
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Kristin Ottesen Steinskog

Child Speech Recognition

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Torbjørn Karl Svendsen

June 2021

M
as

te
r’s

 th
es

is





Kristin Ottesen Steinskog

Child Speech Recognition

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Torbjørn Karl Svendsen
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems





i

Preface

This report has been written for submission of my master thesis, spring 2021,

at the program Electronics Systems Design and Innovation at the Norwegian

University of Science and Technology (NTNU). I would like to express my great

gratitude to my supervisor, Torbjørn Svendsen, for his guidance and support

during my work with my thesis.

Kristin Ottesen Steinskog

Trondheim, 11.06.21





iii

Abstract

Child speech recognition is a challenging task, and most of the speech recogni-

tion systems today are based on speech from adults. Speech recognition tech-

nology can help speech and language development of young children. Hence,

it is essential to improve speech recognition systems to apply better for chil-

dren. The differences in the speech characteristics of child speech compared

to adult speech are significant. Children have a shorter vocal tract length,

which implies that they have higher formant frequencies than adults. These

features affect the performance of the speech recognition systems. The pur-

pose of this thesis is to improve and implement an automatic speech recogni-

tion (ASR) system for child speech by adapting a model trained on data from

adult speech to child speech. It aims to investigate the method of transfer

learning, where a model trained on adult speech is transferred to fit the acous-

tics of the speech signal of children.

The speech recognition system is implemented by Mozilla’s Deep Speech

architecture, and is trained and tested on child speech data from the CMU Kids

corpus. Four transfer learning experiments are explored in addition to fine-

tuning a pre-trained adult model. The results show a significant decrease in the

word error rate (WER), where the best obtained results show a WER of 27.93%

after fine-tuning of the model. This is a significant improvement down from

a WER of 48.01%, which is the performance of the child speech data tested on

the pre-trained adult model. The best achieved result of the transfer learning

models has a WER of 36.68%, and indicates that it was difficult to get a low WER

due to the lack of data. A WER of 27.93% is still quite high, but indicates that
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the use of adult data can be effective for training an automatic child speech

recognition system, when there are lack of child speech data.
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Sammendrag

Talegjenkjenning for barn er utfordrende ettersom dagens talegjenkjennings-

system er basert på tale fra voksne. Talegjenkjenning kan hjelpe utviklingen av

tale og språk hos barn. Derfor er det viktig å forbedre talegjenkjenningssys-

temene, slik at de fungerer bedre for barn. Forskjellene i karakteristikken i

tale hos barn sammenlignet med voksne er stor. Barn har kortere vokaltrakt,

noe som gjør at de har høyere formantfrekvenser enn det voksne har. Dette

påvirker ytelsen til talegjenkjenningssystemet. Hensikten med denne opp-

gaven er å forbedre og implementere et talegjenkjenningssystem for barne-

stemme. Dette er gjort ved å adaptere en modell som er trent på voksen-

stemme, til barnestemme. Det tar sikte på å undersøke metoden "transfer

learning", hvor en modell som er trent på tale fra voksne er overført til å passe

akustikken til talesignalet til barn.

Talegjenkjenningssystemet er implementert ved Mozilla’s Deep Speech arki-

tektur, og er trent og testet på barnestemme fra korpuset CMU Kids. Fire trans-

fer learning eksperiment er utforsket, i tillegg til finjustering av en ferdigtrent

modell for voksenstemme. Resultatene viser betydelig nedgang i "word error

rate (WER)", der det beste resultatet viser en WER på 27.93% etter finjuster-

ing av modellen. Dette er en betydelig forbedring, ned fra WER på 48.01%,

som er ytelsen på den ferdigtrente voksenmodellen, testet med barnestemme.

Det best oppnådde resultatet fra "transfer learning" modellene har en WER på

36.68%, og indikerer at det er vanskelig å få en lav WER på grunn av manglende

data. En WER på 27.93% er fortsatt ganske høyt, men indikerer at det å bruke

data fra voksenstemme kan være effektivt i implementeringen av en automa-
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tisk talegjenkjenner for barn, der det er mangel på data fra barnestemme.
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Chapter 1

Introduction

1.1 Background

Today, automatic speech recognition (ASR) systems are popular for both adults

and children, and their use increases every day. Technology is getting more

accessible for children in both education and everyday life. The applications

of speech recognition are typical as virtual assistants, learning languages and

can be used as an aid for people with disabilities. The problem with traditional

ASR systems today is that they are not designed for children. The ASR systems

are based on speech from adults, which has significantly different acoustics

than children. Hence, the performance of the systems is not as good for child

speech compared to adult speech.

Children are the ones who can benefit most from speech recognition. It

can help speech and language development for young children, and it can help

improve their communication capability in society. If the ASR systems are not

designed to work for child speech, children will lose the great opportunity of

1
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all these features. It is therefore important to make ASR systems more applica-

ble to children.

The challenges with child speech recognition result from a large variation

in the speech signal and spectra between children and adults. The main issues

behind today’s ASR systems lie in the spectral mismatch between children and

adults. A child’s vocal tract is shorter than adults, which makes the pitch and

formant frequencies higher. Their language is also less developed compared

to adults.

To make an ASR system for children, the best opportunity would have been

to train on child speech, to get all the advantages from the features of the child

speech signal. The issue with this is lack of child speech data compared to how

much needed to train a solid ASR system. A large amount of data are needed

to train a Deep Neural Network (DNN) ASR system. This does exist for speech

from adults, but not children. To overcome this, transfer learning is a method

used in situations with less data, where in this situation, the knowledge learnt

from training on adult speech is transferred to train a child speech ASR system.

1.2 Objectives

The objective of this master thesis is to adapt an ASR model trained on adult

speech to child speech, to get an improved ASR system for children. In other

words, the word error rate (WER) needs to be reduced. The implementation

will be done by Mozilla’s Deep Speech, as this architecture is easy to adapt.

Deep Speech also has a pre-trained model, which is trained on many hours of
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adult speech.

1.3 Structure of the Report

The rest of the report is structured as follows:

• Chapter 2 gives an introduction to the theory relevant for child speech

characteristics and the automatic speech recognition system.

• Chapter 3 is a literature review of state-of-the-art automatic speech recog-

nition systems and speech recognition for children.

• Chapter 4 presents the tools and the dataset.

• Chapter 5 is comprised of the Deep Speech model, the data preparation

and the system implementation.

• In chapter 6, the results from the different experiments are presented.

• Chapter 7 discusses the results from chapter 6.

• Finally, in chapter 8, the conclusion and suggestions for future work are

presented.





Chapter 2

Theory

The following chapter covers the most relevant background theory on child

speech characteristics, automatic speech recognition systems and machine

learning. Section 2.1 presents the characteristics of child speech and the differ-

ences from adult speech, both the variations in the acoustics and the language.

In section 2.2, an introduction to how the automatic speech recognition sys-

tems work and how the system is built with an acoustic model and a language

model is presented. The acoustic model and the language model are presented

in respectively section 2.3 and 2.4. Section 2.5 covers different speaker adap-

tation techniques, while feature extraction is covered in section 2.6. The basic

theory of deep learning is presented in section 2.7, and transfer learning is cov-

ered in section 2.4. Parts of this chapter is taken from my specialization project

report Child Speech Recognition from fall 2020 [1]. These sections are 2.1 - 2.3,

2.5 and 2.6 and are modified in this thesis.

5
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2.1 Child Speech Characteristics

The speech signal of a child has higher pitch and formant frequencies and dif-

fers to a great extent from an adult’s speech signal. This makes the recognition

of child speech difficult, and the characteristics of the child speech have to

be taken into account when implementing an automatic speech recognition

(ASR) system for children. This section will look at the characteristics of both

the acoustics and the language of child speech compared to adults. Analysis

by Lee and Russell [2], which uses PSR (Primary School Reading) corpus from

[3] and the TIMIT corpus [4], have been used to examine the differences in for-

mant frequencies for children and adults. To investigate the differences in the

duration of phonemes, analyses from Gerosa el al.[5] are utilized.

2.1.1 Acoustic analysis

The speaker produces a speech signal of air pressure waves, which consists of

variations of the pressure as a function of time [6]. Two essential features in

speech signals are the fundamental frequency and formant frequencies. The

fundamental frequency is the lowest frequency of a periodic waveform, while

formant frequencies are a measure of the resonances on the vocal tract [5]. It

is sufficient to detect the formants F1, F2 and F3 along with the fundamental

frequency F0 to represent the vocal tract characteristics.

Duration of phonemes

There are spectral and temporal changes in child speech. It has been reported

that the duration of segments is longer for younger children compared to older

children and adults [5]. Figure 2.1 illustrates the duration of the phones from
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age 7-13 and for adults, for comparison from ChildIt training set and IBN train-

ing set. We observe the duration of phonemes is longer for younger children.

The phone duration may be affected by mispronunciations and time align-

ment errors in addition to the reading ability of the person.

Figure 2.1: Figure is taken from [5]. Phone duration for children and adults in
msec.

Formant frequency

The formant frequencies vary with respect to the vocal tract length. The fre-

quencies are higher when the vocal tract is shorter. A decrease of the formant

frequencies occurs concurrently as the vocal tract has a progressive increase in

length when the child grows. F1, F2 and F3 changes are more significant be-

tween the age of 5 to 7 and less marked between 9 to 11 years old. Under the

age of 11, there is no significant difference in the vocal tract length for boys and

girls of the same age. At the age of 15, the formant frequencies have become

similar to adults, where females have a gradual decrease in formant frequen-



8 CHAPTER 2. THEORY

cies up until this age. As males have a disproportional growth of the vocal tract

during puberty, they have a substantial lowering in formant frequencies. The

pitch of their speech signal reduces as a result of an enlarged glottis [5].

Table 2.1 shows the average vowel formant frequencies F1, F2 and F3 for

children and adults. The average value of F1 for children is 942.1 Hz, which

is 182.6 Hz higher than the average F1 value for adults. The average values of

F2 and F3 are respectively 669.3Hz and 1008.5Hz higher for children than for

adults [2].

Table 2.1: Average vowel formant frequency values for children’s speech (PSR
corpus) and adult speech (TIMIT) [2]

F 1 F 1 F 2 F 2 F 3 F 3

V owel C hi l d Ad ul t C hi l d Ad ul t C hi l d Ad ul t

(H z) (H z) (H z) (H z) (H z) (H z)
IY 1005 753 3299 2287 4478 3181
IH 883 740 2887 2057 4199 3082
EH 1152 760 2683 1917 4192 3025
AE 1334 812 2400 1952 3866 3058
AH 943 778 2305 1747 3958 3127
AA 1197 804 2251 1564 3943 2894
AO 674 727 1823 1448 4042 2908
UH 860 741 2224 1813 4108 3085
UW 704 683 2434 1678 3870 2975
ER 868 758 2448 1684 3959 2644
AX 1070 789 2476 1895 4085 3334
EY 924 743 3024 2132 4350 3097
AW 1033 808 2172 1653 3788 3010
AY 982 827 2508 1814 3971 3066
OY 636 713 2428 1590 3935 2930
OW 808 716 2188 1611 3836 3030

For F2 and F3, the sex differences are not apparent until the age of 15. To

get a clearer understanding of the differences of the formant frequencies in re-
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spect of age and sex, we inspect figure 2.2. In this figure, the formant frequen-

cies F1, F2 and F3 for males and females from the age of four until twenty are

displayed. As stated above, the differences in the formant frequencies for each

sex is not apparent for younger children. From the age of 14, it is observed that

this difference increases between the sex as the formant frequencies of males

decrease more than for females.

Figure 2.2: Figures taken from [7]. Differences in the formant frequencies for
males and females.
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2.1.2 Language analysis

Children have a less developed vocabulary than adults. This makes them pro-

duce more complicated sentences with words that are generally not connected.

As their language is not fully developed, they also have more mistakes in the

pronunciation of words compared to adults. Another characteristic is that chil-

dren speak typically slower than adults. As children grow older, their vocab-

ulary gets more extensive, and they have fewer mispronunciations. Around

eight years old, all the speech sounds should be established, and children can

produce complex and more complicated sentences. After this age, there will

consequently be fewer complications regarding the language for a child speech

targeted ASR system.

2.2 Automatic Speech Recognition (ASR)

Automatic Speech Recognition (ASR) is the process of deriving the transcrip-

tion of an utterance, given the speech signal [8]. A general ASR system includes

four main components and is illustrated in figure 2.3. These are feature extrac-

tion, the acoustic model, the language model and decoding.

The goal of automatic speech recognition is to predict the optimal word

sequence W, given the spoken speech signal X, by maximizing the a posteriori

probability (MAP) [9]:

Ŵ = argmax
W

P§,°(W|X), (2.1)
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Figure 2.3: A general ASR system, with the four main components of a typical
ASR system.

§ and ° are the parameters for the acoustic model and the language model,

respectively. With Bayes’ rule, we have,

P (W|X) = P (X|W)P (W)
P (X)

(2.2)

Ŵ = argmax
W

p∏(X|W)P°(W) (2.3)

p§(X|W) is the likelihood of the acoustic model, and P°(W) is the language

model probability.

2.2.1 End-to-end ASR

End-to-end (E2E) models simplify ASR systems, as the acoustic models, pro-

nunciation and language models are folded into one single neural network.
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Recurrent neural networks (RNNs) are typically used in an E2E ASR system.

These models are more suited for on-device applications as they are much

smaller and less complex than conventional ASR systems [10].

2.3 Acoustic model (AM)

An acoustic model is used in speech recognition to model the speakers’ pro-

nunciation of the words in a sequence. The model utilizes speech samples and

the corresponding transcriptions to learn.

2.3.1 Hidden Markov Model (HMM)

Hidden Markov Model (HMM) is the most common acoustic model. The HMM

is a statistical model, which is represented as a stochastic model of discrete

events and a variation of the Markov chain [11]. A Markov chain describes a

sequence of possible states, where the probability of the following state only

depends on the current state. The states in an HMM are hidden, and the state

sequence produced by an HMM is not directly observable. This can only be

approximated through another set of stochastic processes that produces the

sequence of observations [1]. The HMM consists of the following elements

[11]:

• Number of hidden states (N): Individual stated are represented as S =

(S1,S2,S3, ...,SN ); the state at time t is represented as qt .

• State transition probability distribution: P = (pi j , to represent state tran-

sition from state i to state j , where pi j = P (qt+1 = S j |qt = Si ), 1 ∑ i ,

j ∑ N , pi j ∏ 0.
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• Observation symbol probability distribution: (B = {b j (k)}) for state j ,

where b j (k) = P (xt = ok |qt = S j ), 1 ∑ j ∑ N , 1 ∑ k ∑ M .

• Initial state distribution: (º= {ºi }), where ºi = P (q1 = S1), 1 ∑ i ∑ N .

A simple HMM model is illustrated in figure 2.4, where s is the states, and o

is the observations.

Figure 2.4: A simple HMM model.

2.3.2 Gaussian Mixture Model (GMM)

A Gaussian Mixture Model (GMM) is a parametric probability density func-

tion represented as a weighted sum of Gaussian component densities [12].

In speech recognition systems, GMMs are often used to model the probabil-

ity distribution of vocal tract related spectral features. Equation 2.4 gives the

Gaussian mixture model, while the Gaussian density function is given by equa-

tion 2.5.

p(x |∏) =
MX

i=1
wi g (x |µi ,æi ) (2.4)

g (x |µi ,ßi ) = 1

(2º)D/2|Pi |1/2
exp{°1

2
(x °µi )Tß°1

i (x °µi )} (2.5)
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M is the number of Gaussian densities, while x is the values of the mea-

surements. The mixture weights are given by wi . µi is the mean vector, and

the covariance matrix is defined by ßi . The mean vectors, covariance matrices

and mixture weights are represented by ∏= {wi ,µi ,æi }, where i = 1, ..., M [12].

2.4 Language model (LM)

In ASR systems, a language model is used to improve the performance of the

system. The language model learns to predict the probability of a given se-

quence of words that appear in a sentence.

2.4.1 N-gram language model

The n-gram language model is the simplest type of language models. An n-

gram is a sequence of n words, where the probability of a word only depends

on the previous n words. If the sequence consists of only one word, it is called

unigram, while for sequences consisting of two and three words, it is called bi-

grams and trigrams, respectively. If we have a sequence of words P (w1, w2, ...wn),

the chain rule of probability can be applied to compute the probabilities of the

sequence. Then we get,

P (w1:n) = P (w1)P (w2|w1)P (w3|w12 ...P (wn |w1:n°1)

=
nY

k=1
P (wk |w1:k°1)

(2.6)

With a corpus of significant size, it can be a problem to estimate the proba-

bility of a word given all the history. Therefore, instead of computing the prob-
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ability of a word given the entire history, the intuition of the n-gram model

is to approximate the history by just the last few words [13]. With a bigram

model, the probability of a word given the previous words is approximated by

the conditional probability of only one preceding word. The trigram model ap-

proximates the probability by the two preceding words and goes further with

the n-gram model.

2.5 Speaker adaptation

Speaker adaptation is techniques used to adapt an ASR system to a specific

user. Different speaker adaptation techniques that are implemented in previ-

ous work are presented in this section.

2.5.1 Vocal Tract Length Normalization (VTLN)

Vocal tract length normalization (VTLN) is a common speaker adaptation method

used in ASR. This takes the fact that the vocal tract length differs for each

speaker and reduces the mismatch between the different speakers by normal-

izing the vocal tract length for each speaker. VTLN is normally implemented

by frequency warping, where the warping factor is estimated to normalize the

acoustic mismatch from the different vocal tract lengths. While performing

feature extraction, the frequency axis is scaled according to the warping factor

[14].
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2.5.2 Maximum Likelihood Linear Regression (MLLR)

The maximum likelihood linear regression represents an adaptation technique

based on a linear transform of the Gaussian mean or the variances in acoustic

models [15]. This is used to reduce the mismatch between the adaptation data

and the initial data [16]. The transformation matrix used to estimate the mean

for the adaptation data is given by,

µ̂ j =Wj v j , (2.7)

Wj is the n £ (n + 1) transformation matrix and v j is the extended mean

vector v j = [1,µ j 1, ...,µ j n]0. The regression transformation is estimated to max-

imize the likelihood of the adaptation data [15].

2.5.3 Speaker Adaptive Training (SAT)

Speaker adaptive training is used to improve the speech recognition system

and reduce the word error rate. The characteristics of each speaker are mod-

eled by linear transformations of the mean parameters of the acoustic model

[17]. The HMM parameters and speaker transformations are estimated by

equation 2.8 to maximize the likelihood of the training data.

(∏̄c , ḡ ) = argmax
∏c ,g

RY

r=1
L(O(r );G

(r )(∏)) (2.8)

O(r ) is the training observation sequence and R is the speaker. L(O(r );G
(r )(∏)

is the likelihood of the observations O(r ) given the speaker dependent model

G
(r )(∏) [18].
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2.6 Feature extraction

In general, there is a lot of variation in a speech signal, especially between adult

and child speech, as mentioned in chapter 2.1. To reduce this variability, fea-

ture extraction of the speech signal is performed. Mel frequency cepstral coef-

ficient (MFCC) and perceptual linear prediction (PLP) are the two most com-

mon acoustic features used in speech recognition.

2.6.1 Mel Frequency Cepstral Coefficient (MFCC)

Preferred method of feature extracting is Mel Frequency Cepstral Coefficient

(MFCC) extraction. This generates unique coefficients from the voice of each

user. The technique to extract the MFCC’s is illustrated in the block diagram

in figure 2.5. The speech signal needs to be divided into smaller frames as it

has to be examined over a short period of time to get stable acoustic character-

istics. This is accomplished by windowing the signal, where each window are

typically 20 ms. Hamming windows are commonly used for speech signals [1].

Figure 2.5: MFCC extraction

Each frame is then converted into the magnitude spectrum by applying

discrete Fourier transform (2.9), where N is the number of points used to com-
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pute the DFT [19].

X (k) =
N°1X

n=0
x(n)exp

° j 2ºnk
N

; 0 < k < N °1 (2.9)

Equation 2.10 gives the mel-frequency calculated by the frequency f. The

signal is passed through mel-filter banks. The mel-frequency is scaled to match

what the human ear can hear, and it is not linear to the physical frequency of

the tone. Figure 2.6 shows the frequency in mel to the frequency in Hz.

fmel = 2595 · log (1+ f
700H z

) (2.10)

Figure 2.6: Mel-scale. Frequency in Hz vs. Mel frequency, from equation 2.10.



2.6. FEATURE EXTRACTION 19

The mel-spectrum is then computed by,

s(m) =
N°1X

k=0

h
|X (k)|2Hm(k)

i
;0 ∑ m ∑ M °1. (2.11)

M is the total number of filters and Hm(k) are the filterbanks given by equa-

tion 2.12 where m is in the range 0 to M [19].

Hm(k) =

8
>>>>>>>>>><
>>>>>>>>>>:

0, k < f (m °1)

2(k° f (m°1))
f (m)° f (m°1) , f (m °1) ∑ k ∑ f (m)

2( f (m+1)°k)
f (m+1)° f (m) , f (m) ∑ k ∑ f (m +1)

0, k > f (m +1)

(2.12)

The filter banks are implemented in the frequency domain, where triangu-

lar filter banks are the most common. The mel-filter bank is illustrated in figure

2.7. The logarithm of the signal is applied after mel-scaling, and the Discrete

Cosine Transform (DCT) is applied to produce a set of cepstral coefficients.

MFCC is calculated as,

c(n) =
M°1X

m=0
l og 10(s(m))cos

≥ºn(m °0.5)
M

¥
;n = 0,1,2, ...,C °1, (2.13)

where c(n) is the cepstral coefficients and C is the number of MFCCs.
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Figure 2.7: Mel-filter bank [20]

2.6.2 Perceptual Linear Prediction (PLP)

Perceptual linear prediction (PLP) is similar to MFCC, but are more robust

when there is a mismatch between training and test data [21]. In PLP, the win-

dowed speech signal is used to compute the power spectrum before a Bark

filter-bank is applied to the power spectrum. To simulate the sensitivity of the

hearing, the outputs of the filter-bank are weighted with an equal-loudness

pre-emphasis. After transforming the equalized values with the power of 0.33,

linear prediction (LP) is applied. Cepstral coefficients are then calculated [22].

2.7 Deep learning

Deep learning is a subset of machine learning, and models the human brain

to process data. The algorithms in deep learning are called neural networks,
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consisting of a multi-layered structure based on the structure of the human

brain with connected neuron nodes. Neural networks consist of both visible

and hidden layers, where the first layer is the input layer and contains input

neurons. These input neurons consist of the input data of the neural network.

The output layer is the final layer which consists of output neurons, and gives

the results of the calculations from the inputs of the output layer. The layers

in between the input and output layers are the hidden layers, which do the

computations on the input data. Figure 2.8 illustrates a neural network that

consists of an input layer of three input neurons, two hidden layers, and an

output layer with two output neurons. Every node in each layer are connected

with the nodes in the adjacent layers [23], and each layers processes the infor-

mation from the previous layer.

Figure 2.8: Neural network with input layer, two hidden layers and output
layer.
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2.7.1 Recurrent Neural Network (RNN)

Most machine learning models are not designed for sequential data. However,

recurrent neural networks (RNNs) are designed to deal with this specific type

of data of variable length. A recurrent neural network is an artificial neural

network with internal loops [24], which makes decisions based on what it has

learnt from the past. The RNN utilizes training data to learn, in addition to

remembering what the network has learnt by the previous inputs while gener-

ating outputs [25]. Figure 2.9 illustrates a basic RNN structure.

Figure 2.9: Basic RNN structure, adapted from [26].

x is the inputs, o the outputs, h is the main block of the RNN, which con-

tains the weights and activation function of the network, while W is the com-

munication from one step to another [26].

A problem with basic RNNs is the long-term dependencies. If the gap be-

tween the relevant information and the predicted word is large, RNN models

have trouble connecting the information. An RNN that is capable of learning

long-term dependencies is the long short-term memory (LSTM) networks.
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2.8 Transfer learning

Transfer learning is a technique in machine learning where a model trained on

a previous task is reused for a new task. The definition of transfer learning is:

"Given a source domain DS and learning task TS, a target domain DT and

learning task TT , transfer learning aims to help improve the learning of the tar-

get predictive function fT (·) in DT using the knowledge in DS and TS, where

DS 6= DT , or TS 6= TT " [27].

Generally, a lot of data are needed to train a neural network from scratch.

In many cases, access to all the data required for training the neural network

is not available. Transfer learning makes it possible to train a deep neural

network with relatively small datasets, and it also makes the training process

much shorter. The weights the network has learned from one task is trans-

ferred to another task. Transfer learning is widely used in computer vision,

natural language processing and speech recognition tasks as they require a

large amount of computational power [28]. The process of transfer learning

is illustrated in figure 2.10.

The most common approach of transfer learning is using a pre-trained

model. A pre-trained model has been trained on a large dataset to solve a prob-

lem similar to the problem that will be solved. It has to be decided which layers

are going to be frozen and which to train due to the problem [29].
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Figure 2.10: Transfer learning



Chapter 3

Related work

Previously, there have been many approaches to improving children’s speech

recognition systems. The state of the art ASR systems have for long been based

on HMM models, which have also been the case for ASR systems for child

speech. Later, HMMs have been used together with DNNs as hybrid mod-

els, where the parameters of the HMM have been calculated by the HMM.

There have been tested several techniques to handle the acoustic variability

in the child speech for these systems. Mel-Frequency Cepstral Coefficients

(MFCC), spectrum-based filter bank features and Perceptual Linear Prediction

(PLP) have been investigated by Shivakumar et al. [30]. All of these have shown

an effect in decreasing the WER in the ASR for children, although MFCC fea-

tures have dominated due to their robustness and compatibility with adult ASR

systems [31]. Elenius and Bloomberg [32], Shivakumar el al. [30] and Gray el

al.[33] have showed that adapting acoustic models with Maximum Likelihood

Linear Regression (MLLR) and Maximum A-posteriori (MAP) was found to be

effective. Speaker Adaptive Training (SAT) has shown an increase in the per-

formance for children ASR.

25
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Studies have reported that Vocal Tract Length Normalization (VTLN) effec-

tively improves speech recognition performance on child speech with limited

data. Liao et al. [34] did research on large vocabulary automatic speech recog-

nition for children, where these results show no effect in spectral smoothing,

VTLN and using pitch features, but argues with the fact that their system was

trained on a large amount of data.

As the HMM-DNN systems are complicated to design, the use of DNN mod-

els has become more frequently used these days. The use of DNNs for ASR sys-

tems needs a lot of computing power, which has become possible in later days

because of the opportunity to use graphic processing units (GPUs). In 20014,

Baidu research presented an end-to-end state-of-the-art ASR system called

Deep Speech 1 (DS1) [35]. They intended to make a well-optimised RNN train-

ing system. This aims to make an ASR system more simple, as traditional sys-

tems use heavy engineered processing stages. The RNN in DS1 consists of five

hidden layers, with one recurrent layer. They present a deep learning-based

end-to-end ASR system that outperforms existing state-of-the-art recognition

systems in clear speech and noisy speech. Later, Baidu presented Deep Speech

2 (DS2), a new end-to-end deep learning approach that is used to recognise ei-

ther English or Mandarin Chinese speech, two extensively different languages

[36]. In DS2, they explore architectures with up to 11 hidden layers, with sev-

eral recurrent layers and convolutional layers. The result of this is a system

that achieves seven times speedup from DS1, and the system can even com-

pete with the transcriptions of humans. The architecture of the DS1 system is

further explained in chapter 5.1.
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Most of the prior work on child speech recognition is based on GMM-HMMs,

and less work has investigated DNNs for children’s speech due to lack of large

amounts of children’s training data. However, there has been some research

on applying transfer learning to the DNN models to adapt a model from adult

speech to child speech. In Shivakumar and Gergiou’s study on transfer learn-

ing from adult speech to children’s speech [31], they compare the advantages

of DNN acoustic models over the GMM-HMM systems, and the performance

of the DNN acoustic model for adult and children. These studies validated the

benefits of age-dependent transfer learning. Research by Tong et al.[37] shows

that transfer learning can be an efficient way of improving an ASR system for

children. They investigate acoustic adaptation and multi-task learning meth-

ods, where they take advantage of the adults’ speech information and transfer

them to children’s ASR. Both approaches show to have an effect of improve-

ment on child speech, where multi-task learning shows most effect. These re-

sults indicate that the performance of children’s speech recognition systems

can be benefited from available adult speech corpus.





Chapter 4

Tools and data

This chapter includes an overview of the tools and data used in this thesis. The

corpus is presented, and a description of what the datasets consist of is given.

4.1 Deep Speech by Mozilla

Deep Speech is an open-source speech-to-text engine, using a model trained

by machine learning techniques based on Baidu’s Deep Speech 1 (DS1) re-

search paper. The network is implemented by using Tensorflow1. The code

and models are published under the Mozilla Public License 2.0.

4.2 CMU Kids Corpus

CMU Kids Corpus is a database consisting of speech from children in the age

from six to eleven years old. The speakers are 24 boys and 52 girls, with a total

of 5180 utterances. The speech is from children reading aloud from a four-page

1https://www.tensorflow.org/

29
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colour reading supplement and is divided into good and poor readers. One

wavefile corresponds to one sentence as there were presented one sentence at

a time. The set of good readers consists of 44 speakers and 3333 utterances,

while the set of poor readers has 32 speakers and 1847 utterances [38]. The

sample rate of the speech signals is 16kHz.

Table 4.1: CMU Kids Corpus

Data Speakers Utterances Age
All 76 5180 6-11

Good readers 44 3333 6-11
Poor readers 32 1847 6-11

4.3 Datasets

The dataset consists of training set, development set and test set. The training

set is used to train the system, and the development set is used to validate

the training, while the test set is used after training to test the system. The

training set consists of 80% of the whole dataset, while the development and

test set consist of 10% each. The implementation in this project does not use

phonemes as conventional ASR systems do. Some of the CMU Kids corpus

data is poor, where the sentences contain one or more divergences from the

intended utterance. The transcriptions of these do then consist of phonemes

and not only clean text. These data cannot be applied to this implementation

without major changes in the transcriptions. Therefore, this part of the dataset

has been removed. Another reason this data was removed, was to not train

and test the model on data that contains error, as this would make the system’s

performance poor.



Chapter 5

Method

This chapter covers the implementation of the Deep Speech model from Mozilla

in section 5.1, which is the basis for the ASR system. In section 5.2, the data

preparation is covered, while the experimental setup is presented in section

5.3. This covers the different methods of improving the ASR system for child

speech as transfer learning and fine-tuning. The different evaluation methods

applied to this system is introduced in section 5.4.

5.1 Deep Speech model

The Deep Speech model is inspired by the architecture of Baidu’s research,

Deep Speech: Scaling up end-to-end speech recognition [39]. This architec-

ture is more simple than the traditional architectures for speech recognition

and does not need a phoneme directory. It is also more robust for noisy envi-

ronments, as the model learns directly how to handle the noise while training.

The model uses a recurrent neural network (RNN) with speech spectrograms

as input and generates English text transcriptions as output. The model is il-

31
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lustrated in figure 5.1.

Figure 5.1: Illustration of the Deep Speech model1

The training set in Deep Speech is defined as follows,

T = {(x(1), y (1)), (x(2), y (2)), ...}, (5.1)

where x(i ) is the speech utterance in time-series of length t (i ), and y (i ) is

1Taken from https://deepspeech.readthedocs.io/en/v0.9.3/DeepSpeech.html
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the transcription of the speech signal x(i ). The MFCCs are calculated to extract

the features from the acoustic signal. As the sampling rate of the data used in

this project is 16kHz, the number of MFCCs used are 26.

As illustrated in figure 5.1, the RNN model consists of five hidden layers,

one input layer and one output layer. The nodes of each hidden layer are de-

noted h(l ), at layer l , where the first three layers are not recurrent. The input

layer is h(0), while h(6) is the output. The non-recurrent layers l = [1,2,3] are

calculated by

h(l )
t = g (W (l )hl°1

t +b(l )), (5.2)

where the clipped rectified linear (ReLu) activation function g (z) is given

by mi n{max{0, z},20}. The weight matrix is W (l ), while b(l ) is the bias param-

eters. The fourth layer is the recurrent layer, which consists of hidden nodes

with forward recurrence, calculated sequentially from t = 1 to t = T (i ) for ut-

terance i, by equation 5.3. The model in figure 5.1 illustrates that this layer is

implemented with LSTM.

h( f )
t = g (W (4)h(3)

t +W ( f )
r h( f )

t°1 +b(4)) (5.3)

The inputs of layer five is the forward nodes from the recurrent layer,

h(5) = g (W (5)h( f ) +b(5)) (5.4)

The output and the final layer predicts the probabilities for each characters

k in the alphabet at time t, and is calculated by the standard softmax function,
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h(6)
t ,k = ŷt ,k =

exp(W (6)
k h(5)

t +b(6)
k )

P
j exp(W (6)

j h(5)
t +b(6)

j )
(5.5)

The CTC L(ŷ , y) loss is then computed to get a measure of the error in the

prediction. CTC loss is defined in section 5.4. The gradient ¢L(ŷ , y) is evalu-

ated during training, where the Adam optimisation [40] is utilized.

After training, the model is re-scored with a language model. The Deep

Speech pre-trained model includes an external scorer, which consists of a KenLM

[41] language model and a sequence of all the words in the vocabulary.

5.2 Data preparation

Because of the way Deep Speech is implemented, and its easy way of training

and testing with your own data (illustrated in figure 5.1), the data has to be

divided into training, development and test sets before interfering with Deep

Speech. The import script for the CMU Kids data has been implemented with

inspiration from the import_timit.py2 script, which imports the TIMIT dataset.

The process used to implement this needed the data to be divided into sepa-

rate folders with the training, development and test data.

Table 5.1: Example of running DeepSpeech3

python3 DeepSpeech.py
—train_files ../data/CV/en/clips/train.csv

—dev_files ../data/CV/en/clips/dev.csv
—test_files ../data/CV/en/clips/test.csv

2https://github.com/mozilla/DeepSpeech/tree/master/bin
3https://deepspeech.readthedocs.io/en/v0.9.3/TRAINING.html
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As the CMU Kids corpus is not previously divided into train, development

and test sets, this has to be proceeded. The CMU Kids corpus is divided into

kids1 and kids2, consisting of one folder for each speaker. Each folder for every

speaker contains label files, point files, signals and transcriptions. The label

files contain a description of the phonetic segments, while the point files con-

sist of comments on the phonetic divergence. As Deep Speech does not use

phonemes, the only files needed for this implementation are the signals and

the transcriptions. When splitting the files, it is important that the signal file

and the affiliated transcription file is in the same set. An example of the data

is illustrated in table 5.2 and 5.3 for respectively the signal files and the tran-

scription files.

Table 5.2: Example of signal files split into train, dev and test sets

Path to signal file
Before split cmu_kids/kids1/fabm/signal/fabm2aa1.sph

cmu_kids/kids2/fmtg/signal/fmtg1ap1.sph
cmu_kids/kids2/mjwm/signal/mjwm2aa1.sph

After split cmu_kids/train/kids1/fabm/signal/fabm2aa1.sph
cmu_kids/dev/kids2/fmtg/signal/fmtg1ap1.sph

cmu_kids/test/kids2/mjwm/signal/mjwm2aa1.sph

Table 5.3: Example of transcriptions files split into train, dev and test sets

Path to transcription file
Before split cmu_kids/kids1/fabm/trans/fabm2aa1.trn

cmu_kids/kids2/fmtg/trans/fmtg1ap1.trn
cmu_kids/kids2/mjwm/trans/mjwm2aa1.trn

After split cmu_kids/train/kids1/fabm/trans/fabm2aa1.trn
cmu_kids/dev/kids2/fmtg/trans/fmtg1ap1.trn

cmu_kids/test/kids2/mjwm/trans/mjwm2aa1.trn
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The importation of the data takes the speech signal and the transcription

of the signal and makes CSV files for each train, development and test sets. The

name of these files are respectively cmu_ki d s_tr ai n.csv , cmu_ki d s_dev.csv

and cmu_ki d s_test .csv . These files comprise of w av_ f i lename, which is

the path to the signal file, w av_ f i lesi ze, the size of the sample in bytes. The

last part is tr anscr i pt , which is the transcription of the sample. An example

of the content is given in figure 5.4, which is a sample of five of the files in the

CMU Kids test set.

Table 5.4: Sample of cmu_ki d s_test .csv

wav_filename wav_filesize transcript
../test/kids2/mglp/signal/mglp1bc1_rif.wav 214440 then not as much trash piles

up
../test/kids2/mglp/signal/mglp1bd1_rif.wav 214440 some people recycle food

garbage
../test/kids2/mglp/signal/mglp1bg1_rif.wav 240040 the soil is used to help gar-

dens grow
../test/kids2/mglp/signal/mglp1bh1_rif.wav 217640 some paper has an impor-

tant sign on it
../test/kids2/mglp/signal/mglp1bl1_rif.wav 281640 some workers recycle bikes

5.3 Experiments

A transfer learning model has been implemented to create an ASR system for

children. To check the reliability of the pre-trained model, this model has been

tested with the TIMIT test corpus. Before any further training is done, the pre-

trained model is tested with the CMU Kids corpus, in addition to training a

model from scratch with the child speech data to compare the results. All the

same data has been used for each experiment. Fine-tuning is performed on
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both the transfer learning model and the pre-trained model trained with the

CMU Kids corpus.

After each epoch, the models were tested on the development set. This is to

establish if the model improved through further training and to avoid overfit-

ting. The weights from the best validation are saved. This allows the best pos-

sible results to be obtained during testing, and avoid using results from when

a model starts overfitting. 2048 hidden units are used for all the experiments,

as this is what the release model is trained with. For all the experiments, the

aulus3 server at NTNU is used. This server has two NVIDIA GeForce RTX 2080

Ti GPUs, which is crucial for the training process to complete promptly.

5.3.1 Baseline

The CMU Kids data has been trained from scratch in Deep Speech. The train-

ing and test sets this model has been applied to are the same data for training

and testing the transfer learning and fine-tuning models. This is done to get

the most out of the comparability of the results. As this experiment does not

train on a pre-trained model, the number of epochs is required to be higher

than for the other experiments. The number of epochs used is 100. To opti-

mize the efficiency of the training, automatic mixed precision is utilized, and

the training batch size is set to 60.



38 CHAPTER 5. METHOD

5.3.2 Transfer learning

As there are not enough child speech data to train an accurate automatic speech

recognition system for children, transfer learning (TL) has been used to im-

prove the ASR system. The pre-trained model of Mozilla from release 0.9.34

was used for this implementation. This model is trained on American English

with more than 5500 hours of data [39]. The test of this model shows a WER of

7.06% on the LibriSpeech clean test corpus. The model has best performance

in low-noise environments.

The architecture of the TL needs to be identical to the pre-trained model.

The layers from the pre-trained model for adult voices were not frozen dur-

ing training, as the other layers then can adjust to fit the child speech model.

Four TL implementations were investigated in this experiment. In the first TL

implementation, the weights of only the output layer were re-initialised. This

layer was then trained from scratch, while the remaining layers were retrained

based on the previous weights. The second and third TL implementation re-

initialised the two and three final layers, respectively. In the last TL implemen-

tation, the LSTM layer and layer five were re-initialised. As mentioned, all the

weights from the remaining layers were re-used and trained further. The archi-

tecture of the models are illustrated in figure 5.2, 5.3, 5.4 and figure 5.5. These

were all trained over 100 epochs, where the learning rate was reduced with a

factor of 0.1 if no improvement in the validation loss after 10 epochs. This is

done to prevent overfitting during training from the re-used weights.

4https://github.com/mozilla/DeepSpeech/releases/tag/v0.9.3
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Figure 5.2: Architecture of TL model with output layer re-initialised

Figure 5.3: Architecture of TL model with the two last layers re-initialised

Figure 5.4: Architecture of TL model with the LSTM layer and layer five re-
initialised

Figure 5.5: Architecture of TL model with the LSTM layer, layer five and output
layer re-initialised
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5.3.3 Fine-tuning

In addition to the transfer learning method used in the section above, the tech-

nique of acoustic adaptation was applied. By this, the parameters are fine-

tuned to fit the new data. This was applied both directly on the pre-trained

model and to the transfer learning models. Figure 5.6 illustrates the acoustic

adaptation. There were done tests with different learning rates and dropout

rates. If there were no improvement in the loss after ten epochs, the learning

rate was reduced by the factor of 0.1. All the training with fine-tuning was done

over 30 epochs.

Figure 5.6: Model of acoustic adaptation. Illustration adapted from [37].

5.4 Evaluation

The methods of evaluating the ASR system in DeepSpeech are the three met-

rics word error rate (WER), character error rate (CER) and CTC loss. WER is the
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most important approach and will therefore be the evaluation metric focused

on in this thesis.

5.4.1 Word Error Rate (WER)

An ASR system used on child speech usually has a high WER. WER is a mea-

sure of the effectiveness of an automatic speech recognition system [42] and is

calculated by,

W ER = S + I +D
N

, (5.6)

where S is the number of substitutions, I the number of insertions and D

the deletions. N is the total number of words in the transcript. The WER is a

measure of how well the language model performs, where it recognises words.

If an ASR system has a high WER, the words are not being detected accurately,

and the system is more unreliable than an ASR system with a lower WER.

5.4.2 Character Error Rate (CER)

CER is measured the same way as WER, with characters instead of words, as

shown in equation 5.7, where N is then the number of characters.

C ER = S + I +D
N

. (5.7)

The CER is a measure of how well the acoustic model performs, and recog-

nises characters. The measure is often lower than the WER, as one small char-

acter error in the sentence will make the whole word be mistaken.
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5.4.3 CTC Loss

The loss function used in Deep Speech is the Connectionist Temporal Classifi-

cation (CTC). This method is well suited to speech recognition, as it is not re-

quired to know the alignment between the transcription and the audio. With-

out any language models, the loss function specifies the performance of the

acoustic model. The CTC loss is computed to get a measure of the error in the

prediction during training,

L=°log p(y |x), (5.8)

where x and y is defined as in section 5.1



Chapter 6

Results

In this chapter, all the results from the different experiments are reviewed.

Section 6.1 covers the results from the system trained from scratch. Section

6.2 and 6.3 gives the results from testing the TIMIT dataset and the CMU Kids

dataset on the pre-trained model without further training. In section 6.4, the

transfer learning (TL) results are presented, while section 6.5 covers the results

from the fine-tuning.

6.1 Baseline

Table 6.1 shows the results from the system training on the child speech data

from scratch. As the training set consists of a very low amount of data, these

results show a poor performance with a WER of 93.84%. This means that only

6.16% of all the words in the test set are recognised by this model.
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Table 6.1: Results of model trained from scratch.

WER CER Loss
0.9384 0.4699 70.548

At the end of each test, five examples each of the best achieved WERs, the

median WERs and the worst WERs are printed. The median WERs is the one

that best illustrates how well the overall model works, while the best WERs and

the worst WERs show the five best results and the five worst results. To get a

better understanding of the results, three examples, one of each are illustrated

in table 6.2, 6.3 and 6.4. These illustrate the WER and the CER in addition to

the text that is predicted while testing and the source transcript, described with

"src" and "res". As we observe from these results, the best WER is the only ac-

ceptable result, where it is possible to understand the recognised words. This

still has a rather high WER of 33.33%, as it is a sentence that consists of only

three words, where one is "wrong". However, there is only one character error,

which makes the last word differ from the actual word. The results with median

WER and the worst WER gives results that do not give much sense, as they can-

not predict any of the words. The example of the worst WER even has a WER

higher than 1, as there are added words compared to the transcription. This

illustrates how poor the performance is when training on a really low amount

of data, and how the inference results might end up if the WER is too high.

Table 6.2: Best WER trained from scratch

Best WER:
WER: 0.3333, CER: 0.0500
src: " people built houses"
res: " people built thouses"
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Table 6.3: Median WER trained from scratch

Median WER:
WER: 1.0000, CER: 0.5000

src: " rain forests have the most different kinds of butterflies"
res: " ring fore se on os tirtren ouunof botef les"

Table 6.4: Worst WER trained from scratch

Worst WER:
WER: 2.0000, CER: 1.1852

src: " some noises were very loud"
res: " th some tcishe s shopstc ie fowe rost fa ts ors"

6.2 Testing TIMIT on pre-trained adult model

To check the reliability of the pre-trained model, the adult data from the TIMIT

test set is used for testing. As the accuracy of ASR systems often is lower with

test set it is not trained on, it can not be directly compared to check the relia-

bility, but it still gives us a prediction on how well it works. The results of the

test on the TIMIT dataset are shown in table 6.5. The WER is 27.68%, which is

relatively high to be used as an ASR system. This is expected to be lower than

the WER of the test of child speech data on the pre-trained adult model.

Table 6.5: Pre-trained adult model tested with TIMIT test set

WER CER Loss
0.276756 0.104837 18.331354
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6.3 Testing CMU Kids on pre-trained adult model

Table 6.6 shows the result of the metrics WER, CER and Loss after testing the

CMU Kids data on the pre-trained model. As expected, these results are sig-

nificantly better than the results from the system trained from scratch, with a

WER of 48.01%. The WER is still quite high as a result of that the model is only

trained on speech from adults. This is not suitable for use for inference as al-

most half of the words are not recognised.

Table 6.6: CMU Kids data tested on pre-trained adult model

WER CER Loss
0.480119 0.2292 35.7264

The test shows that this model recognises some of the audio as the best

WER is 0, which means that all the words in this sentence are recognised. There

is still a lot that does not recognise correctly, which makes the overall WER

high, as the example of the median WER indicates. The example from the sen-

tence with the worst WER recognises only one word correctly, which is eggs.

These results are illustrated in table 6.7, 6.8 and 6.9.

Table 6.7: Example of best WER from test on pre-trained model

Best WER:
WER: 0.0000, CER: 0.02273

src: " a mother butterfly lays tiny eggs on a leaf"
res: "a mother butterfly lays tiny eggs on a leaf"
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Table 6.8: Example of median WER from test on pre-trained model

Median WER:
WER: 0.4286, CER: 0.2500

src: " then not as much trash piles up"
res: "then dat as much tresh powse up"

Table 6.9: Example of worst WER from test on pre-trained model

Worst WER:
WER: 1.6000, CER: 0.6667

src: " one butterfly can lay eggs"
res: " " wone bu e fly tan lad two hundred eggs"

6.4 Transfer learning

The results of the transfer learning experiments are presented in table 6.10.

These show how the re-initialising of the different layers are improving the

model adapted to the child speech. The results are presented with the descrip-

tion TL with the following layers that are re-initialised. If the description says

TL layer 5 & 6, this means that layer 5 and the output layer 6 are re-initialised.

As observed from the table, transfer learning of the two final layers 5 and 6

gives better results than transfer learning of just the output layer. When re-

initialising the weights of the output layer, the WER decreases from 48.01%

to 44.14%, while transfer learning of two layers makes the WER decrease to

38.27%. Transfer learning of the LSTM layer and layer 5 gives even better re-

sults. The WER is then reduced to 36.68%. When re-initialising all the three

final layers, the results of WER of 37.97% show a slightly better performance

than the TL of the two final layers, but a little worse than TL of the LSTM layer

and layer 5. All the transfer learning experiments gives an improvement from

the pre-trained adult model, but the WER is still high for all of them as all re-
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sults show a WER higher than 36%.

Table 6.10: Transfer learning results

Model WER CER Loss
TL layer 6 0.441352 0.214710 30.968922

TL layer 5 & 6 0.382704 0.161218 22.940805
TL LSTM layer & layer 5 0.366799 0.156947 22.222095

TL LSTM layer & layer 5 & 6 0.379722 0.159547 22.766584

6.5 Fine-tuning

Table 6.11 presents the results of the fine-tuning directly on the pre-trained

model. There are done five experiments with different parameters, and the ta-

ble describes the different fine-tuning parameters with the evaluation metrics

for the associated model. The first row presents the results where the learn-

ing rate is set to 0.0001, while the remaining rows have the same learning rate

of 0.0001 with an additional dropout rate set to respectively 0.2, 0.3, 0.35 and

0.4. As mentioned in chapter 5.3, the learning rate is not stationary as it is re-

duced if there are no improvements while training. When fine-tuning with a

learning rate of 0.0001 and no dropout rate, the WER goes down from 48.01%

to 31.41%. The results get slightly better when adding a dropout rate of 0.2 and

0.4 with the same learning rate. These results show that the best WER achieved

is 27.93%, and is when fine-tuning the pre-trained model with a learning rate

of 0.0001 and a dropout rate of 0.35. This result shows a significant reduction

in the WER of 20.08% from the pre-trained adult model.
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Table 6.11: Fine-tuning results from pre-trained model

Model WER CER Loss
Learning rate 0.0001 0.314115 0.138930 21.012878

Learning rate 0.0001 + Dropout rate 0.2 0.307157 0.130015 19.787546
Learning rate 0.0001 + Dropout rate 0.3 0.292242 0.124629 19.719782

Learning rate 0.0001 + Dropout rate 0.35 0.279324 0.120542 19.41031
Learning rate 0.0001 + Dropout rate 0.4 0.301193 0.128343 20.240250

The results from the fine-tuning of the transfer learning models are pre-

sented in table 6.12. When fine-tuning the TL layer 5 and 6 model, with a

dropout rate of 0.3, the WER is reduced from 38.27% to 36.18%. Fine-tuning of

TL layer 6 with a dropout rate of 0.4 gives a reduction in the WER from 44.14%

to 42.74%. The two other TL models show only a slight reduction of the WER

after fine-tuning. Overall, the best results are from fine-tuning directly from

the pre-trained model and not from the TL models, where the best results was

a WER of 27.93%, compared to a WER of 36.18% from the fine-tuned TL model.

Table 6.12: Fine-tuning results from TL models

Model WER CER Loss
TL layer 6: dropout rate 0.4 0.427435 0.198737 28.540545

TL layer 5 and 6: dropout rate 0.3 0.361829 0.151734 21.868723
TL layer LSTM and 5: dropout 0.4 0.363817 0.154903 22.270435

TL layer LSTM & 5 & 6: dropout rate 0.4 0.378728 0.157689 22.735888

In table 6.13, 6.14 and 6.15, we have one example each of the results for

respectively the best, median and worst WER of the model that achieves the

best total WER. Compared to the other results in section 6.1 and 6.3, we ob-

serve that the predictions are much more accurate, which is reasonable due to

the decrease in the total WER. The example of the median WER has only one
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character that differs from the source. The example of the recognition with the

worst WER shows a WER that is still high, where one word is predicted cor-

rectly. One word is divided into several words, which makes the WER higher.

Considering these results, it is apparent that the overall WER is still quite high

as some predictions make the WER increase.

Table 6.13: Example of best WER from test on fine-tuned model

Best WER:
WER: 0.0000, CER: 0.0000

src: " some workers recycle bikes"
res: " some workers recycle bikes"

Table 6.14: Median WER from test on fine-tuned model

Median WER:
WER: 0.2000, CER: 0.031250

src: " dolphins live in the ocean"
res: " dolphins live in tho ocean"

Table 6.15: Example of worst WER from test on fine-tuned model

Worst WER:
WER: 1.0000, CER: 0.416667
src: " butterflies are insects"

res: " in i fliser insects"
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Discussion

The implementation of transfer learning and fine-tuning gave a significant im-

provement in the performance of the ASR system for children. The baseline

model trained from scratch gave a remarkable high WER and is worse than the

performance of child speech on the pre-trained adult model. This is due to

training on an insufficient amount of data for a DNN model that needs a lot of

data to train.

7.1 Performance of adult and child speech data

The results from the tests of the pre-trained adult model with the adult speech

data and the child speech data showed a difference in the performance of an

ASR system on adult speech and child speech. The test showed a WER of re-

spectively 27.68% and 48.01%. This is mainly due to variances in the speech

signals for adults and children. Some of this difference may also come from

the fact that there are two datasets with different structures.
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7.2 Fine-tuning

Our best result was achieved from the fine-tuned model with a learning rate of

0.0001 and a dropout rate of 0.35. This resulted in a WER of 27.93%, which is

a significant decrease from the performance achieved on the pre-trained adult

model, where the WER was 48.01%. The other fine-tuned models also showed

a significant improvement in the WER. These all had a WER in the range of

29.22% to 31.41%, where the result with the highest WER is the result from

the fine-tuned model with a learning rate of 0.0001 without any dropout. The

WER of the best fine-tuning result is comparable to the results of the test with

the adult TIMIT data on the pre-trained model, which had a WER of 27.68%.

The WER is still relatively high to be an ideal ASR system for child speech, since

such a system would be expected to recognise most of the words.

7.3 Transfer learning

All the transfer learning models had a decrease in the WER from the pre-trained

model, but the performance was slightly less than the fine-tuned models. The

WER was down from 48.01% to 36.68% for the transfer learning model that

achieved the best result. This is the model where the weights of the LSTM layer

and layer 5 were re-initialised. The performance of the transfer learning exper-

iment with the two and three final layers re-initialised had a WER of respec-

tively 38.27% and 37.97%, which is a bit higher than the result achieved from
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the best transfer learning model. The results of the transfer learning model

with only the final layer re-initialised showed a significantly higher WER than

the other transfer learning implementations, as the WER only decreased from

48.01% to 44.14%.

Fine-tuning of the different transfer learning models gave a slight improve-

ment of the WER, where the best achieved WER is from the fine-tuned model

with the two final layers re-initialised, and then fine-tuned with a learning rate

of 0.0001 and a dropout rate of 0.3. The WER of this decreased from 38.27% to

36.18%, and accomplished then a lower WER than the previous best transfer

learning implementation. Fine-tuning of the transfer learning model where

the final layer was re-initialised reduced the WER from 48.01% to 42.74%. The

two remaining models had only a slight decrease in the WER and did not im-

prove much during fine-tuning. This show that fine-tuning was most effective

for the models with the weakest performance.

It would have been expected to get better results from the transfer learn-

ing models, as some of the layers are re-initialised to better adapt to the child

speech acoustics. The reason why the results achieved for the transfer learn-

ing models are not as good as the fine-tuned models, may come from the fact

that the amount of data is still too low. The corpus we have used is relatively

small, and in addition, a large amount of the data has been removed since they

could not be used for our system without any modification of the transcrip-

tions. The re-initialised layers were insufficiently trained before the rest of the

model overfitted. Therefore the models perform better when all layers benefit

from adult speech and then fine-tuned to child speech.
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Even though we would have expected a lower WER from the transfer learn-

ing models and the fine-tuned models, the WER showed a significant decrease,

leading to training a child speech model to benefit from adult data. The best

opportunity would have been to have a lot of child speech data, but when this

is limited, our results showed at least an improvement from the pre-trained

adult model. It is not possible to train an accurate ASR system with the DNN

model in our situation with minimal data. This was illustrated in the results

of the model trained from scratch, as it had a very high WER and could not be

used as an ASR system.
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Conclusion and future Work

8.1 Conclusions

An end-to-end (E2E) automatic speech recognition (ASR) system for child speech

has been implemented using the architecture of Deep Speech by Mozilla. This

model was trained and tested on the CMU Kids corpus, with four different ex-

periments by transfer learning (TL) and five fine-tuning experiments from a

pre-trained adult model. The best TL model showed a WER of 36.68%, while

the best fine-tuned model had a WER of 27.93%, which is the best result achieved.

These are both improvements in the WER down from 48.01%. The TL models

that benefited the most are when either the two final layers (layer 5 and layer

6) are re-initialised or the long short-term memory (LSTM) layer and layer five

are re-initialised. Only changing the output layer did not give much improve-

ment. The results indicated that it was hard to get the WER to be less than 36%

by transfer learning in our situation due to lack of data. Even though the results

did not improve as much as desired, the results showed that adult data could

be useful for training a child speech ASR system. Transfer learning and fine-
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tuning are effective methods to adapt the model to the child’s speech acoustics

when dealing with an E2E ASR system.

8.2 Future work

There are many ways to improve ASR systems for child speech further. An in-

crease in the amount of data would most likely increase the performance of the

ASR system. A possible way is to train datasets of different sizes and compare

the performance during transfer learning. Experiments with different values

of the learning rate and dropout rate from the experiments in this thesis can

be tested. In addition, the beta parameters of the Adam optimiser can be ad-

justed. Other transfer learning experiments can be implemented, where the

input layers are re-initialised instead of the output layers. These are the layers

affected most by the acoustic variability of the speech signal. The architecture

of the model can be designed and changed from Deep Speech’s implementa-

tion, as the use of this model needs the architecture to be consistent through-

out all the work. Then it is possible to change other parameters of the model,

for example number of hidden nodes. A model more similar to the model in

Baidu’s research Deep Speech 2 can be implemented. However, this has to be

implemented with the amount of child speech data in mind, as Baidu’s model

is implemented to train on a large amount of data.
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