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Summary

As global power systems transition to a larger share of renewable energy, changes in their
operating characteristics become increasingly prominent. Sources such as photovoltaic panels
and wind turbines trigger more frequent instability events and do not contribute in stabilising the
system. Thus, the performance of classical bulk power generation facilities become increasingly
important for robust operation of power systems with high renewable penetration. Historically,
little effort is put into the tuning of these generating units, as they commonly are set with
typical values from literature and briefly tested for positive damping. This was an adequate
methodology in the classical power system, but as modern power systems are run much closer
to their stability limits, optimising the equipment becomes essential.

The excitation system is the main actuator of the synchronous generator and has a large im-
pact on its stability performance. It consists of the exciter, automatic voltage regulator (AVR)
and power system stabiliser (PSS). A well-tuned excitation system provides benefits such as
improved oscillation damping, relay coordination and first-swing transient stability. However,
traditional tuning occurs with the generator out of operation, which results in huge financial
losses to the owner and makes subsequent re-tuning unlikely.

The objective of this thesis is to explore approaches to make the PSS design more adaptive and
versatile by applying neural networks (NN). Two approaches are presented. Firstly, an NN-
based auto-tuning system for the conventional PSS (CPSS) design is proposed, where the NN is
trained using optimised data from the particle swarm optimisation (PSO) technique. The PSO
obtains optimal CPSS parameters from a simplified linear model of the synchronous machine.
Secondly, a NN controller to act as the PSS is proposed, where its phase response is a control
variable. The controller is named the sine shifting neural network (SSNN). The SSNN con-
troller is unique in that it does not rely on any electrical machine theory in its creation. Finally,
the two approaches are compared to a static CPSS and a no PSS approach by time-domain simu-
lations using a more accurate flux-linkage model of the synchronous machine. The disturbances
performed in the simulations are steps in the external network reactance. All simulations are
performed in the MATLAB/Simulink environment.

The time-domain simulations of the rotor speed deviation show that the SSNN provides superior
oscillation damping compared to the other approaches. It was able to reduce the settling time
to well under 1 second for all tests, where the other approaches were in the 2-4 s range. The
creation and implementation of the CPSS auto-tuning system were successful, yet it did not
give a consistent improvement in damping compared to the static CPSS.

The work in this thesis shows that applying neural networks to the PSS design has great potential
in improving its performance and to make it adaptive and versatile. The neural network is
a powerful tool that can aid in the global energy transition to maintain the robustness that is
expected of the power system.
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Sammendrag

Når andelen av fornybar energi i et kraftsystem øker, endres systemets egenskaper på en
merkbar måte. Fornybare energikilder som solcelleanlegg og vindturbiner skaper mer hyppige
forstyrrelser, men bidrar ikke til å stabilisere nettet. Det betyr at ytelsen til klassiske kraftverk
med roterende masser er svært viktig i kraftsystemer med en høy andel fornybare energikilder.
Til tross for dette har det historisk sett blitt lagt lite innsats i innstillingene av disse generatorene.
De er normalt innstilt med typiske verdier fra faglitteratur og testes enkelt for positiv demping
av svingninger. I klassiske kraftsystemer var dette en tilfredsstillende fremgangsmåte, men
siden moderne systemer kjøres nærmere operasjonsgrensene og opplever mer regelmessige
forstyrrelser, blir optimering av det eksisterende utstyret essensielt.

Magnetiseringssystemet er synkrongeneratorens viktigste styringssystem, og har stor innvirkn-
ing på maskinens stabilitet. Styringssystemet består hovedsakelig av en spenningsregulator
(AVR) og dempetilsats (PSS). Et godt innstilt styringssystem kan gi fordeler slik som forbedret
demping av svingninger, enklere koordinering av vern og høyere transient stabilitet i første sv-
ingning. Innstillingen av systemet har tradisjonelt blitt gjort med generatoren frakoblet nettet,
noe som kan forårsake store kostnader for eieren av kraftverket og gjør korrigering av innstill-
ingene på et senere tidspunkt uaktuelt.

Målet med denne avhandlingen er å utforske måter nevrale nettverk (NN) kan benyttes for
å gjøre PSS-designet mer tilpasningsdyktig og fleksibelt. To fremgangsmåter er presentert.
Den første er et system for automatisk innstilling av det konvensjonelle PSS-designet (CPSS),
basert på en NN-innstiller. Nettverket er trent på optimerte parametere fra "particle swarm
optimisation"-teknikken (PSO). PSO finner de optimale parameterne fra en forenklet lineær
modell av synkronmaskinen. Den andre fremgangsmåten er å benytte en NN-basert regula-
tor som en PSS der faseresponsen gis som en kontrollvariabel. Regulatoren er navngitt "sine
shifting neural network" (SSNN). Denne regulatoren er unik i den forstand at det kreves ingen
elektrisk maskinteori for å designe den. Til slutt ble begge disse fremgangsmåtene sammen-
lignet med en statisk PSS og ved bruk av ingen PSS. Sammenligningene er gjort ved hjelp av
en mer nøyaktig maskinmodell i tids-domenet. Forstyrrelsen som er simulert er et steg i den
eksterne nettreaktansen. Alle simuleringer er utført i MATLAB/Simulink.

Simuleringene viste at SSNN-regulatoren ga overlegen dempeevne sammenlignet med de andre
fremgangsmåtene. Den var i stand til å redusere stabiliseringstiden til under 1 sekund, mens
de andre metodene endte på 2-4 sekunder. Opprettelsen og implementeringen av den automa-
tiske NN-innstilleren for CPSS-designet var vellykket, men simuleringene viste at den ikke ga
konsekvent bedre demping enn den statiske CPSS-en.

Resultatet i denne avhandlingen viser at å benytte nevrale nettverk i designet av PSS-en har et
stort potensial for å øke dempeevnen, samt å gjøre den mer tilpasningsdyktig og fleksibel. Et
nevralt nettverk et er kraftig verktøy som kan bidra positivt i overgangen til fornybar kraftpro-
duksjon for å sikre påliteligheten som er forventet av kraftsystemet.
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Chapter 1

Introduction

1.1 Background

The world of electric power production is changing rapidly. The current trend shows a steadily
increasing share of renewable energy sources, and this trend is not likely to change. Power
sources like wind turbines and photovoltaic panels are being implemented for both large-scale
power plants and small-scale distributed generation. Due to the intermittent nature of weather
conditions, the power production from these sources is unreliable. Moreover, they are inter-
faced with the power system through power electronics, giving little to no contribution to the
system inertia. For this reason, a high renewable penetration is associated with more frequent
instability events while contributing little to the stabilising ability of the system. It is then up to
the generating units with rotating masses to manage these additional instability events in addi-
tion to keeping power reserves and handling increasingly frequent changes in load conditions.
Consequently, these generators must be able to provide a more continuous regulation in their
production than ever before.

The strain on the power system is only increasing as time progresses, due to increased load and
generation. Yet, the expansion of the grid is restricted by environmental and economical factors.
Thus, the power system is consistently being operated closer to its limits, making optimisation
of the existing equipment an essential part of the modern power system.

A disturbance in the interconnected power system might originate from a fault, load change,
component disconnection, motor starting or any such occurrence that impacts the load flow. A
power system may be vast and a single machine’s response to a disturbance depends on its elec-
trical distance to the disturbance. A sufficiently close disturbance will pull the machine from
steady-state and quantities such as voltage, frequency and load angle will deviate and oscillate.
The ability to recover and return to steady-state relies heavily on the control systems of the ma-
chine. For a synchronous machine, the most important control system is the excitation system,
which controls the field voltage to regulate the machine excitation. The machine excitation has
a large impact on quantities such as terminal voltage, reactive power flow and electromechanical
torque.

The power system stabiliser (PSS) has become very widespread since its inception in the 1960s,
as it has proven to be proficient at damping oscillatory behaviour in the machine rotor. However,
even though it has gained in popularity, its general design has barely improved. Historically,
little effort is put into tuning the PSS before commissioning. Commonly, it is tuned using
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typical values from the literature to just satisfy the performance requirements of the transmis-
sion system operator (TSO). This means there is much room for optimisation in the current
system.

1.2 Motivation
The Norwegian power production is dominated by hydropower [2], in which salient-pole
wound-field synchronous machines are the main working force. The use of properly tuned
excitation systems is therefore essential for optimal operation of the power system. Tradition-
ally, excitation systems are tuned before they are commissioned and rarely retuned afterwards
since retuning would require to put the machine out of operation for the duration. This is
associated with a very high cost as the machine is not producing power. Moreover, quickly
tuning an excitation system manually is challenging and requires high expertise. Therefore,
providing some automated procedures for determining excitation system parameters would be
very beneficial. Well tuned systems provide advantages such as improved dynamic oscillation
damping, easier relay coordination and improved first-swing transient stability [3].

1.3 Objective
This thesis aims to answer the following questions:

1. How can a simplified synchronous machine model be derived for the use in machine
learning applications, and how can a more accurate model be derived for time-domain
performance assessment?

2. How can a neural network be applied to improve the conventional power system stabiliser
design?

3. How can a neural network-based PSS be created to improve stability without relying on
complex machine theory?

4. How can the proposed system be implemented into the MATLAB/Simulink environment
for testing purposes?

1.4 Related research
The power system stabiliser (PSS) is a topic that has been around for decades, with the most
common design being a transfer function with a lead/lag structure introduced in 1969 [4]. The
inherent weakness of this design is that it made to work adequately for a great range of scenarios,
making it sub-optimal in any one scenario. Consequently, much research has gone into improv-
ing its design. Several intelligent algorithms have been applied to tuning the conventional PSS
(CPSS) for improving its stability performance. Some examples of algorithms that have been
applied for PSS tuning are: Particle swarm optimisation [5, 6]; Genetic algorithm [7, 8]; Fuzzy
logic systems [9, 10]; Artificial bee colony [11, 12]; Bat search algorithm [13, 14]; Bacterial
foraging optimisation [15, 16]; Differential evolution [17, 18]; Tabu search algorithm [19, 20];
Simulated annealing [21] and several more. The disadvantage with most of these is that they are
focused on the optimal tuning of the CPSS before commissioning, and not adaptively adjusting
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it to changing conditions. Therefore, neural network-based PSS designs were explored, which
are well fitted for adaptive solutions.

The idea of neural networks is approaching a century old. The first model of neuron activity was
presented in 1943 [22], where a simple neural network was modelled with electrical circuits. In
1958, the first artificial neural network, the perceptron, was introduced [23] and is a design still
actively used today. It was in the 1990s the exploration of NN-based PSSs properly began.

Neural networks (NN) have been applied to the PSS problem to varying degrees of complex-
ity. In the early stages, the NN was used to automatically tune the parameters of the conven-
tional lead/lag type PSS [24]. Also, some proposals were made replacing the conventional
PSS with NNs altogether [25, 26, 27, 28]. These networks were trained before commissioning
and were not updated dynamically. Some more complex NN structures applied in some papers
[29, 30, 31, 32] use variations on a two-network system, where one NN acts as a neuro-identifier,
emulating the machine behaviour for next-step prediction, and the other as the neuro-controller,
which is dynamically trained by the neuro-identifier to adapt to changing conditions. This two-
network structure is based on the work in [33]. Later, some adaptations and variations have been
proposed in the 2000s. A review of several of these, along with other intelligent algorithms in
PSS applications, was performed in [34].

A common factor among these is that their approaches apply a mathematical model of the ma-
chine to train their neural networks. However, to apply such models correctly, high competence
is needed along with detailed information of the machine and connected system. Thus, it could
be beneficial to have an approach where such models are not necessary, where simpler principles
are applied to design a PSS able to improve the damping capability of the system.

1.5 Approach

1.5.1 Scope and assumptions
In such a theoretically heavy field of study, there are countless levels of detail one could go into.
However, to keep the topic of the thesis focused and to satisfy time constraints some restrictions
and assumptions are made:

• This thesis will focus on the PSS while letting the AVR parameters remain constant.

• Stability studies in this thesis will keep to small-signal stability. The purpose of the PSS
is to damp oscillatory behaviour over several swings. In a large-signal stability study, the
main concern would be the first-swing transient stability, where the PSS has little impact
compared to the AVR gain.

• The effect of the governor system will not be considered. Consequently, the mechanical
torque to the machine is considered constant.

• The standard parameters of the machine are assumed known and constant. Generators
commonly have data sheets where these are listed. Additionally, high-quality sources
describing the determination of these parameters already exist [35, 36].

• Saturation effects of the machine will not be considered. During small-signal disturbances
the deviations are usually small enough that saturation does not occur to any major degree,

3



1. Introduction

making this a fair simplification.

1.5.2 Methodology
The following approach is used to work towards the objectives of this thesis:

• Review the mathematical modelling of the synchronous machine, for a detailed under-
standing of the machine dynamic behaviour.

• Derive a simplified linear machine model for small-signal stability studies

• Introduce the concept of intelligent algorithms and give insight into neural networks

• Propose a way to apply neural networks to automatically tune the conventional PSS

• Propose a new, model-free approach to the PSS design using neural networks

• Evaluate the proposed designs and compare to traditional methods

The information used in this thesis is gathered from textbooks, the University’s online library
of articles and literature, talking to professionals at the University and through the author’s
personal experience.

1.6 Structure of the thesis

This thesis is constructed with six chapters:

Chapter 1 gives the introduction of the thesis problem. It highlights the background and ob-
jectives, provides insight into some previous research done with the problem and presents the
layout of the thesis.

Chapter 2 goes into detail of the derivation of the synchronous machine mathematical model
and introduces the excitation system. It subsequently derives a simplified linear model of the
machine connected to an infinite bus system and its state-space representation. Lastly, it gives
some insight into how the responses of small-signal disturbances might be quantified.

Chapter 3 introduces the concept of intelligent learning before going into detail of the two
intelligent systems used in this thesis: the particle swarm optimisation (PSO) algorithm and
neural networks (NN).

Chapter 4 proposes an NN auto-tuning system for the conventional power system stabiliser
(CPSS) for tuning during online operation and shows how such an auto-tuner can be imple-
mented into the MATLAB/Simulink environment.

Chapter 5 proposes a novel NN-type controller where the phase response is a control variable.
Its structure and training data creation is given and its performance is tested and discussed.
Next, the NN is applied as a PSS and its damping performance compared to three other PSS
philosophies is shown.

Chapter 6 discusses the procedures and results in this thesis. It gives the concluding remarks
and provides suggestions for further work.
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Appendix A provides the numeric values of model parameters used in the simulations during
the work of this thesis that are not provided during the text.

Appendix B gives a brief guide on how a simple neural network can be created in MAT-
LAB.
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Chapter 2

Synchronous machine representation

“This vast enterprise of supplying electrical energy presents many engineering problems that
provide the engineer with a variety of challenges. The planning, construction, and operation
of such systems become exceedingly complex. Some of the problems stimulate the engineer’s
managerial talents; others tax his knowledge and experience in system design. The entire
design must be predicated on automatic control and not on the slow response of human oper-
ators. To be able to predict the performance of such complex systems, the engineer is forced
to seek ever more powerful tools of analysis and synthesis.”

– Anderson and Fouad [37, p. 3]

In the studies of PSS tuning presented in Section 1.4 the performance is commonly tested
through time-domain simulations. However, it is not always clear what machine model is used
for the simulations, and some even use the simplified linear model for the time-domain simula-
tions. To ensure the performance assessments are kept as realistic as possible, the tests should
employ a more accurate model of the machine, even though the tuning methods can be built
on simpler models. Simulink and similar software have pre-built models readily available, and
for this reason, they easily become "black boxes", where there is little understanding of the
inner dynamics. This chapter aims to alleviate this and to show the models that will be used for
performance assessment in the later chapters.

There are several ways of modelling a synchronous machine to various degrees of complexity.
Which model is appropriate depends on each study. In a large-scale study with several machines
being simulated, highly detailed models might prove to be too computationally intensive. Ad-
ditionally, machines far away from the point of interest will have less impact on the behaviour
at that point, such that less complex models will be sufficient. [36]

In this thesis, a single machine is being modelled. Only the behaviour of this machine and the
impact of its excitation system is of any real interest. However, to create a more realistic model,
it needs to be connected to a network. A simple way to represent an external network is to
consider it an infinite bus, which is a constant voltage source behind an impedance. This is not
a highly accurate description of a power system, as the voltage and frequency realistically vary.
Still, it is a sufficient representation for this type of study.
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2. Synchronous machine representation

2.1 Derivation of the mathematical model
The development of the mathematical model in this chapter largely follows the procedures in
Chapter 11 of [36] and Chapter 4 of [37].

To limit the degree of complexity in the modelling process, some underlying assumptions are
made: [36]

• All winding capacitances are neglected, as they are small compared to their inductances

• The three-phase stator windings are identical, symmetrically distributed and wye-
connected

• Each distributed winding may be represented as a concentrated winding

• The time variations in the stator inductances are sinusoidal and does not contain higher
harmonics due to stator slots and other effects. Hence, the inductances can be represented
by a constant term added to a single periodic term.

• All hysteresis losses are negligible

• Saturation in the machine is negligible.

2.1.1 Notation
When researching the topic of electrical machine modelling, one quickly realises that differ-
ences in notation between authors can become confusing. Therefore, an overview of the impor-
tant notation used in this chapter is given here:

• A quantity given a superbar represents a vector or matrix quantity, e.g. Ψ.

• Dotted variables are time derivatives, where the derivative order is equal to the number of
dots, e.g. δ̇ or δ̈.

• Subscript d and q denote quantities associated with the d- and q-axes respectively, e.g. Vd
or Xq.

• Subscripts D and Q denote quantities associated with the d- and q-axis damper/amortis-
seur windings respectively, e.g. LD or iQ. This thesis will henceforth use the term damper
winding.

• Subscript lower-case f denotes a field quantity, e.g. Vf .

• Subscript upper-case R denotes rated values, e.g. ωR.

• Subscript lower-case l denotes a leakage quantity, e.g. Xl.

• Where there might be ambiguities, per-unit quantities are given the subscript ,pu, e.g.
Tm,pu

2.1.2 Flux linkage equations
Electrical machines are predominantly built with three phases to fit the power system. The phase
windings are shifted 120° from each other and are referred to as phases A, B and C. Since these
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2. Synchronous machine representation

windings are mounted on the stator, they are called the stator windings. In a salient-pole wound-
field synchronous machine, which is the most common type in hydropower plants and the type
considered here, there are some windings mounted on the rotor as well. Most importantly,
the field winding is wound around the poles of the machine. Additionally, there are damper
windings (sometimes also called amortisseur windings) mounted at the edge of the poles, near
the air gap. These provide damping torque when the rotor angle deviates from its steady-state
position. All these windings have self- and mutual inductances, whose flux linkages describe
the machine behaviour. Figure 2.1 shows a simple illustration of how the windings and axes are
positioned in relation to each other.

Figure 2.1: Cross-sectional schematic of the synchronous machine windings displaying the ABC and dq
reference frames

There are six windings to consider: Phases A, B and C, the field winding and the damper
windings in the d- and q-axes. The full expression for the machine flux linkages is:

ΨA

ΨB

ΨC

Ψf

ΨD

ΨQ


=



LAA LAB LAC LAf LAD LAQ

LBA LBB LBC LBf LBD LBQ

LCA LCB LCC LCf LCD LCQ

LfA LfB LfC Lff LfD LfQ

LDA LDB LDC LDf LDD LDQ

LQA LQB LQC LQf LQD LQQ





iA

iB

iC

if

iD

iQ


(2.1)

or, in compact form:  ΨABC

ΨfDQ

 =

 LSS LSR

LRS LRR


 iABC
ifDQ

 (2.2)

where:
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2. Synchronous machine representation

• LSS = Stator to stator inductances

• LSR, LRS = Stator-rotor inductances

• LRR = Rotor to rotor inductances

The diagonal elements in the full matrix contain self-inductances and the off-diagonals contain
mutual inductances. Additionally, Lij = Lji. As mentioned earlier, the time varying induc-
tances can be represented as a constant term added to a periodic term. However, the phase of
the periodic term is not arbitrary. By inspecting Figure 2.1 it is possible to determine at which
rotor angle the reluctance path for a certain inductance is minimum. At this point the inductance
value will be maximum.

2.1.2.1 Stator inductances

For the stator self-inductances the reluctance path is minimum when the d-axis aligns with the
stator phase’s magnetic axis. Thus. they can be denoted as:

LAA = Ls + Lm cos
(
2γ
)

LBB = Ls + Lm cos
(
2γ − 2 π

3

)
LCC = Ls + Lm cos

(
2γ +

2 π

3

) (2.3)

where Ls and Lm have constant values. Also, Ls > Lm.

The reluctance paths for the stator mutual inductances are minimum when the d-axis is midway
between two of the stator winding axes. The mutual inductances will also have negative signs,
since the stator windings are distributed 120° in space. Also, take note of the sign in the phase
shifts, as they are based upon the phase order of Figure 2.1. The stator mutual inductances
are:

LAB = LBA = −Ms − Lm cos
(
2γ +

π

3

)
LBC = LCB = −Ms − Lm cos

(
2γ − π

)
LCA = LAC = −Ms − Lm cos

(
2γ +

5 π

3

) (2.4)

2.1.2.2 Rotor inductances

The rotor self-inductances are already in the rotor frame of reference and are therefore not time
varying,

Lff = Lf LDD = LD LQQ = LQ (2.5)

As the damper windings in the d- and q-axes are orthogonal, there is no magnetic coupling
between them. The same applies to the field winding and the q-axis damper winding. Thus,
their mutual inductances are zero. The mutual inductance between the field winding and the
d-axis damper winding is non-zero and does not vary with time. Thus:

LfD = LDf = Md LfQ = LQf = 0 LDQ = LQD = 0 (2.6)
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2.1.2.3 Stator-rotor inductances

The reluctance path between a stator and rotor winding is minimum when their axes align. The
mutual inductance will be maximum when both windings have the same positive flux direction.
The stator-field mutual inductances are:

LAf = LfA = Mf cos(γ)

LBf = LfB = Mf cos
(
γ − 2 π

3

)
LCf = LfC = Mf cos

(
γ +

2 π

3

) (2.7)

Mutual inductances from stator to d-axis damper winding are:

LAD = LDA = MD cos(γ)

LBD = LDB = MD cos
(
γ − 2 π

3

)
LCD = LDC = MD cos

(
γ +

2 π

3

) (2.8)

Finally, the mutual inductances from the stator to q-axis damper winding are:

LAQ = LQA = MQ cos(γ)

LBQ = LQB = MQ cos
(
γ − 2 π

3

)
LCQ = LQC = MQ cos

(
γ +

2 π

3

) (2.9)

2.1.3 The dq0 reference frame

When analysing the machine and power system behaviours, doing it in the ABC reference frame
can become very complex, since most inductances in Equation 2.1 contain time-varying compo-
nents. It is possible to alleviate this issue by doing a transformation on the stator quantities. The
transformation involves projecting the three phases onto two new axes that rotate along with
the rotor: The direct axis (or d-axis), which is aligned with the protruding pole of the machine,
and the quadrature axis (or q-axis), which is perpendicular to the d-axis. To uniquely define the
d-axis a fixed reference must be chosen. The common choice of reference is the magnetic axis
of phase A. The d-axis (and the rotor) then leads the reference by the angle γ. Since the dq-axes
are rotating with the rotor, the angle γ is continuously increasing at the rate of the rotational
speed ωr [36]. Figure 2.1 has the d- and q-axes drawn in along with the ABC-axes.

The described transformation projects three axes onto two. Consequently, some information
is lost. A third axis is required, which is commonly the zero-sequence axis, as defined by
symmetrical component theory [38]. It lies orthogonal to both the d- and q-axes, conveniently
making them magnetically uncoupled. The ABC to dq0 transformation is commonly called a
Park transformation, in honour of Robert H. Park [39]. The Park transformation is defined by
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Equation 2.10.
id

iq

i0


=


kd cos(γ) kd cos(γ − 2

3
π) kd cos(γ − 4

3
π)

kq sin(γ) kq sin(γ − 2
3
π) kq sin(γ − 4

3
π)

k0 k0 k0




iA

iB

iC


(2.10)

or, in compact form:
idq0 = P · iABC (2.11)

Similar expressions can be made for voltages and flux linkages:

vdq0 = P · vABC Ψdq0 = P ·ΨABC (2.12)

The coefficients kd, kq and k0 are arbitrary scaling factors from the transformation. Even though
they are arbitrary, there are some beneficial choices for them. A common choice is kd = kq =
2/3. This ensures the peak stator currents in the dq-axes are the same as the amplitude of the
ABC-frame stator currents [35]. However, when defining a per-unit base it is beneficial to have
a power invariant dq0 transformation, such that the base power for all windings are equal. For
a power invariant transformation, the coefficients are chosen as kd = kq = k =

√
2/3. The

coefficient k0 is chosen based upon the definition of the zero sequence current:

i0 = k0

(
iA + iB + iC

)
(2.13)

Thus, to keep the power invariance, k0 = 1/
√

3. It should be mentioned that this choice of trans-
formation has some drawback in that there will not be a comparable relationship between the
dq- and ABC-quantities, as it would for the first choice [35]. Moreover, the original derivation
by Park did not use a power invariant transformation [39].

The final transformation matrix becomes:

P =

√
2

3


cos(γ) cos(γ − 2

3
π) cos(γ − 4

3
π)

sin(γ) sin(γ − 2
3
π) sin(γ − 4

3
π)

1√
2

1√
2

1√
2


(2.14)

A special property of this particular matrix is that it is orthogonal, i.e. P−1 = P T . This gives it
its power invariant nature, resulting in:

p = vAiA + vBiB + vCiC

= vdid + vqiq + v0i0
(2.15)

Since the fDQ-variables already are in the rotor frame, only the ABC-variables need to be
transformed. The transformation is made by premultiplying Equation 2.2 by P 0

0 I3
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where P is the Park transformation matrix as defined in Equation 2.14 and I3 is the 3x3 identity
matrix [37]. The transformation becomes:P 0

0 I3


ΨABC

ΨfDQ

 =

P 0

0 I3


LSS LSR
LRS LRR


P−1 0

0 I3


P 0

0 I3


 iABC
ifDQ

 (2.16)

which equals:  Ψdq0

ΨfDQ

 =

 PLSSP−1 PLSR

LRSP
−1 LRR


 idq0

ifDQ

 (2.17)

Performing the matrix multiplication and writing the result in expanded form, the flux linkage
equations in the rotor reference frame become:

Ψd

Ψq

Ψ0

Ψf

ΨD

ΨQ


=



Ld 0 0 kMf kMD 0

0 Lq 0 0 0 kMQ

0 0 L0 0 0 0

kMf 0 0 Lf Md 0

kMD 0 0 Md LD 0

0 kMQ 0 0 0 LQ





id

iq

i0

if

iD

iQ


(2.18)

where k =
√

3/2 and the newly defined inductances are constants:

• Ld = Ls +Ms + (3/2)Lm

• Lq = Ls +Ms − (3/2)Lm

• L0 = Ls − 2Ms

The inductance matrix now only contain constants, i.e. no time dependency, which is the great
benefit of the Park transformation.

2.1.4 Voltage equations
With all flux linkages defined in the rotor reference frame in the previous section, it is now
possible to define expressions for the voltages in the machine.

Consider the schematic diagram in Figure 2.2. This schematic represents the wye-connected
three-phase machine. Additionally, the three rotor windings are illustrated as equivalent circuits.
Only the field winding has a voltage source, as the two damper windings are short-circuited.
Their voltages are both zero, vD = vQ = 0. The six windings are magnetically coupled, so
their respective voltage expressions must contain flux linkage components. The general voltage
expression would become:

v = −R · i− Ψ̇ (2.19)

13



2. Synchronous machine representation

Figure 2.2: Schematic of a wye-connected machine, including the three-phase stator windings and the
equivalent rotor windings: the field circuit and the d- and q-axis damper windings.

Applying Kirchhoff’s voltage law on Figure 2.2 gives the expression:



vA

vB

vC

−vf
0

0


= −



RA 0 0 0 0 0

0 RB 0 0 0 0

0 0 RC 0 0 0

0 0 0 Rf 0 0

0 0 0 0 RD 0

0 0 0 0 0 RQ





iA

iB

iC

if

iD

iQ


−



Ψ̇A

Ψ̇B

Ψ̇C

Ψ̇f

Ψ̇D

Ψ̇Q


(2.20)

or, in compact form:

 vABC
vfDQ

 = −

 RABC 0

0 RfDQ


 iABC
ifDQ

−
 Ψ̇ABC

Ψ̇fDQ

 (2.21)

It is again beneficial to transform the voltage expressions to the dq0 reference frame, because
of the time-varying flux linkages. Applying the Park transform to Equation 2.21, first on the
left-hand side:  P 0

0 I3


 vABC
vfDQ

 =

 vdq0

vfDQ

 (2.22)
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and for resistive voltage drop on the right-hand side: P 0

0 I3


 RABC 0

0 RfDQ


 iABC
ifDQ


=

 P 0

0 I3


 RABC 0

0 RfDQ


 P−1 0

0 I3


 P 0

0 I3


 iABC
ifDQ


=

 P ·RABC · P−1 0

0 RfDQ


 idq0

ifDQ


=

 RABC 0

0 RfDQ


 idq0

ifDQ



(2.23)

The last equality in Equation 2.23 is valid since RABC is a diagonal matrix consisting of the
three phase resistances, which have been assumed equal, RA = RB = RC = Rs. Lastly, the
Park transform is applied to the last term in Equation 2.21, the flux linkage matrix: P 0

0 I3


 Ψ̇ABC

Ψ̇fDQ

 =

 P · Ψ̇ABC

Ψ̇fDQ

 (2.24)

From Equation 2.12, Ψdq0 = P · ΨABC . Taking the derivative on both sides yields Ψ̇dq0 =
d
dt

(P ·ΨABC). From the product rule in standard calculus, the expression for the time derivative
of the dq0 flux linkages becomes:

Ψ̇dq0 = P Ψ̇ABC + Ṗ ΨABC (2.25)

Rearranging gives:
P Ψ̇ABC = Ψ̇dq0 − Ṗ ΨABC

= Ψ̇dq0 − Ṗ P−1 Ψdq0

(2.26)

From the definition of P in Equation 2.14, it can be shown that:

Ṗ P−1 Ψdq0 =


0 −ω 0

ω 0 0

0 0 0




Ψd

Ψq

Ψ0

 =


−ωΨq

ωΨd

0

 = S (2.27)

This term represents the voltages resulting from the variation in speed, also known as the speed
voltages. Now all the terms of Equation 2.21 have been transformed to the dq0 reference frame.
Recombining from Equations 2.22, 2.23 and 2.27, the voltage expression becomes: vdq0

vfDQ

 = −

 RABC 0

0 RfDQ


 idq0

ifDQ

+

 S
0

−
 Ψ̇dq0

Ψ̇fDQ

 (2.28)
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In a real power plant, the machine flux linkages are not easily available. Thus, it can be helpful
to express them as functions of inductances and currents, as current measurements are nor-
mally readily available. In the chosen transformation, all inductance values have become con-
stants. Therefore, the inductances can be extracted from the derivative flux linkage term, leaving
derivative currents, Ψ̇ = L i̇. Substituting Equation 2.18 into Equation 2.28 in expanded form
gives: 

vd

vq

v0

−vf
0

0


=−



Rs ωLq 0 0 0 ωkMq

−ωLd Rs 0 −ωkMf −ωkMD 0

0 0 Rs 0 0 0

0 0 0 Rf 0 0

0 0 0 0 RD 0

0 0 0 0 0 RQ





id

iq

i0

if

iD

iQ



−



Ld 0 0 kMf kMD 0

0 Lq 0 0 0 kMQ

0 0 L0 0 0 0

kMf 0 0 Lf Md 0

kMD 0 0 Md LD 0

0 kMQ 0 0 0 LQ





i̇d

i̇q

i̇0

i̇f

˙iD

˙iQ



(2.29)

In the inductance matrices in Equation 2.29 only ω is time-varying, which is a large improve-
ment over Equation 2.20, where nearly all inductances are time-varying.

2.1.5 Per-unit conversion
Until now, all parameters have been considered with real units, such as amperes and volts. How-
ever, when analysing the complete machine, this can be impractical as the values between the
stator and rotor may differ in orders of magnitude. Normalising the quantities to appropriate
base values may alleviate those challenges. From this point onward, a balanced system is as-
sumed. Consequently, iA + iB + iC = 0, and i0 = 0. Hence, the zero-sequence equations are
omitted in the following.

The stator base quantities are the simplest to define. They are commonly given by the machine’s
rated values.

• Base power, SB = The machine’s MVA rating per phase (Volt-amperes)

• Stator base voltage, VB = The machine’s rated line-to-neutral RMS terminal voltage
(Volts)

• Base speed, ωB = The machine’s rated speed (electrical rad/s)

From these definitions, the rest of the stator base quantities can be determined. The three
definitions above, along with Table 2.1, completely defines the stator base quantities.
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Symbol Description Relationship Unit

tB Base time tB = 1
ωB

s

IB Base current IB = SB

VB
A

ZB Base impedance ZB = VB
IB

Ω

LB Base inductance LB = VB tB
IB

= VB
IB ωB

H

ΨB Base flux linkage ΨB = VB tB = LB IB Vs

Table 2.1: Stator per-unit base quantities with their relation to each other

Any defined per-unit system is not unique, as there are several ways the base quantities can be
chosen. A common choice is a per-unit system based upon equal mutual flux linkages [37]. The
principle behind this system is that the base field (or d-axis) current is defined such that they
will produce the same fundamental air gap flux as the base current acting in the d-axis armature
winding. This will result in all mutual flux linkages in an axis being equal.

Each self-inductance quantity in Equation 2.18 can be split into a magnetising and leakage
inductance:

Ld = Lmd + ld LD = LmD + lD Lf = Lmf + lf

Lq = Lmq + lq LQ = LmQ + lQ
(2.30)

where lower-case l represents a leakage inductance and the subscript m denotes magnetising
quantities. Only the magnetising inductances contribute to the linking with other windings.
The constraint for this per-unit base is that the resulting mutual flux linkages must be equal,
which for Equation 2.18 means that:

Ψmd = Lmd IB = kMf IfB = kMD IDB

Ψmf = kMf IB = Lmf IfB = Md IDB

ΨmD = kMD IB = Md IfB = LmD IDB

Ψmq = Lmq IB = kMQ IQB

ΨmQ = kMQ IB = LmQ IQB

(2.31)

multiplying with the stator current base gives the fundemental constraint for the base cur-
rents,

Lmd I
2
B = Lmf I

2
fB = Lmd I

2
DB

= kMf IB IfB = kMD IB IDB = Md IfB IDB

Lmq I
2
B = kMQ IB IQB = LmQ I

2
QB

(2.32)

Recall that the dq0-transformation performed in the previous section was power invariant,
meaning the base power of all windings are equal. Along with the constraints above, this creates

17
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the outline for the rotor scaling factors:

VfB
VB

=
IB
IfB

=

√
Lmf
Lmd

=
kMf

Lmd
=
Lmf
kMf

=
Md

kMD

≡ kf

VDB
VB

=
IB
IDB

=

√
LmD
Lmd

=
kMD

Lmd
=
LmD
kMD

=
Md

kMf

≡ kD

VQB
VB

=
IB
IQB

=

√
LmQ
Lmq

=
kMQ

Lmq
=
LmQ
kMQ

≡ kQ

(2.33)

With these scaling factors, it is now possible to define the rotor base quantities. This is done in
Table 2.2.

Symbol Description Relationship Unit

ZfB Base field impedance ZfB = k2
f ZB Ω

ZDB Base d-axis damper impedance ZDB = k2
D ZB Ω

ZQB Base q-axis damper impedance ZQB = k2
Q ZB Ω

LfB Base field inductance LfB = k2
f LB H

LDB Base d-axis damper inductance LDB = k2
D LB H

LQB Base q-axis damper inductance LQB = k2
Q LB H

MfB Base field mutual inductance MfB = kf LB H

MDB Base d-axis damper mutual inductance MDB = kD LB H

MQB Base q-axis damper mutual inductance MQB = kQ LB H

MdB Base d-axis damper to field mutual inductance MdB = kf kD LB H

Table 2.2: Rotor per-unit base quantities with their relation to the stator bases

To prove that the choice of base quantities satisfy the desire for equal mutual inductances, the
relationships in Equation 2.33 and Table 2.2 can be combined to show that, in per-unit,

Lmd = Lmf = kMf = kMD = Lad

Lmq = LmQ = kMQ = Laq
(2.34)

It is common practice that the per-unit magnetising inductances are given the subscript a. Lastly,
substituting Equations 2.30 and 2.34 into Equation 2.29 gives:

18



2. Synchronous machine representation



vd

vq

v0

−vf
0

0


=−



Rs ω(Laq + lq) 0 0 0 ωLaq

−ω(Lad + ld) Rs 0 −ωLad −ωLad 0

0 0 Rs 0 0 0

0 0 0 Rf 0 0

0 0 0 0 RD 0

0 0 0 0 0 RQ





id

iq

i0

if

iD

iQ



−



Lad + ld 0 0 Lad Lad 0

0 Laq + lq 0 0 0 Laq

0 0 L0 0 0 0

Lad 0 0 Lad + lf Lad 0

Lad 0 0 Lad Lad + lD 0

0 Laq 0 0 0 Laq + lQ





i̇d

i̇q

i̇0

i̇f

˙iD

˙iQ



(2.35)

Equation 2.35 describes the behaviour of the synchronous machine voltages. Note that the
d- and q-axis stator leakage inductances are usually nearly equal, so it is fair to assume that
ld = lq.

2.1.6 Equivalent circuits for the dq-axes
The large number of equations and matrices in the previous sections may be somewhat con-
fusing, as they are on a highly theoretical basis. Therefore, a visual representation of the flux
relationships can be helpful.

Equation 2.30 shows how the winding self-inductances can be split into a magnetising and
leakage inductance, and Equation 2.34 states the magnetising inductances in each axis are equal.
Multiplying each with their respective winding current gives the magnetising flux linkages. This
relation can be written as:

Ψd − ld id = Ψf − lf if = ΨD − lD iD ≡ Ψad

Ψq − lq iq = ΨQ − lQ iQ ≡ Ψaq

(2.36)

where lower-case l denotes leakage inductances. Rearranging yields:

Ψad = (Ld − ld)id + Lmf if + LmD iD = Lad
(
id + if + iD

)
Ψaq = (Lq − lq)iq + LmQ iQ = Laq

(
iq + iQ

) (2.37)

Notice how all currents in an axis flow through a common inductance, Lad or Laq. Additionally,
an inductance must be added for each winding to represent the leakage. These must be in series
with the magnetising inductance (L = La + l), but not in series with each other. Thus, three
branches must be added to the d-axis (d, f and D) and two to the q-axis (q and Q). The voltage
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equations from Equation 2.28 can be written as:

vd = −Rs id − Ψ̇d − ωΨq

= −Rs id − ld i̇d − Lad(i̇d + i̇f + ˙iD)− ωΨq

(2.38)

Similarly, for the remaining voltage equations, rewriting gives:

−vf = −Rf if − lf i̇f − Lad(i̇d + i̇f + ˙iD)

vD = 0 = −RD iD − lD ˙iD − Lad(i̇d + i̇f + ˙iD)

vq = −Rs iq − lq i̇q − Laq(i̇q + ˙iQ) + ωΨq

vQ = 0 = −RQ iQ − lQ ˙iQ − Laq(i̇q + ˙iQ)

(2.39)

Equations 2.37 to 2.39 lay the foundation for the equivalent diagrams. Making the stator volt-
ages vd and vq open outputs and representing vf and the speed voltage terms as controlled
voltage sources, the d- and q-axis equivalent circuits can be drawn as in Figures 2.3 and 2.4
respectively.

Figure 2.3: d-axis equivalent circuit of a synchronous machine with one d-axis damper circuit

Figure 2.4: q-axis equivalent circuit of a synchronous machine with one q-axis damper circuit

Notice the current directions in the circuits. This section adopts the current convention in [36]
and [37]. However, some textbooks, such as [35], applies a current convention such that Equa-
tion 2.37 rather becomes:

Ψad = Lad(id − if − ID)

Ψdq = Laq(iq − iQ)
(2.40)
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This difference comes from the chosen unit conventions. In the convention applied in [35] the
positive field current direction is chosen to go out of the machine. However, this is not the case
for the convention used here. Instead, in Equation 2.35, a negative sign has been given to vf .
Thus, the result becomes the same. This fact is pointed out to highlight the importance of sign
conventions. Both describe identical machines and behaviour while using different positive
current directions. Consequently, it is important to be aware when doing machine analysis
which convention is used.

2.1.7 Mechanical equations
In the previous sections the electrical model of the machine has been described. To get a com-
plete picture of the machine behaviour it is also necessary to describe the mechanical dynamics.
Whether the rotor angle is constant, increasing or decreasing depends on a balance of torques.
In generator operation the generator shaft is accelerated by a turbine. The driving torque from
the turbine is called the mechanical torque and is denoted Tm. An opposing torque is created
from the loading of the generator and is called the electromagnetic or electrical torque, denoted
by Te. The balance between these torques determines the rotor angle acceleration. Thus, their
difference is commonly referred to as the accelerating torque,

Ta = Tm − Te (2.41)

This convention implies that a positive mechanical torque accelerates the rotor, while a pos-
itive electrical torque decelerates it. This is a realistic description of the torque relationship.
Since Ta describes the rotor acceleration it is possible to express it as the derivative of machine
speed,

J δ̈m = J ω̇m = Ta = Tm − Te (2.42)

where J is the moment of inertia of the generator shaft and turbine, δm is the mechanical torque
angle and ωm is the rotor’s mechanical angular velocity. It is common to normalise this equation
by introducing the per-unit inertia constant H , which is defined by:

H =
1

2

J ω2
mR

SB

⇒ J =
2H

ω2
mR

SB

(2.43)

where ωmR is the rated mechanical angular velocity and SB is the base power. Substituting
Equation 2.42 into Equation 2.43 and rearranging yields:

2H

ω2
mR

SB ω̇m = Tm − Te

⇒ 2H
ω̇m
ωmR

=
Tm − Te

SB

ωmR

⇒ 2H ω̇r = Tm,pu − Te,pu

(2.44)

where ωr is the per-unit angular velocity. Note that the per-unit mechanical speed is equal to
the per-unit electrical speed, as they are divided by their respective bases. Sometimes, an extra
term accounting for the damping torque component is added. This is implemented as a damping
coefficient KD multiplied with the speed deviation,

2H ω̇r = Tm,pu − Te,pu −KD ∆ωr (2.45)
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This is a well-known equation referred to as the swing equation. It can also be expressed in
terms of the rotor angle:

2H

ωB
δ̈ = Tm,pu − Te,pu −

KD

ωB
δ̇ (2.46)

It was stated that the electrical torque comes from the loading of the generator. Still, it is useful
to have a mathematical description of it. The Park transformation in Section 2.1.3 was said to
be power invariant, expressed by Equation 2.15. Thus, under balanced conditions,

Pout = vd id + vq iq (2.47)

Substituting the voltages from Equation 2.28,

Pout =
(
id Ψ̇d + iq Ψ̇q

)
+
(
iq Ψd − idΨq

)
ω −Rs

(
i2d + i2q

)
(2.48)

From rotational physics, the work done by a small rotation is given by dW = T dθ, where T
is a torque and θ is the rotation angle. Taking the time derivative on both sides yields dP =
T dω, where P is a power and ω is the rotational speed. Rearranging and substituting from
Equation 2.48 gives:

Te =
dP

dω
=

d

dω

[(
id Ψ̇d + iq Ψ̇q

)
+
(
iq Ψd − idΨq

)
ω −Rs

(
i2d + i2q

)]
=iq Ψd − idΨq

(2.49)

2.2 The excitation system
The main actuator of the synchronous machine is the excitation system controller. It controls
the field voltage to regulate the terminal voltage and reactive power delivery. Its performance
is of great importance to the machine’s stability. There are three main components to the exci-
tation system: the exciter, AVR and PSS, see Figure 2.5 [35]. This subsection will give a brief
introduction to each of those components.

In Norway, there are specific guidelines for how excitation systems should be designed based
on the generator rating and application area. These are published by Statnett, which is the
transmission system operator (TSO) in Norway. The current guideline for Norwegian power
systems is called FIKS 2012 [40]. However, in 2020 it is to be revised. The new guideline will
be called NVF 2020 and is under hearing at the time of writing [41].

2.2.1 The exciter
The exciter has the purpose of providing the field current to the rotor windings, such to create
the magnetising field for the synchronous machine. There are mainly three types of exciters:
the AC, DC and static exciters. In the new guidelines NVF 2020 it is recommended that all
generators rated 30 MW or higher have static excitation, whereas in FIKS 2012 it was 25 MVA
or higher. Thus, static excitation is most common. Several reliable sources describe AC and
DC type exciters in detail [35, 42], so these will not be discussed further here.

One of the most popular types of static exciters is the potential source-fed system, see Fig-
ure 2.6 [1, 42], where the generator terminals are the power source for the exciter. The AC
terminal voltage is transformed down to the required level and rectified through a thyristor rec-
tifier (SCR). This works well for machines connected to large systems, as excitation power can
be provided from external sources during a short-circuit. [1].
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Figure 2.5: Principle block diagram of an excitation system, showing its feedback loops and information
transfer

Figure 2.6: Block diagram of a potential-source static excitation system

2.2.2 The automatic voltage regulator
The automatic voltage regulator (AVR) is the main controller of the excitation system. Its
responsibility is to observe machine terminal voltage changes and respond accordingly by ad-
justing the field voltage. There have been developed guidelines for modelling of AVRs and their
associated components for different applications. The Institute of Electrical and Electronics En-
gineers (IEEE) has published recommended practices for excitation system modelling [43]. For
example, a potential-source fed static excitation system with a PI regulator type AVR can be
categorised as an ST7C model.

2.2.2.1 Inputs and outputs

The AVR typically has four inputs:

• The control or compensated voltage Vc. This is the measurement of the terminal voltage.
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It is not uncommon that the control voltage is compensated to a certain electrical distance
away from the machine terminals. This compensation is the job of the load compen-
sator in Figure 2.5. An electrical distance of around 0.8 times the step-up transformer’s
reactance is not uncommon [36].

• The reference voltage Vref . This is the voltage the AVR strives to keep the control voltage
at.

• Terminal voltage Vt. Even if the terminal voltage is not used as the control voltage, it may
be used for limiting purposes as a base value for per-unit conversion.

• PSS contribution Vpss. This additional signal from the power system stabiliser aims to in-
crease the damping of oscillatory behaviour in the rotor angle. The PSS will be described
in Section 2.2.3.

The AVR generally only has a single output. Technically, the output is the pulse train to the
thyristor rectifier. However, for modelling purposes, the rectifier can be considered a simple
transfer function, and the AVR is said to have the generator field voltage as output. [1]

2.2.2.2 Limiters

In real systems, the machine windings cannot be exposed to overly high currents for too long,
as they will get damaged. Therefore, some limiters are implemented into the AVR. There are
mainly four limiters:

• The overexcitation limiter (OEL) limits the maximum field current to the machine rotor
windings according to their thermal capabilities. Still, the OEL allows for some overcur-
rent to flow for an amount of time such that a high field forcing during disturbances is
still possible. If the overexcitation lasts too long, the OEL starts to limit the field current
to safe levels. [1, 43].

• The underexcitation limiter (UEL) ensures the machine does not become too under-
excited. If this occurs, the machine may lose synchronism or associated loss-of-excitation
relays may trip.

• The stator current limiter (SCL) protect the stator winding from overcurrents by limiting
the field voltage. Since the SCL uses the excitation level to adjust the stator current, it only
affects the reactive power flow. Thus, the correct control action to do when the machine
is overexcited (capacitive operation) is to reduce the excitation and increase excitation
when the machine is underexcited (inductive operation) [1, 43].

• The field voltage limiter limits the output of the AVR to avoid damaging the field wind-
ings. This limiter is what determines the field ceiling voltage.

2.2.2.3 The AVR and stability

Consider the generator-infinite bus system in Figure 2.7 [1]. Assuming the internal emf Eq is
constant and Xd = Xq, the air-gap power delivered by the machine is given by:

Pe =
Eq Vs
xd

sin(δ) (2.50)
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where,

• Pe = The delivered air-gap power of the generator

• Eq = The internal induced voltage of the machine

• Vs = The voltage level at the infinite bus

• xd = Xd + Xt + Xs The sum of the synchronous, transformer and network equivalent
reactances

• δ = Power angle of the generator

AVR
Vref

Vt

Field Generator

Vs

Infinite

bus

Eq

Figure 2.7: Line diagram of a generator-infinite bus system. The field voltage is determined by the AVR,
which uses the terminal voltage to calculate the error from the reference. [1]

Eq being constant implies that there is no AVR action and the system is unregulated. The peak
air-gap power occurs at δ = π

2
. If the load angle increases any further it will result in unstable

operation, as further increases in load will result in a decrease in power delivery, see the blue
curve in Figure 2.8.

When introducing an AVR the regulator will strive to keep the control voltage constant by
adjusting the field current. In a steady-state condition, the power-angle characteristic may look
the same as for the unregulated one. However, if a load increase occurs, the stator current will
increase, resulting in a larger voltage drop across the internal reactance of the machine. Thus,
the terminal voltage will drop. This will be detected by the AVR which will work to increase the
generator’s excitation level. When that happens a new, higher power-angle characteristic will
be valid. This sequence of events will repeat at further load increases, and reversely so for load
decreases. Consequently, the total power-angle curve for a regulated machine will have a shape
like the red curve in Figure 2.8 [1, 36]. The regulated power-angle curve is derived from:

Pe =
Vs
xd
sin(δ)

√(xdVt
X

)2

−
(Xd

X
Vssin(δ)

)2

− 1

2

Xd

X

V 2
s

xd
sin(2δ) (2.51)

where,

• Pe = The delivered air-gap power of the generator

• Eq = The internal induced voltage

• Vt = Generator terminal voltage

• Vs = The voltage level at the infinite bus
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• X = Xt +Xs = The sum of transformer and network equivalent reactances

• xd = Xd + X = The sum of the synchronous, transformer and network equivalent reac-
tances

• δ = Power angle of the generator

An AVR will notably increase the amount of power the machine can deliver. The new maximum
load angle δm is higher than for the unregulated curve. This means that when a large disturbance
happens, like a fault or a line disconnection, the generator has a much higher stability limit and
de-acceleration area. Thus, the inclusion of an AVR significantly increases the synchronising
torque, and consequently the transient stability of the generator.

Even though the effects of an AVR have positive implications for transient stability, it can be
shown that the AVR may introduce negative damping and decrease oscillatory stability. After a
disturbance, the generator may keep synchronism after the first rotor swing yet become unstable
in an oscillatory fashion after a few swings. The prominence of this negative damping is de-
pendent on factors as generator load, AVR gain and network reactance. A large value in any of
these enhances the negative damping [36]. Compensating for the negative damping commonly
involves introducing an additional control loop to the AVR, called a power system stabiliser.
[1]

Figure 2.8: Air-gap power for both an unregulated and regulated system. This shows that a regulated
system (with AVR) has a higher stability limit than an unregulated system (without AVR).

2.2.3 The power system stabiliser
The power system stabiliser (PSS) has the main purpose of counteracting oscillatory behaviour
in the rotor angle. It is designed to damp low-frequency oscillations in the range of 0.2 to 3 Hz
by adding a signal to the AVR with opposing phase [43, 44]. From 2020, it is recommended
that all Norwegian generators rated 30 MW or higher should have a PSS installed [41].
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The PSS has dominantly been designed as a transfer function. Various models have been sug-
gested by IEEE’s recommended practices [43], the most common model being a simplified
version of the PSS1A type PSS. This type can be seen in Figure 2.9 and is commonly known as
a conventional PSS (CPSS).

Figure 2.9: Block diagram of a conventional PSS with two lead/lag stages

The three components of the CPSS model is the PSS gain, a wash-out (high-pass) filter to
eliminate any offset of the voltage regulation in steady-state and one or more lead/lag stages to
shape the phase response of the stabiliser [1, 45]. At the output of the PSS, there is commonly
a limiter, such not to overtake the AVR action and to prevent overly large excitation. An upper
limit in the range 0.1 to 0.2 pu and lower limit -0.05 to -0.1 pu are appropriate [35].

It is beyond the scope of this thesis to go into detail about the calculation behind tuning each
type of PSS for different inputs. However, some good explanations of the different types and
simple examples can be found in chapters 12.5 and 17.2.1 in [35]. Also, in [45], chapter 8 goes
into detail of PSS performances with different input quantities. Chapters 5, 6 and 9 in the same
reference goes in great detail of the system modelling and how the PSS parameters can be tuned
accordingly. Chapter 5.5 in [46] describes three common ways of designing a PSS using either
a damping torque, frequency response or eigenvalue approach.

This type of PSS, which uses a gain and lead-lag structure, is typically tuned before it is set into
operation and subsequently left alone. There is rarely any great effort put into optimising their
parameters. Rather, they are often tuned with the philosophy of "an adequately tuned PSS is
better than no PSS." While this statement is true, there are clear advantages to optimising the
tuning. [1]

2.3 Simplified linear model for stability assessment

In the previous sections, the complete electrical behaviour of the machine was derived. How-
ever, for many stability studies, this level of complexity may be unnecessary. Particularly in
small-signal stability analysis, in which the PSS tuning problem lies, simplified models are
commonplace. This section will derive a model of the synchronous machine that is appropriate
for small-signal stability and show how this model can be linearised for stability analysis. The
procedure described in this section is mainly inspired by chapters 6.1 and 6.5 in [37].

2.3.1 Linearisation
Many dynamic systems, including synchronous machines, are non-linear. This means that
their behaviour cannot be represented by a linear system of equations. Typical occurrences
of non-linearities in models are product non-linearities, trigonometric functions and saturation
effects.
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Linearisation assumes disturbances that are so small that they perturb the state variables only
slightly. After the disturbance, the system will experience oscillatory behaviour before it settles
on a new operating point. The new operating point should be near the pre-disturbance operating
point. If these requirements are met the system is said to be linearised about the operating
point. In other words, the system equations are approximated to a first-order system, valid near
the operating point.

To linearise an equation, determine which parameters of the equation are non-changing and
which are perturbed. The perturbed parameters are state variables or can be expressed by a
linear combination of state variables.

As was mentioned, the perturbation of the state variables is said to be small. A common notation
is to use the letter ∆ to signify a change. A perturbation in a state variable can be written as xi0+
xi∆, where the variable xi initiates at xi0 and moves by xi∆, which represents a small change.
The initial values, denoted by a subscript 0, are known values and treated as constants.

Product non-linearities are solved by first-order approximations. Let the product between two
state variables is xixj . A perturbation occurs, and both states deviate from their operating point
by a small amount. The new operating point becomes:

(xi0 + xi∆)(xj0 + xj∆) = xi0xj0 + xi0xj∆ + xj0xi∆ + xi∆xj∆ (2.52)

Notice how the last term is a second-order term. Since both perturbations are small, their
product is assumed to be negligible, hence the name first-order approximation,

(xi0 + xi∆)(xj0 + xj∆) ≈ xi0xj0 + xi0xj∆ + xj0xi∆ (2.53)

Trigonometric non-linearities, where state variables are angles, are treated with simple approx-
imations. Let a perturbation in the state cos(δ) be given by cos(δ0 + δ∆). A well known
trigonometric identity gives:

cos(δ0 + δ∆) = cos(δ0) cos(δ∆)− sin(δ0) sin(δ∆) (2.54)

Since the angle perturbation is small, sin(δ∆) ≈ δ∆ and cos(δ∆) ≈ 1. A change in cos(δ) is
therefore given by:

cos(δ0 + δ∆)− cos(δ0) ≈ −sin(δ0) δ∆ (2.55)

Similarly, for a perturbation in sin(δ):

sin(δ0 + δ∆)− sin(δ0) ≈ cos(δ0) δ∆ (2.56)

Thus, a change in cos(δ) is given by −sin(δ0) δ∆, and a change in sin(δ) is given by
cos(δ0) δ∆.

Saturation effects represent large non-linearities, no less so for synchronous machines. How-
ever, for small disturbances, the saturation in the machine is usually neglected. This is because
the implications of the disturbance are said to be so small that saturation does not occur to any
great effect. This may lead to great inaccuracies in some studies, but is an acceptable approxi-
mation in such small-disturbance analyses.
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2.3.2 Linearised synchronous machine model

When the machine behaviour during a disturbance is to be analysed, it is necessary to implement
a model of the connected power system. However, the power system is vast and may have
hundreds of connected components. Thus, deriving a detailed model is highly impractical.
For the analysis of a single machine, a much simpler model is sufficient. In this section, a
machine connected to an infinite bus through a transmission line is considered, as illustrated in
Figure 2.10. The figure only shows phase A of the machine, assuming no coupling between
stator phases.

+

-

Xd

+

-

Re Xe

Eq Vinf

Machine Transmission line

~ ~VA

IA

αδ’

Figure 2.10: Equivalent circuit of a machine connected to an infinite bus through a transmission line

The main assumptions the linear model is based upon are:

• The effects of damper windings are negligible

• The stator winding resistance Rs is negligible

• The Ψ̇ voltage terms are negligible compared to the speed voltage terms ωΨ

• The speed voltage terms ωΨ are approximately equal to ωRΨ

• The system is balanced, i.e. i0 = 0

• All saturation effects are negligible

2.3.2.1 emf equation

Firstly, it is helpful to determine expressions for the machine internal voltages. In the litera-
ture [35, 37], the following emfs are commonly defined1:

1The exact symbols, subscripts and definitions of these emfs vary somewhat in the literature. Here, the emf
notation follows that of [35], but their definition follows that of [37], where the

√
3 is included. This difference

originates in the authors’ different choices of k in the dq0-transformation.
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EI = ωR Lad√
3

if = emf proportional to the field current if

E
′
q = ωR Lad√

3 Lf
Ψf = emf proportional to field flux linkage Ψf

Efd = ωR Lad√
3Rf

vf = emf proportional to the field voltage vf

The field winding flux linkage expression from Equation 2.18 is:

Ψf = Lad id + Lf if (2.57)

Multiplying by (ωR Lad)/(
√

3 Lf ) on both sides,

Ψf
ωR Lad√

3 Lf
= Lad id

ωR Lad√
3 Lf

+ Lf if
ωR Lad√

3 Lf

⇒ E
′

q =
ωR L

2
ad

Lf
Id + EI

(2.58)

where Id = id/
√

3. From the definition of the transient d-axis inductance [35], it can be shown
that,

L
′

d = ld +
Lad lf
Lad + lf

= (Ld − Lad) +
Lad lf
Lad + lf

= Ld −
L2
ad

Lf

⇒ L2
ad

Lf
= Ld − L

′

d

(2.59)

Combining Equations 2.58 and 2.59 results in:

E
′

q = EI + ωR
(
Ld − L

′

d

)
Id =

ωR Lad√
3

if + ωR
(
Ld − L

′

d

)
Id (2.60)

This equation is notably linear, where E ′
q, if and Id are state variables. A perturbed version

would be:
E

′

q∆ =
ωR Lad√

3
if∆ + ωR

(
Ld − L

′

d

)
Id∆ (2.61)

Next is to define the emf Efd. From Equation 2.28 and the assumptions made, the field voltage
expression is:

Ψ̇f = vf −Rf if (2.62)

Multiplying by (ωR Lad)/(
√

3 Lf ) on both sides,

d

dt

(ωR Lad√
3 Lf

Ψf

)
=
ωR Lad√

3 Lf

Rf

Rf

vf −
ωR Rf√

3 Lf
Lad if

⇒ Ė
′

q =
1

T
′
d0

(
Efd − EI

) (2.63)

where T ′

d0 = Lf/Rf is the machine open-circuit transient time constant [35]. Rearranging,
denoting the derivative in the s-domain and inserting from Equation 2.60 yields:

Efd = T
′

d0 E
′

q s+ EI = T
′

d0 E
′

q s+ E
′

q −
(
Xd −X

′

d

)
Id

⇒ Efd =
(
1 + T

′

d0 s
)
E

′

q −
(
Xd −X

′

d

)
Id

(2.64)
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Note that X = ωR L and s is the Laplace transform variable. The above equation is linear, with
Efd, E

′
q and Id as state variables. A perturbed version would be:

Efd∆ =
(
1 + T

′

d0 s
)
E

′

q∆ −
(
Xd −X

′

d

)
Id∆ (2.65)

Next, the linearised voltages at infinite bus loading are needed. Inspection of Figure 2.10 gives
the voltage relation:

vA = vinf,A +Re iA + Le ˙iA (2.66)

Applying the same relation to all three phases and using matrix notation:

vABC = vinf,ABC +Re iABC + Le i̇ABC (2.67)

where resistances and inductances are assumed equal across the transmission line phases.
vinf,ABC is assumed to be a set of balanced peak voltages. Applying the Park transformation
from Equation 2.14 to Equation 2.67, with zero-sequence omitted, gives:

vdq = vinf,dq +Re idq + Le P i̇ABC (2.68)

It is possible to show [37], that through manipulation of trigonometric identities, the dq-voltages
at the infinite bus can be written as:

vinf,dq = P vinf,ABC =
√

3 Vinf

−sin(δ − α)

cos(δ − α)

 (2.69)

where Vinf is the magnitude of the RMS phase-neutral voltage. Similarly to Equation 2.27,

P i̇ABC = i̇dq − Ṗ P−1 idq = i̇dq − ω

−iq
id

 (2.70)

However, the assumptions made for the linear model states that this speed voltage term can be
approximated to rated speed, so ω = ωR. Moreover, the derivative current term in Equation 2.70
is neglected. Including the voltage expression from Equation 2.35, the voltage equations be-
come:  vd

vq

 =

 −ωR Lq iq
ωR Ld id + ωR kMf if


=
√

3 Vinf

 −sin(δ − α)

cos(δ − α)

+Re

 id

iq

− ωR Le
 −iq

id


(2.71)

Now it possible to linearise. Following the linearisation procedure described in Section 2.3.1,
Equation 2.71 can be linearised about its operating point. For now, id, iq, if and δ will be treated
as perturbed state variables. Also, recall that X = ωR L and I = i/

√
3. The linearised voltage

equations become:

0 = −Re Id∆ −
(
Xq +Xe

)
Iq∆ +

[
Vinf cos(δ0 − α)

]
δ∆

0 = −Re Iq∆ +
(
Xd +Xe

)
Id∆ +

ωR kMf√
3

if∆ +
[
Vinf sin(δ0 − α)

]
δ∆

(2.72)
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2. Synchronous machine representation

Inserting Equation 2.61 into Equation 2.72 and rearranging gives:

Re Id∆ +
(
Xq +Xe

)
Iq∆ =

[
Vinf cos(δ0 − α)

]
δ∆

Re Iq∆ −
(
X

′

d +Xe

)
Id∆ = E

′

q +
[
Vinf sin(δ0 − α)

]
δ∆

(2.73)

Equation 2.73 can be treated as a system of equations, where Id∆ and Iq∆ are the variables to
be solved for. Solving the set of equations and expressing the solution in matrix form,Id∆

Iq∆

 = Kl

 −(Xe +Xq) Re cos(δ0 − α)−
(
Xq +Xe

)
sin(δ0 − α)

Re

(
X

′

d +Xe

)
cos(δ0 − α) +Re sin(δ0 − α)


 E

′
q∆

Vinf δ∆


(2.74)

where the scaling factor Kl is defined by:

Kl =
1

R2
e + (Xq +Xe)(X

′
d +Xe)

(2.75)

The expression for Id∆ can be substituted into Equation 2.65, giving:

Efd∆ =
( 1

K3

+ T
′

d0 s
)
E

′

q∆ +K4 δ∆ (2.76)

where the K-factors are defined as:

K3 =
1

1 +Kl

(
Xd −X

′
d

)(
Xq +Xe

)
K4 = Vinf Kl

(
Xd −X

′

d

)[(
Xq +Xe

)
sin(δ0 − α)−Re cos(δ0 − α)

] (2.77)

Subsequently, combining Equations 2.76 and 2.77 and keeping in the s-domain, the impact on
E

′
q∆ by changes in Efd∆ and δ∆ is given by:

E
′

q∆ =
K3

1 +K3 T
′
d0 s

Efd∆ −
K3 K4

1 +K3 T
′
d0 s

δ∆ (2.78)

2.3.2.2 Torque equation

With the chosen per-unit system the (per-unit) electrical torque is numerically equal to the three-
phase power,

Te =
1

3

(
vd id + vq iq

)
= Vd Id + Vq Iq (2.79)

From Equation 2.35, the assumptions made initially and by inserting from Equation 2.60,

Vd = −Xq Iq

Vq = Xd Id +
ωR Lad√

3
if = X

′

d Id + E
′

q

(2.80)

The simplified electrical torque expression can therefore be rearranged to:

Te =
[
E

′

q − (Xq −X
′

d) Id
]
Iq (2.81)
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This equation can be linearised using the procedure described in Section 2.3.1. The linearised
equation becomes:

Te∆ = Iq0 E
′

q∆ +
[
E

′

q0 − (Xq −X
′

d) Id0

]
Iq∆ −

(
Xq −X

′

d

)
Iq0 Id∆

= Iq0 E
′

q∆ + Eqa0 Iq∆ −
(
Xq −X

′

d

)
Iq0 Id∆

(2.82)

where Eqa0 and E ′
q0 have been defined as:

Eqa0 = E
′

q0 −
(
Xq −X

′

d

)
Id0 and,

E
′

q0 = Vq0 −Xd Id0

(2.83)

Now, substituting the currents calculated in Equation 2.74 into Equation 2.82 it is possible to
write:

Te∆ = K1 δ∆ +K2 E
′

q∆ (2.84)

where the new K-constants are defined as:

K1 =Kl Vinf

[
Eqa0

(
Re sin(δ0 − α) + (X

′

d +Xe) cos(δ0 − α)
)

+ Iq0(Xq −X
′

d)
(
(Xq +Xe) sin(δ0 − α)−Re cos(δ0 − α)

)]
K2 =Kl

[
Iq0
(
R2
e + (Xq +Xe)

2
)

+ Eqa0 Re

] (2.85)

The swing equation is given in Equation 2.46. It can be linearised by two first-order equa-
tions:

2H ω̇∆ = Tm∆ − Te∆ −KD δ̇∆ = Tm∆ −K1 δ∆ +K2 E
′

q∆ −KD ω∆

δ̇∆ = ωR ω∆

(2.86)

where all terms are in per-unit except δ∆, which is in electrical radians.

2.3.2.3 Terminal voltage equation

When later introducing the voltage regulator to the linear model, it is necessary to have the
terminal voltage calculated such that the AVR gets a proper input. The terminal voltage is given
by:

V 2
tk = V 2

d + V 2
q (2.87)

Using the linearisation steps described in Section 2.3.1, it is possible to show that the terminal
voltage can be linearised to:

Vtk∆ =
Vd0

Vt0
Vd∆ +

Vq0
Vt0

Vq∆ (2.88)

Substituting from Equation 2.80 gives:

Vtk∆ = −Vd0

Vt0
Xq Iq∆ +

Vq0
Vt0

(
X

′

d Id∆ + E
′

q∆

)
(2.89)

Lastly, substituting for the currents calculated in Equation 2.74 gives the linearised terminal
voltage:

Vtk∆ = K5 δ∆ +K6 E
′

q∆ (2.90)
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Where the two new K-constants are defined as:

K5 =
Kl Vinf X

′

d Vq0
Vt0

[
Re cos(δ0 − α)−

(
Xq +Xe

)
sin(δ0 − α)

]
− Kl Vinf Xq Vd0

Vt0

[
Re sin(δ0 − α) +

(
X

′

d +Xe

)
cos(δ0 − α)

]
K6 =

Vq0
Vt0

[
1−Kl X

′

d

(
Xq +Xe

)]
− Vd0

Vt0
Kl Xq Re

(2.91)

The linear terminal voltage has here been given a subscript k. This is because this voltage is
not a state variable, as it can be defined explicitly as a function of other state variables. The
state variable Vt is created when inserting the voltage transducer at the machine terminals. The
transducer is usually represented as a simple lag function, sometimes with a small gain,

Vt∆ =
Kr

1 + Tr s
Vtk∆ =

Kr

1 + Tr s

(
K5 δ∆ +K6 E

′

q∆

)
(2.92)

with Kr being the transducer gain and Tr its time constant.

2.3.2.4 AVR and PSS equations

The last part of the system that has not been linearised is the excitation system control. In this
simplified linear model, the AVR is considered a constant gain, such that:

Efd = Verror Ka (2.93)

whereKa is the AVR gain and Verror = Vref−Vt+vpss. Linearising and expanding yields:

Efd∆ = Ka Vref∆ −Ka Vt∆ +Ka vpss∆ (2.94)

The PSS will be represented as a conventional PSS, as in Figure 2.9, with just a single lead/lag
stage. The wash-out filter and the lead/lag stage both increase the order of the system by one,
such that two new state variables must be defined. They are:

• v1 - At the output of the wash-out filter

• vpss - At the output of the lead/lag block, which is the PSS output

The linearised equations for the PSS then become:

v1∆ =
s Tw

1 + s Tw
Kpss ω∆

vpss∆ =
1 + s T1

1 + s T2

v1∆

(2.95)

2.3.3 State-space representation
The idea behind the state-space representation is that a dynamic system may be represented by
a system with a finite number of first order ordinary differential equations (ODE) [35]. This is
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2. Synchronous machine representation

very useful for stability analysis of dynamic systems. For linearised models, the general form
of a state-space representation is,

ẋ∆ = A x∆ +B u∆

y∆ = C x∆ +D u∆

(2.96)

where,

• x∆ is the vector of perturbed state variables

• u∆ is the vector of perturbed system inputs

• y∆ is the vector of system outputs

• A is the state matrix, giving the state variables’ impact on themselves and each other
when perturbed

• B is the input matrix, giving the inputs’ impact on the state variables when perturbed

• C is the output matrix, giving the state variables’ impact on the output y when perturbed.
Often a state variable is an output. Its corresponding element in C will then be 1.

• D is the input feedforward matrix, giving the inputs’ direct impact on the output when
perturbed.

For analysing the stability of a linear system, the state matrixA contains all needed information,
as the eigenvalues of A represent the modes of the system.

The previous subsection defined all the linearised state variables and their expressions. The
model ended up as a sixth-order model, where the state variables are:

• ω∆ - Speed deviation of the rotor

• δ∆ - Angle deviation of the rotor

• E ′
q∆ - Internal emf of the machine

• Vt∆ - Terminal voltage

• v1∆ - PSS wash-out filter output

• vpss∆ - PSS output

with the inputs,

• Vref - Reference voltage for the AVR

• Pm - Mechanical torque from the turbine system

To achieve a state-space representation the state variables must be represented as first-order
differential equations that are functions of other state variables and inputs.

2.3.3.1 Speed and angle deviation

The equation for the linear speed deviation is given in Equation 2.86 and rearranges to:

ω̇∆ =
1

2H
(Tm∆ −K1 δ∆ +K2 E

′

q∆ −KD ω∆) (2.97)
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This equation is already in a first-order ODE form, so no more work needs to be done for it.
Replacing with state matrix notation (the a-coefficients will be stated explicitly later),

ω̇∆ = a11 ω∆ + a12 δ∆ + a13 E
′

q∆ + b11 Tm∆ (2.98)

The same goes for the angle deviation, also given in Equation 2.86,

δ̇∆ =ωR ω∆

⇒ δ̇∆ =a21 ω∆

(2.99)

2.3.3.2 Internal emf

The linear internal emf is given by Equation 2.78. In block diagram form it can be represented
as in Figure 2.11, where Ve∆ = Efd∆ −K4 δ∆ is the input of the field dynamics block.

Figure 2.11: Block diagram for the internal emf transfer function. The input is the AVR output subtracted
by the load-angle feedback loop, and its output is the internal emf of the machine.

The input can be expressed as:

Ve∆ = E
′

q∆

1

K3

(1 +K3 T
′

d0 s) (2.100)

It is desired to express the internal emf as a first-order equation. Recalling that s is the Laplace
transform variable and represents a time derivative, the following can be derived:

Ve∆ =
1

K3

E
′

q∆ + T
′

d0 Ė
′

q∆

⇒ Ė
′

q∆ =
1

T
′
d0

Efd∆ −
K4

T
′
d0

δ∆ −
1

K3 T
′
d0

E
′

q∆

(2.101)

Substituting Efd∆ from Equation 2.94,

Ė
′

q∆ =
Ka

T
′
d0

Vref∆ −
Ka

T
′
d0

Vt∆ +
Ka

T
′
d0

vpss∆ −
K4

T
′
d0

δ∆ −
1

K3 T
′
d0

E
′

q∆ (2.102)

Now the expression of the internal emf is in the desired form, as it is a first-order ODE with
respect to only state variables and inputs. Replacing with state matrix notation,

Ė
′

q∆ = a32 δ∆ + a33 E
′

q∆ + a34 Vt∆ + a36 vpss + b32 Vref∆ (2.103)

2.3.3.3 Terminal voltage

The linear terminal voltage is given by Equation 2.92, and can be represented as in Fig-
ure 2.12.
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Figure 2.12: Block diagram for the terminal voltage transducer transfer function. The input is the
calculated terminal voltage, and the output is the measured voltage with a time delay.

Similarly to Equation 2.100, the first-order equation can be found by deriving:

Vtk∆ =Vt∆
1

Kr

(
1 + Tr s

)
=

1

Kr

Vt∆ +
Tr
Kr

V̇t∆

⇒ V̇t∆ =
Kr

Tr

[
Vtk∆ −

1

Kr

Vt∆
]

=
Kr

Tr

[
K5 δ∆ +K6 E

′

q∆ −
1

Kr

Vt∆
]

⇒ V̇t∆ =
Kr K5

Tr
δ∆ +

Kr K6

Tr
E

′

q∆ −
1

Tr
Vt∆

(2.104)

Replacing with state matrix notation,

V̇t∆ = a42 δ∆ + a43 E
′

q∆ + a44 Vt∆ (2.105)

2.3.3.4 PSS internal voltage v1

The linear expression for the voltage v1 is given in Equation 2.95 and represents the effect of
the wash-out filter. The filter has a block diagram as shown in Figure 2.9. The input ω∆ can be
expressed as:

ω∆ =
1

Kpss

1 + s Tw
s Tw

v1∆ =
1

Kpss

( 1

s Tw
v1∆ + v1∆

)
(2.106)

Multiplying throughout with s Tw,

Tw ω̇∆ =
1

Kpss

v1∆ +
Tw
Kpss

v̇1∆

⇒ v̇1∆ =− 1

Tw
v1∆ +Kpss ω̇∆

(2.107)

Substituting from Equation 2.98,

v̇1∆ = − 1

Tw
v1∆ +Kpss

[
a11 ω∆ + a12 δ∆ + a13 E

′

q∆ + b11 Tm∆

]
(2.108)

Expanding and replacing with state matrix notation,

v̇1∆ = a51 ω∆ + a52 δ∆ + a53 E
′

q∆ + a55 v1∆ + b51 Tm∆ (2.109)

2.3.3.5 PSS output voltage vpss

The linear expression for the voltage vpss∆ is given in Equation 2.95 and represents the PSS’
lead/lag stage. Its block diagram can be seen in Figure 2.9. The input v1∆ can be expressed
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as:
v1∆ =

1 + T2 s

1 + T1 s
vpss∆ =

1

1 + T1 s
vpss∆ +

T2

1 + T1 s
v̇pss∆

⇒ v1∆ (1 + T1 s) =vpss∆ + T2 v̇pss∆

⇒ v̇pss∆ =
1

T2

v1∆−
1

T2

vpss∆ +
T1

T2

v̇1∆

(2.110)

Substituting from Equation 2.109,

v̇pss∆ =
( 1

T2

+
T1

T2

a55

)
v1∆ −

1

T2

vpss∆ +
T1

T2

[
a51 ω∆ + a52 δ∆ + a53 E

′

q∆ + b51 Tm∆

]
(2.111)

Expanding and replacing with state matrix notation,

v̇pss∆ = a61 ω∆ + a62 δ∆ + a63 E
′

q∆ + a65 v1∆ + a66 vpss∆ + b61 Tm∆ (2.112)

2.3.3.6 State matrix

Now, from the previous subsections, all the first-order equations have been defined. Thus, the
state-space equations of the linear system can be set up. In Equation 2.113 the full system is
given in the state-space form ẋ = Ax+Bu.

ω̇∆

δ̇∆

Ė
′
q∆

V̇t∆

v̇1∆

v̇pss∆


=



a11 a12 a13 0 0 0

a21 0 0 0 0 0

0 a32 a33 a34 0 a36

0 a42 a43 a44 0 0

a51 a52 a53 0 a55 0

a61 a62 a63 0 a65 a66





ω∆

δ∆

E
′
q∆

Vt∆

v1∆

vpss∆


+



b11 0

0 0

0 b32

0 0

b51 0

b61 0



 Tm∆

Vref∆

 (2.113)

where,

a11 = −KD

2H
, a12 = −K1

2H
, a13 = −K2

2H
,

a21 = ωR,

a32 = −K4

T
′
d0

, a33 = − 1

K3 T
′
d0

, a34 = −Ka

T
′
d0

, a36 = Ka

T
′
d0

,

a42 = Kr K5

Tr
, a43 = Kr K6

Tr
, a44 = − 1

Tr
,

a51 = Kpss a11, a52 = Kpss a12, a53 = Kpss a13, a55 = − 1
Tw
,

a61 = T1
T2
a51, a62 = T1

T2
a52, a63 = T1

T2
a53, a65 = ( 1

T2
+ T1

T2
a55), a66 = − 1

T2
,

and,

b11 = 1
2H
, b51 = Kpss b11, b61 = T1

T2
b51, b32 = Ka

T
′
d0

It is also possible to draw a block diagram of the linearised model. This is done in Figure 2.13
and it gives a helpful visual interpretation of the system. The state variables have been high-
lighted in the diagram.
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Figure 2.13: Complete block diagram of the simplified sixth-order linear synchronous machine model
with the state variables highlighted in red
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2.3.4 Initial conditions
The definitions of the constantsK1−K6 from Equations 2.77, 2.85 and 2.91 are notably depen-
dent on certain initial conditions. This dependency comes from the fact that the linearisation
assumes a small perturbation from an initial position. Thus, the initial position must be de-
fined. It is assumed that the machine is in steady-state when a disturbance happens. This is a
fair assumption, as a stable system will most likely reach steady-state before a new disturbance
occurs. Therefore, the initial conditions for the linearisation will be the steady-state values for
the machine. The necessary quantities are:

• initial d- and q-axis currents, Id0 and Iq0,

• initial d- and q-axis terminal voltages, Vd0 and Vq0,

• initial load angle, δ0

• initial internal emf, Eq0

From this point the subscript 0 will be omitted, as all quantities in this subsection are steady-
state quantities. Using Figure 2.10 as a basis, some values must be known to calculate the
others. Thus, a few assumptions are made:

• The infinite bus voltage is set as the reference, such that α = 0°

• The generator is running at rated load, P = 1 pu, and is over-excited at a known power
factor PF = cos(φ)

• The voltage at the infinite bus is Vinf = 1 pu

• Power loss in the transmission line is approximated at 1 pu current, such that Pe = Re1
2 =

Re

A symbolic phasor diagram can be made for the machine-bus system, highlighting the important
voltages, angles and currents. This is done in Figure 2.14. From the third assumption above,
the power delivered to the infinite bus is:

Pinf = P − Pe = 1 pu−Re (2.114)

Now, a decomposition of the complex current Ia is defined such that Ia = Ir + j Ix, where Ir
is in phase with the infinite bus voltage. Thus,

Ir =
Pinf
Vinf

=
Pinf

1
pu = Pinf (2.115)

From the phasor diagram in Figure 2.14 the following angle relationships can be extracted
[37]:

tan(θ) =
Ix
Ir

tan(β) =
Xe Ir +Re Ix

Vinf −Xe Ix +Re Ir

tan(φ) =tan
[
cos−1(PF )

] (2.116)

Knowing that φ = β + θ and consequently tan(φ) = tan(β + θ), the trigonometric identity
for phase shifted tangent terms can be used to set up an equation to find Ix. However, in an
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Figure 2.14: Phasor diagram of the machine-infinite bus system for the calculation of initial conditions

over-excited generator the current angle θ is negative, such that tan(φ) = tan(β − θ). The
identity then gives:

tan(φ) = tan(β − θ) =
tan(β)− tan(θ)

1 + tan(β) tan(θ)
(2.117)

Inserting from Equation 2.116 gives:

tan(φ) =

Xe Ir+Re Ix
Vinf−Xe Ix+Re Ir

− Ix
Ir

1 + Xe Ir+Re Ix
Vinf−Xe Ix+Re Ir

Ix
Ir

(2.118)

Equation 2.118 can be used to solve for Ix, since all other quantities are known. The symbolic
solution is not shown explicitly here, as it is too long to be helpful. From the now known
quantities it is possible to calculate the load angle δ, which is the angle from the reference
(infinite bus voltage) to the q-axis. Inspecting Figure 2.14 gives the following relation:

Eqa =Vinf +
[
Re + j(Xq +Xe)

]
Ia = Vinf +

[
Re + j(Xq +Xe)

]
(Ir + j Ix)

=Vinf − (Xq +Xe) Ix +Re Ir + j
[
(Xq +Xe) Ir +Re Ix

] (2.119)

Here, the real terms are aligned with the reference and the imaginary terms are 90 degrees
ahead. Since Eqa is on the q-axis, the angle δ can be found by:

δ = tan−1

(
(Xq +Xe) Ir +Re Ix

Vinf − (Xq +Xe) Ix +Re Ir

)
(2.120)
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2. Synchronous machine representation

This value of δ is what is used as the initial load angle δ0. Now, the d- and q-axis currents and
voltages can be found,

Iq =|Ia| cos(δ − β + φ)

Id =−|Ia| sin(δ − β + φ)

Vq =|Ia| cos(δ − β)

Vd =−|Ia| sin(δ − β)

(2.121)

where the angles β and φ are found from Equation 2.116. Lastly, the internal emf Eq is found
by using Equation 2.83 at steady-state,

Eq = Vq −Xd Id (2.122)

2.4 Performance assessment
It is helpful to gain an understanding of what "better stability" really means. In stability anal-
yses, there are two main approaches: time domain and frequency domain analyses. In time-
domain studies, one observes how the signal changes over time and how quickly it does or does
not return to steady-state. Three major concepts describe a dynamic response in the time do-
main: rise time, overshoot and settling time, see Figure 2.15. Rise time gives the time the signal
takes to rise from 10 % to 90 % of the post-disturbance steady-state value. Overshoot describes
how much the signal surpasses the steady-state value on the first swing. Settling time denotes
the time before the signal settles within predetermined boundaries, commonly ±2-5 % of the
steady-state value.

Figure 2.15: Stability analysis terms in the time domain, showing the definitions of rise time, overshoot
and settling time

Frequency domain analysis can give a very intuitive understanding of complex stability prob-
lems. Central terms are frequency response (bode plot) and eigenvalue (modal) analysis. In
power system stability studies modal analysis is often applied to find the various oscillations in
the power system. Put simply, a mode corresponds to an eigenvalue of the state matrix which
impacts the system stability with the time characteristic eλt, where λ is the eigenvalue [35].
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2. Synchronous machine representation

Thus, a complex eigenvalue corresponds to an oscillatory mode. Say λ = σ+ jω. The real part
σ represents the damping power of the mode, and the imaginary part ω represents the frequency
of oscillation. Thus, if σ > 0 the mode is unstable and will grow to infinity over time, and
σ < 0 gives a stable mode. Also, if ω = 0, the mode is non-oscillatory. A common measure of
a mode’s stability is its damping factor, which is defined as:

ξ =
−σ√
σ2 + ω2

(2.123)

A large value of ξ represents a highly damped mode, while a negative ξ implies the mode is
unstable.
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Chapter 3

Algorithms for optimisation

“This algorithm belongs ideologically to that philosophical school that allows wisdom to
emerge rather than trying to impose it, that emulates nature rather than trying to control
it, and that seeks to make things simpler rather than more complex. Once again nature has
provided us with a technique for processing information that is at once elegant and versatile.”

– Kennedy and Eberhart [47]

Optimisation is a well-established field of mathematics. There are countless ways of optimising
a problem. However, many of the conventional methods fall short with highly non-linear prob-
lems. With the great increase in computational power over the last few decades, new methods
have been developed that are very proficient at such problems. These methods are algorithms
that are able to learn and adapt to specific problems and are called intelligent algorithms. Learn-
ing, in this context, is the algorithm’s ability to adapt its behaviour to new input data and "re-
member" how historical data already has affected it. It observes the past and assumes the future
behaves in the same way and is, therefore, able to predict the best-fitting output.

A common challenge when applying intelligent algorithms is defining the measure that deter-
mines its performance. This measure is called the objective function (or cost function, fitness
function). Usually, in optimisation problems, there is a behaviour that is desired to be enhanced
or diminished. However, quantifying this behaviour to a simple measure can be difficult. Still,
defining the objective function is necessary for the algorithm to know whether its performance
is improving or not.

Often in the optimisation of non-linear problems, there is more than one solution that is consid-
ered optimal. If a cost function is to be minimised the program may find a satisfying minimum
within it. However, this may not be the globally optimal point. High-order problems often have
more than one local minimum (or maximum) that may trap the algorithm. Thus, the algorithms
must take measures to reduce the risk of getting stuck in local minima, such that the global
optimum can be found. [1]

An interesting observation is that many intelligent algorithms are inspired by features of nature
and animal behaviour. Evolution and natural selection are good examples of how nature has
tried and failed and improved over time to end up with the complex structures and behaviours
of living beings that exist today. [1]

The following sections will give insight into two well-established types of intelligent algo-
rithms, namely the particle swarm optimisation technique and neural networks.
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3. Algorithms for optimisation

3.1 Particle swarm optimisation
The particle swarm optimisation algorithm (PSO) was originally introduced in 1995 [47], where
the aim was partly to find ways to simulate human behaviour. The algorithm draws inspiration
from the movement of flocking birds and schooling fish, as they seem to have some mysterious
way of moving in synchrony to find food and avoid predators. PSO uses a set of particles (also
called agents, individuals or candidates in the literature) that move in the search space according
to simple rules to find the optimal position.

The dimension of the search space is equal to the number of parameters that are being opti-
mised. This means that each position in the search space represents a valid set of parameters
for the fitness function. Moving in a certain direction along a dimensional axis is equivalent
to adjusting the respective parameter. For example, a two-variable fitness function f(x, y) will
have two dimensions in the search space, one representing x, and one y. Any particle’s position
[xi, yi] in the search space can then be sent to the fitness function f(x, y) to find its fitness.

The fitness function in a PSO problem can be any linear or non-linear function. The technique
does not use the function gradient, so it can also be non-differentiable. The function needs to
be called numerous times during the optimisation, so it is a great advantage if it is quick to
calculate. The function’s complexity will therefore directly affect the computation time and
should be chosen with care.

There have been numerous variations on the PSO algorithms since its inception. This section
will only cover one select variation, inspired by the Global Optimisation Toolbox [48]. For a
more comprehensive review of various PSO modifications, one may refer to [49].

3.1.1 The elements of PSO
The great advantage of PSO is that it is very simple to understand and implement while remain-
ing fast and effective. The main elements of the PSO algorithm are:

3.1.1.1 Particle position

The jth particle’s position in the search space at time (iteration) t is denoted xtj . It is a multi-
dimensional vector, where each dimension corresponds to an optimised parameter. The position
is updated every iteration according to Equation 3.1, where vtj is the respective particle’s veloc-
ity. The positions in each dimension are limited by pre-defined search boundaries.

xtj = xt−1
j + vtj (3.1)

3.1.1.2 Particle velocity

The jth particle’s velocity at time t is denoted vtj . The velocity is a vector describing the
trajectory of each particle. This is a key element, as applying correct velocities will increase
the convergence time. There are three components to calculating the velocity: the inertial,
individual and social components. It is determined by:

vtj = wt v
(t−1)
j + c1 r1

[
p

(t−1)
j,best − x

(t−1)
j

]
+ c2 r2

[
g

(t−1)
best − x

(t−1)
j

]
(3.2)
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where,

• w is the inertia weight. This is a control variable that adds a velocity component in the
same direction as the previous time step. A large value of this component aids in the
exploration of the search space, while a low value improves the local search ability of the
particle. Thus, it is not uncommon in PSO applications to have a varying inertia weight,
which starts large and gets decreased as the search approaches the optimum.

• c1 and c2 are control variables that affect the impact of the personal and global bests,
respectively.

• r1 and r2 are random numbers between 0 and 1 drawn from a uniform distribution. These
are updated each iteration.

• pj,best is the position with the best fitness the jth particle has found. Every iteration as
the particle flies through the space it compares the new fitness with its previous best and
updates it if it has improved.

• gbest is the position with the best fitness among all the personal best fitnesses. At the end
of the PSO procedure, gbest will hold the optimised parameters.

The three velocity components (inertial, personal and social) are added vectorially, as visualised
in Figure 3.1. Keep in mind that the velocities in each dimension are independent of each other,
and the figure shows the combined velocities for the displayed dimensions.

pj,best

gbest

vj
(t-1)

vj
(t)

Figure 3.1: Illustration of a particle’s velocity calculation in the PSO algorithm. The new velocity is a
weighted sum of the previous velocity, the particle’s personal best position and global best positions

3.1.1.3 Neighbours

In the PSO technique, an individual particle’s neighbourhood is the subset of other particles
it can communicate with [50]. There are different ways of defining the neighbourhoods, each
giving different swarm behaviours. The simplest is the gbest type neighbourhood, where each
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particle can communicate with every other particle. Their social components are then attracted
to the global best solution across every particle.

It is possible to reduce the neighbourhood sizes using the lbest type, where the individuals’
social components are attracted to the best solution among their local neighbourhood. The
original PSO model calculated the distance between each particle to decide which were the
closest neighbours. However, this was found to be inefficient. Another way is the ring model,
where each particle is only communicating with two others. The particles will then have a
slower convergence rate, but a lesser chance of getting stuck in local optima. This is very
convenient for large multi-dimensional problems.

A large neighbourhood size yields a fast convergence towards the suggested optimum, which
is the advantage of the gbest model. However, it has a tendency to prematurely converge, such
that the solution may end in a suboptimal extremum. A population with small neighbourhood
sizes does not have this problem. It is then logical to implement a dynamic neighbourhood size
that increases over time. A low size at the beginning aids in the initial exploration of the search
space. When the swarm has found appropriate optimal areas the neighbourhood sizes can be
increased to speed the local convergence.

3.1.1.4 Stopping criteria

Performing a large number of iterations will give a more accurate result, though each additional
iteration adds computational load. To avoid excessive consumption of time and resources ap-
propriate stopping conditions are necessary. The simplest form of stopping condition is to set a
fixed amount of iterations. The procedure will then stop no matter the result. Another common
criterion is to set a stalling threshold. If the global best has not improved for a certain amount
of iterations it can be assumed the optimum has been found, and the procedure can be stopped.
Other stopping criteria might be a tolerance level for known targets or maximum computation
time.

3.1.2 PSO procedure
The PSO procedure can be broken down into separate steps, as it is an iterative procedure.
Figure 3.2 shows a flowchart for better visual understanding. As mentioned previously, there
are several variations to the PSO procedure. The procedure described below follows that of the
Global Optimisation Toolbox for MATLAB version 2020b [51].

Step 1 - initialisation
Before the iterative process can be started, all control variables and parameters must be declared
and initialised. The particles are randomly placed in the search space within the bounds. The
velocities in each dimension are randomly initiated between −vk,max and vk,max. For the kth
dimension, vk,max is determined by:

vk,max =
xk,max − xk,min

Nv

(3.3)

where xk,max and xk,min are the upper and lower boundaries in the kth dimension, respectively.
Nv is the velocity interval number, where a large value will give greater diversity of velocities
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in the initial step. This parameter can be chosen as any convenient value, though some care
should be taken, as it may impact the PSO performance [5].

When the particles have been initialised, the initial fitness for each particle is calculated. That
values are stored to their respective pbest parameters. Among all the personal bests, the one with
the best fitness is stored to the gbest parameter.

The initial neighbourhood size is set to a predetermined minimum value, and the initial inertia
weight is set to a predetermined maximum.

Step 2 - Create neighbours
For each particle, a random subset of all other particles is set as its neighbourhood. The size of
the subset is equal to the current neighbourhood size, dependent on the search progress. The
fitness and position of the best neighbour are stored to use in the velocity calculation.

Step 3 - Update velocities
The velocities of each particle in each dimension are calculated according to Equation 3.2. In
this case, gbest is the position of the best neighbour.

Step 4 - Update positions and enforce bounds
The position of each particle is calculated according to Equation 3.1. If any particle position
has breached the search boundary in a dimension, it is set equal to that boundary and its corre-
sponding velocity component is forced to zero.

Step 5 - Calculate new fitnesses and update the bests
For each particle, the fitnesses at their new positions are calculated. If a particle’s new fitness
is better than the previous best, it (along with the position) is stored to the pbest variable. If any
of the new personal bests are better than the current global best, the gbest is updated accord-
ingly.

Step 6 - Update dynamic variables
In this specific procedure, the neighbourhood size is updated only when the optimisation is
stalling, i.e. the global best is not getting improved. Each time a new global best is registered
the size is reset to its initial value. For every consecutive stalled iteration the neighbourhood
size is increased by some fixed number, ensuring it does not exceed the total population number.
The growth number may be equal to the initial neighbourhood size.

Every iteration the inertia weight can either be increased, decreased or not changed at all. Which
operation occurs depends on how many iterations the optimisation has been stalling. If the
procedure is not stalling, the weight is increased each iteration, ensuring it does not exceed its
maximum value. If the procedure has been stalling for a few iterations, say 3, the weight may
"plateau," keeping it unchanged. After another few stalled iterations the weight is decreased
to improve local search. It is decreased every subsequent stalled iteration until it reaches its
minimum value, or an improved global best is registered.

Step 7 - Check stopping criteria and iterate
The stopping criteria may be a maximum amount of total or stalled iterations, as described
earlier. If a stopping criterion is met the iteration stops and the procedure outputs the global
best and its position. The best position coordinates contain the optimised parameters of the
problem. It no stopping criteria is met the iteration count is increased by one and the procedure
repeats, beginning at step 2.
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Figure 3.2: Flowchart of the PSO procedure

3.2 Neural networks

In the field of machine learning, one of the most well-known techniques is the neural network
(NN). Its prominence comes from its ability to be relatively easy to understand while being very
versatile. In human or animal brains a magnitude of single neurons communicate using electri-
cal impulses. A neuron by itself provides no useful function, yet together, complex behaviour
emerges. This is the phenomenon neural networks seek to emulate. By configuring a system of
"neurons" in a particular way, each performing a simple operation, the desired behaviour can be
created.

This section will introduce the concept of neural networks, to provide enough detail to be able
to implement a simple NN on a pre-built platform and understand its inner workings. This is
often enough for many engineering applications such as this thesis.
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3.2.1 Structure

There are several different types of neural networks, and most types have their own subcate-
gories [52]. However, this section will focus on the feedforward multilayer perceptron (MLP)
model for its popularity and simplicity. The neurons in an MLP are arranged in three conceptual
layers: the input, hidden and output layers. Its goal is to receive some input to the input layer
and give the desired output at the output layer, be it a classification, pattern matching, optimi-
sation or any other prediction. A visual representation of a three-layer MLP network is shown
in Figure 3.3 [1].

Input 4

Input 3

Input 2

Input 1

Output 4

Output 3

Output 2

Output 1

Hidden layerInput layer Output layer

Figure 3.3: Illustration of the three-layer feedforward perceptron with four neurons in the input and
output layers, and three neurons in the hidden layer.

This model only works when using supervised learning (SL). SL means that the NN is trained
using labelled data. A labelled data point is an input paired with the desired output value. For
example, for image recognition, the input might be the pixels of an image and the desired output
might be a category, e.g. "dog" or "cat".

There are several internal parameters in an NN. Their values are fundamental to the performance
of the network. Each connection between nodes has an associated weight and each node has an
associated bias. The output of each node is a weighted sum of the outputs from the previous
layer. The output of a neuron is also called its activation. Take Figure 3.4, where the jth node in
the nth layer is depicted with three nodes in the previous layer. The output ynj can be expressed
as:

ynj = wj1 a
(n−1)
1 + wj2 a

(n−1)
2 + wj3 a

(n−1)
3 + bnj (3.4)

However, to ensure the outputs of the different nodes all end in the same number ranges they are
sent through an activation function, which remaps the output onto a consistent number range.
Two common activation functions are the hyperbolic tangent (tanh) function and the rectified
linear unit (ReLU) function, see Figure 3.5. The tanh function is given by Equation 3.5 and
outputs -1 for highly negative numbers, 1 for highly positive numbers and a smooth transition
when close to zero. The ReLU function is given by Equation 3.6. It outputs 0 for all negative
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Figure 3.4: A single neuron with its parameters in a feedforward MLP neural network. The output anj
is a weighted sum of the activations of the previous layer with an added bias, sent through an activation
function.

numbers and returns the input linearly for positive numbers.

tanh(y) =
e2y − 1

e2y + 1
(3.5)

ReLU(y) = max(0, y) (3.6)

Assuming the tanh function, the node activation would become:

anj = tanh
(
ynj
)

= tanh
(
wj1 a

(n−1)
1 + wj2 a

(n−1)
2 + wj3 a

(n−1)
3 + bnj

)
(3.7)

The activation in the nth layer with j nodes can be expressed generally in matrix form,

An = tanh
(
W A(n−1) +Bn

)
(3.8)

where,

• An is a jx1 column vector with the activation of the nth layer

• W is a jxn matrix containing the connection weights

• Bn is a jx1 column vector with the biases at the nth layer.

Every neuron in a layer is connected to every neuron in the previous layer through a weight.
Therefore, there can be an enormous amount of parameters in a NN to be tuned. The more
neurons or layers, the larger the number of parameters. Thus, various assignments of these
parameters can provide practically endless applications. The tuning of the inner NN parameters
to achieve a specific behaviour is called training of the neural network.

3.2.2 Training
The statement that an MLP neural network can create emergent desired behaviour is true only
so far as its training has been sufficient. When a NN is newly generated, its inner parameters
(weights and biases) are pseudo-randomly initiated, thus providing no function of value. In
supervised learning, training is done by creating input-target pairs that are fed to the network
repeatedly until the network response to an input matches the corresponding target sufficiently.
This indicates the first important step in neural network training: collecting and preprocessing
training data.

A large amount of training data is recommended, often required, to achieve a properly trained
network. The source of the data set can vary. It may be collected from pre-existing data sets
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(a) The hyperbolic tangent (tanh) activation function (b) The rectified linear unit (ReLU) activation function

Figure 3.5: Two common activation functions for neural networks - the tanh and ReLU functions

published online, iteratively calculated from known algorithms, retrieved from simulation re-
sults or any other convenient source. Nonetheless, The training data set should be sufficiently
large and encompass all scenarios the network is expected to handle. When the training data
set is generated, it is randomised and split into three subsets: the training, validation and testing
subsets. The training subset is what the network will be trained with. However, to confirm that
the trained network can manage inputs not in the training set (yet still within the expected range
of inputs) a subset of the data is reserved to the validation of the network. This is to avoid what
is called overfitting. One might theoretically achieve 100 % accuracy with the training data, but
that does not mean its accuracy to other inputs within the expected range will be 100 %. When
the NN’s accuracy to the training set consistently surpasses its accuracy to the validation set it
is a sign of overfitting, and training should be terminated if continued. The testing subset is
reserved purely for the testing of the trained NN and is not involved in the training itself.

Figure 3.6 shows the general training scheme of supervised learning. The NN output is com-
pared to the target output. The error is represented by an error function, which by the means
of gradient descent is minimised by a training algorithm. This is an iterative process, where an
iteration has passed when the entire training data subset had been applied once. In NN theory,
such an iteration is commonly called an epoch. The training of this type of neural network
can be considered an optimisation problem, where all the network inner parameters are to be
optimised. The error function can be considered the cost function of the optimisation. A very
common error function is the mean square error (MSE) function, which is defined as:

E =
1

n

n∑
i=1

(
yi − ŷi

)2 (3.9)

where E denotes the error function, n is the number of data points, yi is the target output and
ŷi is the calculated output. The error function is dependent on all inner parameters, following
Equation 3.8.

If the activation function is differentiable (which both tanh and ReLU are) the error function
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Figure 3.6: The supervised learning neural network training scheme. When giving the NN a controlled
input, the difference of the target output and the NN output is sent through an error function and used to
train the NN with the help of a training algorithm.

is also differentiable. The method of minimising E is, therefore, most commonly by using the
gradient of steepest descend. Let θt denote all weights and biases at iteration t, making the error
function E(θt). The parameters are updated according to:

θ(t+1) = θt − α∂E(θt)

∂θ
(3.10)

where α is called the learning rate, which is a control parameter determining how fast the
network should "learn" each iteration.

The above procedure is a description of the back-propagation algorithm [53], which is one of the
most used training algorithms. Some other common algorithms found in the literature are the
quasi-Newton [54], conjugate gradient [55] and Levenberg-Marquardt [56, 57] algorithms. The
main difference between these is how the gradient is used to update the weights and biases [58].
They are all trajectory-driven, meaning they use the gradient-descent method to minimise the
output error. The details of the training algorithms will not be derived here, but a comprehensive
review of the mentioned algorithms, along with other methods, can be found in [59].
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Chapter 4

Auto-tuning the CPSS

“It is a challenge [...] to find a universal function which would be adequate for the whole
spectrum of possibilities. By examining this spectrum of possibilities over a credible band of
machine and system parameter values, as well as loading conditions, it appears that a fair
compromise function can be recommended that will be almost universally applicable.”

– Demello and Concordia [4]

The conventional power system stabiliser (CPSS) is the most popular stabiliser design. It is
simple to understand and implement, and many power plants have this type of PSS already
installed. Therefore, some way of automatically tuning the CPSS in online operation should
be discussed before proposing redesigns that some operators may not want to switch to, for
practical or economic reasons.

This chapter will propose a method for observing the changes in a connected power system
to automatically tune the CPSS for small-signal stability. The proposed method will function
without taking the PSS or machine out of operation. It involves implementing an auto-tuning
neural network that is trained on optimised parameters obtained from the PSO technique. The
approach is similar to that of [24], though the procedure of obtaining the training data is differ-
ent. Figure 4.1 shows an overview of the proposed auto-tuning system for visual understanding.
Further, it will be explained how this auto-tuning system can be implemented into the Simulink
environment while accommodating for its limitations and minimising simulation time.

4.1 Optimising from linear model

A linear model of the synchronous machine is derived in Section 2.3, and is appropriate for
small-signal stability studies. The dynamics of that model can be used to analyse its ability to
damp oscillatory behaviour. See Appendix A for the model parameters used in this thesis.

4.1.1 Simplifications
As this section has the purpose of being introductory to the design, the linear model used in this
chapter follows the same simplifications made in Section 2.3. Important simplifications are the
AVR being considered a constant gain and the PSS only having a single lead/lag stage.

In the lead/lag stage, only the numerator time constant T1 is tuned. Since the ratio between
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Figure 4.1: Overview illustration of the CPSS auto-tuning system. The PSO algorithm optimises the
linear machine model, where the result is used to train the NN auto-tuner.

the two time constants decides the phase response of the block, keeping one constant and only
tuning the other is sufficient. Additionally, the wash-out filter time constant Tw is kept constant,
as it has little impact on the damping performance. Finally, the infinite bus voltage is considered
constant, along with the external network resistance. This means that changes to the network
short-circuit power only comes from changes in the external reactance Xe.

These simplifications leave only two parameters to be tuned: the PSS gainKpss and the lead/lad
numerator time constant T1.

4.1.2 Building training data with PSO
Now that the linear model is ready, there needs to be a way of determining the optimal param-
eters for Kpss and T1 at various levels of Xe. This may be a problem with many local minima,
so the PSO algorithm is well fitted for this purpose. As a fitness function for the PSO, the
comprehensive damping index (CDI) is used [6]. The CDI is calculated as:

CDI =
n∑
i=1

(1− ζi) (4.1)

where ζi is the damping ratio and n is the number of oscillatory eigenvalues. Minimising this
index will give the parameters where the oscillation damping of the linear model is greatest.
The damping ratios of the system modes are found by eigenvalue analysis of the state matrix of
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the linear model in Equation 2.113. The advantage of using eigenvalue analysis as the fitness
function for the PSO is its speed. PSO uses a great number of function evaluations – one for
each particle every iteration – so having a quick fitness function is important for the optimising
speed. One could conceivably use high-accuracy simulation results as the fitness function,
though this would take a considerable amount of time.

A range of values for Xe is chosen and the PSO algorithm is run for each of them, optimising
Kpss and T1. Per-unit reactances from 0.001 to 0.1 has been used for this chapter, as these are
typical values. See Appendix A for the PSO settings used in these optimisations.

4.1.3 Auto-tuning neural network
When the PSO procedures are finished, the training data set is ready. The NN input is the
per-unit external reactance and the target (desired output) is the corresponding optimised PSS
parameters. This can be classified as a function fitting problem, which neural networks are very
proficient at. In fact, the Universal Approximation Theorem states that a multilayer feedforward
network with a single hidden layer is able to represent any function, given some assumptions
to the activation function and sufficient hidden neurons [60]. Also, no advanced function fitting
theory is required, as the NN training algorithm efficiently finds the appropriate parameters for
the fit.

The Deep Learning Toolbox [61] contains easy-to-use functions for shallow neural network
creation and training. The fitnet function allows for training of function fitting NNs with little
effort. When the training tool has finished training the network, a Simulink model is created
by the gensim function. The external reactance can then be fed directly into the network, and
the optimal PSS parameters will be output continuously. See Appendix B for how to use the
fitnet function in MATLAB.

It could be argued that the PSO algorithm can be put directly to the auto-tuning model, forgoing
the NN completely. While this is possible, optimising with PSO on a continuous basis is very
slow and computationally heavy. Since a trained MLP neural network is practically just a
weighted sum of the neuron activations, computing the output is a simple operation, taking
virtually no time. Hence, it is beneficial to implement a NN rather than just using the PSO
technique.

4.1.4 Calculating the external reactance
The input to the NN is the network external reactance, so this must be calculated. The external
network is considered as an infinite bus in series with an impedance, similar to Figure 2.10.
Here it is assumed that the infinite bus voltage is known and can be measured. The complex
external impedance is then calculated by:

Ze =
V inf − V t

Igen
(4.2)

where,

• V inf is the complex voltage at the infinite bus,

• V t is the complex voltage at the generator terminals,
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• Igen is the complex generator stator current, which is equal to the infinite bus current

The external reactance is found by the imaginary component of the impedance,

Xe = imag(Ze) (4.3)

The per-unit value is found by either dividing the input voltages and currents by their respective
bases VB and IB, or by dividing the calculated reactance by the impedance base ZB.

4.2 Implementation into Simulink

When the theory is understood, it needs to be set into practice. However, this may not be
such an easy task. Firstly, one must choose in which environment the implementation should
happen. It could be done with a real apparatus or through computational simulation. When a
simulation is to be performed an appropriate software must be chosen. Then, the models need
to be implemented properly while accounting for software limitations and restrictions.

In this thesis, simulations are done through the MATLAB/Simulink environment, with the Sim-
scape Power Systems add-on. This choice is mainly due to their already existing library of
functions and models which can easily be applied. Still, Simulink has its own set of limita-
tions. Its pre-existing model blocks have so-called "masks," which are user interfaces where
the necessary parameters for the model are entered. The mask also has the signal inputs and
outputs easily accessible. Still, the model beneath the mask is locked, meaning it cannot be
edited without rebuilding it manually, and all the operations the block performs are not always
accessible to the user. Additionally, the masked block parameters cannot be edited dynamically
during a simulation; they are locked to their initial values.

The main block of the simulation is the synchronous machine. The Synchronous Machine pu
Standard block is used for this purpose. It follows the same theory derived in Section 2.1, and
gives the dynamic behaviour of the machine using per-unit quantities. The block has two inputs:
the mechanical torque and field voltage, both in per-unit. Its outputs are the three-phase lines
and various measurements for its internal quantities.

The following subsections will introduce how the transformer, excitation system and external
system can be implemented into Simulink while accommodating for its limitations.

4.2.1 Step-up transformer

Experience shows that when introducing an inductance into Simulink, the simulation time in-
creases significantly. Also when using a transformer block does this problem occur. To allevi-
ate this, the transformer per-unit reactance Xt can be put into the synchronous machine model
reactances. The transformer resistance Rt is neglected. The new machine parameters then
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become: [35]
X̂d = Xd +Xt

X̂
′

d = X
′

d +Xt

X̂
′′

d = X
′′

d +Xt

X̂q = Xq +Xt

X̂
′′

q = X
′′

q +Xt

X̂l = Xl +Xt

(4.4)

The parameters with the hat notation represent the values that are given to the Simulink model,
while those without the hat notation are the actual machine parameters. The consequence of this
adjustment is that the generator model now outputs the voltage at the high-voltage side of the
transformer. The generator can in this state be comparable to a powerformer, as it is a generator
directly connected to the high-voltage system [62]. However, as mentioned in Section 2.2.2, the
control voltage for the AVR is commonly around 80 % into the transformer reactance. Thus, to
have the desired input to the AVR. it might be necessary to calculate back to that voltage. If the
AVR control voltage is set at 100 % into the transformer reactance, this is not necessary.

The synchronous machine d- and q-axis equivalent circuits are given in Figures 2.3 and 2.4
respectively. Recall that Ld = Lad + Ll and that L = X in per-unit. Since Xt is added to both
Xd and Xl the relation becomes:

L̂d = L̂ad + L̂l

⇒ Ld + Lt = L̂ad + Ll + Lt

⇒ Ld = L̂ad + Ll

(4.5)

Thus, L̂ad = Lad and does not need to be adjusted in the equivalent. The same argument can be
made for Laq. However, L̂l has the transformer reactance included and needs to be accounted
for. Additionally, the speed voltage term ωΨq can be expanded into:

ωΨq = ωLqiq (4.6)

Hence, this term is dependent on Lq and consequently L̂q. Equation 4.7 shows how the adjusted
speed voltage can be split into two terms. The same argument can be made for ωΨ̂d.

ωΨ̂q = ωL̂qiq = ω(Lq + Lt)iq = ωLqiq + ωLtiq = ωΨq + ωΨqt (4.7)

The remaining inductances in the equivalent circuits represent either the field winding or the
amortisseur windings. Neither of those have been affected by the implementation of the trans-
former, so all those can be ignored in the back-calculation. L̂l, ωΨ̂q and ωΨ̂d are now repre-
sented as a sum of two voltage terms. The equivalent circuits can then be expanded as shown
in Figures 4.2 and 4.3. The voltages vdt and vqt are the voltages output by the generator model,
while vd and vq are the voltages whose Pythagorean sum is the desired control voltage to the
AVR. Applying Kirchhoff’s voltage law to the circuits, the desired voltages can be found.

vd = vdt − ωΨqt + vLt

vq = vqt + ωΨdt + vLt

(4.8)
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Stating those equations in terms of known parameters,

vd = vdt − ωLtiq + Lti̇d

vq = vqt − ωLtid + Lti̇q
(4.9)

ωΨq

+-
Ll

vd

id
+

-

ωΨqt

+-
Lt

vdt

+

-

Rs

Figure 4.2: Expanded d-axis equivalent circuit when the step-up transformer in included in the machine
model. It shows that the d-axis terminal voltage vd can be calculated from the model output voltage vdt

ωΨd

-+
Ll

vq

iq
+

-

ωΨdt

-+
Lt

vqt

+

-

Rs

Figure 4.3: Expanded q-axis equivalent circuit when the step-up transformer in included in the machine
model. It shows that the q-axis terminal voltage vq can be calculated from the model output voltage vqt

When the voltages have been accounted for, it must be ensured that all other parameters affected
by the transformer implementation are compensated. In fact, the short-circuit time constants
T

′

d and T ′′

d are both dependant on the leakage inductance Ll [35], according to the following
equations:

T
′

d =
1

Rf

(
lf +

Lad Ll
Lad + Ll

)
(4.10)
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and,

T
′′

d =
1

RD

(
lD +

Ll lf Lad
lf Lad + lf Ll + Lad Ll

)
(4.11)

After the transformer implementation, there are four unknowns in the two above equations: the
field winding leakage inductance l̂f and resistance R̂f and the d-axis damper winding leakage
inductance l̂D and resistance R̂D. The damper windings are not affected by the transformer
implementation, and since the real (pre-implementation) machine parameters are known they
can be used to calculate the unknown (post-implementation) inductances and resistances. Then
the new values of the time constants can be calculated. The equation for lf is:

L
′

d = Ll +
Lad lf
Lad + lf

⇒ lf =
Lad (L

′

d − Ll)
Lad − L

′
d + Ll

(4.12)

and for lD:

L
′′

d = Ll +
Lad lf lD

Lad lf + Lad lD + lf lD

⇒ lD =
Lad lf (L

′′

d − Ll)
Lad L

′′
d − Lad lf − Lad Ll + L

′′
d lf − lf Ll

(4.13)

The unknown resistances can be found by rearranging the equations for the d-axis open-circuit
time constants,

T
′

d0 =
Lad + lf
Rf

⇒ Rf =
Lad + lf
T

′
d0

(4.14)

and,

T
′′

d0 =
1

RD

(
lD +

lf Lad
lf + Lad

)
⇒ RD =

1

T
′′
d0

(
lD +

lf Lad
lf + Lad

)
(4.15)

With all the inductances and resistances acquired, the new time constants, T̂ ′

d and T̂ ′′

d , can be
found by replacing Ll by L̂l in Equations 4.10 and 4.11. Since all other machine parameters are
unaffected by the transformer implementation, getting these new values for vd, vq, T

′

d and T ′′

d as
explained in this section will give an accurate representation of the generator.

It should also be mentioned that if the open-circuit time constants T ′

d0 and T ′
q0 are entered into

the model instead of the short-circuit, the compensation in time constants is not necessary.
During an open-circuit (no-load) no current flows through Ll, such that adding Xt to it makes
no difference.

4.2.2 Excitation system
The excitation system has the purpose of providing an appropriate field voltage to restore the
machine voltage level and reduce rotor oscillations. Its two main components are the AVR
and PSS, as described in Section 2.2. There exist pre-built model blocks of various excitation
systems in the Simulink libraries. However, as mentioned earlier, these masked blocks cannot
be edited or tuned dynamically. Thus, they need to be built manually in such a way that the
tuned parameters can come from an external source.

The AVR is implemented as a simple gain, satisfying the equation:

vf = Ka

(
Vref − Vc + Vpss

)
(4.16)
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where,

• vf is the field voltage to the generator

• Ka is the AVR gain

• Vref , Vc and Vpss are the voltage reference, control voltage and PSS voltage respectively

Keep in mind that all values are in per-unit in the implementation. If the AVR gain is to be
tuned dynamically, the gain block in Simulink can be replaced by a multiply block, where one
of the factors comes from an external tuning system.

The PSS is slightly more complicated. Its block diagram is shown in Figure 2.9. In Simulink, it
is possible to add transfer function blocks to represent the PSS stages. However, they pose the
same challenge of being non-tunable. To alleviate this, it is possible to represent the transfer
functions as integrator-feedback systems. Take the closed-loop feedback system in Figure 4.4.
From control theory, the transfer function of a closed loop system is:

Hcl(s) =
A(s)

1 + A(s)B(s)
(4.17)

+

-
A(s)

B(s)

u(t) y(t)

Figure 4.4: A simple feedback control loop often seen in basic control theory

The wash-out filter has the transfer function,

Hwo =
Tw s

1 + Tw s
(4.18)

It is then necessary to find valid expressions for A(s) and B(s) in Equation 4.17 such that
Hcl = Hwo. Since the the transfer function is to be made of integrators and gains, it must be
ensured that A(s) and B(s) only contain integrator (1/s) terms, and no derivative (s) terms.
The equation becomes,

A(s)

1 + A(s)B(s)
=

s Tw
1 + s Tw

(4.19)

Since there are more unknowns than equations, it cannot be solved analytically. Still, this
equation is simple enough to solve experimentally. Dividing by Tws/(Tws) on the right-hand
side,

A(s)

1 + A(s)B(s)
=

1
1

Tw s
+ 1

=
1

1 + 1
Tw

1
s

(4.20)

From visual inspection, a solution to this equation is A(s) = 1 and B(s) = 1/(Tw s). Entering
that solution into the block diagram of Figure 4.4, an equivalent block diagram of the wash-
out filter is made. Thus, both block diagrams in Figure 4.5 are equivalent and give the same
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sTw

1+sTw

+

-

u(t)

y(t)u(t)

y(t)

1

Tw

1

s

Figure 4.5: Equivalent block diagrams of the wash-out filter, displayed as a transfer function and an
integrator-feedback system

response. The gain with Tw can be replaced by a divide block in Simulink, where Tw can come
from an external tuner if desired.

The transfer function for a lead/lag stage is:

Hll =
1 + T1 s

1 + T2 s
(4.21)

This expression can be split to two terms, which will be evaluated separately. In a block dia-
gram, two added terms result in a parallel connection, which can easily be implemented later.
The equations for the two separate terms become:

A1(s)

1 + A1(s)B1(s)
=

T1 s

1 + T2 s

A2(s)

1 + A2(s)B2(s)
=

1

1 + T2 s

(4.22)

Inspecting the first equation, dividing by T2s/(T2s) on the right-hand side and introducing a
T1/T1 term in the denominator gives:

A1(s)

1 + A1(s)B1(s)
=

T1
T2

1 + T1
T2

1
T1 s

(4.23)

Through inspection, A1(s) = T1/T2 and B1(s) = 1/(T1s). Next, inspecting the second equa-
tion in Equation 4.22, dividing by T2s/(T2s) on the right-hand side gives:

A2(s)

1 + A2(s)B2(s)
=

1
Ts s

1 + 1
T2 s

(4.24)

Through inspection, A2(s) = 1/(T2s) and B2(s) = 1. Then, the equivalent block diagram with
integrators and gains can be made. Both block diagrams in Figure 4.6 give the same response.
Similarly as for the wash-out filter, the time constants T1 and/or T2 can be received from an
external tuner by replacing the gain blocks with multiply blocks.

There is one important note to make. Since the per-unit version of the synchronous machine
model was chosen, it must be ensured that all quantities are in per-unit. The integrator blocks,
however, keep time in seconds. Thus, after every integrator block, the signal must be multiplied
by the time base tB (or divided by the speed base ωB). If the per-unit machine model is not
used, this is not necessary.
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+
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u(t) y(t)
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Figure 4.6: Equivalent block diagrams of a lead/lag stage, displayed as a transfer function and an
integrator-feedback system

4.2.3 External network
To model the connection to a power system, a simple Thévenin equivalent system is imple-
mented. It takes the shape of an infinite bus in series with an impedance. The infinite bus is
represented by a Three-phase voltage source block. The impedance split into its resistive and re-
active parts and is represented by two separate Three-phase RLC parallel branch blocks.

As mentioned initially, the parameters of masked blocks cannot be edited dynamically. Thus,
a load change in the external network must be implemented in another way than adjusting the
RLC branch parameters. For this purpose, the resistance and infinite bus voltage are considered
constant, such that a change in the external network short-circuit power is represented by a
change in the Thévenin reactance. To apply a change, another reactance is added in parallel
to the first with a breaker in series. The external network is then as in Figure 4.7. A step up
in reactance is equivalent to breaking the second reactance, and a step down is equivalent to
connecting it. This model is sufficient to analyse the step response of the machine.

~

ReXe1

~

Synchronous

Machine

Infinite

bus

Xe2

Figure 4.7: Line diagram of the external network model, displaying how the reactance step is made

When performing a step up, the initial parallel reactance is,

Xpar =
Xe1 Xe2

Xe1 +Xe2

(4.25)
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After the step, the reactance is equal to Xe1. During a step down, the opposite is true. When
defining the pre- and post-step reactances, it is therefore important that Xe1 > Xpar to give a
valid parallel connection. The step direction is determined by the initial state of the breaker.
When Xpar and Xe1 have been chosen, the last reactance is calculated by:

Xe2 =
Xpar Xe1

Xe1 −Xpar

(4.26)

4.2.4 Improving simulation time
Continuous simulations may be very slow. A few actions are made to increase the speed of
the simulations. Firstly, the simulation mode is set to Accelerator. This alters the model code
generation for a decreased running time [63]. Experiments show that the Accelerator mode
does not decrease the simulation accuracy to any significant degree. The Rapid Accelerator
mode, however, can not be used in this application, as the accuracy drops beyond acceptable
levels.

In addition, the machine model creates some initial dynamics. These initial oscillations need
to settle to steady-state before any further tests can be made, and this adds simulation time.
Since the initial dynamics are of no interest to the test, the limiters of the PSS and AVR can be
disabled the first few seconds in the simulation. This will yield unrealistic components, as the
field voltage amplitude can become very large, but will noticeably increase the initial damping.
The limiters must be re-enabled before any proper testing is done.

Moreover, if the same initial conditions are to be used for several tests, Simulink has the option
to save and restore simulation states (or operation points) [64]. It is then possible to save the
state just before the test is performed and resume it multiple times for different tests. If this
option is used, the initial oscillations will only need to be simulated once.

4.3 Testing the CPSS auto-tuning system

A Simulink model is created by applying the methods described in the previous sections. First,
the PSO results and the function fitting neural network are evaluated. Figure 4.8 shows the
optimised parameters at several different values of Xe within the defined range of [0.001, 0.1].
The regression line from the trained auto-tuning NN is also shown. The NN is able to predict
the PSS parameters from the external reactance well. Table 4.1 gives the NN output for a few
values of Xe, which can be seen matches the regression in Figure 4.8.

External reactance Xe [pu] Kpss T1 [s]

0.005 3.133 0.258
0.03 8.371 0.127
0.05 12.675 0.103
0.1 23.429 0.082

Table 4.1: Outputs of the CPSS auto-tuner for the four values of the external reactance Xe that have
been tested in this thesis.
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Figure 4.8: Kpss and T1 for different external reactances from the PSO procedure, with the correspond-
ing regression lines from the auto-tuning neural network

To test the system a small step inXe is performed at 10 seconds (after letting the initial dynamics
settle), where it is increased from 0.03 to 0.05 pu. The response in speed deviation is shown
in Figure 4.9. The system is stable. Note that the control voltage to the AVR has been set
to 100 % into the transformer in this test, to circumvent the need for the back-calculation in
Section 4.2.1. In Figure 4.10 the live calculations of Xe, Kpss and T1 are shown. The reactance
calculation performs very well, even though there are some small oscillations when the step
occurs. Consequently, the same happens to the NN output. It can be seen that the values of
Kpss and T1 before and after the step correspond with the regression lines in Figure 4.8. Hence,
the auto-tuning system works as intended by successfully tracking the external network changes
and applying previously optimised tuning parameters. A study of its performance compared to
other PSS methods will be given in Section 5.4.

Figure 4.9: Rotor speed deviation response to a step in Xe from 0.03 to 0.05 pu, with the NN auto-tuner
active
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(a) Calculation of external reactance during a reactance
step

(b) Auto-tuned value of PSS gain Kpss from the neural
network during the reactance step

(c) Auto-tuned value of PSS time constant T1 from the
neural network during the reactance step

Figure 4.10: Online calculation of external reactance Xe and the corresponding response from the auto-
tuning NN, during a step in Xe from 0.03 to 0.05 pu
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Chapter 5

The sine shifting neural network controller

“Thus our knowledge of the world, including ourselves, is incomplete as to space and indefi-
nite as to time. This ignorance, implicit in all our brains, is the counterpart of the abstraction
which renders our knowledge useful. The role of brains in determining the epistemic relations
of our theories to our observations and of these to the facts is all too clear, for it is apparent
that every idea and every sensation is realized by activity within that net, and by no such ac-
tivity are the actual afferents fully determined.”

– McCulloch and Pitts [22]

Most power generators that have a PSS installed applies a version of the conventional PSS.
Although this model does improve the dynamic stability of the generator, it can only do so to a
limited degree. If the dominant modes of oscillation are known for a generator system, it could
be beneficial to create a specialised PSS designed to damp those frequencies.

The rotor speed deviation ∆ω is a common input signal for the PSS, as it is a good indicator
of the rotor behaviour. Due to its link to the machine’s physical mass, it is a continuous signal
without breaks. Moreover, it is an oscillatory signal that oscillates around the zero-line. The
speed deviation can, therefore, be considered a damped sinusoidal signal. There are mainly two
ways to alter a sinusoid of fixed frequency: changing its amplitude and phase. The former is
done simply by adding a gain. The latter, however, is more challenging. The CPSS alters the
phase with lead/lag blocks, adding poles and zeros for phase shifts at opportune frequencies.
Unfortunately, this provides little adaptivity.

The frequency response of a simple CPSS with a single lead/lag stage may look like Figure 5.1.
The figure shows how the PSS attempts to provide a stable phase shift in the range of 0.2-5 Hz,
which is the frequency range of electromechanical modes. However, since it is made to perform
decently on all frequencies, it does not perform optimally on any frequency. Furthermore, it is
not clear which phase shift is optimal. There may very well be another phase shift which will
provide better damping.

The idea behind the sine shifting neural network (SSNN) is to create a controller where the
phase shift is a control variable. Consequently, for a specific frequency, the gain of the controller
will be 0 dB and the phase response will be exactly as entered into the controller. A transfer
function will not be able to provide this functionality, so a shallow neural network has been
chosen to work as the controller. Moreover, the SSNN is unique to most other PSS adaptations
in that no electrical machine theory is involved in its creation.
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Figure 5.1: Frequency response of a simple CPSS with a single lead/lag stage

The following sections will describe the creation of this novel SSNN controller and test its
performance. Lastly, it will be compared to three other PSS approaches to validate its damping
capabilities to a step in Xe. Figure 5.2 shows an overview of the intended SSNN scheme that
will be explained in this chapter.

Figure 5.2: Illustration of the SSNN model discussed in this chapter within the machine topology

5.1 Training
The fact stated initially that the speed deviation can be considered a damped sinusoid is vital
for the choice of training data. It means that the SSNN itself does not need to "know" anything
about electrical machine theory. Rather, it can be trained on purely theoretical sine waves.
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The SSNN should ideally have two inputs: the desired phase shift in radians and the input
sine wave (speed deviation). The only output should be an identical sine wave as the input,
phase-shifted by the specified angle. In other words, say the input signal is,

As sin(ωs t) (5.1)

where As is the sine wave amplitude and ωs is its frequency in rad/s. If the SSNN is told to shift
the input by β rads, its output should be,

As sin(ωs t+ β) (5.2)

When the frequency is fixed three parameters can vary: As, t and β. The amplitude will vary
continuously, as the input will be a damped signal. β may not necessarily vary, but it is important
to train for several shift angles to increase the versatility of the controller. Training for several
values of t is also necessary, as the NN must be able to recognize all parts of a sine wave.

In essence, the SSNN will be a sine wave predictor, where it can predict the next time step in
a sine wave. To be able to do so, a single time step is an insufficient input. See Figure 5.3.
Knowing a single point on a curve is only enough to tell its y-axis position. With two points the
slope can be determined. However, since a sine wave is symmetrical, it is uncertain whether the
two points are on the upper or lower half of the wave. Thus, three consecutive time steps are
needed to uniquely determine the current position on a sine wave with known frequency, and
subsequently to predict the next point.

Figure 5.3: Illustration showing that three consecutive points are necessary to determine the current
position on a sine wave and predict the next step

The SSNN must, therefore, have the following four inputs:

1. Desired phase shift angle β

2. Speed deviation at time t

3. Speed deviation at time t− 1

4. Speed deviation at time t− 2

Having the inputs and outputs established the training data set can be created. As mentioned,
three parameters can vary in the sine wave. Each must be given upper and lower bounds and
a resolution, determining how many iterations of each parameter is performed. A larger res-
olution will give a more accurate controller, but will quickly increase the size of the data set
and subsequently the training time. Therefore, a balance must be made between accuracy and
training time.
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Table 5.1 shows the selected bounds and resolution for the varying parameters. Theoretically,
the phase shift β could vary between −180° and 180°. However, experiments have shown
that phase shift values less than 0° or greater than 130° never cause improved damping, so the
training set is limited to those values. From Figure 4.9 it can be observed that the dominant
mode of oscillation of the machine under study is at 3.2 Hz, giving a period T = 0.3125 s.
This will be the frequency the SSNN is trained at. Since consecutive time steps are needed,
the simulations must be discrete. Experimentation in Simulink has proven that a sampling time
greater than Ts = 3 · 10−5 s gives highly inaccurate results. The training data sampling time
must be the same as the simulation sampling time. Thus, Ts is set at this maximum to keep the
training data set as small as possible. The time step resolution then becomes T/Ts.

Lower bound Upper bound Resolution

Phase shift β 0° 130° 90
Amplitude 0.001 0.1 30
Time step 0 s 0.3125 s 10 417

Table 5.1: The bounds and resolution for the SSNN training data set

The training data set is then built iteratively. A pseudo-code of how the set is created is given in
Figure 5.4. The set can easily become very large, into the tens of millions, making a high-end
computer very beneficial for training. In this case, the training data set size becomes:

30 · 90 · 10 417 = 28 125 900 (5.3)

The SSNN is chosen to be a function fitting shallow NN, with one hidden layer having 10
neurons. See Appendix A for the training parameters and settings used to create the NN and
Appendix B for a guide on how such an NN can be trained in MATLAB.

For every amplitude Ai

  For every phase shift βj

    For each time step tk in one period

      SSNN input 1 = βj

      SSNN input 2 = Ai sin(ωtk)

      SSNN input 3 = Ai sin(ωtk-1)

      SSNN input 4 = Ai sin(ωtk-2)

      SSNN output = Ai sin(ωtk + βj)

    end

  end

end

Figure 5.4: Pseudo-code for building the SSNN training data set

5.2 Performance assessment
When the SSNN is fully trained, there is a need to verify its performance. This section will
assess the network’s performance as a stand-alone sine wave predictor. Its performance for
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rotor angle damping compared to other PSS models will be covered in Section 5.4. The test in
this section involves inputting a damped sine wave while requesting various phase shifts. The
testing system in Simulink is shown in Figure 5.5. A sine wave with a damped element is given
to the input of the SSNN such that:

S(t) =

{
As sin(ωs t) , t < T0

As sin(ωs t) e
−k(t−T0) , t ≥ T0

(5.4)

where S(t) is the sine wave used as reference and input to the SSNN; T0 is the time where the
damping component is enabled; k is the damping coefficient; As is the sine wave amplitude and
ωs is its frequency.

Figure 5.5: Simulink model for testing the SSNN response to a damped sine wave

In Figure 5.6, four tests are done with amplitudes and phase shifts spanning the ranges defined
in Table 5.1. The amplitude is initiated at 0.1 and is decreased when the damping component is
enabled. The tested phase shifts are β = {0, 40, 90, 130} degrees, and the frequency is 3.2 Hz.
Along with the SSNN output, the ideal phase-shifted wave As sin(ωs t+β) is shown to validate
its performance.

It is clear from the test that the SSNN tracks the ideal wave very well at all phase shifts. Slight
deviations appear when the amplitude is varying, as the network is unable to predict the future
amplitude values. This confirms that the SSNN performs well at the frequency it was trained
for.

The natural follow-up is to analyse the response to other frequencies. It is expected that the per-
formance will decrease at frequencies differing from the training frequency. See Figure 5.7. It
illustrates that if three consecutive points y1, y2, y3 on a sine wave are known and the frequency
is not fixed, the wave can not be uniquely determined. These consecutive points can be found on
both a high-amplitude, low-frequency wave and on a low-amplitude, high-frequency wave. In
the "world" of the SSNN, only sine waves at 3.2 Hz exist. So if it observes a wave with higher
frequency, it will interpret it as a 3.2 Hz wave of high amplitude. The opposite applies for lower
frequencies, as it will interpret it as a low-amplitude wave. The SSNN will be able to follow
the input wave in terms of frequency, but the amplitude and phase responses will deteriorate as
a result. For this reason, training the network for more than one frequency will not help either,
as it would be unable to distinguish them. The outcome would be a network behaving as if it
was trained on the average of all the training frequencies. For example, if the SSNN is trained
on 1 and 3 Hz, its best operating point would be at 2 Hz. Furthermore, since the SSNN is
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(a) SSNN performance at 0° phase shift (b) SSNN performance at 40° phase shift

(c) SSNN performance at 90° phase shift (d) SSNN performance at 130° phase shift

Figure 5.6: Performance assessment of the SSNN at requested phase shift β of 0, 40, 90 and 130 degrees.
The frequency is fixed at 3.2 Hz. The input sine wave is shown along with the ideal phase shifted output
wave for validation. The SSNN seems to track the ideal output well.

trained on periodic signals centred at the zero-line, it is unfamiliar with non-oscillatory errors.
Its response to steady-state errors or non-oscillatory modes can therefore not be expected to be
of high quality.

Electromechanical modes oscillate at 0.1-5 Hz, which is the frequency range of interest. The
frequency response is created by exposing the network to the various frequencies and observing
the output amplitude and phase. At each frequency, several values of β are entered. In Figure 5.8
the gain and phase responses of the SSNN is shown. The ideal gain response would be a constant
0 dB gain at all scenarios and the ideal phase response would be a constant phase shift equal to
β at all frequencies. The figure shows that when β = 0° this is the case. Additionally, at the
training frequency of 3.2 Hz, the response is nearly perfect with zero gain and phase equal to
β.

The SSNN performs worst at frequencies much lower than the training frequency. For β close
to 0° there is little attenuation and phase drift. At β = 90° the attenuation peaks and the phase
is least stable (except at exactly 90°, where has little phase drift). With β increasing from 90°
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Figure 5.7: Graph illustrating that three consecutive points on a low-frequency high-amplitude sine wave
may also be found on a low-amplitude high-frequency wave.

the performance improves again. At frequencies higher than the training frequency the response
behaves oppositely to the lower frequencies, yet to a much lesser degree.

To make a controller more fitted to work at various frequencies the SSNN could be trained at a
lower frequency, say 1.5 Hz. The frequency response to such an SSNN is shown in Figure 5.9.
The phase response is improved, as it has a larger area with constant phase shifts. The gain at
higher frequencies, however, has increased. Here, it can be more clearly seen that for frequen-
cies lower than the training frequency the phase converges to either 0° or 180°, depending on
whether β is greater than 90°, and the phase slowly converges to 90° at higher frequencies (with
the notable exception when β = 0°).

5.2.1 Correcting the amplitude and phase drifts
The neural network structure the proposed SSNN is built on is relatively simple. It is a 3-
layer feedforward network trained with supervised learning. Its performance is therefore highly
limited by the training data. Any operation outside the training data set will yield suboptimal re-
sults. This subsection will briefly discuss how these deviations may be corrected. Implementing
and testing the corrections will, however, be left to further studies.

If the frequency of oscillation is known, but at a frequency different from the training frequency,
it could be possible to develop an algorithm to compensate the deviations. Take Figure 5.8.
Unique positions on the gain response plot can be found with a specified frequency and phase
shift angle β. Thus, corresponding gains can be provided to the output signal to compensate
the attenuation (or gain) of the SSNN. Still, this would not fix the phase drift. In this case, an
SSNN trained at a lower frequency, such as in Figure 5.9, would be beneficial, as there is less
phase drift. Another alternative would be to implement an array of SSNNs trained at different
frequencies and enable them according to the current oscillation frequency. In that case, com-
missioning the array according to a Fourier transform of the input could even accommodate for
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(a) Gain response of SSNN at low frequencies

(b) Phase response of SSNN at low frequencies

Figure 5.8: Frequency response of the SSNN at the low electromechanical frequencies. At the training
frequency of 3.2 Hz it performs almost perfectly, though at other frequencies there is some deviation.
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(a) Gain response

(b) Phase response

Figure 5.9: Frequency response of the SSNN at the low electromechanical frequencies when trained
at 1.5 Hz. This controller shows less extreme deviations at low frequencies, with a trade-off of larger
deviations at high frequencies.
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harmonics in the oscillation.

If the frequency of oscillation is not known, the above would not work. The simple design of
the SSNN is no longer sufficient. Therefore, more complex types of neural networks can be
considered. For example, recurrent neural networks (RNN) based on long short-term memory
(LSTM) have been successfully used to forecast periodic signals [65]. RNNs not only use the
current input signal to determine its output, but it also uses the output from the previous time
step. The LSTM design gives an option to how much the network should remember or forget
from its previous time steps. The network does no longer only have inputs and outputs, it also
has a state which is updated through time. Applying such a network to the sine-shifting problem
could solve the issue of gain and phase drift without the need for external compensation. The
theoretical details of LSTM are beyond the scope of this chapter, but a description of the LSTM
network, along with an example where it is applied to forecast a discrete sine function, can be
found in Part II of [65].

5.3 Applying as a PSS

The SSNN ideally gives a gain of 0 dB. Its input is the rotor speed deviation ∆ω and its output
is the PSS contribution to the AVR vpss, which is added to the voltage error Vref −Vc. However,
since ∆ω usually is much smaller than the voltage error during disturbances, a PSS gain must
be added for the SSNN to have any real impact on the system. The size of this gain should not
be so big as to override the AVR or saturate it to easily. In the machine system under study, a
PSS gain of 50 has been found to give a good contribution. This gain will be kept constant for
the remainder of this study. Furthermore, the frequency of oscillation of the system is 3.2 Hz,
so the controller shown in Figure 5.8 will be applied.

The SSNN (with the aforementioned gain) replaces the CPSS in its entirety. Moreover, the AVR
is considered a simple gain with the control voltage being 100 % into the step-up transformer,
such that the back-calculation in Section 4.2.1 can be circumvented. The test system then looks
like Figure 5.10, following the other implementation procedures in Section 4.2. Three major
quantities affect the test results: The pre- and post-disturbance external reactances and the phase
shift angle β. As a baseline, a small step in reactance from 0.03 to 0.05 pu is performed. The
step is made four times at different phase shifts, β = {0, 40, 90, 110} deg. The step responses
can be seen in Figure 5.11.

There are a few important observations that can be made. Firstly, the value of β alters the
frequency of oscillation. As discussed in the previous section, this will impact the performance
of the SSNN, where low frequencies generally have the worst performance. Secondly, the
SSNN is well able to improve the rotor oscillation damping by increasing the angle β. Yet, if
it is increased too much, it has a detrimental effect on the damping. This means an optimum
exists. With the goal of finding the best value for β the simulation was run iteratively for
several different pre- and post-disturbance values of Xe. The angle β was incremented by
10° each iteration. The MATLAB command lsiminfo was used to determine the damping
performance and consequently the angle of largest damping for each Xe step. However, the
best angle changes whether settling time or overshoot is prioritised. Tables 5.2 and 5.3 show
the obtained best values for β for each Xe step, when prioritising settling time and overshoot
respectively. Consider Figure 5.11. The first-swing overshoot (initial peak) is nearly equal for
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Figure 5.10: Model schematic for testing the SSNN performance as a PSS. It is redrawn from the
Simulink diagram for a cleaner look

all angles. The value of the second peak, however, varies greatly. Thus, the overshoot in these
tables is considered the second-swing overshoot. It can be seen that for the majority of the
reactance steps, a phase shift β between 40°− 70° gives the best performance.

Post-disturbance Xe [pu]
0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Pr
e-

di
st

ur
ba

nc
e

X
e

[p
u]

0.005 N/A 100 100 90 80 80 70 70 70 70 40
0.01 100 N/A 40 90 80 40 70 70 60 60 60
0.02 10 40 N/A 30 40 70 70 70 60 60 60
0.03 40 30 40 N/A 30 70 70 70 60 60 60
0.04 40 40 40 50 N/A 70 70 70 60 60 60
0.05 40 40 40 60 50 N/A 70 70 60 60 60
0.06 40 40 70 60 50 50 N/A 70 60 60 60
0.07 50 50 70 60 50 50 40 N/A 40 60 60
0.08 50 50 70 60 50 50 50 40 N/A 60 60
0.09 50 50 70 60 50 50 50 40 40 N/A 60
0.1 50 50 50 60 50 50 50 50 40 40 N/A

Table 5.2: Phase shift angles β for several pre- and post-disturbance external reactances Xe giving the
shortest settling time. All angles are in degrees.

5.4 Comparison to other PSS approaches
In the previous sections and chapters, three different approaches to the PSS problem has been
introduced: the static CPSS, auto-tuned CPSS and the SSNN applied as a PSS. In this sec-
tion, a comparison of the damping performance of these approaches will be given. Also, the
performance when applying no PSS models will be shown. The disturbance will be a step in
the external reactance Xe, where four tests will be made: small step-up, large step-up, small
step-down and large step-down. Table 5.4 shows the four steps along with corresponding plots
of the response in rotor speed deviation ∆ω.
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Figure 5.11: Response of the SSNN for a step in external reactance from 0.03 to 0.05 pu, at four different
phase shifts β.

The CPSS model in this study has a single lead/lag stage. In the auto-tuned CPSS approach
only the gain Kpss and lead/lag numerator time constant T1 are auto-tuned (see Table 4.1 for
their values), while the other parameters are kept constant. In the static CPSS simulations, Kpss

and T1 are tuned according to the pre-disturbance reactance (see Tables 4.1 and 5.4) and kept
constant during the step, while the other parameters are the same as for the auto-tuned CPSS.
See Appendix A for the numerical values of the constant parameters applied in the simulations.
For the SSNN, the phase shift β is chosen to give the smallest settling time for each step,
following Table 5.2.

Table 5.5 presents the respective settling times for the speed deviations in Figures 5.12 to 5.15
to show quantitatively how the different PSS approaches perform. The settling time is counted
from when the step occurs and until the signal settles within ±2 % of its steady-state value. As
expected, applying no PSS gives very poor damping and is the worst option of the four. The
auto-tuned CPSS seem to only provide improvement in damping from the static CPSS during a
step-up. During a step-down, it performs worse. However, It is clear from all four step response
tests that the SSNN provides superior oscillation damping, despite its imperfections described in
the previous sections. It is able to reduce the settling time to well under 1 s for all the performed
tests, while the other approaches are in the 2-4 s range.
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Post-disturbance Xe [pu]
0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Pr
e-

di
st

ur
ba

nc
e

X
e

[p
u]

0.005 N/A 40 40 60 60 60 60 60 60 60 60
0.01 60 N/A 60 60 60 60 60 60 60 60 60
0.02 70 70 N/A 60 60 50 60 60 60 50 60
0.03 70 70 70 N/A 60 60 60 60 60 60 70
0.04 60 60 70 70 N/A 60 50 50 60 50 60
0.05 60 60 60 70 70 N/A 50 50 50 50 50
0.06 60 50 60 70 70 70 N/A 50 50 50 50
0.07 60 60 60 50 60 70 60 N/A 40 40 50
0.08 60 60 60 60 60 60 60 60 N/A 50 50
0.09 60 60 60 60 60 60 60 60 60 N/A 70
0.1 60 60 60 60 60 60 60 60 60 50 N/A

Table 5.3: Phase shift angles β for several pre- and post-disturbance external reactances Xe giving the
smallest second-swing overshoot. All angles are in degrees.

Pre-disturbance Xe [pu] Post-disturbance Xe [pu] Response in ∆ω

0.03 0.05 Figure 5.12
0.005 0.1 Figure 5.13
0.05 0.03 Figure 5.14
0.1 0.005 Figure 5.15

Table 5.4: Performed reactance steps and responses in speed deviation for comparison of the four PSS
approaches: No PSS, static CPSS, auto-tuned CPSS and the SSNN applied as a PSS.

Reactance step [pu]
Settling time [s]

No PSS Static CPSS Auto-tuned CPSS SSNN

0.03→ 0.05 >5 2.482 2.339 0.621
0.005→ 0.1 >5 2.909 2.085 0.878
0.05→ 0.03 >5 2.732 3.161 0.537
0.1→ 0.005 >5 3.474 4.331 0.710

Table 5.5: Settling time (to ±2 % of the steady-state value) for each reactance step across all PSS
approaches. The SSNN is able to get the settling time well below 1 s, which is much better than the other
approaches.
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Figure 5.12: Comparison of PSS approaches for a step in Xe from 0.03 to 0.05 pu

Figure 5.13: Comparison of PSS approaches for a step in Xe from 0.005 to 0.1 pu
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Figure 5.14: Comparison of PSS approaches for a step in Xe from 0.05 to 0.03 pu

Figure 5.15: Comparison of PSS approaches for a step in Xe from 0.1 to 0.005 pu
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Chapter 6

Discussion and conclusion

6.1 Discussion

This section gives a discussion of the results and methodology of the work and highlights pos-
sible pitfalls that may have been encountered, providing useful insight for potential reproduc-
tions.

It is important to realise that many components have been idealised in this thesis. In a real-
life situation, no component is ideal. Considerations of instrument transformers, measurement
noise, thyristor firing, saturation effects etc. have been omitted entirely. Their omission was
necessary due to the limited time of a master thesis. Nevertheless, any lost accuracy due to this
does not impact the conclusions and take-aways of the work in any meaningful way.

When doing computer simulations one must keep in mind that simulations are only simplified
reflections of reality. However, sophisticated software solutions such as MATLAB/Simulink
can provide simulations that are more than accurate enough for engineering applications. Still,
user-defined settings impact accuracy. In the discrete simulations performed in this thesis, a
sampling time of 3 · 10−5 s was used, to minimise the required size of the neural network
training data set. This sampling time was found to be close to its maximum value still giving
expected behaviour of the machine model. Even though the simulation behaved as expected,
there is some risk of lost accuracy in running it close to the maximum sampling time. This could
also explain the ripples observed in the SSNN responses in Figures 5.14 and 5.15. Additionally,
in real-life measurements the sampling time is usually much larger than this, meaning any real
implementation needs to be adapted to the measurements’ sampling rate.

The two algorithms introduced in Chapter 3 are both well-established techniques with multiple
variations and adaptations. The PSO variation was chosen due to the easily accessible Global
Optimisation Toolbox, and the NN structure was chosen based on its simplicity. This means
that the algorithm variations implemented in this thesis may not be the best-performing for this
application. In addition, reproducing results acquired from PSO or NN 100 % accurately is
not possible, since the PSO procedure has stochastic elements, and retraining a NN from the
same data will give a unique outcome every time. Using neural networks is a simple way to
"brute force" adequate solutions to complex problems. This can be an advantage for engineers,
as one may solve an advanced problem without needing to go into all the gritty details under-
lying the problem. Still, the same argument can be used to claim it a disadvantage, as a good
understanding of the topic becomes less of a requirement to solve it.
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As the time domain plots of the machine system model show, Figures 5.11 to 5.15, the rotor
speed deviation does not settle to the expected steady-state value of zero. This is most likely
a result of the Simulink solver. If the simulations were run for a long time, this error would
slowly dissipate. Regardless, the error is very small, in the 10−5 pu range, and is only visible
due to the relatively small perturbations performed in these tests. Thus, the error has little
impact on the electrical models. However, the SSNN has been trained purely on sine waves
centred on the zero-line. Therefore, it can get "confused" by the steady-state error and produce
unexpected results. Again, this error is small enough for the impact to be small, but an impact
nonetheless.

Chapter 4 introduced a procedure for auto-tuning the conventional power system stabiliser
(CPSS). The creation and implementation of the auto-tuner were successful, yet its performance
was not consistently better than the static CPSS. Since this approach only gave improved damp-
ing when the step made the PSS gain increase, it implies that the gains obtained from the PSO
were lower than optimal. Most likely, there is a discrepancy between the linear model derived
in Section 2.3 and the dynamic model in Simulink, making the optimal parameters in one dif-
ferent from the other. Moreover, using just the instantaneous value of the external reactance
Xe as input to the auto-tuner may have been insufficient. Adding elements to the input such as
its rate of change, or even machine measurements such as power delivery or speed deviation,
could improve the prediction of optimal parameters. Additionally, giving the tuning parameters
different priorities to the tuner might improve the performance further, as the PSS gain likely is
of greater importance to the damping than the lead/lag time constants. Nonetheless, the auto-
tuning system works and can be implemented further. Only the parameter optimisation needs
to be revisited.

The sine shifting neural network (SSNN) was introduced in Chapter 5. Evaluation of the SSNN
shows that a properly designed and implemented neural network can greatly improve the rotor
oscillation damping. Its design is based upon the fact that the speed deviation can be considered
a damped sinusoid, such that it does not rely on any heavy electrical machine modelling. This
will consequently limit its range to oscillatory behaviour, making it unfit at responding properly
to steady-state errors or non-oscillatory instabilities. Still, the design shows adaptability in that
it can easily be retrained to work optimally on any frequency of oscillation. Moreover, having
the phase shift of the PSS as a control variable gives great control over its response and can be
adaptively adjusted. When also considering the gain external to the NN, the design gives full
control over the gain and phase shift of the response, giving the operator a highly adaptable
controller for responding to oscillatory behaviour. This also implies that the SSNN design is
not limited to electrical engineering applications, but can also be applied to other fields where
sinusoidal signals are prominent.

The work in this thesis has answered, or partially answered, all objectives stated in Section 1.3.
The most effort went into the synchronous machine modelling and the neural network de-
signs. A few dead ends in modelling approaches were encountered before the final designs
were reached. This unfortunately limited the time available to explore the proposed solutions
further.
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6.2 Conclusion
This thesis has explored two ways of applying neural networks (NN) to create an adaptive
power system stabiliser (PSS) design for improved damping of rotor oscillations in a salient-
pole synchronous machine.

The first approach involved expanding the conventional PSS (CPSS) with an NN auto-tuner.
The NN was trained on optimised PSS parameters obtained from the particle swarm optimisa-
tion (PSO) technique, optimising a simplified linear model of a synchronous machine connected
to an infinite bus through an external (Thévenin) impedance. The auto-tuner observes the in-
stantaneous value of the external reactance Xe and continuously tunes the PSS accordingly. It
was shown how the auto-tuning system can be successfully implemented into Simulink. How-
ever, even though the auto-tuner functioned as intended, the proposed parameter optimisation
did not result in a consistent improvement in oscillation damping from the static CPSS.

The second approach involved introducing the sine shifting neural network (SSNN) controller,
where its phase response is a controlled input. It takes an oscillating signal and phase shifts it
by the input angle β. The oscillating input is the rotor speed deviation, and along with a gain
the SSNN replaces the CPSS in its entirety. The great advantage of the proposed design is its
simplicity in that it does not rely on any electrical machine modelling. Implementing the SSNN
as a PSS shows that it can significantly improve the rotor oscillation damping from the CPSS
designs. Where the static and auto-tuned CPSS consistently had a settling time of 2-4 s in the
performed step-response tests, the SSNN was able to reduce it to under 1 s. Giving the SSNN a
phase shift β of 40 − 70° has proven to give the best damping performance throughout several
step-response tests.

The work in this thesis shows that neural networks have great potential in improving the design
of power system stabilisers. They can be implemented to dynamically tune existing conven-
tional PSSs, or to replace the conventional design entirely. The implication of this work is a
potential for better-performing synchronous machines as the modern power system progresses
towards a larger share of renewable energy.

6.3 Suggestions for further work
This thesis only skims the surface of the topic at hand. There is much to be explored and
expanded from this work.

6.3.1 Do a large-signal disturbance study
This thesis has been purely focused on small-signal stability. However, it would be interesting to
analyse the large-signal response of the proposed systems. In that case, some of the assumptions
made do no longer hold. For example, saturation effects in the machine and controller limiters
are more prominent when the disturbance is large.

6.3.2 Expand the optimisation scope
This work has only studied the PSS for a single-machine system. There are a few ways the
scope to be expanded for interesting studies:
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• Include the AVR in the optimisation. The AVR design could be simple, as in this thesis,
or a more advanced model

• Implement a turbine system model to include the governor action

• Replace the infinite bus with a small power system, where each machine is optimised
with the proposed methods.

6.3.3 Improve the CPSS auto-tuner
As discussed, the auto-tuner proposed in Chapter 4 did not provide consistent improvement
in damping to the machine. This was likely due to the optimisation not matching the testing
system in Simulink. A different approach to the optimisation could be explored to alleviate this,
be it a different linear model variation, initial conditions definition, optimising algorithm or a
different approach altogether. Nonetheless, the auto-tuning system from this work can easily be
adapted for a new optimisation by re-training the neural network.

6.3.4 Improve the SSNN design
As was discussed in Section 5.2, the SSNN controller does not perform optimally on all condi-
tions, due to its relatively simple NN structure. As suggested in Section 5.2.1, a more advanced
NN, such as a recurrent NN, might be more fitted as a versatile sine predictor. This could
resolve the issues of unwanted attenuation or gain, phase drift and inaccurate response to non-
oscillatory errors. Additionally, there is an opportunity of automatically tuning the external
SSNN gain and phase shift β to changes in the operating condition. It would require a more
comprehensive study to derive an optimiser for these values.
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Appendicies

There are two appendices for this thesis:

Appendix A contains tables with the numeric values of all constant model parameters used in
the simulations during the work of this thesis. Additionally, the Simulink solver settings and
software versions are provided.

Appendix B provides a guide on how a simple feedforward neural network, as applied in this
thesis, can be created in MATLAB.
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Appendix A

Model parameters used

Throughout this thesis, several simulations have been made. The constant model parameters
have been consistent for all simulations. This appendix gives an overview of these parame-
ters.

The machine has been considered a would-field salient-pole synchronous machine. Table A.1
gives the parameters entered into the machine model in Simulink. Table A.2 shows the constant
parameters of the excitation system and the external network. Table A.3 gives the parameters
of the simplified linear model that are not specified elsewhere.

Parameter Symbol Value Unit

Rated power Sn 32 MVA
Rated voltage Vn 11.5 kV
Nominal frequency fn 50 Hz
d-axis synchronous reactance Xd 1.18 pu
d-axis transient reactance X

′

d 0.26 pu
d-axis subtransient reactance X

′′

d 0.16 pu
q-axis synchronous reactance Xq 0.8 pu
q-axis subtransient reactance X

′′
q 0.16 pu

Stator winding leakage reactance Xl 0.1 pu
d-axis transient short-circuit time constant T

′

d 1.3 s
d-axis transient open-circuit time constant T

′

d0 6 s
d-axis subtransient short-circuit time constant T

′′

d 0.06 s
q-axis subtransient short-circuit time constant T

′′
q 0.06 s

Stator winding resistance Rs 0.003 pu
Pole pairs pp 6
Inertia constant H 2.51 s
Friction and windage damping factor F 0 pu

Table A.1: Parameters of the synchronous machine model, as entered into Simulink.

The names and versions of the software used to perform calculations, simulations and plot-
ting in the work of this thesis are given in Table A.4. The solver settings used in Simulink is
given in Table A.5. Here, the settings from both the continuous and discrete simulations are
shown.



Parameter Symbol Value Unit

AVR gain Ka 200
AVR output limits Vf,max, Vf,min ±5 pu
PSS output limits Vpss,max, Vpss,min ±0.15 pu
PSS lead/lad denominator time constant T2 0.05 s
PSS wash-out filter time constant Tw 2 s
Reference voltage Vref 1 pu
Constant mechanical torque Pm 1 pu
Step-up transformer reactance Xt 0.8 pu
External network resistance Re 0.0005 pu
Infinite bus voltage (Line-Line RMS) Vinf 1 pu

Table A.2: Parameters of the excitation system and external network

Parameter Symbol Value Unit

Generator power factor (lagging) PF 0.8
Damping coefficient KD 3 pu
Terminal voltage trancducer gain Kr 1
Terminal voltage transducer time constant Tr 0.2 s

Table A.3: Parameters of the linear generator-infinite bus system not specified elsewhere

Software name Version

MATLAB R2018a update 6
Simulink 9.1 (R2018a)
Simscape 4.4
Simscape Power Systems 6.9
Optimization toolbox 8.1
Global optimization toolbox 3.4.4
Neural network toolbox1 11.1
Parallel Computing Toolbox 6.12
Control system toolbox 10.4
Maple 2018.2

Table A.4: Names and versions of software used in this thesis for calculations, simulations and plotting.

When training the neural networks in this thesis, the network parameters were set as in Ta-
ble A.6. The settings are shown for both the CPSS auto-tuner in Chapter 4 and the SSNN
in Chapter 5. Lastly, the parameters used in the PSO algorithm is given in Table A.7. The
parameters not specified here are kept at their default values as given in [51].

1The Neural Network toolbox has been integrated into the Deep Learning Toolbox in later MATLAB versions,
which has been referred to regularly in the thesis.



Setting name Continuous Discrete

Solver ode23tb variable-step ode23tb variable-step
Max step size 5 · 10−4 s 3 · 10−5

Min step size 1 · 10−14 s auto
Relative tolerance 1 · 10−7 1 · 10−7

Zero-crossing control Enable all Enable all
Zero-crossing algorithm Adaptive Adaptive

Table A.5: Solver settings in Simulink for both the continuous and discrete simulations

Setting CPSS tuner SSNN

Hidden layer size 10 10
Training subset ratio 70 % 75 %
Testing subset ratio 15 % 10 %
Validation subset ratio 15 % 15 %
Training algorithm LM LM
Error function MSE MSE
Activation function tanh tanh

Table A.6: Settings used when creating the neural networks in this thesis

Setting Value

Kpss bounds [1,400]
T1 bounds [0.001,4]
Swarm size 200
c1 and c2 1.49

Table A.7: Settings used in the PSO algorithm



Appendix B

Creating a neural network in MATLAB

In this appendix, a brief guide will be given on how to create and train a shallow (3-layer)
feedforward neural network in MATLAB. The Deep Learning Toolbox [61] is required for this
procedure. As this thesis has used NNs for function fitting, this is the type being focused on in
this appendix. A similar guide is also provided in [66].

Step 1 - Pre-process training data
The training data needs to be formatted in a particular way for the training function to interpret
it correctly. The inputs need to be put in an R-by-Q matrix, where R is the number of inputs,
and Q is the number of data points. The corresponding targets must be put in an U-by-Q matrix,
where U is the number of outputs of the network. The input matrix will be denoted as X and
the target matrix as T .

Step 2 - Determine network parameters
In any NN application – MATLAB or not – some network and training parameters must be
chosen. Firstly, choose the number of neurons in the hidden layer, the default being 10. Next,
determine how much of the data set should be reserved for training, testing and validation, the
default being 70 %, 15 % and 15 % respectively. Then, decide which training algorithm should
be applied. The default is the Levenberg-Marquardt algorithm.

Step 3 - Define network
First, delcare the network as a function fitting neural network with, say 12 hidden neurons. Add
the argument 'trainlm' to define the Levenberg-Marquardt training algorithm,

hls = 12; %Hidden layer size
tralg = 'trainlm'; %Training algorithm
net = fitnet(hls,tralg); %declare fitnet

Next, define the training data set division,

net.divideParam.trainRatio = 75/100; %Training data subset
net.divideParam.valRatio = 10/100; %Validation data subset
net.divideParam.testRatio = 15/100; %Testing data subset

Step 4 - Train network
The training of the network is initated by,

[net,tr] = train(net,X,T);



When this command is run, the NN training window opens, which contains information about
the progress and allows for interruption at any time.

If the Parallel Computing Toolbox [67] is installed, adding the argument 'useParallel','yes'
will start a local parallel pool with the available processor cores. Alternatively, adding the ar-
gument 'UseGPU','yes' with an appropriate GPU installed, the training will employ GPU
processing. Using this toolbox is recommended if appropriate hardware is accessible, as it will
greatly increase training speed.

Step 5 - Validate network
The resulting variable net will be the trained network and tr will contain the training record,
which is information about the training data, epochs and performance. To check the NN perfor-
mance, one can compare its output to the targets. Conveniently, tr has the performance of the
training, testing and validation set stored. The performance measure is the same as the network
was trained with, the default being the mean square error.

perf_tr = tr.best_perf; %Getting performance of training set
perf_test = tr.best_tperf; %Getting performance of testing set
perf_val = tr.best_vperf; %Getting performance of validation set

Alternatively, using the perform function, the network’s performance to the validation data
set can be checked. tr.valInd contains the indices of X that are reserved for the validation
subset.

Xvalset = X(tr.valInd); %Get the validation set from X
Tvalset = T(tr.valInd); %Get the validation set from T
y = net(Xvalset); %Get NN output for the validation set
perf = perform(net,Tvalset,y); %Get performance measure of validation set

The performance of all three subsets should be of similar size. The network can be re-
trained with different hidden layer size, training algorithm etc. to check if the performance
improves.

When applying the trained NN iteratively in a script, using output = net(input)

has been found to be slow. Rather, a separate MATLAB function can be created with
genFunction(net). Calling this function rather than the net object is much faster

To get the trained network onto a Simulink model, the genSim(net) function is very conve-
nient. It automatically generates a NN block in the Simulink environment that can easily be
copied into the relevant model.

Alternative way of creating the NN
The Deep Learning Toolbox comes with a handy tool to train simple networks such as this.
Typing nnstart in the MATLAB command window opens the NN tool start page. The fitting
app is appropriate for this application. Alternatively, nftool could be entered directly to the
command window. The tool provides a user-friendly interface to perform all the actions de-
scribed in the above steps. The drawback is having slightly less control over all the parameters
involved and less automation due to the required user engagement.
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