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Abstract
With the modernization of the power grid, smart solutions for effective and secure
system planning and operation are essential. Traditional power system optimiza-
tion techniques are being revisited and becoming relevant for new applications.
Security-Constrained Optimal Power Flow (SCOPF) is an extension of the Opti-
mal Power Flow (OPF) problem. The objective of SCOPF is usually to find the
lowest cost dispatch of power that satisfy all system constraints, now, and dur-
ing a defined set of likely contingencies, such as line- or generator outages. The
majority existing SCOPF software either rely on a DC approximation, which is un-
suitable especially for distribution grids, is not freely available, or don’t consider
post-contingency rescheduling. The objective of this thesis is to identify a solution
method for the nonlinear SCOPF problem and make a prototype implementation
in the open-source programming language Python.

Based on a selection of available literature, the basics of the SCOPF prob-
lem are laid out and a solution approach is identified and presented. The OPF is
solved by Sequential Linear Programming, utilizing a Trust Region Method. With
this approach, the original nonlinear problem is iteratively linearized around the
current solution and solved by Linear Programming. The Trust Region method
adjusts the “window” for which the linearizations are assumed to be valid based
on the accuracy of the previous iteration. To solve the SCOPF problem, where
contingency constraints are included, Benders Decomposition is employed. That
involves dividing the problem into a base-case master problem and a set of slave
subproblems for each considered contingency. These are also solved iteratively,
with infeasible subproblems generating a linear constraint for the master problem,
known as a Bender’s Cut. The algorithm is designed to consider both preventive
security and corrective security.

The program is tested and demonstrated with two illustrative systems with
some numerical examples. The proposed OPF algorithm performs well on the
6-bus example system, where convergence is achieved in 9 iterations with a cost
reduction of 5.45 % compared to the initial “guess”. The SCOPF algorithm is
demonstrated on an example 12-bus system. Preventive and corrective security
result in a cost increase of 1.25 % and 0.41 %, respectively, compared to the ba-
sic OPF solution. Tests of the considered contingencies reveal that the solutions
hold, but that the corrective solution can be inaccurate for larger allowed corrective
rescheduling. It’s concluded that the methods employed here for solving SCOPF
problems show great promise, and with further work can become useful tools in
the planning and operation of future distribution grids.
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Sammendrag
Når kraftnettet nå moderniseres, trengs det smarte løsninger for effektiv og sikker
planlegging og drift av systemene. Tradisjonelle optimeringsteknikker får fornyet
oppmerksomhet siden de nå blir relevante i nye anvendelser. ”Security-Constrained
Optimal Power Flow” (SCOPF) er en utvidelse av optimal lastflyt (OPF). Hensik-
ten med SCOPF er vanligvis å finne den mest kostnadseffektive fordelingen av
kraftproduksjon i et system, samtidig som alle begrensninger overholdes, både
nå og under en rekke eventualiteter, som utfall av enkelte linjer eller generatorer.
Brorparten av eksisterende SCOPF programvare lener seg enten på DC tilnær-
minger, som ikke egner seg for distribusjonsnett, er ikke åpent tilgjengelig, eller
tar ikke hensyn til muligheten for korrigerende handlinger ved inntrufne eventu-
aliteter.

Med utgangspunkt i et utvalg tilgjengelig litteratur, et grunnlag for forståelse
og løsning av SCOPF problemet presenteres, og en spesifikk løsningsstrategi iden-
tifiseres og legges fram. Optimal lastflyt-problemet løses ved sekvensiell lineær
programmering, inkludert en tillitsregion-metode. Med denne tilnærmingen lin-
eariseres problemet rundt en nåværende løsning og løses iterativt med lineær pro-
grammering. Tillitsregion-metoden justerer området hvor lineariseringen er antatt
å være gyldig med utgangspunkt i nøyaktigheten av forrige iterasjons løsning. For
å løse SCOPF-problemet, hvor begrensninger som følge av eventualiteter også må
tas med, brukes Benders dekomposisjon. Det involverer å dekomponere problemet
til et masterproblem og en rekke underproblemer for hver eventualitet. Disse løses
også iterativt, og fra underproblemer hvor det oppdages overskridelser genereres
det lineære begrensinger som legges til masterproblemet. Den presenterte algorit-
men er designet til å kunne vurdere både forebyggende sikkerhet og korrigerende
sikkerhet.

Programmet testes og demonstreres på to illustrerende systemer med noen nu-
meriske eksempler. Den foreslåtte optimal lastflyt-algoritmen presterer bra på
eksempelsystemet med 6 samleskinner. Her kreves 9 iterasjoner, og løsningen
gir en kostnadsreduksjon på 5,45 % sammenlignet med utgangspunktet. SCOPF-
algoritmen demonstreres på et eksempelsystem med 12 samleskinner. Forebyggende
og korrigerende sikkerhet resulterer i en kostnadsøkning på henholdsvis 1,25 %
og 0.41 % sammenlignet med standard optimal lastflytløsning. Tester av de vur-
derte eventualitetene viser at løsningene holder, men at løsningen ved korrigerende
sikkerhet kan være unøyaktig hvis større korrigerende handlinger tillates. Det kon-
kluderes med at de brukte metodene virker lovende, og med videre arbeid kan bli
nyttige verktøy i planlegging og drift av fremtidens distribusjonsnett.
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Chapter 1
Introduction

1.1 Background and Motivation

Modern society relies on secure access to electrical energy and power, and this de-
pendency is increasing as we move towards a Low Carbon Society. Rapid changes
in how we produce and consume electricity set new demands for the power grid.
Distributed Generation (DG) from Renewable Energy Sources (RES) is increasing,
and the electrification of sectors such as transport is changing the consumption pat-
terns. To meet these demands, large investments and incorporation of new tech-
nology are needed. Estimates suggest that investments in the Norwegian power
grid will amount to 135 billion NOK in the period 2018 to 2027 [1]. It’s there-
fore paramount to secure efficiency in every layer of power system planning and
operation while maintaining high system security.

In the last decades, the world has seen tremendous technological advancements
driven by the expanding use of information and communication technology. The
power grid, however, has been lagging behind. This is however about to change,
as measures are being taken to move in the direction of Smart Grids (SG). The
term refers to the modernisation of the power grid, including the integration of
new technologies such as dispersed generation, dispatchable loads, communica-
tion systems and energy storage to efficiently deliver sustainable, economic and
secure electricity [2]. A part of this is the division of distribution grids into smaller
controllable entities known as microgrids [3]. In light of this development, tra-
ditional optimisation techniques have recently received increased attention in the
research community. They must evolve in order to meet the requirements of new
demands.

Security-Constrained Optimal Power Flow (SCOPF) is an extension of the Op-
timal Power Flow (OPF) problem [4], which is one of the most well-researched and
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Chapter 1. Introduction

practically important sub-fields of constrained nonlinear optimisation [5]. A solu-
tion to the OPF problem finds the optimal operating state of a power system given
a chosen objective while meeting all current system constraints. It’s most defining
feature is the inclusion of the Power Flow (PF) equations as equality constraints
[5]. The problem was first introduced by Carpentier in 1962 [6] and has since been
extensively covered in the literature. About a decade later, the extension known
as SCOPF was presented [7]. This formulation also includes constraints on the
pre-contingency operation, considering system operating feasibility during a set of
postulated contingencies [4]. The goal is normally to find the lowest cost operating
state of the system while maintaining an n-1 security level. In 1987, the authors
of [8] described a mathematical framework for also taking into account the system
corrective capabilities.

While there exist several strategies for solving the SCOPF problem, it’s gener-
ally considered a non-linear, non-convex, large-scale, optimisation problem, with
continuous and discrete variables, placing it in the category of mixed-integer non-
linear programming (MINLP) [4]. The main challenge in an optimization perspec-
tive is the handling of the constraints. In practical applications, such as electricity
pricing in some markets, an approximation known as DC SCOPF are used [4].
These methods usually make use of Linear Programming (LP) or Quadratic Pro-
gramming (QP), which great advantage is the easy handling of constraints and
wide availability. The complexity of the original problem has given such ap-
proaches great appeal, and it remains the standard form usually found in textbook
examples such as in [9]. However, for the SCOPF solution to be reliable, especially
in distribution grids, it’s insufficient to use a purely linear system model. Over the
years, a great number of nonlinear optimization methods have been proposed and
used for solving OPF and SCOPF problems, including gradient methods [10], [7],
newton type methods [11], sequential linear programming [12], [13], interior point
methods[14], [15], and more recently, convex relaxation type methods [16], [17].
The immensity of the OPF literature and different approaches has also led to sev-
eral state of the art surveys being published. The current state of the art SCOPF
formulations and challenges are for instance reviewed in [4] and [18].

With the development of SG’s, including the introduction of microgrids, it’s
necessary to develop smart algorithms for optimal and secure operation of the
power system also in lower levels of the transmission and distribution network
hierarchy. Traditional uses of SCOPF is typically related to higher-level transmis-
sion networks and large power plants. For those wanting to implement SCOPF in
their system, it’s a challenge that the available software is often commercial and
difficult to customise. Much is Matlab-based, and as several companies, including
Transmission- and Distribution Grid Operators (TSO and DSO), are transitioning
towards more python-based software, developing a SCOPF solver in this environ-
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1.2 Objective

ment is desirable. This is an area where a lot of work is required, but a good
starting point is to demonstrate how a basic non-linear SCOPF algorithm can be
formulated and implemented in Python, only using freely available software.

1.2 Objective

The objective of this thesis is to identify a solution strategy to the non-linear
SCOPF problem that can apply to distribution grids, make a prototype implemen-
tation in Python, and demonstrate it on an example system. The program should
handle multiple contingency constraints, and should consider both ”preventive se-
curity” and ”corrective security”. It should take an object-oriented design, and
be general in the sense that it should handle different, though simplified, system
topologies. Success factors and possible challenges in a generalized implementa-
tion ought to be discussed. The work should be a building block in the toolbox for
planning and operation of microgrids.

1.3 Structure of Thesis

Chapter 1 - Introduction, provides the reader with the work’s motivational back-
ground and places it in a scientific context. The objective of the thesis is also
clearly stated here.

Chapter 2 - Basic Theory, gives a presentation of some fundamental concepts that
are needed for analysing and solving the problem.

Chapter 3 - Problem Formulation and Solution Method, formulates the problem
in mathematical terms and explains the solution approach.

Chapter 4 - Numerical Examples, presents two numerical examples that test and
demonstrate the developed program.

Chapter 5 - Discussion, contains a general discussion on the chosen methods and
the performance of the program, focusing on success factors and possible chal-
lenges.

Chapter 6 - Conclusion and Further Work, concludes the thesis and provides sug-
gestions for further work.

3
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Chapter 2
Basic Theory

This chapter explains some important concepts for the solution of the SCOPF prob-
lem. It should serve as an orientation and lay the necessary foundation for the
solution method presented in chapter 3.

2.1 Power Flow Analysis

In this section, some important concepts of Power Flow (PF) Analysis, or Load
Flow (LF), is presented. A PF study is essentially the calculation of the voltage
magnitudes and angles of all buses in a power system under balanced, three-phase,
steady-state conditions, and it’s performed for various reasons. The fact that it’s
a steady-state method means that the solution describes the system in a single
instance, and therefore only the static conditions are important. As its input, it
takes the load and generation data, and the system topology in the form of a single
line diagram, including the line impedances. As a by-product of the established
voltage magnitudes and angles, real and reactive power quantities, like branch
flows or net bus injections, can be obtained. [19]

2.1.1 Power System Representation

An electrical power system may be modelled as a network consisting of buses
(nodes), interconnected by branches, representing for instance transmission lines,
cables or transformers. The buses, which represent physical points of intercon-
nection, is referenced by a node index i ∈ N . Branches, on the other hand, are
referenced as arcs between two nodes (i, j) ∈ L, where i, j ∈ L. The system
size can be described by the number of buses N = |N |, and the number of lines
L = |L|. Each bus i has an associated complex voltage |Vi|∠θi. Branches can be
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Chapter 2. Basic Theory

described by their admittance yij . A neat way to represent the connectivity of the
network, including the admittances, is through the bus-admittance matrix. [5]

2.1.2 Bus-admittance matrix

The network topology, assuming a pi-model of the transmission lines, can be rep-
resented mathematically by the bus-admittance matrix[5]:

Ybus =


Y11 Y12 . . . Y1n
Y21 Y22 . . . Y2n

...
...

. . .
...

Yn1 Yn2 . . . Ynn

 (2.1)

The diagonal elements of Ybus, the self admittances, are calculated as[20]:

Yii = yi0 +
n∑

j=1,j 6=i
yij , (2.2)

and the off-diagonal elements as[20]:

Yij = −yij , (2.3)

where yij is the admittance of the line between bus i and bus k, and yi0 is the shunt
admittance on bus i. The elements of the Ybus-matrix are complex numbers, which
in rectangular coordinates can be expressed as:

Yij = Gij + jBij (2.4)

The Ybus-matrix can therefore be split into the two matrices Gbus and Bbus,
representing the real and imaginary part of Ybus, respectively. For further details
of the construction of Ybus see for instance [20] or [5].

2.1.3 Bus-classification

Each bus i in the system is characterised by the four variables; active power injec-
tion Pi, reactive power injection Qi, voltage magnitude |Vi| and voltage angle θi.
For a given system, two of these variables are specified, and two must be calcu-
lated. Which two variables that are specified, determine the classification, and the
three main classes are[20]:

• Load bus (PQ): A bus where only loads are connected, and hence the
active- and reactive power injection (demand) Pi and Qi are known. For
this reason, it’s also called a PQ-bus. The voltage magnitude and angle, |Vi|
and θi, must be calculated.
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2.1 Power Flow Analysis

• Generator bus (PV ): A bus that has a generator connected to it. A syn-
chronous generator can vary the active power output Pi by changing the
prime mover input, as well as controlling the voltage magnitude |Vi| by
changing the excitation current in the field winding. For this reason, it’s also
called a voltage-controlled- or PV -bus. The voltage angle θi and reactive
power Qi are unknown and must be calculated.

• Slack bus: A bus with a generator must always be assigned as the slack
bus. It has both a physical and a mathematical purpose. Before the PF is
computed, the losses in the network are unknown. The generator on the
slack bus is assigned to compensate for these losses, and hence the active-
and reactive power, Pi and Qi, are unknown. It also serves as a reference
for the voltages in the system, with the voltage angle θi specified to be zero.
Hence it’s also called the ”reference bus”. The known variables are therefore
|Vi| and θi, while Pi and Qi must be calculated.

2.1.4 The Power Flow Equations

The AC PF equations are a set of real-valued simultaneous equations that is ap-
plicable for mathematical programming formulations. [5] The two main ways of
representing the network are the bus injection (nodal) model and the branch flow
model. While the branch flow model has gained recent popularity for its applica-
bility to convex relaxation[21], the bus injection model is the most compact and
commonly used. [5] In this thesis the bus-injection model will be used.

Applying Kirchhoff’s current law and using Ybus, the nodal equations for a
power system network can be written as:

I = YbusV , (2.5)

where I is a vector of the current injected at each node, and V is a vector of all the
bus voltages. For bus i, the nodal equation is then:

Ii =
n∑
j=1

YijVj , (2.6)

where n is the total number of buses. The complex power injected at bus i is

Si = Pi + jQi = ViI
∗
i (2.7)

[19] Writing the voltages in polar coordinates as |V |∠θ and the admittance in
rectangular coordinates as in (2.4), inserting (2.6) into (2.7), and separating into
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real and imaginary part, the PF equations are obtained as:

Pi(V, θ) = |Vi|
n∑
j=1

|Vj |[Gijcos(θi − θj) +Bijsin(θi − θj)] (2.8)

Qi(V, θ) = |Vi|
n∑
j=1

|Vj |[Gijsin(θi − θj)−Bijcos(θi − θj)] (2.9)

In a PF solution, these equations are simultaneously solved for all the buses in the
system, except the reference bus. That constitutes 2(n − 1) nonlinear equations,
with variables Pi, Qi, |Vi| and ∠θi. These must be solved numerically by an
iterative approach. [20]

While Equations (2.8) and (2.9) describe the net injected power on a specific
bus i, the active and reactive power flow on a specific branch ij can be expressed
as:

Pij = |Vi|2Gij − |Vi||Vj |[Gijcos(θi − θj) +Bijsin(θi − θj)], (2.10)

Qij = −|Vi|2Gij − |Vi||Vj |[Gijsin(θi − θj)−Bijcos(θi − θj)]. (2.11)

For ease of notation, the magnitude sign for the voltage is skipped from this
point on, meaning that V will always mean voltage magnitude, while the angle is
treated separately as θ unless otherwise specified.

2.1.5 The Newton-Raphson Method

There are several numerical methods for solving the PF problem, with the Gauss-
Seidel and the Newton-Raphson (NR) methods being the most common. While
the Gauss-Seidel method can be relatively fast, especially for smaller systems,
the reliable NR method is the primary engine in PF analysis. Independent of the
system size, it converges in 2-5 iterations from a flat start (|V | = 1.0p.u., θ = 0).
[20]

The NR method is well covered in the power systems literature [9][19][20][22],
and a summary is presented here. The PF equations (2.8) and (2.9), can be approx-
imated by their first order Taylor series around the current estimate of V and θ
as: [

∆P
∆Q

]
≈ [J ]

[
∆θ
∆V

]
, (2.12)

where J is the jacobian matrix. At every iteration, the mismatches ∆P and ∆Q
are calculated as:

∆Pi = (PGi − PLi )− Pi(V, θ), (2.13)

∆Qi = (QGi −QLi )−Qi(V, θ), (2.14)
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with L and G meaning generated power and load, respectively. [5] The correction
vector for voltage and angle can then be calculated according to equation (2.12).
As matrix inversion is very inefficient [20], a lower-upper(LU)-decomposition and
forward and backward substitution algorithm is normally used [23]. The voltage
magnitudes and angles are then updated by their corresponding corrections, before
a new iteration is started. The algorithm is stopped when the calculated mismatch
falls under a predefined threshold [22].

Including the PF equations of all the buses in the system would lead to a trivial
set of voltage equations. The θ- and V -vectors are simplified to only include the
unknown values as:

θ =

θ2...
θn

 , (2.15)

V =

Vi1...
Vim

 , (2.16)

where n is the total number of buses and m is the number of load buses, and
assuming the slack bus is bus number one. The set of load flow equations to solve
then becomes [22]:

P si = Pi(θ, V ); i = 1, ..., n, (2.17)

Qsil = Qil(θ, V ); l = 1, ...,m, (2.18)

with the superscript s referring to specified values. The Jacobian matrix can then
be expressed as:

J(θ,V ) =

[
∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

]
, (2.19)

where:

P =

P2
...
Pn

 , (2.20)

Q =

Qi1...
Qim

 . (2.21)

If one introduces the following composite terms:

Tij ≡Gijcos(θi − θj) +Bijsin(θi − θj), (2.22)

Uij ≡Gijsin(θi − θj)−Bijcos(θi − θj), (2.23)
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one may express the different terms of the jacobian matrix directly as:

∂Pi
∂θi

= Vi
∑
j 6=i

VjUij (2.24)

∂Pi
∂θj

= −ViVjUij (2.25)

∂Pi
∂Vi

= 2ViGii −
∑
j 6=i

VjTij (2.26)

∂Pi
∂Vj

= −ViTij (2.27)

∂Qi
∂θi

= −Vi
∑
j 6=i

VjTij (2.28)

∂Qi
∂θj

= ViVjTij (2.29)

∂Qi
∂Vi

= −2ViBii −
∑
j 6=i

VjUij (2.30)

∂Qi
∂Vj

= −ViUij (2.31)

[22]

2.1.6 Simplified PF Methods

As the full AC PF can be quite computationally heavy and often inconvenient to
solve, measures to simplify the problem for various application have been made.

Decoupled PF

A class of such methods is the decoupled PF methods, which rely on the following
observations:

• For most transmission networks line and transformer reactances are much
larger than the corresponding resistances, meaning:

|Gij | � |Bij |, i, j = 1, ..., n (2.32)

• The difference in angle across a line or transformer, (θi− θj), is quite small,
and rarely exceeding 30◦. Then it follows that:

cos(θi − θj) ≈ 1.0, (2.33)

|sin(θi − θj)| ≈ small. (2.34)
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As a result of these observations, it can be concluded that the terms ∂P
∂V and

∂Q
∂θ are small compared to ∂P

∂θ and ∂Q
∂V .[22] Taking advantage of this by setting the

smaller matrix blocks to equal zero, one may separate Newton updates for θ and V
with correspondingly smaller matrices, saving computation time. The decoupled
PF is locally convergent to the exact solution because the exact power mismatches
∆P and ∆Q are calculated using Equations (2.8) and (2.9) and both θ and V are
updated at each iteration, but more iterations are required. [5] A specific decou-
pled method is the Fast Decoupled Power Flow, which is a much used algorithm
for when an approximate solution is needed. The approximation is completely in-
dependent of V and θ, but performs surprisingly well despite apparently drastic
simplifications. [24][25]

DC Power Flow

An even further simplification of the PF problem, is the DC PF. Despite it’s name,
it has nothing to do with ”Direct Current”, but is just a linearization of the full AC
PF equations. As these equations are nonlinear, iterative numerical methods are
required. This demand is eliminated with a DC PF representation of the system.
[5] Such a model has great appeal and is employed in numerous applications, in-
cluding contingency screening, medium-to-long term transmission planning, and
Locational Marginal Pricing-based market applications. [26] Following similar
observations as described for the decoupled PF, the following assumptions are
made for DC PF:

1. All branch resistances are assumed to be zero. That means the transmission
is lossless, and all Gij = 0.

2. The angular difference between buses are small, resulting in sin(θi− θj) ≈
θi − θj and cos(θi − θj) ≈ 1.

3. All voltage magnitudes are assumed equal to 1.0 p.u.

4. Reactive PF is neglected.

[5] The DC PF equation is obtained by applying these assumptions to equation
(2.8), resulting in:

Pi(θ) ≈
n∑
j=1

Bij(θi − θj). (2.35)

Similarly, the active power flow on a specific branch is approximated by:

Pij ≈ −Bij(θi − θj). (2.36)
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[5]
While the DC PF model, under some circumstances, can give reasonably good

estimates for the active PF in the system, it gives no information on the voltage
magnitudes and reactive PF and should be used with care. A clear drawback is that
the model produces significant errors for stressed systems, which is often when a
PF solution is most needed. [26]

2.2 Optimal Power Flow

Optimal Power Flow (OPF) is a set of optimisation problems in electrical engi-
neering first introduced by Carpentier [6] in 1962 as an extension to the Economic
Dispatch (ED) problem [5]. An ED calculation finds the lowest-cost generation
dispatch for a set of generators, only limited by the generator capabilities, and
results in a total generation equal to the total load and losses. OPF takes this calcu-
lation a step further by also taking into account the effect the generation has on the
transmission network, as well as the limitations caused by it. OPF is, therefore, a
coupling between an ED and a PF calculation, solving both simultaneously. The
losses are accounted for by the PF calculation, and the ED can be constrained by
transmission limits such as MW or MVA flow limits on lines and voltage limits on
buses. [9]

OPF is usually formulated as a minimisation problem, where the goal is to
minimise some objective function f(x,u), subject to a set of equality constraints
g(x,u), and inequality constraints h(x,u). In general terms, the problem can be
formulated as:

min f(x,u),

s.t g(x,u) = 0,

h(x,u) ≤ 0,

(2.37)

where x and u are vectors of state- and control variables respectively. [27]

2.2.1 Objective Function

As the name suggests, OPF aims to find the most optimal operating state of the
power system. To find an optimal operating state, one must first decide on what
should be optimised, which depends on the purpose of the OPF. Some example
objectives are mentioned next.

• Minimisation of cost: The most common use of OPF is to minimise the
cost of producing electricity. The objective function is then set to minimise
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the total cost of generating active power [28], and can be formulated as:

min

Ngen∑
i=1

Fi(PGi), (2.38)

where Fi(PGi) is the cost function of the generator at bus i. [9]

• Minimisation of active and reactive power losses: For a system operator,
the minimisation of power losses is arguably one of the most important con-
siderations, after ensuring system security. To facilitate this, the objective
function can be formulated as:

min
∑
i,j∈L

Sij + Sji. (2.39)

[28]

• Maintaining a constant voltage profile: Sometimes, it might be important
for a system operator to maintain a constant voltage profile, for instance to
avoid voltage instability issues. An OPF can then identify the preferable
set of actions to achieve this. The objective function could for instance be
formulated as:

min

n∑
i=1

(Vi − Vsetpoint,i)2 (2.40)

[28]

2.2.2 Variables

As described in section 2.1, a PF calculation seeks to find the unknown voltage
magnitudes and angles, for then to uniquely describes the system state. An OPF
calculation, on the other hand, seeks to find the most optimal system state within a
feasible region. As a consequence, some variables that in a PF calculation are held
constant may be permitted to change in an OPF calculation. A general classifica-
tion of the variables in an OPF calculation may, therefore, be as follows:

• Control Variables are variables that can be actively controlled by the sys-
tem operator to achieve a desired operating state. In other words, they are the
independent variables of the optimization problem. These are connected to
the known variables in a PF calculation. Typical examples of such variables
are the active and reactive power output of generators.
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• State variables are the variables that together uniquely describe the system
state, but cannot be directly controlled; hence can’t be defined as control
variables. These are influenced by the changes in the control variables and
are hence the dependent variables of the optimization. The state variables are
typically the voltage angles of all non-slack buses and voltage magnitudes
at load buses.

• Parameter values are values that should be kept fixed. These are the known
variables in a PF calculation that are not allowed to change in the OPF cal-
culation either. This is usually always the voltage angle at the slack bus,
which should be kept as a reference at zero, and typically also the active-
and reactive power at load buses.

2.2.3 Constraints

The constraints are an essential part of OPF and are what defines the feasible region
of the optimisation problem. As already mentioned, the constraints are typically
divided into two categories: equality- and inequality constraints.

Equality Constraints

The equality constraints of an OPF are fulfilment of the PF Equations (2.8) and
(2.9). These must be met for all buses for any operating point determined by the
optimisation to be a true operating point of the power system. [28] The constraints
can be written as:

Pi(V, θ) = PGi − PLi ∀ i ∈N (2.41)

Qi(V, θ) = QGi −QLi ∀ i ∈N (2.42)

Inequality Constraints

The inequality constraints consist of all the operational limits of the system. These
may vary between different formulations, but typical constraints to include are:

• Active power constraints: The active power produced at each generator
must stay within their respective limits, typically specified as a minimum
and a maximum production. If a bus has no generator, i.e. is a load bus,
these limits are zero. Generally:

PG,mini ≤ PGi ≤ P
G,max
i ∀ i ∈ G (2.43)
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• Reactive power constraints: Just as for the active power limits, the re-
active power at a bus need to stay within specified limits. These could be
decided by the reactive power capabilities of a connected generator or other
controllable reactive power components. Different from the active power
limits is that reactive power lower limit can be negative. Generally:

QG,mini ≤ QGi ≤ Q
G,max
i ∀ i ∈ G (2.44)

• Voltage magnitude constraints: The voltage at a specific bus is not allowed
to exceed a certain limit around the nominal value. This limit may vary by
country and voltage level, but is typically in the range +/- 5-10 %. Generally:

V min
i ≤ Vi ≤ V max

i ∀ i ∈N (2.45)

• Voltage angle constraints: While too large shifts in voltage angle between
buses in a realistic system shouldn’t be an issue, several nonlinear solvers
need to limit the voltage angle to avoid obtaining the same PF solution at
intervals of 360◦. Assuming radians are used, this can be done by limiting θ
to stay within the interval [−π, π]. [28] Generally:

θmini ≤ θi ≤ θmaxi ∀ i ∈N (2.46)

• Branch flow constraints: An important group of constraints in a power
system is the power transfer ability of the branches. These limit the amount
of power that can flow between two nodes in the network. There are differ-
ent possibilities for which variables to use for constraining the branch flows,
and the choice usually depends on what is the limiting factor. Shorter trans-
mission lines are usually limited by their thermal limits, expressed by the
maximum allowed current. Many OPF formulations, however, uses appar-
ent power flow limits instead, as this can be more convenient and are closely
correlated to the current. For transformers, it’s usually also practical to use
apparent power, as that’s how they are generally rated. A third option is to
limit the branch flow using active power. This is preferable for very long
lines when the limiting factor becomes the steady-state stability limit of the
line. [28] The branch flow constraints could, therefore, be formulated as one
of the following:

Iminij ≤ Iij ≤ Imaxij ∀ (i, j) ∈ L (2.47)

Sminij ≤ Sij ≤ Smaxij ∀ (i, j) ∈ L (2.48)

Pminij ≤ Pij ≤ Pmaxij ∀ (i, j) ∈ L (2.49)
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2.2.4 DCOPF

The OPF problem, as it’s been described thus far, is often called ACOPF. This
comes from the fact that the full AC PF equations are considered, and that there
exists a much-used alternative algorithm which uses the DC PF formulation de-
scribed in section 2.1.6, called DCOPF. A great advantage of DCOPF is that the
constraints become linear and the problem is convex [28]. It may be solved using
relatively simple optimization techniques such as QP or LP [9].

The DCOPF formulation, however, comes with the same limitations as the
DC PF itself; it’s an approximation, and the accuracy of the result depends on the
validity of the assumptions. For distribution grids, in particular, these assumptions
are usually quite inaccurate, as the line resistances are relatively large and voltage
variations are common [28]. As mentioned in section 2.1.6, stressed systems are
also poorly reassembled by the DC PF approximation.

This thesis will focus on the ACOPF problem, and the DCOPF algorithm is not
covered in depth. It is, however, important to be aware of its existence, usage and
limitations when considering OPF, because of its wide use and central position it
the overall OPF literature. It’s also a good starting point for those new to OPF, as it
is quite easily solved. The interested reader may see [9], or several other sources,
for further details on the formulation and solution of the DCOPF problem.

2.3 Security-Constrained Optimal Power Flow

In many parts of the power system, it’s required to operate the system under a so-
called n-1 security level. That means the system should continue to operate safely
during a predefined set of likely contingencies, not occurring simultaneously. A
contingency is an event that removes a line or generator from the system, leaving
the rest of the network in a more stressed condition [5]. This requirement has led
to the development of SCOPF, as the solution to the original OPF problem cannot
guarantee the feasibility of the operating state during contingencies. The inclu-
sion of contingency constraints increases the size of the problem significantly and
makes it much harder to solve. The solution will under no circumstances be asso-
ciated with a lower cost than the solution to the OPF problem without contingency
constraints, meaning the increase in security comes at a cost.

The general formulation of the OPF problem, Equation (2.37), can for the
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SCOPF case be extended as:

min f(x0,u),

s.t g(x0,u) = 0,

h(x0,u) ≤ 0,

g(xc,u) = 0 ∀ c ∈ C,
h(xc,u) ≤ 0 ∀ c ∈ C,

(2.50)

where C = {1, ..., Nc} is the set of considered contingencies. [5] For the solution
of the SCOPF problem to be feasible, the same equality and inequality constraints
as in the original OPF problem must hold true under all the contingencies in C.

2.3.1 Post-Contingency Corrective Rescheduling

Solutions to the SCOPF problem as defined in (2.50) would lead to implementa-
tion of preventive control actions. That’s because it’s demanded that the system is
to remain in a feasible state during contingency, without doing any corrective ac-
tions. If, for instance, it’s possible to ramp up or down a generator’s power output
by a certain amount before an overload becomes critical, it would be possible to
achieve the same level of security, but at a lower operating cost. This fact is pointed
out in [8], and a solution strategy to the SCOPF problem with post-contingency
rescheduling is presented. The range of rescheduling actions are represented by
coupling constraints of the type |u0 − uc| ≤ ∆c. The problem would then be
formulated as:

min f(x0,u0),

s.t g(x0,u0) = 0,

h(x0,u0) ≤ 0,

g(xc,uc) = 0 ∀ c ∈ C,
h(xc,uc) ≤ 0 ∀ c ∈ C,
|u0 − uc| ≤∆c ∀ c ∈ C,

(2.51)

where u0 are the control variables during base case, uc are the control variables
during contingency c, and ∆c are the allowed changes in control variables from the
base case to the contingency case. Requiring that ∆ = 0, would then be the same
as requiring preventive security. Henceforth, preventive SCOPF will be denoted
PSCOPF and SCOPF with post-contingency corrective rescheduling as CSCOPF.
In [8], the CSCOPF problem is proposed solved using a Bender Decomposition
(BD) approach.
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2.3.2 Benders Decomposition

BD is a method that has been widely used for solving various SCOPF problems
since it was generally formulated in [29]. The BD approach consists of decompos-
ing the problem into a master problem and several subproblems, interacting itera-
tively. The possibility of keeping both the master- and subproblem very tractable
makes it especially appealing. BD also makes it possible to distribute the compu-
tation across several processors. [4] A drawback, however, is that convergence of
the BD algorithm only can be guaranteed if the convexity of the feasible region is
assumed. This is not necessarily true in an AC SCOPF, so BD should be used with
care. [29]

The methodology for solving the CSCOPF problem, as it’s described in [8],
and using the notation of Equation (2.51), consists of a two stage process:

• Find an operating point (x0,u0) for the ”base case” problem (2.37).

• Given the the operating point (x0,u0), find new operating points (xc,uc)
that meets the constraints g(xc,uc) = 0 and h(xc,uc) ≤ 0 and the cou-
pling constraints |u0 − uc| ≤∆c for all contingencies in C.

The goal is to minimise the operation cost while making sure the problems in the
second stage are feasible. This is done by separately considering the ”base-case”
operation and the Nc post-contingency operating states. If the post-contingency
state is feasible, no change to the ”base-case” is needed. On the other hand, if
the post-contingency subproblem leads to infeasibilities, constraints on the ”base-
case” operation must be added in order to secure feasibility of the subproblem.

The subproblem can be formulated as:

w(x0, u0) = min dr · r + ds · s
s.t g(x,u) + r = 0,

h(x,u) + s ≤ 0,

|u0 − u|− s ≤∆,

(2.52)

where r and s are positive vectors of penalty variables for the operating- and cou-
pling constraints, respectively, and dr and ds are positive cost vectors. The value
of the objective function, w, can be seen, and are here written, as a function of the
”base-case” operating point. It can be concluded from problem (2.52) that:

w = 0 ⇔ The subproblem is feasible
w > 0 ⇔ The subproblem is not feasible

Requiring that wc(x0,u0) ≤ 0 for all contingencies c in C, would then be equiv-
alent to requiring the feasibility of the post-contingency subproblems. [8] The
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CSCOPF problem (2.51) can then be rewritten as:

min f(x0,u0),

s.t g(x0,u0) = 0,

h(x0,u0) ≤ 0,

wc(x0,u0) ≤ 0 ∀ c ∈ C,

(2.53)

BD is a technique for approximating wc(x0,u0). The approximation is im-
proved by iteratively solving the ”base-case” problem and the Nc operating sub-
problems. Associated with each subproblem solution, there is a set of Lagrange
multipliers that tell how marginal changes in the base-case operating point (x0,u0)
affect the infeasibility of the subproblem. These multipliers are, together with the
value of w, used to form a linear constraint from a particular infeasible subprob-
lem, which is fed to the base-case problem. This constraint is known as a Ben-
ders Cut (BC), and is written only in terms of the base-case variables (x0,u0).
Modifying the approximation of wc(x0,u0) corresponds to adding the BC to the
base-case problem. [8]

2.4 Optimization

As already mentioned in the introduction, the SCOPF problem is a large-scale,
nonlinear, non-convex optimization problem, making it quite difficult to solve.
Some different nonlinear optimization methods that are being used to solve it were
also mentioned. A thorough breakdown of the different methods, with associated
pros and cons, will not be covered, as it’s not the aim of this theses. The interested
reader may see [4], [18] or [30] for an overview of different methods. Here, the
focus will be on the Sequential Linear Programming (SLP) approach.

2.4.1 Linear Programming

LP is the most widely used of all optimization tools. An LP problem is character-
ized by having a linear objective function and linear constraints. Even nonlinear
situations are often formulated as linear models, so that they can be solved by LP.
Solution by LP is very appealing because of the advanced state and wide availabil-
ity of the software, guaranteed convergence to the global optimum, and because of
uncertainty in nonlinear models. LP’s are usually expressed and analyzed in the
standard form:

min cTx,

s.t. Ax = b,

x ≥ 0,

(2.54)
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where c and x are vectors in Rn, b is a vector in Rm and A is an m × n ma-
trix. Inequality constraints can also be transformed to the standard form by intro-
ducing a vector of slack variables, and potential negative variables can be made
non-negative by splitting them into their non-negative and non-positive part. [31]

The Simplex Method

The simplex method was developed by George Dantzig in the late 1940s, and has
since then been continually improved and refined, and remains one of the most
popular algorithms for LP. There are several different variants, but perhaps the
most common is the revised simplex method. [31] For a detailed description of
the method, see chapter 13.3 of [31]. The simplex method is well established
and is found in both commercial and freely available LP solvers. Although there
are several competing algorithms, it holds sway as the most used algorithm in
optimization software.

2.4.2 Sequential Linear Programming

Sequential LP, also known as Successive LP or Iterative LP, are algorithms that
solve nonlinear optimization problems by a series of LP’s. They are especially
attractive for large, sparse nonlinear programs (NLP’s). [32] The method consists
of linearizing the nonlinear objective function and/or constraints around the current
operating point, solve the optimization problem by LP, update the solution, and
repeat iteratively until the optimal solution of the nonlinear problem is reached.
Because the linearization is only valid in a smaller area around the linearization
point, the change in the variables from one iteration to the next has to be restricted.

Consider the NLP:

min f(x),

s.t g(x) = 0,

h(x) ≤ 0,

xmin ≤ x ≤ xmax,

(2.55)

where x are a vector of optimization variables, and xmin and xmax are vectors
of the variables lower and upper bounds, respectively. At every iteration k, the
objective function f and constraints g and h are approximated by their first order
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Taylor series:

mk(p) = f(xk) +∇f(xk)Tp, (2.56)

g(xk) +∇g(xk)Tp = 0, (2.57)

h(xk) +∇h(xk)Tp ≤ 0, (2.58)

where p = x − xk. In order to obtain a globally convergent method, a Trust
Region (TR) method should be applied. This includes limiting the step-length by a
value δk, called the TR radius. The optimization problem to solve at each iteration
is then:

min mk(p),

s.t. g(xk) +∇g(xk)Tp = 0,

h(xk) +∇h(xk)Tp ≤ 0,

max((xmin − xk),−δk) ≤ p ≤ min((xmax − xk), δk).

(2.59)

After the the solution pk of (2.59) is computed, it’s used as a step to define the new
solution approximation: xk+1 = xk + pk. A challenge, however, is that it may
be impossible to find a solution for which the linearized constraints hold, or the
found solution pk could be so that the new approximation xk+1 doesn’t satisfy
the non-linear constraints of the original problem. To deal with the problem of
infeasibility, some, or all, of the constraints may be added to the objective function
as penalty parameters. Violation of these constraints would then be associated with
a high positive cost, instead of rendering the problem unsolvable. [33]

Because the linearized problem could be a good or bad representation of the
original nonlinear problem within the current TR radius, it’s necessary to evaluate
if the step pk should be accepted, and if the TR radius should be adjusted for
the next iteration. It’s common to base these decisions on how well the predicted
reduction of the objective function matches the actual reduction. [33] This can be
described by the ratio between the actual- and predicted cost reduction:

σk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(2.60)

[34]If σk is above a certain threshold σbad, typically ∈ (0, 14), the step is accepted.
There is typically also defined different threshold for σk, for whether to decrease,
increase or keep the TR radius. If σk < σbad, the step is rejected and the TR radius
reduced. [33]
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Chapter 3
Problem Formulation and Solution
Method

This chapter endeavour to explain the problem and chosen solution strategy. First,
relevant assumptions are stated before the problem is defined in mathematical
terms. Then it’s explained in two parts how the SCOPF problem is solved. First,
the solution to the base-case ACOPF problem using SLP and a TR method is
explained. Next, it’s explained how the algorithm is extended to solve both the
PSCOPF and CSCOPF problem using BD. Finally, some notes on the implemen-
tation are included.

3.1 Problem Formulation

3.1.1 Assumptions

To keep the problem manageable under the scope of the thesis work, some assump-
tions or simplifications have been made.

• The power system is in steady-state and under balanced conditions.

• Only one time-step is considered.

• Power demand at load buses are assumed to be known and are fixed.

• Only active power production has associated cost. All other quantities are
allowed to take any value within their specified limits.
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• Active and reactive power output of generators are the only considered con-
trol actions. Other control actions, such as transformer tap position and
reactive power compensation, are hence not included.

• Line constraints are imposed using active power limits.

• No coupling constraints imposed on reactive power rescheduling. Reactive
power is assumed to be freely re-dispatched during a contingency.

• No discrete variables, such as the start-up of generators and network switch-
ing, are considered.

3.1.2 Notation

Vectors, matrices and sets are written with bold type letters.

Indices

i, j Bus indices
k Iteration index
c Contingency index

Sets

N Buses
L Branches (Lines)
G Generators
M Loads
C Contingency cases (line outages)

Parameters

PG,mini , PG,maxi Minimum and maximum active power generation at bus i
QG,mini , QG,maxi Minimum and maximum reactive power generation at bus i
V min
i , V max

i Minimum and maximum allowed voltage magnitude at bus i
θmini , θmaxi Minimum and maximum allowed voltage angle at bus i
Pmaxi,j Maximum active power flow on the branch from bus i to j
PLi , Q

L
i Active and reactive power load at bus i
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3.1 Problem Formulation

Variables

PGi , Q
G
i Active and reactive power production at bus i

Vi, θi Voltage magnitude and angle at bus i
∆Pi, ∆Qi Change in active and reactive power at bus i
∆θi, ∆Vi Change in voltage angle and magnitude at bus i
z Penalty variable

TR parameters

δk TR radius at iteration k
δmax Maximum TR radius
σk Ratio of actual- over predicted reduction in cost at iteration k
τ Threshold for σk for accepting solution step
η Chosen parameter for defining if approximation is good or bad.
γ Factor by which to multiply δk by if approximation is bad.
ε Convergence criterion

LP inputs

v Vector of linear cost coefficients
A Matrix of constraint coefficients
b Vector of r.h.s of constraints
x Vector of LP variables
e Vector with info on the ”type” of constraint
vlb Vector of LP variables lower bounds
vub Vector of LP variables upper bounds

Subproblem variables and parameters

∆Pi ↑,∆Pi ↓ Up- and down-regulation of base-case active power at bus i
∆Qi ↑,∆Qi ↓ Up- and down-regulation of base-case reactive power at bus i
si Active power post-contingency rescheduling at bus i
µ Fraction of generator maximum active power that can be

post-contingency rescheduled.
∆i Allowed active power post-contingency rescheduling at bus i.

3.1.3 Problem Statement

The objective is to minimize the total active power generation cost, while meeting
all the system constraint and contingency constraints. The overall problem is stated
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as follows:

min

Ngen∑
i=1

Fi(P
G
i ), (3.1a)

s.t. Pi(V, θ) = PGi − PLi ∀ i ∈N , (3.1b)

Qi(V, θ) = QGi −QLi ∀ i ∈N , (3.1c)

PG,mini ≤ PGi ≤ P
G,max
i ∀ i ∈ G, (3.1d)

QG,mini ≤ QGi ≤ Q
G,max
i ∀ i ∈ G, (3.1e)

V min
i ≤ Vi ≤ V max

i ∀ i ∈N , (3.1f)

θmini ≤ θi ≤ θmaxi ∀ i ∈N , (3.1g)

|Pij | ≤ Pmaxij ∀ (i, j) ∈ L, (3.1h)

wc(P
G) ≤ 0 ∀ c ∈ C, (3.1i)

where Fi is the cost function of the generator at bus i, which in this case is assumed
to be a quadratic polynomial function:

Fi(P
G
i ) = ai + biP

G
i + ci(P

G
i )2. (3.2)

Constraints (3.1b) through (3.1h) are the base-case operating constraints, while
constraints (3.1i) represent the contingency constraints as described in subsec-
tion 2.3.2. Constraints (3.1i) require that constraints (3.1b) through (3.1h) also
holds under all defined contingencies in C, after any potentially allowed post-
contingency rescheduling have been performed.

3.2 Solution Strategy

Problem (3.1) is proposed solved by an SLP algorithm using a TR method, and
BD for handling the contingency constraints.

3.2.1 ACOPF Algorithm

First, the optimization problem (3.1a) subject to constraints (3.1b) through (3.1h)
are considered. That is a standard ACOPF problem and is proposed solved using
SLP, similar to that presented in chapter 8.10 of [9]. The algorithm follows the
methodology outlined in subsection 2.4.2, but is adapted to fit the OPF problem. A
TR method for adjusting the TR radius, or ”window size”, following that outlined
in [34] is employed. The flowchart in Figure 3.1 gives an overview of the overall
iterative ACOPF algorithm. The different steps will be discussed in more detail
next.
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Initial	AC	PF	

Yes

No
Convergence?
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Evaluate
approximation
accuracy

Yes

Figure 3.1: Flow chart of the ACOPF solution algorithm
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From now on, the optimization will be written in terms of the changes is the
original OPF variables:

∆θ, ∆V , ∆P and ∆Q,

where ∆θ = [∆θ1, ...,∆θN ], ∆V = [∆V1, ...,∆VN ], ∆P = [∆P1, ...,∆PN ]
and ∆Q = [∆Q1, ...,∆QN ]. Because the only changes in active and reactive
power we are allowing are the generator’s output, ∆P = ∆PG and ∆Q =
∆QG.

Step 1 - Initial PF

Before starting to set up the LP a valid PF solution is needed as a starting point.
Therefore a NR PF is run, giving the set of initial solution values:

P0,Q0, V0 and θ0,

Step 2 - Linearize the objective function

The objective function is linearized around the current operating point. As the
problem is formulated by means of the changes in the OPF variables, the constant
term of (2.56) is uninteresting, as it’s considered constant in the LP calculation.
The linearized objective function is then:

mk(∆P
G) =

Ngen∑
i=1

dFi(P
G
i )

dPGi
∆PGi , (3.3)

Assuming the quadratic cost function of (3.2), the linearized objective function
may be written as:

mk(∆P
G) = vT∆PG, (3.4)

where v = [v1, ..., vNgen ], and:

vi = bi + 2ciP
G
i . (3.5)

Although the cost function only depends on the active power production of the
generators, all the variables in the optimization must be included. Therefore, the
cost vector v will in reality be of length 4N, with zeros corresponding to ∆θi, ∆Vi,
and ∆Qi, ∀ i ∈N , and ∆Pi, ∀ i ∈M .
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3.2 Solution Strategy

Step 3 - Linearize the constraints

The next step is to linearize the constraints, starting with the PF equality con-
straints. This is essentially the same as the linearization done in the NR method,
as described in subsection 2.1.5. The only difference is that, in this case, all rows
and columns of the Jacobian are included:



∂P1
∂θ1

. . . ∂P1
∂θN

∂P1
∂V1

. . . ∂P1
∂VN

...
. . .

...
...

. . .
...

∂PN
∂θ1

. . . ∂PN
∂θN

∂PN
∂V1

. . . ∂PN
∂VN

∂Q1

∂θ1
. . . ∂Q1

∂θN

∂Q1

∂V1
. . . ∂Q1

∂VN

...
. . .

...
...

. . .
...

∂QN
∂θ1

. . . ∂QN
∂θN

∂QN
∂V1

. . . ∂QN
∂VN





∆θ1
...

∆θN

∆V1
...

∆VN


=



∆P1
...

∆PN

∆Q1
...

∆QN


(3.6)

Taking all the variables to the left hand side of the equation, the equality constraints
can be expressed as:

Ax = b, (3.7)

with:

A =



∂P1
∂θ1

. . . ∂P1
∂θN

∂P1
∂V1

. . . ∂P1
∂VN

−1 0 . . . 0

...
. . .

...
...

. . .
... 0

. . .
...

∂PN
∂θ1

. . . ∂PN
∂θN

∂PN
∂V1

. . . ∂PN
∂VN

...
...

∂Q1

∂θ1
. . . ∂Q1

∂θN

∂Q1

∂V1
. . . ∂Q1

∂VN

...
...

...
. . .

...
...

. . .
...

...
. . . 0

∂QN
∂θ1

. . . ∂QN
∂θN

∂QN
∂V1

. . . ∂QN
∂VN

0 . . . 0 −1,


x = [∆θ1 . . .∆θN ∆V1 . . .∆VN ∆P1 . . .∆PN ∆Q1 . . .∆QN ]T ,

b = [0 . . . 0]T .

A is a 2N × 4N coefficient matrix, which is a concatenation of the 2N × 2N
Jacobian matrix and a 2N × 2N negative identity matrix, x is the variable vector
of length 4N , and b is a vector of zeros of length 2N .

Also, any potential branch constraints must be linearized. Although constraints
of all branches could be added from the start, it’s chosen to wait until an optimal
solution without branch constraints is found, and then add constraints only for
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those branches that are overloaded. This is to reduce the number of constraints
fed to the LP solver, as most branches are usually not overloaded. This part is,
therefore, skipped if no branch constraints have yet been added to the problem.

As this formulation uses active power constraints on branch flow, the linearized
constraints are formulated by means of the marginal change in active power flow
on line (i, j), Pij , to marginal changes in the state variables: θi, θj , Vi and Vj ,
evaluated for the current state variables θk and Vk:

∂Pij
∂θi

∆θi +
∂Pij
∂θj

∆θj +
∂Pij
∂Vi

∆Vi +
∂Pij
∂Vj

∆Vj ≤ Pmaxij − Pij (3.8)

If the line flow Pij should be negative, the constraint becomes:

∂Pij
∂θi

∆θi +
∂Pij
∂θj

∆θj +
∂Pij
∂Vi

∆Vi +
∂Pij
∂Vj

∆Vj ≥ −Pmaxij − Pij (3.9)

The partial derivatives in Equations (3.8) and (3.9) can be found by partial dif-
ferentiation of Equation (2.10). Using the composite terms defined in (2.22) and
(2.23), they can be written as:

∂Pij
∂θi

= ViVjUij (3.10)

∂Pij
∂θj

= −ViVjUij (3.11)

∂Pij
∂Vi

= 2ViGij − VjTij (3.12)

∂Pij
∂Vj

= −VjTij (3.13)

The branch flow constraints can be included with the other constraints by
adding new rows of length 4N toA on the form:

[
∂Pij
∂θi

0 . . . 0
∂Pij
∂θj

0 . . . 0
∂Pij
∂Vi

0 . . . 0
∂Pij
∂Vj

0 . . . . . . 0 ].

The positions of the derivative terms above, correspond to the position of the cor-
responding variable in the variable vector. For instance, the term ∂P13

∂V3
has the same

position in the row as ∆V3 has in x. The value of of the r.h.s of (3.8) or (3.9) are
appended to b. To keep track of which constraints should be ”equality”, ”lesser
than” or ”greater than”, an additional vector e is used. It has the same number of
elements as there are constraints, and the value at the position corresponding to a
row inA tells what kind of constraint it is:

0 ⇔ Equality constraint
1 ⇔ Inequality ”greater than” constraint
-1 ⇔ Inequality ”lesser than” constraint
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Step 4 - Set variables bounds

The optimization variables need to be restricted. No changes should be larger than
the current TR radius δk The voltage magnitude and angle at the reference bus are
not allowed to be changed, that is:

∆Vref = 0, ∆θref = 0 (3.14a)

For the remaining buses, the voltage bounds are set as:

θmini − θi ≤ ∆θi ≤ θmaxi − θi, ∀ i 6= ref ∈N ,
(3.14b)

max(V min
i − Vi, −δ) ≤ ∆Vi ≤ min(V max

i − Vi, δ), ∀ i 6= ref ∈N .
(3.14c)

The change in voltage angle are not limited by the TR radius because it has not
shown to have any effect. The power at the load buses are not allowed to change,
hence:

∆Pi = 0, ∆Qi = 0, ∀ i ∈M . (3.14d)

For the remaining buses, the power bounds are chosen as:

max(PG,mini − Pi, −δ) ≤ ∆Pi ≤ min(PG,maxi − Pi, δ), ∀ i ∈ G, (3.14e)

max(QG,mini −Qi, −δ) ≤ ∆Qi ≤ min(QG,maxi −Qi, δ), ∀ i ∈ G. (3.14f)

The lower and upper bounds on the optimization variables, as chosen above, are
stored in two different vectors vlb and vub, both of size 4N .

Step 5 - Solve LP

The linearized objective function, linearized constraints and variable bounds are
fed to the LP solver. The result of the LP calculation include the suggested changes
∆V , ∆θ, ∆P and ∆Q, as well as the value of linearized objective function
mk(∆P

G).

Step 6 - Update variables

Next, the LP result is used to update the state- and control variables of the original
optimization problem. That is:

θk+1 = θk + ∆θ, (3.15)

Vk+1 = Vk + ∆V , (3.16)

PGk+1 = PGk + ∆P , (3.17)

QGk+1 = QGk + ∆Q. (3.18)
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Step 7 - Solve AC PF

Using the updated variables from Equations (3.15)-(3.18), a full NR PF is run.
This will find an operating state that satisfies the nonlinear PF equations, and the
dependent variables’ actual response to the changes in control variables are ob-
tained. The actual system operation cost f(PG) after the suggested step is also
calculated.

Step 8 - Evaluate Approximation Accuracy and Update TR radius

How good the linearized problem represent the actual nonlinear problem is evalu-
ated by recalculating the factor σk according to Equation (2.60). In this case:

σk =
f(PGk )− f(PGk+1)

mk(∆P
G)

(3.19)

Following the logic used in [34], the value of σk ∈ [0, 1] decide whether the solu-
tion step is accepted or not, and what will be the TR radius in the next iteration.
The decision process looks something like:

If σk < τ : (very bad approximation)
solution step is rejected
δk+1 = γδk

Elseif σk < η: (bad approximation)
solution step is accepted
δk+1 = γδk

Elseif σk < (1− η): (ok approximation)
solution step is accepted
δk+1 = δk

Else: (good approximation)
solution step is accepted
δk+1 = max(2δk, δmax)

The parameters τ , η and γ may be adjusted to achieve better convergence. Here
the values τ = 0, η = 0.2 and γ = 0.1 are used.

Step 10 - Check for convergence

There are several ways to test for convergence. In [9], it’s suggested to look for
significant changes in the variables ∆V , ∆PG and ∆QG. If there are no signif-
icant changes, the algorithm is assumed to have converged. If not, move back to
step 2 for a new iteration. It was however chosen to look at the changes in actual
cost (f(PG)) over the past iterations. More specifically, if the standard deviation
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of the actual cost for the last 3 iterations is under the convergence criterion ε, then
convergence is said to be reached. If the convergence criterion is met, proceed to
step 11, otherwise return to step 2.

Step 11 - Check for branch overloads

Calculate the branch flows, and check if any of the branches exceed their specified
limits. As active power flow limits are used here, the branch flows are calculated
using Equation (2.10). If no branches are overloaded, the solution is found. Other-
wise, flag the overloaded lines so that constraints on these lines are added in Step
3 in the next iteration. Then, move to step 2 for a new iteration.

3.2.2 SCOPF Algorithm

Now, the complete problem (3.1), including the contingency constraints (3.1i),
are considered. The problem is solved using a BD approach, using the principles
described in subsection 2.3.2. Figure 3.2 gives a rough idea of the program flow.
The method presented here considers the possibility of allowing for some post-
contingency rescheduling. It’s assumed that each generator can adjust it’s active
power output by a certain fraction of its maximum output within ”reasonable time”
after a contingency occurs. This fraction is described by the factor µ. Setting
µ = 0, corresponds to demanding preventive security, i.e. not allowing for any
post-contingency rescheduling.

Step 1 - Solve base-case ACOPF problem

The first step in the SCOPF algorithm is to solve the base-case problem as de-
scribed in the previous section. That gives an optimal solution to the problem
before any contingencies have been considered.

Step 2 - Solve Nc contingency subproblems

After a base-case solution is found, a subproblem for each contingency in C is
solved. They may be solved in parallel, but are here solved iteratively. The ob-
jective of the subproblem is to find out if the system stays feasible during the
contingency, and if not, which adjustments must be made to the base-case to make
it so. Here, the considered contingencies are the removal of individual lines. When
a contingency subproblem is started, the relevant line is removed from the set of
branches L, and the matrices Gbus and Bbus, which describe the system topol-
ogy, are recalculated. Then, a PF calculation is conducted, before moving on to
the optimization.
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Solve base-case
ACOPF problem
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contingency Nc

Create BC Create BC Create BC

Solution found

Start contingency
checks

Figure 3.2: Flow chart of the SCOPF algorithm.

Step 2a - Subproblem LP calculation

The subproblem LP formulation is very similar to a single ACOPF iteration. The
main difference is that instead of using a linearized objective function, all changes
in active power production from the base-case solution has a positive penalty cost,
which are to be minimized. In order to make it possible to penalise both up- and
down- regulation, the change in active power must be split in two. The same is
done for the reactive power, for easier implementation. The optimization subprob-
lem is therefore written in terms of the variables:

∆θ, ∆V , ∆P ↑, ∆Q ↑, ∆P ↓ and ∆Q ↓,
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where

∆Pi = ∆Pi ↑ −∆Pi ↓, ∀ i ∈N , (3.20)

∆Qi = ∆Qi ↑ −∆Qi ↓, ∀ i ∈N . (3.21)

In addition, the vector of active power corrective actions s is introduced. When
corrective actions are allowed Equation (3.20) changes to:

∆Pi = ∆Pi ↑ −∆Pi ↓ +si, ∀ i ∈N , (3.22)

where:

max(PG,mini − Pi, ∆i) ≤ si ≤ min(PG,maxi − Pi, ∆i), ∀ i ∈N ,

where ∆i is the allowed rescheduling at bus i, and is here calculated as:

∆i = µPG,maxi . (3.23)

The subproblem objective function is:

wc(∆P ↑,∆P ↓) = min vT [∆P ↑∆P ↓], (3.24)

where v = [1,...,1] is a cost vector of length 2N. As for the optimization of the
base-case, the cost vector must have elements corresponding to all the variables in
the optimization. Therefore, in reality, v is of length 7N, with ones corresponding
to ∆P ↑ and ∆P ↓, and zeroes corresponding to ∆θ, ∆V , ∆Q ↑, ∆Q ↓ and
s.

With the variables of the subproblem, the linearized PF equations are:[
∂P
∂θ

∂P
∂V

∂Q
∂θ

∂Q
∂V

][
∆θ
∆V

]
=

[
∆P ↑ −∆P ↓ + s

∆Q ↑ −∆Q ↓

]
(3.25)

In the standard formAx = b, this then becomes:

A =

[
∂P
∂θ

∂P
∂V −1 0 1 0 1

∂Q
∂θ

∂Q
∂V 0 −1 0 1 0

]
,

xT = [∆θ ∆V ∆P ↑∆Q ↑∆P ↓∆Q ↓ s],
bT = [0 ... 0],

where A is the a coefficient matrix of size 2N × 7N , x is the variable vector of
length 7N and b is a vector of zeros of length 2N .
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Branch constraints are added for those lines which exceed their limits in the
post-contingency PF calculation. This is done the same way as in step 3 of the
ACOPF algorithm. The only difference is that extra zeros must be added to the
row which is appended toA so that the length of the row is 7N .

The variables are bounded like in step 4 of the ACOPF algorithm, but without
being limited by the TR radius. That is:

∆Vref = 0, ∆θref = 0 (3.26a)

θmini − θi ≤ ∆θi ≤ θmaxi − θi, ∀ i 6= ref ∈N , (3.26b)

V min
i − Vi ≤ ∆Vi ≤ V max

i − Vi, ∀ i 6= ref ∈N . (3.26c)

∆Pi ↑= 0, ∆Pi ↓= 0, ∆Qi ↑= 0, ∆Qi ↓= 0, si = 0, ∀ i ∈M . (3.26d)

0 ≤ ∆Pi ↑≤ PG,maxi − Pi, ∀ i ∈ G, (3.26e)

0 ≤ ∆Pi ↓≤ −(PG,mini − Pi), ∀ i ∈ G, (3.26f)

0 ≤ ∆Qi ↑≤ QG,maxi −Qi, ∀ i ∈ G, (3.26g)

0 ≤ ∆Qi ↓≤ −(QG,mini −Qi), ∀ i ∈ G. (3.26h)

max(PG,mini − Pi, ∆i) ≤ si ≤ min(PG,maxi − Pi, ∆i), ∀ i ∈ G. (3.26i)

With the now defined cost function, constraints and variable bounds, the LP is cal-
culated. The resulting variable values, represent the changes that has to be made
in order to make the post-contingency state feasible, according to the linearized
model. The values of s will therefore be the post-contingency rescheduling of ac-
tive power that is assumed to be made ”within reasonable time” when we are con-
sidering CSCOPF. It should however be noted that the model is linearized around
the base-case operating point. This rescheduling is therefore not accurate if the
rescheduling is large.

Step 2b - Benders Cut

If a subproblem solution has a cost which is not zero, it means that adjustments
in the base-case active power production must be made in order for the system to
stay safe during the evaluated contingency case. The way to feed this information
to the base-case problem, is to create a BC. It’s a linear constraint that can be
added to the base-case. Associated with the subproblem LP solution, there is a
set of Lagrange multipliers, which is the marginal change in the objective function
value to marginal changes in the optimization variables. For instance is ∂w

∂P2
how
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3.2 Solution Strategy

much the objective function w would change with one unit change in P2. The BC
constraint can be formulated in terms of the base-case optimization variables as:

[
∂wc
∂P1↑ . . . ∂wc

∂PN↑

]∆P1
...

∆PN

 ≥ wc. (3.27)

The vector of Lagrange multipliers and the value of wc are stored, and the con-
straint can be added in the next ACOPF iteration the same way as the other con-
straints. That is by adding the vector of the Lagrange multipliers (with zeros in the
positions corresponding to the other variables) to the matrixA, appending wc to b
and appending a 1 to e (to mark as ”greater than” constraint).

Step 3 - Finish check

If none of the subproblems led to non-zero wc, none of the contingencies that
were included led to a post-contingency system state that was infeasible after the
allowed rescheduling actions. If also the convergence criterion of the ACOPF
algorithm is met, the solution is found and the program can exit. If, however, there
were subproblems were wc > 0, or the convergence criteria is no longer met, the
loop continues.

Step 4 - New iteration

A new ACOPF iteration is run, but this time with the BC’s of the infeasible con-
tingency subproblems included as constraints. Because everything is linearized,
there may still be infeasible subproblems, so afterwards the algorithm returns to
step 2 for a new round of contingency checks.

3.2.3 Penalty Variable

A problem that can occur with the algorithms as described above, is that the LP
problem may be infeasible when new constraints are added and the TR radius is
too small for the constraints to be met. In response, two measures are made. First,
when new constraints are added, the TR radius is increased. However, it’s not
desirable to increase it too much, as the linearizations may become too inaccurate.
Therefore, also a non-negative penalty variable z is added to the master problem.
This variable has a very high associated cost, and will therefore only be non-zero
if the alternative is problem infeasibility. For instance, will a BC contingency
constraint look like:
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Chapter 3. Problem Formulation and Solution Method

[
∂wc
∂P1↑ . . . ∂wc

∂PN↑

]∆P1
...

∆PN

+ z ≥ wc. (3.28)

The program will never be allowed to finish unless z = 0. An iteration with
z 6= 0 may, however, give a solution step that drives the solution in the right di-
rection. The solution step may, therefore, be accepted, even though the temporary
solution is infeasible.

3.3 Implementation

The algorithm has already been explained quite detailed, but some notes on the
actual implementation are included here. The program is implemented in Python
and takes an object-oriented approach. The system is described by a set of objects
of defined classes. The classes included in the current implementation are ”Line”
and ”Bus”, where the class ”Bus” has the two sub-classes ”GeneratorBus” and
”LoadBus”. All system data are included in the initialization of these objects. The
only inputs to the ACOPF program are a list of buses and a list of lines. The
SCOPF program also takes a list of lines to include in the contingency analysis.

A NR PF solver, following the principles described in subsection 2.1.5, are
implemented for executing the required AC PF’s. It’s implemented to take the
bus- and line-lists as inputs, and return a PF solution.

3.3.1 LP Solve

For solving the LP problems, the free LP solver LP Solve is used. It uses the
revised simplex method and is fully integrable with Python. To run LP Solve from
Python, the driver program lpsolve55 is needed. For more information about LP
Solve with Python, see [35].

For easy use of LP Solve in Python, a function called lp maker is used. It’s
based on the code found in [36]. It’s slightly modified to fit the current version of
LP Solve. The function takes as input the cost vector v, the constraint matrix and
vectors A, b and e, the upper and lower bounds vectors vlb and vub, and a flag
to specify minimization. As it’s output is an LP problem (lp) on a format that can
be sent to LP Solve.

The LP can then be solved by calling:

lpsolve(’solve’, lp).

The resulting variables and objective function value can be retrived by calling:
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3.3 Implementation

lpsolve(’get variables’, lp)[0],
lpsolve(’get objective’, lp),

respectively, and the reduced costs by calling:

lpsolve(’get reduced costs’, lp,)[0].

To find the Lagrange multipliers needed for the BC, the reduced costs are sub-
tracted from the cost vector. The cost vector in the subproblem is a vector of ones
corresponding to the active power at the generator buses.
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Chapter 4
Numerical Examples

4.1 6-bus ACOPF Solution

The ACOPF algorithm described in subsection 3.2.1 is tested on the 6-bus exam-
ple system depicted in Figure 4.1. The example is taken from [9]. In the calcula-
tion, all quantities are converted to the per unit (pu) system, with a base power of
Sbase = 100MVA. The system consists of three generator buses, where bus 1 is
the slack bus. The generators at these buses should supply three load buses with a
demand of 50 MW and 15 MVA each. The generators have different ratings and
cost functions, as can be seen from Table A.1. The buses are interconnected by
lines, which impedance data can be found in Table A.3. The objective is to find
the active power generation at each generator that minimizes the total generation
cost while meeting all system constraints. All buses have the voltage limits:

0.95 pu ≤ Vi ≤ 1.07 pu

−π rad ≤ θi ≤ π rad

The initial PF solution is presented in Table 4.1. In this situation, the slack bus
is producing the majority of the active power. The total operating cost, given the
quadratic generator cost functions, is 4479 $/MWh. After 6 iterations, convergence
is detected in step 10, at an operation cost of 4235 $/MWh, which can be seen in
Table 4.2. The branch overload test in step 11, however, detects overloads on
lines 2-4 and 3-6 (see Table 4.3). These lines are then flagged, so that branch
flow constraints on these lines are added in step 3 in the following iterations. At
iteration 9, convergence is again reached, and this time no branch flows exceed
their limits. The solution is therefore found, and the program exits.
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Slack bus

Figure 4.1: Six-bus power flow system. Adapted from [9].

The final solution is presented in Table 4.4 and Table 4.5. The resulting operat-
ing cost is 4255 $/MWh, which is a reduction of 224 $/MWh, or 5.45 %, from the
initial operation, and 20 $/MWh higher than when line limits were disregarded. A
plot showing the cost development through the program execution is presented in
Figure 4.2. The cost increase after the inclusion of branch flow limits after iteration
6 is clearly visible.
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4.1 6-bus ACOPF Solution

Table 4.1: Initial PF solution for the 6-bus test system

Bus Nr. P (pu MW) Q (pu MVAR) |V | (pu) θ(rad)

1 2.12956 -0.10759 1.07 0
2 0.5 0.21757 1.05 -0.12525
3 0.5 0.19016 1.05 -0.15996
4 -1.0 -0.15 1.02721 -0.14748
5 -1.0 -0.15 1.02212 -0.18378
6 -1.0 -0.15 1.02458 -0.20529
Total generation 3.12956 0.300138
Total loss 0.12956 -0.149862
Total cost 4478.84 $/MWh

Table 4.2: Bus info for 6-bus ACOPF result before branch constraints are added (iteration
6)

Bus Nr. P (pu MW) Q ( pu MVAR) |V | (pu) θ (rad)
1 0.76485 0.02817 1.07 0
2 1.08566 0.03513 1.07 -0.01172
3 1.21975 0.02451 1.07 0.00526
4 -1.00 -0.15 1.03733 -0.06846
5 -1.00 -0.15 1.0369 -0.08036
6 -1.00 -0.15 1.04586 -0.06279
Total Generation 3.07026 0.08781
Total Loss 0.07026 -0.36219
Total Cost 4234.98 $/MWh

Table 4.3: Branch flows for 6-bus ACOPF solution before line constraints are added (iter-
ation 6).

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
1 2 0.05385 -0.02653 0.06003 1.0
1 4 0.40151 0.0874 0.41092 1.0
1 5 0.30953 0.04744 0.31314 1.0
2 3 -0.07463 0.01559 0.07624 0.6
2 4 0.65053 0.04214 0.65189 0.6
2 5 0.2663 0.03798 0.269 0.6
2 6 0.29698 0.0325 0.29875 0.6
3 5 0.35859 -0.01367 0.35885 0.6
3 6 0.78626 0.12694 0.79644 0.6
4 5 0.02611 -0.01175 0.02864 0.6
5 6 -0.06629 -0.0083 0.0668 0.6
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Table 4.4: Bus info for 6-bus ACOPF final solution (iteration 9)

Bus Nr. P (pu MW) Q (pu MVAR) |V | (pu) θ (rad)
1 1.05875 -0.05138 1.07 0
2 1.29312 0.06219 1.07 -0.03311
3 0.72261 0.09587 1.06544 -0.05798
4 -1.00 -0.15 1.03808 -0.08462
5 -1.00 -0.15 1.03579 -0.11134
6 -1.00 -0.15 1.04184 -0.10942
Total Generation 3.07448 0.10668
Total Loss 0.07448 -0.34332
Total Cost 4254.64 $/MWh

Table 4.5: Branch flows for 6-bus ACOPF final solution (iteration 9).

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
1 2 0.15288 -0.0733 0.16954 1
1 4 0.48664 0.06899 0.4915 1
1 5 0.4193 0.03306 0.4206 1
2 3 0.11305 -0.0017 0.11306 0.6
2 4 0.59999 0.05628 0.60262 0.6
2 5 0.29982 0.03336 0.30167 0.6
2 6 0.43058 0.01616 0.43089 0.6
3 5 0.23516 0.01901 0.23592 0.6
3 6 0.60000 0.14615 0.61754 0.6
4 5 0.06022 -0.02322 0.06454 0.6
5 6 -0.01247 -0.01672 0.02086 0.6
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4.1 6-bus ACOPF Solution

Figure 4.2: Cost-iteration plot of the 6-bus ACOPF solution.
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4.2 12-bus SCOPF Solution

In this example, also found in [9], the 12-bus system depicted in Figure 4.3 are
considered. In [9], the example is only solved using DC SCOPF. Here, the example
is somewhat modified, and is used to demonstrate a nonlinear SCOPF solution,
using the algorithm described in section 3.2. The system consists of two areas,
which are copies of the 6-bus system considered in the previous section. Some
line limits have been increased, and the loads and the generation costs are different.
Complete system data can be found in section A.2. The essence is that Area 1 has a
higher load, but the generation cost is much lower in Area 2. It’s therefore desirable
to transfer power from Area 2 to Area 1, but the amount is limited by the system
constraints. The two areas are interconnected by two lines (3-9 and 4-10) with a
limited transfer capacity of 0.3 pu MW each (chosen for the sake of the example).
We want to find the lowest cost dispatch which ensures the safe operation of the
system, should either of the lines 3-9 or 4-10 fall out of operation. This is a SCOPF
problem where we are considering the two contingencies: ”failure of line 3-9” and
”failure of line 4-10”. The problem is solved for the three levels of security: ”no
security constraints”, ”preventive security” and ”corrective security”.

1

2

3

6

5

4

Slack bus

7

8

9

12

11

10

Area 2

Area 1

Figure 4.3: 12-bus power flow system. Based on [9]
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Table 4.6: Initial PF for the 12-bus system.

Bus Nr. P (pu MW) Q (pu MVAR) |V | (pu) θ (rad)
1 1.9239 -0.23613 1.07 0
2 0.5 -0.14059 1.05 -0.10603
3 0.5 0.20653 1.05 -0.1281
4 -1.10 -0.15 1.05891 -0.1371
5 -1.10 -0.15 1.02416 -0.17196
6 -1.10 -0.15 1.02372 -0.18545
7 1.10 -0.43405 1.05 0.19112
8 0.50 -0.34775 1.05 0.13319
9 0.50 -0.13425 1.05 0.1118
10 -0.50 -0.15 1.06886 0.09099
11 -0.50 -0.15 1.04024 0.09763
12 -0.50 -0.15 1.03638 0.09071
Total Generation 5.02390 -1.08625
Total Loss 0.2239 -1.98625
Total Cost 9391.88 $/MWh

4.2.1 No Security Constraints

The solution to the ACOPF problem without considering contingencies are pre-
sented in Table 4.8. Table 4.7 shows the flow on lines 3-9 and 4-10 for the obtained
solution. It is also tested what happens if one of the lines 3-9 or 4-10 is removed,
and the resulting line flows are presented in Table 4.9 and Table 4.10. The com-
plete flow tables including all lines can be found in Appendix B. Figure 4.4 shows
how the total operating cost changes for each iteration of the program.

It can be observed that the operation cost is reduced from the initial cost of
9392 $/MWh (Table 4.6), to 9003 $/MWh (Table 4.8). The branch constraints
during normal operation are successfully met. However, it’s clear that a failure
of line 3-9 would lead to overload on line 4-10 and wise versa (Table 4.9 and
Table 4.10). To solve this issue, a SCOPF solution is needed.

Table 4.7: Flow on lines 3-9 and 4-10 for the final ACOPF solution for the 12-bus system.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
3 9 -0.29066 0.19963 0.35261 0.3
4 10 -0.30000 0.20399 0.36278 0.3
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Figure 4.4: ACOPF cost-iteration plot for 12-bus system solution.

Table 4.8: Bus info for final solution of ACOPF on the 12-bus system.

Bus Nr. P (pu MW) Q (pu MVAR) |V | (pu) θ (rad)
1 0.72938 -0.11696 1.07 0
2 1.13852 -0.29669 1.06902 -0.00776
3 0.91376 0.15723 1.07 -0.00112
4 -1.10 -0.15 1.06716 -0.06552
5 -1.10 -0.15 1.03817 -0.08737
6 -1.10 -0.15 1.04387 -0.07157
7 0.5 -0.45378 1.04108 0.28964
8 0.88815 -0.45897 1.05926 0.2816
9 0.83129 -0.08719 1.07 0.27523
10 -0.50 -0.15 1.07 0.21998
11 -0.50 -0.15 1.048 0.23823
12 -0.50 -0.15 1.0522 0.24645
Total Generation 5.00109 -1.25637
Total Loss 0.20109 -2.15637
Total Cost 9003.43 $/MWh
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Table 4.9: Flow on lines 3-9 and 4-10 for when line 3-9 is removed.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
3 9 0 0 0 0.3
4 10 -0.50149 0.44985 0.67369 0.3

Table 4.10: Flow on lines 3-9 and 4-10 for when line 4-10 is removed.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
3 9 -0.52004 0.47785 0.70625 0.3
4 10 0 0 0 0.3

4.2.2 Preventive Security

Now, the SCOPF algorithm is employed to ensure post-contingency security for
the contingency cases ”failure of line 3-9” and ”failure of line 4-10”. We are
demanding preventive security. That is, the system should stay in a feasible state
after a contingency, without doing any rescheduling of active power between the
generator buses. Therefore:

µ = 0 ⇒ ∆i = 0 ∀ i ∈N .

The result is presented in Table 4.11, and the changes in cost over the OPF
iterations can be seen in Figure 4.5. The program spends 26 iterations before final
convergence and ends at a cost of 9116 $/MWh. That is an increase of 113 $/MWh,
or 1.25 %, compared to when no contingencies are considered. Table 4.12 shows
that the lines 3-9 and 4-10 are now operated well below their rated limits. If one of
the two lines are now disconnected, the other should not be overloaded. Table 4.13
and Table 4.14 show that this is in fact the case.
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Figure 4.5: PSCOPF cost-iteration plot for 12-bus system solution.

Table 4.11: Bus info for final solution of PSCOPF on the 12-bus system.

Bus Nr. P (pu MW) Q (pu MVAR) |V | (pu) θ (rad)
1 0.81571 -0.15633 1.07 0
2 1.17438 -0.31105 1.06973 -0.01156
3 1.07653 0.00988 1.0683 -0.00295
4 -1.10 -0.15 1.07 -0.0767
5 -1.10 -0.15 1.03832 -0.09075
6 -1.10 -0.15 1.04317 -0.07421
7 0.50001 -0.40223 1.04326 0.14224
8 0.71544 -0.50745 1.05436 0.13116
9 0.65294 -0.01971 1.06794 0.12594
10 -0.50 -0.15 1.07 0.07949
11 -0.50 -0.15 1.04628 0.09025
12 -0.50 -0.15 1.04941 0.09691
Total Generation 4.93502 -1.38689
Total Loss 0.13502 -2.28689
Total Cost 9116.48 $/MWh
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Table 4.12: Flow on lines 3-9 and 4-10 for the final PSCOPF solution for the 12-bus
system.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
3 9 -0.14173 0.08317 0.16433 0.3
4 10 -0.17112 0.10298 0.19972 0.3

Table 4.13: Branch flows on lines 3-9 and 4-10 for final PSCOPF solution for the 12-bus
system, when line 3-9 are disconnected.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
3 9 0 0 0 0.3
4 10 -0.28759 0.19724 0.34873 0.3

Table 4.14: Branch flows on lines 3-9 and 4-10 for final PSCOPF solution for the 12-bus
system, when line 4-10 are disconnected.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
3 9 -0.3002 0.20924 0.36593 0.3
4 10 0 0 0 0.3

4.2.3 Corrective Security

Instead of demanding preventive security, we are now assuming that each generator
can adjust its active power output by 5% of its rated power in case of a contingency
before an overload becomes critical. Therefore µ = 0.05, and

∆i = µPG,maxi ∀ i ∈ G. (4.1)

The result is presented in Table 4.15 and a plot of the cost after each iteration
is shown in Figure 4.6. The program is now converging after 24 iterations at a cost
of 9040 $/MWh, which, as expected, is somewhere in between the ”no security”
and the ”preventive security” solution. The cost increase from the ”no security
constraints” solution is now only 0.41 %. Table 4.16 shows that the lines 3-9 and
4-10 are operated below their limits, but not as far below as with the PSCOPF
solution.

To test whether the CSCOPF solution achieves the desired outcome, it’s not
enough to just remove a line and run a PF analysis, as with the PSCOPF solu-
tion. Also, the corrective actions that were the prerequisites for deeming the post-
contingency subproblem feasible, must be performed. For the active power, that is
the value of the variables s from the last subproblem execution of one particular
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contingency. In Table 4.17 and Table 4.18, these values are denoted as ∆P , since
they are adjustments in the active power. In addition, the required changes in volt-
age magnitude from the subproblem are also included. These two quantities are
the specified (controllable) variables of generator buses.

To test the contingency cases with the CSCOPF solution, the lines 3-9 and
4-10 are removed in turn, and the corresponding changes of Table 4.17 and Ta-
ble 4.18 are made before a PF solution is found. Table 4.19 and Table 4.20 show
the resulting flows on these lines, and it can be observed that the active PF is in
fact below the limit. There are however some issues. Since the adjustments of
Table 4.17 and Table 4.18 are based on linearization around the pre-contingency
operating point, the suggested post-contingency corrective actions are not fully
accurate. The resulting increase in losses are also not taken into account, which
leads to the slack bus actually increasing its active power production by more than
the allowed ∆1 = 0.10 (see Table B.8 and Table B.10). Also, here, the focus has
been on the active power production and flow. It can, however, be observed that
the measures made to keep the active PF on lines 3-9 and 4-10 below their limits
in the post-contingency cases, actually lead to a significant increase in reactive PF
on the same line. In reality, this would be counterproductive.

Figure 4.6: CSCOPF cost-iteration plot for 12-bus system solution.
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Table 4.15: Bus info for final solution of CSCOPF on the 12-bus system.

Bus Nr. P (pu MW) Q (pu MVAR) |V | (pu) θ (rad)
1 0.74797 -0.08115 1.07 0
2 1.13012 -0.33301 1.06524 -0.00665
3 1.02006 0.06621 1.06474 0.00442
4 -1.10 -0.15 1.06561 -0.0686
5 -1.10 -0.15 1.03482 -0.08609
6 -1.10 -0.15 1.03932 -0.06838
7 0.50001 -0.40559 1.04377 0.22981
8 0.81779 -0.52176 1.0563 0.22162
9 0.75193 -0.03965 1.07 0.2151
10 -0.50 -0.15 1.07 0.16359
11 -0.50 -0.15 1.04774 0.17873
12 -0.50 -0.15 1.05134 0.18636
Total Generation 4.96787 -1.31494
Total Loss 0.16787 -2.21494
Total Cost 9039.55 $/MWh

Table 4.16: Branch flows for lines 3-9 and 4-10 for the final CSCOPF solution for the
12-bus system.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
3 9 -0.22846 0.13872 0.26727 0.3
4 10 -0.24941 0.15711 0.29477 0.3

Table 4.17: Suggested rescheduling actions for contingency ”Failure of line 3-9”.

Bus ∆P ∆V ∆
1 0.10000 0.00000 0.10
2 0.07500 -0.08714 0.075
3 -0.03531 -0.09037 0.090
7 -0.00000 -0.09377 0.100
8 -0.07500 -0.09729 0.075
9 -0.09000 -0.08881 0.090
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Table 4.18: Suggested rescheduling actions for contingency ”Failure of line 4-10”.

Bus ∆P ∆V ∆
1 0.10000 0.00000 0.10
2 0.07500 -0.00403 0.075
3 -0.04182 0.00526 0.090
7 -0.00001 -0.09145 0.100
8 -0.07500 -0.05570 0.075
9 -0.09000 -0.12000 0.090

Table 4.19: Branch flows for final CSCOPF solution for the 12-bus system, when line 3-9
are disconnected and the changes of Table 4.17 have been applied.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
3 9 0 0 0 0.3
4 10 -0.2966 0.26265 0.39618 0.3

Table 4.20: Branch flows for final CSCOPF solution for the 12-bus system, when line
4-10 are disconnected and the changes of Table 4.18 have been applied.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
3 9 -0.28347 0.39725 0.48802 0.3
4 10 0 0 0 0.3
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Chapter 5
Discussion

Where chapter 4 provided some discussion on the studied numerical examples,
this chapter provides a more general discussion on the taken approaches and the
obtained results, with a special focus on success factors and improvement areas.

5.1 Method Choices

As mentioned, there are several different ways to solve both regular OPF problems
and SCOPF problems. Important for this thesis was to identify a method that is not
too challenging to understand, and that could be implemented in Python without
using commercial software. For this reason, SLP for solving the ACOPF problem
was a natural choice. It is a well used and proven method and is relatively easy
to understand and implement for someone without a background in operations
research. The wide availability and robustness of LP solvers also talk in favour of
this approach. There may, of course, be methods better suited, and later studies
could compare their performance to the one chosen here.

As previously described, the BD approach was chosen for handling the con-
tingency constraints of the SCOPF problem. Other approaches were not widely
considered, as the BD approach seemed to fit the problem well. It seems to be the
most widely used method in the literature and has a long history. It fits well with
the SLP method, as the subproblems produce linear constraints that can be easily
added to the LP master problem. Also, the ability to calculate the subproblems in
parallel can prove advantageous in future implementations using parallel comput-
ing. The issue that convergence to the global optimum cannot be guaranteed, is, of
course, something to keep in mind.

For solving the subproblem and generating BC’s, LP appears to be a natural
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choice. That is because the chosen objective function is linear. The constraints
still have to be linearized, but this linearization is quite good close to the lineariza-
tion point. It may, however, be problematic in the CSCOPF case, as observed in
subsection 4.2.3.

For solving the master problem in each OPF iteration, it may be discussed
whether the chosen method of LP with TR is the best approach. Instead of lin-
earizing the cost function based on the slope at the current operation point, some
formulations divide the cost function into linear segments. This is sometimes re-
ferred to as piecewise linear programming. The advantage of this approach is that
the solution may be found sooner, as it is possible to make larger steps. However,
with this approach, there are more variables to keep track on, as each segment
must have a designated variable in the LP calculation. It was chosen not to follow
this approach, as it didn’t give any clear computational advantage on the small
6-bus system. It’s, however, possible that the advantage is greater for larger sys-
tems. Should that prove to be the case, it shouldn’t be too much work to change
to this approach. Another improvement to consider is to use QP instead of LP
for the master problem. That could be advantageous for the obvious reason that
the considered cost function is quadratic. This has not been tested, but should be
considered in a future, more advanced implementation.

5.2 ACOPF Solution

The ACOPF algorithm described in subsection 3.2.1 and demonstrated in sec-
tion 4.1 and subsection 4.2.1 shows promising results. It performs very well for
the 6-bus system, where the solution was found after 9 iterations. Both for the 6-
bus and the 12-bus system, an operating state that is significantly cheaper than the
initial state are found. A concern is however that the number of iterations needed
for convergence seems to increase with increasing system size, as the 12-bus sys-
tem converges in 18 iterations. As both an LP and a PF calculation are needed for
every iteration, the computational burden can potentially be quite high for large
systems. The efficiency of the algorithms have not been closely studied, but it’s
something to consider in a more developed implementation. The efficiency of the
PF calculations could, for instance, be improved by using a decoupled PF method,
as described in subsection 2.1.6. The number of iterations could be reduced by
using QP or piecewise linear programming, as mentioned in the previous section.
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5.3 SCOPF Solution

5.3 SCOPF Solution

The demonstrated handling of security constraints has proven to be good for pro-
viding preventive security and looks promising for corrective security. In subsec-
tion 4.2.2, it was demonstrated how preventive security was achieved quite pre-
cisely, and the new solution needed only 5 extra iterations after the base-case solu-
tion was found. It could also be observed how the extra security requirements led
to a quite significant increase in cost. This observation can serve as a motivation
for why corrective security is appealing.

In subsection 4.2.3, it’s demonstrated how the operation cost can be lowered,
without necessarily sacrificing security, by also considering the generators’ cor-
rective capabilities. This cost reduction could potentially be quite large for a larger
system, and the savings considerable when considering a longer time horizon. As
also mentioned in subsection 4.2.3, the CSCOPF solution becomes increasingly
imprecise for larger post-contingency rescheduling. This is because of the nonlin-
earities between the pre- and post-contingency operating states, as the subproblem
is linearized around the pre-contingency operating state. Further investigation into
the significance of this mismatch should be considered if this method for includ-
ing post-contingency rescheduling in the SCOPF problem are to be used in a future
implementation.
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Chapter 5. Discussion
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Chapter 6
Conclusion and Further Work

6.1 Conclusion

This thesis aimed to identify a method for solving non-linear SCOPF problems and
make a prototype implementation in Python. The ACOPF problem was solved by
SLP with a TR method and then combined with a BD approach for handling the
contingency constraints of the SCOPF problem. A prototype Python program was
successfully implemented and demonstrated on two illustrative numerical exam-
ples. The results show great promise and demonstrate the potential for cost savings
if adopted.

The theoretical background has been laid out, and the proposed solution algo-
rithms thoroughly explained. It has been shown how one can utilize available LP
solvers for solving nonlinear problems by repetitive linearization. The adopted TR
method helps to make steps of appropriate size from one iteration to the next. The
SLP method and BD have proven to work well together. The linear constraints
obtained from the BD subproblems can easily be included in the LP calculation of
the SLP iterations.

The numerical examples demonstrate that the program works as intended. For
both systems, a lower-cost operating state that satisfies all the included system
constraints are found. With the 12-bus system, it’s demonstrated how the inclusion
of security constraints affect the solution. As expected, the demand for ”preventive
security” led to the highest operating cost. When also considering the possibility
for post-contingency rescheduling, it was shown that the system can be operated at
a lower cost. Testing showed that the obtained SCOPF solutions did stay feasible
for the considered contingency cases. It was however noted that that the CSCOPF
solution might not be completely reliable if the allowed corrective rescheduling is
large.
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This work has demonstrated both the usefulness of SCOPF and shown an ex-
ample of how to formulate and solve the problem. This could prove a helpful step
in the development of smart algorithms for planning and operation of the future
distribution grid. The experiences so far have been promising, and with further
work, the presented approach may prove a valuable addition to the toolbox for
planning and operation of microgrids.

6.2 Further Work

This thesis work should serve as a foundation for developing a more general and
practically applicable implementation of SCOPF for distribution grid applications.
To reach this goal, there are several improvements and additional features that
should be considered for further work. Some elements to consider are listed below.

• The test systems used here are theoretical and of limited size. Further work
could include testing on larger and more realistic systems.

• In this thesis, the emphasis has been on active power dispatch. A suggestion
for further work is to also include the cost of reactive power dispatch in the
problem. For instance can reactive power pricing be considered.

• The branch flow constraints in this implementation were also based on active
power. As mentioned in subsection 2.2.3, it’s more realistic to use current
or apparent power limits for flow constraints in distribution grids. Further
work could include implementing these type of flow constraints.

• In this implementation, only one time-step is considered. The introduction
of varying RES and energy storage in future distribution systems makes it
necessary to optimize operation over a given period. Further work could,
therefore, investigate how the algorithm can be extended to multi-period
OPF.

• It could be considered to incorporate advanced controls, such as on-load
tap changers, phase shifters, series and shunt capacitors, and flexible AC
transmission systems devices.

• Other types of contingencies could be considered. For instance generator-,
bus-, load- or shunt outages.

• Investigate and implement a contingency filtering technique for identifying
relevant contingencies to include in the set of contingencies.
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Appendix A
System Data

A.1 6-bus System

Table A.1: Generator data for 6-bus system. Found in [9].

Gen. Pmin Pmax Qmin Qmax V
bus a b c (MW) (MW) (MVAR) (MVAR) (pu)
1 213.1 11.669 0.00533 50.0 200.0 -100.0 150.0 1.07
2 200.0 10.333 0.00889 37.5 150.0 -100.0 150.0 1.05
3 240.0 10.833 0.00741 45.0 180.0 -100.0 120.0 1.05

Table A.2: Load data for 6-bus system. Found in [9].

Load bus PL (MW) QL (MVAR)
4 100.0 15.0
5 100.0 15.0
6 100.0 15.0
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Table A.3: Branch data for 6-bus system. Found in [9].

From bus To bus R (pu) X (pu) Bcap (pu) Pmax
ij (MW)

1 2 0.10 0.20 0.04 100.0
1 4 0.05 0.20 0.04 100.0
1 5 0.08 0.30 0.06 100.0
2 3 0.05 0.25 0.06 60.0
2 4 0.05 0.10 0.02 60.0
2 5 0.10 0.30 0.04 60.0
2 6 0.07 0.20 0.05 60.0
3 5 0.12 0.26 0.05 60.0
3 6 0.02 0.10 0.02 60.0
4 5 0.20 0.40 0.08 60.0
5 6 0.10 0.30 0.06 60.0

A.2 12-bus System

Table A.4: Generator data for 12-bus system. Found in [9].

Gen. Pmin Pmax Qmin Qmax V
bus a b c (MW) (MW) (MVAR) (MVAR) (pu)
1 319.65 17.5035 0.007995 50.0 200.0 -100.0 150.0 1.07
2 300.0 15.4995 0.013335 37.5 150.0 -100.0 150.0 1.05
3 360.0 16.2495 0.011115 45.0 180.0 -100.0 120.0 1.05
7 213.1 11.669 0.00533 50.0 200.0 -100.0 150.0 1.07
8 200.0 10.333 0.00889 37.5 150.0 -100.0 150.0 1.05
9 240.0 10.833 0.00741 45.0 180.0 -100.0 120.0 1.05

Table A.5: Load data for 12-bus system. Found in [9].

Load bus PL (MW) QL (MVAR)
4 110.0 15.0
5 110.0 15.0
6 110.0 15.0
10 50.0 15.0
11 50.0 15.0
12 50.0 15.0
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Table A.6: Branch data for 12-bus system. Found in [9], but with some adjustments.

From bus To bus R (pu) X (pu) Bcap (pu) Pmax
ij (MW)

1 2 0.10 0.20 0.04 100.0
1 4 0.05 0.20 0.04 100.0
1 5 0.08 0.30 0.06 100.0
2 3 0.05 0.25 0.06 60.0
2 4 0.05 0.10 0.02 120.0
2 5 0.10 0.30 0.04 60.0
2 6 0.07 0.20 0.05 60.0
3 5 0.12 0.26 0.05 60.0
3 6 0.02 0.10 0.02 120.0
4 5 0.20 0.40 0.08 60.0
5 6 0.10 0.30 0.06 60.0
7 8 0.10 0.20 0.04 100.0
7 10 0.05 0.20 0.04 100.0
7 11 0.08 0.30 0.06 100.0
8 9 0.05 0.25 0.06 60.0
8 10 0.05 0.10 0.02 60.0
8 11 0.10 0.30 0.04 60.0
8 12 0.07 0.20 0.05 60.0
9 11 0.12 0.26 0.05 60.0
9 12 0.02 0.10 0.02 120.0
10 11 0.20 0.40 0.08 60.0
11 12 0.10 0.30 0.06 60.0
3 9 0.40 0.80 0.16 30.0
4 10 0.40 0.80 0.16 30.0
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B.1 12-bus - No Contingency Constraints

Table B.1: Branch flows for final ACOPF solution for the 12-bus system.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
1 2 0.03768 -0.0134 0.03999 1.0
1 4 0.35826 -0.06214 0.36361 1.0
1 5 0.33344 0.03872 0.33568 1.0
2 3 -0.03 0.00189 0.03005 0.6
2 4 0.54237 -0.23236 0.59005 1.2
2 5 0.30128 0.02119 0.30202 0.6
2 6 0.36241 0.01891 0.36291 0.6
3 5 0.3593 -0.01897 0.3598 0.6
3 6 0.81508 0.14427 0.82775 1.2
4 5 0.07962 0.03819 0.08831 0.6
5 6 -0.05715 -0.00021 0.05715 0.6
7 8 -0.00231 -0.09329 0.09332 1.0
7 10 0.33261 -0.22017 0.39888 1.0
7 11 0.16969 -0.06445 0.18152 1.0
8 9 0.01905 -0.04922 0.05277 0.6
8 10 0.52142 -0.35296 0.62965 0.6
8 11 0.15735 -0.00922 0.15762 0.6
8 12 0.18722 -0.02466 0.18884 0.6
9 11 0.16707 0.01637 0.16787 0.6
9 12 0.34904 0.12536 0.37087 1.2
10 11 -0.0172 0.06791 0.07005 0.6
11 12 -0.03154 -0.00401 0.03179 0.6
3 9 -0.29066 0.19963 0.35261 0.3
4 10 -0.30000 0.20399 0.36278 0.3
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Table B.2: Branch flow of the 12-bus system after removal of line 3-10 with the standard
ACOPF solution of subsection 4.2.1.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
1 2 0.09258 -0.03991 0.10082 1
1 4 0.32979 -0.0125 0.33003 1
1 5 0.38853 0.03393 0.39001 1
2 3 0.07783 -0.01905 0.08012 0.6
2 4 0.40156 -0.08243 0.40993 1.2
2 5 0.31421 0.02242 0.31501 0.6
2 6 0.43662 0.00364 0.43663 0.6
3 5 0.28472 0.01385 0.28505 0.6
3 6 0.70658 0.16865 0.72643 1.2
4 5 0.12073 0.00011 0.12073 0.6
5 6 -0.02224 -0.01334 0.02594 0.6
7 8 -0.03063 -0.0793 0.08501 1
7 10 0.4021 -0.18732 0.4436 1
7 11 0.12853 -0.04961 0.13777 1
8 9 -0.10524 -0.02334 0.10779 0.6
8 10 0.72195 -0.34654 0.80081 0.6
8 11 0.13888 0.00205 0.13889 0.6
8 12 0.10126 0.00028 0.10127 0.6
9 11 0.25146 -0.01089 0.2517 0.6
9 12 0.47407 0.09957 0.48441 1.2
10 11 -0.07704 0.08071 0.11158 0.6
11 12 -0.07015 0.00179 0.07017 0.6
3 9 0 0 0 0.3
4 10 -0.50149 0.44985 0.67369 0.3
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Table B.3: Branch flow of the 12-bus system after removal of line 4-10 with the standard
ACOPF solution of subsection 4.2.1.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
1 2 0.05226 -0.02052 0.05614 1.0
1 4 0.43506 0.1025 0.44697 1.0
1 5 0.32687 0.0593 0.3322 1.0
2 3 -0.11672 0.02073 0.11854 0.6
2 4 0.71946 0.0436 0.72078 1.2
2 5 0.2855 0.04448 0.28894 0.6
2 6 0.30226 0.03903 0.30477 0.6
3 5 0.41652 -0.01717 0.41687 0.6
3 6 0.89995 0.13962 0.91072 1.2
4 5 0.02306 -0.00951 0.02495 0.6
5 6 -0.0814 -0.00882 0.08188 0.6
7 8 0.04558 -0.11643 0.12504 1.0
7 10 0.23019 -0.02787 0.23187 1.0
7 11 0.22423 -0.05675 0.2313 1.0
8 9 0.15527 -0.07337 0.17173 0.6
8 10 0.31915 0.0862 0.33059 0.6
8 11 0.17593 0.0047 0.17599 0.6
8 12 0.28193 -0.04213 0.28507 0.6
9 11 0.07815 0.07735 0.10996 0.6
9 12 0.21278 0.172 0.27361 1.2
10 11 0.04199 -0.03614 0.0554 0.6
11 12 0.01176 -0.03023 0.03243 0.6
3 9 -0.52004 0.47785 0.70625 0.3
4 10 0 0 0 0.3
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B.2 12-bus - PSCOPF

Table B.4: Branch flows for final PSCOPF solution for the 12-bus system.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
1 2 0.05364 -0.025 0.05918 1
1 4 0.4168 -0.08736 0.42586 1
1 5 0.34528 0.03618 0.34717 1
2 3 -0.03661 0.01363 0.03907 0.6
2 4 0.60466 -0.28091 0.66673 1.2
2 5 0.30071 0.02339 0.30162 0.6
2 6 0.35895 0.02738 0.35999 0.6
3 5 0.36154 -0.02724 0.36257 0.6
3 6 0.82003 0.13272 0.8307 1.2
4 5 0.06524 0.05241 0.08368 0.6
5 6 -0.05864 0.00324 0.05873 0.6
7 8 0.02569 -0.07044 0.07498 1
7 10 0.29919 -0.20331 0.36173 1
7 11 0.17513 -0.05229 0.18277 1
8 9 0.01159 -0.05954 0.06066 0.6
8 10 0.40626 -0.35294 0.53816 0.6
8 11 0.14481 -0.01678 0.14578 0.6
8 12 0.17795 -0.03294 0.18097 0.6
9 11 0.16134 0.01727 0.16226 0.6
9 12 0.35184 0.13227 0.37588 1.2
10 11 0.00135 0.06294 0.06296 0.6
11 12 -0.02519 -0.00246 0.02531 0.6
3 9 -0.14173 0.08317 0.16433 0.3
4 10 -0.17112 0.10298 0.19972 0.3
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Table B.5: Branch flows for final PSCOPF solution for the 12-bus system, when line 3-9
are disconnected.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
1 2 0.07352 -0.0346 0.08126 1.0
1 4 0.39335 -0.07281 0.40003 1.0
1 5 0.36767 0.03327 0.36917 1.0
2 3 0.01609 0.00294 0.01636 0.6
2 4 0.52819 -0.22755 0.57512 1.2
2 5 0.30771 0.02253 0.30853 0.6
2 6 0.39533 0.01923 0.3958 0.6
3 5 0.32545 -0.0131 0.32572 0.6
3 6 0.76716 0.14345 0.78045 1.2
4 5 0.08768 0.03695 0.09515 0.6
5 6 -0.04207 -0.00212 0.04212 0.6
7 8 0.01207 -0.06379 0.06492 1.0
7 10 0.33203 -0.19846 0.38681 1.0
7 11 0.15591 -0.04674 0.16277 1.0
8 9 -0.04476 -0.04819 0.06577 0.6
8 10 0.49644 -0.37029 0.61933 0.6
8 11 0.1365 -0.01293 0.13711 0.6
8 12 0.13894 -0.02223 0.14071 0.6
9 11 0.19951 0.00319 0.19953 0.6
9 12 0.40849 0.11948 0.4256 1.2
10 11 -0.02589 0.07247 0.07696 0.6
11 12 -0.04283 0.00107 0.04285 0.6
3 9 0 0 0 0.3
4 10 -0.28759 0.19724 0.34873 0.3
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Table B.6: Branch flows for final PSCOPF solution for the 12-bus system, when line 4-10
are disconnected.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
1 2 0.05762 -0.02694 0.06361 1
1 4 0.44067 0.09919 0.45169 1
1 5 0.33656 0.05857 0.34162 1
2 3 -0.09573 0.0264 0.09931 0.6
2 4 0.71809 0.04722 0.71964 1.2
2 5 0.29084 0.04668 0.29457 0.6
2 6 0.31845 0.04302 0.32135 0.6
3 5 0.40229 -0.01802 0.40269 0.6
3 6 0.87828 0.13369 0.8884 1.2
4 5 0.02722 -0.00967 0.02888 0.6
5 6 -0.07604 -0.00849 0.07651 0.6
7 8 0.05862 -0.0863 0.10433 1
7 10 0.23279 -0.00444 0.23283 1
7 11 0.2086 -0.03922 0.21225 1
8 9 0.08529 -0.07323 0.11241 0.6
8 10 0.30448 0.06664 0.31169 0.6
8 11 0.15407 0.00078 0.15407 0.6
8 12 0.22923 -0.0401 0.23271 0.6
9 11 0.11334 0.06147 0.12894 0.6
9 12 0.27718 0.16272 0.32142 1.2
10 11 0.03041 -0.03167 0.04391 0.6
11 12 -0.00114 -0.025 0.02503 0.6
3 9 -0.3002 0.20924 0.36593 0.3
4 10 0 0 0 0.3
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B.3 12-bus - CSCOPF

Table B.7: Branch flows for final CSCOPF solution for the 12-bus system.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
1 2 0.04054 0.00532 0.04088 1
1 4 0.37649 -0.05724 0.38082 1
1 5 0.33094 0.05091 0.33483 1
2 3 -0.04781 0.01196 0.04928 0.6
2 4 0.56941 -0.26688 0.62885 1.2
2 5 0.29834 0.02017 0.29902 0.6
2 6 0.35057 0.02592 0.35152 0.6
3 5 0.36901 -0.03041 0.37026 0.6
3 6 0.83159 0.13371 0.84227 1.2
4 5 0.07156 0.04668 0.08544 0.6
5 6 -0.06165 0.00559 0.06191 0.6
7 8 0.01004 -0.07026 0.07097 1
7 10 0.31845 -0.20428 0.37833 1
7 11 0.17152 -0.05479 0.18006 1
8 9 0.01722 -0.06122 0.0636 0.6
8 10 0.47412 -0.36272 0.59696 0.6
8 11 0.15242 -0.01725 0.1534 0.6
8 12 0.18361 -0.03459 0.18683 0.6
9 11 0.16521 0.01823 0.16621 0.6
9 12 0.35009 0.13432 0.37498 1.2
10 11 -0.00999 0.06487 0.06563 0.6
11 12 -0.02897 -0.00281 0.02911 0.6
3 9 -0.22846 0.13872 0.26727 0.3
4 10 -0.24941 0.15711 0.29477 0.3
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Table B.8: PF solution after line 3-9 is removed and the corrective actions of Table 4.17
have been applied.

Bus Nr. P (pu MW) Q (pu MVAR) |V | (pu) θ (rad)
1 0.93276 0.93804 1.07 0
2 1.20512 -0.9285 0.9781 0.01445
3 0.98475 -0.02705 0.97437 0.00124
4 -1.10 -0.15 0.99594 -0.06108
5 -1.10 -0.15 0.96374 -0.09258
6 -1.10 -0.15 0.94962 -0.07573
7 0.5 -0.29775 0.95 0.3833
8 0.74279 -0.48838 0.95902 0.37548
9 0.66193 0.20571 0.98119 0.38289
10 -0.50 -0.15 0.96724 0.30224
11 -0.50 -0.15 0.94973 0.32885
12 -0.50 -0.15 0.95714 0.34249
Total Generation 5.02735561 -0.5979227
Total Loss 0.22736 -1.49792
Total Cost 9267.35745

B-13



Table B.9: Branch flows for final CSCOPF solution for the 12-bus system, when line 3-9
are disconnected and the changes of Table 4.17 have been applied.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
1 2 0.13638 0.42402 0.44541 1
1 4 0.40167 0.30571 0.50478 1
1 5 0.39471 0.28845 0.48888 1
2 3 0.05131 0.00466 0.05152 0.6
2 4 0.52936 -0.41145 0.67046 1.2
2 5 0.32155 -0.04239 0.32433 0.6
2 6 0.42194 0.01049 0.42207 0.6
3 5 0.30014 -0.08281 0.31135 0.6
3 6 0.73579 0.12144 0.74574 1.2
4 5 0.09302 0.03486 0.09934 0.6
5 6 -0.03252 0.05665 0.06532 0.6
7 8 0.01143 -0.0484 0.04973 1
7 10 0.33444 -0.15039 0.36669 1
7 11 0.15413 -0.03579 0.15823 1
8 9 -0.04317 -0.07634 0.0877 0.6
8 10 0.52144 -0.31468 0.60904 0.6
8 11 0.13725 -0.01277 0.13785 0.6
8 12 0.13843 -0.03697 0.14328 0.6
9 11 0.20677 0.02854 0.20873 0.6
9 12 0.41157 0.16133 0.44206 1.2
10 11 -0.03163 0.05896 0.06691 0.6
11 12 -0.04415 -0.00847 0.04496 0.6
3 9 0 0 0 0.3
4 10 -0.2966 0.26265 0.39618 0.3
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Table B.10: PF solution after line 4-10 is removed and the corrective actions of Table 4.18
have been applied.

Bus Nr. P (pu MW) Q (pu MVAR) |V | (pu) θ (rad)
1 0.91905 0.10735 1.07 0
2 1.20512 -0.10481 1.06121 -0.01565
3 0.97824 0.44663 1.07 -0.00644
4 -1.10 -0.15 1.0286 -0.07895
5 -1.10 -0.15 1.0299 -0.09477
6 -1.10 -0.15 1.04026 -0.07846
7 0.5 -0.45501 0.95231 0.42622
8 0.74279 0.8638 1.0006 0.3899
9 0.66193 -0.63224 0.95 0.38273
10 -0.50 -0.15 0.96252 0.3687
11 -0.50 -0.15 0.94968 0.3516
12 -0.50 -0.15 0.95031 0.35184
Total Generation 5.00712 0.22572
Total Loss 0.20712 -0.67428
Total Cost 9229.31 $/MWh
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Table B.11: Branch flows for final CSCOPF solution for the 12-bus system, when line
4-10 are disconnected and the changes of Table 4.18 have been applied.

From To Flow Flow Flow Lim
Bus Bus (pu MW) (pu MVAR) (pu MVA) (pu MW)
1 2 0.09019 0.00265 0.09023 1
1 4 0.46463 0.12247 0.4805 1
1 5 0.36423 0.06238 0.36953 1
2 3 -0.04737 -0.02766 0.05486 0.6
2 4 0.69951 0.01811 0.69974 1.2
2 5 0.29577 0.02355 0.29671 0.6
2 6 0.34669 0.00066 0.34669 0.6
3 5 0.3773 0.00741 0.37738 0.6
3 6 0.8369 0.17965 0.85597 1.2
4 5 0.03231 -0.01916 0.03757 0.6
5 6 -0.06294 -0.01413 0.0645 0.6
7 8 0.04769 -0.25064 0.25513 1
7 10 0.23833 -0.10059 0.25869 1
7 11 0.21398 -0.0403 0.21774 1
8 9 0.06519 0.18959 0.20049 0.6
8 10 0.31664 0.22493 0.3884 0.6
8 11 0.1608 0.11858 0.19979 0.6
8 12 0.24068 0.17084 0.29515 0.6
9 11 0.09011 -0.03872 0.09808 0.6
9 12 0.26832 -0.05227 0.27336 1.2
10 11 0.04374 0.00936 0.04473 0.6
11 12 -0.00125 -0.00158 0.00202 0.6
3 9 -0.28347 0.39725 0.48802 0.3
4 10 0 0 0 0.3
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