
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 P
ow

er
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Åsmund Sælen

Topflow, a Toolbox for Specialized
Power System Analysis

Master’s thesis in Energy and Environmental Engineering

Supervisor: Olav Bjarte Fosso

July 2020

Åsmund Sælen

Topflow, a Toolbox for Specialized
Power System Analysis

Master’s thesis in Energy and Environmental Engineering
Supervisor: Olav Bjarte Fosso
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electric Power Engineering

Abstract

Power system analysis is a branch of electrical engineering which is essential in design-
ing electrical power systems. Simulations show if systems operate as expected, can withstand
stress, and protect against failures. Many tools for power system analysis exist; one is a tool-
box created by NTNU professor Olav Bjarte Fosso in the 90s. The toolbox consists of vari-
ous FORTRAN-routines that do simulations such as Newton-Rapshon load-flow, continuation
load-flow, contingency analysis, and security-constrained DC load-flow. Previous projects have
worked towards making the toolbox available in Python, a popular object-orientated program-
ming language. The speed and the functionality of the program is preserved by writing parts of
the modernized code in C. The primary goal of this master’s thesis is to update the simulation-
function "acsolve", which performs a Newton-Rapshon load-flow, and make sure it matches the
performance of existing open-source toolboxes in Python.

The specialization project "Toolbox for Power System Analysis" [1] from 2019 by Åsmund
Sælen purposed an initial implementation of acsolve. However, the implementation lacked
functions for initializing the input-data; hence, the program could not run simulations on large
power systems. This master’s thesis presents Python-functions that communicates with Excel-
files, and a more sophisticated way of initializing the parameters of the simulation-functions.
An additional algorithm named "decsolve", which performs fast-decoupled load-flows, is im-
plemented. The updated program is tested on various MATPOWER standard-cases to study
the code’s reliability and performance. Profiling-tools available in Python are used to optimize
the initial implementations, and the module "timit" is used to benchmarks the program against
other open-source projects.

The result of the master’s thesis is the toolbox "Topflow", which consists of translated
load-flow functions that originate from the FORTRAN-code developed by Olav Bjarte Fosso.
Topflow uses a combination of Python and C to boost the program’s speed, and the functions use
sparse methods to save memory and optimize the performance. The Newton-Rapshon load-flow
function (acsolve) gives reliable results in all the tests, and the speed matches the open-source
Python-projects "pypower" and "pandapower". The second simulation-function, decsolve, gave
satisfactory results on small and medium-large power systems, but not on large. The conclusion
of the master’s thesis is that it reached the primary goal of updating acsolve, and gave recom-
mendations on how to resolve the apparent bugs in decsolve. Future contributors can use the
documentations in this thesis to complete the translation of the original toolbox.

i

Samandrag

Kraftsystemanalyse er ein vesentleg del av å utvikle elektriske kraftsystem. Simuleringar
viser om systema opererer som forventa og kan beskytte mot feil. Det finnast mange verktøy
for å analysere kraftsystem, eit av dei er ein kjeldekode som NTNU professor Olav Bjarte Fosso
utvikla på 90-talet. Koden, som har fått namn «Topfllow», er bygd opp av ulike FORTRAN-
rutinar som simulerer blant anna Newton-Rhapson last-flyt, CPF-analyser, utfalls-analyser og
optimal DC last-flyt. Tidlegare prosjekt har arbeidt for å implementere Topflow i Python, eit
mykje brukt objekt-orientert programmeringsspråk. Ytelsen og funksjonaliteten til det originale
programmet er teke vare på ved å skrive delar av den moderniserte koden i C. Primærmålet med
denne masteroppgåva er å oppdatere simuleringsfunksjonen "acsolve", som utøver Newton-
Rhapson last-flyt, og sørgjer for at den køyrer like effektivt som liknande modular tilgjengeleg
i Python.

Spesialiserings prosjektet "Toolbox for Power System Analysis" [1] frå 2019 av Åsmund
Sælen presenterte eit førsteutkast til oppdateringa av acsolve. Denne implementeringa mangla
funksjonar for å setje input-data; noko som medførte at programmet ikkje var i stand til å køyre
simuleringar på store kraftsystem. Denne masteroppgåva presentera funksjonar som kommu-
niserer med Excel-filer, og ein meir sofistikert måte å setje parameterane av simuleringsfunksjo-
nane på. Topflow er også oppdatert med ein ny rutine, "decsolve", som utfører last-flyten FDLF.
Det oppdaterte programmet er testa på fleire MATPOWER standard system for å undersøke kor
påliteleg og rask koden er til å gjennomføre analysane. Tilgjengelege modular i Python er brukt
for å optimalisere simularings- funksjonane.

Denne masteroppgåva resulterer i den oppdaterte versjonen av Topflow. Topflow nyttar no
ein kombinasjon av Python og C for å auke programmet sin ytelse, saman med metoder som
utnytter fordelane til glissne (sparse) matriser. Newton-Rhapson last-flyt funksjonen (acsolve)
gjer pålitelege resultat på alle systema den er testa på, og den er minst like rask som dei ek-
sisterande Python-programma "pypower" og "pandapower". Den andre simuleringsfunksjonen,
decsolve, gjer tilfredsstillande resultat for små og middels store kraftsystem, men ikkje for
store. Denne masteroppgåva konkluderer med at primærmålet, å oppdatere acsolve, er nådd.
Oppgåva inneheld også tilrådingar for korleis framtidige prosjekt kan finne feila i rutinen dec-
solve. Framtidige bidragsytarar kan bruke dokumentasjonen i denne masteroppgåva i arbeidet
mot å fullføre omsetjinga av den opphavlege FORTAN-koden, og ferdigstille Topflow.

i

Table of Contents

Abstract i

Samandrag i

Table of Contents iv

List of Tables v

List of Figures vii

1 Introduction 1
1.1 Previous work . 1
1.2 Scope and problem formulation . 1

2 Theory 3
2.1 Programming language . 3

2.1.1 Fortran . 3
2.1.2 C . 3
2.1.3 Python . 4

2.2 C-extensions . 4
2.2.1 Shared libraries . 4
2.2.2 Wrapper-functions . 6

2.3 Visual Studio Code . 7
2.4 Black . 7
2.5 Power system analysis . 7

2.5.1 Fundamental electrical equations . 8
2.5.2 Buses . 8
2.5.3 Transmission lines . 9
2.5.4 Transformers . 10
2.5.5 Shunt Element . 11
2.5.6 The problem formulation . 11
2.5.7 Newton Rapshon load flow . 12
2.5.8 Fast-decoupled load-Flow . 14
2.5.9 Reactive power limitation . 18

2.6 Sparse matrices . 18

ii

2.6.1 Coordinated list (COO-format) . 18
2.6.2 Compressed sparse formats (CSC- and CSR-format) 19

3 Topflow user guide 21
3.1 System requirements . 21
3.2 Installation . 21
3.3 Running load-flows . 22

3.3.1 Input Data . 22
3.3.2 Initializing a Case . 26
3.3.3 Solving the Case . 26
3.3.4 Accessing the Results . 27
3.3.5 Settings . 28

4 Method 29
4.1 The file structure . 29
4.2 User interface . 30
4.3 Reliability . 30

4.3.1 Automated tests . 30
4.3.2 Comparison tests . 33

4.4 The design of the Python-C interface . 33
4.4.1 Optimiziation . 34
4.4.2 cProfile . 34
4.4.3 LineProfiler . 35
4.4.4 Timeit . 36
4.4.5 Profiling acsolve . 37

4.5 Approach to work . 40
4.5.1 Theoretical research and skill development 40
4.5.2 Master thesis . 41

5 Implementation 42
5.1 Installation test . 42
5.2 The Case-class . 43

5.2.1 Printing output to the screen . 43
5.2.2 Accessing the parameters with "get" 44
5.2.3 Loading and saving data . 45
5.2.4 External and internal bus-numbers . 45

5.3 The Settings-class . 45
5.4 Example cases . 46
5.5 The loadflow-function . 47

5.5.1 Acsolve . 47
5.5.2 Decsolve . 49

6 Reliability and performance 52
6.1 Result and discussion of the automated tests 52
6.2 Comparison-test of acsolve . 54
6.3 Comparison of decsolve . 55
6.4 Conclusion on the reliability of Topflow . 56

iii

6.5 Performance . 56

7 Conclusion 58

Bibliography 58

Appendix 63
A Fast-decoupled load-flow versions . 64
B Topflow . 66

B.1 __init__.py . 67
B.2 acsolve.py . 68
B.3 acsolve_wrapper.py . 73
B.4 bmatrix.c . 81
B.5 case.py . 83
B.6 coo_conv.c . 99
B.7 decsolve_wrapper.py . 101
B.8 decsolve.py . 106
B.9 enforce_qlim.c . 111
B.10 flatstart.c . 114
B.11 jacobi.c . 115
B.12 jacobi.h . 119
B.13 loadlflow.py . 120
B.14 maxism.c . 121
B.15 mismat.c . 122
B.16 netinj.c . 124
B.17 sConstruct.py . 127
B.18 select_ver.c . 127
B.19 set_rhs.c . 129
B.20 settings.py . 130
B.21 topflow.h . 131
B.22 update_voltages.py . 132
B.23 zerosp.c . 132

C Tests . 134
C.1 pandapower_delay.py . 134
C.2 reliability_acsolve.py . 135
C.3 reliability_decsolve.py . 144
C.4 speed_acsolve.py . 147
C.5 test_acsolve_integration.py . 151
C.6 test_acsolve_unit.py . 156
C.7 test_case.py . 164

D setup.py . 166

iv

List of Tables

2.1 Bus types. 9
2.2 B′ and B′′ for the different algorithms . 17

3.1 The parameters in the Bus-data record . 23
3.2 The parameters in the Generator-data record 24
3.3 The parameters in the Line-data record . 25

4.1 The design purposed in [1] . 33
4.2 Description of the columns in the output of cProfile.run() 35
4.3 Description of the columns in the output from running LineProfiler 36
4.4 The most time consumin functions of acsolve 38
4.5 The optimized functions . 38

5.1 A description of the print-functions . 44
5.2 The parameters in the Generator-data record 44
5.3 Varaibles of the Settings-class. *cwd = current working directory 46
5.4 The design purposed in [1] . 47

6.1 The results calculated by Topflow compared with pandapower and pypower
when running a Newton-Rapshon load-flow 54

6.2 The results calculated by Topflow compared with pandapower and pypower
when running a Newton-Rapshon load-flow 55

1 The files in Toplow’s source-code . 66
2 Class variables of the Case-class. [] denotes the size of the array 83

v

List of Figures

2.1 C-extension exported using __declspec(dllexport) 5
2.2 The SConstruct file . 5
2.3 Command prompt output from a successfully built DLL 6
2.4 The wrapper function . 6
2.5 The Python file test.py testing the c-extensions "add" and "multiply" 7
2.6 Output of test.py . 7
2.7 Bus "i" . 8
2.8 π-equivalent transmission line . 10
2.9 Transformer-branch . 10
2.10 Three bus system . 14
2.11 Reactive capability chart of a synchronous generator 18
2.12 Sparse matrix example . 19
2.13 Figure 2.12 on COO-format . 19
2.14 Figure 2.12 on CSC-format . 19
2.15 Figure 2.12 on CSR-format . 20

3.1 How to install Topflow locally . 22
3.2 The Case-identification data sheet for the 14-bus 22
3.3 The Bus-data sheet for the 14-bus IEEE system 24
3.4 The Generator-data sheet for the 14-bus IEEE system 24
3.5 The Line-data sheet for the 14-bus IEEE system 25
3.6 How to load the input-data from the Excel-file that contains the 14-bus system . 26
3.7 Print all the parameters of case1 to screen . 26
3.8 How to load case14 with the function "topflow_example_case()" 26
3.9 A regular Newton-Rapshon load-flow . 26
3.10 A typical default terminal-output from running a load-flow 27
3.11 How to assign the result-object to an instance 27
3.12 Parameters can be accessed with the Case.get-function 27
3.13 How to save the data of a result-instance to an Excel-file 27
3.14 . 28
3.15 How to specify options in the loadflow-function 28
3.16 How to use a Settings-instance to specify options 28

4.1 The top level structure of the toolbox . 29
4.2 The unit test for maxmism . 31

vi

4.3 Three bus system [1] . 32
4.4 How to profile the function "re.compile()" with cProfile.run() [42] 34
4.5 Output from running the code in Figure 4.4 34
4.6 The file primes.py, which has decorated the function primes() 35
4.7 The command that invokes the kernprof-script 36
4.8 The output of profiling the prime-function . 36
4.9 An example of a script which uses the timeit-module 37
4.10 a snippet of the output from cProfile . 39
4.11 A snippet of the output from LineProfiler . 39
4.12 A snippet of the output from cprofile . 40

5.1 Create the virtual environment topflow_env 42
5.2 Active/enter the virtual environment topflow_env 42
5.3 The installed packages in the newly created virtual environment "topflow_env" 42
5.4 How to install Topflow locally . 43
5.5 The result of installing Topflow . 43
5.6 The structure of Topflow, highlighting the branch of acsolve 48
5.7 Flow-chart of the Newton-Rapshon load-flow algorithm, acsolve 48
5.8 A customized FDLF-version . 49
5.9 The structure of Topflow, highlighting the branch of decsolve 49
5.10 Flow-chart of the fast-decoupled load-flow algorithm, decsolve 50

6.1 The result of running pytest, which shows an error in the code. 53
6.2 The result of the automated tests in the final implementation 53
6.3 Calculation times for the Newton-Rapshon load-flow on Standard MATPOWER

cases . 57

vii

Chapter 1
Introduction

1.1 Previous work
This master’s thesis contributes to the work of updating the toolbox for specialized power sys-
tem analysis, which prof. Olav Bjarte Fosso developed in the 90s. Previous work includes
implementations by Leif Warland at Statnett, the master thesis "Toolbox for Specialized Power
System Analysis" by Hege Bruvik Kvandal [2], and the specialization project by Åsmund Sælen
[1], which leads to this thesis.

The original toolbox contains multiple tools for analyzing power systems, such as Newton-
Rapshon load-flow, contingency analysis, continuous power-flow, and DC-optimal load-flow.
Prof. Olav Bjarte Fosso wrote the code in FORTRAN, a high-performance programming lan-
guage, which is suited for scientific computing. The toolbox uses sparse methods to save mem-
ory and enhance performance, which, combined with the qualities of FORTRAN, makes the
program efficient and able to run on large systems.

Prof. Fosso designed the original program for study purposes only, however, Statnett showed
interest in modernizing the code and making it available in Python. Leif Warland began the work
of translating the code and laid the foundation for the new toolbox, which he named "Topflow".
Hege Bruvik Kvandal continued the work in her specialization project [3] and master’s thesis
[2].

The focus of the specialization project by Åsmund Sælen [1] was to present a first update
of the load-flow routine "acsolve" from the original toolbox. The implementations were tested
on a 3-bus system, and compared with solved values form the lecture slides by prof Olav Bjarte
Fosso [4], and hand-calculations. The test gave satisfactory results, which was an essential first
step in translating the activity.

1.2 Scope and problem formulation
The most crucial goal of this thesis is to complete and verify the simulation-function acsolve.
This routine performs a Newton-Rapshon load-flow, which is considered the "working horse"
of power system analysis [4]. The specialization project by Åsmund Sælen [1] presented an
initial update, and gave recommendations on how to make further contributions to the toolbox.
These recommendations are listed below.

• Develop functions which initializes the parameters of acsolve

1

• Test the reliability of the code on larger power-systems

• Test the performance of the program

• Find a different solver for the differential equation-system

• Translate other activities from the original toolbox

This master’s thesis builds on the recommendations from [1] to define clear milestones for
the work. The milestones are listed below in order of priority.

1. Develop functions which initializes the parameters of acsolve

2. Make acsolve reliable on large systems

3. Find a solver which handles sparse matrices

4. Match the performance of similar open-source projects in Python

5. Translate the fast-decoupled load-flow routine "decsolve" from the original toolbox

Notice that milestone 4 tackles the "performance" of Topflow. The performance of a pro-
gram may refer to several types of measurements; however, this thesis uses it interchangeably
with the code’s speed.

The rest of this thesis will discuss the work of completing the milestones above. Chapter 2
explains the basic theory that is needed to understand the work conducted in this master’s thesis.
Chapter 3 provides a user-guide, which gives the reader an overview of the program and shows
the user-interface. Chapter 4 explains the design of the updated toolbox, and introduces the
methods for testing the program’s reliability and performance. Chapter 5 shows the resulting
implementations, and aims to give future contributors a deeper understanding of the current
toolbox. Chapter 6 provides the results of the reliability-tests and the speed-tests, and, finally,
Chapter 7 concludes the master thesis.

2

Chapter 2
Theory

The sections 2.1- 2.3, 2.5.7 and 2.5.9 are based on the theory-chapter in the specialization
project by Åsmund Sælen from 2019[1].

2.1 Programming language
This thesis uses three different programming languages. The original code is written in Fortran
95, while the updated version uses C and Python. A vast amount of information is available
online, and platforms such as YouTube and Tutorialspoint provide excellent tutorials for free .
This section assumes that the reader is familiar with basics of programming, such as statements
and loops, and will only give a brief introduction to each programming language. Python will
be emphasised because it’s the primary language of the updated program, Topflow.

2.1.1 Fortran
As one of the oldest programming languages, FORTRAN was created in the 1950s and devel-
oped for scientific calculations [5]. FORTRAN is still used, in particular, as a high-performance
computing language. It’s especially suitable for numerical analysis, which suits the techniques
in the original toolbox.

A distinctive feature of FORTRAN is that routines can share data by using so-called "Common-
blocks" (separate files that stores input data). If a routine changes a common-block parameter,
this change applies to all other routines that share that common-block. Programs written in
FORTRAN should minimize the use of this feature, since it may be a source of error that is
difficult to resolve. The original toolbox uses common-blocks to initialize the parameters of
various functions, an approach that the modernized code must handle differently.[6]

2.1.2 C
C is a general-purpose programming language created in 1972, and has since become one of the
most used programming languages in the world [7]. It has many similarities to FORTRAN as
it’s a compiled language that uses many of the same default data types. C has also a thin abstrac-
tion layer and a low overhead compared with other high-level programming languages, which
makes it useful for computationally intense programs. Programmers can, therefore, rewrite

3

FORTRAN-codes in C, and simultaneously keep the program close to its original design and
performance.

2.1.3 Python
Different from Fortran and C, Python is an interpreted language which offers dynamically typ-
ing. There is no need for declarations of variables, because the data types are stated at runtime
[8]. This feature, among others, make Python easy to learn and gives it intuitive syntax that
facilitates productivity and readability. However, the flexibility of Python comes with lower
performance compared with FORTRAN and C.

One of the most significant advantages of Python is the comprehensive standard library, and
the fact that there are a vast number of third-party libraries and packages available. Among
these, some modules make it possible to interface Python with other programming languages.
A common way of boosting the performance of Python-programs, is to rewrite slow parts of the
code in C and wrap them to pure Python (C_extensions). Topflow uses this technique to exploit
the best of both worlds.[9]

The SciPy stack

The SciPy stack is a collection of libraries that support scientific computing in Python. It
consists the 6 open-source packages NumPy, SciPy library, Matplotlib, IPython, SymPy and
pandas.[10],[11]

NumPy stands for "Numerical Python" and is a specialized library that enables numerical
computing in Python. Its primary usage is to define and do operations on large arrays and
matrices. The NumPy array objects benefit from a range of native functions, which rely on
well-optimized C-codes. These arrays are, therefore, more efficient than the inbuilt Python-
lists.[12]

The SciPy library is another core package of the SciPy stack. It supports efficient numerical
routines for linear algebra, with functions based on implemented standard algorithms [13]. In
particular, Topflow relies on the function scipy.sparse.linalg.spsolve() to solve the sparse linear
system Ax = b.

2.2 C-extensions
Topflow uses Python as the user-interface, but the program relies on underlying C-codes to
boost the performance of the functions. There exist several tools that makes C-codes available
in Python (also called wrapping), including Python-C-Api, SWIG, Ctypes, and Cython [14].
The specialization project by Hege Bruvik Kvandal [3] studied these tools, and the following
thesis by the same author [2] implemented C-extensions by wrapping the codes with Ctypes, a
foreign function library for Python [15]. All the previous work on Topflow uses Ctypes, and the
implementations presented in this thesis are no exceptions. The rest of this section explains the
process of writing C-extensions with Ctypes.

2.2.1 Shared libraries
Ctypes uses shared libraries to export the C code and wrap them to Python. Shared libraries are
files containing code that several modules or applications can use simultaneously. The benefits

4

are that, unlike static linking, the linker does not copy the code into all the modules, which saves
memory and disk storage space [16]

On a Windows system, shared libraries are called "dynamic linked libraries" (DLL), hence a
".dll"-file is created when building the library. The documentation "Building C/C++ Extensions
on Windows" on python.org [17] states the following on building DLLs: "Windows Python is
built in Microsoft Visual C++; using other compilers may or may not work (though Borland
seems to)". Based on that information, this project utilizes the Visual Stuido C/C++ compiler
for creating DLLs.

Figure 2.1 shows an example of a C-file (operators.c), which contains the functions "multi-
ply" and "add". "multiply" takes in two arguments of the type "double" (decimals) and multi-
plies the numbers, while "add" takes in two integers and returns their summation. The "__de-
clspec(dllexport)" statement in front of the function declaration is required by Windows to ex-
port the code from the DLL.[16]

Figure 2.1: C-extension exported using __declspec(dllexport)

Topflow uses SCons, a free construction-tool [18], to build DLLs with the function SharedLi-
brary(’foo’, [’f1.c’, ’f2.c’,’f3.c’,...]). The first argument of the function sets the name of the
DLL, and the second specifies which file(s) to include. The file which contains the "SharedLibrary"-
function must be called "SConstruct.py" because SCons look for this particular filename when
it builds the DLL [18]. Experiences from the specialization project [1] show that locating the
SConstruct-file in the same directory as the C source files is the best practice, as it avoids linking
problems. Figure 2.2 shows the SConstruct-file that put "add" and "multiply" from operators.c
in a DLL named "cfunctions". The action that builds the DLL is to run the command "scons"
in the terminal at the directory of the SConstruct-file. Figure 2.3 provides the output of this
command, which shows that SCons successfully built the DLL "cfunctions", which now makes
"add" and "multiply" accessible in Python. The next step is to help Python use these functions,
by wrapping them to pure Python-code.

Figure 2.2: The SConstruct file

5

Figure 2.3: Command prompt output from a successfully built DLL

2.2.2 Wrapper-functions
Ctypes provides C compatible data-types, and the ability to load DLLs and wrap the exported
functions to pure Python. The wrapped functions are available from Python like any other
callable. [15]

Figure 2.4 shows the Python-file "wrapperfunctions.py", which wraps the exported func-
tions from the DLL "cfunctions" (defined in Figure 2.2). Wrapper-functions must specify the
data types of arguments and return values, since Python uses dynamic typing and C does not.
The example in Figure 2.4 starts off by importing ctypes and the required C-compatible data
types, which in this case are c_double and c_int. The function "ctypes.cdll.LoadLibrary()"
loads the DLL "cfunctions" and assigns it to the object "clib". "ctypes.cdll.LoadLibrary()" re-
quires only one input-argument, which is the name or the path of the DLL. The script goes on
to specify the data types of the wrapper functions. The function "add" uses integer-types for
both its arguments and return values, while "multiply" uses double-types. The corresponding
C compatible data types are "c_int" for integers and "c_double" for double. Finally, "wrapper-
functions.py" defines the python-functions "add" and "multiply", which are callable from the
Python API. Figure 2.4 show how these functions take input arguments from Python, passes
them on to the C-extension that does the work, and returns the result. The script "test.py" in
Figure 2.5 tests the functions on a simple example. The output of the test, which is given in
Figure 2.6, shows that both "add" and "multiply" are working as expected.

Figure 2.4: The wrapper function

6

Figure 2.5: The Python file test.py testing the c-extensions "add" and "multiply"

Figure 2.6: Output of test.py

Ctypes supports NumPy array objects through the library Ctypeslib. In this project, the
function numpy.ctypeslib.ndpointer is used to describe the return type and argument types of
functions which uses NumPy arrays.[19]

2.3 Visual Studio Code
The free source editor Visual Studio Code (VSC) operates as the integrated development envi-
ronment (IDE) for this project. It was recommended by the previous master’s thesis [2] because
it provides built-in support to a handful of programming languages, as well as extensions to
others. This thesis uses the extensions for Python, C/C++, and Fortran, which provide support
such as syntax highlighting and debugging. The IDE makes it possible to compare files side by
side, which is very convenient when translating code between multiple languages. [20]

2.4 Black
Black is a code formatter for Python which structures the code automatically and makes the
layout look the same regardless of the project [21]. The purpose of using Black in this project,
is to make work consistent, and the collaboration as smooth as possible. The existing code by
Leif Warland and Hege Bruvik Kvandal is formatted with Black, so is the updated program
from this thesis. Visual Studio Code supports the formatter, and enables it to format the code
every time a file is saved.

2.5 Power system analysis
Power system analysis is essential in the work of obtaining optimal operation of the existing
power system, as well as planning expansions for the future. Topflow models the grid in a sim-
plified way by line-diagrams and a per unit system, with parameters such as voltages, generated
power and consumed power. Some of these parameters are known, others are calculated by

7

using well-established numerical techniques that gives good approximations. This section ex-
plains the theory behind the way Topflow models power systems and uses algorithms to perform
simulations. The subsections 2.5.6, 2.5.7, and 2.5.9 are from the specialization project [1] by
Åsmund Sælen.

2.5.1 Fundamental electrical equations
This subsection contains four fundamental equalities, which the next subsections will use to
derive electrical models and algorithms. (2.1) gives the relationship between the admittance
(Y), impedance (Z), conductance (G) and suscpetance (B). Ohm’s law (2.2) states that the
voltage across two points on a conductor is proportional to the current through the conductor.
(2.3) is Krichoff’s current law, which expresses that the total current that flows into a node is
equal to the total currents that flows out. Kirchoff’s voltage law (KVL), (2.4), states that the
sum of the voltages in a closed loop is zero. Finally, (2.5) specifies that complex power is the
product of voltage and the conjugate of the current.

Y =
1

Z
= G+ jB (2.1)

V = ZI (2.2)

∑
Ii = 0 (2.3)

∑
Vi = 0 (2.4)

S = P + jQ = V I∗ (2.5)

2.5.2 Buses
The interconnection point between several components of the power system is called a "bus".
A bus may be coupled to four different types of components: generators, loads, transmission
lines and shunt elements. Figure 2.7 show the configuration of bus "i", which have all the four
different component-types connected.

i

Generator

Load

Shunt element
Transmission line

Figure 2.7: Bus "i"

8

Each bus in the system have four variables which is either known or unknown: voltage
magnitude (|V |), voltage angle (θ), active power injected (P) and reactive power injected (Q).
More specifically, P + jQ is the differences between the generated power (PG + jQG) and
the demanded power (PD + jQD), so that P = PG − PD and Q = QG − QD. The buses are
classified into different types based on the combination of the known and unknown variables,
as shown in Table 2.1. Which variables that are known depends on whether the bus connects to
a load or a generator.

Loads consume a certain amount of active and reactive power, hence load-connected buses
are classified as PQ-buses since both P and Q are known. Generators controls the voltage mag-
nitude and the active generated power at the bus, hence generator-connected buses are classified
as PV-buses. The reactive power at a generator, QG, is dependent on the topology of the system,
since transmission lines, transformers and loads consume reactive power. Furthermore, reactive
power is used to control voltages in the system, which is why generators may consume or pro-
duce reactive power. Buses such as the one in Figure 2.7, which has both a generator and a load
connected, are classified as PV-buses since Q = QG −QD is unknown.

The power system model uses an arbitrary PV-bus (often the largest) as a reference to all
other buses, hence called "reference bus" or "slack bus". The voltage magnitude of the slack
bus is set at 1.0pu, and the angle at 0◦. This bus holds a special role in the load-flow studies, as
it balances the total power in the system and provides for the losses.

Bus type Known Unknown
Generator (PV) P, |V | Q, θ
Load (PQ) P,Q |V |, θ
Slack |V |, θ P,Q

Table 2.1: Bus types.

2.5.3 Transmission lines
Power is transferred between buses through transmission lines. The representation of these lines
depends on the length, broadly categorized into short, medium and long lines. The program
presented in this thesis applies the same branch-model for all lines, the nominal-π model, which
is commonly used to represent medium length transmission-lines (80km-240km).

Observing Figure 2.8, the line has an impedance of Zij and a total line charging admittance,
YSij . By symmetry, the model lumps an equal portion of the total charging admittance on each
end of the line. The real part of YSij = GS12 + JBSij is very small, in most cases 0, which is
why BSij often is the only given value for the shunt element.

9

i

YSij

2

Zij

YSij

2

j

Figure 2.8: π-equivalent transmission line

2.5.4 Transformers
Transformers are modeled in the same branch model as section 2.5.3, with some modifications
due to the tap ratio and the shift-angle. A transformer with tap ratio t and a phase-shifting angle
θs is placed at the "from-end" of the line, as shown in Figure 2.9. The following derivation will
show how to represent the transformer-branch on the same model as Figure 2.8.

i
1:tejθs

Y ∗Sij

Y ∗ij

Y ∗Sji

j

Figure 2.9: Transformer-branch

KCL (2.3) is applied to Figure 2.9 to obtain expressions for I1 (2.6) and I2 (2.7).

Ii
te−jθs

= Vite
jθs(

Y ∗S
2

+ Y ∗ij)− VjY ∗ij (2.6)

Ij = −tejθsY ∗ijVi + Vj(
Y ∗S
2

+ Y ∗ij)− tejθsV2Y
∗
ij (2.7)

This system of equation can be written as the augmented matrix shown in (2.8).[
Ii
Ij

]
=
[
t2(Y ∗ij + Y ∗

s

2
) −te−jθsY ∗ij

−tejθsY ∗ij Y ∗ij + Y ∗
s

2

] [
Vi
Vj

]
(2.8)

(2.8) shows that Figure 2.9 reduces to the π-equivalent model in Figure 2.8 by substituting
the following parameters:

10

Zij =
1

te−jθsY ∗ij

YSij = t2(Y ∗ij +
Y ∗s
2

)− te−jθsY ∗ij

YSji =
Y ∗s
2

Notice that a transformer with tap ratio t = 1 and shift angle θs = 0 is mathematically equiv-
alent to a none-transformer branch.

2.5.5 Shunt Element
Shunt elements are inductors or capacitors connected to the power system to control the reactive
power and thereby control the voltage. Line-losses increases if the loading level of the system
is high, which leads to higher voltage drops. To prevent voltages below acceptable levels during
such conditions, capacitor banks are switched on at weak busses to increase the voltage. These
capacitors provide reactive power, which will increase the voltage.

Shunt elements can be connected either at a bus or on a line, but since reactive compen-
sators have the greatest effect locally, these elements are most often bus-connected. This thesis
converts data-sheets from MATPOWER [22] to initialize parameters of power systems. These
sheets includes only bus-connected shunt elements, however, Topflow support both types of
connections.

2.5.6 The problem formulation
Section 2.5.2 explained how buses are categorized by their known and unknown parameters.
The goal of a power-flow study is to obtain good approximations for the unknown parameters
by solving the so-called "load-flow equations". The derivation of these equations starts by
applying Ohm’s law (2.2) and Kirchoff’s current law (2.3) to each bus in a system with N
buses, and thereby obtain the matrix equation-system (2.9).

 I1
...
IN

 = Ybus

V1
...
VN

 (2.9)

Vi is the voltage at bus i, Ii is the sum of the line-currents flowing in and out of bus i, while
Ybus is the N ×N admittance matrix shown in (2.10):

Ybus =

Y11 . . . Y1n
...
Yn1 . . . Ynn

 (2.10)

(2.11) shows that the diagonal elements of the Ybus are the sum of the line admittances and
shunt admittances that are connected to the respective bus. The off-diagonal element Yij is the

11

negative value of the line admittance between bus i and j. In a large power system, most buses
are not connected directly to another, which means that most element of the Ybus are zero. This
is the definition of a sparse matrix.[23]

Yii =
n∑
i 6=j

yij (2.11)

Yij = −yij (2.12)

The load-flow equations (2.13)-(2.15) are finally obtained by substituting Ii from (2.9) in
the equation for complex power (2.5). The equations calculates the net power-injections at bus
i. Gij , Bij and θij are the conductance, susceptance and phase shift between bus i and j.

Si = Pi + jQi = Vi

n∑
j

YijVj (2.13)

Pi = |Vi|
n∑
j

|Vj|(Gijcos(θij) +Bijsin(θij)) (2.14)

Qi = |Vi|
n∑
j

|Vj|(Gijsin(θij)−Bijcos(θij)) (2.15)

The load-flow equations are non-linear, and therefore solved numerically by approximating
the unknown parameters. A common approach is to approximate the voltages by solving the
equations that contain known values for P and Q. Section 2.5.7 and section 2.5.8 explains the
theory of two algorithms that uses this approach to solve (2.14) and (2.15).

2.5.7 Newton Rapshon load flow
The first algorithm for solving the load-flow equations (2.14) and (2.15) is based on Newton’s
method. This method approximates the the solution of problem (2.16) through an iterative
process. f is a function defined for the variable x, and c is a known constant. (2.17) shows
Newton’s method for the problem (2.16), and is derived from the first order Taylor-series for
the function f . fk and xk are the approximations of f and x in the kth iteration.[23]

f(x) = c (2.16)

xk+1 − xk =
c− f(xk)

f ′(x)
(2.17)

The method start with the iteration-counter k = 0, and an initial guess of the value of x: x0.
(2.17) gives the formula for calculating the next approximation for x: x1. The iterative process

12

continues and gives successively better approximations, until the error c− f(xk) is of adequate
size. The speed of convergence is related to how close the initial guess is to the final solution.

The Newton-Rapshon load-flow (2.19) is a multi-dimensional version of (2.17), which
solves the matrix equation system (2.18). In this version, f is a vector that consists of the
known active (P) and reactive (Q) power injections in a power system. x is a vector that con-
tains the angles (θ) and magnitudes (|V) of the unknown voltages:

[
θ
|V |

]
. c is a vector of the

scheduled active (Psch) and reactive (Qsch) powers and, finally, J is the Jacobian matrix of the
vector f . (2.20) show the definition of this matrix, which consists of the derivatives of (2.14)
and (2.15) with respect to θ and |V |. The sub-matrices

[
∂P
∂θ

]
,
[
∂P
∂|V |

]
,
[
∂Q
∂θ

]
and

[
∂Q
∂|V |

]
are often

referred to as J1, J2, J3 and J4.

[
P
Q

]
=

[
Psch
Qsch

]
(2.18)

[
θk+1 − θk
|V |k+1 − |V |k

]
= J−1

[
Psch − P k

Qsch −Qk

]
(2.19)

J =

[
∂P
∂θ

∂P
∂|V |

∂Q
∂θ

∂Q
∂|V |

]
(2.20)

The inverse of the Jacobian matrix can be found in a number of ways, including Gauss-
Jordan elimination and Gauss elimination [24]. However, the process of obtaining the inverse
of a large matrix is time consuming, which is why programs commonly uses LU-factorization
to solve (2.19). [4], [23]

Introducing Tij = Gijcos(θij) +Bijsin(θij) and Uij = Gijsin(θij)− Bijcos(θij) is conve-
nient when obtaining the equations for calculating the derivatives in (2.20). The set of equations
(2.21) shows how these derivatives are calculated. The variables Gii =

∑
j 6=i(GSij + Gij) and

Bii = BSi +
∑

j 6=i(BSij + Bij), where GSij and BSij are the conductance and susceptance of
the line-shunt elements between bus i and bus j. BSi is the imaginary part of the bus-connected
shunt elements at bus i.

∂Pi
∂θi

= |Vi|
∑
j 6=i

|Vj|Uij
∂Pi
∂|Vi|

= 2|Vi|Gii − |Vi|
∑
j 6=i

|Vj|Tij

∂Pi
∂θj

= −|Vi||Vj|Uij
∂Pi
∂|Vj|

= −|Vi|Tij

(2.21)
∂Qi

∂θi
= −|Vi|

∑
j 6=i

|Vj|Tij
∂Qi

∂|Vi|
= 2|Vi|Bii − |Vi|

∑
j 6=i

|Vj|Uij

∂Qi

∂θj
= |Vi||Vj|Tij

∂Qi

∂|Vj|
= −|Vi|Uij

The number of elements in the vectors from (2.18) are dependent on the topology of the
power system. In a system with the total number of n buses and g generators (including slack

13

bus), the number of equations of the type (2.14) is equal to n−1, while the number of equations
of the type (2.15) is equal to n−g. It follows mathematically that J is a (2n−g−1)×(2n−g−1)
matrix.

Figure 2.10 shows an example of a three-bus system that consists of one PQ-bus, one PV-
bus, and one slack bus. The known parameters are given for each bus.

Z12

Z23 Z12

P2, |V2|

|V3|,Θ3

3 1

2

P1 + jQ1

Figure 2.10: Three bus system

(2.22), (2.23) and (2.24) show how to write (2.18), (2.19) and (2.20) for the three-bus system
in Figure 2.10.

P1

P2

Q1

 =

P1(sch)

P2(sch)

Q1(sch)

 (2.22)

 θk+1
1 − θk1
θk+1

2 − θk2
|V |k+1

1 − |V |k1

 = J−1

P(1)sch − P k
1

P(2)sch − P k
2

Q(1)sch −Qk
1

 (2.23)

J =


∂P1

∂θ1

∂P1

∂θ2

∂P1

∂|V |1
∂P2

∂θ1

∂P2

∂θ2

∂P2

∂|V |1
∂Q1

∂θ1

∂Q1

∂θ2

∂Q1

∂|V |1

 (2.24)

The advantages of the Newton-Rapshon method is that the region of convergence is large,
and the number of iterations are few (if it converges). However, the speed of convergence is
relatively slow if the initial guess is of poor choice. The Guass-Siedel method is another algo-
rithm with the advantage of getting to the correct region fast, while it converges slow compared
to Newton-Rapshon method. Some load-flow solutions are found by combining the two: us-
ing Guass-Siedel to get to the right region, followed by Newton-Rapshon to obtain the final
solution. [4]

2.5.8 Fast-decoupled load-Flow
Another widely-used technique to solve the load-flow equations (2.14) and (2.15) is the Fast-
decoupled load-low (FDLF). As the name suggests, it is faster and simpler than the regular
Newton-Rapshon load flow, as it uses approximations to:

14

1. Decouple the system of equations into active (Pθ) and reactive (Q|V |) sub-problems.

2. Construct constant matrices which are independent of the voltage magnitudes and angles.

Despite apparent significant simplifications, the method has shown to perform remarkably
well. The paper [25] showed that the success of the FDLF is related to the iteration scheme,
which updates either angels or magnitudes after each sub-problem. Furthermore, it showed that
some of the approximations commonly used to derive the FDLF are unnecessary due to the
successive way of updating the magnitudes and angles. These approximations are still seen in
the literature today, even after the publication of [25]. This section will explain three different
versions of FDLF and give a brief overview of the findings in [25].

Derivations

The derivation of the method starts with the first iteration of Newton-Rapshon using flat start,
shown in (2.25)

[
H N
M L

] [
∆θ

∆|V |

]
=

[
∆P
∆Q

]
(2.25)

The matrices H,N,M,L corresponds to the four submatrices of the Jacobian matrix calculated
at flat start (|V | = 1.0 and θ = 0). Note that the flat start results inH and L being the imaginary
part of the admittance matrix Ybus = G+ JB, in the structures of ∂P

∂θ
and ∂Q

∂|V | respectively.
The decoupling of the problem, so that ∆θ and ∆|V | can be calculated separately, can be

done in several ways:

1. The reactive power equations of (2.25) are subtracted by the active power equations,
which are premultiplied with MH−1:[

H N
0 Leq

] [
∆θ

∆|V |

]
=

[
∆P

∆Q−MH−1∆P

]
(2.26)

2. The active power equations of (2.25) are subtracted by the reactive power equations,
which are premultiplied with NL−1:[

Heq 0
M L

] [
∆θ

∆|V |

]
=

[
∆P −NL−1∆Q

∆Q

]
(2.27)

3. Both operations (1 and 2) are applied on system (2.25):[
Heq 0
0 Leq

] [
∆θ

∆|V |

]
=

[
∆P −NL−1∆Q
∆Q−MH−1∆P

]
(2.28)

Where the new equivalent matrices are given by:

Heq = H −NL−1M (2.29)

Leq = L−MH−1N (2.30)

15

Solving the equation-systems

Algorithms can be used to solve the equation-systems (2.26) - (2.28) without introducing any
major approximations. For example: the Primal-method solves (2.26) in the following way:

1. Initialize iteration count: k = 0

2. Calculated the active power mismatches, and compute angle corrections:
∆θ(k) = H−1∆P (k)(|V |(k),θ(k))

|V |(k)

3. Update the angles: θ(k+1) = θ(k) + ∆θ(k)

4. Calculate the reactive power mismatches, and compute magnitude corrections:
∆|V |(k) =

L−1
eq ∆Q(k)(|V |(k),θ(k+1))

|V |(k+1)

5. Update the magnitudes: |V |(k+1) = |V |(k) + ∆|V |(k)

6. k = k + 1, go to step 2.

Multiple algorithms can solve the equation-system (2.26) - (2.28) in similar ways as the
Primal-method. Appendix(A) provides two other versions, namely the Standard-method and
the Dual-method. In contrast to the Primal-method, the Dual starts with a Qθ-iteration and ends
with a P |V |-iteration. The Dual-method uses the sub-matrices Heq and L, while the Standard-
method usesHeq and Leq. The methods use approximations to obtain these matrices, which will
be discussed in the next section.

Approximations

It is essential to notice that the derivation of equations (2.26)-(2.28) uses no approximations,
merely matrix operations. Each of these equations is, therefore, the same as the first iteration of
Newton-Rapshon using flat-start. It’s assumed that the voltage magnitudes and angles are close
to the flat-start values, so that |V | ≈ 1pu, sinθ ≈ 0 and cosθ ≈ 1. These assumptions keep the
sub-matrices constant throughout the load-flow.

The paper [25] showed that the impacts of the matrices M and N are automatically taken
into account when solving the Primal-method successively by performing a Pθ iteration and use
the updated angles in the following Q|V | sub-problem. The same is true for the Dual-method;
therefore, there is no need to neglect these matrices, which was the standard in the traditional
derivation of the FDLF methods. [25] [26] [27]

Submatrix Leq is the submatrix L with bij substituted by 1/xij (which is why the primal
method is often called the BX-version; it consists of H and Leq). This substitution is exactly
true for radial systems and systems with constant r/x ratios, because the operation performed to
obtain (2.26) naturally cancel out the resistances in Leq. It is a common mistake in the literature,
even after the publication of [25], to assume that the resistances are neglected; this is only an
apparent approximation. For systems which are not radial nor have constant r/x ratios, on the
other hand, the representation of Leq is an approximation, but still an excellent one. [25]

The same holds for Heq, its obtained by calculating H when bij is substituted by 1/xij .
Additional approximations need to be done, namely ignoring the effect of PV-buses and shunts.
These approximations are why the Primal method performs better than the Dual in most cases.

16

Summary

To summarize, the following approximations are made for the FDLF-mehods:

1. |Vi| = 1

2. sin(θij) = 0

3. cos(θij) = 1

4. The effect of PV-buses and shunts ar neglected when forming Heq (XB- and XX-version
only)

5. Leq is the submatrix L calculated with bij substituted by 1/xij

6. Heq is the submatrix H calculated with bij substituted by 1/xij

(Note: if the system is radial or have constant r/x ratios, 6. and 7. are not approxi-
mations, but exactly true.)

With the above approximations, the general FDLF-equations become (2.31). Table 2.2 show
the meaning of B′ and B′′, along with the sequence of the Pθ- and Q|V |-iterations.

∆θ =
B′−1∆P

|V |
∆|V | = B′′−1∆Q

|V |
(2.31)

Algorithm B′ B′′ Iteration scheme
Primal / BX H Leq Pθ - Q|V |
Dual / XB Heq L Q|V | - Pθ
Standard / XX Heq Leq Pθ - Q|V |

Table 2.2: B′ and B′′ for the different algorithms

It can be concluded from the material presented in this section that the resulting method is
simpler and much faster than the Newton-Rapshon load flow, and it has a wide range of practical
applications [26]. Despite its apparent significant simplifications, the method has shown to
perform remarkably well. The paper [25] showed that the success of the decoupled method
is very much related to the iteration scheme, where angels/magnitudes are updated after each
sub-problem. Values which are apparently neglected in one iteration, are actually taken into
account in the next. The various versions have shown to perform differently dependent on the
system; on most systems the Primal method is favoured, however the Dual method has shown
quick convergence in some cases where the Primal method did not. The Standard version is
certainly the easiest of the three, since both sub-matrices are built only by the inverse of the line
reactances. Knowing about the different versions of the FDLF gives the method more flexibility
and greater performance, which is why all versions are implemented in the toolbox presented
in this thesis.

17

2.5.9 Reactive power limitation
The operation of a synchronous generator is limited by three limits: the armature current heat-
ing, the field current heating, and the end region heating. Together they form the reactive
capability chart of a generator, which show the area the generator can deliver power safely.[28]

Figure 2.11 shows a typical capability chart of a synchronous generator, which describes
how the limitations discussed above restricts the reactive generation. The reactive generations of
the PV-buses in a power system are unknown, and calculated in each iteration of a load-flow by
estimating values for the voltages. These estimations might violate the capability requirements,
if the limitations are not taken into account. A common approach to enforce reactive limits, is
to consider PV-buses that violate the capability requirements as PQ buses, and set the reactive
power at the limit. It is necessary to keep track on which buses are real PQ-buses and which are
PV-buses (VAR-limited).pv_var_limit

P

Q

Field current limitation

Armature current limitation

End region heating

Lagging power factor

Leading power factor

Figure 2.11: Reactive capability chart of a synchronous generator

2.6 Sparse matrices
A matrix which mostly contains elements of zero value is called a sparse matrix. This phe-
nomenon often appears in engineering and scientific computing, especially when solving partial
differential equations. Building the full representation of a sparse matrix is inefficient, since the
program will spend most of the execution time on storing and processing zeros. Most of the
buses in a realistic power system are not connected directly to each other; hence the Ybus is
sparse. Therefore, the advantages of exploiting the sparsity of such a matrix are of great im-
portance for the code presented in this thesis. This section offers three different ways to store
sparse matrices, along with their advantages and disadvantages. Figure 2.12 will be used as an
example to explain the different methods.

2.6.1 Coordinated list (COO-format)
The first method consists of the three arrays Data, Row and Col, which are all of equal size. The
names are quite self-explanatory; the Data-array contains the values of the non-zero elements,
in any order, the Row- and Col-array specifies which row and column this element holds in the
dense matrix. The arrays below shows Figure 2.12 on COO-format.

18


1 0 0 0 0 2
0 0 3 0 0 0
0 4 0 0 7 0
0 0 0 9 8 0
5 0 0 0 0 0
0 0 0 0 0 6


Figure 2.12: Sparse matrix example

Data =
[
1 2 3 4 7 9 8 5 6

]
Row =

[
1 1 2 3 3 4 4 5 6

]
Col =

[
1 6 3 2 5 4 5 1 6

]
Figure 2.13: Figure 2.12 on COO-format

The Python library scipy.sparse supports the coo-format with the class coo_matrix. The
advantages of this format are efficient conversion to and from other sparse formats, especially
CSC and CSR. The disadvantages are that the format does not support arithmetic operations or
slicing. The intended usage of COO is to construct sparse matrices and facilitate fast conversion
among other formats. It’s convenient to construct the matrix of the equation Ax = b on this
format before converting it, since different solvers require different formats.[29]

2.6.2 Compressed sparse formats (CSC- and CSR-format)
Formats for efficient access and matrix operation are stored on compressed sparse column
(CSC) or compressed sparse row (CSR) formats. The CSC-format consist of three arrays:
Data is the (top to bottom, then left to right) non-zero elements of the dense matrix, Row is
the row-position of a given element in Data, Colptr holds one element per column, which spec-
ifies the position in Data where the given column starts. The arrays below show Figure 2.12 on
CSC-format.[30]

Data =
[
1 2 3 4 7 9 8 5 6

]
Row =

[
1 1 2 3 3 4 4 5 6

]
Colptr =

[
1 4 3 6 5 2

]
Figure 2.14: Figure 2.12 on CSC-format

The CSR-format is similar to the CSC-format, however this variant compresses the row
information instead of the column information. Data is the (left to right, then top to bottom)
non-zero elements of the dense matrix, Col is the column-position of a given element in Data,
Rowptr holds one element per row, which specifies the position in Data where the given row
starts. The arrays below show Figure 2.12 on CSR-format.[31]

19

Data =
[
1 2 3 4 7 9 8 5 6

]
Col =

[
1 6 3 2 5 4 5 1 6

]
Rowptr =

[
1 3 4 6 8 9

]
Figure 2.15: Figure 2.12 on CSR-format

Both CSC and CSR are supported in Python through the classes csc_matrix and csr_matrix
from the library scipy.sparse. The advantages of these formats are efficient arithmetic operations
and fast matrix-vector products. The CSC format facilitates efficient column slicing, while the
CSR format provides efficient row slicing. The solver used in this toolbox requires the sparse
representation of the Jacobian matrix to be on either CSC- or CSR-format. Modifications to
matrices on these formats are on the other hand expensive, which is why it’s common to use
other formats to construct and store sparse matrices before converting them to CSR or CSC for
arithmetic operations.[30][31]

20

Chapter 3
Topflow user guide

Topflow is a toolbox for power system analysis. The current program contains functions for
running load-flows on power-systems, which the user can initialize by specifying the input-data
in Excel-files. This chapter provides an overview of the toolbox and explains how to setup the
program and make use of the implemented load-flow methods.

3.1 System requirements
The items needed to use the program are:

1. Python

2. Visual Studio C/C++ compiler

Topflow is only tested with the Visual Studio C/C++ compiler, other compilers may or may
not work.

3.2 Installation
In addition to the system requirements, it is necessary to have various Python packages installed
to run the code. These can be installed with the "pip install"-command in the cmd/terminal on
a computer that has successfully installed Python. The full list of required packages, along with
their installation-command, are listed below.

1. numpy: pip install numpy

2. scipy: pip install scipy

3. scons: pip install scons

4. openpyxl: pip install openpyxl

The end-user can skip these installations, and automatically manage the dependencies by
installing Topflow. Since Topflow is not an open-source project, users must acquire the package
from one of the contributors, and install it locally. Locally installations are done by feeding the
full path of the package to pip:

21

Figure 3.1: How to install Topflow locally

3.3 Running load-flows
The application of Topflow is to run simulations and solve load-flow problems. The workflow
of a load-flow study includes: 1) Preparing the input data in an Excel-file. 2) Initializing the
parameters. 3) Solving the case with the proper load flow method(s). 4) Viewing the result of
the simulation. The remaining subsections will go through these steps for a 14-bus example
case.

3.3.1 Input Data
Topflow can only read Excel-files of a specific format. The format contains four separate spread-
sheets, which the user must name as follows:

1. Case-identification

2. Bus-data

3. Generator-data

4. Line-data

The sheets must hold these names because this is how the routines that initialize the system
identifies the different parameters. Common to all the spreadsheets is that they structure the data
on a specific matrix-form, where the first row holds the names of the parameters. Similar to the
spreadsheet-names, the user must name these parameters as specified in the next subsections.

Case-identification

The first data record consists of only two parameters; IC and SBASE. IC = 0 states that the case
is a base case; hence simulations do not permanently change the data. If IC = 1, the case is not
a base case, and simulations may alter the system parameters. SBASE gives the system base in
MVA.

Figure 3.2 show how the Case-identification sheet is structured as a 2×2 matrix. The routine
that reads the sheet identifies the correct information by searching for "IC". The matrix may
start in other cells than A1, but the matrix structure can not be changed.

Figure 3.2: The Case-identification data sheet for the 14-bus

22

Bus-data

The bus-data record contains information about voltages, shunt elements, and loads at the buses.
Table 3.1 gives a full list of the parameters. Notice how the consumed power for each bus
(PLOAD and QLOAD) is present, while the generated power is not. That information belongs
to the "Generator-data" spreadsheet.

I External bus numbers
NAME Name of the buses
IDE List of the buscodes for all buses;

1-PQ, 2-PV, 3-Slack
PLOAD Active load [MW]
QLOAD Reactive load[MVAr]
GL Active component of bus-connected shunt element [MW]
BL Reactive component of bus-connected shunt element [MVAr]
AREA Area postions for each bus
VM Voltage magnetudes [pu]
VA Voltage angles [radians]
PLOAD Active load [MW]
QLOAD Reactive load[MVAr]
BASEKV Base voltage at each bus [kV]
ZONE Zone postition for each bus
VMAX Maximum voltage allowed [pu]
VMIN Minimum voltage allowed [pu]

Table 3.1: The parameters in the Bus-data record

Similarly to the Case-data, the user must type the bus-data in a matrix where the first row
contains the name of the parameters. The routine that reads the bus-data sheet identifies the
matrix by searching for "I", and reads the data as long as the column of I is not empty. The
matrix may start at an arbitrary cell, but the structure must be of the one in Figure 3.3, and the
cell below the last bus-number must be empty.

Topflow reads the information of each row consecutively and initializes the corresponding
parameters. The program uses internal bus-numbers when performing operations, which simply
are the sequence of which the busses were added to the program, starting at 0. Conversions
between external and internal bus-numbers are done by the functions ext2int and int2ext.

23

Figure 3.3: The Bus-data sheet for the 14-bus IEEE system

Generator data

Table 3.2 gives the complete description of the generator-parameters. The user must add the
data in a separate sheet on the form shown in Figure 3.4. The same directions for inserting the
data applies for the generator-sheet: the matrix must be of correct structure, and the cell below
the last bus-number must be empty.

I External bus-numbers
PG Active power for generators [MW]
QG Reactive power for generators [MVAr]
QMAX Maximum reactive generation [MVAr]
QMIN Minimum reactive generation [MVAr]
VS Voltage setpoint for the generators [pu]
MBASE MVA base for the machines (Default is MBASE = SBASE)
STAT Status of the generator (in service: 1, else: 0)
PMAX Maximum active generation [MW]
PMIN Minimum active generation [MW]

Table 3.2: The parameters in the Generator-data record

Figure 3.4: The Generator-data sheet for the 14-bus IEEE system

24

Line data

The last spreadsheet contains the data for the transmission-lines, which also includes infor-
mation about transformers. Table 3.3 gives the full description of the line-parameters, and
Figure 3.5 show how the data must is structured in a Excel-file.

I External bus-numbers (from bus)
J External bus-numbers (to bus)
R Line resistance [pu]
X Line reactances [pu]
B Total line charging susceptance [pu]
RATEA phase A current rating [MVA]
RATEB phase b current rating [MVA]
RATEC phase C current rating [MVA]
GI Conductance of line shunt placed at "I" end [pu]
BI Suceptance of line shunt placed at "I" end [pu]
GJ Conductance of line shunt placed at "J" end [pu]
BJ Suceptance of line shunt placed at "J" end [pu]
RATIO Ratio of the transformer
ANGLE shift angle of transformers
STATUS Indicates status for all lines (In service: 1)

Table 3.3: The parameters in the Line-data record

Figure 3.5: The Line-data sheet for the 14-bus IEEE system

25

3.3.2 Initializing a Case
At the core of the toolbox is the class "Case". A Case-object encapsulates all the system infor-
mation needed in load flow studies and contains various class functions for initializing the data
and performing arithmetic operations. Simulation-functions will typically take in an initialized
Case-object to perform load-flows on the system. Figure 3.6 shows the easiest way of initializ-
ing a Case-object: to pass the path of the Excel-file that contains the input-data when creating
an instance of the class.

Figure 3.6: How to load the input-data from the Excel-file that contains the 14-bus system

The object "case1" from Figure 3.6 now contains the system parameters for the 14-bus
system. The user can verify this with the Case-class function "print_all", which prints all system
parameters to the terminal.

Figure 3.7: Print all the parameters of case1 to screen

Another way of initializing a Case is through the function topflow.example_case(). This
function grants access to several example-cases available in Topflow. The 14-bus system used
in this user guide is one of them, and Figure 3.8 shows how to load that particularly system by
its case-name: ’case14’. A full list of example cases is available in section 5.4.

Figure 3.8: How to load case14 with the function "topflow_example_case()"

Notice that only cases stored in the Topflow example-library are available through this
method, customized cases must be loaded with the approach from Figure 3.6.

3.3.3 Solving the Case
The simulation-functions that perform analysis on the system takes in an initialized Case-object
along with the desired settings. Default options apply if personal settings are not specified. The
function "topflow.loadflow()" performs a loadflow on the system, and supports regular Newton-
Rapshon load flow as well as several fast-decoupled load-flow versions. Figure 3.9 shows how
to run a Newton-Rapshon load-flow with default settings on case1 from section 3.3.2.

Figure 3.9: A regular Newton-Rapshon load-flow

The simulation-functions do not alter the input object in any way, which means that multiple
functions can use the same Case-object as a base-case.

26

3.3.4 Accessing the Results
The result of a loadflow simulation is accessible through three different ways:

1. The result is pretty printed to the screen.

2. A Case-object containing the final results is returned from the simulation-functions.

3. The data of a simulation is saved to an Excel-file.

While 2. and 3. are optional, the result is by default printed to the screen, showing the number
of iterations for convergence, and the execution time of the simulation. Figure 3.10 show the
output of the simulation from subsection 3.3.3.

Figure 3.10: A typical default terminal-output from running a load-flow

The loadflow-function from Figure 3.9 returns the result as a Case-object, which allows
the user to use the data in subsequent analysis. Figure 3.11 show how the solved values of
the loadflow-function are assigned to the instance "result1". The Case-class function "get()"
makes it easy to access the parameters of that instance. get() takes in three arguments where
the first specifies the component name (either ’bus’, ’gen’ / ’generator’ or ’line’), the second
is the component number(s), and the third is the parameter-name. It is possible to access
multiple parameters with the same function call by defining the second argument as a list of
numbers. The function will then return the corresponding parameters in the same order as
the input-list. Figure 3.12 shows how to access the solved values in the instance return1 form
fig:userguideassignresult.Theparametersthatareaccessedare : voltagemagnitudeatbus4, theactivepowerdemandatbus1, 6and9, andthegeneratedactivepoweratallthegenerators.

Figure 3.11: How to assign the result-object to an instance

Figure 3.12: Parameters can be accessed with the Case.get-function

The last way to access the result is by saving the solved data to an Excel-file. Solved cases
that are assigned to an instance, such as "result1", can save the data with the Case-class-function
"save2xl()". Figure 3.13 shows how to save the instance from Figure 3.11 to an Excel-file.

Figure 3.13: How to save the data of a result-instance to an Excel-file

Case.save2xl() has only one required argument, "filename", which specifies the name of
the Excel-file. When calling the function, the file is by default saved in the current working

27

directory, and will automatically "pop-up" on the screen. Section 5.2.3 will discuss available
settings for saving the data.

Figure 3.13 shows another way to save the case; by specifying the filename when running a
load-flow. Case.save2xl is then automatically invoked, and the resulting Excel-file will pop-up
in the end of the simulation.

Figure 3.14

This approach can provide information on all the iterations of the load-flow, in contrast to
saving the Case-object returned by the loadflow-function, which only contains the final result.

3.3.5 Settings
Topflow allows the user to choose between a range of options, including choice of loadflow
algorithm, various settings for saving the result to an Excel-file, and how much output the load-
flow prints to the screen.

The easiest way to set the desired options is to type them in as keyword arguments in the
simulation-function. For example, Figure 3.15 show how to run a fast decoupled loadflow
(XX-version) on case1 (from Figure 3.8), with no printed output, saved in a file called "Re-
sult_FDXX". Topflow will save the file in the current working directory.

Figure 3.15: How to specify options in the loadflow-function

Alternatively, the settings can be set before the simulation by initializing a topflow.Settings()
object. Settings() is a class which contains all the available options for running a loadflow, stored
as instance-variables. By calling Settings() without any arguments, the object is initialized with
the default settings. This class is convenient to use if the user wants to run multiple simulations
with specific settings. Figure 3.16 show how to set personal settings by initializing a Settings()
object, and use them in multiple loadflows.

Figure 3.16: How to use a Settings-instance to specify options

Notice that if a setting is directly specified when running a loadflow, it will override the
equivalent setting of the Settings() object. For that reason, the second loadflow in Figure 3.16
is the only one printing output to the screen.

28

Chapter 4
Method

There are many decisions to make when updating a program, such as the choice of programming
language, the architecture of the code, and the user interface. Previous contributors decided to
use Python as the administrative language and C-extensions to boost slow functions. The idea
is to draw benefits from the flexibility of Python, and the speed of C. Existing implementations
uses a well-established technique to interface Python with C, which section 2.2 explained in
detail. The updated toolbox in this thesis uses the same technique, since it works well and
makes the contribution consistent with the previous work.

The "topflow.loadflow()"-function introduced in the user-guide have two callable sub-activities;
"acsolve" and "decsolve". acsolve is based on the Newton-Rapshon load-flow from subsec-
tion 2.5.7, and decsolve is based on the fast-decoupled load-flow from subsection 2.5.8. As
stated in Chapter 1, the primary goal of this thesis is to ensure that acsolve is reliable, and
matches the performance of similar activities in open-source Python-projects. This chapter
will, therefore, emphasize on describing how acsolve was implemented and optimized.

4.1 The file structure
This project is not aiming to distribute an open-source toolbox, however it is structured as a
Python-package ready for distribution. The structure corresponds with the Python Packaging
Authority’s (PyPA) guidelines on how to package a project [32]. The reason for choosing
this structure is that it enables Topflow to be easily installed locally with "pip install", if the
contributors share the project. It also makes it easier to distribute the toolbox in the future, if
that is desired.

Figure 4.1: The top level structure of the toolbox

The folder "topflow" is the root of the repository, which is folder available from GitHub us-
ing the pull- or copy-command. The sub-directory, also called "topflow", is the package contain-
ing all the source files. This sub-directory also contains a "__init__.py" file, which is required

29

to import the directory as a package. This file also makes some functions available from the top
level of the package. For example, instead of typing "topflow.loadflow.loadflow()" to access the
function "loadflow()" from the file loadflow.py", the user can simply type "topflow.loadflow()".

The second sub-directory of the root, "tests", contains the tests-scripts of the project that
are used to study the reliability and performance of the code. Section 4.3 and section 4.4.1 will
introduce these tests.

The "setup.py" file is the scripts that builds the distribution using "setuptools". At a mini-
mum, it specifies the name, version, a short description of the package, and which source files
to include. This file can also handle dependencies during installation.

Finally, the README.me is a text file that introduces and explains the package.

4.2 User interface
The specialization project by Åsmund Sælen [1] focused on translating the Newton-Rapshon
algorithm, acsolve, from the original toolbox to Python and C. The updated code did not include
functions for initializing the input data, nor a well-designed user interface. The script that tested
acsolve initialized the data manually, and passed the parameters as arguments to the function.
The first issue with this method is the way the parameters are initialized. The sub-functions
of acsolve requires many parameters, and the total number of arguments would increase even
more if the activity should include various options. To initialize all the parameters manually
in separate objects is cumbersome, even for small systems. The second issue is related to how
Python passes variables: functions with lists as arguments can change these globally. The user
of the function can prevent this by passing a copy of the list, but again this is inconvenient to do
for many objects.

This thesis solves the issues discussed above by introducing two new classes, namely "Case"
and "Settings". A Case-object encapsulates all the information acsolve needs to perform a
load-flow, while the Settings-object specifies options such as how much information the load-
flow function prints to the terminal or saves to a file. The new classes reduces the number of
arguments in acsolve to only two, and introduces new ways to initialize the parameters. The
Case-class has functions that can read/write Excel-files on a specific format. This particular
format is almost identical to the one used by MATPOWER, because it makes it easy to use the
open-source MATPOWER test-cases to verify the implementations of Topflow.

4.3 Reliability
The primary goal of this thesis is to verify the Newton-Rapshon load-flow activity, acsolve.
This activity creates the foundation of the toolbox, since other techniques relies on the same
sub-functions. Other parts of the toolbox are easier to develop and verify, once the Newton-
Rapshon load-flow is established as a reliable routine.

4.3.1 Automated tests
This thesis uses automated tests to verify that the implemented functions are working as ex-
pected. The automated tests are functions which execute code, and check if specific assertions
are true. These assertions are based on the fact that a known fixed input creates a know fixed
output.

30

There are two types of automated tests: unit tests and integration tests. Unit tests check a
single component, or in this case: a function. Integration tests, on the other hand, checks the
interaction between multiple functions.[33] This project uses "pytest" as a test-runner. Pytest
is a framework that has features such as detailed information about failed assert-statements and
auto-discovery of test-scripts. This makes running automated tests efficient and easy.[34]

Unit tests

Appendix C.6 and C.7 contains the unit tests that analyses the sub-functions in Topflow. The
outcome of most functions are easy to validate by checking the result of a small example. The
examples used to check the functions are imaginary, and customized to check if the function
handles all relevant inputs as expected.

For example, Figure 4.2 shows the unit test for the function "maxmism", which finds the
positions of the worst power mismatches. The first part of the test sets up the input data, which
attempts to check all aspects of the function. The numpy-arrays "pinj" and "qinj" contain the
active and reactive power mismatches . "mismloc[0]" and "mismloc[1]" stores the position of
the worst mismatch in pinj and qinj respectively. "nbuses" is the number of buses in the system,
and "buscod" are the bus-codes. Buscod shows that the first element in pinj and qinj is a PV-bus
(2), the second is the slack-bus (3), the third is a PQ-bus (1), and the last is a VAr-limited PV-bus
(-2).

Figure 4.2: The unit test for maxmism

The test in Figure 4.2 places the highest numbers of pinj (150.0) and qinj (also 150.0) at
the slack-bus and a generator-bus, respectively. Those placements is to verify that maxmismat
ignores these numbers correctly, because of the nature of the bus-types. Negative numbers are
used as the worst mismatch in both qinj and pinj to check if maxmism can deal with worst
absolute mismatches. The next part of the test calls the function maxmism. The test calls
the function inside a for-loop to check all the different variants of the argument "pqv". This
approach makes sure that the function also operates as expected for the fast-decoupled load-
flow algorithm, "decsolve". pqv == 1: only the worst active mismatch is found, pqv == 2:
only the worst reactive mismatches is found, pqv == 3: both active and reactive mismatches are
found. The final stage is to check if the result of the function call is as expected. This is done

31

by the numpy-function "numpy.testing.assert_array_equal", which compares the known result
and the worst mismatch-positions calculated by maxmism. The assertions are that the worst
active power-mismatch is -100 at position 2 in pinj, and that the worst reactive power-mismatch
is -100 at position 3 in qinj.

The known result of running maxmism on the system in Figure 4.2 can be seen beforehand
by evaluating the input data. The same thing cannot be said about the results of more complex
functions. Unit tests of such functions bases its assertions on the known result of performing
a load-flow on the three-bus system in Figure 4.3. The specialization project [1] studied that
system, and verified the result by hand-calculations and the lecture notes form the course ELK-
14 at NTNU [4]. For example, the unit test for the function which builds the Jacobian matrix
(2.20) bases its assertions on the matrix calculated by [1] and [4].

Z13 = 0.05 + j0.1

Z23 = 0.05 + j0.15 Z12 = 0.05 + j0.2

P2 + jQ2 = −0.5− j0.5

P1 + jQ1 = −1− j0.5
|V3|,Θ3

3 1

2

Figure 4.3: Three bus system [1]

The system in Figure 4.3 is set up as a "fixture" in Python. Fixtures are functions that are
recognized by pytest and initializes input-data for test functions. A fixture-object can be passed
to a test-function as an input argument to provide the required data. Therefore, the data of
the system in Figure 4.3 is only initialized once, and passed to multiple test-functions. The
consistency of the input data makes the unit tests produce reliable results. [35]

Integration tests

Integration tests check if the sub-functions of an algorithm interact as expected. They are es-
sential to ensure a robust program that produces consistent, reliable results during the code’s
development. To run integration tests during development is an efficient way to see if the pro-
gram still works as expected.

Appendix C.5 contains the integration test for acsolve. The test takes in fixture-objects,
which contains input-data of two power systems; the first is the three-bus system in Figure 4.3,
and the second is a 14-bus system that origins from the MATPOWER-repository on GitHub
[36]. The integration test bases the first system’s assertions on the solution that the specialization
project [1] provides. Section 6.2 will show that two different programs, namely pandapower
and pypower, gives the same solution when running a Newton-Rapshon load-flow on the 14-
bus system. Topflow uses that solution to develop assertions for the integration test with the
14-bus system as input data.

32

4.3.2 Comparison tests
The tests in Appendix C.2 and C.3 evaluates the reliability of Topflow further by comparing it
with open-source programs in Python, namely pandapower [37] and pypower [38]. The pro-
grams are tested on six standard cases from the MATPOWER repository on GitHub [22]. The
cases origins from two different sources: "case14", "case30" and "case118" are IEEE test-cases
from [39], while "case1354pegase", "case2869pegase" and "case9241pegase" stems from the
Pan European Grid Advanced Simulation and State Estimation (PEGASE) [40], [41]. The dig-
its in the case-names specify the number of buses in the system, which means that "case14" and
"case9241pegase" are the smallest and largest systems respectively.

The test-script in Appendix C.2 tests the reliability of acsolve by calling the load-flow func-
tions ("loadflow" for Topflow, "runpp" for pandapower and "runpf" for pypower) for each pro-
gram, and compare the calculated voltages. The functions use flat-start, and a convergence
criteria of 10−8.

4.4 The design of the Python-C interface
Table 4.1 show the design of Topflow which was purposed in the specialization project [1]. The
project argued to write functions that handle heavy calculations in C and keep the less time-
consuming functions in Python. Which functions that were considered "less time-consuming"
was not well justified, since Topflow was not able to study large systems.

Function Environment
acsolve Python
Sub-function Environment
giibii C
netinj C
mismat C
zerosp Python
fmaxsp Python
enfqlim C
bujac C
addel C
numpy.linalg.solve Python
t_u C
jacpy Python

Table 4.1: The design purposed in [1]

The new Case-class (see section 4.2) makes it possible to initialize data and run load-flows
on large power-systems. One of the goals of this thesis is to develop a toolbox that matches the
performance of existing open-source programs for Python. This goal introduces a new motiva-
tion when deciding the Python-C interface, namely, to optimize the functions. The following
sections describe the method used to decide the new design of the toolbox.

33

4.4.1 Optimiziation
Optimization is the process of modifying the code to increase the quality and efficiency of the
program. Section 4.3 has already conducted the initial step of optimizing the code by writing
automated tests. These tests detect bugs in the current program, but they also ensure that updates
do not break the functionality of the code.

This thesis uses tools that profiles code in the process of making Topflow more efficient.
Profiling gives information on the time consumed by various parts of the code, and can be
used to decide which tasks to optimize. There are many profiling tools, and they give different
information on the speed of the program. This project uses a combination of three tools to
profile the program, namely "timeit", "cProfile" and "LineProfiler". These tools are all available
in Python and can easily be installed as packages with the "pip install"-command.

4.4.2 cProfile
The first profiling tool is called cProfile. This module provides statistics of a function, such
as how long the execution spends on various parts of the code, and how many times different
sub-functions are called. The code snippet in Figure 4.4 is from the user manual of "The Python
Profilers" [42], and shows how to profile a function which takes in a single argument.

Figure 4.4: How to profile the function "re.compile()" with cProfile.run() [42]

The example in Figure 4.4 will run the function "re.compile()", and print the result to the
screen. Figure 4.4 displays the output.

Figure 4.5: Output from running the code in Figure 4.4

Observing Figure 4.5, the sentence "order by: standard name" specifies that the filenames
are ordered alphabetically by name, not by the order in which the functions are called. Table 4.2
gives a short description of the columns in the output from Figure 4.5.

cProfile provides a quick overview of the program’s execution time by showing how much
time each function spends. This is an excellent first step in locating "bottlenecks" in the pro-
gram, which makes it easier to optimize the program. The module is designed to provide statis-
tics on a given program, not for comparison with other programs (benchmarking).[42]

34

Columns Description
ncalls number of calls
tottime Total time spent in the given function

(exluding time spent in sub-functions)
percall tottime devided by ncalls
cumtime cumulative time spent in the given function

(including time spent in sub-functions)
percall cumtime devided by ncalls
filename:lineno(function) provides the respective data of each function

Table 4.2: Description of the columns in the output of cProfile.run()

4.4.3 LineProfiler
The second profiling tool is "LineProfiler". Time-consuming parts of the code are sometimes
not caused by sub-functions, but by actual lines in the code. This is especially true for programs
that do scientific computing and uses libraries such as numpy. cProfiler is not able to identify
these hotspots in the code, since the module only measures the execution time of functions
calls. Line-profiler, on the other hand, measures the execution time of each line inside the given
function, and gives therefore additional information about the code. A typical workflow should
limit the use of LineProfiler to specific functions, since measuring and printing the execution
time of each line in the code would be overwhelming. The approach of this thesis is to us
cProfile as the first step in profiling the code, and LineProfiler as the second. [43]

Figure 4.6 shows the file "primes,py", which contains the function "primes()" that calculates
the "n" first prime numbers. The function is decorated with @profile, which tells LinePorifler
to profile it. The function is called at the end of the script with n = 1000 to initialize an instance.

Figure 4.6: The file primes.py, which has decorated the function primes()

The easiest way to run LineProfiler is to use the "kernprof"-script. This script comes with
the installation of LineProfiler, and is convenient for running the package. Figure 4.7 shows the
command that runs the kernprof-script, and profiles the decorated function in primes.py (see
Figure 4.6).

The command from Figure 4.7 has to be run in the same directory as the relevant file
(primes.py in this case), and the "-v"-option makes LineProfiler immediately print the result

35

Figure 4.7: The command that invokes the kernprof-script

to the terminal. The output of the command is given in Figure 4.8. The results are formatted in
a table of 5 columns, which are described in Table 4.3.

Columns Description
Line Line number in the function
Hits The number of times the line was executed
Time Total execution-time of the line (in the timer’s unit)
Per Hit Execution-time of the line per call (in the timer’s unit)
%Time Percentage of time spent on the line

relevant to the time spent on the whole function
Line Content The actual code written on the line

Table 4.3: Description of the columns in the output from running LineProfiler

Figure 4.8: The output of profiling the prime-function

The first lines of the output gives information about the execution. This includes the "Timer
unit", the total execution time of the code, as well as the file and the functions which were
profiled. Timer unit specifies the conversion factor to seconds for the information provided in
the table containing the results.

Observing the output in Figure 4.8, it can be seen that the most time-consuming lines are
lines 7 and 8. These lines should be the focus when optimizing the code. One way of improving
the performance of this particular code is to use the NumPy-library, which provides faster array-
operations compared with the inbuilt Python-lists.

4.4.4 Timeit
The last module for analyzing the performance of the program is "timeit". timeit contains time-
related functions, making it simple to measure the execution time of a specified part of the code.

36

The module avoid common traps for measuring execution times, and is more reliable than the
inbuilt Python timer "time", and the modules cProfile and LineProfile [44]. The purpose of
using timeit in this thesis, is to benchmark Topflow against pandapower and pypower.

Figure 4.9 show a simple example of how to use the timeit-module to measure the execution
time of a sample code. The execution time of the code in Figure 4.9 is found by using the
timeit.timeit() function. This function gives the user the opportunity to specify three input
arguments. The keyword argument "stmt" stands for "statement", and is the actual code that the
user wants to time. Timit runs the argument "setup" before the actual statement. timeit uses the
setup to import the modules that the statement requires. The final argument, "number", refers
to the number of times timeit.timeit() runs the code. A high number of measurements gives a
more reliable result because it minimizes the influence of background processes. The default
value of 1 million measurements can make the tests very slow, so there is a trade-off between
the precision and speed of the test itself.

Figure 4.9: An example of a script which uses the timeit-module

4.4.5 Profiling acsolve
The focus in the process of optimizing Topflow is on increasing the performance of the function
acsolve. This function performs a Newton-Rapshon load-flow, and its sub-routines creates the
foundation for other techniques in the toolbox.

All the profiling in this section is done on the MATPOWER test-case case1354pegase with
default settings. The first stage in locating the most time-consuming part of acsolve, is to profile
the code with cProfile.run(), which reveals the most time consuming sub-functions. The result
is summarized in Table 4.4, which orders the relevant functions from the most time consumed
to the least. Functions with a cumulative time of less than 0.005s are not included.

Observing Table 4.4, the most time consuming functions are jacpy, which creates the full
the Jacobian matrix (2.20), and "numpy.linalg.solve", which solves the differential equation
system (2.19). This is no surprise, since the solver numpy.linalg.solve requires a dense matrix
as input. A promising alternative to the numpy-solver is another solver available in Python via
the Scipy-library, namely "scipy.sparse.linalg.spsolve()". This function solves a sparse linear
system, and provides high performance by using the C library "UMFPACK". The input matrix,
"A", should be a sparse matrix on CSC or CSR form to ensure efficiency. Because building
the full Jacobian matrix is expensive, a new function called "COO_conv()" is implemented as
a replacement for jacpy. This function returns a sparse matrix on COO-format. This format is
used because NumPy provides fast conversion from COO format to CSR and CSC through the

37

Function Cumulative time in seconds
acsolve 1.732
Sub-function Cumulative time in seconds
numpy.linalg.solve 0.983
jacpy 0.648
zerosp 0.021
maxmism 0.019

Table 4.4: The most time consumin functions of acsolve

functions "to.csr()" and "to.csc". Having the Jacobian matrix on COO-format makes it more
flexible, since it can efficiently switch the format required by a specific solver.[45],[46]

The other notably slow functions from Table 4.4 are "zerosp" and "maxmism". It was argued
in the specialization project, [1], to write these functions in pure Python, because they are
simple, and not expected to do complicated computations. The profiling with cProfile shows,
on the other hand, that these functions are slower than the more complex routines that are C-
extensions. One way of further increasing the code’s performance is, therefore, to write all
functions as C-extensions.

The impact of the modifications discussed above is analyzed by profiling the new code with
cProfile on the same system and settings as the initial profiling-test. The results are summarized
in Table 4.5.

Function Cumulative time in seconds (s)
acsolve 0.069
Sub-function Cumulative time in seconds (s)
scipy.sparse.linalg.spsolve 0.024
to.csr() 0.003
coo_conv 0.001
zerosp 0.000
maxmism 0.000

Table 4.5: The optimized functions

Comparing Table 4.4 and Table 4.5, the modifications have lowered the total execution time
of acsolve with 1.663 seconds. This improvement means that the optimized code is 25 times
faster than the original design. The increase in performance is mostly due to the sparse linear
solver, whose performance is approx. 4000% higher than the NumPy-solver. The functions
coo_conv() and csr_matrix() restructures the Jacobian matrix 162 times faster than jacpy, and
the cumulative times of zerosp and maxmism are also improved significantly.

Table 4.5 shows that scipy.sparse.linalg.spsolve is the most time consuming function with a
cumulative time of 0.024s. The cumulative times of all the other functions are each lower than
0.005s. In fact, the sum of all the sub-functions does not add up to the total execution time of
0.069s. Figure 4.10 shows a snapshot of the output from cProfile, which reveals that acsolve
has a "tottime" of 0.030s. This means that acsolve is spending 0.030s outside its sub-functions
and 0.39s inside.

38

Figure 4.10: a snippet of the output from cProfile

Nearly all the heavy calculations are performed by the sub-routines of acsolve, which makes
it unrealistic that almost half of the cumulative time is spent outside these functions. Information
about the source of this time-consumption is not accessible from cProfile, since it is not caused
by function-calls. LineProfiler, on the other hand, gives information about each line in the
function. The code is profiled with LineProfiler by adding the declaration "@profile" before the
definition of acsolve and running the command "kernprof -l -v acsolve.py" in the terminal.

The output from running LineProfiler showed that acsolve spends much time on imposing
flat start, setting up the right-hand side of the equation system (2.19), and updating the voltages.
The design from the specialization project [1] handles these operations directly in acsolve as
pure Python-code. Figure 4.11 is a snippet of the output from LineProfiler, and shows the part
of acsolve which updates the voltages. Column number 5 from the left gives the percentage of
the total time spent on a particular line. It can be seen that the activity of updating the voltages
in total occupies 35.7% of the cumulative time spent in acsolve. Together, the three operations
discussed above account for the time-consumption outside the sub-functions of acsolve. Each
of the operations is written as C-extensions to improve the performance of the code further.

Figure 4.11: A snippet of the output from LineProfiler

The impacts of the newest modifications are analyzed by profiling acsolve with cProfile.
Figure 4.12 shows a snippet of the output. A comparison of Figure 4.10 and Figure 4.12 show
that the time acsolve spends outside its sub-functions has decreased from 0.030 seconds to
0.001 seconds. The total execution time of acsolve is almost cut in half thanks to the most
recent modifications.

The optimizations discussed in this section have greatly improved the performance of the
program. The previous design of acsolve presented in [1], measured an execution time of 1.732
seconds on the system case1354pegase. The new design executes the same operations in 0.038

39

Figure 4.12: A snippet of the output from cprofile

seconds, which is an improvement in the computational performance of approximately 4500%.
In other words, the new design is 45 times faster than the original.

4.5 Approach to work
The process of updating Topflow has been time-consuming and demanding, yet exciting and
educational. In particular, the field of computer programming required a steep learning curve.
With previous experiences limited to introduction-courses in MATLAB and C++, the project
introduced many new concepts since it utilizes FORTRAN, C, and Python. The fundamental
theoretical knowledge and programming skills were acquired during the specialization project
"Toolbox for Specialized Power System Analysis" by Åsmund Sælen [1], which leads to this
thesis. This section is for that reason divided into two part: subsection 4.5.1 are paragraphs from
the specialization-project, while subsection 4.5.2 describes to working-process of this thesis.

4.5.1 Theoretical research and skill development
Theoretical knowledge of power system analysis and the skill of programming with different
programming languages are crucial when working on the toolbox. The specialization course
"ELK-14: Methods and Algorithms for Power Systems" at NTNU provided useful insight into
the algorithms used in the toolbox. This thesis uses some of the lecture slides as references, be-
cause they gave a compact, thorough description of the required methods. Besides, the manda-
tory exercises of the course encouraged the use of Python to create the algorithms. "Learning
by doing" is arguably the best way to develop skills in a new programming language, which is
why "Elk-14" was also very helpful in learning Python.

Free tutorials from online platforms, in particular YouTube and Tutorialspoint, covers all
the relevant programming languages. These sites can be recommended to future contributors
as a place to get familiar with coding. Other sites for users to ask and answer questions, such
as Stack Overflow, are great for fixing bugs in the code, and has been used extensively through
this project.

The original Fortran code was provided by professor Olav Bjarte Fosso, who also provided
additional documentation of the code. One resource which was especially helpful was a set
of videos where he explained parts of the program in detail. These video-clips were made

40

available on Google Drive. The work done by Statnett’s representative, Leif Warland, as well as
the code from the previous master thesis by Hege Kvandal [2], was made available in the private
repository "topflow" on Github. This repository consisted of a considerable amount of already
translated code, both rewritten C-code and wrapper-functions in Python. Both collaborators
shared the same goal of modernizing the toolbox, making Python the administrative language
which displays the program to the user. These contributors laid the foundation of the work on the
toolbox, and established the technique of using Ctypes and Scons to create C-extensions. The
scope and the direction of the work on this thesis came naturally with the established decisions
and techniques. [1]

4.5.2 Master thesis
The specialization course [1] presented a first update of the Newton-Rapshon load-flow func-
tion, acsolve. The goal of the project was to make the code run on a 3-bus system. That system
did not consist of components such as transformers and shunt-capacitors. Although the test
passed, the simplicity of the system called for additional examination of the implementations.

Designing the user interface, which is essential when initializing the data for large power
systems, makes up a considerable proportion of the time spent on this thesis. The structure
of the input-data was kept close to the data-formats used by MATPOWER [47], because this
software is the primary source of the test-cases used to verify the functions in Topflow. The
choice of using Excel as the source of the input data is the result of previously experienced that
Excel is a flexible and commonly used software. More research could have been conducted
in finding alternative options, which may be more efficient and flexible. The same is true for
the current method of reading Excel-files, which uses the Python-package "openpyxl". An
alternative package is "pandas", which is part of the SciPy-stack (see section subsection 2.1.3)
and potentially provides faster functions for communicating with Excel. The intent of this
function was, on the other hand, to develop a functional routine of initializing the parameters of
large power-systems, something the current method does.

Another time-consuming part of the work was achieving satisfactory results when run-
ning load-flows on large systems. Script for running the comparison-test described in sub-
section 4.3.2 were utilized after the implementation of the functions that initializes the system-
parameters. The tests showed that acsolve did not converge for all the test-cases. The approach
of detecting the bugs was to print the results of each sub-function, and manually check the val-
ues. This method was inefficient, unreliable, and unsuccessful in locating the errors. The errors
were resolved thanks to the discovery of automated tests. These tests made validating code
more efficient and reliable, since it’s a computer that checks the values, not a human. Section
6.2 will discuss the success of the automated tests further.

The toolbox presented in this thesis uses the same technique for writing C-extensions as the
previous contributors, and many of the functions are modifications of code originally translated
by Leif Warland at Statnett. However, the lack of documentation made it difficult to understand
the overall system, which is why the code of this thesis is not merged back with the original
branch on GitHub.

41

Chapter 5
Implementation

This section aims to give future contributors a deeper understanding of the existing implemen-
tations of the toolbox.

5.1 Installation test
The installation process and the setup.py file are tested in a virtual environment in a different
directory than the Topflow-project. Virtual environments have their own site-directories and
Python-packages, isolated from the system site directories [48]. This makes them suitable to
test if "pip" installes Topflow correctly. Figure 5.1 shows the command that is typed to create
the virtual environment called "topflow-env".

Figure 5.1: Create the virtual environment topflow_env

To enter the virtual environment, it must be activated by using a script in the virtual envi-
ronment’s binary directory. The script is invoked by running the terminal-command "<venv>
Script\activate.bat" in the directory of the virtual environment (<venv> is the name of the vir-
tual environment) [48]. Figure 5.2 shows the command that activates the virtual environment
topflow_env (which was created in Figure 5.1).

Figure 5.2: Active/enter the virtual environment topflow_env

The name of the virtual environment will now appear in brackets in the far left end of the
terminal. This means that the user is inside the virtual environment. The installed python-
packages are seen by running "pip-list", as shown in Figure 5.3.

Figure 5.3: The installed packages in the newly created virtual environment "topflow_env"

42

There are currently only two packages installed in the virtual environment: pip and setup-
tools. Topflow can now be installed to check if the setup.py installs the package and all its
dependencies correctly. This example uses "pip install -e" to install the package in developing-
mode (the package appears to be installed, but is still editable) [32]. Since Topflow is not an
open source project, pip requires the full path of the local Topflow-project. Figure 5.4 shows
the command that installs Topflow.

Figure 5.4: How to install Topflow locally

To validate the installation, "pip list" is once again used to see the installed packages in the
virtual environment. Figure 5.5 provides the output of the command, which shows that Topflow
and all its dependencies are installed correctly.

Figure 5.5: The result of installing Topflow

5.2 The Case-class
At the core of the toolbox, is the class "Case". A Case-object encapsulates all the information
needed in load flow studies, and contain various class functions for initializing the data and
performing other operations. An initialized Case-object is typically passed to the functions
which performs load flows on the system, also referred to as "simulation-functions". Most of
the variables of the Case-class are NumPy-arrays, which provides efficient storage and better
ways of handling data compared with the inbuilt Python-lists. Another benefit of using NumPy-
arrays is the mechanism to specify the data type of the content, which is convenient when
working with C-extensions. Appendix B.5 provides the source code of the Case-class as well
as Table 2, which lists the class-variables. This section will discuss the Case-class functions.

5.2.1 Printing output to the screen
The first way to access the result of a Case-object is by using the print-functions. These are
class-functions which provide a quick display of the data directly to the terminal. They are
great for checking if the case has been initialized properly, and can be used to print iteration-
summaries to the screen when performing simulations. The latter is done by specifying the
"print_verbose" argument when running a loadflow, which range from 0 (no output at all) to 3
(very verbose output). The functions are primarily meant for small cases, since the output will

43

become overwhelming for large systems. Table Table 5.1 show the different functions with a
short description of their operations.

Function Description
topflow.Case.print_all() Prints all the data of the Case-instance to the screen
topflow.Case.print_buses() Prints the bus-data of the Case-instance to the screen
topflow.Case.print_gens() Prints the generator-data of the Case-instance to the screen
topflow.Case.print_lines() Prints the line data of the Case-instance to the screen

Table 5.1: A description of the print-functions

5.2.2 Accessing the parameters with "get"
Another way to access the parameters of the Case-class is function "get(component, number,
variable)". This function returns the desired parameter based on the input from the user. The
three required arguments must be of the type string, and must be known to function.

The different variants of the arguments are listed in table Table 5.2. The argument "number"
can either be a single component-number, or a list of numbers, as described in Section 3.3.4.
Notice that the generator- and line-numbers are the order the user has placed the components in
the Excel-file. All the parameters which can be accessed by the component "gen" can also be
accessed by "bus", the only difference is that the user can access them using generator-numbers
instead of bus-numbers. The get-function is convenient if the user only wants to access parts of
the result, and it enables the parameters to be used in further analysis.

Component Number Variable Description
bus

Any external
bus-number(s)

vm Voltage magnitude of the bus(es)
va Voltage angle of the bus(es)
pd Active power demand (load) of the bus(es)
qd Reactive power demand of the bus(es)
pg Active power generation of the bus(es)
qg Reactvie power generation of the bus(es)

gen
Any generator

-number(s)

vm Voltage magnitude
va Voltage angle
pg Active power generation
qg Reactvie power generation

line
Any line

-number(s)

pf Active power injected at the "from"-end
qf Reactive power injected at the "from"-end
pt Active power injected at the "to"-end
qt Reactive power injected at the "to"-end

Table 5.2: The parameters in the Generator-data record

The variables of a Case-instance are also accessible with the default Python-approach: "in-
stance.variable". The purpose of the get-function is merely to give the user an intuitive interface.

44

5.2.3 Loading and saving data
This thesis uses Excel as the source of the input and output data. This is mainly because Ex-
cel is a widely used and flexible software. The function for loading data from a Excel-file is
"topflow.Case.loadxl(filepath)", which requires that the data is structured on the form described
in Section 3.3.1. The only argument, "filepath", is the path of the Excel-file which contains the
data. If the file is placed in the current working-directory, the name of the file can also be used.
Section 3.3.2 showed how to initialize a Case-object by calling the class with the file-path as
an input argument. Case has no required input arguments, but when it’s called in that way, the
loadxl-function will be called automatically to load the data.

Similarly, "topflow.Case.save2xl(filename, save_path = None, save_verbose = 1)" is the
function for writing data from a Case-object to a Excel-file. The only required argument is
"filename", which is what the user wants to name the file. The second argument, "save_path"
tells the function where to save the file. If this argument is not specified, the file will be saved
in the current working directory. Lastly, "save_verbose" tells the function how much informa-
tion it shall save. If save_verbose = 1, it only saves the final iteration, while if save_verbose
= 2, it creates two separate spreadsheets: one for the final results, and one for all the iteration-
summaries.

To this date, using loadxl and save2xl is the most efficient way of working on large systems
with the current toolbox. However it’s encouraged to implement new functions and ways to
initialize the Case-objects in the future, to enhance flexibility.

5.2.4 External and internal bus-numbers
The program distinguishes between internal and external bus-numbers to provide flexibility to
the code. The internal bus-numbers are a result of the order the buses were added to the Case-
object when initializing the data. This means that the external bus-numbers can be chosen
arbitrary, as long as they are unique, and the order of which they are placed doesn’t matter. This
also applies for the slack-bus. Conversion between internal and external bus data are done with
the Case-class functions "int2ext" and "ext2int".

5.3 The Settings-class
As described in the example from Section 3.3.5, the class "Settings" can be used to specify op-
tions before running a simulation. A initialized Settings-object can be passed to the simulation-
functions, which will customize its operations based on this input. Table 5.3 gives a full list over
the available options, and specifies the default settings. If a Settings-object is initialized with-
out any input arguments, these settings will apply. The class only deals with settings which are
relevant to the function topflow.loadflow(), since other simulation-functions from the original
toolbox are not yet translated. Future contributors should update the Settings-class (source-code
given in Appendix B.20) along with new translations.

45

Name Variant Description Default Type

version

Load-flow algorithms ’NR’ string

’NR’ Newton-Rapshon load-flow
’FDXX’ Fast-Decoupled XX-version
’FDBX’ Fast-Decoupled BX-version
’FDXB’ Fast-Decoupled XB-version
’FDBB’ Fast-Decoupled BB-version

flat_start True Start with flat start True bool
False Start with specified voltages

enf_qlim True Consider reactive generation limits False bool
False Ignore reactive generation limits

max_it Maximum number of iterations allowed 20 int
conv_tol Convergence tolerance 10−6 float

pqv
FDLF only FDXX: 1 int

FDBX: 1
1 Start with a P |V |-iteration FDBB: 1
2 Start with a Qθ-iteration FDXB: 2

filename Name of the file containing the results None string
save_path Path of the file containing the results cwd* string

save_verbose 1 Save the final results 1 int
2 Save final result + each iteration-summary

print_verbose
0 Don’t print anything 1 int
1 Print the final result
2 Print the final result more verbose
3 Print each iteration-summary

Table 5.3: Varaibles of the Settings-class.
*cwd = current working directory

5.4 Example cases
"topflow.example_cases()" is a Case-class function that gives access to several test-cases. Topflow
has converted these cases from the MATPOWER repository at GitHub [22]. The cases ori-
gins either from IEEE test-cases [39], the Pan European Grid Advanced Simulation and State
Estimation (PEGASE) [40],[41] or the book "Power System Analysis" by J.J.Grainger and
W.D.Stevenson [49]. Table 5.4 lists all the example cases available in Topflow. The digits
in the case-names specify the number of buses in the system; hence case 9241pegase, which
represents the size and complexity of the European high voltage transmission network, is the
largest system.

46

Example case Origin
case4gs J.J.Grainger and W.D.Stevenson
case14 IEEE
case30 IEEE
case118 IEEE
case300 IEEE
case1354pegase PEGASE
case2869pegase PEGASE
case9241pegase PEGASE

Table 5.4: The design purposed in [1]

5.5 The loadflow-function
As the name suggests, "topflow.loadflow(..)" is the function for running load-flows. Based on
the input from the user, it calls the correct simulation-function, which performs analyzes on a
initialized Case-object. The simulation-functions take in the Case-object as an argument, and
makes a deep-copy before performing any other operations. This action ensures that the original
Case-object is not modified in any way. The deep-copy is then modified by a iteration-process,
and returned from the function. A initialized Case-object can therefore be used as a base-case
and passed to multiple simulations without the need of reloading the data from the Excel-file.
This approach gives a better performance compared to modifying the original Case-object, since
loading a Excel-file can be time consuming and should be done as rarely as possible.

This project presents two different simulation-functions: "acsolve" and "decsolve", which
are callable through topflow.loadflow(). They are both based on routines in the original toolbox
by prof. Olav Bjarte Fosso.

5.5.1 Acsolve
The first function callable from topflow.loadflow(), acsolve, performs a Newton-Rapshon load-
flow (see section 2.5.7). A initial proposal of this method was presented in the specialization
project [1]. That proposal was only tested on a small 3bus-system, which could not provide
any information on the speed of the program. The specialization project [1] argued to keep the
less complex sub-functions in Python because they would not affect the performance greatly.
Section 4.4.5 in this thesis showed the benefits of having more code in C, and as a result, all the
sub-functions of acsolve are now C-extensions. Figure 5.6 show the structure of Topflow, high-
lighting acsolve and all its sub-routines. A flowchart of the algorithm is provided by Figure 5.7.

47

Figure 5.6: The structure of Topflow, highlighting the branch of acsolve

Initial guess
(flat start or not)

Function call

Calculate
P and Q

Calculate
∆P , ∆Q

Modify for zero
impedance lines

Find worst
∆P , ∆Q

Handle reactive
generation limits Terminate? Build the

Jacobian matrix

Set the problem
for the solver

Solve

J

[
∆θ

∆|V |

]
=
[
∆P
∆Q

]
Update |V| and θ

output

No

Yes

Figure 5.7: Flow-chart of the Newton-Rapshon load-flow algorithm, acsolve

48

5.5.2 Decsolve
The second simulation-function, decsolve, is based on the fast decoupled load-flow (FDLF)
method from section 2.5.8. Figure 5.9 shows the structure of Topflow, highlighting decsolve,
and all its subroutines. The original Fortran-code had separate functions for acsolve and dec-
solve. A comparison of Figure 5.6 and Figure 5.9 shows that the two activities now shares many
of the same sub-functions. This is achieved by introducing the argument "pqv". pqv stands for
P-Q-version, and tells the functions whether to calculate active parameters (pqv = 1), reactive
parameters (pqv = 2) or both (pqv=3). For example: the sub-function "netinj" calculates either
only the active power injections, only the reactive power injections, or both, based on the value
of pqv.

The flowchart of decsolve is given in Figure 5.10. It shows that after an iteration with pqv
= 1, the algorithm switches to pqv=2 in the next iteration, and vica versa. The user chooses the
initial value of pqv by specifying the FDLF-version when calling the function. The built-in ver-
sions are: FDXX, FDXB, FDBX and FDBB. The two first letters stands for "Fast-Decoupled"
and the two last refers to the version of B′ and B′′ (see subsection 2.5.8). For example, the
version FDBX specifies that B′ is built with bij , while B′′ is built by substituting 1/xij for bij .
By default all the versions start with a Pθ-iteration (pqv = 1), except from FDXB which starts
with a Q|V |-iteration (pqv = 2). The default versions are based on the theory from the paper
[25], however, the user can choose to override the default settings by specifying pqv when call-
ing the "loadflow"-function. Figure 5.8 shows an example where the version "FDXX" is run
with pqv = 2 as the initial value. The order of the Pθ- and Q|V |-iterations are not expected to
show any significant difference, but it makes the code flexible, as the user can customize the
FDLF-algorithm for study purposes.

Figure 5.8: A customized FDLF-version

Figure 5.9: The structure of Topflow, highlighting the branch of decsolve

49

Function call

Initial guess
(flat start or not)

Build B’ and B”

pqv = ?

Calculate QCalculate P

Calculate ∆P Calculate ∆Q

Modify for zero
impedance lines

Find worst
∆P , ∆Q

Handle reactive
generation limits Terminate?

output

Set the problem
for the solver

Set the problem
for the solver

Solve ∆θ = B′−1∆P
|V | Solve ∆|V | = B′′−1∆Q

|V |

Update θ Update |V|

pqv = 2 pqv = 1

No
pqv = 2

pqv = 1

pqv = 2

Yes

pqv = 1No

Figure 5.10: Flow-chart of the fast-decoupled load-flow algorithm, decsolve

Handling generators on the reactive power limits

A big difference between acsolve and decsolve is that while the Jacobian matrix is built in
each iteration in the Newton-Rapshon load-flow technique, constant matrices are built only
once in the fast decouple load-flow technique. This also affect the way the program handles
generators put on the reactive generation limit (also called Var-limited PV-buses). These buses
are treated as PQ-buses, as described in section 2.5.9. If a generator is put on the reactive limit,
the dimensions of the Jacobian sub-matrix J4 will change. The only operation required by
acsolve to handles this is to change the bus-code of the generator. The Jacobian matrix will
then change its dimensions automatically in the next iteration. If the VAR-limitd generator is
the slack bus, the next availablle PV-bus is chosen as the new reference.

The same approach could be used in decsolve, however, this would mean that the constant
matrices would have to be rebuilt before the next iteration. If generators were often put on
and off the reactive limits, the advantage of having "constant matrices" would disappear since
they would have to be rebuilt often. To avoid this, the matricies B′ and B′′ are not built in the
dimensions of J1 and J4, as the theory from section 2.5.8 suggests, but in the dimensionN×N

50

(N being the total number of buses). The rows and columns which must be ignored (slack bus
for B′, slack bus and PV-buses for B′′) are disregarded by adding a large number, M (1010 is
used in Topflow) on the diagonal element of the relevant buses. This will in practice result in the
contribution of these rows and columns being zero. When a PV-bus is put on the reactive limit,
the diagonal element in B′′ of that bus is subtracted by M , and the relevant row and column are
active. To put a Var-limited PV-bus off the limit, the opposite operation is performed by adding
Mz on the diagonal. This approach preserves the advantage of the constant matrices, as well
as it makes the program more flexible. Some programs require specific ordering of the buses,
such as having PQ-buses numbered before PV-buses and the slack bus being the last bus, but
this algorithm allows arbitrary numbering of the buses as well as multiple slack-buses.[50]

51

Chapter 6
Reliability and performance

6.1 Result and discussion of the automated tests
The purposed program from the specialization project, [1] was only tested on a 3-bus system,
and showed a number of bugs when it was tested on larger systems. Prior to the automated tests,
the approach of detecting bugs was to manually check the calculated values of each function by
printing the result to the terminal. This approach is neither efficient nor reliable.

Automated test makes detecting and resolving bugs easier, and the test-runner, pytest, was
invoked frequently during the development of the code. Figure 6.1 shows an output from run-
ning pytest, which resulted in one failure. Observe that pytest prints the unit-test that failed,
highlights the false assertion, and reveals the differences between the assertion and the values
calculated by the function. The function that failed is called "maxmism", which is a C-extension
and sub-function of acsolve. It calculates the active and the reactive power mismatches (∆P
and ∆Q from (2.19) in subsection 2.5.7). A closer look at the code revealed that the function
declared a variable as "int" (integer), instead of "double" (decimal number). The wrong declara-
tion caused the C-function to round off numbers, resulting in inaccurate calculations. This bug
was particularly hard to detect, since acsolve converged on all the tests-systems, gave satisfac-
tory results on small system, but slightly inaccurate results on larger systems. The fault could,
therefore, been a result of inaccurate or missing information from the large system’s input-data.
This example shows the utility and efficiency of having automated tests.

Figure 6.2 shows the result of running pytest on the final implementations. Three Python-
scripts were identified as tests: the integration test for acsolve (Appendix C.5), the unit tests for
acsolve (Appendix C.6), and the unit test for the Case-class (Appendix C.7). The latter contains
the test for the function "loadxl", which loads data from Excel-files. The last line of the output
shows that all 12 test passed, which means that they are working as expected. The 3 skipped
tests are manually marked with a "skip"-decoration because they are functions with "test" in
their names that are not automated tests.

The result from Figure 6.2 gives a strong indication that the functions are implemented
correctly. Having automated tests increases the reliability of the current implementations, and
it’s a quick way to check if the functionality of the program is kept when changes are made
to the code in the future. However, the test do not guarantee that there are no bugs in the
program. Functions may pass automated tests if the assertions are not good enough to check all
the situations a function might encounter. Programmers may also make conceptual mistakes,
so that the functions work as expected, but the outcome is incorrect. Conceptual mistakes are

52

Figure 6.1: The result of running pytest, which shows an error in the code.

more likely to be picked up by integrated test than unit tests, and it’s often challenging to find
the source of the error.

Figure 6.2: The result of the automated tests in the final implementation

The weakest unit tests implemented in the current program are the ones that make use of the
data from the three-bus system in Figure 4.3. This is a small system, which lacks complexity
and components such as transformers and bus-connected shunt elements. The system is used
due to the lack of a better alternative to obtain verified information, such as a Jacobian matrix
for a given input. Future contributors should conduct a literature-study to search for better
assertions for these unit tests. On the other hand, the integration test for acsolve asserts the final
result of a 14-bus system as well as the three-bus system. The 14-bus system includes several
transformers, and bus-connected capacitors. The success of the integration test indicates that
the implemented transformer-model work as expected.

53

6.2 Comparison-test of acsolve
Section 4.3.2 explained how the test in Appendix C.2 analyzes the reliability of acsolve further.
Table 6.1 summarizes the results of the tests, by displaying how much the voltages calculated by
Topflow deviates from pandapower and pypower respectively. All the simulations are performed
by running a Newton-Rapshon load-flow with flat-start and a convergence criteria of 10−8. A
precision of 6 decimals is used for both the voltage magnitudes and angles.

Case Software Worst |V | deviation [pu] Worst θ deviation[degree]

case14 pypower 0.0 0.0
pandapower 0.0 0.0

case30 pypower 0.0 0.0
pandapower 0.0 0.0

case118 pypower 0.0 0.0
pandapower 0.000041 0.002694

case1354pegase pytpower 0.0 0.0
pandapower 0.0 0.0

case2869pegase pypower 0.0 0.0
pandapower 0.0 0.0

case9241pegase pypower 0.0 0.0
pandapower 0.0 0.0

Table 6.1: The results calculated by Topflow compared with pandapower and pypower when running a
Newton-Rapshon load-flow

It can be observed from Table 6.1 that the IEEE-cases show no difference between Topflow
and pypower with a precision of 6 decimals. Pandapower gives similar results, except from
case118. The voltages calculated by pandapower differs from both Topflow and pypower on that
system, with a worst deviation of 0.000041pu for the magnitudes, and 0.002694◦ for the angles.
It’s unlikely that this deviation is caused by implementation-errors in any of the packages, since
they both pypower and pandapower include validation-models which compares the packages
against commercial software [51]. A more likely explanation is that pypower and pandapower
uses different input data for the case118. Pandapower has converted the case from pypower, so
the source of error may be this transition. This would explain why Topflow and pypower show
the same result, since they uses almost identical date-formats (influenced by MATPOWER).

The tests conducted on the PEGASE-cases show no differences among Topflow, pandapower
and pypower. These results are of significant importance for the validation of the implemented
transformer-model in Topflow. The IEEE-cases use only ideal transformers, which means that
the shift-angles are set to 0. The PEGASE-cases on the other hand, are more complex, and
introduces phase shift transformers. These cases also includes values different from 0 for the
active components of bus-connected shunt-elements (GL). The fact that Topflow finds the same
voltages with a precision of more than 10−6 show that the program can handle these special
cases.

54

6.3 Comparison of decsolve
The primary focus of this thesis has been on analyzing acsolve. However, the last milestone
(see Section 1.2) is to translate the second load-flow function, decsolve, from the original
FORTRAN-code. Section 5.5.2 showed how this function is implemented, and that it uses many
of the same sub-functions as acsolve. Therefore, most parts of decsolve are already verified by
the tests performed on acsolve.

An additional test (see Appendx C.3), compares the voltages calculated by decsolve and ac-
solve on the same cases that the test from section 6.2 used. The deviation between the two algo-
rithms should be small, since the use the same function to calculate the power injections, and the
same condition for terminating the iterative process. The test uses flat-start and a convergence-
criteria of 10−8 for each simulation. The worst voltage-deviations are calculated with a precision
of 10−6 (for both the magnitudes and the angles).

Table 6.2 summarizes the results of the test, and shows that all the three FDLF-versions
(which are given in Appendix A) calculates satisfactory results for the IEEE-cases. However,
all the simulations performed on the PEGASE-cases diverge. Pandapower has implemented
the Primal- and the Dual-method, and a quick simulation in Python showed that these methods
converged on the PEGASE-cases listed in Table 6.2. These results show that there are current
bugs in the implementation of decsolve. The error is most certain located in one of the dis-
tinct functions of decsolve, since the sub-functions of acsolve show reliable results in both the
automated tests and the comparison-test from section 6.2.

Case FDLF-version Succsess- Worst |V | Worst θ
flag deviation [pu] deviation[deg]

case14 Standard (XX) Convergence 0.0 0.0
Primal (BX) Convergence 0.0 0.0
Dual (XB) Convergence 0.0 0.0

case30 Standard(XX) Convergence 0.0 0.0
Primal(BX) Convergence 0.0 0.0
Dual (XB) Convergence 0.0 0.0

case118 Standard (XX) Convergence 0.0 0.0
Primal (BX) Convergence 0.0 0.0
Dual (XB) Convergence 0.0 0.0

case1354pegase Standard (XX) Divergence – –
Primal (BX) Divergence – –
Dual (XB) Divergence – –

case2869pegase Standard (XX) Divergence – –
Primal (BX) Divergence – –
Primal (XB) Divergence – –

case9241pegase Standard (XX) Divergence – –
Primal (BX) Divergence – –
Dual (XB) Divergence – –

Table 6.2: The results calculated by Topflow compared with pandapower and pypower when running a
Newton-Rapshon load-flow

Apparent bugs in decsolve are not yet resolved, due to the focus and the limited time-frame

55

of this thesis. The best approach for future contributors in locating the error(s) is to write unit
tests for the distinct sub-functions of decsolve. These tests makes it easier to study the action of
each part of the program, and resolve the incorrect implementations.

6.4 Conclusion on the reliability of Topflow
Having reliable results of the implemented functions is the most important milestone of this
thesis. Writing automated tests is considered a good practice in all stages of a project to ensure
that the functions are acting as expected. The fact that all the automated tests passed increases
confidence that the implementations are correct. As argued in section 6.1, the automated test do
not guarantee that there are no bugs in the program, which is why section 6.2 conducted addi-
tional tests. These tests compared simulations performed by Topflow, pypower and pandapower
on IEEE- and PEGASE-cases. The results of the simulations compliments the automated tests,
and concludes that the Newton-Rapshon load-flow is implemented correctly, and gives reliable
results.

Section 6.3 analyzed the reliability of the second load-flow function, decsolve, by running
simulations on the cases from section 6.2, and comparing the calculated voltages with acsolve.
The results was satisfactory for the IEEE-cases, but not for the PEGASE-cases. The apparent
bug is most likely located in one of the distinct sub-functions of decsolve, which is why future
contributors are recommended to write unit tests for all the sub-functions of decsolve.

6.5 Performance
The computational performance of Topflow is analyzed by the script in Appendix C.4, which
compares the convergence times of Topflow, pypower and pandapower when running the Newton-
Rapshon load-flow. The simulations are performed on the cases from section 6.2 that showed
lower voltage deviations than 10−6 for both the magnitudes and angles. Case118 is the only
system that is not suited to compare the performances of the programs. All the load-flows
are performed by using flat-start and a convergence criteria of 10−8. The tests are performed
on a computer with AMD Ryzen 5 processor at 210 GHz. The module "Timeit", which was
discussed in subsection 4.4.4, is used to measure the execution-times of the programs.

Figure 6.3 compares the average values of 100 measurements for each system using Topflow,
pandapower and pypower. The calculated times are given in milliseconds. It’s observed that the
three programs show similar results on all the systems. Topflow is faster than pypower and
pandapower for all cases, except for case9241pegase, where pandapower show the shortest
convergence time. The similarities are a result of the fact that the three programs uses the same
C-library, UMFPACK, through SciPy to solve the sparse linear equation systems. The speed
of Topflow is high due to multiple C-extensions, while pandapower uses the just-in-time (jit)
compiler numba [52] with success for larger systems [37]. Pypower provides neither, and is
therefore the slowest of the three programs.

The jit-compiler used by pandapower translates pure Python-code to machine-code at run-
time to give the program speed similar to C and FORTRAN. This compiler will on the other
hand cause a delay the first time a function is called, because it has to compile the code [52].
This delay is not included in the calculated times in Figure 6.3, since it was made sure that
timeit.timeit() included an initial Newton-Rapshon load-flow in the setup for pandapower, to
invoke the jit-compiler before the actual measurements. The script in Appendix C.1 measures

56

Figure 6.3: Calculation times for the Newton-Rapshon load-flow on Standard MATPOWER cases

the delay by subtracting the first runtime of the Newton-Rapshon function of pandapower by the
mean of the next 100 runtimes. This operation is done to ensure that the execution-time of the
function itself do not add to the delay. The script was invoked 10 times to force the jit-compiler
to translate the function each time. The delay measured 2.75 seconds on average, regardless of
the size of the system.

The delay is obviously worth it when the user wants to call the same pandapower-function
multiple times, especially on large systems. Figure 6.3 shows that the jit-compiler has less effect
for smaller systems, also, the delay makes work which involves few function calls more time
consuming, not less. Regardless, the test shows that the jit-compiler is a powerful software that
shrinks the gap in performance between Python and C.

One of the advantage of Topflow is that it do not need the jit-compiler to enhance its per-
formance, thanks to the implemented C-extensions. This makes the program efficient on small
systems and low-demanding work, as well larger systems and more demanding work.

57

Chapter 7
Conclusion

This master thesis has conducted work on updating Topflow: a toolbox for power system anal-
ysis. NTNU professor Olav Bjarte Fosso wrote the original code in FORTRAN, but previous
projects have worked towards the end goal of making the toolbox available in Python. These
projects have used C-extensions to preserve the speed of the FORTRAN-program. The contri-
bution of this thesis builds on an initial update of the Newton-Rapshon load-flow function from
the specialization project "Toolbox for Specialized Power System Analysis" by Åsmund Sælen
[1]. Newly added features to the toolbox includes functions which read and initializes data from
Excel-files. These functions make Topflow able to run simulations on large power-systems.

Automated tests are now implemented to ensure the reliability of the code. The result of
running a Newton-Rapshon load-flow with Topflow has been compared with corresponding
simulations by other programs to complement the automated tests. The largest test-system
is case9241pegase, which represents the size and complexity of the European high voltage
transmission network [53]. The tests confirm that the implementations are working as expected,
and show that Topflow gives reliable results on large systems.

Various profiling-tools have been used to optimize the Newton-Rapshon load-flow function,
and justify the design of the Python-interface with C. The most significant optimization is the
use of the new solver, scipy.sparse.linalg.spsolve(), which handles sparse matrices. The updated
version of Topflow is 45 times faster than the initial version from the specialization project [1],
and matches the speed of the open-source projects pandapower and pypower.

The fast-decoupled load-flow routine "decsolve" is also implemented in the updated toolbox
presented in this thesis. This implementation is not as well-documented as the Newton-Rapshon
load-flow function, but it shares many of the same sub-routines, which have been verified by
automated tests.

This thesis’s conclusions complete the milestones, and the primary goal set at the start of
the working process. Future work should complete the documentation of decsolve, by creating
automated tests for the remaining sub-functions, and comparing the result of the load-flow
with the Newton-Rapshon activity. The natural next step in translating the remaining parts
of the original toolbox is to update the routine for continuation power-flow and contingency
analysis. These routines are extensions of the load-flow activities implemented in this thesis,
and will introduce new functionality to the program. Hopefully, future contributors can use the
documentation presented by this thesis to complete the toolbox, and add additional features to
handle the challenges in the future’s power systems.

58

Bibliography

[1] Å. Sælen, “Toolbox for power system analysis,” Dec. 2019. DOI: 10.13140/RG.2.
2.19031.70564.

[2] H. Kvandal, Toolbox for specialized power system analysis. Master Thesis: 2019.

[3] ——, Toolbox for specialized power system analysis. Specialization project: 2018.

[4] O. Fosso, ELK14: Lecture 2 – Modelling and basic Power Flows. 2018.

[5] J. Backus, “The history of fortran i, ii, and iii,” IEEE Annals of the History of Computing,
vol. 20, no. 4, pp. 68–78, Oct. 1998, ISSN: 1934-1547. DOI: 10.1109/85.728232.

[6] S. U. (1995-7), Common blocks, https://web.stanford.edu/class/me200c/
tutorial_77/13_common.html, Accessed: 09.09.2019.

[7] Tutorialspoint, C tutorial, https://www.tutorialspoint.com/cprogramming/
index.htm, accessed: 20.09.2019.

[8] ——, Why Python is called Dynamically Typed? https://www.tutorialspoint.
com/why-python-is-called-dynamically-typed, accessed: 02.10.2019.

[9] PythonTM , General information - what is python, https://docs.python.org/
3/faq/general.html, accessed: 20.09.2019.

[10] Scipy.org, Scientific computing tools for python, https :/ / www. scipy. org /
about.html, accessed: 02.06.2020.

[11] ——, The scipy stack specification, https://www.scipy.org/stackspec.
html, accessed: 02.06.2020.

[12] NumPy.org, Numpy, https://numpy.org/, accessed: 18.12.2019.

[13] Scipy.org, Scipy library, https://www.scipy.org/scipylib/index.html,
accessed: 02.06.2020.

[14] V. Haenel, Interfacing with c, https://scipy-lectures.org/advanced/
interfacing_with_c/interfacing_with_c.html, accessed: 03.06.2019).

[15] PythonTM , Ctypes- a foreign function library for python, https://docs.python.
org/3.7/library/ctypes.html?highlight=ctypes#module-ctypes,
accessed: 15.10.2019).

[16] Microsoft, About dynamic-link libraries, https://docs.microsoft.com/en-
us/windows/win32/dlls/about-dynamic-link-libraries, accessed:
28.10.2019.

59

https://doi.org/10.13140/RG.2.2.19031.70564
https://doi.org/10.13140/RG.2.2.19031.70564
https://doi.org/10.1109/85.728232
https://web.stanford.edu/class/me200c/tutorial_77/13_common.html
https://web.stanford.edu/class/me200c/tutorial_77/13_common.html
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/why-python-is-called-dynamically-typed
https://www.tutorialspoint.com/why-python-is-called-dynamically-typed
https://docs.python.org/3/faq/general.html
https://docs.python.org/3/faq/general.html
https://www.scipy.org/about.html
https://www.scipy.org/about.html
https://www.scipy.org/stackspec.html
https://www.scipy.org/stackspec.html
https://numpy.org/
https://www.scipy.org/scipylib/index.html
https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html
https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html
https://docs.python.org/3.7/library/ctypes.html?highlight=ctypes##module-ctypes
https://docs.python.org/3.7/library/ctypes.html?highlight=ctypes##module-ctypes
https://docs.microsoft.com/en-us/windows/win32/dlls/about-dynamic-link-libraries
https://docs.microsoft.com/en-us/windows/win32/dlls/about-dynamic-link-libraries

[17] pythonTM , Using dlls in practice, https://docs.python.org/3/extending/
windows.html, accessed: 08.06.2019.

[18] S. Knight, Scons 3.1.1, https://www.scons.org/doc/HTML/scons-user/,
accessed: 28.09.2019).

[19] SciPy.org, C-types foreign function interface (numpy.ctypeslib), https://docs.
scipy.org/doc/numpy/reference/routines.ctypeslib.html, ac-
cessed: 18.12.2019.

[20] Microsoft, Getting started, https://code.visualstudio.com/docs, ac-
cessed: 10.09.2019.

[21] L. Langa, Black the uncomprimising code formatter, https://github.com/psf/
black,accessed:10.09.2019, accessed: 10.09.2019.

[22] Matpower, Data, https : / / github . com / MATPOWER / matpower / blob /
master/data, accessed: 30.04.2020.

[23] M. Albadi, “Power flow analysis,” IntechOpen, pp. 565–576, 2019. DOI: 10.5772/
intechopen.83374. [Online]. Available: https://www.intechopen.com/
online-first/power-flow-analysis.

[24] E. Kreyszig, Advanced Engineering Mathematics, tenth edition. 2011, pp. 302–304.

[25] A. J. Monticelli, A. Garcia, and O. R. Saavedra, “Fast decoupled load flow: Hypothesis,
derivations, and testing,” IEEE Transactions on Power Systems, vol. 5, no. 4, pp. 1425–
1431, 1990.

[26] B. Stott and O. Alsac, “Fast decoupled load flow,” IEEE Transactions on Power Appara-
tus and Systems, vol. PAS-93, no. 3, pp. 859–869, 1974.

[27] R. A. M. van Amerongen, “A general-purpose version of the fast decoupled load flow,”
IEEE Transactions on Power Systems, vol. 4, no. 2, pp. 760–770, 1989.

[28] P. Kundur, Power System Stability and Control. New York: McGraw-Hill, Inc, 1993.

[29] SciPy.org, Scipy.sparse.coo_matrix, https://docs.scipy.org/doc/scipy/
reference/generated/scipy.sparse.coo_matrix.html#scipy.
sparse.coo_matrix, accessed: 14.04.2020.

[30] ——, Scipy.sparse.csc_matrix, https : / / docs . scipy . org / doc / scipy /
reference/generated/scipy.sparse.csc_matrix.html#scipy.
sparse.csc_matrix, accessed: 14.04.2020.

[31] ——, Scipy.sparse.csr_matrix, https : / / docs . scipy . org / doc / scipy /
reference/generated/scipy.sparse.csr_matrix.html#scipy.
sparse.csr_matrix, accessed: 14.04.2020.

[32] P. P. Authority, Packaging python projects, https://packaging.python.org/
tutorials/packaging-projects/, accessed: 13.05.2020.

[33] A. Shaw, Getting started with testing in python, https://realpython.com/
python-testing/, accessed: 22.05.2020.

[34] pytest, Pytest: Helps ypu write better programs, https://docs.pytest.org/
en/latest/, accessed: 22.05.2020.

60

https://docs.python.org/3/extending/windows.html
https://docs.python.org/3/extending/windows.html
https://www.scons.org/doc/HTML/scons-user/
https://docs.scipy.org/doc/numpy/reference/routines.ctypeslib.html
https://docs.scipy.org/doc/numpy/reference/routines.ctypeslib.html
https://code.visualstudio.com/docs
https://github.com/psf/black, accessed: 10.09.2019
https://github.com/psf/black, accessed: 10.09.2019
https://github.com/MATPOWER/matpower/blob/master/data
https://github.com/MATPOWER/matpower/blob/master/data
https://doi.org/10.5772/intechopen.83374
https://doi.org/10.5772/intechopen.83374
https://www.intechopen.com/online-first/power-flow-analysis
https://www.intechopen.com/online-first/power-flow-analysis
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html##scipy.sparse.coo_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html##scipy.sparse.coo_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html##scipy.sparse.coo_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html##scipy.sparse.csc_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html##scipy.sparse.csc_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html##scipy.sparse.csc_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html##scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html##scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html##scipy.sparse.csr_matrix
https://packaging.python.org/tutorials/packaging-projects/
https://packaging.python.org/tutorials/packaging-projects/
https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/

[35] ——, Pytest fixtures: Explicit, modular, scalable, https://docs.pytest.org/
en/latest/fixture.html, accessed: 22.05.2020.

[36] Matpower, Case14.m, https://github.com/MATPOWER/matpower/blob/
master/data/case14.m, accessed: 30.04.2020.

[37] L. Thurner, A. Scheidler, F. Schäfer, J. Menke, J. Dollichon, F. Meier, S. Meinecke, and
M. Braun, “Pandapower — an open-source python tool for convenient modeling, analy-
sis, and optimization of electric power systems,” IEEE Transactions on Power Systems,
vol. 33, no. 6, pp. 6510–6521, Nov. 2018, ISSN: 0885-8950. DOI: http://dx.doi.
org/10.13140/RG.2.2.19031.70564.

[38] R. Lincoln, Pypower 5.1.4, https://pypi.org/project/PYPOWER/, accessed:
25.05.2020.

[39] R. Christiey, Power systems test case archive, ://labs.ece.uw.edu/pstca/.

[40] S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel, Ac power flow data in
matpower and qcqp format: Itesla, rte snapshots, and pegase, https://arxiv.org/
abs/1603.0, accessed: 13.05.2020.

[41] ——, “Contingency ranking with respect to overloads in very large power systems tak-
ing into account uncertainty, preventive, and corrective actions,” IEEE Transactions on
Power Systems, vol. 28, no. 4, pp. 4909–4917, 2013.

[42] pythonTM , The python profilers, https://docs.python.org/3/library/
profile.html, accessed: 27.05.2020.

[43] R. Kern, Line_profiler and kernprof, https://github.com/pyutils/line_
profiler, accessed: 27.05.2020.

[44] pythonTM , Timeit — measure execution time of small code snippets, https://docs.
python.org/3/library/timeit.html, accessed: 27.05.2020.

[45] SciPy.org, Scipy.sparse.linalg.spsolve, https://docs.scipy.org/doc/scipy/
reference/generated/scipy.sparse.linalg.spsolve.html#scipy.
sparse.linalg.spsolve, accessed: 14.04.2020.

[46] Scipy.org, Numpy.linalg.solve, https : / / docs . scipy . org / doc / numpy /
reference/generated/numpy.linalg.solve.html, accessed: 6.11.2019.

[47] R. D. Zimmerman and C. E. Murillo-Sánchez, “Matpower user’s manual, version 7.0,”
2019. DOI: 10.5281/zenodo.3251118. [Online]. Available: http://www-cs-
faculty.stanford.edu/~uno/abcde.html, (accessed: 01.09.2016).

[48] PythonTM , Venv — creation of virtual environments, https://docs.python.
org/3/library/venv.html, accessed: 20.09.2019.

[49] J. J. Grainger and W. D. Stevenson, Power System Analysis. McGraw-Hill, 1994, pp. 337–
338.

[50] Y. Yao and M. Li, “Designs of fast decoupled load flow for study purpose,” Energy Pro-
cedia, vol. 17, pp. 127–133, Dec. 2012. DOI: 10.1016/j.egypro.2012.02.073.

[51] L. Thurner, A. Scheidler, F. Schäfer, J. Menke, J. Dollichon, F. Meier, S. Meinecke,
and M. Braun, About pandapowers, http://www.pandapower.org/about/,
accessed: 20.05.2020.

61

https://docs.pytest.org/en/latest/fixture.html
https://docs.pytest.org/en/latest/fixture.html
https://github.com/MATPOWER/matpower/blob/master/data/case14.m
https://github.com/MATPOWER/matpower/blob/master/data/case14.m
https://doi.org/http://dx.doi.org/10.13140/RG.2.2.19031.70564
https://doi.org/http://dx.doi.org/10.13140/RG.2.2.19031.70564
https://pypi.org/project/PYPOWER/
https://arxiv.org/abs/1603.0
https://arxiv.org/abs/1603.0
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://github.com/pyutils/line_profiler
https://github.com/pyutils/line_profiler
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spsolve.html##scipy.sparse.linalg.spsolve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spsolve.html##scipy.sparse.linalg.spsolve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spsolve.html##scipy.sparse.linalg.spsolve
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.html
https://doi.org/10.5281/zenodo.3251118
http://www-cs-faculty.stanford.edu/~uno/abcde.html
http://www-cs-faculty.stanford.edu/~uno/abcde.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://doi.org/10.1016/j.egypro.2012.02.073
http://www.pandapower.org/about/

[52] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python jit compiler,” in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,
ser. LLVM ’15, Austin, Texas: Association for Computing Machinery, 2015, ISBN: 9781450340052.
DOI: 10.1145/2833157.2833162. [Online]. Available: https://doi.org/
10.1145/2833157.2833162.

[53] Matpower, Case9241pegase, https://raw.githubusercontent.com/MATPOWER/
matpower/master/data/case9241pegase.m, accessed: 30.04.2020.

62

https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://raw.githubusercontent.com/MATPOWER/matpower/master/data/case9241pegase.m
https://raw.githubusercontent.com/MATPOWER/matpower/master/data/case9241pegase.m

Appendix

Appendix A. contains additional information on the Fast-decoupled load-flow form section
subsection 2.5.8. Appendix B. provides the source-code of Topflow. Existing parts of the
package that are not utilized in this master’s thesis (such as the part Hege Bruvik Kvandal
developed concerning DC optimal load-flow [2]) are not included. Appendix C. consists of the
tests discussed in chapter 6, which analyses the reliability and performance of the program. The
tests uses Excel-files that are too large to include in the Appendix, however, the data is accessible
in the GitHub repository [22] where the cases were converted from. Finally, Appendix D.
contains the setup.py-file, which is not a part of the Topflow source-code, but located at the root
of the repository to support local installations.

63

A Fast-decoupled load-flow versions
Approximations

1. |Vi| = 1

2. sin(θij) = 0

3. cos(θij) = 1

4. The effect of PV-buses and shunts ar neglected when forming Heq (XB- and XX-version
only)

5. Leq is the submatrix L calculated with bij substituted by 1/xij

6. Heq is the submatrix H calculated with bij substituted by 1/xij

(Note: if the system is radial or have constant r/x ratios, 6. and 7. are not approxi-
mations, but exactly true.)

Standard Algorithm (XX-version)

1. Initialize iteration count: k = 0

2. Calculated the active power mismatches, and compute angle corrections:
∆θ(k) =

H−1
eq ∆P (k)(|V |(k),θ(k))

|V |(k)

3. Update the angles: θ(k+1) = θ(k) + ∆θ(k)

4. Calculate the reactive power mismatches, and compute magnitude corrections:
∆|V |(k) =

L−1
eq ∆Q(k)(|V |(k),θ(k+1))

|V |(k+1)

5. Update the magnitudes: |V |(k+1) = |V |(k) + ∆|V |(k)

6. k = k + 1, go to step 2.

Primal Algorithm (BX-version)

1. Initialize iteration count: k = 0

2. Calculated the active power mismatches, and compute angle corrections:
∆θ(k) = H−1∆P (k)(|V |(k),θ(k))

|V |(k)

3. Update the angles: θ(k+1) = θ(k) + ∆θ(k)

4. Calculate the reactive power mismatches, and compute magnitude corrections:
∆|V |(k) =

L−1
eq ∆Q(k)(|V |(k),θ(k+1))

|V |(k+1)

5. Update the magnitudes: |V |(k+1) = |V |(k) + ∆|V |(k)

6. k = k + 1, go to step 2.

64

Dual Algorithm (XB-version)

1. Initialize iteration count: k = 0

2. Calculate the reactive power mismatches, and compute magnitude corrections:
∆|V |(k) = L−1∆Q(k)(|V |(k),θ(k))

|V |(k)

3. Update the magnitudes: |V |(k+1) = |V |(k) + ∆|V |(k)

4. Calculated the active power mismatches, and compute angle corrections:
∆θ(k) =

H−1
eq ∆P (k)(|V |(k+1),θ(k))

|V |(k+1)

5. Update the angles: θ(k+1) = θ(k) + ∆θ(k)

6. k = k + 1, go to step 2.

65

B Topflow
This section contains the source-code of Topflow. Appendix sorts the files alphabetically, and
Table 1 gives an overview with a short description of the function(s)/class(es) within.

File Description of the function(s)/class(es)
__init__.py Defines that Topflow is a package
acsolve_wrapper.py Wrapper-functions for the C-extensions of the function "acsolve"
acsolve.py Performs the Newton-Rapshon load-flow
bmatrix.py Builds the constant sub-matrices B’ and B” for the FDLF-method
case.py Stores the system-parameters, communicates with Excel
coo_conv.c Restructures the sparse matrix built by "bujac" to coo-format.
decsolve_wrapper.py Wrapper-functions for the C-extensions of the function "decsolve"
decsolve.py Performs the fast-decoupled load-flow (FDLF)
enforce_qlim.py Enforces reactive power limits on generators
flatstart.py Imposes flat start
jacobi.c Constructs the Jacobian matrix
jacobi.h Headers for jacobi.c
loadflow.py Administers the loadflow-functions "acsolve" and "decsolve".
maxmism.py Finds the power-mismatches (∆P and ∆Q)
netinj.c Calculates the net power-injections (P and Q
sConstruct Recuired by SCons to build the DLL that exports the C-extensions
select_ver.c Selects the versions of B’ and B” in the FDLF
set_rhs.c Sets the righ-hand-side of the equation system (2.19)
Settings Specifies settings (load-flow-version, print- and save-options, etc.)
topflow.h Defines some basic identities
update_voltages.py Updates voltage magnitudes, (|V |) and voltage angles (θ)
zerosp.c Handles zero impedance lines

Table 1: The files in Toplow’s source-code

66

B.1 __init__.py

1 #This file defines Topflow as a python-package
2 #It also makes the functions in case.py and run.py avail-
3 # able for import directly by "from topflow import somefunction"
4 from .case import Case
5 from .loadflow import *
6 from .example_cases.example_cases import example_case
7 from .example_cases.example_cases import example_case_list
8 from .settings import *

67

B.2 acsolve.py
This file contains the function acsolve, which performs the Newton-Rapshon load-flow.

1 import sys
2
3 sys.path.append(".")
4 import numpy as np
5 import copy
6 import time
7 import scipy
8 import topflow.acsolve_wrapper as ac
9 from scipy.sparse import csr_matrix

10 from scipy.sparse import isspmatrix_csr
11 from topflow.jacpy import *
12
13
14 #acsolve performs a Newton-Rapshon load-flow
15
16 def acsolve(
17 case,
18 opt
19):
20 #Start the timer
21 start_clock = time.time()
22
23 #Make a deep copy to prevent changes of the base-case
24 obj = copy.deepcopy(case)
25 obj.convergence = False
26
27 #set some required values
28 obj.icount = 0
29 melem = 5 * (obj.nbuses + 2 * obj.nlines)
30 pqv = 3
31 #The following values are set to 0, because they are used in CPF,

not NR:
32 pdelta = 0.0
33 qdelta = 0.0
34 alfa = np.zeros(obj.nbuses, dtype=np.double)
35 beta = np.zeros(obj.nbuses, dtype=np.double)
36
37 ac.flatstart(
38 obj.nbuses,
39 obj.buscod,
40 obj.vomag,
41 obj.voang,
42 opt.flat_start
43)
44
45 while True:
46

68

47 # Caclulate net injection at all buses
48 ac.netinj(
49 pqv,
50 obj.nbuses,
51 obj.nlines,
52 obj.pinj,
53 obj.qinj,
54 obj.vomag,
55 obj.voang,
56 obj.gii,
57 obj.bii,
58 obj.gij,
59 obj.bij,
60 obj.ratio,
61 obj.shift_angle,
62 obj.ifrom,
63 obj.ito,
64 obj.ibstat
65)
66
67 # Update reactive gneration and calculate the missmatch

vector
68 # pinj and qinj are updated; they are now pdelta and qdelta (

rhs)
69 # mism[0] contains the bus with worst Pmism, m[1] contains

the bus with worst Qmism
70 ac.mismat(
71 pqv,
72 obj.nbuses,
73 obj.genbus,
74 obj.buscod,
75 obj.pgen,
76 obj.qgen,
77 obj.pload,
78 obj.qload,
79 obj.pinj,
80 obj.qinj,
81 alfa,
82 beta,
83 pdelta,
84 qdelta,
85)
86
87 # Modify for zero impedance lines
88 ac.zerosp(obj.nlines, obj.ifrom, obj.ito, obj.ibstat, obj.

xinv, obj.pinj)
89 ac.zerosp(obj.nlines, obj.ifrom, obj.ito, obj.ibstat, obj.

xinv, obj.qinj)
90

69

91 # Enforce reactive limitations for generators. If they are on
the limit, the buscode is changed to -2

92 if (obj.icount > 1 and opt.enf_qlim == True):
93 #Enforce reactive limits
94 obj.mismloc[1] = ac.enforce_qlim(True, obj.nbuses, obj.

mismloc[1], obj.buscod, obj.genbus, obj.numbus, obj.pinj, obj.qinj
, obj.qgen, obj.qmin, obj.qmax, obj.vomag, obj.vgbus)

95 #update the number of generators on the reactive limit
96 obj.set_nlimgens()
97
98
99 #Update isa

100 #obj.set_isa()
101
102 # Find worst location of mismatches after zero-imp

modification
103 ac.maxmism(pqv, obj.nbuses, obj.buscod, obj.mismloc, obj.pinj

, obj.qinj)
104
105
106 # iteration summary
107 if(opt.print_verbose == 3):
108 print('\niteration:',obj.icount)
109 print('Voltage magnetudes:', obj.vomag)
110 print('Voltage angles:', obj.voang)
111 print("Worst active power mismatch:", obj.pinj[obj.

mismloc[0]], "at bus:", obj.mismloc[0])
112 print("Worst reactive power mismatch:", obj.qinj[obj.

mismloc[1]], "at bus:", obj.mismloc[1])
113
114 #Write to Excel file
115 if(opt.filename is not None and opt.save_verbose == 2):
116 #Saves each iteration only if save_verbose is True (its

False by default)
117 obj.save2xl(opt.filename, opt.save_path, save_verbose =

True)
118
119 #Terminate?
120 if abs(obj.pinj[obj.mismloc[0]]) < opt.conv_tol and abs(obj.

qinj[obj.mismloc[1]]) < opt.conv_tol:
121 #Convergence
122 obj.convergence = True
123 stop_clock = time.time()
124 runtime = stop_clock - start_clock
125
126 if(opt.print_verbose != 0):
127 print("\nConvergence. \nNumber of iterations:", obj.

icount, 'in', runtime, 'seconds')
128 if(opt.print_verbose > 1):
129 print("Final voltage angle:", obj.voang)

70

130 print("Final voltag magnitude:", obj.vomag)
131 print('pgen', obj.pgen)
132
133 if(opt.filename is not None):
134 obj.save2xl(opt.filename, opt.save_path, save_verbose

= opt.save_verbose)
135 return obj
136 elif obj.icount > opt.max_it:
137 print("\nDivergence")
138 break
139
140
141 # Initializes the jacobian lists with -1
142 jacbi = np.zeros((melem), dtype=np.double)
143 jcol = -np.ones((melem), dtype=np.int32)
144 ipv = -np.ones((melem), dtype=np.int32)
145 isa = -np.ones((2*obj.nbuses), dtype = np.int32)
146
147 # Building the sparse representation of the jacobian matrix
148 ac.bujac(
149 obj.nbuses,
150 obj.nlines,
151 jacbi,
152 obj.vomag,
153 obj.voang,
154 obj.gii,
155 obj.bii,
156 obj.gij,
157 obj.bij,
158 obj.ratio,
159 jcol,
160 ipv,
161 obj.ifrom,
162 obj.ito,
163 obj.ibstat,
164)
165
166 #Restructure the matrix form bujac to COO-format:
167
168 #Find the sixe of the matrix, to initialize the lists for the

coo-matrix
169 jacsize = ac.jacsize(jcol)
170 #Initialize the list for the coo-matrix
171 row = np.zeros((jacsize), dtype = np.int32)
172 col = np.zeros((jacsize), dtype = np.int32)
173 data = np.zeros((jacsize), dtype = np.double)
174 #Build the COO-matrix
175 ac.coo_conv(
176 obj.nbuses,
177 obj.ngens,

71

178 obj.buscod,
179 isa,
180 ipv,
181 row,
182 jcol,
183 col,
184 jacbi,
185 data
186)
187
188
189 #Build the sparse matrix on CSR-format
190 sparse = csr_matrix((data, (row,col)), [2*obj.nbuses-obj.

ngens + obj.nlimgens-1, 2*obj.nbuses-obj.ngens + obj.nlimgens-1])
191
192
193 # Set right hand side in the equations:
194
195 rhs = np.zeros(2*obj.nbuses-obj.ngens + obj.nlimgens - 1)
196 ac.set_rhs(
197 3,
198 obj.nbuses,
199 obj.buscod,
200 obj.vomag,
201 obj.pinj,
202 obj.qinj,
203 rhs
204)
205
206 # Solve the eqution:
207 correction = scipy.sparse.linalg.spsolve(sparse,rhs)
208
209
210 # update voltages and angles:
211 ac.update_voltages(
212 3,
213 obj.nbuses,
214 obj.buscod,
215 obj.vomag,
216 obj.voang,
217 correction
218)
219
220 #obj.savejacobi("LoadFlowResult.xlsx",icount, jacobi)
221
222 obj.icount += 1

72

B.3 acsolve_wrapper.py

1 import numpy as np
2 import numpy.ctypeslib as npct
3 from pathlib import Path
4 import ctypes
5 from ctypes.util import find_library
6 from ctypes import c_int
7 from ctypes import c_double
8 from ctypes import c_bool
9 from ctypes import POINTER

10 from ctypes import byref
11 import copy
12 from scipy.sparse import coo_matrix
13 import os
14
15 libpath = str(Path(__file__).parent.absolute()) + '\\clibrary.dll'
16 # input type for the samplelib function
17 # must be a double array, with single dimension that is contiguous
18 ar_1d_double = npct.ndpointer(dtype=np.double, ndim=1, flags="

CONTIGUOUS")
19 ar_1d_int = npct.ndpointer(dtype=np.int32, ndim=1, flags="CONTIGUOUS"

)
20 ar_1d_bool = npct.ndpointer(dtype=np.bool, ndim=1, flags="CONTIGUOUS"

)
21
22
23 clib = ctypes.cdll.LoadLibrary(libpath)
24
25 #aclib.giibii.restype = None
26 #aclib.giibii.argtypes = (
27 # [c_int] * 3 + [ar_1d_double] * 13 + [ar_1d_int] * 4 + [

ar_1d_bool] * 2
28 #)
29
30 clib.set_isa.restype = None
31 clib.set_isa.argtypes = [c_int] + [ar_1d_int]*2
32 clib.flatstart.restype = None
33 clib.flatstart.argtypes = [c_int] + [ar_1d_int] + [ar_1d_double]*2 +

[c_bool]
34
35 clib.netinj.restype = None
36 clib.netinj.argtypes = (
37 [c_int] * 3 + [ar_1d_double] * 10 + [ar_1d_int] * 2 + [ar_1d_bool

]
38)
39
40 clib.mismat.restype = None
41 clib.mismat.argtypes = [c_int]*2 + [ar_1d_int] * 2 + [ar_1d_double] *

8 + [c_double] * 2

73

42
43 clib.maxmism.restype = None
44 clib.maxmism.argtypes = [c_int]*2 + [ar_1d_int] *2 + [ar_1d_double]*2
45
46 clib.enforce_qlim.restype = c_int
47 clib.enforce_qlim.argtypes = (
48 [c_bool] + [c_int] * 2 + [ar_1d_int] * 3 + [ar_1d_double] * 7
49)
50
51 clib.zerosp.restype = None
52 clib.zerosp.argtypes = [c_int] + [ar_1d_int]*2 + [ar_1d_bool] + [

ar_1d_double]*2
53
54 clib.set_rhs.restype = None
55 clib.set_rhs.argtypes = [c_int]*2 + [ar_1d_int] + [ar_1d_double]*4
56
57 clib.t_u.restype = None
58 clib.t_u.argtypes = [ar_1d_double] * 2 + [c_double] * 4
59
60 clib.addel.restype = c_int
61 clib.addel.argtypes = (
62 [c_int] * 2 + [c_double] + [c_int] + [ar_1d_double] + [ar_1d_int]

* 2 + [c_int]
63)
64
65 clib.bujac.restype = None
66 clib.bujac.argtypes = [c_int] * 2 + [ar_1d_double] * 8 + [ar_1d_int]

* 4 + [ar_1d_bool]
67
68 clib.jacsize.restype = c_int
69 clib.jacsize.argtypes = [ar_1d_int]
70
71 clib.coo_conv.restype = None
72 clib.coo_conv.argtypes = [c_int]*2 + [ar_1d_int]*6 + [ar_1d_double]*2
73
74 clib.update_voltages.resytpe = None
75 clib.update_voltages.argtypes = [c_int]*2 + [ar_1d_int] + [

ar_1d_double]*3
76
77 def set_isa(
78 nbuses,
79 buscod,
80 isa
81):
82 clib.set_isa(
83 nbuses,
84 buscod,
85 isa
86)
87

74

88 def flatstart(
89 nbuses,
90 buscod,
91 vomag,
92 voang,
93 flat_start
94):
95 clib.flatstart(
96 nbuses,
97 buscod,
98 vomag,
99 voang,

100 flat_start
101)
102
103 def netinj(
104 pqv,
105 nbuses,
106 nlines,
107 pinj,
108 qinj,
109 vomag,
110 voang,
111 gii,
112 bii,
113 gij,
114 bij,
115 ratio,
116 shift_angle,
117 ifrom,
118 ito,
119 ibstat
120):
121 clib.netinj(
122 pqv,
123 nbuses,
124 nlines,
125 pinj,
126 qinj,
127 vomag,
128 voang,
129 gii,
130 bii,
131 gij,
132 bij,
133 ratio,
134 shift_angle,
135 ifrom,
136 ito,
137 ibstat

75

138)
139
140
141 def mismat(
142 pqv,
143 nbuses,
144 genbus,
145 buscod,
146 pgen,
147 qgen,
148 pload,
149 qload,
150 pinj,
151 qinj,
152 alfa,
153 beta,
154 pdelta,
155 qdelta,
156):
157 clib.mismat(
158 pqv,
159 nbuses,
160 genbus,
161 buscod,
162 pgen,
163 qgen,
164 pload,
165 qload,
166 pinj,
167 qinj,
168 alfa,
169 beta,
170 pdelta,
171 qdelta,
172)
173
174 def maxmism(
175 pqv,
176 nbuses,
177 buscod,
178 mismloc,
179 pinj,
180 qinj
181):
182 clib.maxmism(
183 pqv,
184 nbuses,
185 buscod,
186 mismloc,
187 pinj,

76

188 qinj
189)
190
191
192 def enforce_qlim(
193 verbose,
194 nbuses,
195 qmism,
196 buscod,
197 genbus,
198 numbus,
199 pinj,
200 qinj,
201 qgen,
202 qmin,
203 qmax,
204 vomag,
205 vgbus,
206):
207 return clib.enforce_qlim(
208 verbose,
209 nbuses,
210 qmism,
211 buscod,
212 genbus,
213 numbus,
214 pinj,
215 qinj,
216 qgen,
217 qmin,
218 qmax,
219 vomag,
220 vgbus,
221)
222
223 def zerosp(
224 nlines,
225 ifrom,
226 ito,
227 ibstat,
228 xinv,
229 xinj
230):
231 clib.zerosp(
232 nlines,
233 ifrom,
234 ito,
235 ibstat,
236 xinv,
237 xinj

77

238)
239
240 def set_rhs(
241 pqv,
242 nbuses,
243 buscod,
244 vomag,
245 pinj,
246 qinj,
247 rhs
248):
249 clib.set_rhs(
250 pqv,
251 nbuses,
252 buscod,
253 vomag,
254 pinj,
255 qinj,
256 rhs
257)
258
259 def t_u(u, t, delta_angle, gij, bij, ratio):
260 clib.t_u(u, t, delta_angle, gij, bij, ratio)
261
262
263 def addel(i, j, elem, idim, aa, jcol, ipv, ip):
264 return clib.addel(i, j, elem, idim, aa, jcol, ipv, ip)
265
266
267 def bujac(
268 nbuses,
269 nlines,
270 jacbi,
271 vomag,
272 voang,
273 gii,
274 bii,
275 gij,
276 bij,
277 ratio,
278 jcol,
279 ipv,
280 ifrom,
281 ito,
282 ibstat,
283):
284 clib.bujac(
285 nbuses,
286 nlines,
287 jacbi,

78

288 vomag,
289 voang,
290 gii,
291 bii,
292 gij,
293 bij,
294 ratio,
295 jcol,
296 ipv,
297 ifrom,
298 ito,
299 ibstat,
300)
301
302 def jacsize(jcol):
303 return clib.jacsize(jcol)
304
305
306 def coo_conv(
307 nbuses,
308 ngens,
309 buscod,
310 isa,
311 ipv,
312 row,
313 jcol,
314 col,
315 jacbi,
316 data
317):
318 clib.coo_conv(
319 nbuses,
320 ngens,
321 buscod,
322 isa,
323 ipv,
324 row,
325 jcol,
326 col,
327 jacbi,
328 data
329)
330
331 def update_voltages(
332 pqv,
333 nbuses,
334 buscod,
335 vomag,
336 voang,
337 correction

79

338):
339 clib.update_voltages(
340 pqv,
341 nbuses,
342 buscod,
343 vomag,
344 voang,
345 correction
346)

80

B.4 bmatrix.c

1 #include<stdbool.h>
2 #include<math.h>
3
4
5 __declspec(dllexport) void bmatrix(double *xx, double *value, int *

row, int *col, int *isa, int *ifrom, int *ito, bool *ibstat, int
nbuses, int nlines, int pqv){

6 //Bygg submatrisene
7 //Tar inn enten B eller X som xx
8 //bver str for B-matrix version: 1 = B', 2 = B''
9 //Kva diagonaler som skal vere store blir modifisert seinare nr

du veit kva type det skal vere
10
11 int i,k;
12 int j = 0;
13 int l = nbuses;
14 int offset = 0;
15
16 if(pqv == 2){
17 //the bus-positions in B'' lies in the scond half of isa
18 offset += nbuses;
19 }
20
21 for(k=0; k<nlines; k++)
22 {
23 if(ibstat[k]){
24
25 //Add the values of the diagonal elements
26 value[ifrom[k]] += xx[k];
27 value[ito[k]] += xx[k];
28
29 //Add the position of the diagonal elements
30
31 row[ifrom[k]] = ifrom[k];
32 col[ifrom[k]] = ifrom[k];
33
34 row[ito[k]] = ito[k];
35 col[ito[k]] = ito[k];
36
37 //Set a big number at a diagonal element of a bus which

is not included in the jacobien
38 //That is slack for J1 or generator buses for J4
39 if(isa[ifrom[k] + offset] == -1 && value[ifrom[k]] < pow

(10,10)){
40 value[ifrom[k]] += pow(10,10);
41 }
42 if(isa[ito[k] + offset] == -1 && value[ito[k]] < pow

(10,10)){

81

43 value[ito[k]] += pow(10,10);
44 }
45
46 //Build the lower triangle of the Bmatrix (its

symmetrical)
47 //if(ifrom[k] > ito[k]){
48 value[l] = -xx[k];
49 row[l] = ifrom[k];
50 col[l] = ito[k];
51 l++;
52 //}
53 //else{
54 value[l] = -xx[k];
55 row[l] = ito[k];
56 col[l] = ifrom[k];
57 l++;
58 // }
59
60 }
61 }
62 }

82

B.5 case.py

Class variable Description Datatype
sbase Apparent power base of the system double
Bus data
nbuses Number of buses in the system int
busname[nbuses] Name of the buses numpy.str
area Area postions for each bus numpy.str
zone Zone postition for each bus numpy.str
numbus[nbuses] External bus numbers numpy.int32
buscod[nbuses] List of the buscodes for all buses;

1-PQ, 2-PV, 3-Slack, -2-PV (VAR limited) numpy.int32
basekv[nbuses] Base voltage at each bus numpy.double
gl[nbuses] Active component of bus-connected shunt element numpy.double
bl[nbuses] Reactive component of bus-connected shunt element numpy.double
vomag[nbuses] Voltage magnetudes in pu numpy.double
voang[nbuses] Voltage angles in radians numpy.double
pload[nbuses] Active load vector for the base case numpy.double
qload[nbuses] Reactive load vector for the base case numpy.double
Generator data
nlimgens Number of Generators on the reactive limit int
ngens Number of generators in the system numpy.int32
genbus[nbuses] Pointers to internal generators numpy.int32
vgbus[ngens] Voltage setpoint for the generators numpy.double
pgen[ngens] Active power for generators numpy.double
qgen[ngens] Reactive power for generators numpy.double
pmax Maximum active generation numpy.double
qmax Maximum reactive generation numpy.double
qmax Minimum reactive generation numpy.double
Line data
nlines Number of lines in the system int
ifrom[nlines] From bus number for all lines numpy.int32
ito[nlines] To bus number for all lines numpy.int32
ibstat[nlines] Indicates status for all lines (In service: 1) numpy.bool
xinv[nlines] Inverse of the line reactances numpy.double
gij[nlines] Real part of line suceptance numpy.double
bij[nlines] Imaginary part of line suceptance numpy.double
gii[nlines] Real part of the diagonal element in the Ybus numpy.double
bii[nlines] Imaginary part the diagonal element in the Ybus numpy.double
tapno[nlines] Pointers to transformer description

(0-not a transformer) numpy.int32

Table 2: Class variables of the Case-class. [] denotes the size of the array

83

1 import os
2 import openpyxl as opyxl
3 import numpy as np
4 import cmath
5 import math
6 import copy
7
8 #This file contains the Case-class, which is used to store the
9 #data of power-systems

10
11 class Case:
12 def __init__(
13 self, filepath = None
14):
15 #Case data
16 self.icount = 0
17 self.convergence = False
18
19
20 #Bus data
21 self.sbase = 500 #Default MVA value
22 self.numbus = np.empty(0, dtype = np.int32)
23 self.slackbusnr = []
24 self.busname = np.empty(0, dtype = np.str)
25 self.buscod = np.empty(0, dtype = np.int32)
26 self.basekv = np.empty(0, dtype = np.double)
27 self.gs = np.empty(0, dtype = np.double)
28 self.bs = np.empty(0, dtype = np.double)
29 self.area = np.empty(0, dtype = np.int32)
30 self.zone = np.empty(0, dtype = np.int32)
31 self.nbuses = 0
32 self.vomag = np.empty(0, dtype = np.double)
33 self.voang = np.empty(0, dtype = np.double)
34 self.mismloc = np.zeros(2, dtype = np.int32)
35
36 #Generator data
37 self.genbus = np.empty(0, dtype = np.int32)
38 self.ngens = 0
39 self.nlimgens = 0
40 self.genstat = np.empty(0, dtype = np.bool)
41 self.genbase = np.empty(0, dtype = np.double)
42 self.vgbus = np.empty(0, dtype = np.double)
43 self.pgen = np.empty(0, dtype = np.double)
44 self.qgen = np.empty(0, dtype = np.double)
45 self.qmax = np.empty(0, dtype = np.double)
46 self.qmin = np.empty(0, dtype = np.double)
47 self.pmax = np.empty(0, dtype = np.double)
48 self.pmin = np.empty(0, dtype = np.double)
49 self.qlim_out = 0.01
50 self.qlim_in = 0.005

84

51 self.dvlim = 0.002
52
53 #Branch data
54 self.nlines = 0
55 self.ito = np.empty(0, dtype = np.int32)
56 self.ifrom = np.empty(0, dtype = np.int32)
57 self.xinv = np.empty(0, dtype = np.double)
58 self.b = np.empty(0, dtype = np.double)
59 self.gi = np.empty(0, dtype = np.double)
60 self.bi = np.empty(0, dtype = np.double)
61 self.gj = np.empty(0, dtype = np.double)
62 self.bj = np.empty(0, dtype = np.double)
63 self.gii = np.empty(0, dtype = np.double)
64 self.bii = np.empty(0, dtype = np.double)
65 self.gij = np.empty(0, dtype = np.double)
66 self.bij = np.empty(0, dtype = np.double)
67 self.ratio = np.empty(0, dtype = np.double)
68 self.shift_angle = np.empty(0, dtype = np.double)
69 self.ibstat = np.empty(0, dtype = np.bool)
70 self.tapno = np.empty(0, dtype = np.int32)
71
72 #Load data
73 self.pload = np.empty(0, dtype = np.double)
74 self.qload = np.empty(0, dtype = np.double)
75 self.pdelta = np.empty(0, dtype = np.double)
76 self.qdelta = np.empty(0, dtype = np.double)
77 self.alfa = np.empty(0, dtype = np.double)
78 self.beta = np.empty(0, dtype = np.double)
79
80
81
82 if(filepath is not None):
83 self.loadxl(filepath)
84
85
86 def loadxl(self,filepath):
87 #This functions reads data from an Excel-file which has a

specific format,
88 #and initilizes the inctance variables.
89 #"filepath" can only be the name of the file if it's saved in

the same folder as the toolbox
90 #it's therefore recomended to use the full path of the file

when calling loadxl()
91
92 #Open the Excel-file, and get the sheets
93 wb = opyxl.load_workbook(filepath)
94 case = wb['Case-identification']
95 bus = wb['Bus-data']
96 gen = wb['Generator-data']
97 line =wb['Line-data']

85

98
99 #Case identification

100 istart = 1
101 jstart = 1
102 #In case the user did not begin the data in cell (1,1);
103 stop = False
104 if(str(case.cell(row = istart, column = jstart).value) != 'IC

'):
105 for r in range(1, 40):
106 for c in range(1,29):
107 if(str(case.cell(row = r, column = c).value) == '

IC'):
108 istart = r
109 jstart = c
110 stop = True
111 break
112 if(stop):
113 break
114 #Read the data from the case-sheet
115 self.sbase = float(case.cell(row = istart+1, column = jstart

+ 1).value)
116
117
118 #Bus data
119 self.nbuses = 0
120
121 istart = 1
122 jstart = 1
123
124 #In case the user did not begin the data in cell (1,1);
125 stop = False
126 if(str(bus.cell(row = istart, column = jstart).value) != 'I')

:
127 for r in range(1, 40):
128 for c in range(1,29):
129 if(str(bus.cell(row = r, column = c).value) == 'I

'):
130 istart = r
131 jstart = c
132 stop = True
133 break
134 if(stop):
135 break
136
137
138 buscod_col = jstart + 2
139 pload_col = jstart + 3
140 qload_col = jstart + 4
141 gs_col = jstart + 5
142 bs_col = jstart + 6

86

143 area_col = jstart + 7
144 vomag_col = jstart + 8
145 voang_col = jstart + 9
146 basekv_col = jstart + 10
147 zone_col = jstart + 11
148
149 #Read the data from the bus-sheet
150 i = istart + 1
151 while (bus.cell(row = i,column = jstart).value is not None):
152
153 self.numbus = np.append(self.numbus,int(bus.cell(row = i,

column = jstart).value))
154 if(int(bus.cell(row = i, column = buscod_col).value) ==

3):
155 self.slackbusnr = self.nbuses
156 self.buscod = np.append(self.buscod, int(bus.cell(row = i

, column = buscod_col).value))
157 self.pload = np.append(self.pload, float(bus.cell(row = i

, column = pload_col).value)/self.sbase)
158 self.qload = np.append(self.qload, float(bus.cell(row =

i, column = qload_col).value)/self.sbase)
159 self.gs = np.append(self.gs, float(bus.cell(row = i,

column = gs_col).value)/self.sbase)
160 self.bs = np.append(self.bs, float(bus.cell(row = i,

column = bs_col).value)/self.sbase)
161 self.area = np.append(self.area,int(bus.cell(row = i,

column = area_col).value))
162 self.vomag = np.append(self.vomag, float(bus.cell(row = i

, column = vomag_col).value))
163 self.voang = np.append(self.voang, float(bus.cell(row = i

, column = voang_col).value)/180*math.pi)
164 self.basekv = np.append(self.basekv,float(bus.cell(row =

i, column = basekv_col).value))
165 self.zone = np.append(self.zone,int(bus.cell(row = i,

column = zone_col).value))
166 self.nbuses += 1
167 i+=1
168
169 self.pinj = np.zeros(self.nbuses, dtype=np.double)
170 self.qinj = np.zeros(self.nbuses, dtype=np.double)
171 self.set_isa()
172
173
174 #Generator data
175
176 istart = 1
177 jstart = 1
178 self.genbus = -np.ones(self.nbuses,dtype = np.int32)
179
180 #In case the user did not begin the data in cell (1,1);

87

181 stop = False
182 if(str(gen.cell(row = istart + 1, column = jstart).value) !=

'I'):
183 for r in range(1, 40):
184 for c in range(1,29):
185 if(str(gen.cell(row = r, column = c).value) == 'I

'):
186 istart = r
187 jstart = c
188 stop = True
189 break
190 if(stop):
191 break
192
193 pgen_col = jstart + 1
194 qgen_col = jstart + 2
195 qmax_col = jstart + 3
196 qmin_col = jstart + 4
197 vgbus_col = jstart + 5
198 genbase_col = jstart + 6
199 genstat_col = jstart + 7
200 pmax_col = jstart + 8
201 pmin_col = jstart + 9
202
203 #Read the data from the generato-sheet
204 i = istart + 1
205 while (gen.cell(row = i, column = jstart).value is not None):
206 mbase = float(gen.cell(i,genbase_col).value)
207 self.bs[self.ext2int(int(gen.cell(row = i, column =

jstart).value))] = self.bs[self.ext2int(int(gen.cell(row = i,
column = jstart).value))]*self.sbase/mbase

208 self.genbus[self.ext2int(int(gen.cell(row = i, column =
jstart).value))] = i-istart-1

209 self.pgen = np.append(self.pgen, float(gen.cell(row = i,
column = pgen_col).value)/mbase)

210 self.qgen = np.append(self.qgen, float(gen.cell(row = i,
column = qgen_col).value)/mbase)

211 self.qmax = np.append(self.qmax, float(gen.cell(row = i,
column = qmax_col).value)/mbase)

212 self.qmin = np.append(self.qmin, float(gen.cell(row = i,
column = qmin_col).value)/mbase)

213 self.vgbus = np.append(self.vgbus, float(gen.cell(row =
i, column = vgbus_col).value))

214 self.vomag[self.ext2int(int(gen.cell(row = i, column =
jstart).value))] = float(gen.cell(row = i, column = vgbus_col).
value)

215 self.genbase = np.append(self.genbase, mbase)
216 self.genstat = np.append(self.genstat, bool(gen.cell(i,

genstat_col).value))
217 self.pmax = np.append(self.pmax, float(gen.cell(i,

88

pmax_col).value)/mbase)
218 self.pmin = np.append(self.pmin, float(gen.cell(i,

pmin_col).value)/mbase)
219 i += 1
220 self.ngens = self.pgen.size
221
222 #Line data
223 istart = 1
224 jstart = 1
225 #In case the user did not begin the data in cell (1,1);
226 stop = False
227 if(str(line.cell(row = istart + 1, column = jstart).value) !=

'I'):
228 for r in range(1, 40):
229 for c in range(1,29):
230 if(str(line.cell(row = r, column = c).value) == '

I'):
231 istart = r
232 jstart = c
233 stop = True
234 break
235 if(stop):
236 break
237
238
239 ito_col = jstart + 1
240 r_col = jstart + 2
241 x_col = jstart + 3
242 b_col = jstart + 4
243 gi_col = jstart + 8
244 bi_col = jstart + 9
245 gj_col = jstart + 10
246 bj_col = jstart + 11
247 ratio_col = jstart + 12
248 shift_col = jstart + 13
249 ibstat_col = jstart + 14
250
251 #Read the data from the line-sheet
252 i = istart + 1
253 while (line.cell(row = i,column = jstart).value is not None):
254 busi = int(line.cell(row = i, column = jstart).value)
255 busj = int(line.cell(row = i, column = ito_col).value)
256 r = float(line.cell(row = i, column = r_col).value)
257 x = float(line.cell(row = i, column = x_col).value)
258 ratio = float(line.cell(row = i, column = ratio_col).

value)
259
260 self.ifrom = np.append(self.ifrom, self.ext2int(busi))
261 self.ito = np.append(self.ito, self.ext2int(busj))
262 self.xinv = np.append(self.xinv, 1/x)

89

263 self.b = np.append(self.b, float(line.cell(row = i,
column = b_col).value))

264 self.gi = np.append(self.gi,float(line.cell(row = i,
column = gi_col).value))

265 self.bi = np.append(self.bi,float(line.cell(row = i,
column = bi_col).value))

266 self.gj = np.append(self.gj,float(line.cell(row = i,
column = gj_col).value))

267 self.bj = np.append(self.bj,float(line.cell(row = i,
column = bj_col).value))

268 self.ratio = np.append(self.ratio, ratio) if ratio != 0.0
else np.append(self.ratio, 1.0)

269 self.shift_angle = np.append(self.shift_angle, float(line
.cell(row = i, column = shift_col).value)/180*math.pi)

270 self.ibstat = np.append(self.ibstat, bool(line.cell(row =
i, column = ibstat_col).value))

271
272 self.gij = np.append(self.gij,(1/complex(r,x)).real)
273 self.bij = np.append(self.bij,(1/complex(r,x)).imag)
274 self.nlines += 1
275 i += 1
276
277 self.gii = np.zeros(self.nbuses, dtype = np.double)
278 self.bii = np.zeros(self.nbuses, dtype = np.double)
279 self.tapno = -np.ones(self.nlines)
280 self.giibii()
281
282
283
284 def save2xl(self, filename, save_path = None, save_verbose = 1):
285
286 #This function saves the Case-object to a Excel file (which

it creates)
287
288 #In case the user did not end the file-name with ".xlsx":
289 save_as = filename if filename[-5:] == '.xlsx' else filename

+ '.xlsx'
290 if(save_path is not None):
291 #Specify the location of the result-file. (The default

location will be the current working dir)
292 save_as = save_path + '/' + save_as
293
294 #The Final-result-sheet
295 if(self.convergence):
296 #Final-results sheet
297 try:
298 #If the workbook already exist: overwrite it
299 wb = opyxl.load_workbook(save_as)
300 try:
301 #If a Final-result sheet already exist, reset it

90

302 ws = wb.get_sheet_by_name('Final-results')
303 wb.remove_sheet(ws)
304 ws = wb.create_sheet("Final-results")
305 except:
306 #If it doesent exist, create it
307 ws = wb.create_sheet("Final-results")
308 if(save_verbose == 1):
309 try:
310 #Try to delete the iteration sheet from

previous loadflows
311 ws2 = wb.get_sheet_by_name("Iteration-summary

")
312 wb.remove_sheet(ws2)
313 except:
314 pass
315 except:
316 #If the workbook doesen't exist: create a new one
317 wb = opyxl.Workbook()
318 ws = wb.active
319 ws.title = 'Final-results'
320
321
322 ws.append([])
323 ws.append(["Iterations",self.icount])
324 ws.append(['Worst mismatch', 'mism[pu]', 'Bus'])
325 ws.append(['P',self.pinj[self.mismloc[0]],self.mismloc

[0]])
326 ws.append(['Q',self.qinj[self.mismloc[1]], self.mismloc

[1]])
327 ws.append([])
328 ws.append(['Bus', 'type', 'Vomag[V]', 'Voang[deg]','Pload

', 'Qload', 'Pgen', 'Qgen','Qmax', 'Qmin', 'Violation'])
329 for i in range(0, self.nbuses):
330 #Check if there are any reactive power violations
331 ig = self.genbus[i]
332 qmax = None if ig == -1 else self.qmax[ig]
333 qmin = None if ig == -1 else self.qmin[ig]
334 violation = None
335 if(ig>=0):
336 violation = 1 if self.qgen[ig]>self.qmax[ig] or

self.qgen[ig]<self.qmin[ig] else 0
337 #Write generated power to the sheet only if it is a

generator
338 pg = None
339 qg = None
340 if(self.genbus[i] != -1):
341 pg = self.pgen[self.genbus[i]]
342 qg = self.qgen[self.genbus[i]]
343 ws.append([self.numbus[i], self.buscod[i], self.vomag

[i], self.voang[i]*180/math.pi, self.pload[i], self.qload[i], pg,

91

qg, qmax, qmin, violation])
344
345 elif(save_verbose == 2):
346 #Iteration-summary sheet
347 try:
348 #Check if the workbook already exist
349 wb = opyxl.load_workbook(save_as)
350 if(self.icount == 0):
351 #Initialize the Iteration sheet
352 try:
353 #If a Iteration sheet already exist,

overwrite it
354 ws2 = wb.get_sheet_by_name("Iteration-summary

")
355 wb.remove_sheet(ws2)
356 ws2 = wb.create_sheet("Iteration-summary")
357 except:
358 #If it doesent exist, create it
359 ws2 = wb.create_sheet("Iteration-summary")
360 else:
361 #Add data to the sheet in each iteration
362 ws2 = wb.get_sheet_by_name("Iteration-summary")
363 except:
364 #The workbook doesen't exist: create a new one
365 wb = opyxl.Workbook()
366 ws2 = wb.active
367 ws2.title = "Iteration-summary"
368
369 #Append this to the sheet each iteration:
370 ws2.append([])
371 ws2.append(["iteration",self.icount])
372 ws2.append(['Worst mismatch', 'mism[pu]', 'Bus'])
373 ws2.append(['P',self.pinj[self.mismloc[0]],self.mismloc

[0]])
374 ws2.append(['Q',self.qinj[self.mismloc[1]], self.mismloc

[1]])
375 ws2.append([])
376 ws2.append(['Bus','type', 'Vomag[V]', 'Voang[deg]', '

Pload', 'Qload', 'Pgen', 'Qgen','Qmax', 'Qmin', 'Violation'])
377 for i in range(0, self.nbuses):
378 #Check if there are any reactive power violations:
379 ig = self.genbus[i]
380 qmax = None if ig == -1 else self.qmax[ig]
381 qmin = None if ig == -1 else self.qmin[ig]
382 violation = None
383 if(ig>=0):
384 violation = 1 if self.qgen[ig]>self.qmax[ig] or

self.qgen[ig]<self.qmin[ig] else 0
385 #Write generated power to the sheet only if it is a

generator

92

386 pg = None
387 qg = None
388 if(self.genbus[i] != -1):
389 pg = self.pgen[self.genbus[i]]
390 qg = self.qgen[self.genbus[i]]
391 ws2.append([self.numbus[i], self.buscod[i], self.

vomag[i], self.voang[i]*180/math.pi, self.pload[i], self.qload[i],
pg, qg,qmax, qmin, violation])

392
393
394 wb.save(save_as)
395
396 if(self.convergence):
397 #pop up the excel file
398 os.startfile(save_as)
399
400
401 #isa[2*nbuses] is a list which contains the buses position in the

jacobian matrix.
402 #If an element = -1, the row is not a part of the jacobian matrix
403 def set_isa(self):
404 ip = 0
405 iq = self.nbuses-1
406 self.isa = -np.ones(self.nbuses*2, dtype = np.int32)
407 for ib in range(0,self.nbuses):
408 if(self.buscod[ib] < 3):
409 self.isa[ib] = ip
410 ip += 1
411 if(self.buscod[ib]<2):
412 self.isa[ib+self.nbuses] = iq
413 iq += 1
414
415 def giibii(self):
416 #This function is used by loadxl() when it reads the line-

data.
417 #It calculates system parameters that are needed to
418 # impose the impacts of transfromers and shunt-elements.
419 #Consider writing it as a C-extension
420 self.gii = copy.deepcopy(self.gs)
421 self.bii = copy.deepcopy(self.bs)
422
423
424 for il in range(0,self.nlines):
425 ifr = self.ifrom[il]
426 itr = self.ito[il]
427
428 if(self.ibstat[il] != 0):
429
430 self.gii[ifr] += self.gi[il]
431 self.bii[ifr] += self.bi[il]

93

432 self.gii[itr] += self.gj[il]
433 self.bii[itr] += self.bj[il]
434
435 tap = 1/self.ratio[il]
436
437 self.gii[ifr] += self.gij[il]*tap*tap
438 self.bii[ifr] += (self.bij[il] + self.b[il]/2)*tap*

tap
439
440 self.gii[itr] += self.gij[il]
441 self.bii[itr] += (self.bij[il] + self.b[il]/2)
442 #self.xii[ifr] += tap*tap*(self.xinv[il] + self.b[il

]/2)
443 #self.xii[itr] += self.xinv[il]*tap + self.b[il]/2
444
445 def maxmism(self, pqv):
446 #Only used for comparison of speed between python and C.
447 #It's replaced by the C-extesnion "maxmism"
448
449 #Finds the largest missmatch and return the positionvector

mismloc
450 #mismloc[0]: position of worst P mismatch in pinj
451 #mismloc[1]: position of worst Q mismatch in qinj
452 ptemp = 0
453 qtemp = 0
454 for ib in range(0, self.nbuses):
455 if(self.buscod[ib] != 3 and abs(self.pinj[ib]) > ptemp

and pqv != 2):
456 self.mismloc[0] = ib
457 ptemp = abs(self.pinj[self.mismloc[0]])
458
459 if(self.buscod[ib] < 2 and abs(self.qinj[ib]) > qtemp and

pqv != 1):
460 self.mismloc[1] = ib
461 qtemp = abs(self.qinj[self.mismloc[1]])
462
463 def set_nlimgens(self):
464 self.nlimgens = 0
465 for k in self.buscod:
466 if k == -2: self.nlimgens +=1
467
468 def get(self, component, number, variable):
469 #the get function gives the user access the the parameters of

a Case-instance
470
471 #To handle both a singe component, and a list of componenets
472 number = np.array(number)
473 output = np.zeros(0)
474
475 if(str.lower(component) == 'bus'):

94

476 #Gets access to data at the buses (loads and generators
included)

477 #Check if the busnumber is correct
478
479 if(number.size == 1):
480 return self.get_bus(number, variable)
481 else:
482 for i in range(0,number.size):
483 if(self.get_bus(number[i], variable) == None):
484 return None
485 output = np.append(output, self.get_bus(number[i

], variable))
486 return output
487
488 elif(str.lower(component) in ['gen', 'generator']):
489 #Get access to generator-parameters
490 if(number.size == 1):
491 return self.get_gen(number, variable)
492 else:
493 for i in range(0,number.size):
494 if(self.get_gen(number[i], variable) == None):
495 return None
496 output = np.append(output, self.get_gen(number[i

], variable))
497 return output
498
499 elif(str.lower(component) == 'line'):
500 #Get access to line-parameters
501 if(number.size == 1):
502 return self.get_line(number, variable)
503 else:
504 for i in range(0, number.size):
505 if(self.get_line(number[i], variable) == None):
506 return None
507 output = np.append(output, self.get_line(number[i

], variable))
508 return output
509
510 def get_bus(self,busnumber, variable):
511 if(busnumber not in ['all', 'ALL']):
512 try:
513 busnumber = self.ext2int(busnumber)
514 except:
515 print('Error:',busnumber, ' is not a external bus-

number')
516 return None
517
518
519 if(str.lower(variable) == 'vm'):
520 output = self.vomag if busnumber in ['all', 'ALL'] else

95

self.vomag[busnumber]
521 elif(str.lower(variable) == 'va'):
522 output = self.voang/math.pi*180 if busnumber in ['all', '

ALL'] else self.voang[busnumber]/math.pi*180
523 elif(str.lower(variable) == 'pd'):
524 output = self.pload if busnumber in ['all', 'ALL'] else

self.pload[busnumber]
525 elif(str.lower(variable) == 'qd'):
526 output = self.qload if busnumber in ['all', 'ALL'] else

self.qload[busnumber]
527 elif(str.lower(variable) == 'pq'):
528 output = self.pload if busnumber in ['all', 'ALL'] else

self.pload[self.genbus[busnumber]]
529 elif(str.lower(variable) == 'qg'):
530 output = self.qload if busnumber in ['all', 'ALL'] else

self.qload[self.genbus[busnumber]]
531 else:
532 print('Error: ',busnumber, ' has no variable ', variable)
533 return None
534 return output
535
536 def get_gen(self, genumber, variable):
537
538 if(genumber not in ['all', 'ALL'] and (self.ngens<genumber or

genumber<0)):
539 print('Error: ', genumber, 'is not a valid generator-

number')
540 return None
541
542 if(str.lower(variable) == 'vm'):
543 output = self.vomag if genumber in ['all', 'ALL'] else

self.vomag[genumber]
544 elif(str.lower(variable) == 'va'):
545 output = self.voang/math.pi*180 if genumber in ['all', '

ALL'] else self.voang[genumber]/math.pi*180
546 elif(str.lower(variable) == 'pg'):
547 output = self.pgen if genumber in ['all', 'ALL'] else

self.pgen[genumber]
548 elif(str.lower(variable) == 'qg'):
549 output = self.qgen if genumber in ['all', 'ALL'] else

self.qgen[genumber]
550 else:
551 print('Error: ',genumber, ' has no variable ', variable)
552 return None
553 return output
554
555 def get_line(self, genumber, variable):
556 #Gets access to line-flow data
557
558 if(self.ngens<genumber or genumber<0):

96

559 print('Error: ', genumber, 'is not a valid generator-
number')

560 return None
561
562 if(str.lower(variable) == 'pf'):
563 return None
564 elif(str.lower(variable) == 'qf'):
565 return None
566 elif(str.lower(variable) == 'pt'):
567 return None
568 elif(str.lower(variable) == 'qt'):
569 return None
570 else:
571 print('Error: ', variable, ' is not a valid line-variable

')
572 return None
573
574
575 def print_buses(self):
576
577 print('Bus data:')
578 print('Busnr:',self.numbus)
579 print('Busnames:',self.busname)
580 print('BaseKV:',self.basekv)
581 print('Buscode:', self.buscod)
582 print('slack-bus:',self.int2ext(self.slackbusnr))
583 print('Bus-connected shunt(Active comp), gl:',self.gs)
584 print('Bus-connected shunt(Reactive comp), bl',self.bs)
585 print('Area:',self.area)
586 print('Zones:',self.zone)
587 print('Voltage magnitudes:',self.vomag)
588 print('Voltage angles',self.voang)
589 print('Pinj:',self.pinj)
590 print('Qinj:',self.qinj)
591 print('Active load:',self.pload)
592 print('Reactive load:',self.qload)
593
594 def print_gens(self):
595
596 print('Generator data:')
597 print('Genbus:',self.genbus)
598 print('Ngen:', self.ngens)
599 print('pgen:',self.pgen)
600 print('qgen:',self.qgen)
601 print('qmax:',self.qmax)
602 print('qmin:',self.qmin)
603 print('vgbus:',self.vgbus)
604
605 def print_lines(self):
606

97

607 print('Linedata:')
608 print('Ifrom:', self.ifrom)
609 print('Ito:', self.ito)
610 print('GII:', self.gii)
611 print('BII:', self.bii)
612 print('GIJ:', self.gij)
613 print('BIJ:', self.bij)
614 print('Ratio:', self.ratio)
615 print('Shift_angle:',self.shift_angle)
616
617 def print_all(self):
618 #print all the data
619 self.print_buses()
620 print('\n')
621 self.print_gens()
622 print('\n')
623 self.print_lines()
624
625 def ext2int(self,busnr):
626 #convert busnumber (from external to internal)
627 return int(np.where(self.numbus == busnr)[0][0])
628
629 def int2ext(self,busnr):
630 #convert busnumber (from internal to external)
631 return self.numbus[busnr]

98

B.6 coo_conv.c

1 #include <stdbool.h>
2 #include <math.h>
3
4
5 __declspec(dllexport) void coo_conv(int nbuses, int ngens, int *

buscod, int *isa, int *ipv, int *row, int *jcol, int *col, double

*jacbi, double *data){
6
7 int ib, ip, iq, nz, ir, ic, inext;
8
9 ip = 0;

10 iq = nbuses - 1;
11
12 //set isa
13 for(ib = 0; ib <nbuses; ib++){
14 isa[ib] = -1;
15 isa[ib+nbuses] = -1;
16 if(abs(buscod[ib] != 3)){
17 isa[ib] = ip;
18 ip++;
19 }
20 if(abs(buscod[ib])<2){
21 isa[ib+nbuses] = iq;
22 iq ++;
23 }
24 }
25
26 //copy the information of jacbi, ipv, and jcol
27 //over to data, row and col, which will be on coo-format
28
29 nz = 0;
30
31 for(ir = 0; ir<2*nbuses; ir++){
32 if(isa[ir] != -1){
33 inext = ir;
34 while(inext != -1){
35 ic = jcol[inext];
36 if(isa[ic] != -1 && jacbi[inext] != 0.0){
37 row[nz] = isa[ir];
38 col[nz] = isa[ic];
39 data[nz] = jacbi[inext];
40 nz ++;
41 }
42 inext = ipv[inext];
43 }
44
45 }
46

99

47 }
48
49
50 }

100

B.7 decsolve_wrapper.py

1 import numpy as np
2 from pathlib import Path
3 import numpy.ctypeslib as npct
4 import ctypes
5 from ctypes.util import find_library
6 from ctypes import c_int
7 from ctypes import c_double
8 from ctypes import c_bool
9 from ctypes import c_char_p

10 from ctypes import POINTER
11 from ctypes import byref
12 import copy
13 from scipy.sparse import coo_matrix
14 import os
15
16 libpath = str(Path(__file__).parent.absolute()) + '\\clibrary.dll'
17
18 # input type for the samplelib function
19 # must be a double array, with single dimension that is contiguous
20 ar_1d_double = npct.ndpointer(dtype=np.double, ndim=1, flags="

CONTIGUOUS")
21 ar_1d_int = npct.ndpointer(dtype=np.int32, ndim=1, flags="CONTIGUOUS"

)
22 ar_1d_bool = npct.ndpointer(dtype=np.bool, ndim=1, flags="CONTIGUOUS"

)
23
24 clib = ctypes.cdll.LoadLibrary(libpath)
25
26 clib.h_matrix.restype = None
27 clib.h_matrix.argtypes = [ar_1d_double] * 3 + [ar_1d_int] * 5 + [

c_int] * 2
28
29 clib.l_matrix.restype = None
30 clib.l_matrix.argtypes = [ar_1d_double] * 3 + [ar_1d_int] * 5 + [

c_int] * 4
31
32 clib.heq_matrix.restype = None
33 clib.heq_matrix.argtypes = [ar_1d_double] * 2 + [ar_1d_int] * 5 + [

c_int] * 3
34
35 clib.leq_matrix.restype = None
36 clib.leq_matrix.argtypes = [ar_1d_double] * 2 + [ar_1d_int] * 5 + [

c_int] * 4
37
38 clib.bmatrix.restype = None
39 clib.bmatrix.argtypes = [ar_1d_double] * 2 + [ar_1d_int] * 6 + [

ar_1d_bool] + [c_int] * 3
40

101

41 clib.selectver.restype = None
42 clib.selectver.argtypes = [ar_1d_double]*4 + [c_int] + [c_char_p]
43
44 '''def netpinj(
45 nbuses,
46 nlines,
47 pinj,
48 vomag,
49 voang,
50 gii,
51 bii,
52 gij,
53 bij,
54 ratio,
55 ifrom,
56 ito,
57 ibstat
58):
59 clib.netpinj(
60 nbuses,
61 nlines,
62 pinj,
63 vomag,
64 voang,
65 gii,
66 bii,
67 gij,
68 bij,
69 ratio,
70 ifrom,
71 ito,
72 ibstat
73)
74
75 def netqinj(
76 nbuses,
77 nlines,
78 qinj,
79 vomag,
80 voang,
81 gii,
82 bii,
83 gij,
84 bij,
85 ratio,
86 ifrom,
87 ito,
88 ibstat
89):
90 clib.netqinj(

102

91 nbuses,
92 nlines,
93 qinj,
94 vomag,
95 voang,
96 gii,
97 bii,
98 gij,
99 bij,

100 ratio,
101 ifrom,
102 ito,
103 ibstat
104)
105
106
107 def pmismat(
108 nbuses,
109 genbus,
110 buscod,
111 pgen,
112 pload,
113 pinj,
114 beta,
115 pdelta,
116):
117 clib.pmismat(
118 nbuses,
119 genbus,
120 buscod,
121 pgen,
122 pload,
123 pinj,
124 beta,
125 pdelta
126)
127
128 def qmismat(
129 nbuses,
130 genbus,
131 buscod,
132 qgen,
133 qload,
134 qinj,
135 alfa,
136 qdelta,
137):
138 clib.qmismat(
139 nbuses,
140 genbus,

103

141 buscod,
142 qgen,
143 qload,
144 qinj,
145 alfa,
146 qdelta,
147)
148 '''
149 def h_matrix(bii, bij, buscod, ifrom, ito, nbuses, nlines):
150 melem = 5 * (nbuses + 2 * nlines)
151 value = np.zeros(melem, dtype = np.double)
152 row = np.zeros(melem, dtype = np.int32)
153 col = np.zeros(melem, dtype = np.int32)
154
155 clib.h_matrix(bii, bij, value, row, col, buscod, ifrom, ito,

nbuses, nlines)
156 erase = np.where(value == 0.0)
157 value = np.delete(value, erase)
158 row = np.delete(row, erase)
159 col = np.delete(col, erase)
160 return coo_matrix((value, (row,col)), [nbuses-1, nbuses-1])
161
162 def l_matrix(bii, bij, buscod, ifrom, ito, nbuses, nlines, ngens,

nglim):
163 melem = 2 * (nbuses + 2*nlines)
164 value = np.zeros(melem, dtype = np.double)
165 row = np.zeros(melem, dtype = np.int32)
166 col = np.zeros(melem, dtype = np.int32)
167
168
169 clib.l_matrix(bii, bij, value, row, col, buscod, ifrom, ito,

nbuses, nlines, ngens, nglim)
170 erase = np.where(value == 0.0)
171 value = np.delete(value, erase)
172 row = np.delete(row, erase)
173 col = np.delete(col, erase)
174 return coo_matrix((value, (row,col)), [nbuses-ngens + nglim,

nbuses-ngens + nglim])
175
176 def heq_matrix(xinv, buscod, ifrom, ito, nbuses, nlines, slackbusnr):
177 melem = 2 * (nbuses + 2*nlines)
178 value = np.zeros(melem, dtype = np.double)
179 row = np.zeros(melem, dtype = np.int32)
180 col = np.zeros(melem, dtype = np.int32)
181
182
183 clib.heq_matrix(xinv, value, row, col, buscod, ifrom, ito, nbuses

, nlines, slackbusnr)
184 erase = np.where(value == 0.0)
185 value = np.delete(value, erase)

104

186 row = np.delete(row, erase)
187 col = np.delete(col, erase)
188 return coo_matrix((value, (row,col)), [nbuses-1, nbuses-1])
189
190 def leq_matrix(xinv, buscod, ifrom, ito, nbuses, nlines, ngens, nglim

):
191 melem = 2 * (nbuses + 2*nlines)
192 value = np.zeros(melem, dtype = np.double)
193 row = np.zeros(melem, dtype = np.int32)
194 col = np.zeros(melem, dtype = np.int32)
195
196
197 clib.leq_matrix(xinv, value, row, col, buscod, ifrom, ito, nbuses

, nlines, ngens, nglim)
198 erase = np.where(value == 0.0)
199 value = np.delete(value, erase)
200 row = np.delete(row, erase)
201 col = np.delete(col, erase)
202 return coo_matrix((value, (row,col)), [nbuses-ngens + nglim,

nbuses-ngens + nglim])
203
204 def bmatrix(xx, buscod, ifrom, ito, ibstat, nbuses, nlines, pqv):
205 melem = 2 * (nbuses + 2*nlines)
206 value = np.zeros(melem, dtype = np.double)
207 row = np.zeros(melem, dtype = np.int32)
208 col = np.zeros(melem, dtype = np.int32)
209 isa = -np.ones((2*nbuses), dtype = np.int32)
210
211 clib.bmatrix(xx, value, row, col, buscod, isa, ifrom, ito, ibstat

, nbuses, nlines, pqv)
212 '''erase = np.where(value == 0.0)
213 value = np.delete(value, erase)
214 row = np.delete(row, erase)
215 col = np.delete(col, erase)'''
216
217 return coo_matrix((value, (row,col)), [nbuses, nbuses])
218
219 def selectver(xp, xq, xinv, bij, nlines, bver):
220 clib.selectver(xp, xq, xinv, bij, nlines, bver.encode('utf-8'))

105

B.8 decsolve.py

1 import sys
2
3 sys.path.append(".")
4 import numpy as np
5 import copy
6 from scipy.sparse.linalg import spsolve
7 from scipy.sparse import csr_matrix
8 import topflow.acsolve_wrapper as ac
9 import topflow.decsolve_wrapper as dec

10
11
12 #decsolve performs a fast-decoupled load-flow
13 #Versions:
14 #FDXX (Standard-method): pqv = 1, bver = 'XX'
15 #FDBX (Primal-method): pqv = 1, bver = 'BX'
16 #FDXB (Dual-method): pqv = 2, bver = 'XB'
17 #Custom: the user can choose iteration-sequence(pqv) and the versions

of B' and B''(bver)
18
19 def decsolve(case, opt):
20
21
22 #make a deep copy to prevent change of the base-case
23 obj = copy.deepcopy(case)
24 obj.convergence = False
25
26 pdelta = 0.0
27 qdelta = 0.0
28 xp = np.zeros(obj.nlines)
29 xq = np.zeros(obj.nlines)
30 alfa = np.zeros(obj.nbuses, dtype=np.double)
31 beta = np.zeros(obj.nbuses, dtype=np.double)
32 genlim = np.zeros(obj.ngens, dtype = np.bool)
33
34 if(opt.pqv == 1):
35 #The standard starts with P-calculations
36 pqv = 1
37 elif(opt.pqv == 2):
38 #Dual algorithm starts with Q-calculations
39 pqv = 2
40 else:
41 print('Error: pqv must have the value 1 or 2, not', opt.pqv)
42
43 #Set flat start (or not)
44 ac.flatstart(
45 obj.nbuses,
46 obj.buscod,
47 obj.vomag,

106

48 obj.voang,
49 opt.flat_start
50)
51
52 #Select bm and bmm version (XX, XB, BX, BB)
53 dec.selectver(xp, xq, obj.xinv, obj.bij, obj.nlines, opt.bver)
54
55 #Build the constant matrices
56 bm = csr_matrix(dec.bmatrix(xp,obj.buscod, obj.ifrom, obj.ito,

obj.ibstat, obj.nbuses, obj.nlines, 1))
57 bmm = csr_matrix(dec.bmatrix(xq,obj.buscod, obj.ifrom, obj.ito,

obj.ibstat, obj.nbuses, obj.nlines, 2))
58
59 while True:
60 # Caclulate net injection (pinj or qinj) at all buses
61
62 ac.netinj(
63 pqv,
64 obj.nbuses,
65 obj.nlines,
66 obj.pinj,
67 obj.qinj,
68 obj.vomag,
69 obj.voang,
70 obj.gii,
71 obj.bii,
72 obj.gij,
73 obj.bij,
74 obj.ratio,
75 obj.shift_angle,
76 obj.ifrom,
77 obj.ito,
78 obj.ibstat
79)
80
81 # Update reactive gneration and calculate the missmatch

vector
82 # pinj and qinj are updated; they are now pdelta and qdelta (

rhs)
83 # mism[0] contains the bus with worst Pmism, m[1] contains

the bus with worst Qmism
84
85 ac.mismat(
86 pqv,
87 obj.nbuses,
88 obj.genbus,
89 obj.buscod,
90 obj.pgen,
91 obj.qgen,
92 obj.pload,

107

93 obj.qload,
94 obj.pinj,
95 obj.qinj,
96 alfa,
97 beta,
98 pdelta,
99 qdelta

100)
101
102 # Modify for zero impedance lines
103 if(pqv == 1):
104 ac.zerosp(obj.nlines, obj.ifrom, obj.ito, obj.ibstat, obj

.xinv, obj.pinj)
105 elif(pqv == 2):
106 ac.zerosp(obj.nlines, obj.ifrom, obj.ito, obj.ibstat, obj

.xinv, obj.qinj)
107
108 # Find worst location of mismatches after zero-imp

modification
109 ac.maxmism(pqv, obj.nbuses, obj.buscod, obj.mismloc, obj.pinj

, obj.qinj)
110
111 #Enfroce reactive limitations
112 if (obj.icount > 1.5 and opt.enf_qlim == True and pqv == 2):
113 obj.mismloc[1] = ac.enforce_qlim(True, obj.nbuses, obj.

mismloc[1], obj.buscod, obj.genbus, obj.numbus, obj.pinj, obj.
qinj, obj.qgen, obj.qmin, obj.qmax, obj.vomag, obj.vgbus)

114 #Update bmm
115 for ib in range(0, obj.nbuses):
116 if(obj.buscod[ib] == -2 and bmm[ib,ib] >= pow(10,10))

:
117 #Set PV bus as Var-limited
118 bmm[ib,ib] -= pow(10,10)
119 elif(obj.buscod[ib] == 2 and bmm[ib,ib] < pow(10,10))

:
120 #Set Var-limited PV bus back as PV-bus
121 bmm[ib,ib] += pow(10,10)
122
123 # iteration summary
124 if(opt.print_verbose == 3):
125 print('\niteration:',obj.icount)
126 print('Voltage magnetudes:', obj.vomag)
127 print('Voltage angles:', obj.voang)
128 print("Worst active power mismatch:", obj.pinj[obj.

mismloc[0]], "at bus:", obj.mismloc[0])
129 print("Worst reactive power mismatch:", obj.qinj[obj.

mismloc[1]], "at bus:", obj.mismloc[1])
130
131 #Write to Excel file
132 if(opt.filename is not None and opt.save_verbose == 2):

108

133 #Saves each iteration only if save_verbose is True (its
False by default)

134 obj.save2xl(filename = opt.filename, save_path = opt.
save_path, save_verbose = 2)

135
136 #Terminate?
137 if abs(obj.pinj[obj.mismloc[0]]) < opt.conv_tol and abs(obj.

qinj[obj.mismloc[1]]) < opt.conv_tol:
138 #Convergence
139 obj.convergence = True
140
141 if(opt.print_verbose != 0):
142 print("\nConvergence. Number of iterations:", obj.

icount)
143 if(opt.print_verbose > 1):
144 print("Final voltage angle:", obj.voang)
145 print("Final voltag magnitude:", obj.vomag)
146
147 if(opt.filename is not None):
148 obj.save2xl(opt.filename, opt.save_path, save_verbose

= opt.save_verbose)
149
150 return obj
151 elif obj.icount > opt.max_it*2:
152 print("\nDivergence")
153 return 0
154
155
156 #Right hand side in the equations:
157 rhs = np.zeros(obj.nbuses)
158 ac.set_rhs(
159 pqv,
160 obj.nbuses,
161 obj.buscod,
162 obj.vomag,
163 obj.pinj,
164 obj.qinj,
165 rhs
166)
167
168 #Solve the equation
169
170 if(pqv == 1):
171 correction = spsolve(bm, rhs)
172 elif(pqv == 2):
173 correction = spsolve(bmm, rhs)
174
175
176 #Update voltages (magnitude or angles):
177

109

178 ac.update_voltages(
179 pqv,
180 obj.nbuses,
181 obj.buscod,
182 obj.vomag,
183 obj.voang,
184 correction
185)
186
187 if(pqv == 1):
188 #The standard ends with Q-calculations
189 pqv = 2
190 elif(pqv == 2):
191 #Dual algorithm ends with P-calculations
192 pqv = 1
193
194 obj.icount += 0.5

110

B.9 enforce_qlim.c

1 #include <stdio.h>
2 #include <stdbool.h>
3
4 #define ABS(x) (((x) < 0) ? (-(x)) : ((x))) /* if loop: ABS(X) gives

the absolute value of x*/
5
6 //verbose = True; specificaions are printed to the screen.
7
8 __declspec(dllexport) int enforce_qlim(bool verbose, int nbuses, int

qmism,
9 int *buscod, int *genbus, int *numbus, double *pinj,

10 double *qinj, double *qgen, double *qmin, double *
qmax, double *vomag, double *vgbus)

11 {
12 double qmarg;
13 bool violation;
14 int ig;
15 int s = 1;
16
17 for (int k=0; k<nbuses; k++)
18 {
19 ig = genbus[k];
20 if (ig >= 0)
21 {
22 if (buscod[k] >= 2)
23 {
24 /* Enforce violated reactive units */
25 violation = (qmax[ig] < qgen[ig]);
26 /* Exceeds maximum ?*/
27 if (violation)
28 {
29 if (verbose)
30 {
31 printf("Ulim gen @ bus %5d ",

numbus[k]);
32 printf("qmax = % 5.4f, qgen = %

6.4f \n", qmax[ig], qgen[ig]);
33 }
34
35
36 //qmax is now the setpoint, find the

missmatch (qinj[k])
37 qinj[k] = qmax[ig] - qgen[ig];
38 //the reactive generation is now

fixed at maximum
39 qgen[ig] = qmax[ig];
40
41

111

42 //choose another slack-bus if
43 //the current slack-bus violates the

limits
44 if(buscod[k] == 3){
45 pinj[k] = 0.0;
46 //chose the next PV-bus as the new

slack-bus
47 if(s == nbuses){
48 //go to the start of buscod if

slack-bus
49 // is the last generator
50 s -= nbuses;
51 }
52 while(buscod[k+s] != 2){
53 s++;
54 }
55 buscod[k+s] = 3;
56 s = 1;
57 }
58 buscod[k] = -2;
59 }
60 else
61 {
62 //Below minimum?
63 violation = (qmin[ig] > qgen[ig]);
64
65 if (violation){
66 if(verbose)
67 {
68 printf("Llim gen @ bus %5d ",

numbus[k]);
69 printf("qmin = % 5.4f, qgen =

% 6.4f \n", qmin[ig], qgen[ig]);
70 }
71
72 //qmin is now the setpoint, find the

missmatch(qinj[k])
73 qinj[k] = qmin[ig] - qgen[ig];
74 //the reactive generation is now

fixed at minumum
75 qgen[ig] = qmin[ig];
76
77
78 //choose another slack-bus if it

violates the limit
79 if(buscod[k] == 3){
80 pinj[k] = 0.0; //0 mismatch
81 //if the slack bus is on the

limit;
82 //choose the next PV-bus as the

112

new slack-bus
83 if(s >= nbuses){
84 s = 1;
85 }
86
87 while(buscod[k+s] != 2){
88 s++;
89 }
90 buscod[k+s] = 3;
91 s = 1;
92 }
93 buscod[k] = -2;
94 }
95 }
96 if (violation &&ABS(qinj[k]) > ABS(qinj[qmism])){
97 //update the worst mismatch
98 qmism = k;
99 }

100 }
101 //Relax nonbinding units
102
103 else if (buscod[k] == -2 && qmin[ig] != qmax[ig])
104 {
105 if (vgbus[ig] == 0.0)
106 {
107 vgbus[ig] = vomag[k];
108 }
109
110 if ((qgen[ig] == qmax[ig] && vomag[k]>vgbus[ig])
111 || (qgen[ig] == qmin[ig] && vomag[k]<vgbus[ig]))
112 {
113 if(verbose)
114 {
115 printf("Relaxed generator constraints

on %d \n", numbus[k]);
116 }
117
118 vomag[k] = vgbus[ig];
119 buscod[k] = 2;
120 qinj[k] = 0;
121 }
122 }
123 }
124 }
125 return qmism;
126 }

113

B.10 flatstart.c

1 #include <stdbool.h>
2 #include <math.h>
3
4 __declspec(dllexport) void flatstart(int nbuses, int *buscod, double

*vomag, double *voang, bool flat_start){
5
6 int ib;
7
8 if(flat_start == true){
9 for(ib= 0; ib<nbuses; ib++){

10 if(buscod[ib] != 3){
11 voang[ib] = 0.0;
12 if(buscod[ib] != 2 && vomag[ib] != 1.0){
13 vomag[ib] = 1.0;
14 }
15 }
16 }
17 }
18
19 }

114

B.11 jacobi.c

1 #include <stdbool.h>
2 #include <math.h>
3
4
5 #include "jacobi.h"
6
7 void t_u(double *u, double *t, double delta_angle, double gij, double

bij, double ratio)
8 {
9 double cosda, sinda;

10
11 if(ratio != 0.0){
12 cosda = cos(delta_angle)/ratio;
13 sinda = sin(delta_angle)/ratio;
14 }
15 else{
16 cosda = cos(delta_angle);
17 sinda = sin(delta_angle);
18 }
19
20 *u = gij*sinda - bij*cosda;
21 *t = gij*cosda + bij*sinda;
22
23 }
24
25 int addel(int i, int j, double elem, int idim, double *aa, int *jcol,

int *ipv, int ip)
26 {
27
28 if (i == j)
29 {
30 aa[i] += elem;
31 jcol[i] = i;
32 }
33 else
34 while (true)
35 if (ipv[i] == -1) //0 used in fortran. -1 here because

index begins with 0 in C/python
36 {
37 ipv[i] = ip;
38 jcol[ip] = j;
39 aa[ip] = elem;
40 ip++;
41 break;
42 }
43 else
44 {
45 i = ipv[i];

115

46 if (jcol[i] == j)
47 {
48 aa[i] += elem;
49 break;
50 }
51 }
52 return ip;
53 }
54
55 void bujac(int nbuses, int nlines,
56 double *jacbi, double *vomag, double *voang, double *gii,

double *bii, double *gij,
57 double *bij, double *ratio,
58 int *jcol, int *ipv, int *ifrom, int *ito, bool *ibstat
59)
60 {
61
62 int k, i,j, i2, j2, idim, i_p, i_q, ip;
63 double volt, elem, delta_angle;
64 double uij[1], uji[1], tij[1], tji[1];
65
66 idim = 2*nbuses;
67 ip = 2*nbuses;
68 for (i=0; i<nbuses; i++)
69 {
70 volt = 2*vomag[i];
71 elem = volt*gii[i];
72
73 j = i + nbuses;
74 ip = addel(i, j, elem, idim, jacbi, jcol, ipv, ip);
75 elem = -volt*bii[i];
76 ip = addel(j, j, elem, idim, jacbi, jcol, ipv, ip);
77 }
78
79 for (k=0; k<nlines; k++)
80 {
81 if (ibstat[k])
82 {
83 i = ifrom[k];
84 j = ito[k];
85 i2 = i + nbuses;
86 j2 = j + nbuses;
87
88 delta_angle = voang[i] - voang[j];
89 volt = vomag[i]*vomag[j];
90
91 t_u(uij, tij, delta_angle, gij[k], bij[k], ratio[k]);
92 t_u(uji, tji,-delta_angle, gij[k], bij[k], ratio[k]);
93
94 // DP/DA

116

95 elem = -volt**uij;
96 ip = addel(i, j, elem, idim, jacbi, jcol, ipv, ip);
97 ip = addel(i, i,-elem, idim, jacbi, jcol, ipv, ip);
98
99 elem = -volt**uji;

100 ip = addel(j, i, elem, idim, jacbi, jcol, ipv, ip);
101 ip = addel(j, j,-elem, idim, jacbi, jcol, ipv, ip);
102
103 // DP/DV
104 elem = -vomag[i]**tij;
105 ip = addel(i, j2, elem, idim, jacbi, jcol, ipv, ip);
106 elem = -vomag[j]**tji;
107 ip = addel(j, i2, elem, idim, jacbi, jcol, ipv, ip);
108 elem = -vomag[j]**tij;
109 ip = addel(i, i2, elem, idim, jacbi, jcol, ipv, ip);
110 elem = -vomag[i]**tji;
111 ip = addel(j, j2, elem, idim, jacbi, jcol, ipv, ip);
112
113 // DQ/DA
114 elem = volt**tij;
115 ip = addel(i2, j, elem, idim, jacbi, jcol, ipv, ip);
116 ip = addel(i2, i,-elem, idim, jacbi, jcol, ipv, ip);
117 elem = volt**tji;
118 ip = addel(j2, i, elem, idim, jacbi, jcol, ipv, ip);
119 ip = addel(j2, j,-elem, idim, jacbi, jcol, ipv, ip);
120
121 // DQ/DV
122 elem = -vomag[i]**uij;
123 ip = addel(i2, j2, elem, idim, jacbi, jcol, ipv, ip);
124 elem = -vomag[j]**uij;
125 ip = addel(i2, i2, elem, idim, jacbi, jcol, ipv, ip);
126
127 elem = -vomag[j]**uji;
128 ip = addel(j2, i2, elem, idim, jacbi, jcol, ipv, ip);
129 elem = -vomag[i]**uji;
130 ip = addel(j2, j2, elem, idim, jacbi, jcol, ipv, ip);
131
132
133 }
134 }
135 }
136
137 int jacsize(int *jcol){
138 //This routine finds the number of element in the
139 //sparse jacobian matrix bult by bujac,
140 //which are differnet form 0.
141 int size = 0;
142 while(true){
143 if(jcol[size] == -1){
144 return size;

117

145 }
146 size++;
147 }
148 return 0;
149 }

118

B.12 jacobi.h

1 #ifndef HEADER_jacobi
2 #define HEADER_jacobi
3
4 __declspec(dllexport) void t_u(double *u, double *t, double

delta_angle, double gij, double bij, double ratio);
5 __declspec(dllexport) int addel(int i, int j, double elem, int idim,

double *aa, int *jcol, int *ipv, int ip);
6 __declspec(dllexport) void bujac(int nbuses, int nlines,
7 double *jacbi, double *vomag, double *voang, double *gii,

double *bii, double *gij,
8 double *bij, double *ratio,
9 int *jcol, int *ipv, int *ifrom, int *ito, bool *ibstat

10);
11
12 __declspec(dllexport) int jacsize(int *jcol);
13 #endif /* HEADER_jacobi */

119

B.13 loadlflow.py

1
2 from topflow.case import Case
3 from topflow.acsolve import acsolve
4 from topflow.settings import Settings
5 from topflow.decsolve import decsolve
6 import copy
7
8 #This is the administrative function of the load-flow algorithms

acsolve and decsolve
9

10 def loadflow(Case, mysettings = Settings(), version = None,
flat_start = None, enf_qlim = None, max_it = None, conv_tol = None
, pqv = None, filename = None, save_path = None, save_verbose =
None, print_verbose = None):

11
12 args = locals()
13 myset_copy = copy.deepcopy(mysettings)
14 for i in args:
15 if(i not in ['Case', 'mysettings', 'args'] and args[i] is

not None):
16 myset_copy.set_var(i, args[i])
17
18
19
20 if(myset_copy.version == 'NR'):
21 result = acsolve(Case, myset_copy)
22 elif(myset_copy.version in ['FDXB', 'FDBX', 'FDXX', 'FDBB']):
23 result = decsolve(Case, myset_copy)
24 else:
25 print(myset_copy.version,' is not a valid load flow version')
26 return None
27 return result

120

B.14 maxism.c

1 #include <stdbool.h>
2 #include <math.h>
3 #include "topflow.h"
4
5 __declspec(dllexport) void maxmism(int pqv, int nbuses, int *buscod,

int *mismloc, double *pinj, double *qinj){
6
7 int ib;
8 double ptemp = 0.0;
9 double qtemp = 0.0;

10
11 for(ib = 0; ib < nbuses; ib++){
12
13 if((buscod[ib] != 3) && (ABS(pinj[ib]) > ptemp) && (pqv

!= 2)){
14 mismloc[0] = ib;
15 ptemp = ABS(pinj[mismloc[0]]);
16 }
17 if((buscod[ib] < 2) && (ABS(qinj[ib]) > qtemp) && (pqv !=

1)){
18 mismloc[1] = ib;
19 qtemp = ABS(qinj[mismloc[1]]);
20 }
21
22
23 }
24
25 }

121

B.15 mismat.c

1
2 #include "math.h"
3
4
5 void pmismat(int ib, int *genbus, int *buscod, double *pgen, double *

pload, double *pinj,
6 double *beta, double pdelta)
7 {
8 //This subroutine calculates the active power mismatch and

updates the active generation
9 //for the bus ib

10
11 int ig = genbus[ib];
12 if(abs(buscod[ib]) == 2){
13 //pinj is now the mismatch of the PV-bus (including Var-

limited PV-bus)
14 pinj[ib] = pgen[ig]-pload[ib]-pinj[ib]-beta[ib]*pdelta;
15 }
16 else if (buscod[ib] == 3){
17 //Update active generation for the slack bus
18 pgen[ig]=pinj[ib]+pload[ib] + beta[ib]*pdelta;
19 //pinj[ib] = 0;
20 }
21 else{
22 // Active mismatches of PQ-buses
23 pinj[ib]=-pload[ib]-pinj[ib]-beta[ib]*pdelta;
24 }
25 }
26
27 void qmismat(int ib, int *genbus, int *buscod, double *qgen, double *

qload, double *qinj,
28 double *alfa, double qdelta)
29 {
30 //This subroutine calculates the reactive power missmatch and

updates the reactive generation
31 //for the bus ib
32
33 int ig = genbus[ib];
34
35 if(buscod[ib] >= 2){
36 //Update reactive genertation at PV- and slack-buses
37 qgen[ig]= qinj[ib]+qload[ib] + alfa[ib]*qdelta;
38 //qinj[ib] = 0;
39 }
40 else if(buscod[ib] == -2){
41 //Reactive mismatch of the Var-limited generator buses
42 qinj[ib] = qgen[ig]-qload[ib]-qinj[ib]-alfa[ib]*qdelta;
43 }

122

44 else{
45 //Reactive mismatches of PQ-buses
46 qinj[ib]=-qload[ib]-qinj[ib]-alfa[ib]*qdelta;
47 }
48 }
49
50 __declspec(dllexport) void mismat(int pqv, int nbuses, int *genbus,

int *buscod,
51 double *pgen, double *qgen, double *pload, double *

qload, double *pinj, double *qinj,
52 double *alfa, double *beta, double pdelta, double

qdelta)
53 {
54 int ib;
55 //This subroutine calculates the relevant mismatches, and updates

the active and/or reactive generations
56 //pqv decides what to calculate
57 //pqv = 1: Active power, 2: Reactive power, 3: Both active and

reactive power
58
59 for (ib=0;ib<nbuses;ib++){
60 if (buscod[ib] != 4)
61 {
62 if(pqv != 1){
63 qmismat(ib, genbus, buscod, qgen, qload, qinj, alfa,

qdelta);
64 }
65 if(pqv !=2){
66 pmismat(ib, genbus, buscod, pgen, pload, pinj, beta,

pdelta);
67 }
68 }
69 }
70 }

123

B.16 netinj.c

1 #include <stdbool.h>
2 #include <math.h>
3 #include "jacobi.h"
4
5 __declspec(dllexport) void netinj(int pqv, int nbuses, int nlines,

double *pinj, double *qinj, double *vomag, double *voang,
6 double *gii, double *bii, double *gij, double *bij,

double *ratio, double *shift_angle, int *ifrom, int *ito, bool *
ibstat)

7 {
8 int i, j, k;
9 double volt, volt2, delta_angle, sina, cosa;

10 double uij[1],tij[1], uji[1],tji[1];
11
12 /*Calculate the injection on all buses*/
13 //pqv decides what netinj calculates:
14 //1: pinj, 2: qinj, 3: both pinj and qinj
15
16 for (i=0; i<nbuses; i++)
17 {
18 volt2 = vomag[i]*vomag[i];
19 if(pqv!= 1){
20 qinj[i] = -volt2*bii[i];
21 }
22 if(pqv != 2)
23 pinj[i] = volt2*gii[i];
24 }
25
26 for (k=0; k<nlines; k++)
27 {
28 if (ibstat[k])
29 {
30 i = ifrom[k];
31 j = ito[k];
32 volt = vomag[i]*vomag[j];
33 delta_angle = voang[i] - voang[j] - shift_angle[k

];
34
35 t_u(uij,tij,delta_angle,gij[k],bij[k],ratio[k]);
36 t_u(uji,tji,-delta_angle,gij[k],bij[k],ratio[k]);
37
38 if(pqv != 1){
39 qinj[i] -= volt**uij;
40 qinj[j] -= volt**uji;
41 }
42 if(pqv != 2){
43 pinj[i] -= volt**tij;
44 pinj[j] -= volt**tji;

124

45 }
46 }
47 }
48 }
49
50 __declspec(dllexport) void netpinj(int nbuses, int nlines, double *

pinj, double *vomag, double *voang,
51 double *gii, double *bii, double *gij, double *bij,

double *ratio, int *ifrom, int *ito, bool *ibstat)
52 {
53 int i, j, k;
54 double volt, volt2, delta_angle, sina, cosa;
55 double uij[1],tij[1], uji[1],tji[1];
56
57 /*Calculate the injection on all buses*/
58
59 for (i=0; i<nbuses; i++)
60 {
61 volt2 = vomag[i]*vomag[i];
62 pinj[i] = volt2*gii[i];
63 }
64
65 for (k=0; k<nlines; k++)
66 {
67 if (ibstat[k])
68 {
69 i = ifrom[k];
70 j = ito[k];
71 volt = vomag[i]*vomag[j];
72 delta_angle = voang[i] - voang[j];
73
74 t_u(uij,tij,delta_angle,gij[k],bij[k],ratio[k]);
75 t_u(uji,tji,-delta_angle,gij[k],bij[k],ratio[k]);
76
77 pinj[i] -= volt**tij;
78 pinj[j] -= volt**tji;
79 }
80 }
81 }
82
83 __declspec(dllexport) void netqinj(int nbuses, int nlines, double *

qinj, double *vomag, double *voang,
84 double *gii, double *bii, double *gij, double *bij,

double *ratio, int *ifrom, int *ito, bool *ibstat)
85 {
86 int i, j, k;
87 double volt, volt2, delta_angle, sina, cosa;
88 double uij[1],tij[1], uji[1],tji[1];
89
90 /*Calculate the injection on all buses*/

125

91
92 for (i=0; i<nbuses; i++)
93 {
94 volt2 = vomag[i]*vomag[i];
95 qinj[i] = -volt2*bii[i];
96 }
97
98 for (k=0; k<nlines; k++)
99 {

100 if (ibstat[k])
101 {
102 i = ifrom[k];
103 j = ito[k];
104 volt = vomag[i]*vomag[j];
105 delta_angle = voang[i] - voang[j];
106
107 t_u(uij,tij,delta_angle,gij[k],bij[k],ratio[k]);
108 t_u(uji,tji,-delta_angle,gij[k],bij[k],ratio[k]);
109
110 qinj[i] -= volt**uij;
111 qinj[j] -= volt**uji;
112 }
113 }
114 }

126

B.17 sConstruct.py

1 #This file is used bu SCons to build the shared library "clibrary"
2 #Clibrary contains all the C-extesnions of Topflow
3
4 SharedLibrary(
5 "clibrary",
6 [
7 "set_isa.c",
8 "flatstart.c",
9 "netinj.c",

10 "mismat.c",
11 "maxmism.c",
12 "zerosp.c",
13 "enforce_qlim.c",
14 "set_rhs.c",
15 "jacobi.c",
16 "update_voltages.c",
17 "coo_conv.c",
18 "bmatrix.c",
19 "hlmatrix.c",
20 "selectver.c"
21]
22)

B.18 select_ver.c

1 #include<stdbool.h>
2 #include<math.h>
3 #include<string.h>
4
5 #define ABS(x) (((x) < 0) ? (-(x)) : ((x))) /* if loop: ABS(X) gives

the absolute value of x*/
6
7 __declspec(dllexport) void selectver(double *xp,double *xq,double *

xinv, double *bij, int nlines, char *bver){
8 int k;
9 //strcmp compare two strings

10 if(strcmp(bver, "XX")){
11 //STD version
12 for(k = 0; k<nlines;k++){
13 xp[k] = xinv[k];
14 xq[k] = xinv[k];
15 }
16 }
17 else if(strcmp(bver,"XB")){
18 //XB-version (dual)
19 for(k = 0; k<nlines;k++){
20 xp[k] = xinv[k];
21 xq[k] = ABS(bij[k]);

127

22 }
23 }
24 else if(strcmp(bver, "BX")){
25 //BX-version (primal)
26 for(k = 0; k<nlines;k++){
27 xp[k] = ABS(bij[k]);
28 xq[k] = xinv[k];
29 }
30 }
31 else if(strcmp(bver, "BB")){
32 //BB version
33 for(k = 0; k<nlines;k++){
34 xp[k] = ABS(bij[k]);
35 xq[k] = ABS(bij[k]);
36 }
37 }
38 }

128

B.19 set_rhs.c

1 #include <stdbool.h>
2
3
4 __declspec(dllexport) void set_rhs(int pqv, int nbuses, int *buscod,

double *vomag, double *pinj, double *qinj, double *rhs){
5
6 int iq, ip, ib;
7 iq = ip = 0;
8
9 for(ib = 0; ib <nbuses; ib++){

10 if(pqv == 3){
11 //Right hand side of the Newton Rapshon equations
12 if(buscod[ib] != 3){
13 rhs[ip] = pinj[ib];
14 if(buscod[ib] != 2){
15 rhs[iq + nbuses-1] = qinj[ib];
16 iq += 1;
17 }
18 ip ++;
19 }
20 }
21 else if(pqv == 1){
22 //Right hand side of the active power equations in

FDLF
23 rhs[ib] = pinj[ib]/vomag[ib];
24 }
25 else if(pqv == 2){
26 //Right hand side of the reactive power equations in

FDLF
27 rhs[ib] = qinj[ib]/vomag[ib];
28 }
29 }
30 }

129

B.20 settings.py

1 #This file contains the Setting-class, which is used to specify
2 #the settings of the loadflow-functions (currently acsolve and

decsolve)
3 class Settings:
4 def __init__(self, version = 'NR', flat_start = True, enf_qlim =

False, max_it = 20, conv_tol = 0.000001, pqv = None, filename =
None, save_path = None, save_verbose = 1, print_verbose = 1):

5 self.version = version
6 self.flat_start = flat_start
7 self.enf_qlim = enf_qlim
8 self.max_it = max_it
9 self.conv_tol = conv_tol

10 self.pqv = pqv
11 self.bver = 'XX' #Default
12 self.set_fdlf_ver(version, pqv) #sets self.bver and pqv
13 self.filename = filename
14 self.save_path = save_path
15 self.save_verbose = save_verbose
16 # 1: Save only the final result (Default).
17 # 2: Save the final reslt in one sheet, and the iteration-

summaries in a second sheet.
18 self.print_verbose = print_verbose
19 # 0: Do NOT print anything to screen.
20 # 1: Print the final result to screen: Convergence/Divergence

. (Default)
21 # 2: Print a more verbose final result-summary to the screen.
22 # 3: Same as 2: + print a summery of each iteration
23
24
25 def print_settings(self):
26 print('\nVersion:',self.version,
27 '\nflat_start:',self.flat_start,
28 '\nEnforce reactive limits:', self.enf_qlim,
29 '\nmaximum iterations:', self.max_it,
30 '\nconvergence tolerance',self.conv_tol)
31
32 def set_fdlf_ver(self, version, pqv):
33 if(version in ['FDXB', 'FDBX', 'FDXX', 'FDBB']):
34 self.bver = version[2:]
35 if(pqv is None):
36 #if the iteration-version is not specified, the

default values for the variuos FDLF-versions are used
37 self.pqv = 2 if self.version == 'FDXB' else 1
38 elif(pqv in [1,2]):
39 self.pqv = pqv
40 else:
41 print('unvalid value for pqv')
42

130

43 def set_var(self, name, value):
44 #set the instance variables
45 setattr(self,name, value)
46 if(name in ['version', 'pqv']):
47 #update bver and pqv
48 self.set_fdlf_ver(self.version, self.pqv)

B.21 topflow.h

1 #ifndef HEADER_nettanalyse /*to prevent double declaration of
identifiers*/

2 #define HEADER_nettanalyse
3
4 #define PQ_BUS 1
5 #define PV_BUS 2
6 #define SWING_BUS 3
7 #define DISCONNECTED_BUS 4
8
9

10 #define ABS(x) (((x) < 0) ? (-(x)) : ((x))) /* if loop: ABS(X) gives
the absolute value of x*/

11 #define CONNECTED(i, con) (con[i] < 0 ? i : con[i])
12
13 #endif

131

B.22 update_voltages.py

1 #include <stdbool.h>
2
3 __declspec(dllexport) void update_voltages(int pqv, int nbuses, int *

buscod, double *vomag, double *voang, double *correction){
4 int ip, iq, ib;
5
6 ip = iq = 0;
7
8 for(ib = 0; ib <nbuses; ib++){
9 if(pqv == 3){

10 //Update for Newton Rapshon algorithm
11 if(buscod[ib] != 3){
12 voang[ib] += correction[ip];
13 ip ++;
14 if(buscod[ib] != 2){
15 vomag[ib] += correction[iq + nbuses-1];
16 iq ++;
17 }
18 }
19 }
20 else if(pqv == 1){
21 //Update voltage anges (Active power eq fro FDLD)
22 if(buscod[ib] != 3){
23 voang[ib] += correction[ib];
24 }
25 }
26 else if(pqv == 2){
27 //Update voltage magnitudes (Reactive power eq for FDLF)
28 if(buscod[ib] != 3 && buscod[ib] != 2){
29 vomag[ib] += correction[ib];
30 }
31 }
32 }
33 }

B.23 zerosp.c

1 #include <stdbool.h>
2 #include <math.h>
3
4 __declspec(dllexport) void zerosp(int nlines, int *ifrom, int *ito,

bool *ibstat, double *xinv, double *xinj){
5 int il, ifr, itr;
6
7 for(il = 0; il < nlines; il++){
8 if(fabs(xinv[il] > 9000 && ibstat[il] == true)){
9 ifr = ifrom[il];

10 itr = ito[il];

132

11 if(fabs(xinj[ifr]) > fabs(xinj[itr])){
12
13 xinj[ifr]=xinj[ifr]+xinj[itr];
14 xinj[itr]=0.0;
15 }
16 else{
17 xinj[itr]=xinj[itr]+xinj[ifr];
18 xinj[ifr]=0.0;
19 }
20 }
21 }
22 }

133

C Tests

C.1 pandapower_delay.py

1 import timeit
2
3 #Measure the delay of the numba-compiler in pandapower
4
5 mysetup = (
6
7 '''import pandapower as pp
8 import pandapower.networks as pn
9 net = pn.case14()

10 '''
11)
12
13 numba_delay = timeit.timeit(setup = mysetup, stmt = 'pp.runpp(net)',

number = 1)
14 runtime_case14 = timeit.timeit(setup = mysetup, stmt = 'pp.runpp(net

)', number = 100)/100
15
16 numba_delay = numba_delay - runtime_case14
17
18 print('Numba delay:', numba_delay)

134

C.2 reliability_acsolve.py

1 import sys
2 sys.path.append("..")
3 import topflow as tf
4 import numpy as np
5 import math
6 import pandapower as pp
7 import pandapower.networks as pn
8
9 #Reliability test

10 #Compare topflow results to pandapower and pypower
11
12 #Initialize topflow cases
13 case4gs = tf.example_case('case4gs')
14 case14 = tf.example_case('case14')
15 case30 = tf.example_case('case30')
16 case118 = tf.example_case('case118')
17 case300 = tf.example_case('case300')
18 case1354 = tf.example_case('case1354pegase')
19 case2869 = tf.example_case('case2869pegase')
20 case9241 = tf.example_case('case9241pegase')
21
22 #Solve topflow cases
23 result4gs = tf.loadflow(case4gs, conv_tol = 0.00000001, print_verbose

= 0)
24 result14 = tf.loadflow(case14, conv_tol = 0.00000001, print_verbose

= 0)
25 result30 = tf.loadflow(case30, conv_tol = 0.00000001, print_verbose =

0)
26 result118 = tf.loadflow(case118, conv_tol = 0.00000001,

print_verbose = 0)
27 result300 = tf.loadflow(case300, conv_tol = 0.00000001, print_verbose

= 0)
28 result1354 = tf.loadflow(case1354 , conv_tol = 0.00000001,

print_verbose = 0)
29 result2869 = tf.loadflow(case2869 , conv_tol = 0.00000001,

print_verbose = 0)
30 result9241 = tf.loadflow(case9241 , conv_tol = 0.00000001,

print_verbose = 0)
31
32 #initialize pandapower cases
33 net4gs = pn.case4gs()
34 net14 = pn.case14()
35 net30 = pn.case30()
36 net118 = pn.case118()
37 net300 = pn.case300()
38 net1354 = pn.case1354pegase()
39 net2869 = pn.case2869pegase()
40 net9241 = pn.case9241pegase()

135

41
42 #solve pandapower cases
43 pp.runpp(net4gs)
44 pp.runpp(net14)
45 pp.runpp(net30)
46 pp.runpp(net118)
47 pp.runpp(net300)
48 pp.runpp(net1354)
49 pp.runpp(net2869)
50 pp.runpp(net9241)
51
52
53 #compare case4gs
54 panda_vm_dev = 0
55 panda_va_dev = 0
56 worst_panda_vm_bus = 0
57 worst_panda_va_bus = 0
58 pyp_vm_dev = 0
59 pyp_va_dev = 0
60 worst_pyp_vm_bus = 0
61 worst_pyp_va_bus = 0
62
63 for i in range(0, result4gs.vomag.size):
64 ext = case4gs.int2ext(i)
65 if abs(result4gs.get('bus', ext, 'vm')-net4gs.res_bus.vm_pu[i])>

abs(panda_vm_dev):
66 panda_vm_dev = result4gs.get('bus', ext, 'vm')-net4gs.res_bus

.vm_pu[i]
67 worst_panda_vm_bus =ext
68 if abs(result4gs.get('bus', ext, 'va')-net4gs.res_bus.va_degree[i

])> abs(panda_va_dev):
69 panda_va_dev = result4gs.get('bus', ext, 'va')-net4gs.res_bus

.va_degree[i]
70 worst_panda_va_bus = ext
71 if abs(result4gs.vomag[i]-case4gs.vomag[i])> abs(pyp_vm_dev):
72 pyp_vm_dev = result4gs.vomag[i]-case4gs.vomag[i]
73 worst_pyp_vm_bus = case4gs.int2ext(i)
74 if abs(result4gs.voang[i]-case4gs.voang[i])> abs(pyp_va_dev):
75 pyp_va_dev = result4gs.voang[i]-case4gs.voang[i]
76 worst_pyp_va_bus = case4gs.int2ext(i)
77
78 print('\nPandaPower:')
79 print('Worst VM devition case4gs:', panda_vm_dev, 'pu, at bus:',

worst_panda_vm_bus)
80 print('Worst VA devition case4gs:', panda_va_dev, 'deg, at bus:',

worst_panda_va_bus)
81 print('PyPower:')
82 print('Worst VM devition case4gs:', pyp_vm_dev, 'pu, at bus:',

worst_pyp_vm_bus)
83 print('Worst VA devition case4gs:', pyp_va_dev, 'deg, at bus:',

136

worst_pyp_va_bus)
84
85
86 #compare case14
87 panda_vm_dev = 0
88 panda_va_dev = 0
89 worst_panda_vm_bus = 0
90 worst_panda_va_bus = 0
91 pyp_vm_dev = 0
92 pyp_va_dev = 0
93 worst_pyp_vm_bus = 0
94 worst_pyp_va_bus = 0
95
96 for i in range(0, result14.vomag.size):
97 ext = case14.int2ext(i)
98 if abs(result14.get('bus', ext, 'vm')-net14.res_bus.vm_pu[i])>

abs(panda_vm_dev):
99 panda_vm_dev = result14.get('bus', ext, 'vm')-net14.res_bus.

vm_pu[i]
100 worst_panda_vm_bus =ext
101 if abs(result14.get('bus', ext, 'va')-net14.res_bus.va_degree[i])

> abs(panda_va_dev):
102 panda_va_dev = result14.get('bus', ext, 'va')-net14.res_bus.

va_degree[i]
103 worst_panda_va_bus = ext
104 if abs(result14.get('bus',ext,'vm')-case14.get('bus', ext, 'vm'))

> abs(pyp_vm_dev):
105 pyp_vm_dev = result14.get('bus',ext,'vm')-case14.get('bus',

ext, 'vm')
106 worst_pyp_vm_bus = ext
107 if abs(result14.get('bus',ext,'va')-case14.get('bus', ext, 'va'))

> abs(pyp_va_dev):
108 pyp_va_dev = result14.get('bus',ext,'va')-case14.get('bus',

ext, 'va')
109 worst_pyp_va_bus = ext
110
111 print('\nPandaPower:')
112 print('Worst VM devition case14:', panda_vm_dev, 'pu, at bus:',

worst_panda_vm_bus)
113 print('Worst VA devition case14:', panda_va_dev, 'deg, at bus:',

worst_panda_va_bus)
114 print('PyPower:')
115 print('Worst VM devition case14:', pyp_vm_dev, 'pu, at bus:',

worst_pyp_vm_bus)
116 print('Worst VA devition case14:', pyp_va_dev, 'deg, at bus:',

worst_pyp_va_bus)
117
118
119 #compare case30
120 panda_vm_dev = 0

137

121 panda_va_dev = 0
122 worst_panda_vm_bus = 0
123 worst_panda_va_bus = 0
124 pyp_vm_dev = 0
125 pyp_va_dev = 0
126 worst_pyp_vm_bus = 0
127 worst_pyp_va_bus = 0
128
129 for i in range(0, result30.vomag.size):
130 ext = case30.int2ext(i)
131 if abs(result30.get('bus', ext, 'vm')-net30.res_bus.vm_pu[i])>

abs(panda_vm_dev):
132 panda_vm_dev = result30.get('bus', ext, 'vm')-net30.res_bus.

vm_pu[i]
133 worst_panda_vm_bus =ext
134 if abs(result30.get('bus', ext, 'va')-net30.res_bus.va_degree[i])

> abs(panda_va_dev):
135 panda_va_dev = result30.get('bus', ext, 'va')-net30.res_bus.

va_degree[i]
136 worst_panda_va_bus = ext
137 if abs(result30.get('bus',ext,'vm')-case30.get('bus', ext, 'vm'))

> abs(pyp_vm_dev):
138 pyp_vm_dev = result30.get('bus',ext,'vm')-case30.get('bus',

ext, 'vm')
139 worst_pyp_vm_bus = ext
140 if abs(result30.get('bus',ext,'va')-case30.get('bus', ext, 'va'))

> abs(pyp_va_dev):
141 pyp_va_dev = result30.get('bus',ext,'va')-case30.get('bus',

ext, 'va')
142 worst_pyp_va_bus = ext
143
144 print('\nPandaPower:')
145 print('Worst VM devition case30:', panda_vm_dev, 'pu, at bus:',

worst_panda_vm_bus)
146 print('Worst VA devition case30:', panda_va_dev, 'deg, at bus:',

worst_panda_va_bus)
147 print('PyPower:')
148 print('Worst VM devition case30:', pyp_vm_dev, 'pu, at bus:',

worst_pyp_vm_bus)
149 print('Worst VA devition case30:', pyp_va_dev, 'deg, at bus:',

worst_pyp_va_bus)
150
151
152 #compare case118
153 panda_vm_dev = 0
154 panda_va_dev = 0
155 worst_panda_vm_bus = 0
156 worst_panda_va_bus = 0
157 pyp_vm_dev = 0
158 pyp_va_dev = 0

138

159 worst_pyp_vm_bus = 0
160 worst_pyp_va_bus = 0
161
162 for i in range(0, result118.vomag.size):
163 ext = case118.int2ext(i)
164 #pp_int = net118.bus.name[ext]
165 if abs(result118.get('bus', ext, 'vm')-net118.res_bus.vm_pu[i])>

abs(panda_vm_dev):
166 panda_vm_dev = result118.get('bus', ext, 'vm')-net118.res_bus

.vm_pu[i]
167 worst_panda_vm_bus =ext
168 if abs(result118.get('bus', ext, 'va')-net118.res_bus.va_degree[i

])> abs(panda_va_dev):
169 panda_va_dev = result118.get('bus', ext, 'va')-net118.res_bus

.va_degree[i]
170 worst_panda_va_bus = ext
171 if abs(result118.get('bus',ext,'vm')-case118.get('bus', ext, 'vm'

))> abs(pyp_vm_dev):
172 pyp_vm_dev = result118.get('bus',ext,'vm')-case118.get('bus',

ext, 'vm')
173 worst_pyp_vm_bus = ext
174 if abs(result118.get('bus',ext,'va')-case118.get('bus', ext, 'va'

))> abs(pyp_va_dev):
175 pyp_va_dev = result118.get('bus',ext,'va')-case118.get('bus',

ext, 'va')
176 worst_pyp_va_bus = ext
177
178 print('\nWorst VM devition case118:', panda_vm_dev, 'pu, at bus:',

worst_panda_vm_bus)
179 print('Worst VA devition case118:', panda_va_dev, 'deg, at bus:',

worst_panda_va_bus)
180 print('PyPower:')
181 print('Worst VM devition case118:', pyp_vm_dev, 'pu, at bus:',

worst_pyp_vm_bus)
182 print('Worst VA devition case118:', pyp_va_dev, 'deg, at bus:',

worst_pyp_va_bus)
183
184
185 #compare case300
186 panda_vm_dev = 0
187 panda_va_dev = 0
188 worst_panda_vm_bus = 0
189 worst_panda_va_bus = 0
190 pyp_vm_dev = 0
191 pyp_va_dev = 0
192 worst_pyp_vm_bus = 0
193 worst_pyp_va_bus = 0
194
195 for i in range(0, result300.vomag.size):
196 ext = case300.int2ext(i)

139

197 if abs(result300.get('bus', ext, 'vm')-net300.res_bus.vm_pu[i])>
abs(panda_vm_dev):

198 panda_vm_dev = result300.get('bus', ext, 'vm')-net300.res_bus
.vm_pu[i]

199 worst_panda_vm_bus =ext
200 if abs(result300.get('bus', ext, 'va')-net300.res_bus.va_degree[i

])> abs(panda_va_dev):
201 panda_va_dev = result300.get('bus', ext, 'va')-net300.res_bus

.va_degree[i]
202 worst_panda_va_bus = ext
203 if abs(result300.get('bus',ext,'vm')-case300.get('bus', ext, 'vm'

))> abs(pyp_vm_dev):
204 pyp_vm_dev = result300.get('bus',ext,'vm')-case300.get('bus',

ext, 'vm')
205 worst_pyp_vm_bus = ext
206 if abs(result300.get('bus',ext,'va')-case300.get('bus', ext, 'va'

))> abs(pyp_va_dev):
207 pyp_va_dev = result300.get('bus',ext,'va')-case300.get('bus',

ext, 'va')
208 worst_pyp_va_bus = ext
209
210 print('\nPandaPower:')
211 print('Worst VM devition case300:', panda_vm_dev, 'pu, at bus:',

worst_panda_vm_bus)
212 print('Worst VA devition case300:', panda_va_dev, 'deg, at bus:',

worst_panda_va_bus)
213 print('PyPower:')
214 print('Worst VM devition case300:', pyp_vm_dev, 'pu, at bus:',

worst_pyp_vm_bus)
215 print('Worst VA devition case300:', pyp_va_dev, 'deg, at bus:',

worst_pyp_va_bus)
216
217
218 #compare case1354
219 panda_vm_dev = 0
220 panda_va_dev = 0
221 worst_panda_vm_bus = 0
222 worst_panda_va_bus = 0
223 pyp_vm_dev = 0
224 pyp_va_dev = 0
225 worst_pyp_vm_bus = 0
226 worst_pyp_va_bus = 0
227
228 for i in range(0, result1354.vomag.size):
229 ext = case1354.int2ext(i)
230 if abs(result1354.get('bus', ext, 'vm')-net1354.res_bus.vm_pu[i])

> abs(panda_vm_dev):
231 panda_vm_dev = result1354.get('bus', ext, 'vm')-net1354.

res_bus.vm_pu[i]
232 worst_panda_vm_bus =ext

140

233 if abs(result1354.get('bus', ext, 'va')-net1354.res_bus.va_degree
[i])> abs(panda_va_dev):

234 panda_va_dev = result1354.get('bus', ext, 'va')-net1354.
res_bus.va_degree[i]

235 worst_panda_va_bus = ext
236 if abs(result1354.get('bus',ext,'vm')-case1354.get('bus', ext, '

vm'))> abs(pyp_vm_dev):
237 pyp_vm_dev = result1354.get('bus',ext,'vm')-case1354.get('bus

', ext, 'vm')
238 worst_pyp_vm_bus = ext
239 if abs(result1354.get('bus',ext,'va')-case1354.get('bus', ext, '

va'))> abs(pyp_va_dev):
240 pyp_va_dev = result1354.get('bus',ext,'va')-case1354.get('bus

', ext, 'va')
241 worst_pyp_va_bus = ext
242
243 print('\nWorst VM devition case1354 :', panda_vm_dev, 'pu, at bus:',

worst_panda_vm_bus)
244 print('Worst VA devition case1354 :', panda_va_dev, 'deg, at bus:',

worst_panda_va_bus)
245 print('PyPower:')
246 print('Worst VM devition case1354:', pyp_vm_dev, 'pu, at bus:',

worst_pyp_vm_bus)
247 print('Worst VA devition case1354:', pyp_va_dev, 'deg, at bus:',

worst_pyp_va_bus)
248
249 #compare case2869
250 panda_vm_dev = 0
251 panda_va_dev = 0
252 worst_panda_vm_bus = 0
253 worst_panda_va_bus = 0
254 pyp_vm_dev = 0
255 pyp_va_dev = 0
256 worst_pyp_vm_bus = 0
257 worst_pyp_va_bus = 0
258
259 for i in range(0, result2869.vomag.size):
260 ext = case2869.int2ext(i)
261
262 if abs(result2869.get('bus', ext, 'vm')-net2869.res_bus.vm_pu[i])

> panda_vm_dev:
263 panda_vm_dev = result2869.get('bus', ext, 'vm')-net2869.

res_bus.vm_pu[i]
264 worst_panda_vm_bus =ext
265 if abs(result2869.get('bus', ext, 'va')-net2869.res_bus.va_degree

[i])> panda_va_dev:
266 panda_va_dev = result2869.get('bus', ext, 'va')-net2869.

res_bus.va_degree[i]
267 worst_panda_va_bus = ext
268 if abs(result2869.get('bus',ext,'vm')-case2869.get('bus', ext, '

141

vm'))> abs(pyp_vm_dev):
269 pyp_vm_dev = result2869.get('bus',ext,'vm')-case2869.get('bus

', ext, 'vm')
270 worst_pyp_vm_bus = ext
271 if abs(result2869.get('bus',ext,'va')-case2869.get('bus', ext, '

va'))> abs(pyp_va_dev):
272 pyp_va_dev = result2869.get('bus',ext,'va')-case2869.get('bus

', ext, 'va')
273 worst_pyp_va_bus = ext
274
275 print('\nWorst VM devition case2869 :', panda_vm_dev, 'pu, at bus:',

worst_panda_vm_bus)
276 print('Worst VA devition case2869 :', panda_va_dev, 'deg, at bus:',

worst_panda_va_bus)
277 print('PyPower:')
278 print('Worst VM devition case2869:', pyp_vm_dev, 'pu, at bus:',

worst_pyp_vm_bus)
279 print('Worst VA devition case2869:', pyp_va_dev, 'deg, at bus:',

worst_pyp_va_bus)
280
281 #compare case9241
282 panda_vm_dev = 0
283 panda_va_dev = 0
284 worst_panda_vm_bus = 0
285 worst_panda_va_bus = 0
286 pyp_vm_dev = 0
287 pyp_va_dev = 0
288 worst_pyp_vm_bus = 0
289 worst_pyp_va_bus = 0
290
291 for i in range(0, result9241.vomag.size):
292 ext = case9241.int2ext(i)
293 if abs(result9241.get('bus', ext, 'vm')-net9241.res_bus.vm_pu[i])

> panda_vm_dev:
294 panda_vm_dev = result9241.get('bus', ext, 'vm')-net9241.

res_bus.vm_pu[i]
295 worst_panda_vm_bus =ext
296 if abs(result9241.get('bus', ext, 'va')-net9241.res_bus.va_degree

[i])> panda_va_dev:
297 panda_va_dev = result9241.get('bus', ext, 'va')-net9241.

res_bus.va_degree[i]
298 worst_panda_va_bus = ext
299 if abs(result9241.get('bus',ext,'vm')-case9241.get('bus', ext, '

vm'))> abs(pyp_vm_dev):
300 pyp_vm_dev = result9241.get('bus',ext,'vm')-case9241.get('bus

', ext, 'vm')
301 worst_pyp_vm_bus = ext
302 if abs(result9241.get('bus',ext,'va')-case9241.get('bus', ext, '

va'))> abs(pyp_va_dev):
303 pyp_va_dev = result9241.get('bus',ext,'va')-case9241.get('bus

142

', ext, 'va')
304 worst_pyp_va_bus = ext
305
306 print('\nWorst VM devition case9241 :', panda_vm_dev, 'pu, at bus:',

worst_panda_vm_bus)
307 print('Worst VA devition case9241:', panda_va_dev, 'deg, at bus:',

worst_panda_va_bus)
308 print('PyPower:')
309 print('Worst VM devition case9241:', pyp_vm_dev, 'pu, at bus:',

worst_pyp_vm_bus)
310 print('Worst VA devition case9241:', pyp_va_dev, 'deg, at bus:',

worst_pyp_va_bus)

143

C.3 reliability_decsolve.py

1 import sys
2 sys.path.append("..")
3 import topflow as tf
4
5 #this test compares decsolve with acsolve. acsolve has been tested

against other programs and should give reliable results
6 #Initialize topflow cases
7
8
9 for i in range(0,7):

10 if(i == 0):
11 print('\n##### case4gs #####')
12
13 #initialize the case
14 case = tf.example_case('case4gs')
15 elif(i == 1):
16 print('\n##### case14 #####')
17
18 #initialize the case
19 case = tf.example_case('case14')
20 elif(i == 2):
21 print('\n##### case30 #####')
22
23 #initialize the case
24 case = tf.example_case('case30')
25 elif(i == 3):
26 print('\n##### case118 #####')
27
28 #initialize the case
29 case = tf.example_case('case118')
30 elif(i == 4):
31 print('\n##### case300 #####')
32
33 #initialize the case
34 case = tf.example_case('case300')
35 elif(i == 5):
36 print('\n##### 1354pegase #####')
37
38 #initialize the case
39 case = tf.example_case('case1354pegase')
40 elif(i == 6):
41 print('\n##### 2869pegase #####')
42
43 #initialize the case
44 case = tf.example_case('case2869pegase')
45 elif(i == 7):
46 print('\n##### case9241pegase #####')
47

144

48 #initialize the case
49 case = tf.example_case('case9241pegase')
50
51 #initialize the worst deviations
52 worst_vm_fdxx = 0
53 worst_va_fdxx = 0
54
55 worst_vm_fdbx = 0
56 worst_va_fdbx = 0
57
58 worst_vm_fdxb = 0
59 worst_va_fdxb = 0
60
61 #run the load-flows
62 resnr = tf.loadflow(case, version = 'NR', print_verbose = 0)
63 resxx = tf.loadflow(case, version = 'FDXX', print_verbose = 0)
64 resbx = tf.loadflow(case, version = 'FDBX', print_verbose = 0)
65 resxb = tf.loadflow(case, version = 'FDXB', print_verbose = 0)
66
67 #Compare the results, if the loadflow()-function returns 0 it

means the test diverged
68
69 for i in range(0, resnr.vomag.size):
70 #FDXX:
71 if(resxx == 0):
72 break
73 if abs(resnr.vomag[i]-resxx.vomag[i])> abs(worst_vm_fdxx):
74 worst_vm_fdxx = abs(resnr.vomag[i]-resxx.vomag[i])
75 if abs(resnr.voang[i]-resxx.voang[i])> abs(worst_va_fdxx):
76 worst_va_fdxx = abs(resnr.voang[i]-resxx.voang[i])
77 #FDBX:
78 if(resbx == 0):
79 break
80 if abs(resnr.vomag[i]-resbx.vomag[i])> abs(worst_vm_fdbx):
81 worst_vm_fdbx = abs(resnr.vomag[i]-resbx.vomag[i])
82 if abs(resnr.voang[i]-resbx.voang[i])> abs(worst_va_fdbx):
83 worst_va_fdbx = abs(resnr.voang[i]-resbx.voang[i])
84 #FDXB
85 if(resxb == 0):
86 break
87 if abs(resnr.vomag[i]-resxb.vomag[i])> abs(worst_vm_fdxb):
88 worst_vm_fdxb = abs(resnr.vomag[i]-resxb.vomag[i])
89 if abs(resnr.voang[i]-resxb.voang[i])> abs(worst_va_fdxb):
90 worst_va_fdxb = abs(resnr.voang[i]-resxb.voang[i])
91
92 #Print the result:
93
94 #FDXX
95 if(resxx == 0):
96 print('\nFDXX: DIVERGENCE')

145

97 else:
98 print('\nFDXX: CONVERGENCE: number of iterations:', resxx.

icount)
99 print('Worst VM deviation:', worst_vm_fdxx)

100 print('Worst VA deviation:', worst_va_fdxx)
101 #FDBX
102 if(resbx == 0):
103 print('\nFDBX: DIVERGENCE')
104 else:
105 print('\nFDBX: CONVERGENCE: number of iterations:', resbx.

icount)
106 print('Worst VM deviation:', worst_vm_fdbx)
107 print('Worst VA deviation:', worst_va_fdbx)
108 #FDXB
109 if(resxb == 0):
110 print('\nFDXB: DIVERGENCE')
111 else:
112 print('\nFDXB: CONVERGENCE: number of iterations:', resxb.

icount)
113 print('Worst VM deviation:', worst_vm_fdxb)
114 print('Worst VA deviation:', worst_va_fdxb)

146

C.4 speed_acsolve.py

1
2 import timeit
3 from pypower.api import case14 as pypcase14
4 from pypower.api import case30 as pypcase30
5 from pypower.api import runpf, ppoption
6
7 #This tests compares the speed of running a Newton-Rapshon loadflow

with Topflow
8 #With the speed of pandapower and pypower
9

10 #Measure the execution time of topflow
11 mysetup_tf = (
12 '''
13 import sys
14 sys.path.append("..")
15 import topflow as tf
16
17 '''
18)
19
20 tf_runtime14 = timeit.timeit(setup = mysetup_tf +
21 '''
22 case = tf.example_case("case14")
23 ''',
24 stmt = 'tf.loadflow(case, conv_tol = 0.00000001, print_verbose = 0)',
25 number = 100)/100
26
27 tf_runtime30 = timeit.timeit(setup = mysetup_tf +
28 '''
29 case = tf.example_case("case30")
30 ''',
31 stmt = 'tf.loadflow(case, conv_tol = 0.00000001, print_verbose = 0)',
32 number = 100)/100
33
34 tf_runtime1354 = timeit.timeit(setup = mysetup_tf +
35 '''
36 case = tf.example_case("case1354pegase")
37 ''',
38 stmt = 'tf.loadflow(case, conv_tol = 0.00000001, print_verbose = 0)',
39 number = 100)/100
40
41 tf_runtime2869 = timeit.timeit(setup = mysetup_tf +
42 '''
43 case = tf.example_case("case2869pegase")
44 ''',
45 stmt = 'tf.loadflow(case, conv_tol = 0.00000001, print_verbose = 0)',
46 number = 100)/100
47

147

48 tf_runtime9241 = timeit.timeit(setup = mysetup_tf +
49 '''
50 case = tf.example_case("case9241pegase")
51 ''',
52 stmt = 'tf.loadflow(case, conv_tol = 0.00000001, print_verbose = 0)',
53 number = 100)/100
54
55 #Measure the exectution time of pypower
56 mysetup_pyp14 = (
57 '''
58 from pypower.api import runpf, ppoption
59 from pypower.api import case14
60 ppopt = ppoption(VERBOSE = 0, OUT_ALL = 0)
61 case14 = case14()
62 ''')
63
64
65 pyp_runtime14 = timeit.timeit(setup = mysetup_pyp14, stmt = 'ppr =

runpf(case14, ppopt)[0]', number = 100)/100
66
67
68 mysetup_pyp30 = (
69 '''
70 from pypower.api import runpf, ppoption
71 from pypower.api import case30
72 ppopt = ppoption(VERBOSE = 0, OUT_ALL = 0)
73 case30 = case30()
74 '''
75)
76
77 pyp_runtime30 = timeit.timeit(setup = mysetup_pyp30, stmt = 'ppr =

runpf(case30, ppopt)[0]', number = 100)/100
78
79
80 #The cases which are not available in pypower are converted
81 #to pypower-cases from pandapower by using the pandapower.converter
82 mysetup_pyp1354 = (
83 '''
84 from pypower.api import runpf, ppoption
85 import pandapower.converter as pc
86 import pandapower.networks as pn
87 ppopt = ppoption(VERBOSE = 0, OUT_ALL = 0)
88 case1354 = pc.to_ppc(pn.case1354pegase())
89 '''
90)
91
92 pyp_runtime1354 = timeit.timeit(setup = mysetup_pyp1354, stmt = 'ppr

= runpf(case1354, ppopt)[0]', number = 100)/100
93
94 mysetup_pyp2869 = (

148

95 '''
96 from pypower.api import runpf, ppoption
97 import pandapower.converter as pc
98 import pandapower.networks as pn
99 ppopt = ppoption(VERBOSE = 0, OUT_ALL = 0)

100 case2869 = pc.to_ppc(pn.case2869pegase())
101 '''
102)
103
104 pyp_runtime2869 = timeit.timeit(setup = mysetup_pyp2869, stmt ='ppr =

runpf(case2869, ppopt)[0]', number = 100)/100
105
106 mysetup_pyp9241 = (
107 '''
108 from pypower.api import runpf, ppoption
109 import pandapower.converter as pc
110 import pandapower.networks as pn
111 ppopt = ppoption(VERBOSE = 0, OUT_ALL = 0)
112 case9241 = pc.to_ppc(pn.case9241pegase())
113 '''
114)
115
116 pyp_runtime9241 = timeit.timeit(setup = mysetup_pyp9241, stmt ='ppr =

runpf(case9241, ppopt)[0]', number = 100)/100
117
118
119 #Measure the execution time of pandapower
120 mysetup_pp = (
121 '''
122 import pandapower as pp
123 import pandapower.networks as pn
124 net = pn.case14()
125 pp.runpp(net)
126 '''
127)
128
129 pp_runtime14 = timeit.timeit(setup = mysetup_pp +
130 '''
131 net = pn.case14()
132 ''',
133 stmt = 'pp.runpp(net)',
134 number = 100)/100
135
136 pp_runtime30 = timeit.timeit(setup = mysetup_pp +
137 '''
138 net = pn.case30()
139 ''',
140 stmt = 'pp.runpp(net)',
141 number = 100)/100
142

149

143 pp_runtime1354 = timeit.timeit(setup = mysetup_pp +
144 '''
145 net = pn.case1354pegase()
146 ''',
147 stmt = 'pp.runpp(net)',
148 number = 100)/100
149
150 pp_runtime2869 = timeit.timeit(setup = mysetup_pp +
151 '''
152 net = pn.case2869pegase()
153 ''',
154 stmt = 'pp.runpp(net)',
155 number = 100)/100
156
157 pp_runtime9241 = timeit.timeit(setup = mysetup_pp +
158 '''
159 net = pn.case9241pegase()
160 ''',
161 stmt = 'pp.runpp(net)',
162 number = 100)/100
163
164
165 #Print the result to screen
166 print('\nRuntimes on case14:')
167 print('Topflow:', tf_runtime14)
168 print('pandapower:', pp_runtime14)
169 print('pypower:', pyp_runtime14)
170
171 print('\nRuntimes on case30:')
172 print('Topflow:', tf_runtime30)
173 print('pandapower:', pp_runtime30)
174 print('pypower:', pyp_runtime30)
175
176 print('\nRuntime on case1354pegase:')
177 print('Topflow:', tf_runtime1354)
178 print('pandapower:', pp_runtime1354)
179 print('pypower:', pyp_runtime1354)
180
181 print('\nRuntime on case2869pegase:')
182 print('Topflow:', tf_runtime2869)
183 print('pandapower:', pp_runtime2869)
184 print('pypower:', pyp_runtime2869)
185
186 print('\nRuntime on case9241pegase:')
187 print('Topflow:', tf_runtime9241)
188 print('pandapower:', pp_runtime9241)
189 print('pypower:', pyp_runtime9241)

150

C.5 test_acsolve_integration.py

1 import sys
2 sys.path.append("..")
3 import topflow as tf
4 import topflow.acsolve_wrapper as ac
5 import numpy as np
6 from numpy.testing import assert_array_equal
7 from numpy.testing import assert_array_almost_equal
8 import pytest
9 import math

10
11 #This is a integration-test for acsolve
12
13 @pytest.fixture
14 def case3():
15 case3 = tf.Case()
16 #Initialize the Case-object with the data of case14
17 case3.icount == 0
18 case3.convergence == False
19 case3.sbase == 100
20 # Bus data
21 case3.nbuses = 3 # number of buses
22 case3.slackbusnr= 2 #the internal number of the slacbus
23 case3.numbus = np.array([0,1,2], dtype=np.int32)
24 case3.buscod = np.array([1, 1, 3], dtype=np.int32) # bus type.

1=PQ, 2=PV, 3=Slack, 4= disconnected
25 case3.pload = np.array([1.0, 0.5, 0.0], dtype=np.double) # pload

[nbuses]: active load vector (fixed)
26 case3.qload = np.array([0.5, 0.5, 0.0], dtype=np.double) # qload

[nbuses]: reactive load vector (fixed)
27 case3.pinj = np.zeros(case3.nbuses, dtype=np.double) #

calculated active power injection for all buses
28 case3.qinj = np.zeros(case3.nbuses, dtype=np.double) #

calculated reactive power injection for all buses
29 case3.vomag = np.ones(case3.nbuses, dtype=np.double) # voltage

magnetudes at all buses
30 case3.voang = np.zeros(case3.nbuses, dtype=np.double) # voltage

angles at all buses
31 case3.gs = np.ones(case3.nbuses)
32 case3.bs = np.ones(case3.nbuses)
33
34 # Generator data
35 case3.ngens = 1
36 case3.genbus = np.array([-1, -1, 0], dtype=np.int32) # genbus[

nbuses] if a generator: genbus[k]= generator nr. If not: genbus[k
]=-1

37 case3.vgbus = np.ones(case3.ngens, dtype=np.int32)
38 case3.pgen = np.array([0.0], dtype=np.double) # pgen[ngen]:

active power generated at generator nr

151

39 case3.qgen = np.array([0.0], dtype=np.double) # qgen[ngen]:
reactive power generated at generator nr

40 case3.qmax = np.array([9999])
41 case3.qmin = np.array([-999])
42
43 # Line data
44 case3.nlines = 3 # number of lines
45 case3.gii = np.array([5.17647059, 3.17647059, 6.0], dtype=np.

double) # real part of the diagonal element in the ybus
46 case3.bii = np.array([-12.70588235, -10.70588235, -14.0], dtype=

np.double) # imag part of the diagonal element in the ybus
47 case3.gij = np.array([1.17647059, 4.0, 2.0], dtype=np.double) #

real part of the off-diagonal element in the ybus
48 case3.bij = np.array([-4.70588235, -8.0, -6.0], dtype=np.double)

imag part of the off-diagonal element in the ybus
49 case3.gi = np.zeros(case3.nlines, dtype = np.double)
50 case3.bi = np.zeros(case3.nlines, dtype = np.double)
51 case3.gj = np.zeros(case3.nlines, dtype = np.double)
52 case3.bj = np.zeros(case3.nlines, dtype = np.double)
53 case3.xinv = np.array([1 / 0.2, 1 / 0.1, 1 / 0.15]) # inverse of

the line reactances
54 case3.ratio = np.array([1.0, 1.0, 1.0], dtype=np.double) #

transformer ratio for all the lines
55 case3.shift_angle = np.zeros(3) #shift angles of the transformers
56 case3.ifrom = np.array([0, 0, 1], dtype=np.int32) # from-bus for

all the lines
57 case3.ito = np.array([1, 2, 2], dtype=np.int32) # to-bus for all

the lines
58 case3.ibstat = np.array([True, True, True], dtype=np.bool) #

status for all the lines. True= in service
59
60 return case3
61
62 @pytest.fixture
63 def case14():
64 #Create a empty Case-object
65 case14 = tf.Case()
66
67 #Initialize the Case-object with the data of case14
68 case14.icount = 0
69 case14.convergence = False
70 case14.sbase = 100
71
72 #Bus data
73 case14.nbuses = 14
74 case14.slackbusnr = 0
75 case14.numbus = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14])
76 case14.buscod = np.array([3,2,2,1,1,2,1,2,1,1,1,1,1,1])
77 case14.basekv = np.zeros(14, dtype = np.double)
78 case14.gs = np.zeros(14, dtype = np.double)

152

79 case14.bs = np.array([0,0,0,0,0,0,0,0,0.19,0,0,0,0,0])
80 case14.area = np.ones(14, dtype = np.int32)
81 case14.zone = np.ones(14, dtype = np.int32)
82 case14.pload = np.array

([0,0.217,0.942,0.478,0.076,0.112,0,0,0.295,0.09,0.035,0.061,0.135,0.149])

83 case14.qload = np.array
([0,0.127,0.19,-0.039,0.016,0.075,0,0,0.166,0.058,0.018,0.016,0.058,0.05])

84 case14.vomag = np.array
([1.06,1.045,1.01,1.019,1.02,1.07,1.062,1.09,1.056,1.051,1.057,1.055,1.05,1.036])

85 case14.voang = np.array
([0,-4.98,-12.72,-10.33,-8.78,-14.22,-13.37,-13.36,-14.94,-15.1,-14.79,-15.07,-15.16,-16.04])
/180*math.pi

86 case14.pinj = np.zeros(case14.nbuses, dtype = np.double)
87 case14.qinj = np.zeros(case14.nbuses, dtype = np.double)
88 case14.mismloc = np.zeros(2, dtype = np.int32)
89
90 #Generator data
91 case14.ngens = 5
92 case14.genbus = np.array([0,1,2,-1,-1,3,-1,4,-1,-1,-1,-1,-1,-1])
93 case14.genstat = np.array([True,True,True,True,True])
94 case14.genbase = np.array([100,100,100,100,100])
95 case14.vgbus = np.array([1.06,1.045,1.01,1.07,1.09])
96 case14.pgen = np.array([2.324,0.40,0,0,0])
97 case14.qgen = np.array([-0.169,0.424,0.234,0.122,0.174])
98 case14.qmax = np.array([0.10,0.50,0.40,0.24,0.24])
99 case14.qmin = np.array([0,-0.40,0,-0.06,-0.06])

100 case14.pmax = np.array([3.324,1.40,1.00,1.00,1.00])
101 case14.pmin = np.zeros(5, dtype = np.double)
102
103 #Branch data
104 case14.nlines = 20
105 case14.ifrom = np.array

([0,0,1,1,1,2,3,3,3,4,5,5,5,6,6,8,8,9,11,12], dtype = np.int32)
106 case14.ito = np.array

([1,4,2,3,4,3,4,6,8,5,10,11,12,7,8,9,13,10,12,13], dtype = np.
int32)

107 case14.gij = np.array([4.9991316,1.02589745,1.13501919,
1.68603315, 1.70113967, 1.98597571, 6.84098066, 0.0, 0.0, 0.0,
1.95502856,

108 1.52596744, 3.0989274, 0.0, 0.0,
3.90204955, 1.42400549, 1.88088475, 2.48902459, 1.13699416])

109 case14.bij = np.array([-15.26308652, -4.23498368, -4.78186315,
-5.11583833, -5.1939274,-5.06881698, -21.57855398, -4.78194338,
-1.79797907,

110 -3.96793905, -4.09407434, -3.17596397,
-6.10275545, -5.67697985, -9.09008272, -10.36539413, -3.02905046,
-4.40294375,

153

111 -2.25197463, -2.31496348])
112 case14.xinv = 1/np.array

([0.05917,0.22304,0.19797,0.17632,0.17388,0.17103,0.04211,0.20912,0.55618,0.25202,0.1989,0.25581,0.13027,0.17615,0.11001,0.0845,0.27038,0.19207,0.19988,0.34802])

113 case14.b = np.array
([0.0528,0.0492,0.0438,0.034,0.0346,0.0128,0,0,0,0,0,0,0,0,0,0,0,0,0,0])

114 case14.gi = np.zeros(20, dtype = np.double)
115 case14.bi = np.zeros(20, dtype = np.double)
116 case14.gj = np.zeros(20, dtype = np.double)
117 case14.bj = np.zeros(20, dtype = np.double)
118 case14.ratio = np.array

([1,1,1,1,1,1,1,0.978,0.969,0.932,1,1,1,1,1,1,1,1,1,1])
119 case14.shift_angle = np.zeros(20, dtype = np.double)
120 case14.ibstat = np.array([True,True,True,True,True,True,True,True

,True,True,True,True,True,True,True,True,True,True,True,True])
121 case14.gii = np.array([6.02502906, 9.52132361, 3.1209949,

10.51298952, 9.56801778, 6.57992341, 0.0, 0.0, 5.32605504,
5.78293431, 3.83591332, 4.01499203, 6.72494615, 2.56099964])

122 case14.bii = np.array([-19.44707021, -30.2721154,-9.82238013,
-38.65417121, -35.53363946, -17.34073281,
-19.54900595,-5.67697985, -24.09250638, -14.76833788, -8.49701809,
-5.42793859, -10.66969355, -5.34401393])

123
124 return case14
125
126 def test_acsolve(case3, case14):
127
128 #Test case3
129 res3 = tf.loadflow(case3)
130 assert_array_almost_equal(res3.vomag, np.array([0.88496373,

0.88444577, 1.0]), 6)
131 assert_array_almost_equal(res3.voang, np.array([-0.0786143,

-0.0654881, 0.0]), 6)
132
133 #Test case14
134 for flat in [False, True]:
135 #Start with flat start or not; the result should be the same
136 res14 = tf.loadflow(case14, flat_start = flat)
137 assert_array_almost_equal(res14.vomag, np.array([1.06, 1.045,

1.01, 1.01767086, 1.01951386, 1.07, 1.06151954,
138 1.09 , 1.05593173,

1.05098463, 1.05690652, 1.05518856,
139 1.05038172,

1.03552995]),6)
140 assert_array_almost_equal(res14.voang, np.array([0.0,

-0.08696258, -0.22209489, -0.17999408, -0.15313263, -0.24820233,
141 -0.23316948,

-0.23316948, -0.26072638, -0.26349739, -0.25814505, -0.26311858,
142 -0.26452692,

154

-0.27983988]),6)

155

C.6 test_acsolve_unit.py

1
2 import sys
3 sys.path.append("..")
4 import topflow as tf
5 import topflow.acsolve_wrapper as ac
6 import numpy as np
7 from numpy.testing import assert_array_equal
8 from numpy.testing import assert_allclose
9 import pytest

10 import math
11
12 #This file provides the unit-tests of the sub-functions of acsolve
13
14 @pytest.fixture
15 def case3():
16 case3 = tf.Case()
17 case3.sbase = 100 #MVa base
18 # Bus data
19 case3.nbuses = 3 # number of buses
20 case3.slackbusnr= 2 #the internal number of the slacbus
21 case3.numbus = np.array([0,1,2], dtype=np.int32)
22 case3.buscod = np.array([1, 1, 3], dtype=np.int32) # bus type.

1=PQ, 2=PV, 3=Slack, 4= disconnected
23 case3.pload = np.array([1.0, 0.5, 0.0], dtype=np.double) # pload

[nbuses]: active load vector (fixed)
24 case3.qload = np.array([0.5, 0.5, 0.0], dtype=np.double) # qload

[nbuses]: reactive load vector (fixed)
25 case3.pinj = np.zeros(case3.nbuses, dtype=np.double) #

calculated active power injection for all buses
26 case3.qinj = np.zeros(case3.nbuses, dtype=np.double) #

calculated reactive power injection for all buses
27 case3.vomag = np.ones(case3.nbuses, dtype=np.double) # voltage

magnetudes at all buses
28 case3.voang = np.zeros(case3.nbuses, dtype=np.double) # voltage

angles at all buses
29
30 # Generator data
31 case3.genbus = np.array([-1, -1, 0], dtype=np.int32) # genbus[

nbuses] if a generator: genbus[k]= generator nr. If not: genbus[k
]=-1

32 case3.vgbus = -np.ones(case3.nbuses, dtype=np.int32)
33 case3.pgen = np.array([0.0], dtype=np.double) # pgen[ngen]:

active power generated at generator nr
34 case3.qgen = np.array([0.0], dtype=np.double) # qgen[ngen]:

reactive power generated at generator nr
35
36 # Line data
37 case3.nlines = 3 # number of lines

156

38 case3.gii = np.array([5.17647059, 3.17647059, 6.0], dtype=np.
double) # real part of the diagonal element in the ybus

39 case3.bii = np.array([-12.70588235, -10.70588235, -14.0], dtype=
np.double) # imag part of the diagonal element in the ybus

40 case3.gij = np.array([1.17647059, 4.0, 2.0], dtype=np.double) #
real part of the off-diagonal element in the ybus

41 case3.bij = np.array([-4.70588235, -8.0, -6.0], dtype=np.double)
imag part of the off-diagonal element in the ybus

42 case3.xinv = np.array([1 / 0.2, 1 / 0.1, 1 / 0.15]) # inverse of
the line reactances

43 case3.ratio = np.array([1.0, 1.0, 1.0], dtype=np.double) #
transformer ratio for all the lines

44 case3.shift_angle = np.zeros(3) #shift angles of the transformers
45 case3.ifrom = np.array([0, 0, 1], dtype=np.int32) # from-bus for

all the lines
46 case3.ito = np.array([1, 2, 2], dtype=np.int32) # to-bus for all

the lines
47 case3.ibstat = np.array([True, True, True], dtype=np.bool) #

status for all the lines. True= in service
48 return case3
49
50 def test_flatstart():
51 nbuses = 4
52 buscod = np.array([1,1,3,2])
53 vomag = np.array([1.01, 1.02, 1.03, 1.04])
54 voang = np.array([0.1, 0.2, 0.3, 0.4])
55 vomag_ref = np.array([1.01, 1.02, 1.03, 1.04])
56 voang_ref = np.array([0.1, 0.2, 0.3, 0.4])
57
58 for flat_start in [False, True]:
59
60 ac.flatstart(nbuses, buscod, vomag, voang, flat_start)
61
62 if(flat_start):
63 assert_allclose(vomag,np.array([1.00, 1.00, 1.03, 1.04]))
64 assert_allclose(voang,np.array([0.0, 0.0, 0.3, 0.0]))
65 else:
66 assert_allclose(vomag, vomag_ref)
67 assert_allclose(voang, voang_ref)
68
69
70 def test_netinj(case3):
71
72 #The NR-solution of case3:
73 case3.vomag = np.array([0.88496373, 0.88444577, 1.0])
74 case3.voang = np.array([-0.0786143, -0.0654881, 0.0])
75 for pqv in [1,2,3]:
76 #set initial values for pinj and qinj as zero to check the

operation of pqv:
77 case3.pinj = np.zeros(case3.nbuses)

157

78 case3.qinj = np.zeros(case3.nbuses)
79 pinj_init = np.zeros(case3.nbuses)
80 qinj_init = np.zeros(case3.nbuses)
81
82 ac.netinj(pqv,case3.nbuses, case3.nlines, case3.pinj, case3.

qinj, case3.vomag, case3.voang, case3.gii, case3.bii, case3.gij,
case3.bij, case3.ratio, case3.shift_angle, case3.ifrom, case3.ito,
case3.ibstat)

83 #The missmatch between calculated injections and known load
should be smaller than 10^-8

84
85 if(pqv==1):
86 assert_allclose(case3.pinj[:2], -1*case3.pload[:2])
87 assert_allclose(case3.qinj, qinj_init)
88 elif(pqv == 2):
89 assert_allclose(case3.pinj, pinj_init)
90 assert_allclose(case3.qinj[:2], -1*case3.qload[:2])
91 else:
92 assert_allclose(case3.pinj[:2], -1*case3.pload[:2])
93 assert_allclose(case3.qinj[:2], -1*case3.qload[:2])
94
95
96 def test_missmatch():
97 #Set up the test case
98 nbuses = 4
99 buscod = np.array([1,1,3,2])

100 genbus = np.array([-1,-1,0,1])
101 pgen = np.array([0,0.010])
102 qgen = np.array([0,-0.010])
103 pload = np.array([0.010, 0.020, 0.0, 0.0])
104 qload = np.array([0.010, 0.020, 0.0, 0.0])
105 alfa = beta = np.zeros(4)
106 qdelta = pdelta = 0.0
107 #net injections:
108 pinj = np.array([-0.010, 0.0, 0.100, 0.005])
109 qinj = np.array([0.0,-0.020, 0.100, -0.010])
110
111 #the mismatches overwrites the net injections in the lists pinj

and qinj.
112 #The exceptions are PV-buses in qinj and the slack-bus in both

pinj and qinj. These posisitons keeps the net injections
113 # The mismatches should be xgen - xload - xinj for PV-buses and -

xload - xinj for PQ buses.
114 #Therefore, expected mismatches are:
115 pmism = np.array([0.0,-0.020,0.100,0.005])
116 qmism = np.array([-0.010,0.0,0.100,-0.010])
117
118 #Test all variants of pqv:
119 for pqv in [1,2,3]:
120 #reset xinj values, and make copies

158

121 pinj = np.array([-0.010, 0.0, 0.100, 0.005])
122 qinj = np.array([0.0,-0.020, 0.100, -0.010])
123 pinj_init = np.array([-0.010, 0.0, 0.100, 0.005])
124 qinj_init = np.array([0.0,-0.020, 0.100, -0.010])
125
126 #Run the mismat function
127 ac.mismat(pqv, nbuses, genbus, buscod, pgen, qgen, pload,

qload, pinj, qinj, alfa, beta, pdelta, qdelta)
128
129 #Excpected results:
130 if(pqv == 1):
131 assert_allclose(pinj, pmism)
132 assert_allclose(qinj, qinj_init)
133 elif(pqv == 2):
134 assert_allclose(pinj, pinj_init)
135 assert_allclose(qinj, qmism)
136 else:
137 assert_allclose(pinj, pmism)
138 assert_allclose(qinj, qmism)
139
140 def test_maxmism():
141 nbuses = 4
142 buscod = np.array([2,3,1,-2])
143 mismloc = np.array([0,0])
144 pinj = np.array([0.0,0.150,-0.100,0.010])
145 qinj = np.array([0.150, 0.0, 0.010, -0.100])
146
147 for pqv in [1,2,3]:
148 mismloc = np.array([0,0])
149 ac.maxmism(pqv, nbuses, buscod, mismloc, pinj, qinj)
150 if(pqv == 1):
151 assert_array_equal(mismloc, np.array([2,0]))
152 elif(pqv == 2):
153 assert_array_equal(mismloc, np.array([0,3]))
154 else:
155 assert_allclose(mismloc, np.array([2,3]))
156
157 def test_enforce_qlim():
158 nbuses = 6
159 qmism = 1 #worst missmatch at 1
160 buscod = np.array([3,1,-2,-2,2,2])
161 genbus = np.array([0,-1,1,2,3,4])
162 numbus = np.array([0,1,2,3,4,5])
163 pinj = np.array([1.1,0.2,0.3,0.0,0,0.1])
164 qinj = np.array([0,0.3,0.1,0.2,0,0]) #missmatches
165 qgen = np.array([1.4,-0.2,0.5,0.9,-0.3])
166 qmax = np.array([10, 0.5, 0.5, 0.5, 0.5])
167 qmin = np.array([-0.2,-0.2,-0.2,-0.2,-0.2])
168 vomag = np.array([1.02,1.0, 0.92, 1.01, 1.03, 1.04])
169 vgbus = np.array([1.02, 0.98, 0.95, 1.03, 1.04])

159

170 #Can see that:
171 #bus 2 is var-limited on the lower q-limit
172 #bus 3 is var-limited on the upper q-limit
173 #vomag[2]<vgbus[genbus[2]] and vomag[3]>vgbus[genbus[3]]
174 #therefor both 2 and 3 should be put back as PV-buses
175 #bus 4 violates the upper limit by 0.4
176 #bus 5 violates the lover limit by -0.1
177 #Therefor bus 4 and 5 should be put inn as var-limited buses
178 #the new worst mismatch should be 0.4 at bus 4 after the function

call
179
180 qmism = ac.enforce_qlim(False, nbuses,qmism,buscod,genbus,numbus,

pinj,qinj,qgen,qmin,qmax,vomag,vgbus)
181
182 assert qmism == 4
183 assert_allclose(buscod, np.array([3,1,2,2,-2,-2]))
184 assert qgen[genbus[4]] == qmax[genbus[4]]
185 assert qgen[genbus[5]] == qmin[genbus[5]]
186 assert qinj[2] == 0.0
187 assert qinj[3] == 0.0
188
189 def test_bujac(case3):
190 melem = 5 * (case3.nbuses + 2 * case3.nlines) #allocate enough

space for the sparse matrix
191 jacbi = np.zeros((melem), dtype=np.double)
192 jcol = -np.ones((melem), dtype=np.int32)
193 ipv = -np.ones((melem), dtype=np.int32)
194
195 ac.bujac(
196 case3.nbuses,
197 case3.nlines,
198 jacbi,
199 case3.vomag,
200 case3.voang,
201 case3.gii,
202 case3.bii,
203 case3.gij,
204 case3.bij,
205 case3.ratio,
206 jcol,
207 ipv,
208 case3.ifrom,
209 case3.ito,
210 case3.ibstat,
211)
212 assert_allclose(jacbi, np.array([12.70588235, 10.70588235, 14.0,

12.70588235, 10.70588235, 14.0,
213 5.17647059, 3.17647059, 6.0,

-4.70588235, -4.70588235, -1.17647059,
214 -1.17647059, 1.17647059,

160

-5.17647059, 1.17647059, -3.17647059, -4.70588235,
215 -4.70588235,-8.0,-8.0, -4.0,

-4.0, 4.0,4.0, -6.0, -8.0, -8.0, -6.0, -6.0,
216 -2.0, -2.0, 2.0, 2.0, -6.0,

-6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]))
217
218 assert_allclose(jcol, np.array([0, 1, 2, 3, 4, 5, 3, 4, 5, 1, 0,

4, 3, 1, 0, 0, 1, 4, 3, 2, 0, 5, 3, 2,
219 0, 2, 5, 3, 2, 1, 5, 4, 2, 1, 5,

4, -1, -1, -1, -1, -1, -1, -1, -1, -1]))
220
221 assert_allclose(ipv, np.array([6, 7 , 8, 13 , 15, 24, 9, 10, 20,

11, 12, 19, 28, 14, 17, 16, 18, 23, 32, 21, 22, -1, 29, 26,
222 25, 27, -1, 33, 30, 31, -1, -1, 34,

35, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]))
223
224 def test_jacsize():
225 jcol = np.array([1,2,3,4,5,6,7,-1,-1,-1,-1])
226 jacsize = ac.jacsize(jcol)
227 assert jacsize == 7
228
229 def test_coo_conv(case3):
230
231 melem = 5 * (case3.nbuses + 2 * case3.nlines)
232 buscod = np.array([1,1,3])
233 jacbi = np.array([12.70588235, 10.70588235, 14.0, 12.70588235,

10.70588235, 14.0,
234 5.17647059, 3.17647059, 6.0,

-4.70588235, -4.70588235, -1.17647059,
235 -1.17647059, 1.17647059,

-5.17647059, 1.17647059, -3.17647059, -4.70588235,
236 -4.70588235,-8.0,-8.0, -4.0,

-4.0, 4.0,4.0, -6.0, -8.0, -8.0, -6.0, -6.0,
237 -2.0, -2.0, 2.0, 2.0, -6.0,

-6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
238 ipv = np.array([6, 7 , 8, 13 , 15, 24, 9, 10, 20, 11, 12, 19,

28, 14, 17, 16, 18, 23, 32, 21, 22, -1, 29, 26,
239 25, 27, -1, 33, 30, 31, -1, -1, 34,

35, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])
240 jcol = np.array([0, 1, 2, 3, 4, 5, 3, 4, 5, 1, 0, 4, 3, 1, 0, 0,

1, 4, 3, 2, 0, 5, 3, 2,
241 0, 2, 5, 3, 2, 1, 5, 4, 2, 1, 5,

4, -1, -1, -1, -1, -1, -1, -1, -1, -1])
242 isa = -np.ones(melem, dtype = np.int32)
243 row = np.zeros((melem), dtype = np.int32)
244 col = np.zeros((melem), dtype = np.int32)
245 data = np.zeros((melem), dtype = np.double)
246
247 ac.coo_conv(case3.nbuses, case3.ngens, case3.buscod, isa, ipv,

row, jcol, col, jacbi, data)

161

248
249 assert_array_equal(row, np.array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2,

2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
250 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0]))
251
252 assert_array_equal(col, np.array([0, 2, 1, 3, 1, 3, 0, 2, 2, 1,

0, 3, 3, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
253 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0]))
254
255 assert_allclose(data, np.array([12.70588235, 5.17647059,

-4.70588235, -1.17647059, 10.70588235, 3.17647059,
256 -4.70588235, -1.17647059,

12.70588235, 1.17647059, -5.17647059, -4.70588235,
257 10.70588235, 1.17647059,

-3.17647059, -4.70588235, 0.0, 0.0, 0.0,
258 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
259 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]))
260 def test_set_rhs():
261 nbuses = 4
262 ngens = 3 #number of generators (var-limited included)
263 nlimgens = 1 #number of limited generators
264 buscod = np.array([1,2,3,-2])
265 vomag = np.array([1.01, 1.02, 1.03, 1.04])
266 pinj = np.array([0.1, 0.2, 0.0, 0.4]) #mismatches
267 qinj = np.array([-0.1, 0.0, 0.0, -0.4]) #mismatches
268
269 for pqv in [1,2,3]:
270
271 if(pqv == 1):
272 rhs = np.zeros(nbuses)
273 ac.set_rhs(pqv, nbuses, buscod, vomag, pinj, qinj, rhs)
274 assert_allclose(rhs, np.array([0.1/1.01, 0.2/1.02, 0.0,

0.4/1.04]))
275 elif(pqv == 2):
276 rhs = np.zeros(nbuses)
277 ac.set_rhs(pqv, nbuses, buscod, vomag, pinj, qinj, rhs)
278 assert_allclose(rhs, np.array([-0.1/1.01, 0.0, 0.0,

-0.4/1.04]))
279 else:
280 rhs = np.zeros(2*nbuses-ngens+nlimgens-1)
281 ac.set_rhs(pqv, nbuses, buscod, vomag, pinj, qinj, rhs)
282 assert_allclose(rhs, np.array([0.1, 0.2, 0.4, -0.1,

-0.4]))
283
284 def test_update_voltages():
285 nbuses = 4

162

286 ngens = 3 #number of generators (var-limited included)
287 nlimgens = 1 #number of limited generators
288 buscod = np.array([1,2,3,-2])
289 vomag_init = np.array([1.01, 1.02, 1.03, 1.04])
290 voang_init = np.array([0.1, 0.2, 0.3, 0.4])
291
292 for pqv in [1,2,3]:
293 vomag = np.array([1.01, 1.02, 1.03, 1.04])
294 voang = np.array([0.1, 0.2, 0.3, 0.4])
295
296 if(pqv == 1):
297 #the correction vector for the FDLF should be of

dimension: nbuses
298 #all buses are included (also slack and generators)
299 correction = np.array([0.1,0.2,0.3, 0.4])
300 ac.update_voltages(pqv, nbuses, buscod, vomag, voang,

correction)
301 assert_allclose(vomag, vomag_init)
302 assert_allclose(voang, np.array([0.2, 0.4, 0.3, 0.8]))
303 elif(pqv == 2):
304 #the correction vector for the FDLF should be of

dimension: nbuses
305 #all buses are included (also slack and generators)
306 correction = np.array([0.01,0.02,0.03, 0.04])
307 ac.update_voltages(pqv, nbuses, buscod, vomag, voang,

correction)
308 assert_allclose(vomag, np.array([1.02, 1.02, 1.03, 1.08])

)
309 assert_allclose(voang, voang_init)
310 else:
311 #the correction vector for the NR should be of dimension

2*nbuses-ngens+nlimgens(var-limited generators)
312 #slack bus is not part of correction-vector, neither is

generors for the magnitude-corrections)
313 correction = np.array([0.1, 0.2, 0.4, 0.01, 0.04])
314 ac.update_voltages(pqv, nbuses, buscod, vomag, voang,

correction)
315 assert_allclose(vomag, np.array([1.02, 1.02, 1.03, 1.08])

)
316 assert_allclose(voang, np.array([0.2, 0.4, 0.3, 0.8]))

163

C.7 test_case.py

1
2 import sys
3
4 sys.path.append("..")
5
6 import math
7 import topflow as tf
8 import numpy as np
9 from numpy.testing import assert_array_equal

10 from numpy.testing import assert_allclose
11
12 #This file contains the unit-tests of the Case-calss
13
14 def test_loadxl():
15 case14 = tf.example_case('case14')
16 assert case14.icount == 0
17 assert case14.convergence == False
18 assert case14.sbase == 100
19
20 #Bus data
21 assert case14.nbuses == 14
22 assert case14.slackbusnr == 0
23 assert_array_equal(case14.numbus, np.array

([1,2,3,4,5,6,7,8,9,10,11,12,13,14]))
24 assert_array_equal(case14.buscod , np.array

([3,2,2,1,1,2,1,2,1,1,1,1,1,1]))
25 assert_array_equal(case14.basekv , np.zeros(14))
26 assert_array_equal(case14.gs , np.zeros(14))
27 assert_array_equal(case14.bs , np.array

([0,0,0,0,0,0,0,0,0.19,0,0,0,0,0]))
28 assert_array_equal(case14.area , np.ones(14, dtype = np.int32))
29 assert_allclose(case14.zone , np.ones(14, dtype = np.int32))
30 assert_allclose(case14.pload , np.array

([0,0.217,0.942,0.478,0.076,0.112,0,0,0.295,0.09,0.035,0.061,0.135,0.149])
)

31 assert_allclose(case14.qload , np.array
([0,0.127,0.19,-0.039,0.016,0.075,0,0,0.166,0.058,0.018,0.016,0.058,0.05])
)

32 assert_allclose(case14.vomag , np.array([1.06 , 1.045 ,
1.01 , 1.01767085, 1.01951386,

33 1.07 , 1.06151953,
1.09 , 1.05593172, 1.05098463,

34 1.05690652, 1.05518856,
1.05038171, 1.03552995]))

35
36 assert_allclose(case14.voang , np.array([0. ,

-0.08696259, -0.22209489, -0.17999408, -0.15313264,
37 -0.24820234, -0.23316948,

164

-0.23316948, -0.26072638, -0.26349739,
38 -0.25814505, -0.26311859,

-0.26452692, -0.27983989]))
39
40 #Generator data
41 assert case14.ngens == 5
42 assert_array_equal(case14.genbus , np.array

([0,1,2,-1,-1,3,-1,4,-1,-1,-1,-1,-1,-1]))
43 assert_array_equal(case14.genstat , np.array([True,True,True,True

,True]))
44 assert_array_equal(case14.genbase , np.array

([100,100,100,100,100]))
45 assert_allclose(case14.vgbus , np.array

([1.06,1.045,1.01,1.07,1.09]))
46 assert_allclose(case14.pgen , np.array([2.324,0.40,0,0,0]))
47 assert_allclose(case14.qgen , np.array

([-0.169,0.424,0.234,0.122,0.174]))
48 assert_array_equal(case14.qmax , np.array

([0.10,0.50,0.40,0.24,0.24]))
49 assert_array_equal(case14.qmin , np.array

([0,-0.40,0,-0.06,-0.06,]))
50 assert_allclose(case14.pmax , np.array

([3.324,1.40,1.00,1.00,1.00]))
51 assert_array_equal(case14.pmin , np.zeros(5))
52
53 #Branch data
54 case14.nlines = 20
55 assert_array_equal(case14.ifrom , np.array

([0,0,1,1,1,2,3,3,3,4,5,5,5,6,6,8,8,9,11,12]))
56 assert_array_equal(case14.ito , np.array

([1,4,2,3,4,3,4,6,8,5,10,11,12,7,8,9,13,10,12,13]))
57 assert_allclose(case14.xinv , 1/np.array

([0.05917,0.22304,0.19797,0.17632,0.17388,0.17103,0.04211,0.20912,0.55618,0.25202,0.1989,0.25581,0.13027,0.17615,0.11001,0.0845,0.27038,0.19207,0.19988,0.34802])
)

58 assert_allclose(case14.b , np.array
([0.0528,0.0492,0.0438,0.034,0.0346,0.0128,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
)

59 assert_array_equal(case14.gi , np.zeros(20))
60 assert_array_equal(case14.bi , np.zeros(20))
61 assert_array_equal(case14.gj , np.zeros(20))
62 assert_array_equal(case14.bj , np.zeros(20))
63 assert_allclose(case14.ratio , np.array

([1,1,1,1,1,1,1,0.978,0.969,0.932,1,1,1,1,1,1,1,1,1,1]))
64 assert_array_equal(case14.shift_angle , np.zeros(20))
65 assert_array_equal(case14.ibstat , np.array([True,True,True,True,

True,True,True,True,True,True,True,True,True,True,True,True,True,
True,True,True]))

165

D setup.py

1 import os
2 from pathlib import Path
3 from setuptools import setup, find_packages
4 #This is the setup-file of Topflow
5 #It specifies dependencies,
6
7 setup(
8 name="topflow",
9 version="0.0.1",

10 packages=find_packages('topflow'),
11
12 # Project uses the following python packages, so ensure that

these get
13 # installed or upgraded on the target machine:
14 install_requires=["numpy", "scipy", "scons", "openpyxl"],
15
16
17 # metadata to display on PyPI
18 author="aasmunsa",
19 author_email="aa.selen@hotmail.com",
20 description="Load flow",
21
22)
23
24 #dir_path = str(Path(__file__).parent.absolute())
25 #os.chdir(dir_path + "/topflow")
26 #os.system('scons')

166

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 P
ow

er
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Åsmund Sælen

Topflow, a Toolbox for Specialized
Power System Analysis

Master’s thesis in Energy and Environmental Engineering

Supervisor: Olav Bjarte Fosso

July 2020

	Abstract
	Samandrag
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Previous work
	Scope and problem formulation

	Theory
	Programming language
	Fortran
	C
	Python

	C-extensions
	Shared libraries
	Wrapper-functions

	Visual Studio Code
	Black
	Power system analysis
	Fundamental electrical equations
	Buses
	Transmission lines
	Transformers
	Shunt Element
	The problem formulation
	Newton Rapshon load flow
	Fast-decoupled load-Flow
	Reactive power limitation

	Sparse matrices
	Coordinated list (COO-format)
	Compressed sparse formats (CSC- and CSR-format)

	Topflow user guide
	System requirements
	Installation
	Running load-flows
	Input Data
	Initializing a Case
	Solving the Case
	Accessing the Results
	Settings

	Method
	The file structure
	User interface
	Reliability
	Automated tests
	Comparison tests

	The design of the Python-C interface
	Optimiziation
	cProfile
	LineProfiler
	Timeit
	Profiling acsolve

	Approach to work
	Theoretical research and skill development
	Master thesis

	Implementation
	Installation test
	The Case-class
	Printing output to the screen
	Accessing the parameters with "get"
	Loading and saving data
	External and internal bus-numbers

	The Settings-class
	Example cases
	The loadflow-function
	Acsolve
	Decsolve

	Reliability and performance
	Result and discussion of the automated tests
	Comparison-test of acsolve
	Comparison of decsolve
	Conclusion on the reliability of Topflow
	Performance

	Conclusion
	Bibliography
	Appendix
	Fast-decoupled load-flow versions
	Topflow
	__init__.py
	acsolve.py
	acsolve_wrapper.py
	bmatrix.c
	case.py
	coo_conv.c
	decsolve_wrapper.py
	decsolve.py
	enforce_qlim.c
	flatstart.c
	jacobi.c
	jacobi.h
	loadlflow.py
	maxism.c
	mismat.c
	netinj.c
	sConstruct.py
	select_ver.c
	set_rhs.c
	settings.py
	topflow.h
	update_voltages.py
	zerosp.c

	Tests
	pandapower_delay.py
	reliability_acsolve.py
	reliability_decsolve.py
	speed_acsolve.py
	test_acsolve_integration.py
	test_acsolve_unit.py
	test_case.py

	setup.py

