, harbor and industrial area have not yet decided on
the type and size of production and storage units to be installed. Based on these facts, the
demand data for the end-users had to be generated or put together manually and production
and storage units were chosen and sized based on different conceptual studies. This section
describes how the demand, production and storage data was found.

Hourly data was used for the period April to June from year 2015. This year was chosen as it was
used for finding the demand and production for Stavanger Airport, Avinor, in the specialization
project, reference [33]. The simulation period, April to June, with hourly simulation steps results
in 2,184 time steps.

4.2.1 Avinor - Stavanger Airport
Avinor is a company that operates most of the airports in Norway. In Stavanger, they operate
Stavanger Airport, which takes part in the Elnett21-project. The airport is planning to install
production and storage units and has involved the consultant company Norconsult to get an
overview of the different possibilities.

The demand of the airport for 2015 was found in the specialization project, [33], using data
provided by a report by Norconsult, reference [11]. In 2015, Stavanger Airport had a total
demand of 15,713 MWh/yr, while for the simulation period April to June 2015, the demand
was 3,653 MWh. As stated in the specialization project, only monthly energy demand data was
provided in addition to only one demand curve for a day during the summer. Using the average
daily demand for each month, the demand curve was parallel shifted such that the demand each
day would be equal to the average daily demand for each month. Using this method, the created
demand would have the same monthly demand values as the actual demand curve. Figure 4.2
shows the generated energy demand of Stavanger Airport for the whole simulation period, while
fig. 4.3 shows the airport demand during week 15 in 2015. It can be seen from the figures that
the demand curve has the same shape each day and that it is exactly the same for the days
within the same month.
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Figure 4.2: The generated demand for Sta-
vanger Airport for the simulation period April
to June 2015.
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Figure 4.3: The generated demand for Sta-
vanger Airport for week 15 (April) in 2015.
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Norconsult proposed that the airport should install PV systems and WTs as production units
and a large BESS as a storage unit. Four Wind Technik Nord (WTN) turbines each with a
nominal output power of 250 kW, a large PV system with an installed capacity of 4.57 MWp
and a BESS with a capacity of 12 MWh and a power capability of 3 MW was mentioned as an
alternative [11]. These units have been chosen for Stavanger Airport in the Elnett21-case.

To find the production from the four WTN250 wind turbines, the power performance curve had
to be found using a six-degree polynomial. The fitted power curve for the WTN250 turbines,
showed in fig. 4.4, together with wind speed data from a weather station located at the airport,
and a scaling factor compensating for insufficient spacing between the turbines, gave a total
production of 1,720.37 MWh/yr for 2015. The WT production is equal to 10.95% of the total
yearly demand of the airport. For the simulation period April to June 2015, the total WT
production was found to be 392.08 MWh, which is equal to 10.73% of the demand in the same
period. Figure 4.5 shows the total WT production for an arbitrary week. Further descriptions of
how the WT production for Stavanger Airport was found are given in the specialization project
(see [33]).
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Figure 4.4: Fitted versus discrete power curve
for the wind turbine Wind Technik Nord 250
kW (WTN250).
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Figure 4.5: Production from the four WTs at
Stavanger Airport for week 19, 2015.

The PV production was found using Renewables.ninja, which is a web application that takes
input on location (latitude and longitude), PV system capacity, system loss, tilt and azimuth
angle of the PV system. The preferred dataset, either the global reanalysis model MERRA-2 or
Meteosat-based CM-SAF SARAH, also has to be chosen in addition to choosing if the PV system
has tracking or not. When this data is put into the application, it will give hourly production
data for the PV system for a specified year. The PV production for Stavanger Airport was found
to be 4,593.11 MWh/yr for 2015, which is 29.23% of the yearly demand. For the simulation
period, April to June 2015, the PV production was 1,898.57 MWh, which is 51.97% of the
demand in the period. The PV production was found using the airport as location, the dataset
MERRA-2, a PV system capacity of 4.57 MWp, no tracking and the default values for system
loss, tilt and azimuth angle, of 0.1, 35˝ and 180˝, respectively. Such a PV system will cover
around 20,000 m2 [11]. See the specialization project, [33], for more details.

Figure 4.6a and 4.6b show the production from the PV system at Stavanger Airport for two
arbitrary weeks during the simulation period April to June 2015. The first figure shows a week
with lower production, while the second figure illustrates a week with higher production.
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(a) Week 21 (May).
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(b) Week 23 (June).

Figure 4.6: The PV system production at Stavanger Airport for two different weeks in 2015.

The BESS was set to have a battery capacity of 12 MWh and an inverter nominal power of 3
MW, as suggested from the Norconsult-report (see [11]), but the battery type was not given.
To model the battery characteristics, a lithium-ion (Li-ion) battery was used as it is the most
widespread battery of the different technologies. Figure 4.7 shows a typical SOC versus open
circuit voltage of a Li-ion battery. The figure shows that the voltage of a Li-ion battery is
relatively flat for a SOC between 20-90%, meaning that it is preferable to operate the battery
within this region [29]. The recommended limits for SOC were applied to the BESS at the
airport.

Figure 4.7: Open circuit voltage of a Li-ion battery versus SOC [29].

The BESS has a bi-directional converter, which converts the power from AC to DC when the
battery is charging and vice versa when the battery is discharging. Converting power from AC
to DC, or inverting power from DC to AC leads to losses. The efficiency of a converter will
greatly depend on its topology, but it will often be within the interval of 0.90-0.98 [4]. It is
assumed that the BESS at the airport has a converter efficiency of 98%. When it comes to
the charging and discharging efficiencies of the battery, these efficiencies are dependent on the
battery current. For simplicity, it is assumed that they are constant and equal and they are set
to be 0.98 [29, 32]. With the given battery capacity and nominal power of the inverter, it takes
around 4 hours to fully charge or discharge the battery in the BESS.
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4.2.2 The Port of Stavanger - Risavika Harbor
Risavika Harbor (RH) is a harbor owned by the Port of Stavanger (PS) and is located in
Stavanger, Norway [38]. PS is planning on expanding its harbor area at Risavika and has in
that context looked at the possibilities of installing local production and storage units. To get
an overview of the different possibilities at Risavika, PS involved a consultant company named
NIRAS to have them make a conceptual study of RH. The result of this study was several
reports where NIRAS has analyzed different opportunities for RH.

NIRAS studied the opportunities of installing different production units like PV systems, wind
turbines and combined heat and power (CHP) production. They concluded that PV systems
were the most suited production unit that could be installed at RH. The reason for this is that a
PV system can be installed on all surfaces on new and existing buildings without taking up space
or impose restrictions on utilization of the area in any way. Installing wind turbines will require
more space, dependent on the size of the turbine, and an environmental impact assessment. The
CHP-technology produces both power and heat but has a much lower electrical efficiency than
thermal efficiency. This means that the produced heat must be utilized to increase the overall
efficiency [39]. RH has high heating demands according to NIRAS, so CHP could be a good
option, but it was not studied further by NIRAS hence it has not been further looked into in
this thesis. For the storage, NIRAS explored different technologies like BESS, hydrogen and
thermal energy storage. The emphasis was put on the BESS, which therefore was chosen as the
storage unit to be used at RH for the Elnett21-case.

Risavika Harbor has industrial buildings, offices and warehouses. The harbor has recently
installed three facilities for delivering shore power to offshore vessels. The shore power can be
used to e.g. charge batteries on vessels, or to make vessels run on electricity instead of using
their fossil-fueled motors while at shore, to reduce emissions.

To find a representative demand profile of Risavika Harbor for the simulation period, 2016 data
from the transformer station named Risavika was combined with data from the shore power
systems from June 2019 to May 2020, as no data was available for the simulation year 2015.
The data from these sources show that the total yearly demand of the harbor is around 49.22
GWh/yr, while the demand for the simulation period April to June 2015 is 12,047.20 MWh.

Risavika transformer station supplies both RH and other close by end-users. It is assumed that
RH stands for two-thirds of the total demand of the transformer, as RH is the largest end-user
of the nearby consumers [1]. As the simulation period is set to be April 1st to June 30th 2015,
and April 1st 2015 was a Wednesday while April 1st 2016 was a Friday, the demand data from
Risavika transformer station was shifted two days back to have it start on the same weekday as
the other data for the Elnett21 case. This means that the demand data for Risavika transformer
station for the period March 30th to June 28th 2016 was used. The reason for doing this is that
the demand greatly depends on the day of the week, with lower demands during the weekends.

The demand data from the shore power systems were collected for each hour from June 2019
to May 2020, as the shore power systems were not put into operation before June 2019. In this
period, just one cable set was available, meaning that it was only possible to utilize one of the
shore power facilities at a time. In reality, all three shore power systems can be utilized at once.
This means that the demand from the systems would be higher if the cable sets were available
[2]. To get a more representative demand level, it was found reasonable to triple the shore power
demand.

The demand data of the shore power systems had various quality throughout the twelve months.
In some months, there were days without any data while in other months there where days with
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no demand, even though there should always be a base demand to keep the system going. The
first three months, June to August 2019, showed low demands compared to the rest of the
period, due to i.e. system testing [2]. Thus, to get a representative load demand curve of the
shore power systems for the simulations months April to June 2015, the three months with the
most consistent data where chosen. Data for April 2020 was used as April 2015 data, data for
December 2019 was used as May 2015 data, and data for February 2020 was used as June 2015
data.

Figure 4.8 shows the generated demand for Risavika Harbor for April to June 2015, while fig. 4.9a
and 4.9b show the demand of the harbor for two arbitrary weeks within the simulation period.
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Figure 4.8: Generated demand of Risavika Harbor for the simulation period April to June 2015.
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(a) Week 15 (April).
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(b) Week 23 (June).

Figure 4.9: The generated demand of Risavika Harbor for two arbitrary weeks in 2015.
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It was suggested by NIRAS that Risavika should install a PV system as a local production
unit. The consultant company proposed different sizes of the PV system, see [39], but in this
thesis it was chosen to use a size of the PV system that would give a yearly production equal to
around 30% of the yearly demand. Using Renewables.ninja with Risavika Harbor as location, a
capacity of 14.6 MWp and with the rest of the input being the same as used for the airport, see
section 4.2.1, the production for year 2015 was found to be 14,667.15 MWh/yr. This production
is equal to 29.8% of the yearly demand. For April to June 2015, the PV production was 6,062.68
MWh, which is 50.32% of the demand of that period. Figure 4.10a and 4.10b show the PV system
production for a week in April and a week in June 2015, respectively. If the same relationship
between panel size and capacity is used for RH as for Stavanger Airport, the PV system at RH
will be around 63,900 m2, i.e. three times as large as the PV system at the airport.
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(a) Week 15 (April).
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(b) Week 23 (June).

Figure 4.10: The PV system production at Risavika Harbor for two different weeks in 2015.

At Risavika Harbor it was recommended to install a BESS to give the harbor the ability to
store power. The size of the BESS is not decided, but a BESS with a capacity of 21.5 MWh
and a power capability of 4.8 MW was one suggestion by NIRAS [40]. The battery type and
BESS characteristics were not given. Thus, the BESS at RH was modeled in the same way as
the BESS at Stavanger Airport, see section 4.2.1, using a Li-ion battery, SOC limits of 20-90%,
and a constant converter and charging/discharging efficiency of 98%. It takes approximately
4.5 hours to fully charge or discharge the battery with the given battery capacity and nominal
power of the inverter.

4.2.3 Forus Industrial Park - Forus West

Forus Industrial Park (FIP) is a 6,500,000 m2 large industrial area owned by the municipalities
of Stavanger, Sandnes and Sola and is located at Forus, Norway. In FIP there are approximately
2,500 companies and 40,000 employees. The different companies are construction, manufactur-
ing, oil, IT and trade and service companies [13]. Due to the large size of the industrial park, it is
divided into areas. It is only the area called Forus West that is involved in the Elnett21-project.
Forus West is around 2.780.400 m2 and has about 30,000 of the total workplaces at Forus.
There are approximately 190 buildings at Forus West of various size and age. The composition
of the buildings is approximately 54% offices, 14% commercial buildings, 13% warehouses, 10%
workshops and 9% other businesses [6, 30].
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Forus West has an energy demand of about 128 GWh/yr [1, 6] and a heat demand of about 89
GWh/yr. At Forus, there is a facility for energy recovery of waste, called Forus Energigjenvin-
ning, that delivers approximately 225 GWh/yr heat to the local district heating grid [6]. It is
assumed that Forus West gets its heating demand covered by the local heating grid and that
the energy demand must be met through local production and/or with power21 from the main
grid.

The actual demand profile for the Forus West area was not provided, thus it had to be generated
manually. To find a demand pattern that could be representative for the industrial park, data
from Campus Gløshaugen from year 2016 was used in combination with data from a demand
generator for buildings.

Campus Gløshaugen is the main campus of NTNU in Trondheim. The demand pattern for
campus Gløshaugen can be representable for the demand of various types of office-like buildings.
The yearly electricity demand for campus Gløshaugen is approximately 61.60 GWh/yr.

To accompany the demand curve from campus Gløshaugen, and for adding new building types,
a demand generator for buildings made by SINTEF was used. The generator takes input on
outdoor temperature for each hour throughout the year and the area of different building types.
It is possible to choose the following building types: house, apartment, office, shop, hotel,
kindergarten, school, nursing home and hospital. To find a somewhat representative demand for
Forus West, the temperatures from the closest weather station (Sola) was used for year 2015.
As the total area of the buildings at Forus West is unknown, trial and error was conducted to
find a total yearly demand which, together with the demand for Campus Gløshaugen, would
give a total as close to 128 GWh/yr as possible. The generator did not give the option of
choosing all the different building types which are located at Forus West, so it was chosen to use
the two categories offices and shops. When selecting a floor area of 241,500 m2 of offices and
161,000 m2 of shops, the generator gave a total yearly demand of 66.40 GWh/yr. Combining
this demand with the demand for Gløshaug, the total yearly demand of Forus West was found
to be approximately 128 GWh/yr. For the simulation period, April to June 2015, the demand
was found to be 31,756.50 MWh.

As April to June 2015 is chosen as the simulation period, and the demand data for the industrial
park is accumulated from two different sources from different years, the simulation period had
to be shifted some days forward or backwards to reassure that the first simulation day was a
Wednesday, as April 1st 2015 is a Wednesday. The reason for having the data start on the same
weekday instead of starting on the same date, is that the demand profiles are highly dependent
on the day of the week. Thus, to get the correct weekly profiles, the data from Gløshaugen and
from the demand generator was shifted forward or backwards to start on the closest Wednesday
to April 1st in the corresponding data. The data for Gløshaugen is from 2016, where April 1st
landed on a Friday. Thus, the data from Gløshaugen was shifted to start on March 30th, as this
is the closest Wednesday to April 1st 2016. For the demand generator, the year is not specified.
April 1st is on a Sunday for the data from the generator, and the data was thus shifted to start
on April 4th, which is the closest Wednesday to April 1st.

Figure 4.11 shows the generated demand for Forus West for the simulation period April to June
2015, while fig. 4.12a and 4.12b show the demand for two arbitrary weeks.

21When using the terms power consumption, power demand, power in-feed or similar in chapter 4, the term
power refers to the average power over the time step, 1 hour, and not the actual power per second.
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Figure 4.11: The generated demand for Forus West for April to June 2015.
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(a) Week 15 (April).
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(b) Week 20 (May).

Figure 4.12: The generated demand of Forus West for two arbitrary weeks of the simulation
period April to June 2015.

A PV system was suggested to be installed as the local production unit at Forus West [6]. The
size of the system is not given and it was therefore chosen to use a capacity of the PV system
which would result in a production equal to 30% of the yearly demand of the industrial park,
which also was done for the harbor. Using Renewables.ninja, the location of Forus West, a
PV system capacity of 40 MWp and the same parameters as used for both the airport and
the harbor, the production for year 2015 was found to be 37,537.95 MWh/yr. This production
equals to 29.33% of the yearly demand. During the months April to June 2015, the production
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was 15,504.13 MWh which is 48.82% of the demand in that period. Figure 4.13 shows the PV
system production for Forus West during an arbitrary week within April to June 2015. The 40
MWp large PV system will cover an area of around 175,000 m2, if the same PV system type
used for the PV production at Stavanger Airport also is used for Forus West.
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Figure 4.13: The production from the PV system at Forus West for week 21 (May) in 2015.

Industrial sites that hold many employees often have large parking areas where the employees can
park their car during working hours. Such parking lots, in combination with the increasing use
of electrical vehicles (EVs), make it possible to utilize a vehicle to grid (V2G) technology. V2G
allows a bidirectional power flow between the battery of an EV and the power grid, through using
power electronic equipment. The V2G technology is said to be able to provide a fast-responding
storage which can provide different grid services, like peak shaving, voltage regulation and
improvements on the power system stability [37].

For the Elnett21-case it is assumed that Forus West has installed V2G systems at their parking
lots. Further, it is assumed that approximately 65% of the employees that work in the Forus
West area drive a car to work, as Forus West was constructed to have available parking space
for almost all employees [17, 30]. In the beginning of year 2020, about 9.3% of the Norwegian
passenger car stock consisted of EVs, according to Statistics Norway (SSB) [35]. With these
percentages, it is assumed that there are 1,813 EVs parked at Forus West during working hours,
8 am to 4 pm, during weekdays (Monday to Friday) and that these are available to use with the
V2G technology. When the EVs arrive in the morning, it is assumed that the average capacity
of the EV batteries is 60% of the nominal capacity. When the EVs leave the parking lot, their
batteries are assumed to be charged to 70% of the nominal capacity. The chargers transferring
power from or to the EVs are assumed to have a power of 20 kW, and that the chargers can
transfer this amount of power each hour [32].

To find the storage capacity of the EVs, an average value of the three most bought EVs in
Norway for 2019 was used. The top three EVs of 2019 was Nissan LEAF, Volkswagen e-Golf
and Tesla Model S, which all use Li-ion batteries. The different models have been renewed over
the years, so their battery capacity ranges from 24-60, 24-36, 60-100 kWh, respectively. Based
on the capacity ranges, 50 kWh was used as the nominal capacity for all the EVs [32]. This
means that the aggregated capacity of the EVs is 90.65 MWh.
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4.2.4 Network Tariff Rates
An end-user that buys power from the main grid has to pay a fee both for utilizing the power
grid and for the actual electricity that the end-user consumes. The grid-related costs in Nor-
way are given by the local DSO, which is regulated by The Norwegian Water Resources and
Energy Directorate (NVE). Each DSO has an unique network tariff rate, which shall cover grid
maintenance, grid upgrades, etc. In the region of the Elnett21-project, Lyse Elnett is the local
DSO. This means that all the participants in the project must follow the network tariff given
by Lyse Elnett. Table 4.1 shows the network tariff rates for industries at a low voltage level lo-
cated within Lyse Elnett’s license area. The summer months are defined as April to September,
while the winter months are defined as October to March. The fees for electricity are given in
table 4.2.

Table 4.1: Network tariff rates for industries at a low voltage level with power metered trans-
mission within the license area of Lyse Elnett [20].

Cost type Amount
Fixed fee 23,500 NOK/yr
Energy price summer 0.245375 NOK/kWh
Energy price winter 0.257875 NOK/kWh
Peak price winter,
active power 100 NOK/kW

4.2.5 Electricity Rates and Feed-in Tariff
Prosumers that both consume and produce electricity locally can at times have a larger electricity
production than their current load demand. In such situations, the prosumer can store electricity
given that the prosumer has storage. If the storage is full or if the prosumer does not have any
storage, the prosumer can sell surplus power to the main grid. The feed-in tariff (FIT) in
Norway depend on how much power the prosumer feeds into the grid. If the prosumer do not
exceed in-feed of 100 kW in any instant, the prosumer will be categorized as a plus-customer.
A plus-customer does not have to pay any fees for feeding power into the grid. If the power fed
into the grid exceeds the 100 kW-limit, the prosumer must have the necessary licenses (see [27])
to be able to sell power as a power supplier in addition to paying a FIT for utilizing the main
grid. This tariff is in Norway set by the transmission grid operator, Statnett. The FIT consists
of two parts, a fixed and a variable part. The fixed part is at 0.0116 NOK/kWh for year 2020
and applies for power fed into the grid at any voltage level. The variable FIT part is set based
on marginal loss rates, which are calculated for every exchange point in the transmission grid.
If a prosumer feeds power into the grid in a point that will contribute to lower grid losses, the
prosumer will get paid for the loss reduction that they contribute to. If, on the other hand, the
feed-in point of the prosumer does not contribute to lower grid losses, the prosumer will have
to pay an energy fee [3, 36].

A prosumer has to make an agreement with a power supplier that will buy the power that the
prosumer feeds into the grid. How the prosumer is paid for power fed into the grid is dependent
upon the agreement made with the power supplier. In this thesis, Fjordkraft has been chosen
as power supplier for all the end-users of the Elnett21-case, as Fjordkraft have both wholesale
spot price and prosumer deals. Through Fjordkraft, a prosumer can both buy and sell power
at spot price-rates. The market spot prices are set by Nord Pool, which is the operator of the
Northern European electricity power exchange market [24]. The end-users in the Elnett21-case
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are located in the south-west region of Norway, which means that the day-ahead spot prices for
bidding area NO2 (Kristiansand) are used for the simulation period April to June 2015.

The rates for electricity usage and FIT for non-plus-customers are given in table 4.2. The FIT
ensures that it will pay off to use own produced energy directly, when this energy is needed,
instead of selling the energy to the main grid.

Table 4.2: Rates for electricity usage from power supplier Fjordkraft [12] and feed-in tariff rate
[36].

Cost type Amount
Fixed fee 39 NOK/month
Variable fee,
for bought power 0.0549 NOK/kWh

FIT 0.0116 NOK/kWh

4.3 Case Assumptions and Simplifications

In the Elnett21-case, there has been made a lot of assumptions due e.g. missing data and to
simplify the case. The assumptions for the optimization strategies, see section 2.3.1 in chapter 2,
apply to the Elnett21-case in addition to the assumptions listed below.

˚ It is assumed that all end-users of the case use Fjordkraft as power supplier and that they
all have the necessary licenses to be able to sell power above the plus-costumer limit to
the main grid.

˚ The variable part of the FIT has been disregarded.

˚ The PV system production is found using Renewables.ninja, and the production is taken
from one specific location for each end-user.

˚ The actual size, in m2, and placing of the PV systems has not been considered when
dimensioning the systems. This means that it might not be possible to install the suggested
PV systems with the stated tilt and azimuth angle.

˚ All the proposed production and storage units for the case have not been installed and it
is unknown if they actually will be installed.

˚ The BESS systems installed are assumed to be charged to the lowest SOC initially.

˚ 10% of the demand in each time step is assumed to be shiftable for all the end-users.
Possible rescheduling costs for load shifting have been neglected.

˚ The different battery storages are all modeled as lithium-ion batteries.

˚ The demand for Stavanger Airport is assumed to have the same curve for each day in the
simulation period.

˚ The demand for Risavika Harbor is created by taking two thirds of the transformer station
demand from year 2016 and adding the demand from the shore power systems.

˚ The heat demand of Forus West, 89 GWh/yr, is met through using the district heating
grid and is thus not taken into account when looking at the energy demand of Forus West.

43



Chapter 4 – Elnett21, Case in Norway

˚ The P2P price, used for calculating the costs of the individual end-users in the second
approach, is set to be 0.0058 NOK/kWh lower than the wholesale spot price. This means
that the P2P trade price will be right in the middle of the spot price and the in-feed price.

4.4 Model Formulation

The different optimization approaches must make demand-supply decisions based on the elec-
tricity prices, flexibility options, the main grid and DER surplus for the Elnett21-case. As for
the 25-houses case, multi-period linear programming models were used for the two approaches.
The models make optimized decisions for the system according to the objective for the opti-
mization horizon T . The optimization is done for each day separately throughout the 91 days
long simulation period.

The two optimization approaches have distinct objective functions, while sharing some of the
same restrictions. As the approaches used on the Elnett21-case are the same as those used on the
25-houses case, the optimization models for both cases have similar constraints. Due to different
model nomenclature of the cases, the similar constraints are also given in this section. For the
Elnett21-case, additional constraints are needed to set rules for the shiftable load and for the
usage of V2G. Table 4.3 shows the sets, scalars, parameters and variables of the mathematical
models for the Elnett21-case.

4.4.1 Approach 1 - Decentralized Strategy
Using the decentralized strategy, the control system of each of the prosumers in the Elnett21-case
aims at reducing the operational costs related to the network tariff and electricity costs. As P2P
trading is disabled, each prosumer must cover their power demands using their own production
and storage units, and the main grid. Through using flexible loads, the prosumers are able to
move some of the demand to hours where the wholesale spot price is lower. Their batteries also
make it possible to store locally produced power and/or power bought from the main grid in
e.g. low-price hours, such that the stored electricity can be utilized in e.g. expensive hours.

The objective of the decentralized control is to minimize the electricity and grid-related costs in
each time step, t, for each individual end-user, e. This optimization is done separately for each
end-user each day within the simulation period. The optimization is done daily due to assuming
a perfect forecast model, see further explanations in section 3.5.3 in chapter 3.

Equation (4.1) shows the objective function for the decentralized strategy for the Elnett21-case,
which sums up the costs of the power drawn from the main grid, G(t ,e), and subtracts the
payback for power fed back to the main grid, G(t ,e), to find the total costs, C(e)

tot ,A1
, for end-user

e within the optimization horizon T . The costs consist of the wholesale spot price, p(t)
G
, in time

step t and the energy-dependent cost terms of the network tariff, pnt ,var , and the electricity
cost pel,var . The fixed part of the network tariff, pnt , f ix , and electricity cost, pel, f ix , are not
energy-dependent, and they are given in NOK per year and NOK per month, respectively. The
corresponding daily costs of these fixed cost terms are found and added to the objective function.
The network tariff part that concerns the peak, see table 4.1 in section 4.2.4, is only applied in
the winter months, October to March. The simulations done for the Elnett21-case are for three
months in the spring, and therefore the cost for the highest peak power has been omitted in the
objective function. All equations of section 4.4.1 hold true for all t P T , tEV P TEV and e P E,
unless stated otherwise, and all variables are non-negative.
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Table 4.3: Model nomenclature for the Elnett21-case.

Type Description Unit

Sets
t P T Time, t, within the optimization horizon T
tEV P TEV Time, tEV , within 8 am to 16 pm on weekdays of the analysis period TEV

e, p P E End-users, e, and peers, p, within the community of end-users E

Scalars
ηc/ηd Charging/discharging efficiency of the BESS battery -
ηinv BESS inverter efficiency -
Pinv Nominal power of the BESS inverter kW
Ebat Nominal capacity of the BESS battery kWh
SOC/SOC Maximum/minimum limits on the battery SOC of the BESS p.u.
θP2P Efficiency factor for conversion and distribution of P2P power -
pel, f ix Fixed cost for electricity NOK/day
pel,var Variable cost for electricity NOK/kWh
pnt , f ix Fixed cost of network tariff NOK/day
pnt ,var Variable cost of network tariff NOK/kWh
NEV Number of EVs parked and available for V2G -
SOCEV/SOC EV Maximum/minimum limits on the battery SOC of the EVs p.u.
EEV Nominal capacity of the EV batteries kWh
Pc,EV Nominal power of EV charger kW
SOCstart/SOCend SOV of the EV storage when arriving/leaving work p.u.
ηc,EV/ηd,EV Charging/discharging efficiency of the EV batteries -

Parameters
dem(t ,e)

tot Total demand, with no shiftable load, of end-user e in time step t kW
dem(t ,e)

shi f t
Shiftable load of end-user e in time step t kW

dem(t ,e)
f ixed

Fixed load of end-user e in time step t kW
res(t ,e) Renewable power production of end-user e in time step t kW
p(t)
G

Wholesale spot price for power bought from the grid in time step t NOK/kWh
p(t)
Gto

In-feed price for power sold to the grid in time step t NOK/kWh
p(t)P2P P2P price for power bought from or sold to a peer in time step t kW

Variables
G(t ,e) Power drawn from the grid for end-user e in time step t kW
G(t ,e)

to Power delivered to the grid from end-user e in time step t kW
C(t ,e)/D(t ,e) Battery power charge/discharge of end-user e in time step t kW
S(t ,e) Battery energy storage level of end-user e in time step t kWh
I(t ,e) P2P power purchase of end-user e in time step t kW
I(t ,eÐp)
P2P P2P power purchase of end-user e from peer p in time step t kW

X (t ,e) P2P power sold from end-user e in time step t kW
X (t ,eÑp)
P2P P2P power sold from end-user e to peer p in time step t kW

L(t ,e) Load demand met in time step t for end-user e kW
C(t ,e)
EV /D(t ,e)

EV Battery power charge/discharge of the EVs of end-user e in time step t kW
S(t ,e)
EV EV storage level of end-user e in time step t kWh
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min
@ tPT
@ ePE

C(e)
tot ,A1

=

T∑
t

(
G(t ,e) ¨ (p(t)

G
+ pnt ,var + pel,var )´ G(t ,e)

to ¨ p(t)
Gto

)
+

(
p(e)
nt , f ix

+ p(e)
el, f ix

)
(4.1)

The objective function is subjected to several constraints, which include constraints on the
flexible load, BESS, EV batteries and the power balance. For each prosumer in the Elnett21-
case, it is assumed that a certain amount, P [0,1] [p.u.], of the load in each time step is shiftable,
dem(t ,e)

shi f t
. Equation (4.2) shows the shiftable load constraint, which says that the sum of the

total demand without shiftable load, dem(t ,e)
tot , minus the met load, L(t ,e), within the optimization

horizon must be equal to zero. This means that the shiftable load must be met within the
optimization horizon, which here is set to 24 hours. The met load demand in a specific time
step for a specific end-user must be higher or equal to the fixed demand, dem(t ,e)

f ixed
, as showed

in eq. (4.3). The fixed demand is equal to the total demand without shiftable load minus the
shiftable load, see eq. (4.4).

T∑
t

(
dem(t ,e)

tot ´ L(t ,e)
)
= 0 (4.2)

L(t ,e) ě dem(t ,e)
f ixed

(4.3)

dem(t ,e)
f ixed

= dem(t ,e)
tot ´ dem(t ,e)

shi f t
(4.4)

All the prosumers in the Elnett21-case have some kind of battery storage. When running the
optimization for the prosumers with a BESS, there has to be put restrictions on the usage of
the BESS. The equations presented for the BESS in the Elnett21-case are the same as those
given in section 3.4.1 for the 25-houses case, but they have been repeated here to get the correct
nomenclature. Equation (4.5) shows the energy storage level of the BESS. The equation says
that the current energy storage level of the battery, S(t ,e), of end-user e is equal to the battery
storage level of the previous time step t plus the battery charge, C(t ,e) or minus the battery
discharge, D(t ,e), in the current time step. The battery charge or discharge is limited by the
corresponding charging or discharging efficiencies, ηc or ηd, and the efficiency of the inverter,
ηinv.

S(t ,e) = S(t´1,e) + ηc ¨ ηinv ¨ C(t ,e) ´
1

ηd ¨ ηinv
¨ D(t ,e) (4.5)

The amount of power that can be sent to the battery of end-user e when charging, or sent away
from the battery when discharging, in each time step t is limited by the nominal power of the
BESS inverter, Pinv, and the inverter efficiency, ηinv, as shown in eq. (4.6) and (4.7).

0 ď C(t ,e) ď ηinv ¨ Pinv (4.6)

0 ď D(t ,e) ď Pinv (4.7)
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The battery storage has an upper and a lower energy storage limit based on the SOC-limits
of the battery, SOC and SOC, and the battery nominal capacity, Ebat , which is showed in
eq. (4.8). There are put limits on the energy storage to avoid damaging the battery by exposing
it to overcharging or deep discharging.

Ebat ¨ SOC ď S(t ,e) ď Ebat ¨ SOC (4.8)

The storage made up of EVs through V2G has several constraints. Firstly, the EVs are assumed
to only be available during working hours from 8 am, tEV ,start , to 4 pm, tEV ,end, from Monday
to Friday, TEV . Secondly, it is assumed that all the EVs are charged to a specific level when they
arrive or leave the parking lot. Thirdly, the charging and discharging power of the EV-batteries
is limited by the nominal power of the EV charger and the amount of EVs parked.

The storage level of the EVs is given by eq. (4.9), which is similar to eq. (4.5), when the time
is within 9 am and 3 pm and when the simulation day is a weekday, Monday to Friday. The
equation says that the current storage level of the EVs, S(tEV ,e)

EV , is equal to the storage level of
the previous time step, S(tEV´1,e)

EV , plus the charging, C(tEV ,e)
EV , or minus the discharging, D(tEV ,e)

EV ,
of the EV storage in the current time step. Both the charging and the discharging powers are
limited by the corresponding charging or discharging efficiencies, ηc,EV or ηd,EV , respectively.

S(tEV ,e)
EV = S(tEV´1,e)

EV + ηc,EV ¨ C
(tEV ,e)
EV ´

1

ηd,EV
¨ D(tEV ,e)

EV , @ tEV ,start ă tEV ă tEV ,end (4.9)

When the EVs arrive the parking lot, it is assumed that the battery SOC of all the EVs is equal
to SOCstart . The storage level of the EVs at 8 am, tEV ,start , is given by eq. (4.10). When the
EVs leave the parking lot at 4 pm, tEV ,end, their batteries must be charged to have a state of
charge level of SOCend. This is ensured through using eq. (4.11).

S(tEV ,st ar t ,e)
EV = SOCstart ¨ NEV ¨ EEV (4.10)

S(tEV ,end ,e)

EV = SOCend ¨ NEV ¨ EEV (4.11)

The storage level of the EV storage unit is limited by the amount of EVs parked, NEV , the
nominal capacity of the EV storage, EEV , and the SOC limits on the EV storage batteries,
SOC EV and SOCEV , as showed in eq. (4.12).

NEV ¨ EEV ¨ SOC EV ď S(tEV ,e)
EV ď NEV ¨ EEV ¨ SOCEV (4.12)

Equation (4.13) shows how the charging, C(tEV ,e)
EV , and discharging, D(tEV ,e)

EV , of the total EV
storage is limited by the nominal power of the EV charger, Pc,EV , and the amount of parked
EVs, NEV .

0 ď C(t ,e)
EV ,D(t ,e)

EV ď Pc,EV ¨ NEV (4.13)

The balance between supply and total demand for each end-user in each time step must always
be restored, to keep a stable system frequency. The power balance equation is dependent upon
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the available production and storage units, and will thus not necessarily be the same for each
end-user in each time step. The end-users that have a BESS unit will have the power balance
equation showed in eq. (4.14a). For the end-user that utilizes EVs with V2G as storage, the
power balance is given in eq. (4.14b). In time steps when the EVs aren’t available, the charging
and discharging variables of the EV storage, C(tEV ,e)

EV and D(tEV ,e)
EV , are set to zero.

G(t ,e) + res(t ,e) + D(t ,e)
looooooooooooomooooooooooooon

Supply

= L(t ,e) + G(t ,e)
to + C(t ,e)

loooooooooooomoooooooooooon

Total demand

(4.14a)

G(t ,e) + res(t ,e) + D(tEV ,e)
EV

looooooooooooooomooooooooooooooon

Supply

= L(t ,e) + G(t ,e)
to + C(tEV ,e)

EV
looooooooooooomooooooooooooon

Total demand

(4.14b)

4.4.2 Approach 2 - Centralized Strategy
The centralized control system strategy aims at reducing the operational costs, i.e. the network
tariff and the electricity costs, for the whole community of end-users, e, for the optimization
horizon, T . In the second approach, P2P trading has been enabled. This means that the end-
users can buy and sell power directly to each other without utilizing the main grid. All equations
in section 4.4.2 hold true for all t P T , tEV P TEV and e, p P E unless stated otherwise, and all
variables are non-negative.

The objective function of the second approach for the Elnett21-case is given in eq. (4.15). The
equation sums up the cost of grid consumption and subtracts revenue for power sold to the
main grid for all time steps within the simulation period for all the end-users. As the objective
function sums the costs for all the end-users, the fixed daily grid and electricity costs must be
added for each of the end-users.

min
@ tPT
@ ePE

CtotA2
=

E∑
e

(
T∑
t

(
G(t ,e) ¨

(
p(t)
G
+ pnt ,var + pel,var

)
´ G(t ,e)

to ¨ p(t)
Gto

))
+ E ¨

(
pnt , f ix + pel, f ix

)
(4.15)

The objective function is subject to restrictions related to shiftable load, BESS and EV storage,
rules for P2P trade and the power balance equation. Some of the constraints applied in the
decentralized approach are also applied to the centralized strategy. These include the BESS
constraints, eq. (4.5) - (4.8), and the constraints on the EV storage, eq. (4.9) - (4.13). The
shiftable load constraint for approach 2 is similar to the one for approach 1, see eq. (4.2), except
that it also must be summed for the community of end users, as showed in eq. (4.16), because
the flexibility is shared within the community. Equation (4.3) and (4.4) from section 4.4.1 do
also apply to the centralized approach for the Elnett21-case.

E∑
e

(
T∑
t

(
dem(t ,e)

tot ´ L(t ,e)
))
= 0 (4.16)

Further, the rules for P2P trading must be included. The P2P restrictions of the centralized
approach used on the Elnett21-case are similar to those of the centralized approach used on the
25-houses case, see eq. (3.9) - (3.12) in section 3.4.2, but the equations are repeated here with
the correct nomenclature.
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The sum of sold P2P power, X (t ,e), of end-user e in time step t is equal to the total sum of
electricity flows, X (t ,eÑp)

p , from the specific end-user to the peers p P E. This is showed in
eq. (4.17).

X (t ,e) =
∑
p,e

X (t ,eÑp)
p (4.17)

The sum of purchased P2P power, I(t ,eÐp)
p , of end-user e from peer p is equal to the P2P power

bought, X (t ,eÑp)
p , times the P2P efficiency factor, θP2P, as given in eq. (4.18).

I(t ,eÐp)
p = θP2P ¨ X (t ,eÑp)

p , @ p , e. (4.18)

The overall purchased P2P power, I(t ,e), is given as the sum of the purchased P2P power, I(t ,eÐp)
p ,

as presented in eq. (4.19).

I(t ,e) =
∑
p,e

I(t ,eÐp)
p (4.19)

The sum of P2P power sold from the end-users, or peers, within the community must equal the
purchases as of eq. (4.20). This is because the P2P power only can be traded within the same
energy sharing region. ∑

h

I(t ,e) =
∑
e

θP2P ¨ X (t ,e), @t P T . (4.20)

To ensure that the power balance is obtained, the sum of supply most equal the total demand
in each time step. The power balance equation for the end-users with BESS storage is given
eq. (4.21a), while eq. (4.21b) is the power balance equation for the end-user using EVs as
storage. When the EVs are unavailable, i.e. during the weekend or before 8 am or after 16 pm
on weekdays, the charging and discharging variables of the EV storage is set to zero.

G(t ,e) + res(t ,e) + D(t ,e) + I(t ,e)
loooooooooooooooooomoooooooooooooooooon

Supply

= L(t ,e) + G(t ,e)
to + C(t ,e) + X (t ,e)

looooooooooooooooomooooooooooooooooon

Total demand

(4.21a)

G(t ,e) + res(t ,e) + D(tEV ,e)
EV + I(t ,e)

loooooooooooooooooooomoooooooooooooooooooon

Supply

= L(t ,e) + G(t ,e)
to + C(tEV ,e)

EV + X (t ,e)
looooooooooooooooooomooooooooooooooooooon

Total demand

(4.21b)
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4.5 Case Results and Analysis

The multi-period linear programming models presented in section 4.4 are implemented and
solved in MATLAB using linprog as solver, like for the 25-houses case. System parameters were
read from Excel into MATLAB, and MATLAB was used both as solver and to generate plots of
the results. The models are run on a 64-bit macOS Catalina with Intel Core I5-6360U, 2 GHz
CPU and 8 GB RAM.

As for the 25-houses case, the performance of the control system strategies is measured according
to the electricity costs for each end-user and for the ESR. The strategy that gives the lowest
total electricity costs for the ESR is the most effective. The total amount of energy drawn from
the main grid and the peak power demand are also of interest. As the Elnett21-case consists
of large end-users, the peak power demand is important as the local DSO must dimension their
grid according to the highest local peak demand.

The results from the decentralized approach are given in section 4.5.1, while the results for the
centralized approach are presented in section 4.5.2. The results from the two approaches are
compared and discussed in section 4.5.3.

4.5.1 Approach 1 - Results
The decentralized approach makes each end-user minimize their own economic objective func-
tion, without allowing P2P trade or shared flexibility. The total electricity costs are minimized
each day of the 91 days long analysis period for each separate end-user. The end-users can only
utilize their own DERs, energy storage and flexibility, in addition to power from the main grid,
when making their demand-supply decisions.

The simulations for the three months took 2 minutes on the mentioned computer using MAT-
LAB. The optimization comprises 18,395 constraints and 34,788 variables for the 91 days long
simulation period. The total amount of energy drawn from the main grid for the ESR is 24,265.07
MWh, resulting in a cost of 11,445,765 NOK. During the simulation period, the different end-
users deliver a total of 2,306.16 MWh to the main grid. This amount of energy gives revenue
of 366,066 NOK, with the electricity and FIT rates given in section 4.2.5. When subtracting
the grid in-feed revenues from the grid consumption costs, the total costs for the ESR during
the simulation period is found to be 11,079,700 NOK. The optimal solution gives a peak power
demand of 71.86 MW for the community, while the highest of the individual end-user peak
demands is 50.51 MW for Forus West.

Figure 4.14 shows how the supply-demand decisions are made by the decentralized approach
for Stavanger Airport during week 25, 2015. The upper plot shows the different types of energy
supply that are available for the airport, while the lower plot shows that the total demand
consists of the fixed and flexible demand of the airport, energy sold to the main grid, and
energy used to charge the installed BESS. The figure shows that spikes in energy demand from
the main grid occur almost every day during the specific week. The first two days have higher
renewable production than the last five, resulting in lower demand peaks from the grid. It is seen
that when the local production is reduced, the peak demand from the main grid is increased. If
the demand-supply decisions for week 25 are compared with the corresponding wholesale spot
prices and in-feed prices, presented in fig. 4.15, it is seen that the shiftable load is shifted to
time steps when the wholesale spot prices are low, for instance at 52 h, 75 h and 100 h. This is
because when the local production is insufficient and power is not drawn from the battery, the
costs will be reduced if power is drawn from the main grid in low-cost hours.
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Figure 4.14: Supply-demand decisions made for Stavanger Airport using the decentralized ap-
proach during week 25, 2015.
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Figure 4.15: Wholesale spot prices and in-feed prices for the Elnett21-case for week 25, 2015.

The optimization results using the decentralized approach show that Stavanger Airport gets a
total cost of 664,840 NOK and that the airport consumes 1,471.89 MWh from the grid within
the simulation period. Risavika Harbor consumes 6,433.63 MWh from the main grid and the
optimization gives a total cost of 3,002,768 NOK for the harbor within the period. Forus West
is the largest end-user and has to pay a total of 7,412,093 NOK using the decentralized strategy
and draws 16,360 MWh from the main grid in the analysis period.
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The supply-demand decisions for Risavika Harbor are shown in fig. 4.16 for week 25 in 2015.
Like for Stavanger Airport, the figure shows, when comparing with the corresponding prices
shown in fig. 4.15, that power is drawn from the main grid when the prices are low. At 52 h and
75 h, both the harbor and airport have peak demands seen from the main grid. As the harbor
and airport both have production and storage units with a certain capacity, it is seen that the
behavior of the decentralized optimization is similar for both end-users.
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Figure 4.16: Supply-demand decisions made for Risavika Harbor using the decentralized ap-
proach for week 25, 2015.

Forus West differs from the harbor and airport in both demand, available DER units and the
storage type used. The industrial park has local production through a PV system and uses EVs
as temporary storage. Figure 4.17 shows the supply-demand decisions made for Forus West
during week 25 in year 2015 when using the decentralized approach. It is seen from the figure
that the EVs are discharged and the power is sold to the main grid when the in-feed costs are
high, see associated costs in fig. 4.15, at 8 h and 32 h. In fig. 4.18, the storage level of the EVs
at Forus West during week 25 is showed. It can be seen from the figure that the stored energy
in the EVs is the same for the beginning of each workday and for the end of each workday. It is
also seen that the usage of the EV storage varies from one day to the next. This is because the
utilization of the EV storage is decided by the optimization. After 112 h, corresponding to a
Friday at 16 pm, the industrial park does not have storage for the rest of the week. This means
that only production from the PV system and power from the main grid can be used as sources
of supply during the weekend for the industrial park.
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Figure 4.17: Supply-demand decisions using the decentralized approach for Forus for week 25,
2015.
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Figure 4.18: The storage level of the EV storage at Forus West when using approach 1 for week
25, 2015.

4.5.2 Approach 2 - Results
When the centralized approach is used on the Elnett21-case, the end-users are considered as a
community where power can be traded locally. The aim of the approach is to minimize the total
cost of electricity during operation for the whole community for each separate day during the
91 days long simulation period.

It took just over 1.5 minutes to run the MATLAB model with its 27,131 constraints and 60,723
variables for the simulation period on the 64-bit macOS Catalina. The community draws a
total of 23,920.86 MWh from the main grid, which has a cost of 11,255,111 NOK. In addition
to drawing power from the grid, the community has a grid in-feed of 1,875.59 MWh resulting in
a revenue of 290,935 NOK. To get the total costs for the community, the revenue is subtracted
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from the cost. This results in a cost of 10,964,176 NOK for the whole community during the
simulation period when using the centralized strategy. The peak demand seen from the grid
of the community is 60.75 MW, while the largest peak of the end-users is 50.51 MW for Forus
West. For the P2P energy trading, a total of 984.67 MWh is sold from peers, while 909.83 MWh
is bought from peers within the community. This means that the total P2P loss is 74.83 MWh
for the simulation period.

Figure 4.19 shows how supply meets the total demand according to the power balance equation,
see eq. (4.21b) in section 4.4.2, for Forus West during week 25 in year 2015. It can be seen from
the figure that both the amount of P2P power purchased and sold is not very large. All the
end-users in the Elnett21-case have production from PV systems. As the end-users are located
fairly close to one another, the solar irradiation will almost be the same for the three locations,
giving a PV production profile which is almost identical for each of the end-users. As the PV
systems of the different end-users have various capacities, the production profiles will vary in
magnitude, but the shape of the production curve will still be similar. The result of this is that
power surplus can occur in the community when the PV production is high. When the PV
production is low, all of the end-users have to discharge their storage and buy power from the
other peers or the main grid to cover their demand. Stavanger Airport also has the opportunity
of using power from the WTs, but the power generation from the WTs is very low (10.73% of
the airport demand for the simulation period) compared to the demand and compared to the
production from the PV system (51.97% of the airport demand during the simulation period).
This can result in that P2P power cannot be bought from other peers when required and that
P2P power cannot be sold to peers when power surplus occurs, as there is no demand.
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Figure 4.19: How supply meets the total demand of Forus West using approach 2 for week 25,
2015.
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4.5.3 Comparison of Results and Discussion
Table 4.4 summarizes the results for the two different approaches for the Elnett21-case. Like
for the 25-houses case, the approaches where run on the Elnett21-case both with and without
storage. The reason for doing this is to have a source of comparison for each of the approaches,
in addition to comparing them with each other.

Table 4.4: Results from using the two control system approaches on the Elnett21-case, both
with and without storage.

Strategy Ref. A1
(no storage)

A1: Decentralized
Comp. to ref. A1

Ref. A2
(no storage)

A2: Centralized
Comp. to: ref. A2 A1

Total costs [NOK] 12,075,903 11,079,700 -8.3% 12,026,645 10,964,176 -8.8% -1.0%
Cost for grid consumption [NOK] 12,478,043 11,445,765 -8.3% 12,397,100 11,255,111 -9.2% -1.7%
Revenues of selling to the grid [NOK] 402,140 366,066 -10.0% 370,455 290,935 -21.5% -20.5%
Grid consumption [MWh] 26,274.80 24,265.07 -7.6% 26,099.39 23,920.86 -8.3% -1.4%
Fed to main grid [MWh] 2,675.56 2,306.16 -13.8% 2,481.18 1,875.59 -24.4% -18.7%
Maximum community peak [MW] 81.41 71.86 -11.7% 79.84 60.75 -23.9% -15.5%

From table 4.4, it is seen that the total costs of the community during the simulation period are
decreased by 8.3% for the decentralized strategy when storage is included. For the centralized
approach, including a storage reduces the costs by 8.8%. The difference in total costs using
the decentralized versus the centralized approach is not very big. The centralized approach
only reduces the total costs by 1.0% of the costs found when using the decentralized approach.
Concerning the peak demand of the community, it is seen from the table that the centralized
strategy reduces the peak power demand found by using the decentralized strategy by 15.5%.
As the end-users of the Elnett21-case have large demands, a reduction of 15.5% of the peak
demand is high.

The total electricity costs for each end-user in the Elnett21-case using the two different control
system strategies are presented in fig. 4.20. From the figure, it can be seen that the operational
costs are almost the same regardless of the strategy being used. The main reason for this is that
each end-user has both production and storage units, meaning that all end-users have flexibility
in both approaches. For Stavanger Airport, the cost of using the decentralized approach is
2.39% lower than the cost given by the centralized approach. The centralized approach gives a
cost which is 3% lower than the costs given by the decentralized approach for Risavika Harbor.
For Forus West, there is just a cost difference of 0.74% between approach 1 and 2, where the
centralized approach gives the lowest costs. Thus, the centralized approach gives the lowest
individual end-user costs for two of the three end-users in the case. The costs of the individual
end-users using the centralized approach are dependent upon the P2P trade price. Changing
the P2P price, as long as the price is in between the grid in-feed cost and the wholesale spot
price, will thus affect the costs of the individual end-users in the second approach.
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Figure 4.20: Total operational costs for each end-user in the Elnett21-case using the decentralized
and centralized control system strategies.
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In the Elnett21-case, 10% of the total load in each time step is assumed to be shiftable for
each of the end-users. The only constraints of the objective functions of the decentralized and
centralized strategies related to the shiftable load are that the shiftable load must be met within
the optimization horizon, i.e. within 24 hours, and that the load met in each time step must be
greater or equal to the fixed demand of that time step. This means that load can be shifted to
any hour within the specific day and that there will not be any economic consequences in doing
so, as possible rescheduling costs have been ignored. The optimization approaches are free to
move the shiftable loads as desired within the set limits. This means that load can be shifted to
every hour of the day, both during the day and night. As the wholesale spot prices normally are
lower during the night, see fig. 4.15 in section 4.5.1, much of the shiftable load will be moved
to these hours to reduce the electricity costs. The optimization approaches do not take into
consideration if the load actually can be shifted to these hours in real life. For large end-users,
shiftable loads can consist of power to e.g. heating, cooling and logistics. Shifting these demand
types in time can affect comfort, operational costs of the individual end-users, production plans,
etc.

For Stavanger Airport, shiftable loads can be e.g. power to heating, cooling, ventilation and
logistics[5]. The airport does not have typical opening hours, as planes can arrive and depart the
airport practically any time during the day. This gives room for shiftable load, as heating and
cooling processes are necessary also during the night. Forus West on the other hand, has more
rigid hours of operation. During the night, the activity of the industrial park is substantially
lower than during the day. Also, it must be noted that Forus West is assumed to get its heat
demand covered through a district heating grid, meaning that power to heat cannot be a shiftable
load for the industrial park, as electricity is not used to meet the heat demand. Thus, shiftable
loads for the industrial park can be power to e.g. cooling, ventilation and logistics. Risavika
Harbor does also have more rigid operating hours, with lower activity during the night. For the
harbor, shiftable loads can be power to heating, ventilation, cooling and logistics. The harbor
can, for example, charge vessels during the day and night while staying at the quayside.

The aggregated energy supply for the Elnett21-case using the decentralized and the centralized
approaches for week 19 in 2015 are displayed in fig. 4.21, while fig. 4.22 shows the correspond-
ing aggregated total energy demand. The figures show relatively small differences in how the
available supply sources meet the total demand for each of the approaches. Going from the first
to the second approach gives a reduction in grid consumption of 1.4% and a reduction of the
amount of power sold to the main grid by 18.7%, see table 4.4, as power both can be sold to peers
within the community and to the main grid in the second approach. When comparing fig. 4.21
with the corresponding wholesale spot prices and in-feed costs, see fig. A.2 in appendix A.1, it
can be seen that P2P purchase within the community occur when the wholesale spot price has
its price peak each separate day. The spikes in grid consumption for both approaches occur in
time steps when the grid price is low e.g. at 51 h and 75 h, see fig. A.2. It can be seen that these
spikes are higher for the second approach meaning that more power is purchased from the main
grid when the wholesale spot prices are low, which results in decreased total electricity costs.
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Figure 4.21: Aggregated energy supply for all the three end-users using approach 1 and 2 for
week 19, 2015.
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Figure 4.22: Aggregated total energy demand for all the three end-users using approach 1 and
2 for week 19, 2015.
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The share of the different supply sources and the different demand types for the two approaches
are presented in fig. 4.23 and 4.24, respectively. The first figure shows that the difference in
sources of supply using the two different control system strategies is relatively small, as P2P
purchase only accounts for 1.68% of the different supply sources in the centralized approach. The
second figure shows that sold P2P power only accounts for 1.83% in the centralized approach,
which results in that the share of the different demand types is almost the same when using the
decentralized and centralized approaches on the Elnett21-case.
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Figure 4.23: The share of the various sources of supply for the two approaches for the Elnett21-
case22.
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Figure 4.24: The share of the various demand types for the two approaches for the Elnett21-
case23.

22The aggregated production from DERs accounts for different shares of the total supply in the two approaches,
but aggregated DER prduction is the same in both strategies.

23The aggregated demand of the end-users accounts for different shares of the total demand in the two ap-
proaches, but the aggregated demand is still the same in both approaches.
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The multi-objective (MOO) optimization approach tries to optimize two or more objective
functions simultaneously. In MOO problems, objective functions show contradicting behavior,
like reducing the total costs of a product while maintaining a high quality, which can make
the decision-making challenging. In many practical engineering applications, decisions must be
made between such conflicting objectives. In this situation, the concept of one optimal solution
will be replaced by the Pareto set, which is made up of a set of optimal solutions. Then,
the decision-maker should select the most preferred solution in this set based on the trade-offs
between the different objective functions [7].

MOO problems are mainly solved by using analytical or numerical methods. The analytical
methods comprise strict mathematical proofs and derivation to reach an exact solution, while
the numerical methods use appropriate iteration formulas to reach an approximate solution. The
numerical methods include both classical numerical methods and intelligent numerical methods
based on heuristic search algorithms. Among the classical methods there are the a priori methods
including, but not limited to, the weighted sum method and the ε-constraint method. In the
weighted sum method, multiple objectives are transferred into a single objective by multiplying
each objective with a corresponding weighting coefficient. The weighting coefficients are set
based on the relative importance of the different objectives. The advantage of the weighted sum
method is that it is simple and easy to apply, but it can be a challenge to set the weight vectors
such that a Pareto-optimal solution in the desired region can be obtained. The ε-constraint
method, on the other hand, keeps one of the objective functions while the others are turned
into constraints. Using the ε-constraint method, both convex and non-convex problems can be
solved [8, 28].

In this thesis, the ε-constraint method was chosen as the solving procedure for the different
MOO problems, as the solving procedure can give the Pareto set.

5.1 ε-constraint Method

The ε-constraint method reformulates the multi-objective problem into a single objective one. As
mentioned above, a multi-objective problem aims to find the Pareto set instead of one optimal
point. Therefore, it focuses on optimizing one objective and models the other objectives as
constraints. Figure 5.1 demonstrates the concept of the epsilon-constraint for a two-objective
( f1 and f2) problem with contradicting behaviors. The blue lines show the borders of the feasible
region. In this case, f2 is the main objective and f1 is converted to a constraint. In the left
figure, f1 is divided into ten equal intervals. This means that the problem must be solved ten
times aiming to minimize f2 subject to the problem constraints as well as the constraint related
to f1. In each iteration, f1 is limited by an upper bound which is illustrated as the dashed
lines in the left figure. The circles in the figure illustrate the optimal solution of the described
problem in each iteration. The Pareto set is formed of these circles. A more smooth Pareto set
can be achieved by increasing the number of iterations which can be seen in the figure to the
right.

59



Chapter 5 – Multi-objective Optimization

Figure 5.1: The ε-constraint approach in MOO.

Equation (5.1) - (5.3) illustrate the extension of the ε-constraint method for problems with
K amount of objective functions. The calculation is performed in the feasible region of the
problem, which means that the other constraints related to the structure of the problem must
be taken into account. In all equations in this chapter, n is the iteration number and q is the
total amount of iterations.

min f1(X̄) s.t. f2(X̄) ď e2, ..., fK (X̄) ď eK (5.1)

e2 = f2min + (
f2max ´ f2min

q
) ¨ n n = 0,1, ...,q (5.2)

eK = fKmin + (
fKmax ´ fKmin

q
) ¨ n n = 0,1, ...,q (5.3)

5.2 Controlling the Peak

As cost reduction is the main priority of the end-users, they try to employ various flexibility
sources to reduce the RES curtailment and consume low price energy. This might lead to spikes
in grid imports during low price periods of the day. This has been seen for both the decentral-
ized and the centralized control system strategies when applied to the 25-houses case and the
Elnett21-case. Therefore, it seems necessary to consider the peak demand in the scheduling of
assets. Two-objective approaches for controlling the peak and costs are analyzed in the follow-
ing. It is worth noting that the described formulations in the previous chapters are considered
in the following subsections, and that MOO is used to analyze a specific day.

In the multi-objective method, the operational costs are considered as one of the objectives
and are defined depending on the type of the market structure, which is described in previous
chapters. This objective is further referred to as f1. The other objective, called f2, is the highest
amount of energy imported from the grid during the day. Equation (5.4) shows the peak in the
linear programming of the market model.
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f2 ě
N∑
i=1

G(t, i) @ t P T (5.4)

If eq. (5.4) is considered along with all the P2P, energy storage, shiftable load, power balance
and EV constraints of section 4.4.1 in chapter 3, as the feasible region of the problem, the
multi-objective problem is shown in eq. (5.5) and (5.6).

min
f easible region

f2 (5.5)

f1 ď f1min + (
f1max ´ f1min

q
) ¨ n n = 0,1, ...,q (5.6)

5.3 MOO in Practice

This section shows the results of using the MOO approach on the Elnett21-case and on a new
case of four houses, hereby called the 4-houses case24, located in London, UK. For the Elnett21-
case, MOO is applied to the decentralized market approach for Stavanger Airport. While for
the 4-houses case, MOO is applied to the centralized market approach for the community of
houses.

5.3.1 MOO Used on the Elnett21-case
The MOO was used on the Elnett21-case, described in chapter 4, using a decentralized approach.
The first objective function of the MOO was to reduce the peak demand seen from the main grid
of each end-user, while the second objective function was to reduce the total cost of electricity for
each end-user. The reason for choosing the decentralized approach for this case is that the end-
users have high energy demands, which means that peak control for each end-user is important.
Also, as the market model has been evaluated in previous chapters, the main focus is on the
analysis of MOO for Stavanger Airport, see section 4.2.1 in chapter 4 for further information on
the specific end-user.

Figure 5.2 shows the Pareto set for Stavanger Airport in the target day consisting of 20 scenarios
(q=20). As can be seen from the figure, a peak reduction leads to a very low cost increase for
the specific end-user. When the peak is reduced from the highest value to the lowest value,
corresponding to a decrease in peak by 18.02%, i.e. 257 kW, the costs are only increased by
0.12%, i.e 10 NOK. This means that the peak demand in this specific case can be reduced
without triggering a high cost. It should, however, be noted that the cost increase of 10 NOK is
just for the specific day, and that the extra cost will be aggregated when looking at the yearly
costs. For other days than the one studied here, the cost of decreasing the peak demand seen
from the grid can be higher or lower than what has been shown in fig. 5.2. In such days, it
is up to the decision maker to select the most preferred operating point, which usually is the
midpoint of the Pareto set.

24The 4-houses case is described in appendix A.2.
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Figure 5.2: Pareto set for Stavanger Airport for day 1 in week 15, 2015.

A better comparison between various scenarios can be done based on fig. 5.3. As mentioned
earlier, the problem must be run several times and each time the upper bound of the cost
increases. This means that the first and last iterations correspond to pure peak minimization
and pure cost minimization, respectively. Figure 5.3 (a) shows the grid consumption for these
two extreme scenarios. In the cost minimization scenario, the end-users import power from the
main grid as much as they can when the price is low. While in the peak mitigation scenario, the
grid import is lower within the low price periods. The other scenarios are somewhere between
these two scenarios, as shown by the blue lines in fig. 5.3 (b).

2 4 6 8 10 12 14 16 18 20 22 24

Time step

0

250

500

750

1000

1250

1500

G
ri
d

 c
o

n
s
u

m
p

ti
o

n
 [

k
W

h
/h

]

0.204

0.206

0.208

0.21

0.212

0.214

0.216

0.218

0.22

0.222

0.224

G
ri
d

 p
ri
c
e

 [
N

O
K

/k
W

h
]

(b)

2 4 6 8 10 12 14 16 18 20 22 24

Time step

0

250

500

750

1000

1250

1500

G
ri
d

 c
o

n
s
u

m
p

ti
o

n
 [

k
W

h
/h

]

0.204

0.206

0.208

0.21

0.212

0.214

0.216

0.218

0.22

0.222

0.224

G
ri
d

 p
ri
c
e

 [
N

O
K

/k
W

h
]

(a)

Peak minimization

Cost minimization

Grid Price

Figure 5.3: Grid consumption of Stavanger Airport for day 1 in week 15, 2015. (a) Extreme
scenarios (b) All scenarios.
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5.3.2 MOO Used on the 4-houses Case
The 4-houses case concerns a case of four houses located in London, UK, and is described in
appendix A.2. In the 4-houses case, the MOO is applied to the centralized market approach for
one specific day, as the demand of residential buildings is much smaller compared to the demand
of an airport, industrial park or harbor. Figure 5.4 compares the cost and peak demand in the
MOO problem with the cost and peak in extreme scenarios, i.e. SO cost and SO peak. The figure
shows that minimizing each objective leads to an increase in the other, as the two objectives
are contradicting. In this case, scenarios 1 to 7 are dominated by the 8th scenario. In the 8th
scenario, the community has a lower cost than the previous scenarios with the same peak.
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Figure 5.4: Comparison of total costs and peak demand for the community of houses.

In fig. 5.5, the Pareto set of the whole community of houses is illustrated. The figure shows
that a peak reduction of 53.2%, i.e. 4.09 kW, will result in a cost increase for the community of
3.2%, i.e. 60 pence, for the specific day. Compared to the Pareto set for Stavanger Airport, the
cost of decreasing the peak is higher, but in return the peak demand is reduced by a percentage
almost three times as high. Based on the Pareto front for the 4-houses case, the community
can select the most preferred point. Based on the selected point, the schedule of the various
houses can be set. At the same time, the community can consider the costs of each individual
house before making a decision. Along with the costs, the amount of traded energy, shown in
fig. 5.6, can also be a measure in the decision making process. P2P trading plays an important
role in peak shaving, as there is a high amount of traded energy in the first scenario. It can also
reduce the grid dependency, and hence the costs. As the P2P trading give losses, the amount of
trade in the cost minimization scenario is lower than the first scenario, which focuses on peak
reduction. The priority of the middle scenarios is to use RES locally, than have trading among
various peers.
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Figure 5.5: Pareto set for the 4-houses case for one specific day.
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Figure 5.6: The total amount of traded P2P energy in various scenarios for the 4-houses case.
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Figure 5.7 shows the aggregated battery storage level for the three batteries in the 4-houses
case. The plot to the left, (a), shows the aggregated storage level for the community peak
minimization scenario. The middle plot, (b), shows the aggregated storage level for scenario
10, while the plot to the right, (c), shows the aggregated storage level in the community cost
minimization scenario.

According to fig. 5.7 (a), it is obvious that in the peak minimization scenario, the batteries are
employed to reduce the grid import in peak hours. While, as the concentration on the cost
minimization increases, the community tends to use the batteries throughout the day, as shown
in fig. 5.7 (b) and (c). In the community cost minimization problem, the batteries are forced to
be charged and discharge twice during the day.
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Figure 5.7: The aggregated battery storage level each time step, 30 minutes, for a specific day
for different scenarios for the 4-houses case. (a) Scenario 1 (Peak minimization), (b) Scenario
10, (c) Scenario 20 (Cost minimization).
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6 | Conclusion

This thesis studies the performance of two different optimization strategies in local electricity
markets applied to two unique cases. The first strategy is the decentralized strategy, which
has as objective to minimize the total cost of electricity of the individual end-users within a
community. The second strategy is the centralized strategy, where the objective is to minimize
the total electricity costs for the whole community when enabling P2P energy trading. The
thesis has also briefly studied the relationship between total electricity costs and peak power
demand for two different cases through utilizing a multi-objective optimization (MOO) approach
based on the ε-constraint method.

All of the optimization approaches used are based on multi-period linear programming. The
approaches have been implemented and simulated using MATLAB with a simulation period of
3 months, April to June, and with a simulation period of one day for the MOO approach. The
cases studied include a case of 25 residential buildings in the UK (25-houses case), a case of three
large industrial end-users in Norway (Elnett21-case), and a simplified case of four residential
buildings in the UK (4-houses case). The decentralized and centralized approaches have been
applied to both the 25-houses case and the Elnett21-case, while the MOO approach has been
applied to the Elnett21-case and the 4-houses case. This chapter presents the main findings of
this thesis, in addition to giving the main conclusions which can be drawn from the results and
discussion presented in previous chapters.

The comparison of the decentralized versus the centralized control system strategies shows that
the centralized strategy gives the lowest total electricity costs of both the community and for each
end-user within the community for both cases studied. For the 25-houses case, the centralized
approach gives a cost reduction for the ESR which is 8.0% better compared to the decentralized
approach, giving a cost difference of £252. While for the Elnett21-case, the total electricity
costs for the ESR when using the centralized approach are 1.0% lower than the costs found
when using the decentralized approach. This percentage results in a cost difference of 115,524
NOK. The centralized strategy does also give the lowest amount of energy consumed from
the main grid for the different communities, in addition to giving the lowest community peak
power demand seen from the grid for both the 25-houses case and the Elnett21-case. The total
energy demand is reduced by 18.9% and 1.4% compared to the decentralized strategy for the
25-houses case and the Elnett21-case, respectively. Concerning the peak power demand, the
centralized strategy reduces the peak power demand for the community by 13.5% and 15.5%
for the respective cases compared to the decentralized strategy. It has also been seen that the
centralized approach reduces the amount of power fed to the main grid with 80.9% from the
decentralized strategy for the 25-houses case, which results in an increased self-consumption for
the community. With these results, it can be concluded that the centralized strategy has proven
to be the most preferred strategy of the centralized and the decentralized strategies, when the
aim is to reduce the total cost of electricity.

The results from studying the two control system strategies on the two distinct cases show
that the difference in performance between the two strategies depends on the case, but that
the centralized strategy has the best performance regardless of the cases studied in this thesis.
The 25-houses case shows a larger difference in performance between the strategies compared
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to the Elnett21-case. The reason for this is that each end-user in the Elnett21-case has both
local production and storage units, which decreases the benefits of P2P energy trading. The
Elnett21-case does also have some flexible load, which also decreases the benefits of P2P energy
trade. In the 25-houses case, each end-user does not have local production and/or storage units.
When enabling for P2P trade in the centralized strategy, the end-users without production
and/or storage gets increased flexibility as they now also have the opportunity of buying power
from other peers. Thus, giving a better performance of the centralized strategy compared to
the decentralized strategy for the 25-houses case.

The MOO approach was used on Stavanger Airport, from the Elnett21-case, based on the
decentralized market approach, and the 4-houses case using the centralized market approach.
Both cases were studied for one day to get an idea of the relationship between the peak power
demand seen from the main grid and the total electricity costs. The results from the MOO show
that a small increase in cost can reduce the peak power demand by a substantial amount for
both of the cases studied, for the specific day. When choosing a control system strategy for an
ESR, both the peak power demand seen from the main grid and the total electricity costs should
be taken into consideration. This is because the peak power demand is of interest to the local
DSO, while the cost minimization is of interest to the community of end-users. The local DSO
dimensions their grid according to the current peak power demand. If this peak is increased,
the DSO will often face costly power grid updates. To postpone such costly upgrades, the peak
power demand of the community could be decreased by utilizing an appropriate control system
strategy. Through utilizing MOO, it is possible to find a solution that will benefit both the local
DSO and the local community by selecting a point of the Pareto set. Choosing the midpoint on
the Pareto set will often be a good compromise for both the DSO and the local community.

6.1 Shortcomings and Further Work

The main shortcomings of the study in this thesis and some suggestions for further work are
given below:

˚ Forecasting algorithms can be implemented in the different control system strategies pre-
sented to predict the future demand, production and prices for electricity, instead of as-
suming a perfect forecasting model to get more realistic results. The optimization horizon
can also be increased without giving too optimistic results.

˚ The different optimization approaches can be run for a longer time period to see how the
different approaches compare with each other when increasing the analysis period to e.g.
one year. As only the months April to June were used in the simulations, it is not know
how the different approaches perform in relation to each other during the fall and winter.

˚ Only the dual-simplex algorithm was used when solving the optimization problems. Other
solvers can be exploited to possibly decrease the computational time.

˚ The value of battery storage when using the different approaches can be studied.

˚ P2P energy trade can be implemented in the decentralized approach through using e.g.
different decomposition methods. In this way, the results of a decentralized approach
with P2P trading can be compared with the results of the centralized approach with P2P
trading.

˚ The MOO approach can be studied further to see how the relationship between peak power
demand and total electricity is when having a longer analysis period.
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A | Appendix

The appendix provides some additional plots for both the 25-houses case and for the Elnett21-
case, in addition to giving a brief explanation of a third case of four houses in London, UK used
in chapter 5.

A.1 Additional Plots for Both Cases
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Figure A.1: Supply-demand decisions when using the centralized control system strategy on
house 15 in the 25-houses case in week 24, 2013.
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Figure A.2: Wholesale spot prices and in-feed cost for the Elnett21-case during week 19 in 2015.
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A.2 4-houses in London, UK

This section introduces an additional case with four houses located in the UK, and the case
considers the same four houses used in Lüth et al. [19]. The 4-houses case can be considered
as a simplified version of the 25-houses case and it has been added to be used with the MOO
approach, as the results from MOO are harder to interpret when there are many end-users
within the ESR.

The 4-houses case, with fewer end-users, is added to have a simpler case to be studied by the
MOO approach. simplify the MOO optimization, making it easier to present in this thesis
because a simpler case with less end-users was needed for the MOO optimization, as the results
from the optimization are harder to interpret when there are many end-users within the ESR.

A.2.1 Introduction to the Case
The 4-houses case consists of four households located in London, UK. Each of the households
have their own unique load demand pattern. The load is fixed for all of the houses, which means
that no load is shiftable nor curtailable. The households are of the same type as the households
in the 25-houses case, as they can have local production units in the form of wind turbines and
PV systems, and local storage in form of a BESS. The four houses are connected to the main
power grid and to a local grid interconnecting the houses, as in the 25-houses case. Figure A.3
shows the setup for the 4-houses case with enabled P2P trading. The houses are numbered
from 1 to 4 and the average monthly demand, for the simulation period, is given for each of the
houses.

Figure A.3: Setup for the 4-houses case with P2P trading25. Each of the houses are numbered,
1-4, and the average demand during the simulation period is given for each house. The various
production and storage units at the different houses are also shown.

25See fig. 3.1a in chapter 3 for an explanation of the symbols used in fig. A.3.
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A.2.2 Case Data and System
The demand data for the four households in this case is taken from the Low Carbon London
project26, which is the same project that the data for the 25-houses case is taken. The 4-
houses case uses demand data for year 2012, while the 25-houses case uses data from 2013. The
simulation period for the 4-houses case is set to just one day, i.e. April 1st 2012. The time step
is put to 30 minutes, which gives a total of 48 simulation steps. Note that the four households
in the 4-houses case are not any of the same households as the ones chosen for the 25-houses
case. The different houses in the community have the following characteristics:

˚ House 1 has the largest monthly energy demand of the four houses with its demand of
1,590 kWh/month. The household has installed both a 2.3 kW WT, a 4 kWp PV system
and a 4 kWh BESS.

˚ House 2 has installed a 4 kWp PV system and has a monthly energy demand of 690
kWh/month.

˚ House 3 has the lowest demand of the four houses with an energy demand of 660 kWh/month.
The house has no production units, but it has a 4 kWh BESS.

˚ House 4 has installed a 2.3 kW WT and a 4 kWh BESS. The average demand of the house
is 900 kWh/month.

The exact same electricity prices and pricing scheme that was used for the 25-houses case, see
section 3.2 in chapter 3, are also used for the 4-houses case. The production and storage units
of the 4-houses case are the same as those used in the 25-houses case. Meaning that the WT
has a capacity of 2.3 kW and is stall regulated, the PV systems are rated at 4 kWp with an
efficiency of 21.4% and that the BESS is a LIP sonnenBatterie eco 8.0 with a usable capacity of
4 kWh and with a 2.5 kW inverter. The production from the PV systems is the same for both
houses that have installed a PV panel, as the production is taken from the pre-specified PV
installation. See section 3.2 in chapter 3 for more information on the production and storage
units.

The model formulation for the 4-houses case is the same as the models used for the 25-houses
case, see section 3.4 in chapter 3.

26More information on the Low Carbon London project can be found on the following webpage:
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
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