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Problem description

Motivation

Nanostructures of gold and silver have demonstrated the ability to sense sub-physiological

concentrations of glucose and are good candidates for use in platforms for continuous glucose

sensing. The collective oscillations of surface electrons, plasmons, when exposed to light of

certain wavelengths, amplify the electric field near the structure’s surface and make it pos-

sible to sense very small concentrations of glucose. One widely studied class of structures

is the “metal film over nanospheres” class that includes arrays of gold and silver film over

nanosphere structures, AuFONs and AgFONs, respectively. These particles are made up of

an insulating core, coated with one of these metals. Silver particles have shown the greatest

field enhancement ability. AuFONs are, however, safer to use for sensors meant for in vivo

measurements, due to the inert nature of gold.

Electromagnetic modeling is one approach used to model plasmonic structures to predict the

field enhancement in real-world lab samples. Modeling can reduce the time needed to develop

a lab sample by investigating the effects of different structural and material parameters in

a computational environment, rather than spending resources on creating a lab sample for

every relevant parameter value. As computational methods and hardware become faster and

capable of solving larger problems, more advanced structures can be modeled to produce

more realistic results and support experimental work. Currently, different approaches have

been developed to model single-particle plasmonic structures of arbitrary shapes. Arrays of

particles are usually modeled using the coupled-dipole approximation (CDA). This method

is simple, but unlike volumetric mesh methods such as the finite element method (FEM), it

doesn’t allow creating a realistic model, with arbitrary particle shape, ordering, surrounding

medium and more.

Goal of this thesis

An FEM model of the AuFON will be developed, to facilitate experimental design of struc-

tures with optimal SERS sensing ability. The model will be built bottom-up, based on

physical principles behind SERS. An important extension of the model from previous work

is the transition from single particle models to particle array models. To support the de-

velopment, the model will be compared against well-established analytical and numerical

methods, such as Mie and CDA. It is not a goal to create a fully realistic model. The final

AuFON model will be a platform to support experimental design, that can be further ex-

tended as needed to capture effects of adding a substrate, surface roughness, other geometric

particle shapes and more. An important goal is that the model should be able to directly

estimate the SERS enhancement factor of the modeled structure.



Abstract

Optical biosensors based on surface-enhanced Raman scattering (SERS) have been re-

searched for several decades due to their wide applicability. Continuous blood glucose

measurement is an application where such devices have potential to improve management

of diabetes treatment and avoid negative side effects from improper insulin dosage. Noble

metals have demonstrated the ability to enhance the Raman scattering such that one can

measure sub-physiological levels of glucose. This is due to the strong field enhancement

from surface oscillations of the metal electron clouds, quantized as surface plasmons, when

excited by light.

To find the plasmonic nanostructure that yields optimal field enhancement, computer model-

ing allows screening different parameter values to see the effects of such changes, rather than

produce a lab sample for every parameter value. The finite element method (FEM) used in

this thesis allows solving Maxwell’s equations directly, without approximations, making it

possible to model arbitrary particle shapes and arrangements.

An FEM model is developed in this thesis for a class of nanostructures called gold film over

nanospheres (AuFON). The AuFON has been much researched due to its relatively simple

fabrication process and predictable field enhancement capability. The current state-of-the-

art SERS enhancement factor from this structure is 106 − 108. The structure consists of a

dielectric sphere core, coated with gold film. One can therefore control its performance by

changing the core diameter or gold film thickness, along with investigating how the particle

shape and spacing affects the enhancement factor.

The model was built bottom-up, each step compared to analytical Mie model or numerical

dipole approximation methods, and theory or published results, to verify that its light extinc-

tion properties are well-behaved. We first review solid single-particle gold and silver models,

showing that larger spheres have redshifted resonances compared to smaller particles and

that lower refractive indices of the medium blueshift and dampen extinction. The algorithm

for computing the SERS enhancement factor (EF) is then demonstrated on single particles,

revealing very modest enhancement factors on the order of 102. It was demonstrated that

when two or more such particles are coupled via their near-fields, the enhancement factor

can approach the theoretical limit of 1014 for the electromagnetic contribution. Far-field cou-

pled arrays showed the emergence of lattice resonances, generally agreeing with the coupled

oscillator model and the well-established coupled-dipole approximation. The enhancement

factors from far-field coupled particles in arrays were on the order of 103. Single nanoshells

exhibit higher enhancement factors due to the excitation of surface plasmons on both metal-

dielectric interfaces, but with larger film thicknesses they behave as solid particles. Finally,

close-packed arrays of nanoshells, approximating AuFONs, showed a dependence of SERS

EF on film thickness similar to the experimental reference plot, but the SERS EFs, on the

order of 103 − 104, are much smaller than the state of the art. The top hat structure, an

interpretation of the AuFON shape, showed even more modest SERS EFs of 103.



Sammendrag

Optiske biosensorer basert p̊a overflate-forsterket Ramanspredning (SERS) har vært forsket

p̊a i flere ti̊ar, grunnet deres store applikasjonsomr̊ade. Kontinuerlige blodsukkerm̊alinger er

en anvendelse der slike innretninger har potensiale for å bedre diabetesbehandling og unng̊a

negative bivirkninger fra feildosering av insulin. Edle metaller har demonstrert en evne til å

forsterke Ramanspredning slik at man kan m̊ale selv subfysiologiske mengder sukker. Dette

er grunnet i den sterke feltforsterkningen fra overflatesvingninger av metallets elektronsky,

kvantisert som overflateplasmoner, n̊ar eksitert av lys.

Datamodellering kan hjelpe med å finne plasmoniske nanostrukturer med optimal feltfor-

sterkning ved å utrede hvordan forskjellige parameterverdier p̊avirker den. Dette heller enn

å lage en ny labprøve for hver parameterverdi. Elementmetoden brukt i denne avhandlingen

lar oss løse Maxwells likninger direkte, uten å ty til approksimasjoner, som gjør det mulig å

modellere vilk̊arlige partikkelgeometrier og partikkelmatriser.

En elementmetodemodell er utviklet i denne avhandlingen for en type strukturer som he-

ter gullfilm over nanosfærer (AuFON). AuFON-er er blitt mye forsket p̊a grunnet relativt

enkel fabrikering og deres forutsigbare feltforsterkning. Dagens høyeste rapporterte forsterk-

ningsfaktor fra slike strukturer er 106 − 108. Strukturen best̊ar av en dielektrisk kuleformet

kjerne, dekket med gullfilm. En kan derfor kontrollere dens forsterkningsytelse ved å endre

kjernediameter eller filmtykkelse, samtidig som man fortsatt har frihetsgradene i form av

partikkelgeometri og partikkelavstand i matrisen.

Modellen er her bygget nedenfra og opp, der man i hvert sted sammenliknet resultatene med

analytisk Mie-løsning eller numeriske dipolapproksimasjonsmetoder og teori, eller publiserte

resultater. Dette for å forsikre seg om at de optiske egenskapene til modellene er riktige i

hvert steg. Vi ser først p̊a homogene enkeltpartikkelmodeller for gull og sølv, som viser at

større kuler har rødskiftede resonanser sammenliknet med mindre partikler. Og at en lavere

brytningsindeks i mediet gir bl̊askift av resonanser og demper dem. Algoritmen for å beregne

SERS-forsterkningsfaktoren (FF) er s̊a demonstrert p̊a enkeltpartikler, som viser en veldig

liten feltforsterkningsevne. En faktor p̊a 102. Det ble s̊a demonstrert at n̊ar to eller flere slike

partikler var koplet sammen via deres nærfelt, kunne FF-en stige mot en teoretisk maks-

verdi p̊a 1014 fra den elektromagnetiske effekten alene. Fjernfelt-koplede partikkelmatriser

viste dannelsen av gitterresonanser og oppførte seg generelt i tr̊ad med harmonisk oscilla-

tormodellen og den veletablerte koplete dipolapproksimasjonen. Disse viste en FF p̊a 103.

Enkeltpartikler av typen nanoskall viste høyere FF grunnet eksitasjon av overflateplasmo-

ner p̊a begge deres metall-dielektrikum grenseflater, men med større skalltykkelse oppførte

de seg mer og mer som solide partikler. Til slutt ble tettpakkede nanoskallpartikler, som

approksimerer AuFON-er, undersøkt. Disse viste en liknende avhengighet av SERS FF p̊a

filmtykkelse som i referanseplottet. Feltforsterkningsfaktorene, p̊a 103 − 104, var imidlertid

mye mindre enn rapportert i litteraturen. Gullhattstrukturen, en tilnærming til den reelle

AuFON-formen, viste en enda mer beskjeden FF p̊a 103.
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Chapter 1

Introduction

A lot of research is aimed at developing procedures for continuous monitoring of glucose in

diabetics, where optical sensing is widely researched. Optical sensing can be non-invasive

and techniques such as microwave spectroscopy, NIR spectroscopy and Raman spectroscopy

have been used to measure glucose [2]. Some research groups, e.g. at IES NTNU, are

focusing on developing an integrated lab-on-a-chip (LOC) device which can monitor blood

sugar levels and administer insulin when needed. A LOC can for instance be implanted, to

measure the blood sugar directly, or the measurements can be taken indirectly, e.g. via the

saliva, as one non-invasive approach [3]. Raman scattering is normally of very low intensity:

The Raman spectrum of a glucose solution with a concentration similar to physiological

blood sugar levels is practically impossible to measure without enhancement. However,

Raman measurements are non-destructive to the samples, they do not require extensive

sample preparation and can be performed in aqueous solutions. Water has a very weak

Raman spectrum in the VIS region of the EM spectrum, making it easier to observe the

spectrum of glucose in water than in other media [4].

In 1974, Fleischmann discovered that rough silver electrodes, which accidentally fell in con-

tact with pyridine, increased the Raman signal of the substance by several orders of mag-

nitude [5]. This launched research in what has since been called surface-enhanced Raman

spectrocopy (SERS), alternatively surface-enhanced Raman scattering. In recent years,

SERS has been researched for its application in sensing biologically active molecules, such

as DNA, proteins, viruses, glucose and even diagnosis of diseases such as cancer [6], [7].

Gold is also a much used metal in SERS applications, though it has not demonstrated signal

enhancement as strong as that of silver. Due to its chemical inertness, however, gold has

shown its advantages in in vivo applications, such as optical fiber probes patterned with

gold nanostructures, for blood glucose measurement [8].

1.1 SERS

As will be explained in more detail in Chapter 3, Raman scattering is inelastic light scat-

tering, where a part of the energy of the incident light can be absorbed by the analyte

molecule. The scattered light emitted by the molecule is then of a lower frequency. Raman

scattered light can also be of a higher frequency, if the light waves gain energy from the

molecule. Surface enhanced Raman scattering is the complex mechanism where the light

scattered by the analyte molecule is amplified by the field enhancement on the surface of

plasmonic nanostructures. Gold and silver are examples of metals that have conductive

2



CHAPTER 1. INTRODUCTION 3

surface electrons that, when excited by incident light, start oscillating with the light waves.

These collective electron cloud oscillations are called plasmons.

As a demonstration of SERS enhancement, Figure 1.1 shows first the unenhanced Raman

spectrum of a drop of 1000 mM aqueous glucose solution on a microscope slide. The glucose

Raman spectrum is completely overshadowed by that of water and the fused silica slide.

This demonstrates the shortcomings of the traditional Raman spectroscopy, in that one

needs very large concentrations of a substance to be able to find it in the spectrum. Figure

1.1b, however, clearly shows the Raman spectrum of glucose. Here, the slide was coated

with a 120 nm thick gold film by evaporation and the spectrum remeasured [1, pp. 55-56].

(a) (b)

Figure 1.1: Raman spectrum plots of a 1000 mM aqueous glucose solution on a fused silica
microscope slide. (a) The unenhanced Raman signal, from a single drop of glucose solution directly
on the slide. (b) Enhanced Raman spectrum from the same drop, placed on a slide which had been
coated with a 120 nm thick gold film. Image annotated with positions of the vibrational modes of
glucose.

The enhanced Raman spectrum has been annotated with wavenumber of the glucose molecule’s

vibrational modes. These correspond to the energy absorbed by the molecule when the

respective bonds are vibrating [9], [10]. The enhancement factor (EF) was estimated as

approximately 3.0 · 104 [1, p. 59]. This is however still not a large enhancement and one

would not be able to measure low concentrations of glucose, typical of the values measured

in human blood. The potential SERS enhancement factors achievable are estimated to be

on the order of 1012 − 1014 from electromagnetic contribution, and an additional 102 − 103

from a chemical contribution. So far, EFs of 106 − 108 have been reported in experiments

[11], [12], [13]. However, authors such as Sooraj et al. [9], have reported measurements of

glucose levels lower than those typically found in blood using SERS.

1.2 Diabetes and blood sugar levels

As the primary motivation for the project was to build a modeling platform for the design

of SERS sensors for continuous measurements of blood glucose, a short review of diabetes

and healthy versus unhealthy blood sugar levels is needed.

Diabetes mellitus is a disease where not enough insulin is produced, or the insulin is not used

properly by the body [14]. The blood sugar then may stay at a dangerously high level for

prolonged periods of time. Without enough insulin to help cells take up glucose, cells start

dying of nutrient deprivation. Glucose can attach itself to the red blood cells, leading to
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glycation of the hemoglobin, and impairs their ability to bring nutrients and oxygen to other

cells. Left untreated, the condition may lead to ketoacedosis as cells do not get glucose and

oxygen are forced to use other sources of energy, producing ketones as a byproduct, which

gradually poisons them. Loss of eyesight or numbness are common serious first symptoms.

Diabetes types

Clinically, diabetes is diagnosed by a test measuring the concentration of glycated hemoglobin,

HbA1c, in a blood sample [15]. This gives information about the average blood sugar level

over the last 4-12 weeks. If the average value was 48 millimoles per mole hemoglobin, then

the person is diagnosed as diabetic, after which one tests for antibodies of pancreatic beta

cells to find out if the type is I or II.

Type I diabetics are dependent on externally administered insulin. This condition is seen in

about 5-10 % of all diabetes cases. Type II diabetes is seen in 90-95 % of all diabetics [16].

Initially, Type II diabetics do not have to inject themselves with insulin for survival, but

may become more dependent on externally supplied insulin at severe stages of the affliction

as their body develops resistance to its own insulin. Figure 1.2 shows the differences between

these two main types of diabetes in terms of dependence on insulin. There are also other

types of diabetes, that are either not permanent or that affect only specific groups of patients.

Gestational diabetes during pregnancy is the most common example of the latter [16].

Figure 1.2: Diabetes types and the dependence on insulin of each type.

In 2014, about 420 million people were afflicted by diabetes of either Type I or Type II [17].

Blood sugar levels

The Fasting Plasma Glucose Test can be used to define high and low blood sugar levels.

If the blood sugar level before breakfast or after at least 8 hours of fasting is at least 7.0

mM or higher, the blood sugar is defined as high. The condition is called hyperglycemia

[14]. An alternative convention defines the level as high if there is 126 mg glucose per dL

of blood or higher. An other test, Oral Glucose Tolerance test, is performed by having a

person drink 75 g of glucose in aqueous solution and then measuring the glucose level in

his or her blood two hours later. If the concentration is at least 11.0 mM then the blood

sugar is high. This translates into 200 mg/dL. After three hours, the limit is set to 7.8 mM

[16]. On the lower end, low blood sugar, hypoglycemia, is defined as when blood sugar is

below 3.9 mM, or 70 mg/dL. The symptoms of hypoglycemia include dizziness, headaches

and shakiness. At low blood sugar levels, hypoglycemic shock can occur, where the person

may experience seizures or loses consciousness [18]. In rare cases, it can lead to death. The

blood sugar limits presented here translate into a healthy blood sugar level range between
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about 4.0 mM and 8.0 mM when at least three hours have passed since the last meal. This

is illustrated in Figure 1.3.

Figure 1.3: Blood sugar levels. Red indicates dangerous levels. Green indicates safe levels.

1.3 Nanostructures in SERS-based sensors. State of the

art

Many types of nanostructures have demonstrated large SERS enhancement factors. Ex-

amples are metallic thin films, nanowires and arrays of metallic nanoparticles in various

arrangements [4], [11], [19]. Coating dielectric or semiconducting particles with noble met-

als is a technique used to tune the resonances of the structure to e.g. the incident light

wavelength [20], [21]. Additionally, these particles can be ordered into self-assembled mono-

layers by colloidal chemistry techniques which facilitates fabrication. A surface covered by a

plasmonic monolayer is called a SERS substrate. Moreover, it has been demonstrated that

surface roughness is a strong contributor to SERS [22]. Periodic arrays of self-assembled

particles exhibit periodic surface roughness, which produces reliable enhancement factor

measurements. Conversely, on randomly rough surfaces, the EF would depend strongly

on where on the surface one places the drop with analyte molecules. Finally, the benefit

of close-packed particles is that placing two or more plasmonic particles closely, they are

coupled by their near fields, which can greatly enhance the EFs in small gaps between the

particles. One widely researched class of periodic, metal coated particles, is the gold film

over nanospheres, AuFON [8], [12], [23]. The EFs achieved with these structures are on the

order of 106 − 108.

Both periodic and disordered arrays of dielectric particles can be used for producing masks

for hole-mask, or colloidal, lithography. Depositing gold or silver over the mask and subse-

quently removing it, can be used to pattern large areas [24]. These masks can be used to

create 2D structures [11] and 3D structures [19]. The latter allows plasmon excitation along

a third dimension and can potentially produce greater EFs.

Ion and electron beam lithography can also be used to produce nanoscale SERS substrates

[25]. Currently, however, these techniques are too time-consuming and expensive to cover

entire substrate areas.

1.4 Simulating the SERS EF in AuFONs

The goal of this thesis is to use physical principles to build an AuFON model using the fi-

nite element method (FEM). The finite element method allows solving Maxwell’s equations

directly by discretizing the simulation space and particles into a volumetric mesh. This al-

lows solving for arbitrary particle shapes and arrangements, unlike the dipole approximation

methods commonly referenced in literature.

The model will be able to predict how the resonances change when the dielectric core diam-

eter is changed, when the gold film thickness changes, as well as a change in surrounding
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medium or substrate. While the literature most often presents Raman intensity plots, such

as the ones in Figure 1.1, the model calculates the SERS EF directly from electromagnetic

computations. The value is estimated using an approximation, based on the structure’s

surface field. Due to the many complexities of a real-world AuFON sample, it can therefore

be difficult to verify that a model, with the necessary simplifications that come from the

time limitations of a master’s level thesis, matches the few available explicit SERS values

found in the literature.

The modeling process uses a bottom-up approach, where the single homogeneous gold parti-

cle model presented in the project thesis [1] is reviewed and extended to estimate the SERS

EF. The model is compared against analytical Mie calculations, as well as the numerical

discrete-dipole approximation, which is also widely used. The criteria for comparison are

the resonances seen in the extinction spectrum of the sphere. Emphasis is put on comparing

how these resonances match with the analytical Mie solution, how they change with different

particle sizes, composition – i.e. replacing gold with silver – and a change of surrounding

medium from air to water. The model is also compared with the discrete-dipole approxima-

tion, to investigate these models early on and be sure they can be used for comparison on

more advanced stages, when Mie is no longer valid and published results are not available.

These two numerical models also allow comparing the surface field enhancement and SERS

EF estimation.

This model is then extended to particle dimers and arrays, to verify that the model performs

as expected both in the near and far field. The dimer is used as an approximation of the

properties seen in arrays during strong near-field coupling. The gold model, with several

diameters, is benchmarked on what maximum SERS EFs it can achieve.

The array models are also studied thoroughly for their far-field properties, to ensure that

they behave physically in both near-field and far-field. 1D and 2D arrays of gold and silver

are investigated, how new lattice resonances emerge and couple with the plasmon resonances

seen in single-particle models. These narrow lattice resonances have important implications

for resonance tuning, but it is shown that they do not demonstrate the SERS enhancement

potential seen in state-of-the-art results in literature. Here, the coupled-dipole approxima-

tion is a useful tool for comparing with the FEM. Because of the easier comparability of

silver models to published results, the emphasis is on silver arrays, but gold arrays are also

investigated.

Going further, the homogeneous gold particle model is then replaced with a nanoshell model,

with a dielectric particle core and a thin metal film around it. These particles are simulated

for various film thicknesses, revealing that they allow tuning resonances much more than

the solid metal particles and may exhibit stronger surface fields. However, they lose these

properties as the film becomes thicker.

The final periodic structure consisting of such gold nanoshells is an approximation of an

AuFON structure. The model is further fitted to an actual AuFON shape by implementing

a ”top hat” structure, where the gold film does not fully envelop the core, but only its upper

half. SERS EFs from both periodic nanoshells and top hats are estimated for different film

thicknesses and particle spacings, as well as compared against available experimental data.
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1.5 Thesis structure

Chapter 2 will review how an AuFON is fabricated, based on the procedure used in the

project thesis. Chapter 3 will present the theoretical foundation for the model, from basic

electromagnetic principles and a solid state physics model for metals, to a model for the

scattering of light and a description of surface plasmons.

As the FEM modeling is performed in COMSOL, Chapter 4 presents the details of imple-

menting the model in COMSOL, as well as an introduction to the reference DDA and CDA

methods used. The chapter also presents an outline of the modeling process.

Chapter 5 finally presents the calculations performed with the model and how it compares

to theory, the reference methods, analytical solutions and published results.

The appendices contain a mathematical description of the FEM, with a discussion of some

computational issues. A description of the practical aspects of using DDSCAT, the DDA

implementation used in this thesis, and a listing of all the codes written for this thesis. This

listing contains the CDA and Mie implementations. There is also section with secondary

simulation results, which explore larger sphere models.



Chapter 2

A review of the fabrication of

AuFON SERS substrates.

Before introducing the physical models used in this thesis and how they were implemented

numerically, in COMSOL or Python code, it is instrumental to review how AuFONs are

fabricated and characterized in a laboratory environment. This is not meant to be an

in-depth review of fabrication techniques, but merely an overview of the different steps,

with illustrations, to get the reader familiar with what an AuFON structure is. To better

understand the description of the modeling approach that follows in the next chapters.

It was already mentioned that there are currently many techniques for producing plasmonic

structures for use as SERS substrates. Common lithographic techniques that have been

demonstrated in the last two decades are electron beam and colloidal (hole mask) lithography

[4], [11], [13], [25] along with more simple techniques such as drop coating, spin coating or

Langmuir-Blodgett deposition [13], [26].

In this review of AuFON fabrication, we take a quick look at drop coating, following the

approach previously presented in the project thesis [1, Ch. 4]. For detailed reviews on

fabrication using Langmuir-Blodgett, see e.g. Zhang et al. [27] or Braathen [28]. Zhang et

al. also present a detailed approach for spin coating, which was used for demonstrating a

colloidal crystal in Figure 2.3a below, due to the lack of a good image of a colloidal crystal

produced by drop coating. All these methods have the same goal: produce a close-packed

crystalline monolayer of dielectric nano- or microspheres, typically made of polystyrene, on

a substrate, for the subsequent coating of the sphere layer with gold.

Figure 2.1 is an scanning electron microscope (SEM) image of the resulting hexagonal close-

packed AuFON array, consisting of 500 nm polystyrene spheres coated with 120 nm gold

film by evaporation [1].

8
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Figure 2.1: (a) SEM image, magnified 120 000 times, of an AuFON array consisting of particles
with a 500 nm polystyrene core and 120 nm gold film. Reproduced from previous work [1].

A substrate, such as a microscope slide, is cleaned using a standard piranha cleaning process

[27], and then one deposits a polystyrene sphere suspension, diluted with ethanol and/or

DI water to obtain a self-assembled monolayer of spheres on the substrate. The optimal

weight percent to achieve good area coverage, but at the same time avoid multilayered

patches, depends on the physical size of the spheres in suspension, as well as the initial

concentration.

The suspension is left to air dry, whence the spheres are drawn close to one another by the

capillary forces during the evaporation of solvent and arrange themselves in a hexagonal

close-packed crystalline lattice. Figure 2.2 illustrates this conceptually. Macroscopically, it

creates a colloidal crystal with an iridescent surface that diffracts light.

Figure 2.2: (a) Illustration of the AuFON fabrication process. Part (a) shows the suspension
being dropped onto a substrate. During solvent evaporation, the spheres are drawn together and
form a colloidal crystal. Part (b) shows the coating of spheres with metal by evaporation. Note
that the spheres are coated only at the top, as the vapor doesn’t reach the spheres’ underside due
to the tight packing. Image modified from previous work [1].

A photoimage of such a colloidal crystal is shown in Figure 2.3a. This sample was produced

by spin coating a silicon substrate with 500 nm polystyrene spheres, but the result is similar

to a drop cast monolayer of spheres.
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(a) (b)

Figure 2.3: Macroscopic view of the results of each fabrication step. (a) The colloidal crystal
formed after depositing the spheres on a substrate. This specific image shows a silicon substrate
spin coated with 500 nm polystyrene spheres, but drop cast samples would look similar, with the
characteristic iridescence because of light diffracted by the periodic structure. (b) The AuFON
after the colloidal crystal has had gold evaporated onto it. This is a real drop cast sample on a
fused silica microscope slide.

Next, the sample is coated with metal using an evaporation process, to the desired thickness.

This is shown in Figure 2.2, part (b). Note that the spheres are coated only at the top, as

the vapor doesn’t reach the spheres’ underside due to the tight packing. This will be clearly

seen in a SEM image, Figure 4.13, of real coated particles in Chapter 4. Figure 2.3b shows

the final structure macroscopically. The image shows the actual result of drop coating on a

microscope slide, coated with gold.

After this step, the sample is characterized using tools such as the SEM or atomic force

microscopy (AFM). The Raman spectroscopy may damage the sample, if the colloidal crys-

tal has many defects and one is not careful, and so all the non-invasive characterization

techniques must be performed before it.

Figure 2.4: Illustration of the Raman spectroscopy setup, showing the substrate with the AuFON
structure on its surface, placed under the microscope objective of a Raman spectrometer. There is
a droplet with aqueous glucose solution placed on top of the AuFON structure and the microscope
is focused on this drop [1].

Finally, the sample can be inserted into a Raman spectrometer to measure the intensity

peaks. In the case of an aqueous glucose solution, this can be performed by simply placing

a drop of the solution on top of the SERS substrate and then focus the spectrometer on

the drop, as in Figure 2.4. From the Raman spectroscopy, one can calculate the SERS

enhancement factor using Equation (3.52), which will be presented in the next chapter. The
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Raman measurements may be performed using both VIS and NIR wavelengths, but there

are advantages of using NIR wavelengths, to avoid the effects of fluorescence in glucose

measurements [29]. We will assume throughout the thesis that the wavelength is 785 nm,

as used in previous work at IES NTNU [8], [28] and in the experimental part of the project

thesis [1].



Chapter 3

Theory

Surface-enhanced Raman scattering is explained by solid-state physics and electromagnetics.

A review of relevant topics is presented here.

First, a short review of electromagnetism leading to the wave equation is presented. Then,

central expressions from the Lorentz-Drude of metals are derived, with a short discussion

on the polarization of dipoles and local fields. An extensive derivation of Mie theory, based

on Mie coefficients, follows. The expressions for scattering and absorption cross sections,

originally derived by Gustav Mie [30], are directly used for verifying the single particle FEM

model.

Raman scattering is briefly reviewed from a quantum mechanical perspective. Surface plas-

mons (SP) and the mechanism of SERS, as it is currently understood, is discussed, including

a short section on surface roughness. Localized field enhancement by plasmonic structures

is one of the most important mechanisms that leads to enhancement of the Raman spectrum

in SERS [4] and so attention is devoted to near-field coupling. However, to make the model

complete, far-field coupling in periodic structures that gives rise to Fano resonances is also

explained using a model with coupled harmonic oscillators.

3.1 Electromagnetism

Electromagnetic (EM) waves are electric and magnetic fields that oscillate together, governed

by Maxwell’s equations in their harmonic form [31, p. 58] with angular frequency ω,

∇×E = −iωµH (3.1)

∇×H = J + iωεE (3.2)

∇ ·E =
ρ

ε
(3.3)

∇ ·H = 0, (3.4)

where E and H are the electric and magnetic field vectors, J is the current density vector,

ε = εrε0 is the electric permittivity of the medium, as the product of the dielectric function

and the permittivity of free space, µ = µrµ0 is the magnetic permeability of the medium. ρ

is the charge density. i is the imaginary unit Throughout this thesis, EM waves propagate

through a dielectric medium. That is, setting J = 0 and charge density ρ = 0.

12
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The complex dielectric function is defined [31, p. 230] as

εr(ω) = ε′(ω) + iε′′(ω) = 1 + χ(ω), (3.5)

ε′ represents the real part and ε′′ its imaginary part. χ is the electric susceptibility and is

a complex value. The parentheses indicating frequency dependence in (3.5) were omitted

before for conciseness of the notation. This will be continued throughout this text. The

refractive index is defined, for non-magnetic materials (µr = 1), as nr =
√
εr [32, p. xii].

Similarly to the dielectric function, it can also be represented as a sum of a real, n, and an

imaginary part, k [31, p. 27],

nr = n+ ik. (3.6)

The electric and magnetic fields are defined as time-dependent plane waves,

E(r) = E0 exp (ikr− iωt) (3.7)

H(r) = H0 exp (ikr− iωt). (3.8)

k = nrk0 = ω
√
µ0ε0 is the wavenumber in the medium, expressed using the wavenumber in

vacuum, k0. To distinguish the wavenumber from the extinction coefficient, it is in Roman

font type, not italic, following Bohren and Huffman [31, p.27]. Solving (3.1) for the magnetic

field and inserting it into (3.2), yields

− 1

iωµ0
∇×

(
1

µr
∇×E(r)

)
= iωεE(r). (3.9)

Multiplying the whole expression by the negative fraction on the left-hand side produces the

wave equation in inhomogeneous media,

∇×
(

1

µr
∇×E(r)

)
− k2

0εrE(r) = 0. (3.10)

For a non-magnetic medium the curl expression can be evaluated as

∇2E(r)− k2
0εrE(r) = 0. (3.11)

The models will be simulated using a planar wave polarized along a plane, e.g. along the

y axis, and propagating in another direction, such as the x-direction, i.e. transverse waves.

For particles arranged in arrays, polarization of light along the array axis – assume for now

a 1D array, a ”string” of particles – is called p (parallel) polarization. Orthogonal to the

array, it is called s polarization.

We assume for simplicity that the propagating medium is homogeneous. The wave equation

becomes a homogeneous scalar wave equation.

∂2Ey
∂x2

− k2
0εrEy = 0. (3.12)

3.2 Material properties

The metal particles and electron oscillations on their surface, called plasmons, which are the

physical basis of SERS, depend on the particles’ material properties. This section presents

the Lorentz-Drude metal model used to simulate the metal particles in this thesis and how
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metal particles act in the presence of external EM fields.

3.2.1 Lorentz-Drude model of metals

In metals, the electrons at Fermi level can be excited to higher intraband energy states

with little photon energy and described using the free electron model. The dielectric func-

tion, previously denoted εr, is now ε. Unless otherwise noted, variable definitions from the

preceding sections are used.

The dielectric function can be expressed in terms of the plasma frequency ωp and EM field

frequency ω,

ε(ω) = 1−
ω2
p

ω2
. (3.13)

ωp is the frequency above which the electron cloud can no longer oscillate in phase with the

field and the metal starts behaving as a dielectric [33, pp. 396-397].

However, in a metal not all electrons are behaving as free electrons, but rather as bound os-

cillators which resonate when excited by incident radiation. Lorentz oscillators are modeled

[31, Ch. 9.1] as homogeneous masses on springs with stiffness constant K. The resulting

dielectric function from the Lorentz model is

ε = 1 + χ = 1 +
ω2
p

ω2
0 − ω2 − iγω

, (3.14)

where ω0 is the resonance frequency and γ a damping constant. The oscillator model has

the optical characteristic that around ω0, there’s high absorbance.

Setting the constant K = 0, which implies ω0 = 0 [31, Ch. 9.4], the dielectric function is

ε = 1 + χ = 1−
ω2
p

ω2 + iγω
, (3.15)

which constitutes the Drude model of a free electron metal. Since the scattering of electrons

in a metal at ambient temperatures is mostly with phonons, γ is normally much smaller

than ωp. At visible and UV light frequencies, the real part of ε is therefore approximately

equal to that of a free electron,

ε′ ≈ 1−
ω2
p

ω2

ε′′ ≈
ω2
pγ

ω3
.

(3.16)

In the low frequency limit, the oscillator properties are more pronounced.

Using that susceptibilities are additive, one can add multiple Lorentz oscillator susceptibili-

ties in Eqn. (3.14) to the Drude model, (3.15), each with its respective resonance frequency

ωj , to account for multiple resonances. The dielectric function is then expressed as a sum

of the intraband (Drude model) εf , and interband (Lorentz oscillators) effects εb,

ε(ω) = εf (ω) + εb(ω) (3.17)

εf (ω) = 1−
f0ω

2
p

ω(ω − iγ0)
(3.18)

εb(ω) =

k∑
j=1

fjω
2
p

(ω2
j − ω2) + iωγj

. (3.19)
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The notation here is borrowed from Rakic et al. [34], where a quantum-mechanical (QM)

formulation is used: k is the number of oscillators with resonance frequencies ωj (in QM,

the energy difference between excited state j and ground state), oscillator strength – prob-

ability of excitation to state j from ground state – fj , and γj is the damping constant.

Essentially, the QM formulation represents a weighted-average of Lorentz oscillators as the

bound electron term.

3.2.2 Polarization of particles

When a metal particle is placed in an electric field, the free electrons move against the field,

separating the charges on the particle surface, as shown in Figure 3.1a. This creates a dipole

moment p = ver, in the direction r of charge separation [33, p. 455]. v is here the number of

charges per volume and e is the elementary electron charge. For every atom, ion or molecule

j, the local field contribution from the total dipole moment in j, pj , is

Ej(rj) =
3(pj · rj) · rj − rj

2pj

4πε0rj5
. (3.20)

With the net dipole moment as polarization P, and displacement field D = ε0E + P, one

arrives at the depolarization field

Edepol = −P

ε0
(3.21)

in the longitudinal wave limit (for ε(ω) = 0). This is the restoring force that pushes the

separated charges back together, as seen from Figure 3.1.

Suppose that the dipole is located inside an ellipsoidal crystal with principal axes x, y, z. The

axes give rise to depolarization factors Nj which satisfy Nx +Ny +Nz = 1 and ε0Edepol =

−NxPx−NyPy−NzPz. Their values are derived from the ratios between the principal axes.

For a sphere, all Nj = 1/3 and the depolarization field is equal to −P/3ε0 [33, pp. 456-458].

Now, imagine that a sphere was cut out from the crystal ellipsoid, as in Figure 3.1b, but

is then inserted back in. The discontinuity gives rise to a surface charge that cancels the

depolarization field by inducing a Lorentz field. In a spherical cavity, this field is EL = P/3ε0

[33, p. 462]. The local field ([33, pp. 460-462]) in the cut out sphere is then the sum of the

depolarization field, Lorentz field and dipole contributions from atoms inside that sphere,

as well as the externally applied field E0,

Elocal = E0 + EL + Edepol + Edipole. (3.22)

Edipole is dependent on crystal structure. In a reference atomic site in a sphere, in cubic

crystal lattices, it can be shown that Edipole = 0 [33, p. 460] if all the atoms are replaced

with point dipoles and arranged parallel to one another. Defining the macroscopic field E as

the sum of external and depolarization fields, the local field is given by the Lorentz relation,

Elocal = E +
P

3ε0
. (3.23)

Moreover, in a sphere in a cubic environment, the depolarization and Lorentz fields cancel,

leaving the local field equal to the external field,

Elocal = E0. (3.24)
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The polarizability of an atom or molecule is the factor α that expresses the dipole moment

as

p = αElocal. (3.25)

For a molecule or larger particle, one has to sum over all atoms j and their concentrations

Nj to get net polarization,

P =
∑
j

NjαjElocal. (3.26)

Inserting Eqn. (3.23) into (3.26) and using Eqn. (3.5) we obtain

ε− 1

ε+ 2
=

1

3ε0

∑
Njαj , (3.27)

the Clausius-Mossotti equation that relates the dielectric function to polarizability [33, p.

464].

Figure 3.1: (a) Dipole moment emerging under the influence of an external field E. Directions
of charge separation r and depolarization field are also shown. The depolarization field is due to
the surface charge. (b) Ellipsoidal crystal subjected to an external field. The depolarization field,
Lorentz field and dipole contributions to the local field are shown. The local field is the sum of all
fields in the plot.

3.3 Scattering and absorption from particles

The following presentation is based on Chapters 3 and 4 of Bohren and Huffman [31]. When

a plane wave interacts with a particle in its path, some of the non-transmitted energy is

absorbed by the particle and some is scattered in different directions. The sum of these two

effects is the extinction caused by the particle: Suppose a detector was placed behind the

particle and the light intensity received was I. Then, if there was no particle in its path,

the light received by the detector would be I0 > I, where I0 is the initial intensity of light,

as seen in Figure 3.2.

An imaginary integrating sphere of radius r is placed around a particle of radius a, to

”collect” the flux lines scattered by its surface, allowing us to express the rate at which the

electromagnetic energy crosses that sphere [31, p. 69] as

Wa = −
∫
A

S · êdA, (3.28)

where S is the Poynting vector, S = E×H∗, which defines the direction of power flow [32,

p. 40]. A is the surface area of the imaginary sphere and ê defines the normal vector to A.
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Figure 3.2: Light of intensity I0 is partially extinct by a scattering and absorbing particle in its
path, allowing an intensity I < I0 to reach the detector. An imaginary integrating sphere (black,
dotted line) is ”collecting” the scattered flux lines. r is the radius of the integrating sphere. a is the
radius of the particle. Some of the field lines going into the detector are a bit shorter, to illustrate
that transmission and forward scattering may be lower in intensity than that of incident light due
to absorption. The detector in the figure is a simplified representation.

Using that the total Poynting vector of a scattering problem is the sum of vectors for the

incident and scattered radiation, as well as extinction [31, p. 63],

S = Si + Ss + Sext. (3.29)

The extinction vector here represents the interaction between scattered and incident fields.

Provided that the medium within the integrating sphere is non-absorbing, the particle is

the only absorbing body withing the imaginary sphere. Wa = Wi −Ws +Wext = −
∫
A

Si ·
ê dA+

∫
A

Ss · ê dA−
∫
A

Sext · ê dA is then the particle’s absorption rate. In a non-absorbing

medium Wi vanishes [31, p. 70], allowing the expression of the extinction rate as the sum

of scattering and absorption rates

Wext = Wa +Ws. (3.30)

Dividing these by the incident radiation intensity I0 yields the scattering, absorption and

extinction cross-sectional areas, from hereon called cross sections,

σs =
Ws

I0
σa =

Wa

I0
σext =

Wext

I0
. (3.31)

The extinction cross section can be understood intuitively as the shadow that the particle

is casting on a detector placed some distance behind it. A part of the detector’s area is

obscured by the shadow of the particle. The area covered by the shadow can be higher than

the particle’s geometrical cross section, G. G is the projection of the particle’s surface area

onto a plane perpendicular to the light’s direction of propagation. Figure 3.3 illustrates this.

Dividing the cross sections above by the geometric cross section G of the scattering particle,

produces the efficiency factors

Qs =
σs
G
, Qa =

σa
G

and Qext =
σext
G

. (3.32)

These dimensionless factors will be called efficiencies. Eqn. 3.32 lists the scattering, ab-
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Figure 3.3: Extinction cross section intuitively illustrated as the shadow of a particle, in the path
of the incident light, on the surface of a detector. The area of the shadow is in this case equal to
the particle’s geometric cross section.

sorption and extinction efficiencies, respectively. These are normalized values that allow for

a comparison of e.g. the scattering of light by particles of different sizes. In Figure 3.3, the

extinction cross section is equal to the particle’s geometric cross section (red dashed ellipse

within the particle’s bounds) and the extinction efficiency is therefore exactly equal to unity.

However, the efficiencies can be higher than unity (or lower) [31, p. 72]. A metal particle

can have a scattering cross section larger than its geometric cross section G. In this case,

as extinction is the sum of absorption and scattering, both positive, it will also be larger

than G. Figure 3.3 illustrates this by imagining as if a highly efficient scattering body casts

a larger shadow (light grey) than its geometric cross section (black) on the detector. The

illustration is based on Bohren and Huffmann’s interpretation of the extinction cross section

[31, p. 75]. In practice, extinction is measured as described in the beginning of this section,

with the accompanying illustration in Figure 3.2.

Using the vectors in Figure 3.2, we follow Sarid and Challener [32, p. 203] in defining the

near-field scattering by evaluating the integral (3.28) at r = a. That is, integrating the

electric field at the particle surface. Far-field scattering is then defined for all r >> a.

Formally, scattering is defined in the forward direction, with backscattering quantifying

scattering in the other direction. However, extinction accounts for scattering in all directions

[31, p. 75].

3.3.1 Mie coefficients

The qualitative presentation of optical cross-section and efficiencies above is now followed

by a derivation of analytical expressions for these using Mie theory, so as to calculate the

scattering of light from a homogeneous gold sphere.

As the electric field polarizes the particle, it excites multipole resonant modes on its surface.

Smaller particles are polarized as dipoles and Mie theory can be simplified according to the

quasi-static approximation in Section 3.3.2 below.

For large spheres, the field is not able to homogeneously polarize the sphere as a dipole,

due to phase retardation [35], [36, pp. 73-74], and we need full Mie theory to model these.

The polarization is now defined as P = ε0εmαE0 [36, p. 68], with εm being the surrounding

medium’s dielectric constant.

This leads to the excitation of higher-order multipole modes. Using size parameter x = 2πa
λ ,

where λ is the excitation wavelength in the medium, the polarizability can be expressed [36,
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p. 74] as

α =
1− 1

10 (ε+ εm)x2 +O(x4)

( 1
3 + εm

ε−εm )− 1
30 (ε+ 10εm)x2 − i 4V π2ε

3/2
m

3λ3
0

+O(x4)
. (3.33)

V is the volume of the particle and λ0 is the excitation wavelength in free space. This

expression can be split into several parts. O(x4) represents the higher-order multipolar

excitation modes, the second-order terms account for retardation and the depolarization

field inside the sphere and the imaginary term in the denominator – radiation damping.

The first term in the denominator accounts for the lowest-order, dipolar, mode.

The scattering cross section in the previous section can be shown to exhibit a quadratic

dependency, σsca ∝ |α|2, on polarizability. Absorption is linearly dependent on the imagi-

nary part of polarizability α′′, σabs ∝ |α′′|, [32, pp. 213-214]. These relationship are used in

deriving the dipole approximation in Section 3.3.2.

However, it is possible to calculate the optical cross sections by encapsulating the physics

into Mie coefficients. The expressions for the scattering and extinction coefficients are then

expressed as

[31, p. 103]

σsca =
2

x2

∞∑
j=1

(2j + 1)(|aj |2 + |bj |2) (3.34)

σext =
2

x2

∞∑
j=1

(2j + 1)Re(aj + bj), (3.35)

where j is an index denoting the order of the multi-pole modes. The coefficients aj and bj

are two of the four Mie coefficients. The extinction cross section is obtained as the sum of

scattering and absorption, as seen in Eqn. (3.30). In calculations, the infinite sums in (3.34)

are approximated as a finite sum of N terms, where N can be expressed [31, p. 477] as

N = 2 + x+ 4x1/3 (3.36)

and rounded to the nearest integer. As an example, for a size parameter x ≈ 1, corresponding

to a particle of radius a = 100 nm and an excitation wavelength of 630 nm, N is equal to 7.

Since absorption can be found as the difference between extinction and scattering, we’ll only

focus on the first two coefficients. In the non-magnetic particle case, these assume the form

aj =
mψj(mx)ψ′j(x)− ψj(x)ψ′j(mx)

mψj(mx)ξ′j(x)− ξj(x)ψ′n(mx)

bj =
ψj(mx)ψ′j(x)−mψj(x)ψ′j(mx)

ψj(mx)ξ′j(x)−mξj(x)ψ′n(mx)
.

(3.37)

m is the relative refractive index of the scattering sphere to that of the surrounding medium.

ψj and ξj are the Riccati-Bessel functions of order n, defined as

ψj(x) = xjj(x) ξj(x) = xhj(x), (3.38)

with jj(x) being the spherical Bessel function of the first kind and hj(x) = jj(x) + iyj(x)

the spherical Hankel function. yj is the spherical Bessel functions of the second kind. The

derivatives of ξj(x) and ψj(x) in Eqn. 3.37 are of the form z′j(x) = zj−1(x) − j
xzj(x),

with zj representing any of the functions jj(x), yj(x), hj(x), ψj(x) or ξj(x). Spherical Bessel
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functions of the first and second kind have the form [31, pp. 86-87]

jj(x) =

√
π

2x
Jj+1/2(x) and yj(x) =

√
π

2x
Yj+1/2(x). (3.39)

J and Y are the ordinary Bessel functions of the first and second kind, respectively. For

n = 0 and n = 1, these are expressed as

j0(x) =
sin(x)

x
y0(x) = −cos(x)

x
,

j1(x) =
sin(x)

x2
− cos(x)

x
y1(x) = −cos(x)

x2
− sin(x)

x
.

(3.40)

The difference relation zj−1(x) + zj+1(x) = 2j+1
x zj(x), can be used to find higher-order

functions.

The expressions in this section are implemented in Python in Appendix E.2. Furthermore,

the code was tested against the values provided by Bohren and Huffman [31, Appendix A] to

make sure the formulas were implemented correctly. Figure 3.4 demonstrates the extinction

efficiencies, obtained from using this code, of a single silver sphere of various diameters.

Extinction efficiencies are extinction cross sections normalized with the particle’s geometric

cross section, as previously shown in Eqn. (3.32).

Figure 3.4: Extinction efficiencies of single silver spheres of various diameters from 50 nm to 100
nm. Note the emerging quadrupole in the 100 nm plot – the kink between λ = 350 nm and 375 nm.

3.3.2 The quasi-static approximation.

When the radius of the sphere is much smaller than the wavelength of the incident light,

we can neglect the phase retardation effects and excitation of higher-order modes. The

main feature of the quasi-static method is that one assumes that, for particles where the

diameter is a lot smaller than the incident wavelength, d << λ, the phase of the field is

approximately constant over the entire particle surface. A suggested region of validity for

this approximation is d < 50 nm [21]. One can therefore simplify the problem to one with

an electrostatic field [36, p. 66], [32, p. 211]. Because the incident field is assumed constant

it can only excite the lowest-order dipole mode on the surface of the particle, but not the

higher-order multipolar modes. This is therefore also referred to as the dipole approximation,

as the particle is assumed to act as a dipole. The complete derivation of optical properties

under this approximation is demonstrated by Sarid and Challener [32, pp. 211-215] or Maier

[36, pp. 66-71].
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The polarizability in Eqn. (3.33) can be simplified to

α = 4πa3 ε− εm
ε+ 2εm

, (3.41)

which contains only the dipole term. Hence, this formulation neglects retardation effects

and dampening.

The scattering and absorption cross sections can be expressed as

σsca =
8π

3
k4a6

∣∣∣∣ ε− εmε+ 2εm

∣∣∣∣2
σabs = 4πka3Im

(
ε− εm
ε+ 2εm

)
.

(3.42)

As particle radius increases, the scattering cross section increases as σext ∼ a6, while the

absorption cross section increases as σabs ∼ a3. It will be seen that for small particles with

radii a << λ, the extinction cross section, σext = σsca+σabs is dominated by the absorption

term. However, as the particle radius increases, the scattering term eventually becomes

larger than absorption.

Note that as the optical cross sections are Lorentzian lineshapes they are subject to lineshape-

broadening with increasing sphere diameter. This holds true for the full Mie solution as well,

as seen in Figure 3.4 and have been noted by e.g. Averitt et al. [21]. Eqn. (3.42) reveals

that the condition for resonance ([32, p. 212]) is

ε′ ≈ −2εm. (3.43)

Note that as the dielectric function is size-independent, Eqn. (3.43) predicts resonance at

the same wavelength, independent of particle size. This makes the approximation different

from the full Mie solution.

3.4 Raman scattering

(a) (b)

Figure 3.5: Raman scattering illustrated in terms of photon energies. (a) Stokes scattering, where
the scattered photon has less energy than the incident and (b) anti-Stokes – scattered photon has
absorbed energy from phonons in the material and has more energy.

When illuminating a material, most of the light is elastically scattered. A small fraction is

inelastically, Raman, scattered. The Raman spectrum can be used to identify a material,

due to the resonance peaks at frequencies where the material’s vibrational modes, such as

stretching and rotational modes, quantized as phonons, resonate. Unlike elastic scattering,
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where the incident and scattered photon have the same energy, Raman scattering is inelastic

and is defined by

~(ωI ± ωR) = hωS . (3.44)

~ωI is the energy of the incident photon, ~ωR is that lost or gained by interaction with the

vibrational modes of a material and ~ωS is the energy of the scattered photon. If the loss

~ωR is positive, then we have Stokes scattering. When the loss is negative and the photon

scattered has higher energy than the one absorbed – anti-Stokes. [37, p. 527] See Figure

3.5. It’s worth noting that the scattered photon isn’t the same one that was incident on

the material, but a new photon created in the collision with a phonon. The intensity ratio

between Stokes and anti-Stokes scattering is

IStokes
Ianti−Stokes

= exp
~ωR
kBT

, (3.45)

where kBT is thermal energy. The intensity ratio is generally larger than unity, implying

that most of the inelastically scattered photons are Stokes scattered.

The following mechanism is specific to the case when an incident photon collides with a

phonon in the material studied [38, pp. 3-6]. The incident photon has a wave vector kI(ωI)

and the scattered photon has kS(ωS). The phonon representing e.g. a lattice vibrational

mode has wave vector q, which is the crystal’s momentum. From the definition of Raman

scattering above and the requirement that energy is conserved in the collision, the phonon’s

scattering frequency is the difference ω = ωI − ωS . Momentum conservation also requires

that q = kI − kS , as it is in the case of one lattice excitation participating in the scattering

process. However, for non-crystalline materials, where a single q isn’t representative for all

the lattice excitations, and especially in the case of complex refractive indices in absorptive

materials, the condition breaks down and must be approximated as

∆q ≈ Im(kI) + Im(kS), (3.46)

which gives a range of phonon wave vectors, such that the Raman spectrum peaks stretch

over a continuous band of frequencies. Amorphous materials with no or little crystalline

order, such as glass, have wide bands due to absorption.

The dipole mode set up by the incident light and the elementary excitations of the analyte

material emits has a small chance of emitting Stokes and anti-Stokes shifted on [13]. Merlin

et al. state that ”... The effect may be understood as that from an induced polarization P

(the dipole moment per unit volume) that oscillates at the frequency ωS .” [38, p. 6]. They

represent the polarization by a modulated electric susceptibility of the medium χm induced

by the elementary excitations of frequency ωq. We omit the tensor notation used by Merlin

et al. [38, p. 6] and express element i of the analyte’s polarization vector simply as

Pi(ωS) = χmi E(ωL) (3.47)

The notion that the analyte molecule is polarized by incident light is used when explaining

the mechanism of SERS.

3.5 Surface plasmons and SERS

This section defines the elementary excitations on the surface of a metal more closely. The

field-enhancement in SERS is attributed to oscillation of surface electrons in metals, when
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excited by incident light. The quantization of these oscillations of the electron gas is called

a plasmon [33, p. 401]. A qualitative introduction to surface plasmon polaritons on single

and double metal-dielectric interfaces is given first, before localized surface plasmons will be

presented as the excitation contributing to SERS in the nanostructures modeled in Chapter

4. Finally, surface roughness is discussed as a way to excite surface plasmons and to localize

them.

3.5.1 Single- and double-interface surface plasmon polaritons

Surface plasmon polaritons (SPP) are surface waves, obtained from the coupling of photons

from incident light to the electric oscillations. Such surface waves can propagate along a

single metal-dielectric interface, such as the surface of a metal particle in a dielectric medium,

or along two such interfaces. The latter is the case for nanoshells, particles that consist of a

dielectric core, coated with a metal film, also with a dielectric surrounding medium. Figures

3.6a and 3.6b show simple outlines of a single and double interface.

(a) (b)

Figure 3.6: (a) Single dielectric-metal interface, between a dielectric medium, with constant εm1

and metal with dielectric function of wavelength ε. The direction of SPP propagation is in x.
(b) Double dielectric-metal interface, with the metal layer wedged in-between two dielectrics with
constants εm1 and εm2, respectively.

Single-interface SPPs

The main feature of SPPs that will be used in this thesis is the property of confinement,

or localization, of the surface wave to such dielectric-metal interfaces, where the evanescent

fields in the direction normal to the interface, along the z axis in Figure 3.6a, have a decay

length ẑ = 1/kz. kz is the z component of the EM wave in each respective medium i,

dielectric and metal. Recall, however that metals are transparent to fields only when the

frequency is higher than the metal’s plasma frequency, introduced in Section 3.2. Thus, the

evanescent fields penetrate into the dielectric. Confinement to the surface requires that the

EM wave in both media has Re(k) > 0 [36, p. 27]. Maier [36] further concludes that to

ensure continuity of the electric and magnetic field components Ey and Hx at the interface,

while satisfying confinement, SPPs can only exist for TM polarization.

From the dispersion relation of SPPs, the propagation constant equals

β = k0

√
ε · εm1

ε+ εm1
. (3.48)

To excite SPPs, the incident photon’s wavevector needs to match the propagation constant,

which is the component of the surface wave’s wavevector along x. However, plotting the

dispersion relation together with the photon’s light line, ω = ck, reveals that normally β > k

[36, Figure 2.3, p. 27]. Coupling SPPs with light on smooth metal surfaces is therefore only

possible in the small wavelength interval, where the phases match, for small wavevectors.
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There are, however, several phase-matching techniques for exciting SPPs, such as using

gratings, prisms, near-field and end-fire coupling [36, Ch. 3], [32, Ch. 10]. Rough surfaces

facilitate SPP excitation and will be discussed below, as it is the method implicitly used

when performing Raman measurements on SERS substrates, such as AuFONs.

Confinement of the SPPs results in faster decay of the evanescent fields in z direction, but

also localizes the surface waves in the plane of the interface. There is, therefore, a trade-off

between confinement and damping. At small wavevectors, where one can couple light to

SPPs of a smooth metal surface, the evanescent fields penetrate deep into the dielectric.

However, as β →∞, the SPP frequency approaches the surface plasmon frequency ωsp,

ωsp =
ωp√

1 + εm1
. (3.49)

Then, the propagation length along the interface, as well as the decay length ẑ into the

dielectric, decreases due to intra- and interband electron damping. Sensing applications

benefit from confined SPPs, as SPP localization results in stronger surface field enhancement,

but the losses are also larger than for smaller wavevectors [36, p. 29].

Double-interface SPPs

Double-interface SPPs, as on the geometry pictured in Figure 3.6b, have the added prop-

erty of coupling with one another when the separation distance decreases such that t < ẑ.

Conversely, as the metal layer becomes thicker, the SPPs on both sides of the metal layer

act as single-interface SPPs described above. Figure 3.8b further below will demonstrate

how a thick, shell-like film around a dielectric core does not allow the SPPs on the inner,

core-shell, interface to be measurably excited at all.

In the case of a decreasing film thickness, the coupling gives rise to odd and even modes,

ω+ and ω−. Maier presents a simplified derivation, with equal dielectric constants on both

sides of the metal layer [36, pp. 30-33], εm1 = εm2 = εm. The odd and even modes are then

ω+ = ωsp

√
1 +

2εme−2βt

1 + εm

ω− = ωsp

√
1− 2εme−2βt

1 + εm
.

(3.50)

From these relations we can see that as t → 0, both modes approach the surface plasmon

frequency and the coupling between them get stronger. For odd modes, decreasing metal

thickness means less confinement of SPPs and emergence of plane waves on the metal-

dielectric surface, long-ranging SPPs. For even modes, it is the opposite, where decreasing

thickness increases confinement and decreases propagation length, essentially localizing the

SPPs. In this thesis, we will focus on the properties of localized surface plasmons (LSP).

These are also referred to as simply surface plasmons (SP).

3.5.2 Localized surface plasmons

When the interface area between a metallic particle and a dielectric is small, only non-

propagating localized surface plasmons modes can exist [32, p. 201]. The same is true for

quasi zero-dimensional nanoparticles, the dimensions of which are much smaller than the

excitation wavelength. An alternative formulation is that their dimensions are smaller than
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the conduction electrons’ mean free path. Figure 3.7 shows the LSPs, where the electron

cloud of the metallic nanoparticle is moving in sync with the external electric field [13]. The

LSP resonances (LSPRs) determine the optical properties of metal nanoparticles. Some

research argues that the plasmon resonance for noble metals, which has been generally

believed to be determined purely from the metal’s dielectric properties (recall e.g. Eqn.

(3.43)), is actually better determined by the polarizability [39]. The extinction peak can

be predicted from the wavelength where the polarizability peaks, as will be seen later, in

Chapter 5.

For spherical particles, their curved surface makes it possible to excite the plasmons with

direct light illumination [36, p. 65]. Metal deposition by vacuum evaporation creates a

rough metal film surface, which has also proved to be a method to both localize and excite

the SPPs [32, pp. 275-276].

Figure 3.7: Illustration of localized surface plasmons, showing how the electron cloud is oscillating
as the electric field is acting upon it. The axes show the magnitude and propagation direction of
the field.

Coupling of LSPs is achieved by placing the nanoparticles close enough to one another for

near-field interactions [36, p. 81]. High degree of field localization in the gaps between

particles is achieved this way, due to the suppression of far-field scattering. The more

localized the field becomes, the stronger the enhanced field relative to the average field

outside of the hot spot [40, p. 359]. In small particles, the decay of plasmons is mainly

due to absorption. In large particles, the dominant decay mechanism is by photon emission,

i.e. light scattering [36, pp. 74-75]. In the case of near-field coupling, the plasmons are

predominantly excited near the interparticle axis and, thus, the density of plasmons which

can emit photons, on the remaining surface of the nanoparticle, is greatly reduced. SPs are in

this case excited predominantly along the interparticle axis, leading to the emergence of hot

spots of high local field enhancement [4, pp. 21-22]. The local field norm can be many times

larger than the average field norm around the particle. Such an effect is seen in Figure 3.8a,

showing a field enhancement by a factor of 50. These hot spots depend on the length l of

separation between the two particles. For large field enhancements, the separation distance

is much smaller than the particle diameters. Maier [36, p. 82] shows a l−3 dependency,

stating that at l > 150 nm the particles interactions are no longer noticeable. However, the

exact extent of coupling effects depends on particle composition and size. The near-field

interactions lead to a shift in the resonance wavelengths, depending on the polarizations of
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the adjacent particles [36, p. 82].

3.5.3 SERS

Surface-enhanced Raman scattering has multiple origins. Researchers are still unsure of its

exact mechanism [4]. The enhancement is believed to be due to an EM component and a

chemical component. The former contributes the most, due to the electric field enhancement

produced when light impinges on the surface of metallic structures. Figure 3.8b shows the

simulated local field enhancement of the electric field when an 80 nm gold thin film over

a 500 nm polystyrene sphere is excited by an external electric field at 785 nm wavelength.

When an analyte molecule is exposed to the local field enhancement, it is polarized, emitting

photons at its characteristic Raman frequencies. This assumes that the molecule’s resonance

frequencies encompass both the incident and scattered light waves.

(a) (b)

Figure 3.8: (a) COMSOL simulation of two 100 nm diameter gold metal discs separated by 10
nm, showing the hot spot in the gap between the two. The external field is 1mV/m in magnitude,
polarized along the interparticle axis, while the maximum field norm is 50 times larger. (b) COM-
SOL simulation of a 500 nm polystyrene sphere coated with 80 nm Au film, excited by 785 nm
light, showing the electric field enhancement. The maximum field norm (in the red patches) near
the metal surface is about 3 times larger than the incident field.

The hot spots give rise to the electromagnetic component of SERS that is due to re-radiation

enhancement [4, p. 7]. The analyte molecule sets up a self-radiating field. Radiated power

diffuses into space following a dipole diffusion pattern. If interfaces with particles, such

as metallic nanostructures, are present around the molecule, the EM field irradiated by

the dipole is scattered at these interfaces. It is partially reflected backwards at the dipole

position. This process depends on the medium as well as the nanostructured substrate,

as the medium can absorb and diminish these effects. The field enhancement in hot spots

diminishes exponentially and its contribution is dominant only when the separation distance

l is 10 nm or less.

Each of the two EM contributions contribute with a factor of |E/E0|2, where E is the

enhanced surface-field amplitude. The total SERS enhancement factor (EF) due to field

enhancement can be estimated from the ”E4” approximation [13, Eqn. 6]

gSERS ≈
∣∣∣∣ EE0

∣∣∣∣4. (3.51)

A field enhancement by a factor of 50, illustrated in Figure 3.8a, yields a SERS EF of

6.25 · 106, using (3.51). The maximum achievable EF from the EM field enhancement alone



CHAPTER 3. THEORY 27

is believed to be on the order of 1012-1014 [4]. However, there is also the chemical component

of SERS enhancement, which acts over an even shorter distance than the electromagnetic

component. The chemical enhancement is believed to come from the electron orbitals of the

analyte molecule overlapping with the plasmon oscillations near the surface, typically a few

nanometers, or less, from the metallic surface. It contributes an additional 102-104 to the

total SERS enhancement factor.

Experimentally, the SERS enhancement factor is expressed as

gSERS =
ISERS/Nsurf
IRef/Nvol

. (3.52)

ISERS is the enhanced Raman spectrum intensity, IRef is the unenhanced reference Raman

spectrum, Nsurf is the number of analyte molecules bound to the metallic surface and Nvol

is the number of molecules in the measured analyte volume [13].

Thin film thickness and roughness as a factor in SERS

A presented in Chapter 1, SERS enhancement was first discovered on a rough silver electrode

surface [5]. Lee et al. [22] demonstrate empirically that the ability of thin silver films to

enhance the Raman spectrum comes, to a large extent, from the roughness of the metal

surface. For thin films, the enhancement comes primarily from localized surface plasmons.

The rough features act as sub-wavelength nanoparticles, accomodating LSPs. The rough

surface also functions as a random grating, which facilitates phase-matching between the

light and the various SPP modes that can be excited. Sarid and Challener [32, pp. 274-275]

suggest similarly that rough surfaces act similar to diffraction gratings, allowing light of

many different wave vectors, incident over a range of angles θ, to couple to many SPPs. The

localization of SPPs on rough surfaces comes from interference effects of waves scattered

at random. Expressing the light photon’s in-plane momentum along the dielectric-metal

interface as kx = k sinθ, the phase-matching condition

β = kx ±∆kx (3.53)

is fulfilled with the aid of momentum components ∆kx from scattering [36, p. 47].

However, the enhancement gains of surface roughness are off-set by the thickness of the

film. With increasing thickness, more of the excited SPPs are propagating, which results in

decreased field enhancement.

Zhao et al. [41] suggest that the enhancement increase from surface defects comes from

the many hot spots formed between them. An example of a grainy gold film surface is the

image of AuFONs in Figure 2.1. Even plain metal films are left with disordered arrays of

bumps and wrinkles after metal deposition. The project thesis [1] used near-field coupling

between solid gold half-spheres, or domes, to model these bumps and surface roughness, and

some of the model results will be reviewed in Chapter 5.2.1. However, surface roughness

is introduced here only for completeness, as it is an extensive topic, which complicates the

models significantly and must be left for future work.

3.6 Nanoshells

The previous section presented models for solid particles, with only one metal-dielectric

interface. AuFON arrays, however, are made up of particles with a dielectric core, coated
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with a metal film. These nanoshells particles exhibit two metal-dielectric interfaces and the

ability to excite and localize surface plasmons inside the metal shell, at the inner interface

with the metal, is an important difference between solid particles and nanoshell. There are

extensions to Mie theory for nanoshells, as investigated by e.g. Aden and Kerker [42], Sarkar

[43, Ch. 4] or Oldenburg [44]. We will however only present a simple analytical model, to

guide the AuFON modeling process.

In our model of such particles, we will use the convention outlined in Figure 3.9, where

the core and shell have two different dielectric functions, ε1 and ε2, respectively.The outer

radius of the shell, r2 is the particle’s total radius, while the shells thickness is the difference

between r2 and the core radius r1, i.e. r2−r1. The medium outside is assumed characterized

by a wavelength-independent dielectric constant εm, as before.

Figure 3.9: Nanoshell structure outline. The core is made of a material with dielectric function
ε1 and has radius r1, while the shell is made of a material with a different dielectric function ε2 and
thickness r2 − r1. The total radius of the nanoshell is r2. The surrounding medium is described by
the dielectric constant εm.

3.6.1 Quasistatic approximation for nanoshells

Similarly to solid plasmonic particles, for particles much smaller than the incident wave-

length, the optical properties of nanoshells can be approximated as if the electric field is

static, or slowly-varying. Averitt et al. [21] have suggested that for diameters d < 50 nm,

i.e. same as for solid spheres, the quasistatic approximation produces results similar to the

Mie theory extensions for nanoshells.

Averitt et al. express the polarizability and optical cross sections using artificial dielectric

functions, made up of the physical ones, ε1 and ε2, weighted by a ratio of the shell volume

to total particle volume. In their notation, this ratio is expressed as

P = 1− (r1/r2)3. (3.54)

Don’t confuse this with polarization scalar value P . The additional dielectric functions are

εa = ε1(3− 2P ) + 2ε2P

εb = ε1P + ε2(3− P )
(3.55)

The dipole moment is the same as in the case of solid particles, p = ε0εmαElocal.

Polarizability α is then, using equations (3.55),

α = 4πε0r
3
2

ε2εa − εmεb
ε2εa + 2εmεb

. (3.56)
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The scattering and absorption cross sections are finally

σsca =
k4|α|2

6πε20

σabs =
k

ε0
Im(α).

(3.57)

The resonance condition for nanoshells is expressed as the ratio of core radius to total radius,

required for achieving resonance at a given wavelength λ,

r1

r2
=

(
1 +

3

2

ε′2(λ)(ε1 + 2εm)

(ε′2)2 − ε′2(λ)(ε1 + εm) + (ε1εm − (ε′′2(λ))2)

)1/3

. (3.58)

To understand the main insight of this model for nanoshells, we can use the Au2S core,

Inserting the parameters for a Au2S core, Au film nanoshell, given by Averitt et al. and

the dielectric function values for gold, results in the plot in Figure 3.10. It indicates that

the resonance wavelength is redshifted when the core radius increases relative to the total

radius.

Figure 3.10: Nanoshell resonance condition in the quasistatic approximation. The plot line shows
a trend where the plasmon resonance wavelength is redshifted as the core radius is increased relative
to the total radius.

3.7 Particle arrays

The models in this thesis are extended from single particles, as in the project thesis [1], to

arrays of particles. This section presents some common lattices and the optical effects that

lattices introduce.

3.7.1 Lattice structures

Large periodic particle arrays are represented using primitive lattice cells repeated infinitely

many times in the x direction (1D array), both x and y directions (2D square array) or along

the a1, a2 primitive vectors of a hexagonal lattice (2D hexagonal close-packed array). In an

atomic lattice, a primitive cell contains one lattice point. A Wigner-Seitz cell is a primitive

cell of the least possible volume that can be repeated infinitely to obtain the lattice structure.

In a square lattice, a1 = a2 = a and the angle between them is 90o. In a hexagonal lattice,

the angle is 120o, as illustrated in Figure 3.11. For 3D hexagonal close-packed structures
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based on the hexagonal lattice, the vector c between vertical lattice point planes has length

c = 1.633a [33, pp. 6, 8-10, 15-16].

(a) (b)

(c)

Figure 3.11: Top row: 2D lattices showing their primitive vectors and angles between them. (a)
Square lattice. (b) Hexagonal lattice. Bottom row: (c) A Wigner-Seitz primitive unit cell in a
hexagonal lattice.

The arrangement of particles in an array bears significance for their plasmonic properties. In

square arrays, the polarization of particles is highest when the incident light’s polarization

is parallel with the rows or columns of the array. For close-packed square arrays, the effect

is similar to the near-field coupling between two particles demonstrated in Figure 3.8a.

Hexagonal arrays offer more directions along which the particles can couple, as well as a

closer packing order, but the coupling is weaker than for square arrays. Figure 3.12 shows

the electric field amplitudes over several particles arranged in a close-packed hexagonal array.

The first subfigure shows the polarization of particles when the light is linearly polarized in

y direction. We see coupling between the center particle and all other particles. However,

the coupling is strongest along the y axis. In the second subfigure, the light polarization

is changed to x direction. The coupling in y direction now fully disappears. The diagonal

directions from the center particle contain an x component. Thus, the coupling along these

is now stronger.
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(a) (b)

Figure 3.12: Close-packed hexagonal lattices of particles and different incident light polarization
directions. The particle couplings are marked with the red dashed rings. (a) Linearly polarized in y
direction. There is coupling to all particles from the center one, with the coupling being strongest
along the y axis (the faintly-visible red patches of extremely high field enhancement between the
center sphere and the two over and under it). (b) Linearly polarized in x direction. Note that the
coupling in y direction is no longer visible. The coupling to the spheres on the left and right of the
center one is now stronger than in (a).

Note that the lattices in this figure are rotated 90o compared to the hex arrays in Figure

3.11b-c.

3.7.2 Surface lattice resonances

In addition to the near-field coupling that leads to formation of hotspots, there is also far-

field coupling between the fields scattered by the particles. Periodic lattices act as diffraction

gratings. The incident light excites LSPs in the particles that make up the grating. When

the array’s period or lattice constant is approximately equal to the wavelength of incident

light, the LSPs interact with one another through the far-field radiation caused by their

decay and interfere with the diffracted incident light. The constructive interference causes

coupled resonances, known as Fano resonances [39], [45], [46], [47, pp. 4-10]. Figure 3.13a

presents a sketch of this process. The resulting far-field extinction cross section has LSPR

peaks as in single-particle optical cross sections, but also at least one more peak, the surface

lattice resonance (SLR) or lattice plasmon, located at a wavelength roughly corresponding

to the lattice constant. There are both classical and quantum mechanical approaches to

explain the phenomenon.
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(a) (b)

Figure 3.13: (a) Incident light of wavelengths close to a particle array’s lattice constant D lattice
is diffracted by the particle grating and interferes with the LSPs it has excited. This results in
a coupling between the LSPs’ collective far-field radiation and the diffracted light, that produces
lattice plasmons, or surface lattice resonances. (b) Harmonic oscillator model of SLRs. An external
force F does work on the system. Oscillator 1 models the dipole mode of the LSP, which is coupled
with a spring to oscillator 2, the lattice resonance.

In this thesis, we’ll review the classical coupled harmonic oscillators model by Joe et al. [48].

We can think of the LSP and SLR resonances as oscillators. If we assume that the particles

are not large enough to support modes higher than dipolar and that there is only one SLR

resonance, the model has two oscillators, as in Figure 3.13b. The external force F , with

amplitude aF and frequency ωF , drives oscillator 1, which oscillates with eigenfrequency

ω1. Oscillator 2 is acted upon by oscillator 1 through the spring and has eigenfrequency

ω2. Each oscillator can be modeled with its own damping coefficient γj . The oscillators’

equations of motion are then

∂2x1

∂t2
+ γ1

∂x1

∂t
+ ω2

1x1 + ξ12x2 = aF e
iωF t

∂2x2

∂t2
+ γ2

∂x2

∂t
+ ω2

2x2 + ξ12x1 = 0

(3.59)

When there is no external force acting upon the system, the coupling coefficient ξ12 is zero

and the oscillators move only according to their eigenfrequencies ωi, as becomes apparent

from the following relation:

The interaction term modifies the oscillator’s eigenfrequencies, such that the coupled eigen-

modes are

ω̂2
1 ≈ ω2

1 −
ξ2
12

ω2
2 − ω2

1

ω̂2
2 ≈ ω2

2 +
ξ2
12

ω2
2 − ω2

1

.

(3.60)

The second term in both of these expressions is positive, so the interaction term red-shifts

the wavelength of oscillator 1 and blue-shifts that of oscillator 2.
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The oscillator amplitudes are solved as

c1 =
ω2

2 − ω2 + iγ2ω

(ω2
1 − ω2 + iγ1ω)(ω2

2 − ω2 + iγ2ω)− ξ2
12

aF (3.61)

c2 =
ξ12

(ω2
1 − ω2 + iγ1ω)(ω2

2 − ω2 + iγ2ω)− ξ2
12

aF . (3.62)

In the case where the damping constants are zero and the external force makes the oscillators

oscillate with approximately the same frequency, c1 becomes zero. At that frequency, one

would see an asymmetric profile or a small dip [48]. This matches experimental observations,

where the SLR is seen as a drop in absorbance [45] or a large asymmetric peak at the

wavelength close to the lattice constant D, as will be seen in Chapter 5. This wavelength

is, according to the relations in Eqn. (3.60), redshifted compared to D, depending on the

coupling strength.



Chapter 4

Modeling

In plasmonic structures for SERS, it is important to find the resonances of the plasmonic

excitations, as well as calculating an estimate for the SERS enhancement [49]. This chapter

describes a computational method developed to estimate the SERS enhancement from a

model of the AuFON structure.

4.1 Simulation approach

Although the end goal is to arrive at a model for SERS enhancement in AuFONs, the focus

is on making sure that the model behaves correctly for single solid particles and arrays, both

in the near- and far-field. This is because extinction efficiency spectra for AuFONs were

not found in the literature. Raman intensity plots vary widely in published results, with

reference intensities, as required to estimate gSERS by Eqn. (3.52), not specified. Thus,

it is difficult to convert these to SERS enhancement factors. There is, however, one set of

measurements, in Figure 4.1, that relates gold film thickness to SERS enhancement factor

for AuFONs, for a set of polystyrene core sizes used in research at the IES department at

NTNU. This plot was produced by Dr. Milenko [50] from experimental measurements. It

will be used for comparing with the final AuFON model. However, it is not a goal to produce

a highly realistic model, with surface roughness, a substrate, etc. Rather, the model will be

a platform for adding these more complex features, to facilitate SERS substrate design, and

it is therefore important that the model is physically well-behaved throughout. Even if the

model doesn’t fully match Figure 4.1, due to some missing features.

34
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Figure 4.1: SERS enhancement factor versus gold film thickness in 500 nm, 750 nm and 1000 nm
polystyrene core AuFON samples. Experimental values. Reproduced with permission [50].

The model is built via a bottom-up approach, starting with solid single particles and extend-

ing the model gradually to arrays and eventually replacing the solid particles by nanoshells,

before finally building the AuFON structure. This allows verifying each step using theory

and analytical Mie solutions and well-established, numerical methods such as the discrete-

dipole approximation (DDA) and the coupled-dipole approximation (CDA).

Extinction efficiency spectra are used to ensure that the model behaves physically correct

and to compare extinction spectra with published results. The spectra help visualize how the

localized surface plasmon resonances (LSPRs) and Fano resonances shift with changes in the

properties of particles and arrays of these, as well as estimating the resonance wavelengths.

When it is found that the models in each modeling step behave well, the SERS enhancement

factor (EF) is estimated.

4.2 Modeling methods and software

Analytical solutions to light scattering problems expressed using Maxwell’s equations are

known only for simple geometries. More specifically, the Mie coefficient method of finding

optical cross sections, presented in chapter 3, is based on a solution of Maxwell’s equations

in spherical coordinates and with boundary conditions appropriate for spheres [21]. Also

nanoshell models are sometimes possible to solve using Mie theory, but are limited to very

small sizes and certain constraints on the refractive indices of the layers [31, Appendix B],

although modern extensions to Mie theory for these particles do exist [44] and will be used

for comparison against the nanoshell FEM models.

Numerical methods are needed to solve for geometries with other shapes than spheres,

or when one wishes to solve for the scattering efficiencies and surface-fields of structures

consisting of arrays of coated or inhomogeneous spheres, such as AuFONs. The main method
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chosen for this thesis is the finite-element method (FEM), as it allows solving the wave

equation for the electric field using an arbitrary geometry, by discretizing the geometry

volume into a finite-element mesh. The advantage of this method is that it allows solving

the problem as if the electromagnetic waves were standing waves and not propagating in

space, thus eliminating the time domain and the complexity that comes with it. This makes

FEM well-suited for simulations of antenna-like structures that emit or scatter radiation.

This thesis uses the FEM implementation in COMSOL Multiphysics 5.4 (COMSOL), with

the Wave Optics module installed. COMSOL makes it relatively easy to define a model,

offering a graphical user interface with a 3D geometry builder and viewer. However, to the

author’s knowledge, there are not many FEM simulations published for plasmonic nanos-

tructures. Specifically for AuFONs, none were found in the literature.

As mentioned in the section above, the results produced in COMSOL are compared against

other modeling methods. In the project thesis [1], the COMSOL models of single homo-

geneous Lorentz-Drude gold spheres were compared to analytical Mie solutions. In this

thesis, the DDA is also used for comparison. In its most basic form, DDA is equal to the

quasi-static approximation in Chapter 3.3.2. The strength of the DDA, compared to the

quasi-static method, is that it can take into account phase retardation effects neglected

by the quasi-static approximation and permit modeling structures comparable to the wave-

length of incident light: The volume of the structure is partitioned into a 3D array of dipoles,

each much smaller than the incident wavelength. Mie solutions are still used to verify the

single-particle models.

DDSCAT by Draine and Flatau [51], [52], [53] is a popular implementation of the DDA, due

to its accuracy [49] and the fact that it is freely available. This makes DDSCAT the most

widely used DDA implementation, with an active user-base that has contributed several tools

which facilitate the creation of models. There are however numerous DDA implementations

that try to improve on DDSCAT and incorporate either simpler modeling processes or

improve the actual solver algorithms. They do, however, often lack proper documentation

and support. The greatest improvement in more recent implementations of the DDA is use

of multiprocessor computations. In DDSCAT this is not well-implemented. When solving

the DDA models for each wavelength in a pre-defined range of values, each subproblem is

independent of the others. Thus, such embarrassingly parallel problems can easily benefit

from parallel computations. Other DDA implementations, such as ADDA, have this feature

[54] and there are algorithms that try to improve on the original DDSCAT codebase [55] to

enable this in DDSCAT. These are however not distributed with the DDSCAT code and for

this thesis it was chosen, instead, to create a trivial parallelization method by dividing the

main model into several submodels, which are then each run on their own CPU core. This

method is described in Appendix D.

The coupled-dipole approximation (CDA) is a much-used extension of the DDA to particle

arrays. It was originally developed to understand the far-field coupling in arrays of dipoles

[45] and is the tool referenced in most literature on surface lattice resonances. It’s accuracy

predicting the localized surface plasmon resonances does, however, depend on the dipole

polarizability function implemented in the model. The lattice resonances are more indepen-

dent from the polarizability form. The CDA, although an approximation, has shown good

agreement with the physics of far-field coupling and a rigorous mathematical foundation has

been developed for it in recent decades [56]. This thesis uses CDA to verify that the particle

array FEM model behaves physically correct and a simple implementation, based on Zou et

al. [57], [58], was written for this thesis.
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4.3 The finite element method

The finite element method is used for solving the simulated models in this thesis. Appendix A

presents a thorough description of the method, based on Polycarpou [59], solving the Poisson

equation in one dimension as an example application. This section simply introduces the

main features.

The foundation of the method is the discretization of a simulation domain into discrete

finite elements that are bounded by a set of nodes, as shown in Figure 4.2 for a one-

dimensional domain. In these nodes, one evaluates the unknown function values. In a

scattering problem, it is the electric field. Interpolation functions are used to evaluate

the function at any point in the element between the nodes. Higher-order interpolation

functions approximate the solutions between nodes more accurately, but at the cost of

higher computational complexity. Examples of linear interpolation functions are presented

in figures A.2a and A.2b in Appendix A.

Figure 4.2: 1D domain discretization into Ne elements and Nn nodes.

In accordance with the Galerkin approach, weighted residuals are constructed for each node

in an element and arranged into a matrix equation

KeVe = fe + De, (4.1)

where Ke contains the integrated weights of the residuals in Eqn. (A.5), while Ve, fe and

De are the vectors of node potentials, weighted charges and electric displacement fields.

These element equations have to be assembled into a global matrix equation containing all

elements in the domain,

KV = f + D, (4.2)

summing the last node of element en with the first node of element en+1. For a large

enough number of finite elements in the domain, the displacement fields in adjacent nodes

cancel each other, such that the D vector only contains non-zero values for the first and

last nodes in the 1D domain in Figure 4.2. The boundary conditions are then applied. The

most common is the Dirichlet condition, which defines the unknown function values at the

domain boundaries, as well as the absorbing scattering condition, which absorbs the field

flux at the domain boundaries. Figure A.4 in Appendix A illustrates how the electric field

calculated using 1D FEM with linear elements compares with the analytical solution.

2D and 3D FEM methods discretize the domain into finite areas and volumes. 2D elements

such as triangles can, similarly to 1D elements, also be linear, quadratic or of higher order.

Similarly for 3D elements. Figure 4.3a shows an example 2D linear triangle mesh of the

domain outside of a spherical scattering particle. Figure 4.3b illustrates a fine-mesh solution

to the 2D scattering problem with a spherical scattering particle. Figure A.6 in Appendix

A demonstrates how a fine or coarse mesh influences the accuracy of the solution.
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(a) (b)

Figure 4.3: FEM solution of a 2D problem with a perfectly-conducting spherical scattering particle
in the middle of the domain. (a) Example mesh and (b) fine-mesh solution to the wave equation
showing the field amplitude distribution. The incident field has unity amplitude, is y polarized and
propagates in x direction.

4.4 The discrete-dipole approximation

The discrete-dipole approximation (DDA) is another technique used to calculate the light

scattering and absorption properties of a particle. Also computing the near-field. However,

instead of solving the wave equation, it solves for the polarization. This is achieved by

discretizing the target particle’s volume into an array of sub-wavelength dipoles, each with

its own polarization. The Claussius-Mossotti relation, Eqn. 3.27, was seen as a relation of

the polarizability of the atoms in a material and the bulk dielectric response of the material

[60]. For infinite atomic arrays. In the DDA, the atomic lattice is replaced by an array

of dipoles and one can thus use the relation Pi = αElocal,i in matrix form to solve for the

polarization of each dipole i.

The drawback of the quasi-static approximation in Ch. 3.3.2 is that in order to justify

the neglect of retardation effects, the target diameter has to be very small compared to the

incident light wavelength for the results to be valid. Pennypacker and Purcell [61] introduced

retardation effects by expressing Elocal,i acting on dipole i as a sum of the external field

and the contributions from all the other dipoles j, as derived in Chapter 3.2.2 with their

polarizations Pj . Thus, the DDA can be used on target geometries comparable to the

wavelength of incident light.

4.4.1 Formulation

A simple formulation of the scattering problem in DDA, following Draine [52], follows here.

The dipole moment of each dipole j is written as

pj = αj(Einc,j −
∑
k 6=j

Ajkpk). (4.3)

Einc,j is the incident field at dipole j, expressed as a plane wave, Eqn. (3.7), with amplitude

E0 as before. −Ajkpk is the contribution to the field from a dipole k. We’ll omit the

underlying expression here, as it is a somewhat rewritten form of Eqn. (3.20) (see [52, Eqn.

2.06]).
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The scattering problem can then be compactly formulated, using Ajj = α−1, as

N∑
k=1

Ajkpk = Einc,j , (4.4)

for a system of N dipoles. Note that Ajk is symmetric, (Ajk)lm = (Ajk)ml.

Defining 3N -dimensional vectors p̃ = (p1,p2, ..,pN ) and Ẽinc = (Einc,1,Einc,2, ..,Einc,N )

and the 3N×3N matrix Ã, satisfying Ã3j−l,3k−m = (Ajk)3−l,3−m, the problem is expressed

as matrix equation

Ãp̃ = Ẽinc. (4.5)

The method used for solving this equation in this thesis, using the software package DDSCAT,

will be discussed in Section 4.6. The fact that matrices Ajk and Ã are symmetric is impor-

tant not only for the formulation, but also when choosing a solver.

4.4.2 Applicability and limitations

The quasi-static approximation requires that the size of the dipole is a lot smaller than

the wavelength of incident light. Ideally, the dipole should be a point dipole. Discretizing

the target geometry into an infinite array of point dipoles would be impossible for practical

computations. In DDA, one needs to set a non-zero distance between the dipole making up

the geometry, the dipole spacing d. The rule of thumb [54] is that d should be at least an

order of magnitude smaller than the wavelength of incident light inside the target material,

d =
λ

10|nr|
. (4.6)

|nr| is the absolute value of the target material’s refractive index. Adhering to this rule

should produce a solution, deviating not more than 10 % from the Mie solution. The dipole

spacing can be computed as the extent of the geometry in any given direction, divided by the

number of dipoles in that direction. In DDSCAT, the number of dipoles along each of the

three axes in a Cartesian coordinate system, is represented as shape parameters, SHPAR1,

SHPAR2 and SHPAR3. For a sphere, these are all equal, represented by SHPAR. The

following equation relates the shape parameter to the interdipole spacing:

SHPAR =
diam

d
, (4.7)

where diam is the sphere diameter. That is, SHPAR represents the number of dipoles the

diameter is divided into. Figure 4.4 illustrates the discretization of a 100 nm sphere into a

three-dimensional array of dipoles with SHPAR = 21. Note that the figure shows the dipoles

as spheres with a non-zero volume, rather than point dipoles, for illustration purposes.
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(a) (b)

Figure 4.4: 100 nm diameter sphere, discretized into 4369 dipoles (shown as small spheres rather
than as point dipoles), with the diameter partitioned into 21 dipoles, i.e. SHPAR = 21. Pro-
duced using Shape Generator for the DDscat Software [62]. (a) 2D view, clearly demonstrating the
partitioning of the diameter into a string of dipoles, (b) 3D view.

When setting up a model in DDSCAT, d is set implicitly from the target geometry, described

with SHPARs in the .par file. For more complex models, such as nanoshells, the Shape

Generator for the DDscat software [62] is used and allows setting an explicit d.

Figure 4.5 demonstrates how the DDA performs compared to Mie for SHPAR = 30 and

50. The plot shows scattering efficiency as a function of sphere radius. With increasing

radius, the dipole spacing d, kept constant due to the constant SHPAR values, increases and

accuracy falls. The DDA solution with SHPAR equal 30 starts deviating by more than 10

% at a radius of 92 nm, while the SHPAR = 50 solution stays within the 10 % error limit

until a radius value of 213 nm.

Figure 4.5: Scattering efficiency of a sphere as a function of its radius. Comparison of DDA
solutions, SHPAR=30 and 50, with a Mie solution.

In this thesis, the DDA is used to compare with the FEM, in developing an AuFON model,

only for single solid and nanoshell particles. An tutorial on how to set up a DDA model in

DDSCAT is included in Appendix D. Of all the methods used in this thesis, it is the only

one that could be used to calculate the surface field, for comparison with the trends seen in
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the FEM. The DDA was, however, not capable of reproducing the SLRs in far-field coupled

arrays. Thus, the coupled-dipole approximation was employed for this purpose.

4.5 Coupled-dipole approximation (CDA)

The CDA was the method that initially helped researchers predict and understand surface

lattice resonances [45]. A rigorous mathematical treatment of it was given by Markel [56].

Most of the literature on the topic still employs variations on that formulation. The CDA

is also based on Purcell and Pennypacker’s discrete-dipole approximation [61] and there is

in fact some ambiguity in references to CDA and DDA in the literature. Although initially

being two different names for the same methodology, the literature on lattice resonances

frequently refers to the application or extension of the DDA to periodic structures as the

CDA.

There are many formulations for the polarizability employed in the CDA in the literature.

DeJarnette [63] demonstrates the use of several different polarizability functions based on

Mie, long wavelength corrected quasistatic approximation, dipole polarizabilities with an

added quadrupole term and others, that correct for e.g. radiative emissions. For the purposes

of this thesis, the CDA method is most valuable for its ability to demonstrate the trends

in how SLRs change with type of array and array periodicity, for comparison with the

FEM models, as the goal is to build a FEM model of the AuFON in COMSOL. Thus a

more simple polarizability function was chosen with only the dipole contribution to the

LSPR. Figure 4.6, plotting the extinction spectrum of a 1D array of 100 nm silver spheres,

demonstrates this. The LSPR, to the left of the sharp SLR, starting at λ0 = 450 nm, has

a wide dipole resonance, but no quadrupole peak. However, the Mie solution of a single

100 nm silver sphere would clearly demonstrate the quadrupole (see the 100 nm plot ine in

Figure 3.4). An approach to include a quadrupole term into the polarizability is presented

in e.g. [39]. Another approach is also to use the DDA to solve for a single particle of

arbitrary shape and size, and then use the polarization data with the CDA to solve for

lattice effects [64]. However, DeJarnette et al. [39] argue that although well-researched,

the CDA can only be used to investigate the general behavior of particle arrays. Numerical

methods based on direct solving of Maxwell’s equations, such as the FEM or FDTD, must

be used for larger particles that exhibit higher-order extinction peaks, or, in general, more

complex structures. The reason is simply that such structures might require very complex

polarizability formulations to capture all the effects exhibited by the particles.

Figure 4.6: The LSPR and SLR peaks for a 1D array consisting of 100 nm silver spheres. A single-
particle solution would reveal that the LSPR should have a dipole and a quadrupole resonance at
this silver sphere size. This illustrates the limitation of the CDA approach employed in this thesis.
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4.5.1 Formulation

In this thesis, a CDA formulation based on Zou et al. [57], [58] and Zhao et al. [65] is

used. It is simplified from the authors’ in the way that for the LSPR, only the dipole peak

is included. Additionally, the authors use a Drude metal, with only the free electron (Drude

model, Eqn. (3.13)) contributions, while in this thesis, a Lorentz-Drude metal model is used.

This difference in approaches produces narrower LSPRs with higher peak values than those

demonstrated by Zou et al. when the periodicity increases.

In a sufficiently large array of N particles, the particles in the middle of it will be acted

upon by the dipole fields of all the surrounding particles. Letting N go to infinity, one

can approximate that every particle will act as the central particle in the array. Thus, the

polarization of each particle is assumed equal,

P = αElocal. (4.8)

Elocal is the amplitude of the sum of the incident electric field and the retarded fields from

all the surrounding dipoles. For a single small particle near resonance, polarizability is

expressed as

α =
−A

ω − ωp + iγ +AS
, (4.9)

where A = 1
2ωpR

3 and S the retarded dipole sum. ωp is the plasmon resonance frequency

(electron volts) in the Drude model and R is the particle radius. w is the incident wave

frequency in electron volts. γ is the half-width at half maximum from the Drude model,

also expressed in eVs.

The polarization, with the expression for α inserted, is

P =
−AElocal

ω − ωp + iγ +AS
. (4.10)

Zou et al. further specify P for clusters or arrays of particles as

P =
αsElocal
1− αsS

, (4.11)

When the wavevector is perpendicular to the plane – or axis, in the case of 1D – the retarded

dipole sum S is specified as

S =
∑
j 6=0

(
(1− ikr0j)(3 cos2 θ0j − 1)eikr0j

r3
0j

+
k2 sin2 θ0je

ikr0j

r0j

)
. (4.12)

Assuming that particle 0 is the central particle in the array, r0j is the distance between

particle j in the array and the central one. The angle θ0j is between the polarization

direction and r0j . See Figure 4.7. The accuracy of the dipole sum depends on whether N

particles is enough for the sum to converge. In this thesis, it was experimented with array

sizes between 1001x1001 and 5001x5001, the results of which will be discussed in Chapter

5.
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Figure 4.7: Illustration of the coordinate system used in the CDA. The axis labels show the
direction of the propagation vector k and the incident field E0. In the simple case of a 1D array,
the x axis would coincide with the array axis, as it is orthogonal to both k and E0. An arbitrary
polarization vector P is used to define the observation point, with the angle θ0j between P and the
position vector of particle j, r0j. Figure adapted from [65].

In arrays with many particles, approximating an infinite system, optical cross sections can

be expressed relative to a single particle [56]. The extinction cross section can be expressed

as in [45],

Cext = 4πkIm

(
αs

1− αsS

)
. (4.13)

4.5.2 Applications of the CDA to finite 1D and 2D particle arrays

Zuo et al. [57], [58] suggest that having the polarization of light orthogonal to the array

axis, results in more narrow resonances due to a positive contribution from the 1/r0j term

to the dipole sum. Conversely, for p polarization, θij = πn, n = 0,±1,±2, ... and thus the

sine term is zero. This is expected as dipoles radiate orthogonally to their axis of oscillation

[39], [46]. This example was specific for 1D arrays, but does however demonstrate how the

direction of polarization affects the dipole sum.

The following sections demonstrate how the CDA results for 1D, 2D square and 2D hexagonal

arrays in this thesis were derived. The resulting derivations were implemented in Python

and can be found in appendices E.3 - E.5.

1D arrays

From the argument above, let the incident light be s polarized light and each particle’s

induced polarization be directed parallel with the incident field. Next, the array axis is

positioned such that the array axis is orthogonal to the polarization. See Figure 4.8. The

position vectors r0j, which lie along the array axis, are also orthogonal to the polarization

and hence the angle θ0j is a constant value for all particles. Note that r0j can be expressed

as jr, j = ±1,±2, ..., where the lattice constant D = r. This lattice constant will be used

throughout Section 4.5 to keep a similar notation to Zou et al. Furthermore, it is realized

that the distances r0j from particle 0 to each particle j are the same on both sides of the

symmetry axis for each j. This means that instead of summing over j = ±1,±2, ..., it is

enough to sum over j = 1, 2, ... and multiply the resulting dipole sum by a factor of 2. This

allows the simplification of Eqn. (4.12) as

S = 2
∑
j>0

eikjr
(
ikjr − 1

(jr)3
+
k2

jr

)
. (4.14)
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Figure 4.8: 1D array schematic showing the particle array, with the polarization of incident light
and the derived angles θ0j and distances r0j from the center particle to each particle j. The distances
are denoted as an integer number of r, the norm of vector r. Note that the absolute distances are
mirrored about the symmetry axis, allowing a reduction of the number of summations of particle
contributions by a factor of two.

Such computational optimizations, utilizing array symmetry, in the implementation of the

CDA method, result in the rapid semi-analytical CDA, rsa-CDA [39]. The rsa-CDA code is

copyrighted and not openly published, but the approach described in this thesis emulates it

by utilizing array symmetry.

2D square arrays

The expression for S in Eqn. (4.12) assumes that the direction of propagation is always

orthogonal to the plane (2D) or axis (1D) of the particle array. For a 2D array, the polariza-

tion of a transverse wave will therefore always be in the plane of the array. The implication

of this is that the polarization direction can be chosen freely in the plane of the array. For

2D arrays, we can set it parallel with the x axis, to simplify expressions.

Similarly to the 1D array, and in line with the rsa-CDA, we utilize symmetry to focus only

on the first quadrant. The coordinates of particle j are (mj , nj) = mj x̂ + nj ŷ, where the

real scalars mj , nj > 0. In the following, the subscripts j will be omitted and the coordinate

pair of particle j will be expressed as (m,n). This allows us to express the distance from

particle 0 to an arbitrary particle j as

rm,n =
√

(mx̂)2 + (nŷ)2. (4.15)

and the angle between rm,n and polarization as

θm,n = arctan

(
n

m

)
. (4.16)

Figure 4.9 illustrates how the angles and distances can be mapped onto a 2D array.
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Figure 4.9: 2D square lattice array, with the key parameters illustrated. The horizontal and
vertical periodicity is still r. The two symmetry axes allow restricting the dipole sum to the particles
in the first quadrant, the angles of which can be found as shown in the figure. The expression for
the angle uses the coordinates of particle j, (m,n).

The square 2D lattice has periodicity r horizontally and vertically. There is now also a

periodicity along the half-diagonal, r
√

2/2, even though the diagonal spacing is r
√

2. In

fact, the array is periodic along any off-axis or off-diagonal line through particles distanced

r
√

(m2 + n2) (4.17)

from one another [39]. The lattice resonances from these periods are, however, dominated

by those resulting from coupling over distances r and r
√

2, due to the much higher number

of particles satisfying these periods.

The dipole sum of the particles in the first quadrant, multiplied by four to obtain the dipole

sum for all particles that do not lie on the symmetry axes, can then be expressed as

S = 4
∑
m,n>0

eikrm,n

(
(1− ikrm,n)(3 cos2(θm,n)− 1)

r3
m,n

+
k2 sin2(θm,n)

rm,n

)
. (4.18)

The contribution of the particles that lie on the axes can be found by assuming that the

particles along each axis make up a 1D array, either orthogonal to the polarization or parallel

to it. The same approach as for the 1D array in the section above can then be used. However,

it’s important to note that with the light polarization direction indicated in Figure 4.9, the

contribution from particles on the x-axis is zero.

2D hexagonal arrays

The procedure to extend the 2D square lattice model to a hexagonal lattice, necessitates

the introduction of new lattice vectors. Recall from Chapter 3.7.1 that the hexagonal lattice

has lattice vectors a1,a2. It can be shown, using the 60o angle of the diagonal in the first

quadrant of such lattices, that these vectors may take the form

a1 =
r

2
x̂− r

√
3

2
ŷ (4.19)

a2 =
r

2
x̂+

r
√

3

2
ŷ. (4.20)
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The approach to derive the position vectors and angles of each particle for the dipole sum is

similar to the one used for the square lattice. The symmetry axes formed by drawing lines

through the central particle, parallel to each lattice vector, respectively, form the coordinate

system. Each particle j now has a coordinate (m,n) = mâ1 + nâ2, using the lattice vectors

as the basis. See Figure 4.10. The position vector, from particle 0 to j, is now denoted

rm,n = ma1 + na2 and its norm is |rm,n|. The basis vectors are no longer orthogonal,

such that one cannot use a simple method such as Pythagoras’ rule to compute the norm.

Likewise, the angle between the polarization vector and each particle’s position vector, θm,n

can no longer be calculated using a simple trigonometric relation. Both values are computed

using Python’s vector calculus functions in Appendix E.5.

Figure 4.10: 2D hexagonal array. The periodicity is r. The coordinate system is in terms of
the lattice vectors a1,a2. The symmetry axes from the central particle, parallel with the lattice
vectors, allow restricting the problem to the first ”quadrant”, delimited by the a1 and a2 axes. The
position vector from the center particle to particle j, with coordinates (m,n), is denoted rm,n and
has scalar value |rm,n|.

The contribution from the particles along the axes, with either the m or n coordinate set to

zero, the dipole sum is found the same way as in the 1D array case.

The symmetry axes through the central particle again allow restricting our attention to only

the particles located in the first quadrant (as defined by the a1, a2 axes), then multiplying

the resulting dipole sum by a factor of four. The contribution of these particles to the dipole

sum is then

S = 4
∑
m,n>0

eikrm,n

(
(1− ikrm,n)(3 cos2(θm,n)− 1)

r3
m,n

+
k2 sin2(θm,n)

rm,n

)
(4.21)

The complete procedure for computing the dipole sum, with contributions from all particles

and utilizing symmetry, is implemented in Appendix E.5.
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4.6 Numerical solvers

Numerical solvers of systems of equations can be divided into two main categories, direct and

iterative. Simple examples of such methods are the methods of Gauss’ elimination (direct),

where one manipulates the system matrix using row operations, and Gauss-Seidel’ iterative

method, where the system converges to a solution by using intermediate solutions from

previous iterations. Problems that reformulate a large set of partial differential equations

into a linear system often result in sparse matrices, matrices that have many zero off-diagonal

elements. The FEM method is a good example, as seen from the derivations in Appendix

B. This section describes the main sparse matrix solvers used in COMSOL and DDSCAT,

and their strengths and weaknesses.

4.6.1 Solvers in COMSOL

COMSOL offers several direct solvers. These solvers are robust, but do require a lot of

memory and computation time. Another drawback is that the resource usage grows fast with

larger problem complexity [66]. The fastest of these, though at the expense of somewhat

higher memory usage, is the free MUMPS solver, developed as part of the European project

PARASOL to make use of parallel computers, and specifically for use with the FEM [67].

It is a multifrontal solver, specifically for solving large sparse systems of equations. The

benefit of this solver is its universality. It can be used regardless of the boundary conditions

applied and even if the mesh is so fine in certain domains that the iterative solvers will not

converge. COMSOL makes it possible to save memory usage by solving the model out of

core. That is, the intermediate matrix factorizations are stored on the hard drive. This

may, however, require large amounts of storage space, which can cause a system crash – if

the system runs out of space to operate normally – or simply slow down the computations

significantly, as the hard drive is much slower than the RAM.

Iterative solvers are faster and less memory-intensive. A model with one million degrees of

freedom can normally be solved on a computer with 8 GB RAM using an iterative solver. The

same model using MUMPS could require more than 70 GB RAM when out-of-core mode

is disabled and storing all parameter solutions in memory. It was, however, experienced

that iterative solvers fail to converge when using periodic boundary conditions, presented

in Section 4.9.4. This was also confirmed by COMSOL Support. Domains with extremely

fine meshes can also cause the solver to converge very slowly. The latter can, however, be

combated by relaxing the error tolerance or increasing the number of iterations the solver

will perform before giving up finding a solution that satisfies the set error tolerance. The

iterative solvers offered in COMSOL are based on the conjugate-gradient (CG) method. In

their general form, these solvers require that the matrix A, in a general system of the form

Ax = b, (4.22)

is positive definite and symmetric. However, COMSOL sets the biconjugate gradient stabi-

lized method (BiCGSTAB) as the default iterative solver. This solver is more robust, as it

can be used for non-symmetrical matrices as well [68]. The trade-off is that a standard CG

implementation, while not as robust, is faster for the special case of symmetric matrices.

4.6.2 Solvers in DDSCAT

DDSCAT implements only iterative CG-based solvers. In the DDA section, it was shown

that the physical accuracy of the method depends on the dipole spacing. The numerical
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accuracy of the solution, given a set dipole spacing, is evaluated by Draine and Flatau [52],

[51] as
|A†AP−A†E|

|A†E|
< h. (4.23)

h is the error tolerance value. DDSCAT doesn’t produce any error messages when the

iterations fail to converge to a solution. It simply moves on to the next parameter value after

the maximum number of iterations defined in the parameters file ddscat.par (see Appendix

D) are tried. Making the model produce a solution for all parameter values might require

experimenting with different values for the error tolerance, also defined in the parameter

file.

Recent versions (7.1 and above) of DDSCAT implement the BiCGSTAB solver. As the goal

of using DDSCAT was initially to support the modeling process in COMSOL, it was chosen

to use a solver that is available in both software packages. Therefore, the BiCGSTAB was

chosen for use in DDSCAT as well. A comparison of solvers available in DDSCAT has been

performed by Flatau [69]. Though this was published before the implementation of the

current BiCGSTAB solver, the comparison did, however, show that an earlier third-party

implementation of the biconjugate stabilized gradient method performed well compared to

other iterative solver algorithms.

4.7 Materials

Chapter 3 presented the dielectric response function and showed that it depends on wave-

length. The Raman spectrometer used for the measurements in the experimental part of

this thesis was operated at 785 nm, so the wavelength range of the models was set to an

interval that captured the behavior at this wavelength. Refractive indices (RI) for the par-

ticle material and surrounding medium are needed for a complete specification of the wave

equation, as seen in Chapter 3.1. The Mie and DDA models also need material RIs. The

CDA model requires only electronvolt values corresponding to the resonance frequency and

the half width at half maximum. In this thesis, these are based on the Mie solution of

Lorentz-Drude gold and silver metals.

4.7.1 Gold and silver

Gold and silver nanoparticle scattering resonances typically occur in the VIS region of the

EM spectrum [36, p. 65]. Thus a simulation range of about 450 nm - 850 nm wavelengths

was chosen for gold, to capture some of the behavior at NIR wavelengths. The models for

silver use 350 nm as the lower limit.

The optical materials library in COMSOL is based on published experimental results and

models of refractive indices of materials. The gold and silver films used in this text were

modeled using the calculations based on the Lorentz-Drude model presented in Chapter 3.2,

using parameters from Rakic et al. [34]. COMSOL version 5.4 has a materials library that

contains these parameters for both metal models, though the tabulated values are limited

to VIS and IR regions. However, as already mentioned, the particles’ properties are most

promiment in the VIS and NIR regions of the spectrum. It should also be mentioned that

COMSOL interpolates between the tabulated values, by piece-wise cubic interpolation. For

Mie calculations, the Python code in Appendix E.1 was used to calculate the refractive

indices for both metals.
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4.7.2 Polystyrene

The model for polystyrene is based on experimental measurements from Sultanova et al.

[70]. Experimental measurements of polystyrene’s refractive index (RI) in the VIS region

result in very uncertain values for the imaginary part of the RI. The data by Sultanova et

al. are for wavelengths 436 nm - 1052 nm, effectively limiting the model to this range, and

contain only the real part of the refractive index (RI). The polystyrene then acts as an ideal

dielectric with no absorption of incident light.

4.7.3 Surrounding medium

The simulations were done using air and water as the surrounding medium. Air has an

average refractive index (RI) of about 1.0003 in the VIS region. In this text, the real part of

the RI is rounded to exactly unity for simplicity. It is assumed that air exhibits almost no

absorption at ambient temperature and thus the imaginary part of its RI is set to zero [71].

For water, the RI at 20 °C is in the 1.33-1.35 range in the VIS region. At the wavelength

used for measurements in this text, 785 nm, the water’s RI is approximately 1.33 [72]. The

high absorption caused by the O-H stretching modes occurs at higher wavelengths, well into

the IR region [31, p. 278]. In the wavelength range 400 nm to 800 nm, used in the models,

absorption in water is negligible and the complex part of its RI is ignored.

In non-saturated solutions, glucose has a refractive index very similar to that of water,

about 1.34 in aqueous solution with less than 10 % glucose concentration [73]. However,

the relevant concentrations are between the physiological level (4-8 mM) and 1 M [28].

The concentrations in the higher end of that range are mostly useful for calibration of

sensing devices. In the results discussing models with water as surrounding medium, one

can therefore assume that these approximate the results one would have for a non-saturated

glucose solution. The reason is that even at 1 M, glucose molecules only make up less than

2 % of the solution, as it can be shown that pure water has a molar concentration of 55 M.

The average RI of a 0.004 M - 1 M glucose solution would therefore be about 1.33.

4.8 Modeling process

Figure 4.11 presents an overview of the modeling process. The main simulation process

was developing the FEM model, but the supporting models were used simultaneously. The

arrows going both ways between two adjacent boxes illustrate a process where one went

back between the boxes and changes parameters or improved the model.

First, the single gold particle model from the project thesis [1] was reviewed and modified

to find extinction efficiencies from both gold and silver. Then extended to calculate surface

area-averaged SERS enhancement factor GSERS , as described in Section 4.9.6 further below.

The model was verified against theory and analytical Mie solutions, as well as a comparison

with DDA. Then the model was extended to near-field coupled dimers and 1D arrays to

estimate the maximum SERS achievable for select sphere diameters, if the values references

in the literature could be obtained.

The model was then extended to far-field coupled solid particle arrays and the lattice reso-

nances were investigated to see whether these could produce SERS EFs comparable to those

seen in near-field coupled particles. Both 1D and 2D arrays were investigated. The CDA

model was used to verify these results, as well as for comparison against published CDA

results. Silver spheres are used here predominantly, as there are published results available



CHAPTER 4. MODELING 50

for silver. This is also why single particle silver models were developed, and not just gold.

To enable a direct comparison of single particle resonances and far-field coupled particle

resonances.

Not all results were included in this thesis, as e.g. the results of changing medium in a 2D

array were similar to doing so in a 1D array.

Then, going back to single particles, nanoshells were simulated to see how they differ from

solid particles. These results were compared with Mie theory for nanoshells by Oldenburg

[44], as implemented by Nanocomposix, the quasistatic approximation for nanoshells in

Chapter 3.6.1 and DDA. Finally, solid particles were replaced by nanoshells in the hexagonal

array model to produce AuFONs. As the model was already checked for correct behavior

in the far-field, the AuFON model was created only for a close-packed hexagonal lattice, as

it was introduced in Chapter 2. All aspects of the nanoshell and AuFON models could not

be investigated, but it is believed that since the solid particle models behave correctly, for

both single particles and arrays, and both for near- and far-field coupling – the nanoshell

and AuFON models should therefore also be well-behaved within the range of wavelengths

supported by the material models. The resulting AuFON model is then a platform that

more complex features, such as surface roughness, can be added to.

A few simulations with close-packed nanoshell arrays and top hat arrays were performed to

test the final model and compare against available experimental data.
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Figure 4.11: Illustration of the modeling process, showing the different computational steps per-
formed sequentially.
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4.9 Models in COMSOL

The COMSOL model calculates optical cross sections in the scattered field formulation

from the scattered field using the relative Poynting vector, defined in terms of the relative

electric and magnetic fields, 1
2Erel × H

∗
rel (this can be seen by activating Equation View

in COMSOL’s model builder view. See Appendix B for details.). The relative fields are

the total field minus the incident field. For the electric field, this is Erel = E − Ei, which

is, outside a particle, just the scattered field. Inserting the relative Poynting vector into

(3.28), instead of the total field Poynting, and dividing by the incident light intensity I0, as

in (3.31), produces the scattering cross section. The absorption cross section is determined

from the heat losses inside the particle volume, rather than using the surface integral of

the Poynting vector. This is the recommended way in COMSOL [74], as it eliminates any

contribution to the absorption cross section in the case of an other absorbing material or

medium around the relevant particle volume.

Initially it was attempted to build a two-step model for solving the electric field in and

around the particles, where the background field is calculated in the first step, using the

total field formulation. The solution from this step is then inserted as the background field

in the scattered field formulation in step two. However, this effectively doubles the degrees

of freedom in the total problem, doubling the memory demands, and more than doubles the

computation time. Instead, the background field is set manually using the relation

E0 =
√

2I0η, (4.24)

where η = η0/nr is the impedance of the medium. η0 ≈ 377 Ω is the impedance of free space

[37, pp. 165-166]. The intensity I0 is calculated from an incident power of 150 mW. This

power is achieved when running the 785 nm laser at 50 % power in the Renishaw InVia

Reflex Raman Spectrometer [75], previously used in the lab section of the project thesis [1].

Thus, the model gets one step closer to the lab setup one would use with the structures

modeled. It should also be pointed out that the background field can simply be normalized

to 1 [V/m], as for SERS enhancement factor estimation, we are primarily interested in the

relative field enhancement and not the nominal amplitude of the scattered field.

The models are set up with the background field in the form of a plane wave, Eqn. (3.7),

linearly polarized in y direction and propagating in −z direction. To make the results

comparable to those from using CDA, where the propagation direction is orthogonal to 1D

and 2D particle arrays, array periodicities are in the xy-plane.

4.9.1 Single sphere models

The single particle models used as reference, to examine the effects of changing the medium,

particle composition, size, as well as the effect of extending the model to particle arrays,

are a gold and a silver sphere with a diameter of 100 nm. In the project thesis [1], this

particle size was interesting as the scattering cross section of a 100 nm gold sphere is much

larger than its absorption cross section and thus the extinction cross section as a function

of wavelength has a similar lineshape to scattering, with the same peak location. In the

literature, this result can be found in e.g. Ref. [76]. This made it possible to examine the

single sphere model using only the scattering cross section or efficiency. Additionally, gold

spheres of this size are not large enough to support a quadrupole resonance mode. This

particle size is therefore carried over into this thesis to connect it with previous work.
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The modeling approach for single sphere models is based on Ref. [74], where symmetry is

used to limit the geometry to a quarter-sphere, using perfect electric conductor boundary

conditions (BC) in COMSOL, in conjunction with the perfect magnetic conductor (PMC)

BC. This technique is described in Section 4.9.4 below.

To make the model easily extendable to an array model, periodic in either one or two

dimensions, the simulation space of this model was modified from spherical, as in Refs. [1],

[74], to cubic, as shown in Figure 4.12. This comes at a slightly higher computational cost, as

there are more degrees of freedom in a cubic model with the same width and mesh resolution.

This is offset by the employment of PMCs, though, as will be illustrated in Figure 4.17b.

The base model is very simple, with a single metal sphere inside the cubic simulation space,

which is itself enveloped in a perfectly matching layer (PML) to absorb scattered radiation.

The PML is described in Section 4.9.7 below. In the base model, the medium that fills the

simulation space has the refractive index set to 1, to indicate free space or an approximation

for ambient atmosphere [71].

Figure 4.12: Wireframe sketch of a single-sphere model, showing a cubic simulation space, par-
ticularly apt for extending it into a periodic array. The simulation space contains a single metal
sphere and is enveloped in a perfectly matching layer (PML) that prevents scattered radiation from
reflecting back. The medium around the sphere can have an arbitrary refractive index nm, which
is initially set to 1, for free space.

4.9.2 Nanoshell particles

Nanoshells are approximations for the individual particles in an AuFON structure. These

are modeled as two concentric spheres, with the core sphere having a radius r1 and the film

around it having a thickness r2 − r1, such that the total particle radius is r2. Figure 3.9

already presented such structures. Both COMSOL and DDSCAT are used to calculate the

light scattering properties of such particles and estimate their surface field, by replacing the

solid metal particle in the model in Section 4.9.1 above with a dielectric polystyrene core

and a metal film. The calculations for these structures were only performed with gold as

the metal and the results compared with solid gold particles.

A closer approximation of the AuFON shape is the ”top hat” structure. This was inspired
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by the particles pictured in Figure 4.13. It can be clearly seen that only the top half of the

dielectric core is covered by gold film. The result resembles a glazed muffin top, or similar.

Figure 4.13: SEM image of disordered 1 µm polystyrene particles coated with 200 nm thick gold
film magnified 25 000 times. Note the shape of the gold cap which covers only the top half of the
polystyrene core. This fact was previously used for illustrating the AuFON fabrication process in
Figure 2.2.

The top hat structure in the model looks as imaged in Figure 4.14. The hat is an ellipsoid-

half, with a vertical major axis and a horizontal minor axis. The core still has radius r1,

while the gold hat has thickness r2 − r1 where it is thickest, on the very top. The hat is

modeled as an ellipsoid, with the major axis along the vertical. The horizontal extent of

the hat, the minor axis, is set to extend a third of the vertical thickness beyond the core

radius. That is, the horizontal radius of the particle is r1 + (r2 − r1)/3. This parameter,

alternatively the major-minor axis ratio, is another degree of freedom in the model, that can

be optimized. There is research on how ellipsoids acts optical versus spheres, e.g. Ref. [77].

This thesis does, however, not try to arrive at the most optimal top hat structure, as that

will be too extensive in addition to verifying all the build steps in the model. It but merely

presents it as the final stage in the AuFON model and demonstrates some trial simulation

results, which are compared to the simpler nanoshell model.
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Figure 4.14: Wireframe model of the top hat structure in COMSOL. The core is spherical and
dielectric, with a radius r1, while the gold hat is a half-ellipsoid, with thickness r2 − r1 along the
major axis and (r2 − r1)/3 along the minor axis.

4.9.3 Array models

The single-sphere model is extended in one or more directions in the XY plane using periodic

boundary conditions. In this thesis, the simplest, 1D arrays, are first investigated to see how

the resonances shift compared to an isolated single homogeneous particle. Then 2D square

lattice and 2D hexagonal lattice arrays are built and investigated.

4.9.4 Modeling periodicity in COMSOL

Two methods for extending a COMSOL single-particle model into a particle array were

examined in this thesis. They both produce the same results, but there are some trade-offs.

Periodic boundary conditions (PBCs) can be applied on a wider range of problems. They do,

however, not support the use of iterative solvers. Additionally, PBCs do not allow exploiting

symmetry to the same extent as the method based on the use of perfect magnetic conductor

(PMC) boundary conditions. Models using the PMC can therefore be solved several times

faster due to both a significant reduction in degrees of freedom, using symmetry, and using

a faster and less-memory intensive iterative solver.

Periodic Boundary Conditions (PBCs)

COMSOL employs a few different types of PBCs. The most common PBC in COMSOL

models is the Floquet PBC [78]. It is defined as

Edst = Esrce
−ikF (rdst−rsrc). (4.25)

The source and destination (periodic) boundaries, as defined in an orthorhombic unit cell, are

pictured in Figure 4.15. The Floquet wavevector kF introduces a phase difference between

the boundaries. The component that is tangential to the periodic boundaries has to be set

to a value, based on the refractive index of the surrounding medium in the unit cell. When

using excitation ports in a COMSOL model, this vector can be set automatically by the

software. rdst − rsrc is the norm of the vector describing the distance between boundaries.

For the purposes of this thesis, the Floquet wavevector is set to zero, such that the field on
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the source boundary is equal to that on the destination boundary. This assumption matches

COMSOL’s automatic assessment quite well: Early on in the work process, before setting

the background field manually, the model was initially set up in two steps, with excitation

ports to provide the background radiation. COMSOL’s feature of setting kF automatically

was employed (though this value is not output by the software explicitly). It was found that

the result matches the assumption of no phase change for the periodic arrays modeled,

Edst = Esrc. (4.26)

This reduces the Floquet PBC to a continuity PBC. It should be noted that PBCs can only

be applied on plane boundaries, and the source and destination boundaries must be parallel.

Figure 4.15: A 1D array of unit cells, with an irradiating particle in each, modeled as a single unit
cell with two of its boundaries set as the source and destination periodic boundaries, translating
the wave equation solution between the boundaries along the array axis. This is a mathematical
representation of the coupling of radiation between cells in the array.

Figure B.1 in Appendix B illustrates how the PBCs were implemented in the final hex lattice

nanoshell model.

Perfect Magnetic Conductor (PMC)

The PMC boundary condition is used alongside the default perfect electric conductor (PEC)

boundary condition to exploit the symmetry in a problem. Assuming the unit cell is cubic,

with the particle placed in the middle of it, one can reduce the number of degrees of freedom

by a factor of four, or even by a factor of eight, by employing perfect magnetic conductor

boundaries. The added benefit is that one can also use iterative solvers, which are faster

and use less computational resources. The PMC is defined as

n×H = 0, (4.27)

where n is the normal vector to the symmetry plane considered and H the magnetic field.

This condition implies that the tangential magnetic field is equal to zero at the boundary.

The second implication is that the current vector will be mirrored on both sides of the plane

and has no normal component [79]. Figure 4.16 illustrates this.
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Figure 4.16: The PMC boundary condition represented by a symmetry plane. The boundary
condition allows the magnetic flux (B = µH) to have a normal component and the current J to
flow tangentially to the boundary.

The perfect electric conductor (PEC) is a similar boundary condition that COMSOL auto-

matically applies to all external boundaries. It is similarly defined as

n×E = 0. (4.28)

This, similarly, imposes symmetry across the boundary for tangential magnetic fields and

currents, while restricting the electric field to its normal component.

Figure 4.17a shows a cubic unit cell, with PML layers over and under it. The software

auto-applies the PEC to all outer boundaries. The extinction cross section calculated over

the particle’s surface area will be the same, only reduced by a factor of four, if the model

is cut along the YZ and XZ planes to extract only the first quadrant (in the XY plane).

Applying the PMC along the incident light’s polarization plane, in this model the YZ plane

(the light is linearly y polarized), results in the model shown in Figure 4.17b.
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(a) (b)

Figure 4.17: (a) Cubic unit cell with PML layers over and under it. Model delimited by PEC
boundary conditions on all outer boundaries. (b) Model reduced to the first quadrant (in the XY
plane), with PMCs applied to the highlighted planes parallel with the polarization of the incident
light, along the y axis. The remaining outer boundaries still have PECs applied.

In the model in Figure 4.17b the electric field is allowed to flow tangentially to the PMC

and normal to the PEC, making it continuous along the y axis. Similarly, the magnetic field

is continuous along the x axis. The result of using these boundary conditions is identical to

that of imposing PBCs in the x and y directions, but saves memory and time. The drawback

of this method of introducing periodicity into the model is that the boundaries where one

applies the PMC need to be parallel with the polarization of the incident electric field, while

the boundaries where PECs are applied must be tangential. Thus, this approach cannot

be used to study periodic structures with a hexagonal lattice. Note that the model can

be reduced to a single particle model, without periodicity, by applying PMLs on the outer

boundaries where x, y > 0 and removing the PMC from the boundary where x > 0. Then

the model still exploits the geometric symmetry, reducing the number of degrees of freedom

by a factor of four.

4.9.5 Evaluating the optical cross sections and efficiencies

The models are set up to calculate the extinction, scattering and absorption cross sections

as well as efficiencies. Formally, scattering is calculated by integrating the scalar flux over

the surface area of the integrating sphere and dividing by the incident field intensity I0.

In other words, integrating the scattered field’s Poynting vector, discussed in Section 4.9

above, over the integrating sphere surface and dividing by I0. Absorption is calculated by

integrating heat losses inside the particle over its volume. The extinction cross section is, as

in Eqn. (3.30), the sum of the two. The efficiencies are found by dividing cross section by
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the particle’s geometric cross section, as in Eqn. (3.32). Tables B.1 and B.2 in Appendix B

present the expressions used in COMSOL.

4.9.6 Estimating the SERS enhancement factor

Eqn. (3.51) presented the |E/E0|4 approximation for SERS EF. The important issue is

exactly where this enhancement factor should be sampled. Sampling this at the point where

field enhancement is maximal would not be representative for the whole structure or particle.

An average of the surface-field enhancement over a particle’s surface area would be more

appropriate. The surface area-averaged enhancement factor for a single particle can then be

expressed as in [80],

GSERS =
1

A0

∫ (∣∣∣∣ EE0

∣∣∣∣)4

dA. (4.29)

A is the surface area of the particle and A0 its geometric cross section. Similar approaches

have also been reviewed by Pilot et al. [4, pp. 8-9]. Formulations similar to Eqn. (4.29)

were also proposed by Zhao et al. [41] and Schedin et al. [81], but the present formulation

was selected due to its ease of implementation in a volumetric mesh model, such as the 3D

FEM model developed in this thesis.

Due to the volume discretizations employed in numerical methods, the surface field in the

near-field region, directly on the particle surface, is not a reliable measure of the surface-

field enhancement. See Figure 4.18a. The particle surface serves as a domain boundary,

separating the mesh elements inside the particle where the internal field is calculated, and

the elements in the surrounding medium with the external field values computed at their

nodes. The surface field measurement is therefore performed by placing an integrating sphere

around the particle, a small distance δ from the particle’s surface, as seen in Figure 4.18b.

The shorter this distance, the more accurate the field measurement.

(a) (b)

Figure 4.18: (a) SERS enhancement factor estimate measured directly on a particle’s surface,
showing a distorted lineshape. (b) Illustration of an integrating sphere placed a distance δ from the
particle’s surface to combat the issue demonstrated in (a).

There is a trade-off between accuracy in estimating the surface field and computational

complexity, since a smaller δ would result in a much finer mesh between the particle’s

surface and the integrating sphere boundary. A distance of 1.5 nm was found to be a good

value and used in single-particle SERS estimations, or in arrays with periodicities >> 1.5
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nm. Smaller δ values do not result in significantly increased accuracy, but considerably

increase the number of degrees of freedom and computational complexity.

As demonstrated in Chapter 3.5.3, the field enhancement between two or more closely-

spaced particles is highly localized. For a particle in a close-packed lattice structure, the

integrating spheres of each particle would intersect each other and possibly even merge

with the particles. In models of close-packed arrays, to avoid the integrating sphere from

intersecting the Wigner-Seitz cell boundaries, the cell boundaries themselves are used as

integrating surfaces as illustrated in Figure 4.19. In such arrays, the field is highly localized

between the cell boundaries and the part of the particle surface whose outward normal vector

is parallel to that of the closest cell boundary. This was seen in Figure 3.12. Thus, most of

the field flux would be captured by the cell boundaries. Surface area A in Eqn. (4.29) is

then replaced by the surface area of the cell boundaries. Flux lines coming from directions

other than those along the highly localized field lines are assumed to be much weaker. Thus,

the normalization cross section A0 is still assumed to be equal to the particle’s geometric

cross section.

Figure 4.19: The cell boundaries in a hex lattice top hat model used as integrating surfaces for
SERS EF estimation. The image shows the COMSOL implementation.

4.9.7 Perfectly matched layer (PML)

As the FEM is a volumetric mesh method, it needs a boundary condition to terminate the

mesh. The problem with a simple absorbing boundary condition (ABC), such as the one

presented in Appendix A, is that it creates nonphysical reflections. The scattering boundary

condition (SBC) in COMSOL is an improved version of the ABC that is designed to let out

the scattered waves. It can be formulated to match the shape of the scattered wave, such

as plane, spherical or cylindrical. However, there are still considerable reflections when the

incident wave is not perfectly orthogonal to the boundary. In this thesis work, the SBC was

demonstrated to slightly misplace resonance peaks and make them appear wider. The PML

was therefore chosen for the final models.

The PML is a spatial domain that wraps around the simulation space and absorbs the

scattered waves [82]. The layer’s properties can be adjusted to the curvature of the simulation

space by adjusting the scaling and curvature factors of the PML. The rule of thumb is that

the PML thickness should be at least half the wavelength of the incident wave. An advantage

of PMLs over SBCs is that one does not need to know the shape of the scattered wave. In

simple cases, such as the 1D array, one can assume the scattered wave is cylindrical [56],
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but in more complex arrays, this is more difficult to assert.

4.9.8 Meshing

One of the most important aspects of modeling in COMSOL is setting an appropriate mesh.

The distribution of the finite elements in various regions of the geometry not only has a

drastic effect on memory requirements, but also on whether the computations will converge

to a solution. Figure A.6 in Appendix A shows the most important reason for setting

an appropriate mesh, i.e. the accuracy of the solution at various points in the simulation

domain.

The mesh size should be governed by the excitation wavelength used in the simulation. It

should be at least an order of magnitude lower than the wavelength to adequately resolve

the electric field. For a nanoscale structure and VIS region wavelengths, this still gives

a lot of freedom in setting minimal and maximal mesh size parameters. In the near-field

domain by the nanoparticle’s surface, we would want the FEM solution of the electric field

to be highly resolved, and thus have a finer mesh there. Further away, the mesh can be

coarser, although COMSOL does set limitations on how fast the element size may grow,

since adjacent elements need to have equally large side facets, as explained in Appendix A

on the FEM.

A technique to minimize the number of mesh elements in domains where the solution is of

little interest, such as the PML, is that of swept meshes, which creates a layered mesh where

the layers have equal distributions of mesh elements. This reduces the number of elements,

compared to tetrahedral or tetragonal elements, and thus memory usage.

4.10 Random periodicity in arrays

Besides fabrication techniques such as colloidal mask-hole lithography or drop-casting, other

lithographic techniques are also employed to create periodic arrays. Modern electron beam

lithography (EBL) techniques have progressed from allowing minimum periodicities in the

range of 160-220 nm in the mid-1990s, with linewidths permitting feature sizes of about

10 nm, to modern setups permitting feature sizes of just a few nm and periodicities of

less than 50 nm [83], [84]. Thus, there is always some inaccuracy in fabrication and exact

periodicities of arbitrary size cannot be obtained, making it worthwhile to investigate models

with deviations from perfect periodicity.

The surface lattice resonances (SLR) in periodic arrays arise due to constructive interference

between the dipole fields of the particles that emerges on a wavelength at, or close to, the

wavelength corresponding to the exact periodicityD. We disregard, for the sake of argument,

the fact that SLRs are not always located at a wavelength λ = D, as was discussed in the

harmonic oscillator model with coupling between diffracted light and the LSPRs (recall

from Chapter 3.7.2). When the distances between the radiating dipoles deviate from D

randomly, due to fabrication errors or similar, by a value 0 < ε̃ < ε, the interference between

the LSPR of any given dipole with the far-field dipole irradiation of surrounding dipoles

may occur at a wavelength D± ε̃ 6= D. This means there is a positive probability that they

do no longer contribute to constructive interference at the wavelength corresponding to D.

Additionally, they create destructive interference at that wavelength, which further decreases

the SLRs that are observed with non-random periodicities. Some literature, employing both

models and experiments, investigates disordered arrays. It has been demonstrated in lab

experiments with discs that random generation of gold discs on a substrate using colloidal
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lithography, with no crystalline order, produces extinction similar to that calculated for

single discs [24], [32, Ch. 9.4.1], [85]. That is, if the deviation from periodicity is large

enough, one can eliminate the constructive interference that gives rise to SLRs completely.

An approach that can make computational models a bit closer to real lab extinction mea-

surements is by adding random deviations from perfect period. Modeling disorder with

stochastic period is the method chosen for this thesis to investigate this: If the CDA or

FEM model employs a period D, one can introduce a stochastic period

D̃ = D ± ε̃. (4.30)

ε̃ is here a stochastic variable having some probability distribution. As a simple approach,

one can assume that it is uniformly distributed, ε̃ ∼ U(0, ε), with ε being a predefined

constant upper limit [86, pp. 171-172]. D̃ is then also uniformly distributed,

D̃ ∼ U(D − ε,D + ε), (4.31)

as shown in Figure 4.20. The distribution is centered on the intended periodicity D, the

mean of the distribution, and the probability of each value in the support D̃ ∈ [D− ε,D+ ε]

is a constant value

f(D̃) =
1

2ε
. (4.32)

Figure 4.20: Uniform distribution model of the stochastic array periodicity D̃. The mean value
is the intended exact period D, while ε is the maximum deviation in either direction.

A Gaussian distribution may also be used, because it puts greater weight on outcomes close

to the mean, than a uniform distribution. With modern fabrication techniques, such as col-

loidal lithography which produces tightly-packed crystals, large deviations from periodicity

are unlikely. However, the tails in a Gaussian distribution may have a significant weight,

increasing the chance of occurrence for high values. For simplicity, we’ll use a uniform

distribution, as formulated above.

Appendix E contains a code snippet that modifies the CDA 1D array model to include the

proposed modeling approach for random periods. In COMSOL, it is also possible to modify

the model to include random periods. However, to see the effects of this, one needs to

include at least 100 particles in the model. In COMSOL, this demands too much memory

and would require a supercomputer to implement. Another complication is that in FEM,

one meshes also the space between the particles, so the memory demand grows with larger

lattice constants, even if the number of particles is kept constant. Random periodicities

will therefore only be demonstrated briefly using results from CDA computations and it is
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implied that the behavior noted there is also valid for FEM models, as the effects are largely

determined by statistics.

4.10.1 Simulation methods summary

Simulating much more than a few particles is not possible in COMSOL due to memory

constraints. Thus, CDA is more suited to demonstrate the effects of variation in periodicity

or how the SLRs emerge with less or more particles in the array. In COMSOL, one has to

restrict oneself to simulating an infinite array and, thus, look at the fully developed lattice

effects only. The CDA, on the other hand, lacks the possibility to simulate realistic particles

as it uses the dipole approximation. It ignores all higher-order modes and effects such as

non-homogeneous surface polarization and phase retardation. It is possible to include more

complex polarizability functions into the CDA to include e.g. quadrupole effects into the

model. However, some researchers have adopted a simulation methodology where they use

DDSCAT to simulate a single particle of arbitrary shape and composition [64]. Then they

use the computed single particle results in the CDA model to predict the plasmon-lattice

interactions. This approach was not explored in this thesis, as the main goal was to develop

a COMSOL model, and use the alternative methods to compare the results. Still, COMSOL

offers more flexibility in both designing arbitrarily-shaped particles and arranging them in

an arbitrary fashion within the primitive cell. Furthermore, COMSOL allows more flexibility

in estimating the SERS EF by using integrating spheres and other surfaces. The only one

of the alternative method that allows computing the surface field is DDSCAT, but it does

not offer any options of integrating the values over a surface. One can only sample it at a

specific coordinate.

The analytical Mie model is obviously only applicable for spherical geometries, but is in-

valuable when building the model and making sure it behaves well for simple spheres, or

concentric nanoshells, as in the Mie extension from NanoComposix.

Table 4.1 presents a summary of the simulation methods, with their strengths and weak-

nesses. Note that the limitations of the CDA pertain only to the implementation in this

thesis. As discussed before, more complex formulations can be found with extended capa-

bilities.
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Table 4.1: Comparison of numerical simulation methods used in this thesis.

Parameter COMSOL (FEM) DDSCAT (DDA) CDA

Computation time Slowest (depends on
desired accuracy)

Slow (dep. on desired
acc.)

Fast (though also de-
pends on accuracy)

Memory usage High Moderate Low
Parallel computations Limited support, but

enough for 10-20 CPU
core workstations

Limited, but can eas-
ily be mitigated (Ap-
pendix D)

Not in the present im-
plementation

Applicability Any particle shape/-
composition, any pe-
riodicity, multiparticle
structures, etc.

Single particles, arbi-
trary shape and com-
position

Single-material parti-
cle arrays, particles
modeled as dipoles

Based on approxima-
tion method

No, solves wave equa-
tion directly

DDA DDA

Type of discretization Volumetric mesh dipole array Dipole array
Computes optical cross
sections by

Integrating Poynting
vector

Solving for polariza-
tion of each dipole

Solving for polariza-
tion of each dipole

Computes field in/out-
side partice

Yes Yes No (this implementa-
tion)

Calculates SERS en-
hancement directly

Yes No No



Chapter 5

Results and discussion

Simulation results obtained using the models and tools presented in Chapter 4 are presented

and discussed here. First, single-particle results from Mie, FEM and dipole approximation

methods are summarized here for noble metal spheres, with a quick summary on how the

resonances change with medium RI and particle size. This is, to some extent, a summary

of the main results presented in [1], with DDA and a comparison between silver and gold

particles added, along with the introduction of SERS enhancement factor (EF) estimation.

This chapter focuses on the light scattering and absorption, that is, extinction, properties

of particles, along with the SERS EF. Recall that extinction cross sections, normalized

by particle cross-sectional area, as in Eqn. (3.32), are unit-less extinction efficiencies. The

extinction efficiency spectrum allows seeing at which wavelengths particles exhibit resonances

and how wide or narrow these are, as discussed in Chapter 3.3.1. Apart from an analysis

of how the resonances of extinction and the SERS EF are related, the extinction efficiency

will be the main way of comparing the models. Whether they have similar resonances. The

analytical Mie solution serves as the benchmark and it will be discussed how the numerical

models deviate from it.

Data found in the literature for single particles was available for both scattering and ex-

tinction efficiencies, but mostly from calculations. Empirical data for spherical particles is

difficult to obtain. For particle arrays, the published calculations mainly present extinction

efficiencies. As a consequence, the results previously presented in [1] for single particles

have been recalculated as extinction efficiencies, such that the shifts in resonances, when

extending the model from a single particle to an array, are directly comparable with pub-

lished extinction efficiencies. Furthermore, results from applying the SERS EF estimation

approach in Chapter 4.9.6 are also presented here.

The model is built upon, until we finally arrive at the AuFON model in Section 5.3.1, where

the computed SERS EF is compared to published results and the reference plot in Figure

4.1.

5.1 Single sphere

The optical of single spheres are first presented, to demonstrate the behavior of single spheres

before the model is extended to arrays. This section will focus on the behavior of surface

plasmons in gold particles, as that is the metal used in the final AuFON structure. A short

comparison with silver, which is used much more in the literature, will be made at the end.

65
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5.1.1 Comparison of single particle model results

First, the extinction efficiency is estimated using the DDA, FEM and Mie models and

compared. The plots for a single 100 nm (diameter) gold sphere in air as a function of

wavelength, using these models are fitted to Lorentzians and plotted in Figure 5.1b. The full

width at half maximum (FWHM) data was computed by fitting the spectra to Lorentzians

of the form

γ =
a(∆/2)2

(∆/2)2 + (λ− λ0)2
. (5.1)

∆/2 denotes the half linewidth at half maximum (HWHM), a is the amplitude and λ0 is

the resonance frequency. Figure 5.1a shows the close fit achieved between a Lorentzian and

the extinction efficiency of a 100 nm Au sphere computed using FEM.

Table 5.1 lists the main parameters of these single particle models, illustrating the differences

between the different computational methods.

(a) (b)

Figure 5.1: Extinction efficiencies of numerical and analytical solutions for a 100 nm Au sphere
fitted to Lorentzian lineshapes. (a) FEM solution data vs. the fitted function (b) Fitted lineshapes
superimposed on one another.

The justification of the present line fitting approach is that the resonance peaks in the

Lorentz-Drude model are explicitly defined using Lorentzian oscillators. Furthermore, the

extinction cross section itself was, in Section 3.3.2, expressed as a Lorentzian. One can then

model the extinction cross section or efficiency as a superposition of Lorentzians from the

underlying models. In the case of a particle not large enough to support modes other than

the dipolar one, such as the 100 nm gold sphere model, the lineshape can be represented

using a single Lorentzian, as a dipole has a single resonance.

Similarly to the fitted FEM data in Figure 5.1a, the Mie and DDA model results were well-

fitted to a Lorentzian. As the dipole resonance lineshape is not symmetrical, the fit was

performed on one side only.
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Table 5.1: The peak extinction efficiencies, resonance wavelengths and FWHM of the single particle
LSPRs solved for with Mie (based on Bohren and Huffman), DDA and FEM. For comparison, the
Mie solution from NanoComposix is also included. The model solved using these methods is a single
Au 100 nm sphere in air or free space.

Model Max Qext λresonance (nm) FWHM (nm)

FEM 3.4 513 155
Mie 3.9 516 125
DDA 4.4 519 110
NanoComposix 3.95 520 95

The table shows that the Mie values are in the middle of the intervals delimited by the

numerical models. Both the max values of extinction, as well as the resonance wavelengths.

The FEM method underestimates the maximal extinction compared to Mie, while the DDA

overestimates it. This pattern is seen for other sphere diameters as well, before the particle

becomes large enough to support a quadrupole mode. However, it does not mean that this

holds for all particles/materials, all surrounding media etc. Recall from Chapter 4.7.1 that

COMSOL uses interpolated RI values from its material library, while the Mie code uses

the code in Appendix E.1 that generates a value for every nanometer in the wavelength

range. Furthermore, this inference is based on the current Mie implementation, based on

Bohren and Huffman [31, pp. 479-482]. While the results of this code were checked against

the examples given in [31], an alternative Matlab implementation [87], where absorption is

computed using the internal field inside the sphere, and additionally, compared against the

Mie solutions by Jain et al. [88], errors cannot be ruled out.

Table 5.1 also includes the analytical solution from NanoComposix1, based on a Mie model

extensions for nanoshells [44]. This solution was also fit to a Lorentzian for comparing

with the others. NanoComposix values present an extinction maximum value and resonance

wavelength similar to the Mie solution based on Bohren and Huffman. NanoComposix’s

solution has a much narrower lineshape, though. Note that the NanoComposix data uses

gold metal data of unknown origin. It is likely that it is experimental bulk metal data by

Johnson and Christy [89], as most literature refers to them. Thus the NanoComposix values

are not directly comparable, but proved very useful for guiding simulation work, as one can

estimate from them where one should find a resonance. The resonance wavelengths between

the Lorentz-Drude and Johnson and Christy gold data are not that different, as seen from

the table.

The accuracy of FEM and DDA methods is subject to a trade-off with computational cost.

In DDA, one can use more dipoles to represent a particle, which may improve solution

accuracy, but increases the computation time significantly. For the models in this thesis,

at least 105 dipoles were used, in agreement with the benchmark in Table D.1, Appendix

C. In FEM, one can also improve the resolution of the mesh, which will lead to greater

computation time, as well as much higher memory usage. The resolution was therefore

fitted to the smallest dimension of a given model, which required a minimum element size

of at most 5 nm.

Concluding this section, we see that the discrepancy between maximum extinction values,

predicted from Mie and the numerical model, is somewhat more than 10 %. It was noted in

Chapter 4.4 that, at least for the DDA, a deviation of up to 10 % from Mie is considered a

good match. The present results are considered adequate, as the models, in general, follow

1(https://nanocomposix.com/pages/mie-theory-calculator)

https://nanocomposix.com/pages/mie-theory-calculator
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the Mie solutions, when compared across several particle sizes.

5.1.2 Single-particle plasmonic properties

As the numerical models are benchmarked against the Mie model, the remainder of this

section will use Mie extinction efficiencies to demonstrate a few important properties of the

single particle model.

The dependence of the extinction peak value, resonance wavelength and width of the peak

on sphere diameter is illustrated in Figure 5.2a. The plot demonstrates the characteristic

traits of the extinction efficiency’s diameter dependence. The retardation and dampening

effects manifest themselves with a redshift in the resonance wavelength. This results in a

characteristic volcano or cascade pattern when going from one sphere size to the next, as

noted by e.g. Shafiqa et al. [76]. This cascade would not be seen when using the quasistatic

approximation, as it doesn’t include these effects. Another effect that is seen in the model,

when going from smaller to larger sphere diameters is that the scattering efficiency starts to

contribute increasingly more to total extinction. Recall from Eqn. (3.30) that extinction is

the sum of scattering and absorption. As Figure 5.2b shows, the presented sphere diameters

are not large enough to see scattering dominate over absorption, but it will be seen when

changing the medium from air to water. As was described in Section 3.5.2, for smaller

particles the decay of surface plasmons is by absorption. For larger spheres the mechanism

changes towards emission of light, scattering, which explains the modeled behavior. It is

noted also in e.g. Ref. [76].

(a) (b)

Figure 5.2: (a) Extinction efficiencies (Qext) of single gold spheres of various diameters (in legend)
in air. (b) Scattering versus absorption efficiency ratio as a function of sphere diameter.

It is also important to note that for the sphere sizes included in the plot, gold spheres act

as dipoles, with only the dipole peak clearly visible. Examining a surface plot depicting the

electric field’s amplitude distribution in an area in the XY-plane around the particle, one

can predict the emergence of a quadrupole by the rotation of the poles about the z axis (out

of plane). Figure 5.3 below illustrates the difference in the radiation pattern between 50 nm

and 100 nm diameter gold spheres. The 50 nm sphere has perfectly symmetrical poles. The

dipole pattern outside of the 100 nm sphere is clearly unsymmetrical, with the poles rotated

closer together. This is an indication of an emerging quadrupole [77], even though it is not

yet visible in the extinction spectrum in Figure 5.2a. The reader is referred to Appendix C

for a demonstration of the emergence of higher-order multipoles in large gold particles.
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(a) (b)

Figure 5.3: Electric field norm distribution in XY-plane for gold spheres. The incident field was
10−3 V/m. The inset shows the spheres magnified and incident light polarization and propagation
directions are indicated. (a) 50 nm sphere. (b) 100 nm sphere, showing the poles rotated closer
together.

The final property worth noting in Figure 5.2a is that there is a lineshape broadening with

larger diameter. This was expected from the quasistatic optical cross sections in Eqn. (3.42).

In the full Mie solution, as shown here in Figure 5.2a, there is also a gradual broadening of

the dipole resonance as the higher-order modes start to emerge with higher particle size. This

reduces the dipole oscillator strength [32, pp. 206-207] in addition to redshifting resonances.

5.1.3 Change of medium

The final effect presented in this summary of single sphere model extinction properties is

that of changing the RI of the medium. In the previous subsections the medium was air,

or free space, with RI ≈ 1. Lower medium RIs dampen the radiation, lowering all optical

efficiencies [32, pp. 208-209]. Thus, changing the medium to water, RI ≈ 1.33 as discussed

in Chapter 4, increases the extinction efficiency as shown in Figure 5.4a. The wavelengths

on the abscissa still refer to free space wavelengths, λ0, and will do so for the remainder of

this thesis.

(a) (b)

Figure 5.4: (a) Extinction efficiencies of single gold particles in water, with different diameters,
as shown in the legend. In water the peaks are redshifted and peak efficiency values are increased
compared to air. (b) Scattering versus absorption ratios for several sphere diameters in water.
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As mentioned in the previous section, when discussing how scattering increases with sphere

size, Figure 5.4b illustrates that in water, the presented sizes are already large enough for

scattering to contribute more to extinction than does absorption.

Change of medium also shifts the resonance wavelengths. Sarid and Challener [32, p. 313]

note that for every unit change in the medium’s real RI, the extinction peaks are redshifted

by 200 nm. Comparing figures 5.2a and 5.4a, we observe a redshift of the extinction peak

for the 100 nm gold particle from 516 nm to 580 nm. This corresponds well with Sarid

and Challener’s rule of thumb. The peak extinction efficiency for the 100 nm sphere has

increased from 3.9 to 6.6, which indicates decreased dampening in a higher-index medium,

as mentioned above.

5.1.4 SERS Enhancement factor estimation

In this section, all sphere models were calculated using the FEM model. Figure 5.5 plots the

surface area-averaged SERS enhancement factor as a function of wavelength for a single 100

nm diameter (a) gold particle and (b) silver particle, respectively, alongside the extinction

efficiency. Both particles in air.

(a) (b)

Figure 5.5: Extinction efficiencies (Qext) and SERS enhancement factors (GSERS) as functions
of wavelength, for an isolated 100 nm (a) gold and (b) silver particle, respectively, in air.

The plots let us compare the properties of single gold and silver particles. Silver particles

exhibit higher extinction efficiency than gold for equal sphere sizes. Figures 3.4 and 5.2a

can be used to compare gold and silver sphere Mie solutions for a few additional diameters.

From the extinction plot for silver, we see that at a diameter of 100 nm, the particle already

has an emerging quadrupole peak at about 370 nm, which broadens the dipole resonance

and decreases its peak value. These strong plasmonic properties in silver are due to the

significantly higher imaginary part of its RI 2, which yields stronger polarization. The

SERS EF plot line in Figure 5.5b demonstrates the superior polarization of silver more

prominently. For the particle size shown here, the quadrupole peak at 370 nm is clearly

evident in the SERS EF plot for silver. Due to the sharing of energy between the two

oscillators in the silver plot, rather than just the one strong dipolar oscillator in a similar-

sized gold sphere, the SERS enhancement factor for silver has a lower peak value. Typically,

the literature on SERS focuses on silver, as it exhibits larger enhancement factors than gold

at particle sizes where the LSP modes are only dipolar. Sarid and Challener demonstrate

this for 60 nm particles [32, p. 206]. Here, the 100 nm silver sphere is already large enough

2This can be readily compared using e.g. https://refractiveindex.info/?shelf=main&book=Au&
page=Rakic-LD and https://refractiveindex.info/?shelf=main&book=Ag&page=Rakic-LD

https://refractiveindex.info/?shelf=main&book=Au&page=Rakic-LD
https://refractiveindex.info/?shelf=main&book=Au&page=Rakic-LD
https://refractiveindex.info/?shelf=main&book=Ag&page=Rakic-LD
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to support a quadrupolar mode and thus it exhibits lower peak values than a 100 nm gold

sphere, which is still not large enough to support quadrupoles.

Both plots exhibit the same tendency of the SERS EF peak to be redshifted relative to

the extinction efficiency resonances. Similar results were also seen from the DDA model.

The SERS peak for gold is wider and more redshifted than that of silver. This comes

from a redshift of the maximal surface field amplitude relative to extinction maximum

efficiency. This redshift, much like the extinction resonance redshift with increasing particle

size discussed before, is due to the dampening effects from spontaneous radiation emission,

which increase with particle size [77]. Ignoring these effects, as done in the quasistatic model,

would result in the maximum field amplitude occurring at the same wavelength as the dipole

peak.

The SERS EF follows the same pattern as the extinction efficiencies, when simulated for

different sphere sizes. One sees the same cascading volcano profile, with redshifts of the

SERS EF peaks as the diameter increases. It is instrumental to look at the maximum

surface field amplitudes for a few gold particle diameters, and estimate the maximal SERS

EF that can be achieved on the surface of a single particle. Table 5.2 summarizes this for a

few select diameters in the 50 nm – 100 nm interval. The maximum surface-field is measured

on the surface of the particle at the poles – an average of the values at the two poles.

Table 5.2: Surface-field enhancement factors (EF), maximum SERS EF estimated using the
(E/E0)4 approximation, the wavelengths at which the surface-field is maximal and the wavelengths
of peak extinction efficiencies for spheres of diameters 50 nm, 60 nm, 80 nm and 100 nm.

Sphere diameter (nm) Max surface-field
EF

Est. Max SERS EF λEFmax (nm) λextmax (nm)

50 4.5 410 522 494
60 4.9 576 525 496
80 5.1 676 531 503
100 6.4 1678 556 515

The table demonstrates that for particle sizes considered here, the surface field intensity

increases with size. With increasing diameter, so does the surface area, which becomes

increasingly more polarized until the particle reaches a size where the surface area is too

large to be homogeneously polarized. At this point, secondary, quadrupole and higher

oscillators emerge, decreasing the maximal surface field. Note that the peak in average

SERS EF seen in Figure 5.5a is a lot smaller than the theoretical maximum at the poles of

a 100 nm particle, as shown in the last row in Table 5.2.

This concludes the review of relevant single particle optical and plasmonic effects and the

comparison of single particle computational models. It was seen how particle size and

medium permit tuning the resonances. These are only some of the properties which allow

tuning the nanostructure to a specific resonance wavelength. Particle shape, although not

considered here (see e.g. [32, Ch. 9]) also greatly affects the resonance wavelengths and

achievable surface field enhancement factors.

Putting together several particles, or ordering them in an array, also affects the localized

surface plasmon resonance wavelengths, as well as giving rise to new resonances, as will be

seen next.
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5.2 Near-field and far-field coupling in arrays

Extending the homogeneous single particle model to an array results in near-field coupling

when the array is close-packed and far-field coupling when the lattice constant is on the

order of several particle radii. Near-field coupling is only between nearest neighbors, as it

was seen in Section 3.5.2 that the coupling weakens at a rate l−3 as particle separation l

increases. It can therefore be modeled using as little as two particles. This will be presented

first.

Far-field coupling produces SLRs. This will be investigated in the 1D array case, as it is

simple, yet exhibits most of the coupling effects observed in more complex arrays. 2D arrays

will also be considered, as the final AuFON structure is a 2D hexagonal lattice array. The

difference between a single particle’s far field radiation and a periodic array is that the array

is essentially a diffraction grating. As presented in Section 3.7.2, lattice peaks occur as the

result of constructive interference between the diffracted incident and scattered light. When

the light wavelength approximately matches the array periodicity, the diffracted waves from

the slits in the grating are in phase with one another.

5.2.1 Near-field coupling

The values of the SERS EF peaks for both metal particles in Figure 5.5 demonstrate that

without near-field coupling, that results in hotspots of local field enhancements (introduced

in Section 3.5.2), the field enhancement on the surface of a single particle yields rather

modest SERS enhancement factors. Both noble metal particles produce SERS peaks with a

magnitude on the order of 102, which is several orders of magnitude below the enhancement

factors reported for colloidal crystals. Recall that these are 106−108, as reviewed in Chapter

1).

For the 100 nm diameter gold particle considered, the dipolar oscillator mode still dominates

and we consider these particles as dipoles. Dipoles radiate in the far-field in directions

perpendicular to the dipole axis [39], [46]. They do however couple in the near-field along

their dipolar axis. To see the near-field coupling the incident light must be polarized along

the dipole axis, parallel with the particle chain. To avoid confusion, it is useful to use

particle separation distance l, rather than the lattice constant D. These quantities relate

as l = D − d. Here, diameter d = 100 nm. Figure 5.6a plots the extinction efficiencies of

gold spheres in an array with various distances l. The plot next to it shows the average

SERS enhancement factors. From the extinction plot, one can see that with smaller lattice

constants, the extinction efficiency is decreasing. As discussed in Section 3.5.2, near-field

coupling suppresses far-field scattering with decreasing l, so this tendency agrees with theory.

Additionally, the extinction peaks are redshifted with decreasing l. The discussion in Maier

[36], reviewed in Section 3.5.2, does not specify exactly in which direction the extinction peak

shifts from near-field interactions. We can, however, use the CDA, presented in Section 4.5.

The polarization expression in Eqn. (4.10) includes a term AS. Zou et al. [65] argue that

this term can be used to predict the shift. For polarization parallel with the array, the term

is positive and for particle separations of less than 100 nm, the peaks are redshifted due to

near-field coupling. The CDA is only valid dipoles, but it was already argued above that

the spherical 100 nm gold particles behave very much as dipoles. Le Ru and Etchegoin [40]

demonstrate a similar behavior for 25 nm gold spheres, as will be shown below. The SERS

plot in Figure 5.6b demonstrates how the average and peak enhancement factors drastically

increase with smaller l. As presented in Section 3.5.2, the near-field coupling weakens as

l−3. Conversely, it increases as l3 for very small values of l. This is seen well for l values
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less than 10 nm in the figure below. Ru and Etchegoin [40, p. 356] note that the l−3 rule is

observed for separation distances around l = 1 nm. Figure 5.7a further below shows that at

l < 1 nm, the field EF is almost doubled for every 0.2 nm decrease in l.

(a)

(b) (c)

Figure 5.6: Arrays of 100 nm gold particles with particle spacing l. (a) Extinction efficiencies.
(b) SERS enhancement factors. (c) Field norm distribution in the XY-plane, showing a unit cell in
the array with l = 4 nm. The field is highly localized at the poles, as seen from the dimensions of
the hotspot (the bright red spots on the axis along the field polarization). The circle around the
particle is the integration sphere.

All near-field calculations in this section were made with FEM. Note from Figure 5.6c that

the field is highly localized into hotspots at the poles, as previously seen in Figure 3.8a in

Section 3.5.3.

The tendency of sharply increasing field enhancement with decreasing l was demonstrated

in the project thesis [1] for 180 nm spheres. It was demonstrated in that work that this

gold sphere size gave the largest field enhancement at the 785 nm wavelength used for SERS

glucose measurements, when modeling particle interactions in a sphere dimer. Figure 5.7a

illustrates the trend. The EF when l < 1 nm is well above 103. Applying the SERS EF

approximation rule |E/E0|4, Eqn. (3.52), yields SERS EFs approaching the theoretical limit

of 1014 for the EM contribution. The highest calculated field enhancement factor is 3420, for

a separation distance of 0.2 nm. The corresponding SERS enhancement factor is 1.37 ·1014.

It would of course not be realistic to have a sub-nanometer spacing between the spheres, due
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to fabrication challenges and because the analyte molecule has to fit inside the hotspot. The

realistic maximum EF in such dimer structures is likely around 102, which yields a SERS

EF of 108, agreeing well with the SERS EFs in the range 106−108 reported in the literature

[13], [26], [12]). Note also that the plots here show SERS EF estimation based on maximal

surface field EF, not surface area-averaged SERS EF, as computed previously for the single

particle. This is to investigate the absolute maximum achievable.

It can also be noted from Figure 5.7a that at separation distances of about l = 15 nm or

more, the surface field EF is on par with single particles. Near-field coupling effects are

still present until the separation distance is increased to about 150-200 nm, for sphere sizes

considered here, or about three radii [36, p. 82]. Figure 5.7b shows the field norm plot for

the 180 nm gold sphere dimer, with l = 10 nm. The measurements were taken in the middle

of the bright red hotspot and calculated from an incident field E0 = 10−3 V/m.

(a) (b)

Figure 5.7: (a) Surface field enhancement (|E/E0|) as a function of particle separation distance
in a dimer consisting of 180 nm gold spheres. SERS EF can be approximated as |E/E0|4. Thus,
for l < 1 nm, the EF approaches the theoretical limit ∼ 1015 predicted for SERS. (b) Field norm
distribution in the XY plane, showing the 180 nm gold spheres in the dimer separated by 10 nm. The
field enhancement was calculated from the bright red hotspot between the spheres. The incident
field amplitude was E0 = 10−3 V/m [1, p. 46].

Concluding this section, we take a look at a comparison of enhancement values for gold

dimers of 50 nm and 180 nm diameters in water. The 50 nm spheres were simulated using

FEM and compared with the plot in Figure 6.19 in Ru and Etchegoin [40, p. 356]. Table

5.3 illustrates the difference in attainable EF for the two diameters, both at resonance (for

the smaller diameter) and at the target 785 nm wavelength.

The table data demonstrates that while the larger spheres have higher EF at the target

785 nm wavelength, the smaller spheres consistently achieve a higher EF at their resonance

wavelength. This is consistent with research showing that smaller particles can have larger

surface field intensities than larger ones, due to lower retardation and dampening in smaller

particle volumes and higher polarizability of smaller surface areas (see e.g. [32, p. 207]). The

180 nm sphere exhibits a strong quadrupole mode, decreasing its dipole oscillator strength.

The table demonstrates for 50 nm sphere dimers the pattern already seen in Figure 5.6, for

the 100 nm sphere array, where the resonance was redshifted with decreasing l. The 180

nm dimer data is for 785 nm wavelength only, as a reference. Because of the resonance

redshift caused by the dimer structure, the dipole peak has been shifted too far into the IR

region and out of the relevant wavelength range. The conclusion drawn from this is that
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Table 5.3: Comparison of 50 nm and 180 nm gold sphere dimers in water at different separation
distances l. SERS EF at 785 nm wavelength, SERS EF maximum at resonance and resonance
wavelengths are presented. For the larger diameter, all data are for the 785 nm wavelength, as
reference.

Model EFλ = 785 nm Max EF λEFmax (nm)

l = 1 nm:

50 nm gold dimer 2.0 · 108 1.1 · 1011 660
180 nm gold dimer 5.1 · 1010 5.1 · 1010 785
l = 2 nm:

50 nm 2.0 · 106 2.0 · 109 630
180 nm 5.8 · 108 5.8 · 108 785
l = 3 nm:

50 nm 4.0 · 105 2.0 · 108 610
180 nm 4.5 · 107 4.5 · 107 785
l = 5 nm:

50 nm 7.0 · 104 1.0 · 107 590
180 nm 3.1 · 106 3.1 · 106 785

for a given structure or arrangement of particles, the particle size is a relevant parameter

for tuning the EF maximum to the relevant excitation wavelength. Although the smaller

spheres are capable of higher EFs at their LSP resonance, larger particles are needed to

achieve maximum EFs at the 785 nm wavelength.

5.2.2 Far-field coupling

Although near-field coupling is believed to be the main contributor to SERS enhancement

factors due to the close packing in colloid films used in SERS substrates, there is also a

far-field coupling contribution that comes from long-range order. The model would not

be complete without a discussion of how it behaves when the particles have larger spacing

between them, such that near-field coupling is no longer present. The main periodic structure

considered here is the 1D array, because it is the simplest one and captures most of the

periodic lattice effects. As the AuFON structure is a 2D hex lattice array, we will extend

the 1D array after reviewing its most important features. The polarization is now orthogonal

to the array axis, as opposed to the setup used for investigating near-field coupling. This

section will explore arrays using predominantly silver particles, as that is easier to compare

with published results, but important differences between gold and silver are noted where

appropriate.

1D arrays of homogeneous noble metal particles in vacuum

Figure 5.8 demonstrates how the SLRs emerge at different periods D when the number of

particles N in the array increases. The results are from the CDA model of one-dimensional

arrays of 100 nm silver particles in air, except for the last subfigure which shows gold

particles.
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(a) (b)

(c) (d)

1D Ag array, N = 1001 particles

(e)

1D Au array, N = 1001 particles

(f)

Figure 5.8: Plots showing how lattice surface resonances start to emerge and become narrower
with increasing array length. CDA model of 1D arrays for various periods consisting of N silver
spheres, 100 nm in diameter, in vacuum. (a) N = 3, (b) N = 11, (c) N = 51, (d) N = 101 and
N = 1001. (f) CDA model of 100 nm gold particles ordered in a 1D array, for comparison with
silver.

Figure 5.8a shows that for a lattice constant of 470 nm, an array of only three particles is

enough to see a lattice resonance emerge. However, one needs to increase the array size to 11

particles to locate the SLR peak, for the 470 nm plot line, at a wavelength around D = 470

nm. Increasing the array size to 51 particles is enough to see lattice resonances for all periods

presented here. However, while the lattice peaks for shorter periods are already quite narrow

at N = 51, with Q ∼ 20, the lattice resonances for the longest periods presented are much

wider. An array size of 101 particles is needed to see a peak emerging in the 700 nm plot

line. Increasing the array size further, to N = 1001, makes the resonances narrower and

the plot lines smoother. This results in a plot quite close to the 1D array results in Zou et
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al. [57] [58], which were based on 400 particles. Both the LSPR and SLR peak values are

similar and located at the same wavelengths. Zou et al. do, however, achieve much sharper

resonances for lattice constants in the 450 nm - 500 nm range.

The resonance peaks in Figure 5.8 were produced using the CDA code in thesis, Appendix

E.3, and the good agreement with literature means it can be used for comparison with the

FEM results further below. It was however already mentioned in Section 4.5 that the LSPR

in the present CDA model only includes the dipole contribution. Furthermore, it should be

noted that this CDA implementation overestimates the LSPR peaks by a factor of as much

as 1.5 for the largest lattice constants demonstrated here. For completeness, it should be

noted that the literature often uses other dielectric constants than those used in this thesis.

Zou et al. [57], [58] use silver metal data by Hunter and Lynch [90]. However, as seen in

Table 5.1 comparing single particle models, the LSPR peaks shift only a few nanometers

between datasets. The linewidth may, however, change significantly. It is believed that this

is not of great relevance in this discussion, as the main interest is in the LSPR and SLR

shifts due to lattice effects. These are more significant than the small resonance wavelength

differences between datasets.

The FEM model is better suited to demonstrate the effect of an infinite array, due to its

periodic conditions defined in Section 4.9.4. Compared with CDA, the FEM demonstrates

the effects of going beyond the dipole approximation. Figure 5.9 shows the extinction

efficiencies of infinite one-dimensional arrays of silver and gold particles, respectively. Each

subfigure presents the lattice resonances for various lattice constants. The particles are still

in air and have a diameter of 100 nm each.

Zou et al. [57] analyze the polarization expression (4.10) in their CDA implementation

further, suggesting that the real part of the AS term in the denominator is typically positive

for array periodicities below 100 nm. This produces a red-shift in the LSPR when the

periodicity is further decreased, as previously seen for near-field coupling. For larger array

lattice periodicities, there is a blue-shift when the particle spacing is reduced. This was seen

in the CDA models in this section, but similar results are also seen from the FEM model in

Figure 5.9.

(a) (b)

Figure 5.9: Infinite 1D arrays of (a) silver and (b) gold particles in vacuum simulated using FEM.
Each plot line corresponds to a model with one of the lattice constants in the legend.

Both gold and silver metals demonstrate similar lattice effects. Initially, the lattice reso-

nances are at a slightly red-shifted wavelength compared to the wavelengths corresponding

to the lattice constants: E.g. the Fano resonance in the silver particle array with a 470
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nm lattice constant is located at 473 nm. This agrees with the harmonic oscillator model

in Section 3.7.2. The interaction between LSPs and the diffracted light red-shifts the SLR

from λ = D. We will henceforth call this wavelength λD. There is also a blue-shift of the

LSPR from the position seen for single particles in Section 5.1. However, the FEM model

does deviate from this as the lattice constant becomes larger – the SLRs become blueshifted

relative to λD! For the 600 nm and 700 nm lattice constants, the SLR is at 596 nm and

694 nm respectively. Both gold and silver FEM models show this behavior. The deviation

might not be large, but it is definitely a trend. The dipole LSPR peaks for D = 600 nm

and 700 nm are at 401 nm and 367 nm, respectively. That is, blue-shifted from the LSPR

wavelength of 375 nm for an isolated 100 nm silver sphere. Thus, the LSPRs in the FEM

model behave as predicted by the harmonic oscillator model, even though the SLRs do not.

Figure 5.10 illustrates the mismatch between the FEM and CDA models. The CDA results

seem to be more in agreement with the oscillator model for smaller lattice constants, but

for higher array periods, the SLR peak locations eventually converge to λD. That would

correspond to a zero interaction term in Eqn. (3.60) in the oscillator model. This behavior

is seen for both gold and silver and is due to the simplifying assumptions made in the

CDA model’s polarizability in this thesis. The rsa-CDA model by DeJarnette et al. [39],

in contrast, does not converge to λSLR = λD, indicated by the red dotted lines in Figure

5.10, but rather to an asymptote parallel to these lines. However, they do only demonstrate

results for a 2D square lattice of gold particles. In defense of the FEM results, it does seem

likely that as interactions between the LSPs at adjacent particles grow weaker, with larger

particle separation, that the interaction term in Eqn. (3.60) vanishes. This is seen in Figures

5.8 and 5.9 from the decreasing SLRs in the extinction plots for both metals, and both CDA

and FEM, as the lattice constant increases. Then it is sensible that the LSPR goes back to

the position predicted by the single particle models, while the SLR simply vanishes. One

could also use this to explain the trend for the CDA models implemented in this thesis, seen

in Figure 5.10. As far field interactions are weakened, the interaction term in the oscillator

model, Eqn. (3.60), disappears, and the SLRs gradually shift to the wavelength λD as they

decrease in strength. The fact that this does not happen in the FEM model, is likely due to

dampening, retardation and inhomogeneous surface polarization in the plasmonic particles.

This might shift the resonances differently than predicted by the simple oscillator model. It

is important to remember that the particles in the FEM model are not point-dipoles.
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1D Ag array, FEM

(a)

1D Ag array, CDA

(b)

1D Au array, FEM

(c)

1D Au array, CDA

(d)

Figure 5.10: Lattice peak positions versus constants for 1D arrays. Red dotted lines indicate the
trend when all SLR peaks are located strictly at the wavelength which equals the lattice constant,
λSLR = λD. Top row: silver particle arrays simulated using (a) FEM and (b) CDA. Bottom row:
gold arrays, using (c) FEM and (d) CDA.

The gold array in Figure 5.9b shows the same properties as the silver array. However, for

the smallest lattice constants, the SLR and LSPR are very close – they almost coincide in

the plot where the lattice constant is 500 nm, producing a very wide resonance peak. The

CDA result for 1D gold arrays in Figure 5.8f shows the same, only the LSPR and SLR peaks

for D = 470 nm and 500 nm are completely merged into wide resonances. The gold SLRs

exhibit the same disagreement with the oscillator model at larger lattice constants, for both

CDA and FEM. The SLR position versus λD plot for the CDA gold model in Figure 5.10d

shows a larger deviation from the λSLR = λD line for the smallest lattice constants D, before

it also converges to that line. At these lattice constants, the LSPRs and SLRs in gold are

much closer and there is likely stronger coupling between them than in silver.

Effects of changing the medium’s refractive index

As the final AuFON model is intended to have a glucose solution as surrounding medium,

this section presents the results of changing the medium’s refractive index to that of water.

Recall the arguments for approximating the RI of a glucose solution with concentrations up

to 1 M using the RI of water in Section 4.7.3. The extinction efficiencies for 1D arrays of

100 nm silver spheres in water are shown in Figure 5.11a. Comparing these plots to those in

Figure 5.9a, the SLR peaks are shifted to wavelengths predicted by computing the optical

distance, λD × nmedium [85]. The small redshift from surface plasmon-lattice interactions,

as predicted by the oscillator model, also carry over: E.g. for the 470 nm lattice constant,

the optical distance relation suggests that the surface lattice resonance in water should be
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located at 470× 1.33 = 625 nm. However, due to the plasmon-lattice interactions, the plot

in Figure 5.11a places this SLR at 628 nm, with a small redshift, as expected.

Note that in the single particle models the LSPRs were simply shifted, following a change

in medium RI, but any substantial broadening was not seen. Here the LSPRs are either sig-

nificantly broadened, or the medium’s contribution to scattering, on the lower wavelengths,

is dominating the LSPRs and thus what we see at ca. 400 nm, is actually not the silver

sphere LSPR anymore.

(a) (b)

Figure 5.11: Extinction efficiencies of 1D arrays of 100 nm silver spheres in water. (a) Plotted
for several lattice constants, simulated with an integrating sphere on the surface of the particle.
The dotted blue line helps identify where the plots turn negative. (b) Scattering, absorption and
extinction efficiencies plotted only for D = 470 nm. Simulated by integrating the relative Poynting
vector over the whole simulation space, including the medium.

For some wavelengths, the extinction efficiency is negative. There are computational studies

for particle arrays that have shown that at wavelengths where the particle’s refractive index

is smaller than that of the medium, extinction efficiencies can be negative due to interference

effects [91]. This is attributed to absorbing media, but the refractive index of water in this

thesis is strictly real, only causing phase retardation. This interference might be caused by

the medium close to the particle’s surface, at wavelengths where the particle’s RI is smaller

than that of the medium. As a result, integrating along the particle’s surface produces a

negative scattering and, therefore, extinction cross section. As the medium is not absorbing,

this has no effect on the absorption cross section. Figure 5.11b demonstrates a possible work-

around the problem. When the medium is also included within the integral, the scattering

cross section is positive. The insight from this is that, with a high-index medium, where one

places the integrating sphere is no longer arbitrary. This effect was, however, only observed

in far-field coupled arrays and not in single particles, when changing medium to water.

The plot in Figure 5.11b was normalized with the geometric cross section of the whole

simulation space, not just the particle, which has resulted in decreased efficiency values

along the whole spectrum. The resonances are still on the same wavelengths, although the

broad dipole resonance peak is no longer clearly seen. Going forward, we will still integrate

close to the particle’s surface, but be aware of the potential negative efficiency values. We

can justify this by the fact that a lab setup for measuring SERS enhancements will uses a

NIR wavelength, such as 785 nm [8], [28], at which the models in Figure 5.11a demonstrate

positive extinction values.

The gold model in water behaves similarly and is omitted here for brevity. The difference

from gold arrays in vacuum is that as the medium redshifts the SLR, there is no longer an
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overlap between the gold sphere LSPR and SLR, producing narrow SLRs, just like the silver

model.

2D square lattice particle arrays

Most of the relevant far-field coupling and SLR properties were already discussed in the

1D array case. Ordering the particles in 2D arrays introduces new SLRs. It was shown in

Chapter 4.5.2, that such arrays are periodic in more than one direction. The periods along

the vertical and horizontal axes in the array plane are equal. In a generalized rectilinear

case, they could be different, giving rise to two SLRs rather than one main SLR peak. There

are also periods D
√

(m2 + n2) for every combination of m,n, as was seen from Eqn. (4.17).

Some of these give rise to destructive interference [47, p. 6] or produce weak resonances,

such that only the half-diagonal, for (m,n) = (1, 1) produces a strong SLR resonance besides

the main SLR due to periodicity along the axes.

(a) (b)

Figure 5.12: (a) Extinction efficiencies of 2D square lattice arrays of 100 nm silver spheres in
vacuum. Plotted for several lattice constants. (b) SLR peak wavelengths, for periods D along the
axes and D

√
2, the half-diagonal. These are plotted against dotted lines indicating the positions

of these SLR if there were no redshifts or blueshifts (i.e. plotting the relations λD = λSLR and
λD
√
2 = λSLR, half−diag).

In addition to the SLRs at approximately λD, which were already discussed in the 1D case,

there are now smaller SLRs, corresponding to the half-diagonal period, λD/
√

2. Note that

the latter is due to the diagonal distance D
√

2, not D/
√

2! See Figure 5.12a. There is now

far-field coupling in two dimensions, which increases the extinction efficiencies by about 25

% and makes them narrower, compared to the 1D extinction spectrum in Figure 5.9a. The

second subplot demonstrates the redshift in the SLRs compared to λD, for the main period,

and λD/
√

2 for the half-diagonal. Compared to the 1D array, the redshift at smaller values

of D is higher, but then the SLRs converge to a constant blueshift of about 2 nm at larger

D. We can also see that the half-diagonal SLRs are initially strongly redshifted, but then

they converge to the linear asymptote. There is stronger coupling with LSPRs at smaller

periods, which might explain this.

2D hexagonal lattice particle arrays

Concluding the investigation on how the FEM model performs in the case of far-field coupled

particles in arrays, Figure 5.13 presents the results for the 2D hexagonal lattice particle array,

with 100 nm silver spheres.
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(a) (b)

Figure 5.13: (a) Extinction efficiencies of 2D hexagonal lattice arrays of 100 nm silver spheres in
vacuum. Plotted for several lattice constants (see plot legend). (b) SLR peak wavelengths in the
hex model, for array periods D, plotted against the trend line where the SLR peaks are exactly at
each corresponding λD.

The first subfigure plots the extinction efficiencies, which resemble the pattern seen in the

1D array case, Figure 5.9a. There is again only one strong SLR peak, due to period D in all

directions along the hexagonal lattice. The peaks are not as narrow as in the 1D case, due

to coupling between LSPs in two dimensions, rather than just one. The same occurred in

the 2D square lattice case seen previously. The model seems to overestimate the maximum

extinction efficiencies by a factor of about two, compared to the hex lattice CDA results in

Zou et al. [65]. The 2D hex lattice CDA implementation in this thesis is in good agreement

with Zou et al, but is omitted here to focus on the FEM.

The SLR peak wavelengths in FEM seem to follow the same trend as in the CDA models. The

D = 500 nm peak is located approximately at 450 nm, and for the larger lattice constants,

the D = 700 nm peak is centered on a wavelength of about 600 nm. The trend is that with

larger values of D, the SLR peaks are more and more blue-shifted, compared to λD. This is

clearly visible from the plot line in Figure 5.13b, as it diverges with higher lattice constant,

D, from the linear trend line where λD = λSLR. This blueshift is clearly a deviation from

the oscillator model in Chapter 3.7.2. However, the 2D hexagonal lattice is a more complex

system than the simple 1D array and demands a more complex model. It is encouraging

that the 2D hex FEM model and CDA models place the resonances at approximately the

same wavelegths. The final AuFON structure is, after all, a tightly-packed hexagonal lattice

particle array.

The fact that the FEM model’s near and far field properties follow close to theory and are

comparable to other models indicates that it is a viable modeling approach.

SERS estimation in an array with far-field coupling

SERS enhancement from near-field coupling, due to field localization in hotspots, was

demonstrated in Section 5.2.1. In arrays with periods larger than the distance where near-

field coupling is effective, there is an additional surface field enhancement maximum at

virtually the same wavelength as the SLR peak in the extinction spectrum, which can be

one or several orders of magnitude higher than the field enhancement peak corresponding

to the LSPR [92]. Figure 5.14 demonstrates the average SERS enhancement factors in 1D,

2D square lattice and 2D hexagonal lattice infinite arrays of both gold and silver particles.

Figure 5.14a plots the LSPRs and SLRs in silver arrays with period D = 500 nm, while

Figure 5.14b plots these resonance peaks for gold particles with period D = 600 nm. These
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choices were based on observations made in the previous sections, showing that the SLR

peaks for array periods of 500 nm, in silver, gave the tallest extinction resonance peaks.

Given that the 100 nm gold spheres have LSP resonances at slightly above 500 nm, the

LSPR and SLR peaks coincided, forming wide resonances. Thus, for gold a period of 600

nm was selected, as it produced tall and narrow peaks. The figures use logarithmic y axes,

which make the resonances look much wider than in a linear scale.

Table 5.4 contains the maximal SERS EF values for each one of the array types, ordered by

metal. The enhancement factor at SLR, for the 1D silver array is 8767, versus a factor of 463

at LSPR previously seen in Figure 5.5b for the single particle model. It is worth noting that

the SLR peaks in the enhancement factor plots are located at virtually the same wavelength

as the SLR peaks in the extinction efficiency plots. For the 1D silver array, the SERS EF

SLR peak is 502 nm, while the extinction SLR maximum in the same model, seen in Figure

5.9a, was at 500 nm. Thus there is a very small redshift, but for higher lattice constants

it becomes immeasurable. This is in stark contrast to the significant redshifts in LSPR,

between the extinction and SERS EF peaks, seen in e.g. Figure 5.5. However, the virtually

no redshift in the case of SLR is reasonable because the retardation and radiative emissions

that redshift the surface field maximum compared to the extinction maximum in plasmon

resonances are not an issue in the case of lattice resonances. The SLR is a diffraction effect

and the resonance wavelength is controlled by the array period.

(a) (b)

Figure 5.14: SERS enhancement factors in infinite 1D, 2D square lattice and 2D hexagonal lattice
arrays of silver and gold 100 nm spheres in vacuum. (a) Silver arrays, period D = 500 nm. (b)
Gold arrays, period D = 600 nm.

The tall and narrow SERS enhancement peaks, located at the same wavelength as the ex-

tinction SLR, suggest that one can easily tune sensors to desired excitation wavelengths to

achieve high sensitivities. According to Zuo and Schatz [92], single molecule SERS enhance-

ment factors on the order of 1012−1014 have been demonstrated in calculations. This is close

to the theoretical maximum enhancement factor. The tabulated values below show that the

gold arrays perform several orders of magnitude worse than what is currently achieved for

gold structures in experiments, which produce EFs of 106 − 108 [12], [13]. As mentioned in

Chapter 3.7.2, at this moment, the practical applications of SLRs are mostly limited to las-

ing, as SERS substrates are mostly fabricated using techniques such as colloidal lithography,

where the near-field coupling is dominating and suppresses far-field scattering.
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Table 5.4: SERS enhancement factor (EF) values of infinite 1D, 2D square lattice and 2D hex
lattice arrays of silver and gold spheres in vacuum. The tabulated SERS EFs are for the EF peak
corresponding to the SLR peak in the extinction spectrum plots for each respective array class. The
period is 500 nm and 600 nm for silver and gold, respectively.

Array class Silver, Max SERS EF, D = 500 nm Gold, Max SERS EF,D = 600 nm

1D 8.8 · 103 2.1 · 103

2D, sqr lattice 2.0 · 105 6.8 · 103

2D, hex lattice 3.6 · 105 7.5 · 103

5.2.3 Random deviations from exact periodicity

Applying random periodicity reveals behavior similar to that seen in experiments and models

of disordered gold disc arrays [24], [93]. The deviation from crystalline order and exact

periodicity cancels the constructive interference that produces the SLRs at λD. Hence, with

larger deviation from the exact intended periodicity D, the one sharp SLR at D becomes

smaller. Lesser SLR peaks might emerge due to constructive interference at other, random

wavelengths, as seen in Figure 5.15, with increasing ε. The SLRs completely vanish and

the particle array acts as a single particle, with a similar extinction spectrum, albeit more

distorted.

(a) (b)

(c) (d)

Figure 5.15: 1D array of silver 100 nm spheres with the periods specified in the legend. Each
subplot has the exact periodicity P modified with a random part ε, such that the resulting P̃ = P±ε̃,
ε̃ ∼ U(0, ε). The maximum deviation in a given subplot is indicated in its title.

The figure demonstrates how the SLRs corresponding to each D first become smaller and

less defined, before finally disappearing completely. This is due to the cancelling of the
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constructive interference that caused the SLRs in the first place. The lineshapes produced

with ε = 50 nm are not exactly what was seen in Section 5.1, but the overall spectrum

is similar, if not as smooth. The LSPR resonances are centered on about 400 nm, with a

FWHM of 80-100 nm, which is similar to the single particle model. It can also be noted

that the LSPRs around 400 nm become stronger when the SLRs disappear, due to more

energy available to the Lorentzian oscillators representing the LSPRs. The maximum LSPR

peak values are 2-3 times larger than that observed for single particles. However, that is

due to a general overestimation of LSPRs in the current implementation of the CDA. The

polarizability function used in this thesis was chosen for its simple, but explicitly Lorentzian,

lineshape. One can see e.g. DeJarnette [63] for a comparison of different specifications of

polarizability functions that might match single particle results more closely, i.e. match the

peak LSPR values.

5.3 Nanoshells

Covering all the optical properties of nanoshells would be too extensive for the purposes of

this thesis. It is, however, instrumental to show the basic properties of such particles.

Figure 5.16 plots the extinction efficiencies of a single nanoshell in air, consisting of a di-

electric polystyrene 50 nm diameter core, coated with a concentric layer of Lorentz-Drude

gold of various thicknesses t. In the first subplot, by varying t from 1 nm to 5 nm while

keeping the core diameter constant, the extinction peak blueshifts by up to several hundred

nanometers for an increment of 1 nm. Note that this fits well with the quasistatic theory for

nanoshells in Chapter 3.6.1, specifically the plot in Figure 3.10 which showed a redshift in

resonance wavelength as the core takes up an increasingly larger fraction of the total particle

radius. The particle size considered in this section, Figure 5.16b does not satisfy d < 50 nm,

but does not deviate from the trend seen in the quasistatic approximation.

Furthermore, whereas solid gold nanospheres in air, e.g. with diameters up to 100 nm, have

dipole resonances at wavelengths up to 516 nm (Recall from Table 5.1, Figure 3.4), we can

see there that nanoshells allow tuning resonances across a much wider wavelength range

without a significant increase in particle size. Larger solid spheres can also have resonances

in the infrared region, but at sizes large enough to support these, they are multipoles, with

the dipole resonance significantly weakened and widened. See Appendix C.

Modern sputtering methods allow depositing sub-nanometer thicknesses and can therefore

tune the resonance to an even higher wavelength than those shown in Figure 5.16b, keeping

the core diameter the same. However, varying the core size, as well as the film thickness,

allows easier tunability, even when using simpler vapor deposition methods that do not

permit precise sub-nanometer film thicknesses. Oldenburg et al. have performed extensive

modeling studies on the resonance tuning properties of nanoshells [44], [20].
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Qext, nanoshell with 50 nm PS core, small t

(a)

Qext, 50 nm PS core, t ∈ [10, 60] nm

(b)

Figure 5.16: Single-nanoshell models, consisting of a 50 nm polystyrene core and a gold film of
thickness t ∈ [10, 60] nm. (a) Extinction efficiencies. Note that for t = 60 nm, the extinction
spectrum matches that of a solid gold nanosphere of same total diameter, 170 nm. (b) Field
enhancement factors of the two extremes in the selected thickness interval.

The second subplot shows more modest shifts for larger t increments, before the extinction

efficiency peak finally moves for t = 60 nm to nearly the same wavelength as where one

would find the dipole peak of a 170 nm solid gold sphere, 576 nm and 574 nm respectively.

170 nm is the total diameter of the nanoshell with a 50 nm polystyrene core and a uniform

gold film thickness of 60 nm. This indicates that for large enough film thicknesses, when

it is larger than the decay length of the evancescent fields discussed in Chapter 3.5.1, the

surface plasmons on both sides of the metal-dielectric interfaces can no longer couple with

one another. The nanoshell then behaves as a solid gold nanosphere.

Figure 5.17a shows how the peak field enhancement on the nanoshell surface changes when

going from film thickness t = 10 nm to 60 nm. Note that the peak surface field enhancement

for t = 60 nm is the same as for a 170 nm solid gold sphere, a factor of 4.9. The cut line

in the plot is defined as in Figure B.3. For smaller film thicknesses, the surface field is

stronger, most likely due to the excitation of surface plasmons on both sides of the metal

film and the superposition of their scattered fields. Figures 5.17b and 5.17c illustrate the

field distribution inside the t = 10 nm and 60 nm nanoshells. It is clearly seen that the

thinner film allows the incident field excite surface plasmons on both sides, while the thicker

film shows no such behavior.
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(a)

(b) (c)

Figure 5.17: Single-nanoshell models, consisting of a 50 nm polystyrene core and gold film thick-
nesses t 10 and 60 nm, in air (a) Peak surface field enhancements: the t = 10 nm model reaches
an EF of about 7, at 611 nm excitation wavelength. The t = 60 model – an EF of 4.9, at 650 nm.
The field enhancement norm inside the t = 10 nanoshell is also clearly larger, at about 3.5, versus
0.5. The cut line is defined in Figure B.3. Bottom row: Field norm distributions in the XY plane
at resonance. (b) t = 10 nm, (c) t = 60 nm. The nanoshells are not to scale, as the t = 60 model
has a larger total diameter.

It is now interesting to investigate how the FEM model performs compared to other models

and to the model presented by Averitt et al. [21]. Figure 5.18a plots several lines, modeling

the extinction efficiency of a nanoshell consisting of a Au2S core, 4 nm in diameter, wrapped

in a 2 nm thick Au film. The parameters for this model were taken from Averitt et al..

The dielectric constant of the Au2S core is estimated, using bandgap calculations [94], to

2.33. The surrounding medium is described with εm = 1.78, which corresponds to a real

refractive index of 1.33 – water. The gold model used in the calculations in this thesis is

still Lorentz-Drude, while Averitt et al. use Johnson & Christy [89].
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r1 = 2 nm, r2 = 4 nm

(a)

r1 = 8 nm, r2 = 10 nm

(b)

Figure 5.18: Extinction efficiencies of Au2S/Au nanoshells in water with shell thickness 2 nm,
calculated using the FEM, NanoComposix Mie model and DDA. (a) Core radius r1 = 2 nm, total
radius r2 = 4 nm. (b) Core radius r1 = 8 nm, total radius r2 = 10 nm. The QS model is only
included in the first figure.

The resonance wavelengths and peak extinction efficiencies are summarized in Table 5.5.

The values from Averitt et al. are estimated from their plot and are only approximate

values. They plot both a Mie solution based on Aden and Kerker [42] and Sarkar [43] and

values from their quasistatic approximation, based on Eqn. (3.57), [21].

The FEM model deviates the most from the authors’ values, while the Mie model by

Nanocomposix (from hereon, simply Mie) matches their values well. The FEM resonance

wavelength, however, does not deviate a lot from Averitt et al. or the Mie model. The DDA

model also estimates a maximum extinction efficiency close to Mie and Averitt et al.. Due to

fact that Averitt et al. data are estimated from a plot, the values are approximated. Under

these circumstances, the match between the models is believed to be close. The deviation

between the FEM and Mie models is large, but at least some of it can be attributed to the

different gold models used.

Table 5.5: Peak extinction efficiencies and extinction resonance wavelengths for the nanoshells
with r2 = 4 nm and r2 = 10 nm. The values are compared between the FEM, Mie (Nanocomposix)
and DDA models. Estimates of max extinction and resonance wavelength values from plots by
Averitt et al. [21] are also included for comparison.

r2 = 4 nm r2 = 10 nm
Model λQext

max (nm) Max Qext λQext
max (nm) Max Qext

FEM 590 0.88 802 3.45
Mie 569 0.71 750 4.78
DDA 580 0.74 777 2.70
Averitt et al. 567 0.75 750 4.77

We showed in this section that for single nanoshells with increasing film thickness, the SPP

coupling across the two interfaces weakens. That could be used to approximate that for

thicknesses relevant for AuFONs, 20 nm – 200 nm, the nanoshell effects become increasingly

negligible. However, it should be noted that this assumption might not be true for periodic

arrays of AuFONs in the next section. It has been observed that the periodic lattice improves

light transmission through the film, yielding extraordinary optical transmittion [95]. The

periodic array acts as a perforated metal film.
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5.3.1 AuFON model

Finally, this section presents some simulation results for AuFONs. First, we will approximate

AuFON arrays with a hexagonal lattice array of nanoshells of the sizes previously used in the

project thesis [1], and from previous work by the research group at IES NTNU [8], [28]. The

polystyrene core diameters investigated in these works were 500 nm, 750 nm and 1000 nm.

Due to diameter variability in the polystyrene particles used to fabricate the AuFONs, one

cannot easily estimate the nanometric particle spacing in the array from a SEM image, such

as that previously seen in Figure 2.1. We must therefore make some assumptions of particle

spacing and investigate the SERS enhancement factor with these. The surrounding medium

is water, or, as it was discussed in Chapter 4.7.3, one can think of it as a non-saturated

aqueous glucose solution. The excitation wavelength is kept at 785 nm, as in experimental

Raman measurements in the referenced works.

Figure 5.19 plots the area-averaged SERS enhancement factor from close-packed nanoshells

in a hexagonal lattice. The first subfigure samples the enhancement factors of spheres with

500 nm, 750 nm and 1000 nm polystyrene cores over different gold film thicknesses. The

particles are spaced 10 nm apart in these arrays. The second subfigure focuses on the 500 nm

core particles. comparing the enhancement factors over film thicknesses when the spacing

varies. That is, the array is gradually becoming more close-packed.

(a) (b)

Figure 5.19: SERS EFs of close-packed gold nanoshells with polystyrene cores in water. The plots
shows the dependence of SERS EFs on gold film thickness. (a) Core diameters of 500 nm, 750 nm
and 1000 nm. Particle spacing 10 nm. (b) Core diameter 500 nm. Spacings 1, 3, 5 nm.

The comparison of core diameters in Figure 5.19a is meant to mirror the plot of experimental

values seen in Figure 4.1, the reference plot. Looking at each plot line separately, there are

some similarities. For instance, the 1000 nm core AuFON exhibits maximum SERS EF at

the highest film thickness, 200 nm. The two other core diameters shows maxima somewhere

in the range 100-150 nm. At first glance, this deviates from the experimental reference plot,

but then that plot does not have many data points in that region. Neither is it known what

spacing the particles were at in the experimental measurements. The next subfigure shows

that the spacing may shift resonances, as was investigated in Section 5.2.1. The actual SERS

EF values are of the same orders of magnitude as in the reference plot, 102 − 103, although

the 750 nm nanoshells seem to exhibit the highest EF.

Figure 5.19b shows the spacing-dependence of SERS EF, over the same set of film thick-

nesses. The core diameter is held constant at 500 nm. Although this core size might not be

the best-performing in the adjacent subfigure, it was used extensively in the referenced work

and the reference plot, Figure 4.1. Other works have also suggested this size as optimal,
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from a fabricational point of view (e.g. [27]). We see that the smaller spacing, going from

10 nm in Figure 5.19b, yields stronger near-field coupling and therefore higher SERS EF

– though the 1 nm results fall out of this trend. We do not achieve the high EFs seen in

Figure 5.7a and Table 5.3. Note that the values seen there were not surface-area averaged,

but estimated from the maximum observed field enhancement in the hotspot between two

spheres. We can compare the values to the reference plot, where all results are of orders

102−103, or the experimental measurements in a previous master thesis [28] at the research

group, also using the 500 nm core particles. These were on the order of 104, which fits well

with film thicknesses of around 100 nm in the present 500 nm model. Note also that the

SERS EF in these close-packed arrays was estimated using the Wigner-Seitz cell boundaries

as the ”integrating sphere”, as the integrating sphere in single-particle or far-field coupled

arrays was placed two nanometers from the particle surface. Here, the spacing is not large

enough to allow that. The cell boundary approach is computationally simpler, as it does

not introduce domains with a high density of degrees of freedom, such as the domain formed

between the particle and the integrating sphere. Bearing in mind that the surface field

strength decreases exponentially with distance from the particle surface, the cell boundary

method favors low spacings. This might also explain the very low SERS EF values in Figure

5.19a, where the spacing is 10 nm.

These model results are, however, only a demonstration of the final AuFON model, as one

would have to optimize the parameters in the model. Figure 5.20a demonstrates another

potential error in using the calculated values to evaluate an AuFON structure. It plots

surface area-averaged SERS EF as a function of wavelength. The model is a nanoshell with

a 500 nm core and a 100 nm concentric gold film. Note that the 785 nm wavelength is not

the location of any SERS maximum. Recall the effects of changing the film thickness in

nanoshells, Section 5.3, and the particle spacing, Section 5.2.1. These must be optimized

simultaneously to engineer a structure where the required wavelength is at a SERS EF

maximum.

r1 = 2 nm, r2 = 4 nm

(a)

r1 = 8 nm, r2 = 10 nm

(b)

Figure 5.20: (a) SERS EF of a 500 nm polystyrene core 100 nm Au film nanoshell hex lattice
array, with 10 nm spacing. (b) Top hat structure with a 500 nm polystyrene core and a variable
film (’hat’) thickness. Hex lattice with spacings 1, 3, 5 nm.

Finally, Figure 5.20b is a demonstration of replacing the 500 nm polystyrene core nanoshell

with a similar-sized top hat structure, as discussed in Chapter 4.9.2, in a close-packed hex

lattice array. This emulates the shape of an actual AuFON particle. The figure again

shows the SERS EF as a function of film thickness, at the thickest point of the ”hat”, and

for several spacings. The plots again demonstrate that maximum EF is achieved for film
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thicknesses in the range 100-150 nm. For the smallest spacing, however, the EF maximum

shifts to a thickness of 70 nm. Though not directly comparable, due to a different core size,

at least one result was reviewed where a thickness of 60 nm showed a SERS EF of 106 [12].

However, comparing the top hat model with the nanoshell plots above, the top hat produces

smaller surface area-averaged SERS EFs, compared to the 500 nm nanoshell. 104 vs 3 · 104

at the maxima, respectively. This is most likely due to different resonance peak locations in

the top hat model. We will not explore this structure in more detail here, but as its ”hat”

was modeled as an ellipsoid, it is likely that its resonance peaks are shifted in accordance

with the major-minor axis ratio. Resonance shifts in ellipoids has been reviewed by e.g.

Kelly et al. [77].

The conclusion in this section is that the AuFON model derived shows some similar trends

with available experimental data, but more work needs to be done to investigate the AuFON

properties more thoroughly and optimize model parameters. It should also be noted that

the model used smooth metal surfaces with no surface roughness which is seen in real-world

samples (recall Figure 2.1). The foundation of the model, developed throughout this thesis,

is based on well-behaved models that agree with research.
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Conclusion

This thesis developed a FEM model to simulate the AuFON structure, using a bottom-up

approach, with the capability to predict its surface area-averaged SERS enhancement factor.

An emphasis was placed on ensuring that the model behaves physically correct in every step,

before adding more complexity. This was verified by studying how extinction resonance

peaks emerge, are shifted and become wider or narrower, when changing parameters such

as particle size and surrounding medium RI. The model was compared to analytical Mie

solutions, numerical results from dipole approximation methods (CDA, DDA) and published

results, when available.

The single-particle models for gold and silver spheres showed good consistency with theory

and analytical Mie solutions. They also compare well with the DDA, showing similar res-

onance peak wavelengths and linewidths also when changing particle size or medium. As

expected from theory, larger particles had their resonance peaks redshifted. Their SERS en-

hancement capability is not very high, producing surface area-averaged enhancement factors

on the order of 102. With near-field coupling of two or more particles very closely, one can

achieve a theoretically maximal SERS enhancement factor of 1014 at sub-nanometer spac-

ings. An EF of 108 at a spacing of about 1 nm is, however, more reasonable and matches the

SERS EFs reported in literature. The models demonstrate resonance tuning by altering the

particle size. Larger spheres generally have resonances at higher wavelengths, and exhibit

larger enhancement factors at NIR wavelengths, typically used for Raman spectroscopy.

The far-field coupled array models act in accordance with theory for all investigated array

types, both 1D and 2D. There is some disagreement with the simple oscillator model and

some divergence from the CDA, due to the fact that the particles in the FEM are not point

dipoles. For gold, they peak at 103. From the extinction plots, it is generally seen that

the model otherwise behaves correctly with changes in the lattice constant, with slightly

redshifted SLRs and blueshifted LSPRs due to coupling. The 2D square model exhibits the

half-diagonal SLRs predicted from theory. These were also reproduced with the CDA and

showed a good match. The SLRs do not exhibit the large SERS EFs found in the near-field.

Single nanoshells demonstrate larger surface field enhancements than similar-sized solid par-

ticles. Nanoshells exhibit a greater capability for resonance tuning. This behavior compares

well to the quasi-static model at the particle sizes presented. Larger shell thicknesses do,

however, eventually make the nanoshells behave as solid particles. Though agreering with

theory, nanoshell FEM models deviate somewhat from the quantitative Mie results, but as

the metal dataset in the NanoComposix Mie implementation is not known and that there

92
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currently are several Mie extensions for nanoshells in the literature, it can not be concluded

that the Mie result is more correct. The DDA model results place somewhere between Mie

and FEM and make it difficult to conclude which model they support more.

Nanoshells in close-packed hex lattice arrays, as an approximation of AuFONs, exhibit SERS

EFs of 103 − 104, depending on particle spacing. This generally fits with the reference plot

and previous work, but is several orders of magnitude smaller than the current state of the

art, 106 − 108. The relation between film thickness and SERS EF is generally in agreement

with the reference plot, with the highest SERS EF for 500 nm and 750 nm core diameters

at film thicknesses in the 100 nm - 150 nm range.

The top hat structure shows similar results, although the EFs are generally lower at the

same spacing than demonstrated by plain nanoshells. The top hat structure modeled is,

however, just one interpretation of the AuFON shape. In general, one needs more exper-

imental measurements with more data points to verify the final AuFON model and the

model parameters need optimization. The current model also lacks features such as surface

roughness, which is believed to contribute greatly to SERS EF.

The surface-averaged SERS estimation algorithm based on the E4 approximation is rela-

tively easy to implement in single particles or far-field coupled arrays, but cannot be applied

in close-packed arrays where the integrating sphere cannot fit. Replacing the integrating

sphere with Wigner-Seitz cell boundaries to estimate the EF in such arrays, however, favors

very small particle spacings and becomes increasingly inaccurate at larger spacings. It is

therefore difficult to conclude if the values produced by this method are accurate.

One identified short-coming of the FEM is modeling particle arrays at wavelengths when

the medium RI is higher than the particle RI. This causes interference and makes it difficult

to know where to place the integrating sphere such that the scattering cross section will be

modeled correctly. Placing it too far out makes the medium’s scattering properties dominate

the system’s scattering cross section. Placing it too close to the particle produces a negative

extinction cross section at wavelengths where the medium’s RI is higher than that of the

particle. Note, however, that as glucose measurements using Raman spectroscopy use NIR

wavelengths, and noble metals’ RIs become increasingly larger with longer wavelengths, this

does not pose a problem for modeling AuFONs at the relevant wavelengths.

Comparing all the modeling methods used in this thesis, the FEM is more flexible with

particle geometry and allows potentially highly realistic models, though at a higher compu-

tational resource cost than the simpler numerical models offered by dipole approximation-

based methods.

6.1 Suggestions for future work

The model used smooth particles. However, Chapter 3 does review literature that state

that surface roughness is a significant contributor to SERS. There are ways to implement

randomly rough surfaces in COMSOL and so the FEM model can be extended with surface

roughness. This would also make it easier to compare against published results, as the model

will be more realistic. Adding a substrate can also be considered, as the refractive index

of a glass substrate, a fused silica microscope slide, might affect the resonance locations.

Furthermore, during metalization of real-world AuFON samples, some metal falls into the

gaps between the spheres. When the spheres are lifted off, such as during a colloidal lithog-

raphy process, structures resembling triangles (see e.g. van Duyne and Hayes [11]). These
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triangles alone have shown SERS EFs on the order of 108, as demonstrated by van Duyne

and Hayes. It might be of value to inspect how these triangles affect the overall SERS EF

of the model, when both the spheres and triangles are present. Some optimization of the

EF measurement approach, i.e. adapt the surface integral to capture the contribution from

the triangles.

Some work should be devoted to optimize the top hat structure, to achieve a shape closer to

actual AuFONs and making sure that the SERS estimation algorithm captures the localized

field enhancement where particle coupling occurs.

In the end, one should perform measurements on a fabricated sample and compare more

closely with the model. Even if more data was found in the literature, it is difficult to model

their values due to unknown parameters in the geometry and such.
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[93] B. Auguié and W. L. Barnes. Diffractive coupling in gold nanoparticle arrays and the

effect of disorder. Optics Letters, 34:401–403, 2009.

[94] J. I. Pankove. Optical Processes in Semiconductors. Dover, 1975. Referenced by

Averitt et al., Linear optical properties of gold nanoshells.

[95] C. Farcau, M. Giloan, E. Vinteler, and S. Astilean. Understanding plasmon resonances

of metal-coated colloidal crystal monolayers. Applied Physics B, 106:849–856, 2012.

[96] C. Johnson. Numerical solution of partial differential equations by the finite element

method. Cambridge University Press, 1987.

[97] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Elsevier, 2012.

Revised ed.

https://www.comsol.com/paper/download/37320/Knorr.pdf
https://www.comsol.com/paper/download/37320/Knorr.pdf
https://www.sts-elionix.com/product/els-f150/
https://www.sts-elionix.com/product/els-f150/


BIBLIOGRAPHY 101

[98] A. Arbouet and G. Agez. ETPMSE2016: Numerical Simulations for Plasmonics.

https://etpmse2016.sciencesconf.org/conference/etpmse2016/

pages/Introduction_Simulations_Plasmonics.pdf, 2016. Ecole
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Appendix A

The Finite Element Method

The models simulated in this text were solved using the finite element method (FEM). It is a

numerical method for solving large sets of partial differential equations (PDEs) by splitting

the simulation domain into smaller domains, finite elements, and solving for the unknown

variable. In this case, the electric field. This splitting of the domain into many elements

makes it easier to solve for the electric field, finding the field in each one of these elements,

rather than in the whole domain at once. The FEM is used when simulations in the time

domain, such as those of wave propagation, are not required. Otherwise, the finite-difference

time-domain method is used. However, for the scattering problem, it is assumed that the

scattered field is constant in time. A general variational formulation of the FEM for some

common problems is given in Johnson [96, Ch. 1].

A.1 Solving the Poisson equation.

This appendix presents the FEM following Polycarpou [59, Ch.1-2], as this reference is

written specifically with electromagnetic applications in mind and uses the weighted-residual,

Galerkin, method. The Galerkin method doesn’t require us to construct a functional for the

boundary-value problem, but starts directly from the governing PDE.

For the purposes of this thesis, the FEM solution of the wave equation with boundary

conditions was computed using COMSOL Multiphysics. However, as a demonstration of

the steps involved, this chapter shows how to solve the Poisson equation, as it is simpler

to follow than a solution of the wave equation. It is demonstrated how to apply it to the

Poisson equation in one dimension first, as it makes it easier to understand all the steps,

and then expand it to 2D. The 1D problem is that of solving the Poisson equation for the

potential between two parallel infinite conducting plates separated by distance d, where one

plate is held at a fixed potential V = V0 and the other is grounded, V = 0.

∇(εr∇V ) = −ρv
ε0

V = V0

V = 0,

(A.1)

where volume charge density ρv = −ρ0. εr is the dielectric constant. The two boundary

103
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conditions in (A.1) are the Dirichlet conditions. The analytical solution is

V (x) =
ρ0

2ε
x2 −

(
ρ0d

2ε
+
V0

d

)
x+ V0, (A.2)

where ε = ε0εr. The electric field is defined as E(x) = −∇V and can be solved for after

finding V .

Meshing

The method starts by discretizing the domain. Here, the domain is the distance between

the two plates, which is divided into Ne lengths – elements – of equal lengths. This results

in Nn = Ne + 1 nodes, as shown in Figure A.1. For now, we only use the end-points as

nodes, making the elements linear.

Figure A.1: 1D domain discretization into Ne elements and Nn nodes.

The solved function will later be evaluated at arbitrary points x inside an element, as

V (x) = V e1 N1(x)+V e2 N2(x), where Ni(x) are interpolation functions corresponding to node

i of an element e. V ei is V evaluated in element e, node i. For now the interpolation functions

will also be linear.

To simplify the computations, it is convenient to introduce coordinates along an element

as natural coordinates, −1 ≤ ξ ≤ 1, such that the first node of an element, at x = xe1

corresponds to ξ = −1 and x = xe2 to ξ = 1. Thus, every node will have the same local

coordinates along the ξ-axis, while the global x-coordinate is ever-changing. The coordinate

transformation follows the form

ξ =
2(x− xe1
xe2 − xe1

− 1. (A.3)

Figures A.2 and A.3 show the interpolation functions and the resulting value of V at the

nodes and at any point inside element e.

The number of interpolation functions used to evaluate V is equal to the degrees of free-

dom, or nodes, per element. For linear elements, two interpolation functions are used. For

quadratic – three, etc.

The weighted-residual approach

The Galerkin method is based on constructing a weighted residual on a single element e by

moving all terms of the PDE to the left-hand side, multiplying by a weighing function w

and integrating over the element coordinates:

re =

∫ xe
2

xe
1

w

[
d

dx

(
εe
dV

dx

)
ρv

]
dx = 0. (A.4)

In addition, the method requires only once-differentiable weight and interpolation functions

in the weak formulation, rather than twice-differentiable (the PDE is a second-order one),
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(a) (b)

Figure A.2: Interpolation functions (a) N1(ξ) and (b) N2(ξ), used to weigh the electric potentials
V e
1 and V e

2 in the nodes to find the potential V (ξ) at a point ξ in an element.

Figure A.3: Evaluation of V in an element, using the node values.

meaning that we can use the linear interpolation functions Ni(x) as weight functions. Inte-

grating (A.4) by parts, setting De
x = −εe dVdx and replacing V by

∑n
j=1 V

e
j Nj , the weighted

residuals for the two nodes of element e are

∫ xe
2

xe
1

dN1

dx
εe
( 2∑
j=1

V ej
dNj
dx

)
=

∫ xe
2

xe
1

N1ρvdx+N1(xe1)De
x(xe1)−N1(xe2)De

x(xe2) (A.5)

∫ xe
2

xe
1

dN2

dx
εe
( 2∑
j=1

V ej
dNj
dx

)
=

∫ xe
2

xe
1

N2ρvdx+N2(xe1)De
x(xe1)−N2(xe2)De

x(xe2) (A.6)

Using the definition of the interpolation functions above, N1(xe1) = N2(xe2) = 1 andN2(xe1) =

N1(xe2) = 0, the equations above can be further reduced to

∫ xe
2

xe
1

dN1

dx
εe
( 2∑
j=1

V ej
dNj
dx

)
=

∫ xe
2

xe
1

N1ρvdx+N1(xe1)De
x(xe1) (A.7)

∫ xe
2

xe
1

dN2

dx
εe
( 2∑
j=1

V ej
dNj
dx

)
=

∫ xe
2

xe
1

N2ρvdx−N2(xe2)De
x(xe2) (A.8)

and written in matrix form as[
Ke

11 Ke
12

Ke
21 Ke

22

][
V e1

V e2

]
=

[
fe1

fe2

]
+

[
De

1

−De
2

]
, (A.9)
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where Ke
ij =

∫ xe
2

xe
1

dNi

dx ε
e dNj

dx dx and fei =
∫ xe

2

xe
1
Niρvdx for i, j = 1, 2. Converting this to the

natural coordinate from x,

dξ =
2

xe2 − xe1
dx =

2

le
dx (A.10)

and rewriting
dNi
dx

=
dNi
dξ

dξ

dx
=

2

le
dNi
dξ

. (A.11)

The interpolation functions, in local coordinates, were defined as N1(ξ) = 1−ξ
2 and N2(ξ) =

1+ξ
2 , which, differentiated w.r.t. ξ, simplifies to

εe

le

[
1 −1

−1 1

][
V e1

V e2

]
= − l

eρ0

2

[
1

1

]
+

[
De

1

−De
2

]
, (A.12)

which is the matrix system for a single element, yielding the equations

Ke
11v

e
1 +Ke

12v
e
2 = fe1 +De

1 (A.13)

Ke
21v

e
1 +Ke

22v
e
2 = fe2 +De

2. (A.14)

Assembling the elements

The system of equations ending the previous section was for one element only. Now, we

need to construct a global matrix K for all the elements and global vectors for the other

terms. This is done by summing the second node of one element with the first node of the

next one, as these nodes are one and the same (see Figure A.1),



K
(1)
11 K

(1)
12

K
(1)
21 (K

(1)
22 +K

(2)
11 ) K

(2)
12

K
(2)
21 (K

(1)
22 +K

(3)
11 ) K

(3)
12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K
(Ne−1)
21 (K

(Ne−1)
22 +K

(Ne)
11 ) K

(Ne)
12

K
(Ne)
21 K

(Ne)
22





V1

V2

V3

...

VNe

VNe+1



=



f
(1)
1

f
(1)
2 + f

(2)
1

f
(2)
2 + f

(3)
1

...

f
(Ne−1)
2 + f

(Ne)
1

f
(Ne)
2


+



D
(1)
1

−D(1)
2 +D

(2)
1

−D(2)
2 +D

(3)
1

...

−D(Ne−1)
2 +D

(Ne)
1

−D(Ne)
2


.

As the electric field, which is the first derivative of V , is not always continuous across

elements, the electric field would be a step function when solved by FEM. This is because

we are approximating the potential, which is quadratic (when the charge density is constant

in x), with linear elements. The derivative is therefore a constant, while the exact electric

field would, here, be linear. To avoid this division into discrete steps, we can divide the

domain into a large enough number of elements, such that the displacement field of the

second node of an element 1 is approximately equal to that of the first node of element 2

next to it,

−D(1)
2 +D

(2)
1 ≈ 0.
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Using this, we see from the matrix equation above, the vector of D’s would reduce to

d =



D
(1)
1

0

0
...

0

−D(Ne)
2


(A.15)

A.1.1 Boundary conditions

The Dirichlet boundary conditions for the Poisson problem in 1D are, as stated before,

V1 = V0 (A.16)

VN = 0. (A.17)

Hence, of the Ne equations in the matrix equation in the previous sections, two V ’s are

already known. We can then eliminate the first equation, which determines V1, and the last

one. Also, we subtract the first column, corresponding to V1, from the right-hand side, and

similarly, from the last column.
K22 K23 . . . K2,N−1

K32 K33 . . . K3,N−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KN−1,2 KN−1,3 . . . KN−1,N−1




V2

V3

...

VN−1

 =


b2 −K21V0

b3 −K31V0

...

bN−1 −KN−1,1V0

 , (A.18)

where b is the sum of the f and D vectors in the previous section.

A different kind of boundary condition is of the form

ε
dV

dx
+ αV = β, (A.19)

where α and β are constants. The absorbing scattering condition is used to limit the problem

to the space domain we are interested in. It is set by replacing the last element in the d

vector in A.15 by

ε(Ne) dV

dx

∣∣∣∣
x=x

(Ne)
2

= β − αVN , (A.20)

and then moving αVN to the right-hand side, into the K matrix in Equation A.18.

The solution to the resulting system can be found by setting some initial parameters for

the potential V0, the dielectric constant, the distance and the charge density. The solved

potentials can then be used to estimate the electric field between the end-nodes of an element

as

E =
V e1 − V e2

le
x̂, (A.21)

where le, as before, is the length of an element. Figure A.4 shows the potential and electric

field found by the FEM plotted against the analytical solutions.
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(a) (b)

Figure A.4: The electric (a) potential and (b) field found using FEM with 4 linear elements
plotted against the exact solution. Plots based on Polycarpou [59, Ch. 1].

Error estimation

The error in the solution, compared to the analytical solution, is found from

error (%) =

(
1

|Aexact|

Ne∑
e=1

∣∣∣∣A(e)
exact −A

(e)
FET

∣∣∣∣)× 100 %, (A.22)

which is the difference between the areas covered by the functions plotted from the FEM

and analytical solutions. It can be demonstrated that doubling the number of elements,

decreases the error by a factor of 4. Another way to measure the numerical error is by

finding the distance between the solutions in the orthogonal space, the L2 norm,

||L2|| = ||Vexact − VFEM || =
( Ne∑
e=1

∫
Ωe

[
V

(e)
exact − V

(e)
FEM

]2

dx

)1/2

(A.23)

For the FEM solution plotted in Figure A.4, the error was 36.70 % and the L2 norm –

0.0117. Although this is a high error, it’s interesting that in the end-points of the elements,

the numerical solution is very close to the analytical. It’s only when one starts interpolating

it to other points inside an element that the error becomes significant. This can be mediated,

as noted above, by increasing the number of elements: The L2 norm, like the percent-wise

error, also decreases by a factor of 4 for every doubling of the number of elements. Also,

one can use higher-order elements and interpolation functions. If one takes the two end-

nodes of a 1D element and also introduces the midpoint as a third node, the element becomes

quadratic. Since the exact electric potential in this Poisson example was quadratic, we would

see a one-to-one correspondence between the FEM solution and the analytical expression.

Elements can also be cubic or of higher order.

A.2 2D and 3D FEM

The 1D discussion above illustrated the different steps involved in solving a boundary-value

problem using FEM. However, 2D and 3D methods are more useful for practical applications.

A 3D method is too complex to present in a short demonstration. However, the extension

from a 2D problem to a 3D problem is similar to extending the problem from 1D to 2D,

except for that it adds more computational complexity.
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(a) (b)

Figure A.5: (a) Linear triangular element, showing direction of numeration and (b) the master
element in the ξη-plane.

A.2.1 Interpolation functions – linear triangular element

In a 2D problem, the domain needs to be divided into simple geometrical shapes, typically

triangles or quadrilateral elements. We’ll only focus on triangles.

A triangle consists of vertices, corresponding to the three nodes of an element, which are

numbered counter-clockwise to avoid negative areas and a negative Jacobian as shown in

Figure A.5. The linear interpolation function spanning a triangle has to be linear in two

orthogonal directions to be mapped to the master triangle in Figure A.5b. The master

triangle is the projection of the linear triangle onto the natural coordinate system, which

was previously shown in the 1D problem.

The linear interpolation functions are defined so that function Ni(ξ, η) = 1 at node i and

zero at all other nodes. The general form of the function is Ni = c1 + c2ξ + c3η and they

satisfy
∑
iNi = 1. It can be shown that

N1(ξ, η) = 1−N2 −N3 = 1− ξ − η.

Inside an element e, the unknown variable, denoted u, is a weighted value

u =

3∑
i=1

ueiNi (A.24)

and the x, y-coordinates inside an element are expressed as x = xe1 + x21ξ + x31η, and

similarly for y. This allows the conversion from x, y-coordinates to ξ, η by[
∂N
∂ξ
∂N
∂η

]
= J

[
∂N
∂x
∂N
∂y

]
, (A.25)

where J is the Jacobian

J =

[
∂x
∂ξ

∂y
∂η

∂x
∂η

∂y
∂ξ

]
=

[
x21 y21

x31 y31

]
. (A.26)

The Galerkin method here, as in the 1D case, entails the construction of a weighted residual
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(a) (b)

(c) (d)

Figure A.6: FEM solution of a 2D Poisson problem. (a) Fine mesh consisting of linear triangles,
b) fine mesh solution to the Poisson equation showing field norm distribution in the domain, c)
coarse mesh, d) coarse mesh solution. Incident field amplitude is set to unity. The axes measure
distances in number of excitation wavelengths. Plots based on Polycarpou [59, Ch.2].

out of the governing differential equation. The goal is to minimize this residual – if the

numerical solution was equal to the exact one, the residual would be zero – by weighting

it using the interpolation functions and integrating over the domain area of the element,

setting the integral to zero. After constructing such expressions for every node, the problem

for element e is formulated by the matrix equation

Keue = be, (A.27)

where the matrix Ke is, as in the 1D case, the element matrix. These matrix equations for

every e are assembled into a global equation,

Ku = b, (A.28)

the same way as for the 1D case. Figure A.6 shows the mesh for a 2D Poisson problem, where

the upper boundary is kept at a constant positive voltage, while all the other boundaries are

grounded. The L2 norm for the fine mesh is 0.0173, while for the coarse one, it is 0.0781.



Appendix B

Building the models in

COMSOL Multiphysics

COMSOL Multiphysics has a graphical user interface for building the geometry and speci-

fying boundary conditions. In general, construction of the models in this text relied on the

example library available on comsol.com, specifically the example called Optical Scattering

Off of a Gold Nanosphere[102]. COMSOL’s support team assisted in the implementation of

the periodic models.

B.1 COMSOL tutorial

This section demonstrates how to build the ”top hat” AuFON model using COMSOL’s

graphical user interface, as it is the most complex of the models considered in the thesis.

Upon opening COMSOL, the user is presented with several model types. At the start

screen, select Model Wizard and then 3D. On the Select Physics screen, click the arrow

next to Optics, then the arrow next to Wave Optics and then select Electromagnetic Waves,

Frequency Domain (ewfd). Click on Add and then Study. Select the Wavelength Domain

study and then click Done.

In the Model Builder pane, under Global Definitions, select Parameters 1.

Input the data in Table B.1 into the fields under Parameters. These parameters are for a

wavelength sweep, to find the optical cross sections. For a radius sweep, initial, final and

step values for the radius should be input.

The geometry will be built as shown in Figure B.1, seen in the XY plane.

111

comsol.com
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Table B.1: Model parameters.

Name Expression Description

au 100[nm] Gold film thickness
poly 250[nm] Polystyrene core radius
r0 poly + au/3 AuFON radius (XY plane)

height 2*(poly+au) + 100[nm] Height of simulation space
space 5[nm] particle spacing
width r0*2 + space Total cell width
R0 width/2 Half cell width

theta 60[deg]
R R0/(sin(theta))

lambda 785[nm] Light wavelength
t pml lambda max/2 PML thickness
n m 1.33 Refractive index, medium
P 0.15[W] Incident light power
E0 sqrt(P/widthˆ2*2*Z0 const) Incident electric field norm
I 0 E0ˆ2/(2*Z0 const) Incident light intensity

cell area 6*2*r0*tan(pi/6)*height surface area of cell boundaries
geom area pi*r0ˆ2 Geometric cross section of particle
lambda min 450[nm] Initial wavelength
lambda max 850[nm] Final wavelength
lambda step 2[nm] Wavelength increment

Figure B.1: Illustration of the hexagonal lattice Wigner-Seitz primitive cell, with some parameters
from Table B.1 annotated and the boundaries where periodic conditions were applied marked.

B.1.1 Building the model geometry

Click the arrow next to Component 1 (comp1) and right-click Definitions. Select Variables

and input the values in Table B.2 into the fields. Note that one can at any time look at

how the various constants or variables are defined in COMSOL by using the Equation View.

In the Model Builder on the left side of the COMSOL window, click the ”eye” and select

Equation View. This creates a new node in the model tree, where the relevant variables

can be seen.

Right-click Geometry 1 and select Ellipsoid. Under Size and shape, input (poly+au/3)

into a-semiaxis and b-semiaxis. In the last semiaxis, input poly+au.
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Table B.2: Model variables.

Name Expression Description

nrelPoav nx*ewfd.relPoavx+ny*ewfd.relPoavy+nz*ewfd.relPoavz Poynting · n̂
eff abs intop vol(ewfd.Qh)/I 0/geom area Abs. Efficiency
eff sc intop surf(nrelPoav)/I 0/geom area Sca. Efficiency
eff ext eff sc + eff abs Ext. Efficiency
sers intop bdrs(ewfd.normEˆ4/E0ˆ4)/cell area surf area-avgd SERS EF

Right-click Geometry 1 and select Block. Under Size and shape, type 2*(poly+au) into

all dimensions. Under Position, Base: select Center. Leave x and y as 0, but type

-(poly+au) in z.

Create a sphere. Under Size, input poly.

Right-click Geometry 1, hover over Booleans and partitions and select Difference. Under

Objects to add, select the ellipsoid and under Objects to subtract select the block.

Create a new block, set base to center and rotation to 90 deg. This block delimits the

simulation space. Under Size and shape, set Width to 2*R, Depth to 2*R0 and Height to

height+2*t pml. Click the arrow next to Layers and input t pml in the column labeled

Thickness (m), next to Layer 1. In Layer position, check Top and Bottom.

Next we will create four blocks which will carve the shape of the hex lattice cell. In all of

them, set Width and Depth to codewidth and Height to height+2*t pml. In the first pair

of blocks, set Position coordinates x, y, z to 0, R, -height/2-t pml. In the first block,

set Rotation to -30 deg and in the other one to 120 deg. In the second pair of blocks, set

the coordinates to 0, -R, -height/2-t pml, and rotate them -60 deg and -210 deg,

respectively.

Right-click Geometry 1, hover over Booleans and partitions and select Compose. Select all

the block objects in the input box. To make it easier, use the Graphics Window and the

toolbar in it to hide or view objects using the buttons in Figure B.2. One can also click on

the Graphics Window and press Ctrl+A to select all objects, then delete the unneeded ones.

In the Set formula text box, write blk1-blk2-blk3-blk4-blk5. Then click Build All

Objects or press F8.

(a) (b)

Figure B.2: Graphics Window toolbar in COMSOL Multiphysics. (a) Buttons to hide and restore
objects. (b) Buttons to change selection of object types.

B.1.2 Defining the model

Right-click on Definitions, hover mouse over Selections and click on Explicit. Label it

as Particle. Set Geometric entity level to Domain and click-select domains 4, 5 and 6.

Alternatively, click on Paste Selection and write 4,5,6.

Right-click on Definitions, hover mouse over Selections and click on Explicit. Label it as

Surface. Set Geometric entity level to Boundary and select domains 14, 15, 16, 17, 20, 25,

26, 28, 30.
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Right-click on Definitions, hover mouse over Component couplings and click on Integration.

Set Operator name to intop surf. Under Source Selection, set Geometric entity level to

Boundary and Selection to Surface.

Create another Integration comp. coupling, label it as intop vol. Under Source Selection,

set Geometric entity level to Domain and Selection to Particle.

Create a new Integration and label it intop bdrs. Under Source Selection, set Geometric

entity level to Boundary and select boundaries 4, 5, 12, 23, 32, 35.

Right-click on Definitions and click on Perfectly Matched Layer. In Domain Selection

click on Paste Selection and write 1,3. Under Geometry (click on arrow to expand it),

set Type to Cartesian and under Scaling, set PML scaling factor to 1 and PML scaling

curvature parameter to 1.

Right-click on Materials under Component 1 in the Model Builder pane. Select Add Ma-

terial from Library. Click the arrow next to Built-in and double-click Air. Click on the

newly-added material under Materials, label it as ”Water”, expand Material Contents and

set Refractive index, real part to n m, which was defined as a global parameter. Set

Geometric entity level to Domain. Under Selection, select all the domains in the Graphics

Window.

Going back to the materials library, expand Optical, Inorganic Materials, Au - Gold, Models

and simulations and double-click on Au (Gold) (Rakic et al. 1998: Lorentz-Drude

model). Set Geometric entity level to Domain. Select domain 4 (the gold ”hat”).

Then, in the materials library, expand Optical, Organic Materials, Polymers and double-

click on (C8H8)n (Polystyrene, PS) (Sultanova et al. ...). Set Geometric entity level

to Domain. Select domains 5 and 6 (the central sphere-halves).

Click on Electromagnetic Waves, Frequency Domain (ewfd). Under Settings, set Formulation

to Scattered field, Background electric field to User defined and input the values in Table

B.3 under Background electric field.

Table B.3: Electric field component values, for input into the model

Field component Value (V/m)

x E0*exp(-j*ewfd.k0*nm*(-z))
y 0
z 0

Right-click on Electromagnetic Waves, Frequency Domain (ewfd) and select Periodic Con-

dition. In Periodic Condition 1, under Boundary Selection, select boundaries 2, 5, 8, 31,

32, 33. Set Type of periodicity to Continuity.

Right-click Periodic Condition 1 and click Duplicate. Then select boundaries 1, 4, 7, 34,

35, 36.

Duplicate it once again and select boundaries 11, 12, 13, 22, 23, 24.

B.1.3 Meshing

The hex lattice model was not meshed manually. Select User-controlled mesh under

Settings, Sequence type. Then set Element size to Fine.
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See e.g. the COMSOL application Scatterer on a Substrate 1 for an example on how to mesh

a geometry with parallel boundaries manually. This method was used on the square lattice

models for this thesis.

Click Build All and you should see a mesh on your model.

B.1.4 Solving the model

Right-click on Study 1 and select Parametric Sweep. Click on Parametric Sweep and

under Study Settings, click on ”+”. Under Parameter name column header, select au. Input

range(10, 10, 200) under Parameter value list and nm under Wavelengths. Under

Output While Solving, check Plot.

Click on Step 1: Wavelength Domain. Under Study Settings set Wavelengths to lda.

Alternatively, to solve as a function of wavelength (not gold thickness), skip adding the

Parametric Sweep and simply type range(lambda min, lambda step, lambda max)

in Wavelengths under Step 1: Wavelength Domain, Study Settings. Under Results While

Solving, check Plot.

Under Study 1, click Compute.

B.1.5 Extracting data

Click the arrow next to Results, right-click Data Sets and select Cut Line 2D. Under Data,

select data set Cut Plane XY. Under Line Data, select entry method Two points.

Set coordinates for the two points defining a cut line as in Table B.4. Click Plot.

Table B.4: COMSOL model cut line coordinates.

Point x y

Point 1 0 r0 + t air
Point 2 0 -(r0 + t air)

Right-click Results, select 2D Plot Group. Right-click on 2D Plot Group and select Sur-

face. Under Data, make sure that Data set is set to Cut Plane XY and select a parameter

value to generate the plot for. Set expression to ewfd.normE/E0 to see field enhancement

values at every point in the XY plane. Click on Plot.

Right-click Derived Values, select Global Evaluation. Enter the expressions in Table B.5

and click Evaluate – New Table. Expand Tables under Results and click on the newly-

created table. Under the Graphics window, on the toolbar for Table 1, click on Export and

save data as a csv file to process in Python or MATLAB.

Table B.5: COMSOL model global evaluation expressions.

Expression Description

eff sc Scattering efficiency
eff abs Absorption efficiency
eff ext Extinction efficiency
sers SERS EF

1https://www.comsol.no/model/scatterer-on-substrate-14699
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Figure B.3: Cut line plot.

Right-click Results, select 1D Plot Group. Right-click on 1D Plot Group and select Table

Graph. Under Data, set Table to the newly-created table and choose the column for the

x-axis data. Plot columns should be set to Manual and one can select one or multiple

columns to plot.

The next and final step presented here was used in the single particle models in this thesis,

to evaluate the field enhancement along a cutline. These models were built similarly to

the COMSOL application Optical Scattering Off a Gold Nanosphere 2. When the model is

solved, click arrow next to Results, right-click Data Sets and select Cut Plane XY. Click

Cut Plane XY. Under Data, select data set Study 1/Parametric Solutions 1. Under

Plane Data, select plane type Quick and set Plane to XY-planes.

Right-click Results, select 1D Plot Group. Right-click on 1D Plot Group and select Line

Graph. Click Plot to plot the data along the cut line defined previously. One can select the

dataset to use from the Line Graph or from the Plot Group and select a specific parameter

value. That is, one can plot the E field norm for all or any one of the simulated wavelengths

solved for in the parameter sweep. It is also possible to export the Line plot data (only

way to export the E field norms) by right-clicking the Line Graph under 1D Plot Group #

and select Add Plot Data to Export. Then click on the Plot # node under Export and

select the settings for the exported data file. Click Export and look for the file on your

hard drive.

Save the model as tophat aufon 500nm.mph.

B.2 COMSOL with LiveLink for MATLAB

COMSOL can be run using MATLAB code by using the program shortcut COMSOL Multiphysics

5.x with MATLAB. If you’ve installed COMSOL with LiveLink for Matlab (Matlab must

be installed before COMSOL, or reinstalled after Matlab is installed), then the user guides

for LiveLink will be found at C:\ProgramFiles\COMSOL\COMSOL54\Multiphysics\

2www.comsol.com/model/optical-scattering-off-of-a-gold-nanosphere-14697
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doc\pdf\LiveLink_for_MATLAB. Specifically, the file IntroductionToLiveLinkForMATLAB.

pdf has a step-by-step guide on how to open, create and modify a COMSOL model using

MATLAB scripting. Meanwhile, the file LiveLinkForMATLABUsersGuide.pdf is an

extensive COMSOL API documentation, which should be used as a reference when you

need some specific API function.

B.2.1 Modifying and running a COMSOL model using LiveLink

When you already have a model defined in a .mph file, you can access it by opening COM-

SOL through the shortcut COMSOL Multiphysics 5.x with MATLAB, navigating to

the folder where you keep your models and execute the following MATLAB statement:

Load the model using

model = mphopen(’tophat aufon 500nm’);

where ’tophat aufon 500nm’ is the string representing the model file tophat aufon 500nm.mph.

Make sure that the model file isn’t opened in the COMSOL desktop application in addition

to COMSOL with MATLAB. Otherwise, it will open as read-only in MATLAB and you will

not be able to modify the model.

Next, open the MPH Navigator using command mphnavigator. This GUI window allows

you to click on various properties of your model and copy the code needed to access them.

For example, if you want to change the spacing of particles in the model, the MATLAB

statement copied from Navigator would be e.g.

model.param.set(’space’, ’10[nm]’);

You can launch an instance of the COMSOL desktop application from MATLAB by typing

mphlaunch. Whatever changes to the model you make in MATLAB, will be instantly

visible in the COMSOL app launched this way.

To run the model from MATLAB, you can first type

ModelUtil.showProgress(true);

to see a stand-alone progress window while the model is being solved. Also, the following

code line is useful, to make MATLAB wait for the COMSOL server to finish a process before

sending the next command:

ModelUtil.setServerBusyHandler(ServerBusyHandler(1))

Run the model by typing

std.run;

The MATLAB command prompt will be busy and unresponsive while COMSOL is solving

the model. When the model is solved, you should save the model with results by typing

mphsave(model, ’tophat aufon 500nm 10nm spacing’);

You can also save the model as a Matlab script using

mphsave(model, ’tophat aufon 500nm 10nm spacing.m’);

The results are evaluated by first creating a new table, here Table 1:

model.result.table.create(’Table 1’,’Table’);

model.result.numerical(’gev1’).set(’table’, ’Table 1’);
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Evaluate the global expression defined for finding the scattering, absorption and extinction

efficiencies, and SERS EF:

model.result.numerical(’gev1’).setResult;

Save the table data as a csv

model.result.table(’Table 1’).save(’tophat aufon 500nm 10nm spacing.csv’);

Generate a surface plot of the electric field for a given parametric value. The exact names of

properties for the parametric solutions have to be checked in mphnavigator. The following

code lines give an example:

model.result(’pg1’).feature(’surf1’).set(’looplevel’, [1 29]);

model.result(’pg1’).run;

Plot the graphic in MATLAB

mphplot(model,’pg1’)

Save the graphic as a PNG with a descriptive filename

saveas(gcf, ’tophat aufon 500nm 10nm spacing.png’);

B.3 Technical considerations

Although COMSOL is quite user-friendly, it has limitations in its utilization of a computer’s

resources. The software adheres to Amdahl’s law [101], but only larger models benefit from

parallel computing, as the part of the problem that can be run in parallel becomes significant.

COMSOL does, however, not utilize hyperthreading to its potential and it is recommended

to set the CPU core number to the number of physical cores, not logical cores. Additionally,

it is recommended to limit the core number on a given CPU to 10 cores to avoid bottle-neck

issues.

Despite many requests from the user base asking for GPU-assisted computations over the

past few years, as modern graphics adapters have many more cores than a general-purpose

CPU, it is still not implemented. As the application is developed in Java, for cross-platform

portability, it is understandable that tying the software to specific hardware implementations

will require much reworking of the code base. However, cross-platform code for the Java

runtime has its own performance limitations compared to low-level languages.

The memory requirements for the models are quite substantial, although COMSOL does

implement some efficient methods to solve large systems of linear equations discussed in

Chapter 4 and using sparse matrices. As a rule of thumb, the computer needs 16 GB of

RAM for every 2 000 000 of finite element nodes, or degrees of freedom. For instance, a

model of a one-micron sphere, with the mesh resolved to a few nanometers at the sphere’s

surface, can easily require 50 GB RAM to solve. The Parametric Sweep feature also uses

more memory than using the alternative, Study, feature. However, the type of parametric

sweep presented in this appendix could not be performed with the Study. It is possible to

make the parametric sweep store only the last solution for a range of parameters, which

saves memory.



Appendix C

Multipole models

Figure 5.4a in Section 5.1.3 presented gold sphere sizes which support only the dipole mode

in water. Figure C.1 illustrates the emergence of multipole scattering resonance peaks for

sphere diameters where new modes emerge. At large sphere size, the extinction efficiency is

dominated by scattering, so only the scattering efficiency is calculated here.

Figure C.1: Scattering efficiencies of large Lorentz-Drude (LD) gold spheres, showing where the
multipole peaks emerge on the different spheres.

Figure C.2 displays the electric field amplitudes in the XY-plane, showing a quadrupole,

hexapole, octupole and decapole excitation for 180 nm, 350 nm, 500 nm and 680 nm di-

ameter spheres. From the scalebars it is seen that the field enhancement on the surfaces

of such spheres is small. The incident field is 10−3 V/m. Between figures (a)-(d), the field

enhancement is between a factor of 3 and 4. The oscillator strength of the dipole is decreased

to accomodate quadrupole, hexapole and higher-order oscillators, each of which are weaker

than the one dipole oscillator in smaller spheres.
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(a) (b)

(c) (d)

Figure C.2: Electric field amplitude distributions in XY-plane. (a) 180 nm diameter, showing a
quadrupolar surface mode, (b) 350 nm diameter, hexapole, (c) 500 nm diameter, octupole and (d)
680 nm diameter, decapole.



Appendix D

Using DDSCAT

The DDA implementation in this text is DDSCAT version 7.3.3, by P. J. Flatau and B.

T. Draine [51], [53]. The software is distributed at http://ddscat.wikidot.com/ in

the form of Fortran source code. DDSCAT is used as the DDA implementation of choice

at nanoHUB.org, the US national computational infrastructure for nanoscience. The user

guide distributed with the software has a detailed overview of the various compilation and

installation options. The next section, however, presents a quick tutorial on installing the

software and running it.

D.1 Compilation, setup and usage

Currently, the only way to use the software is to compile the source on a Linux system. The

Windows binaries on the DDSCAT website are of an older version and no longer updated.

Additionally, the available Windows binary is compiled with the most standard options,

which do not support double-precision computations or support for multi-core CPUs. To

compile the most recent version on Windows, you need to buy a Fortran 90 or 95 compiler.

On Linux, the most popular compiler, gFortran, is free software. Mac OS doesn’t have

much support when it comes to open-source tools and the additional compilation options

for multi-core support might not be available [99]. There are a number of ways a Linux

environment can be installed:

� Install a Linux distribution such as Linux Mint, Ubuntu, etc. on your computer (e.g.

alongside a system such as Microsoft Windows). The commands presented in this

section assume that the Linux system is based on Debian (i.e. Debian, Mint, Ubuntu,

etc.), but it shouldn’t be difficult to apply them on a Red Hat Linux derivative (Red

Hat, Fedora, OpenSUSE, etc.) either. In most cases, it is enough to replace the com-

mands sudo apt install with su and then yum install, followed by package

name. The calculations for the thesis were done using Linux Mint. The download

page and installation instructions are found at https://www.linuxmint.com/.

Note that installing a Linux system on your PC will replace the bootloader on your

machine with the one used by Linux, with Linux set as the default system. This can

be changed by modifying the bootloader settings from within Linux.

� Install a virtual Linux system on top of a Windows or Mac host machine. This is OK

for testing the software and learning how to use it on simple simulations. Otherwise,

with the host and guest OS sharing the CPU, RAM and HDD, the performance is not

good for more complex simulations. A popular open-source virtualization platform
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is VirtualBox, found at virtualbox.org. After installing, follow the installation

instructions for your chosen Linux distribution. VirtualBox can install the system

directly from the iso image file downloaded from the OS download page. So no need

to create bootable USB sticks, etc.

� Install a virtual server on a cloud service, such as Microsoft Azure, Google Compute

Platform or Amazon Web Services. All these services allow you to test their infras-

tructure for free for a limited time, Google being the most generous. They all install

the chosen system automatically from an image file, after choosing the server configu-

ration, and let you instantly access the server via SSH. PuTTY is a popular free SSH

client for Windows. See putty.org.

� DDSCAT’s user guide also suggests trying a Unix/Linux emulation environment for

Windows, such as MinGW or CYGWIN. See the user guide for details. If you have

not used such environments before, it may be easier to simply set up a complete Linux

system, as suggested in the first bullet point above.

� One final option is using nanoHUB.org, where the whole software chain is set up.

However, it was found to be rather inflexible and some of the software there seems to

be outdated or error-prone. They do, however, offer the option to upload model files

to solve on their infrastructure, which includes powerful cluster servers.

After installing the system, download the source and examples archives at

http://ddscat.wikidot.com/downloads

and unpack them in a directory called ddscat in your home directory. The commands

below are typed and run from the Linux terminal.

First, run sudo apt update to get the latest packages for your system.

Install the GNU Fortran compiler with the command sudo apt install gfortran.

Then navigate into the src directory and run the make ddscat command to compile

DDSCAT. This will compile with the standard configuration. Edit the file Makefile to

change this. The most relevant settings to change are:

� PRECISION: change this to dp for double-precision calculations.

� To enable multicore support, first install OpenMP by going back to the Linux terminal

prompt and running command sudo apt install libomp-dev. Then edit the

makefile and set DOMP = -Dopenmp and OPENMP = -fopenmp. These settings are

valid when compiling using gfortran. After compilation, change the environment

variable OMP NUM THREADS to the number of threads supported by your CPU (usually

two per physical core). Type e.g.

export OMP NUM THREADS=2

at the terminal prompt if your CPU supports two threads. The commands lscpu

or hardinfo can show the number of threads supported by your CPU(s). Note: It

was revealed that DDSCAT has very limited multicore support and for the relevant

calculations, it did not make any difference if OpenMP was enabled or not.

The user guide also suggests using Message Passing Interface (MPI) to run computations

in parallel. It does, however, point out that this is primarily meant for models with several

incident radiation polarizations and/or target orientations. If the intention is to simulate

a target irradiated by a range of wavelengths, as in this thesis, then there is not benefit to

using MPI [100].

Then run make all to compile all binaries. Alternatively, you can also compile the software

virtualbox.org
http://ddscat.wikidot.com/downloads
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by entering the examples exp directory and running the runexamples script by typing

./runexamples.

The simplest way to start running simulations is by entering a directory in the examples

folder and modifying the ddscat.par file to suit your model. For example, if you want to

simulate light scattering from a spherical or ellipsoidal gold nanoparticle, you can use the

example files in the ELLIPSOID directory. For near-field calculations in addition, use the

ELLIPSOID NEARFIELD examples as a starting point.

DDSCAT has a limited number of material dielectric functions in the diel folder under

examples exp. The code listing for calculating Lorentz-Drude gold model refractive in-

dices, Appendix E.1 can be used to prepare an input file with Lorentz-Drude gold data for

DDSCAT so that it looks like the included Au evap file.

It’s convenient to set up symbolic links to the executables in the src folder. Enter the

directory of the examples you wish to use, e.g. ELLIPSOID, and create a symbolic link to

the DDSCAT application by typing

ln -s ../../src/ddscat ddscat

Assuming that the examples directory lies in the same directory as src, it creates a symbolic

link called ddscat. For calculating near-fields you will also need symbolic links to the

vtrconvert and ddpostprocess executables, which are also in the source folder.

DDSCAT is then run by typing ./ddscat >& ddscat.log &

The calculated optical cross sections are stored in the file qtable. Including the ampersand

at the end of a command allows you to run the process in the background and run other

commands in the meantime, such as cat qtable to view the calculated optical efficiencies

as they are computed. Note that the software computes efficiencies directly, not cross

sections. Background processes are terminated by typing kill PID, where PID is the

process ID found by typing ps -a and looking for the line that says ddscat. Or simply

killall ddscat.

Other software which will be useful for visualization of the results can be installed with the

following commands:

sudo apt install gnuplot-x11 installs GNUPlot, which can be used to plot the re-

sult data in qtable. Start gnuplot by typing gnuplot. Plot e.g. the (normalized) scat-

tering cross section with the command

plot "qtable" every ::13 using 2:5.

This command is explained more closely in [98, p. 10].

DDSCAT’s user guide also suggests using ParaView and MayaVi2 to visualize the simulated

structures. Mayavi2 can be used to view the near-field amplitude, while ParaView can ren-

der the target geometry and can be invoked before calculation to help prepare the model.

These are installed with the following commands:

sudo apt install paraview

sudo apt install mayavi2

The user guide, sections 31-32, explains how to use these for visualization of the data pro-

duced by DDSCAT.
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D.2 Parameter file – ddscat.par

Every subdirectory under examples exp contains its own ddscat.par file describing the

simulation model. An example file for a single 100 nm gold sphere is included below:

1 ’ ========== Parameter file for v7.3 ===================’

2 ’**** Preliminaries ****’

3 ’NOTORQ’ = CMDTRQ*6 (DOTORQ, NOTORQ) -- either do or skip torque calculations

4 ’PBCGS2’ = CMDSOL*6 (PBCGS2, PBCGST, GPBICG, QMRCCG, PETRKP) -- CCG method

5 ’GPFAFT’ = CMETHD*6 (GPFAFT, FFTMKL) -- FFT method

6 ’GKDLDR’ = CALPHA*6 (GKDLDR, LATTDR, FLTRCD) -- DDA method

7 ’NOTBIN’ = CBINFLAG (NOTBIN, ORIBIN, ALLBIN) -- binary output?

8 ’**** Initial Memory Allocation ****’

9 100 100 100 = dimensioning allowance for target generation

10 ’**** Target Geometry and Composition ****’

11 ’ELLIPSOID’ = CSHAPE*9 shape directive

12 48.49 48.49 48.49 = shape parameters 1 - 3

13 1 = NCOMP = number of dielectric materials

14 ’../diel/m0.96_1.01’ = file with refractive index 1

15 ’**** Additional Nearfield calculation? ****’

16 0 = NRFLD (=0 to skip nearfield calc., =1 to calculate nearfield E)

17 0.0 0.0 0.0 0.0 0.0 0.0 (fract. extens. of calc. vol. in -x,+x,-y,+y,-z,+z)

18 ’**** Error Tolerance ****’

19 1.00e-5 = TOL = MAX ALLOWED (NORM OF |G>=AC|E>-ACA|X>)/(NORM OF AC|E>)

20 ’**** Maximum number of iterations ****’

21 100 = MXITER

22 ’**** Integration limiter for PBC calculations ****’

23 1.00e-2 = GAMMA (1e-2 is normal, 3e-3 for greater accuracy)

24 ’**** Angular resolution for calculation of <cos>, etc. ****’

25 0.5 = ETASCA (number of angles is proportional to [(3+x)/ETASCA]ˆ2 )

26 ’**** Wavelengths (micron) ****’

27 0.5 0.5 1 ’INV’ = wavelengths (1st,last,howmany,how=LIN,INV,LOG,TAB)

28 ’**** Refractive index of ambient medium ****’

29 1.0000 = NAMBIENT

30 ’**** Effective Radii (micron) **** ’

31 0.39789 0.39789 1 ’LIN’ = eff. radii (1st,last,howmany,how=LIN,INV,LOG,TAB)

32 ’**** Define Incident Polarizations ****’

33 (0,0) (1.,0.) (0.,0.) = Polarization state e01 (k along x axis)

34 2 = IORTH (=1 to do only pol. state e01; =2 to also do orth. pol. state)

35 ’**** Specify which output files to write ****’

36 1 = IWRKSC (=0 to suppress, =1 to write ".sca" file for each target orient.

37 ’**** Specify Target Rotations ****’

38 0. 0. 1 = BETAMI, BETAMX, NBETA (beta=rotation around a1)

39 0. 0. 1 = THETMI, THETMX, NTHETA (theta=angle between a1 and k)

40 0. 0. 1 = PHIMIN, PHIMAX, NPHI (phi=rotation angle of a1 around k)

41 ’**** Specify first IWAV, IRAD, IORI (normally 0 0 0) ****’

42 0 0 0 = first IWAV, first IRAD, first IORI (0 0 0 to begin fresh)

43 ’**** Select Elements of S_ij Matrix to Print ****’

44 9 = NSMELTS = number of elements of S_ij to print (not more than 9)

45 11 12 21 22 31 33 44 34 43 = indices ij of elements to print

46 ’**** Specify Scattered Directions ****’

47 ’LFRAME’ = CMDFRM (LFRAME, TFRAME for Lab Frame or Target Frame)

48 1 = NPLANES = number of scattering planes

49 0. 0. 180. 1 = phi, theta_min, theta_max (deg) for plane A

First, note that physical dimensions are denoted in microns.

Lines 2-7 define the solvers and methods used for the various calculation and post-processing

steps. Line 4 specifies the iterative method used for solving the system of equations. The

methods are all conjugate gradient methods.
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Line 9 defines the amount of RAM in MB to use for the initial geometry creation, in every

dimension in 3D.

Line 11 defines the type of geometric target to create. A file with coordinates can be included

instead if the required geometry is not already defined in the software. For multi-particle

models or non-spherical structures such files are a necessity.

Line 12 defines the target dimensions, using a number of dipoles for each of the x, y and z

dimensions. For a spherical target, these parameters are equal. With d as the dipole spacing

and diam the target diameter, the shape parameter SHPAR1 = SHPAR2 = SHPAR3 =

SHPAR is related to these via

SHPAR =
diam

d
. (D.1)

Lines 13-14 allow setting the different materials used in the model and to set the loca-

tions of the files containing the refractive indices and dielectric functions of these materials.

The calculations in this thesis are performed using a file called Au LD, generated using the

Lorentz-Drude model, which is then put into the diel directory under examples exp. In

fact, in the parallel computations approach further below, it is placed in the model directory

directly.

Lines 16-17 specify whether near-field calculations will be done and by what fraction the

target volume will be expanded for these calculations. If the x dimension of the target

spans the space between x1 =-x and x2 =x, then the expanded volume will be bounded by

x1 − Lxr1 and x2 + Lxr2. Lx is defined as x2 − x1 and ri ∈ [0, 1] are the fractions the user

has to specify on line 17.

Line 20 sets the convergence criterion for the iterative method and line 21 sets the number

of iterations to perform to try and reach the convergence criterion. If the solution does not

converge, the calculation stops then and there, without continuing on to the next excitation

wavelength, scattering angle, etc. For the calculations performed in this thesis, MAXITER

should be set to 1000 or more. TOL can also be relaxed up to an order of magnitude.

Otherwise the solution will not converge for higher wavelengths (this pertains to the noble

metals used in this thesis, as they become more absorptive at higher wavelengths – takes more

iterations to solve). However, it should be experimented will different numbers of iterations

and tolerances to find the optimal trade-off between solution accuracy, computation time

and making sure that the solution will in fact converge.

Line 27 sets the interval of excitation wavelengths to solve for, specifying the number of

wavelengths in the interval and how the steps are computed.

Line 29 sets the refractive index of the surrounding medium.

Line 30 sets the effective radius, aeff , of the target. Taking a unit cell containing the target,

it is defined using unit cell volume V as aeff = (3V/4π)1/3. The volume of the unit cell

is also defined as V = Nd, where N is the number of dipoles in the target unit cell and d

is again the dipole spacing. One can approximate N , to predict the accuracy of the model

(higher N → more accurate result). For a sphere, an estimate is obtained from

N̂ ≈ 4π

3
·
(

SHPAR

2

)3

. (D.2)

Table D.1 shows that this estimate becomes more accurate with higher SHPAR values.

Using this estimate and volume V from aeff , d can be computed as V/N̂ . For spheres, an

exact value is obtained from Eqn. (D.1). For a spherical target, effective radius is equal
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Table D.1: Actual number of dipoles, N , in target and the estimate, N̂ , using (D.2), as a function
of SHPAR. The estimation error is also shown.

SHPAR N N̂ Error (%)

10 552 524 5.07
20 4224 4189 0.83
40 33552 33510 0.13
60 113104 113097 0.006

to the sphere radius. This was verified by checking the optical cross sections from the

calculations, using a certain radius, and comparing with Mie solutions for a sphere of the

same radius.

Line 33-34 define what polarizations to compute for. Line 33 indicates a y-polarized incident

wave as the main excitation wave and line 34 specifies whether the model will also be solved

for a z-polarized wave. It’s enough for our purposes to calculate with one polarization only,

setting IORTH to 1.

To keep the computation times low and the models comparable to the results from COMSOL,

the remaining lines will be kept at their default values, with no target rotations with respect

to target axes and only one scattering plane.

D.3 Near-field calculations

For calculations where NRFLD on line 16 in ddscat.par was set to 1, DDSCAT will produce

binary files containing near-field solutions. These are the files called w000r000k000.E1

and w000r000k000.E2 (the latter, only if IORTH in parameters file was set to 2).

Make sure that the model directory contains a symbolic link to ddpostprocess. For every

w000r000k000.E# file you will also need a ddpostprocess.par parameters file as input

for the DDPOSTPROCESS application. See the ELLIPSOID NEARFIELD directory under

examples exp for an example parameters file:

1 ’w000r000k000.E1’ = name of file with E stored

2 ’VTRoutput’ = prefix for name of VTR output files

3 1 = IVTR (set to 1 to create VTR output)

4 1 = ILINE (set to 1 to evaluate E along a line)

5 -0.59684 0.0 0.0 0.59684 0.0 0.0 501 = XA,YA,ZA, XB,YB,ZB (phys units), NAB

Lines 1-3 should be self-explanatory. The VTR files are data files for visualization. Line 4

specifies whether DDPOSTPROCESS should compute the near-field intensity (relative to

that of the incident radiation) along a line defined by the coordinates on line 5.

Line 5 is structured like so: coordinates of starting point A, (xA, yA, zA), coordinates of end

point B, (xB , yB , zB) and the number of points linearly distributed along the line, including

start and end points. Multiple line entries (on separate text lines in this file) can be defined

to measure the field around and/or inside a target.

D.4 Parallel DDSCAT simulations

Calculating the scattering, absorption and extinction efficiencies for several wavelengths is

a task that computer scientists call ”embarassingly parallel problems” [97, p. 14], that is,
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problems that can be easily divided into concurrent subproblems. Since all the computa-

tional steps for each wavelength are the same, solving the model for each wavelength can be

distributed on multiple processors or processor cores/threads (logical cores).

Using Amdahl’s law [97, p. 13-14], the speedup can be expressed as

S =
1

1− p+ p
n

, (D.3)

where p is the fraction of the time it takes to solve the problem sequentially (without

parallelization) that can be parallelized and n is the number of concurrent processes. If the

sequential solution time is normalized to one, p/n represents the time fraction per concurrent

process and 1−p represents the time fraction needed for the part of the problem that cannot

be parallelized. Assuming the DDA problem is fully parallelizable (solving over a range of

wavelengths should mean that one can solve for each wavelength independently), 1− p ≈ 0,

implying p ≈ 1, and thus

S ≈ 1
p
n

=
n

p
= n (D.4)

Thus, using n cores or threads should make the computations go n times faster.

The idea for the parallelization used in this thesis came from Seeram [100], where it is sug-

gested that although DDSCAT does not distribute the wavelength simulations onto several

processes, it can be done by writing a script that subdivides the main model into several

smaller DDSCAT models, each solving for a subinterval of the wavelength range defined in

the main ddscat.par parameter file. This entails copying the main model directory n

times, modifying the parameter file in each such that each submodel is assigned a subrange

of wavelengths, with no overlap. Then, running the submodels concurrently and assembling

the results into a single dataset for plotting and analysis. It should be noted that this triv-

ial parallelization approach, which treats the DDSCAT code as a black box, not requiring

rewriting any of it, is also used in the DDSCAT implementation called nanoDDSCAT ,

hosted at nanohub.org. Though in their implementation, it is not possible to choose over

how many threads one wishes to parallelize, as the computing resources are shared. Once

one learns how to prepare the input files of DDSCAT, it is also more comfortable to run the

models on a machine you physically control, as the nanoDDSCAT interface oversimplifies

the model setup steps, hiding some important details. Figure D.1 illustrates how the main

model can be subdivided into many subproblems. For simplicity, there is a subproblem

for every wavelength in the range defined in the main model. The boxes next to the main

model tile are the files defining the main model: the parameter file, geometry data, dielectric

response functions for materials used and a bash script that will run each subproblem.
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Figure D.1: Illustration of the parallelization approach. The main model is defined by files
describing the parameters, geometry, dielectric constants and a script for executing the model. The
subproblems are copies of it, tuned to solve only for a single wavelength or a subrange of the total
range defined in the main model.

Figure D.2 illustrates the response of the system when running the model sequentially and

using the parallelization method outlined above.

(a)

(b)

Figure D.2: GNOME System Monitor utility showing CPU threads in use. (a) Only one thread
fully engaged (sequential processing), without the parallelization method, and (b) all threads fully
engaged (parallel processing).

This approach alone yields a substantial increase in speed. A single-precision simulation

with near-field calculation, using a single 100 nm Lorentz-Drude gold sphere target with

shape parameter 50, an error tolerance of 10−5, and running over the wavelength interval

400 nm - 800 nm, ran in 18 minutes, 11 seconds over 12 CPU threads. Meanwhile, a

sequential calculation of the same model requires about 2.5 hours. That is, about 8 times

slower. Note that this model is a fairly simple one, with only 65 000 dipoles making up the
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target geometry, and simulated mostly over VIS wavelengths. The solution time becomes

progressively longer for higher wavelengths. Spreading the full wavelength interval linearly

over the threads makes those computing for shorter wavelengths finish much sooner than

the threads computing solutions for longer wavelengths. The first thread, with the shortest

wavelengths assigned to it, ran in 3 minutes, while the last thread finished after the 18

minutes, 11 seconds already mentioned. Such behavior is also seen in the simulations run

by Seeram [100]. However, the supercomputer used by him had many physical processors,

which made the communication lag between the CPUs rise with more processors. Hence,

the time usage plots are not directly comparable.

It takes on average about 0.3-0.4 minutes to compute a solution for a wavelength around 400

nm, while solution for the wavelengths close to 800 nm take 2-3 minutes each to compute

(with the model parameters above). Draine [52] illustrates that higher refractive indices can

require many more iterations to solve the model. For longer wavelengths, the absorption

coefficient of gold (the imaginary part of its refractive index) increases greatly, making

the refractive index greater than unity. This explains the greater time needed to solve

the longer-wavelength problems. An approach was devised where the CPU cores solving

for longer wavelengths are given fewer wavelengths to solve for. Figure D.3 shows how a

total of 201 wavelengths were distributed among 20 CPU cores. The solution time was not

benchmarked, but there was a significant improvement, although the distribution was not

always optimal. For larger wavelength ranges, other distributions were used, accommodating

301 or 401 wavelengths.

Figure D.3: Distribution of 201 wavelengths among 20 CPU cores, as a part of the parallelization
approach for DDSCAT.

The code in Appendix E.6 implements the parallelization algorithm outlined here.



Appendix E

Code listings

This appendix contains the code for generating refractive indices using the Lorentz-Drude

model, the Mie solutions to the scattering sphere problem, the CDA implementation and

code for running DDSCAT on multiple CPU threads (parallel computations). The code for

data processing and plotting is omitted for brevity.

Python 3 is installed with a 64-bit executable downloaded from python.org. Using Python

2 is incompatible with the included code, as there are some syntactical differences. The

required Python libraries are installed locally using the command

pip install numpy scipy matplotlib plotly jupyter pandas --user.

E.1 Lorentz-Drude model of gold

1 ###########################################################################

2 #

3 # Lorentz-Drude model of the gold metal’s dielectric function

4 # source file: ld_model_indices.py

5 # author: Roman Malyshev

6 #

7 ###########################################################################

8

9 import pandas as pd

10 import numpy as np

11 import matplotlib.pyplot as plt

12 from numpy import pi, sqrt, cos, sin, exp

13

14

15 def lambdaToEv(lda):

16 ’’’ Converts a wavelength value in nm to a value in electron volts ’’’

17 #lda = lda*1e-9 # in m

18 freq = c/lda # in sˆ-1

19 eV = h*freq/e0 # in eV

20 return np.round(eV,2)

21

22 def eps_r_f(w):

23 ’’’ Calculating the intraband contribution

24 to the dielectric function. ’’’

25 return 1 - Omega_p**2/(w*(w-1j*G0))

26

27 def eps_r_b(w):

28 ’’’ Calculating the interband contribution.

29 In Rakic (1998), the imag. part is negative by setting "- 1j*w*G_j[i]", rather than with a "+".

130

python.org
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30 This is changed to adhere to the definition of refr index as n + ik in Bohren and Huffman.’’’

31 val = 0

32 for i in range(len(f_j)):

33 val += f_j[i]*w_p**2/(w_j[i]**2 - w**2 + 1j*w*G_j[i])

34 return val

35

36 def eps_r(w):

37 ’’’ Summing to get the dielectric (Lorentz-Drude) function. ’’’

38 return np.array(eps_r_f(w) + eps_r_b(w))

39

40

41 def eps_r_lda(lda):

42 ev = lambdaToEv(lda)

43 return eps_r(ev)

44

45

46 # constants

47 c = 3e8 # m/s

48 e0 = 1.6e-19 # C

49 h = 6.63e-34 # J*s

50 hbar = h/(2*pi)

51

52 # Plasma frequency -- Rakic (1998)

53 w_p = 9.03 # eV

54

55 # Rakic (1998) parameters (LD) -- all in eV

56 f0 = 0.760

57 G0 = 0.053

58 Omega_p = sqrt(f0)*w_p

59 f_j = [0.024, 0.010, 0.071, 0.601, 4.384]

60 G_j = [0.241, 0.345, 0.870, 2.494, 2.214]

61 w_j = [0.415, 0.830, 2.969, 4.304, 13.32]

62

63 # wavelengths in m

64 lda = np.arange(400,801,1)

65 # in eV

66 eV = lambdaToEv(lda*1e-9)

67 eps = eps_r(eV)

68 n = sqrt(eps).real

69 k = sqrt(eps).imag

70

71 # Write to file

72 df = pd.DataFrame({’n’: n, ’k’: k}).to_csv(’n_ld.csv’)

73

74 # Plot

75 plt.plot(lda, n, label="n")

76 plt.plot(lda, abs(k), label="abs(k)")

77 plt.xlabel(’Wavelength (nm)’)

78 plt.legend()

E.2 Analytical solution using Mie coefficients

1 ###########################################################################

2 #

3 # Mie coefficients solution for a scattering nanosphere

4 # source file: mie_coefficients_solution.py

5 # author: Roman Malyshev

6 #

7 ###########################################################################

8

9 import pandas as pd
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10 import numpy as np

11 import plotly.graph_objs as go

12 import matplotlib.pyplot as plt

13 from numpy import pi, sqrt, cos, sin

14 from scipy.special import jv, yv

15 from scipy.optimize import curve_fit, leastsq

16

17

18 def plotSet(data, set_key, title_text):

19 ’’’ Plots a set of datasets ’’’

20

21 plt.rcParams.update({’font.size’: 15})

22 for d in data.keys():

23 plt.plot(data[f’{d}’][’wavelengths’], data[f’{d}’][set_key], label=f’{d}’)

24 plt.ylabel(title_text)

25 plt.xlabel("Wavelength (nm)")

26 plt.title(f"Mie solution, LD model")

27 plt.rcParams.update({’font.size’: 13})

28 plt.legend()

29 plt.show()

30

31

32 def MieCrossSects(lambda0, n_Au, r0, n_m):

33 ’’’Calculates optical cross sections using Mie coefficients

34

35 Code developed from the derivations in Bohren & Huffmann (1983)

36

37 params:

38

39 n_m # refr. index of the medium

40 n_Au = n - 1j*k # refr. index of gold

41 r0 # radius of the particle in meters

42 lambda0 # wavelength of incident light in meters

43 ’’’

44

45 m = n_Au/n_m # rel index of gold (to medium’s)

46 lda = lambda0/n_m # wavelength in medium

47 k=2*pi/lda # wavenumber

48 x=k*r0 # size param: wavenr * radius

49 mx=m*x # size param, weighted by the relative index

50 N=int(round(2+x+4*x**(1/3))) # maximum n-pole (order)

51

52 n=np.arange(1,N+1)

53 order = n + 0.5

54 j_n = sqrt(0.5*pi/x)*jv(order, x) # sph B fn, from 1st kind Bessel fn

55 y_n = sqrt(0.5*pi/x)*yv(order, x) # sph B fn, from 2nd kind Bessel fn

56 h_n = j_n + 1j*y_n # spherical Hankel fn’s

57 j_n_mx = sqrt(0.5*pi/mx)*jv(order, mx)

58

59 # First order functions

60 j_0 = sin(x)/x

61 y_0 = -cos(x)/x

62 j_0_mx = sin(mx)/mx

63

64 # Riccati-Bessel functions

65 phi_n = x*j_n

66 xi_n = x*h_n

67 chi_n = x*y_n

68 phi_mx = mx*j_n_mx

69

70 phi_0 = x*j_0
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71 chi_0 = x*y_0

72 phi_0_mx = mx*j_0_mx

73

74 phi_n_1 = np.append(phi_0, phi_n[np.arange(N-1)])

75 phi_mx_1 = np.append(phi_0_mx, phi_mx[np.arange(N-1)])

76 chi_n_1 = np.append(chi_0, chi_n[np.arange(N-1)])

77

78 d_phi=(phi_n_1 - n/x * phi_n)

79 d_phim=(phi_mx_1 - n/mx * phi_mx)

80 d_xi=(phi_n_1 + 1j * chi_n_1) - n/x * (phi_n + 1j * chi_n)

81

82 # Scattering coefficients

83 a_n = (m * phi_mx * d_phi - phi_n * d_phim) / (m * phi_mx * d_xi - xi_n * d_phim)

84 b_n = (phi_mx * d_phi - m * phi_n * d_phim)/(phi_mx * d_xi - m * xi_n * d_phim)

85

86 # Cross sections

87 Qsca=2*pi/(k**2)*sum((2*n+1)*(a_n**2 + b_n**2))

88 Qext=2*pi/(k**2)*sum((2*n+1)*(a_n + b_n).real)

89 Qabs=Qext-Qsca

90

91 return Qsca, Qabs, Qext

92

93

94 # params

95 df = pd.read_csv(f’n_ld.csv’, decimal=’.’, delimiter=",", header=0)

96 n = df[’n’]

97 k = df[’k’]

98 n_m = 1.33 # optical index of the medium

99 n_Au = n - 1j*k # refr. indices of gold as function of wavelength

100 radii = np.array([25, 30, 35, 40, 45, 50])*1e-9 # radius of the particle in nm

101 crs_sects = {}

102 lda = np.arange(400,801,1)*1e-9

103

104 for r0 in radii:

105 Qsca = []

106 Qabs = []

107 Qext = []

108 area = pi*(r0)**2

109

110 for i in range(len(lda)):

111 result = MieCrossSects(lda[i], n_Au[i], r0, n_m)

112 Qsca.append(result[0])

113 Qabs.append(result[1])

114 Qext.append(result[2])

115

116 d = np.round(r0*2e9,0)

117 crs_sects.update({f’{d}’: {’wavelengths’: lda/1e-9,

118 ’sca’: Qsca,

119 ’norm_scatt’: Qsca/area,

120 ’abs’: Qabs,

121 ’norm_abs’: Qabs/area,

122 ’ext’: Qext,

123 ’norm_ext’: Qext/area}})

124

125 plotSet(crs_sects, ’sca’, ’Scattering Cross Section ($mˆ2$)’)

126 plotSet(crs_sects, ’norm_scatt’, ’Scattering efficiency’)
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E.3 Coupled-dipole approximation - 1D array

Parameters such as the plasmon frequency ωp and the half-width (gamma in the code below)

were calculated using the Lorentz-Drude optical constants and Mie coefficients using the code

above.

1 ###########################################################################

2 #

3 # Coupled-dipole approximation model of far field coupling of plasmonic

4 # particles ordered in a 1D array.

5 # source file: cda.py

6 # author: Roman Malyshev

7 #

8 ###########################################################################

9

10 import numpy as np

11 import matplotlib.pyplot as plt

12 from numpy import pi, sqrt, round, exp, where

13 import pandas as pd

14

15 def ldaToEv(lda):

16 ’’’Converts a wavelength in meters to electron volts

17

18 Arguments

19 ============

20 lda - wavelength (scalar or vector) in meters

21

22 Returns

23 ============

24 eV - the equivalent electron-volt value’’’

25 c = 3e8 # m/s

26 h = 6.63e-34 # Js

27 e0 = 1.6e-19 # C

28 eV = h*c/lda/e0 # eV

29 return round(eV,2)

30

31

32 # particle radius, meters

33 R = 50e-9

34

35 # surface plasmon resonance frequency for a 100 nm Ag sphere, from Mie solution

36 wp = ldaToEv(415e-9) # for Ag. For Au, replace with 515e-9

37

38 # wavelengths

39 ldas = np.arange(300,801,1)*1e-9

40 w = ldaToEv(ldas)

41

42 # wavevectors

43 k = 2*pi/ldas

44

45 # particles in array

46 N = 1001

47

48 # lattice const

49 latconsts = np.array([470, 500, 550, 600, 650, 700, 750])*1e-9

50 latresonances = np.array([])

51 polarizabilities = {}

52 for r in latconsts:

53

54 # dipole sum

55 S = 0 # mˆ-3



APPENDIX E. CODE LISTINGS 135

56 if N > 1:

57 # ’s’ polarisation

58 for i in range(1,int(N/2) + 1):

59 S += 2*exp(1j*k*i*r)*((1j*k*i*r - 1)/(i*r)**3 + k**2/(i*r))

60

61 # Drude half-width - HWHM

62 gamma = 0.41 # eV # for Ag. For Au, replace with 0.7 eV

63 # polarizability

64 A = 0.5*wp*R**3

65 a_small = -A/(w - wp + 1j*gamma + A*S)

66 a = a_small/(1 - a_small * S)

67 # extinction cross section

68 Cext = 4*pi*k*a.imag # mˆ2

69 Qext = Cext/(pi*R**2) # Extinction efficiency

70 plt.plot(ldas*1e9, Qext, label=f’{int(r*1e9)} nm’)

71 plt.legend()

72 # wavelength corresponding to lattice constant

73 lc_lda = where(ldas == r)[0][0]

74 # wavelength of lattice resonance

75 lattice_peak_eff = np.max(Qext[np.arange(lc_lda - 50, lc_lda + 50, 1)])

76 latresonances = np.append(latresonances, ldas[np.where(Qext == lattice_peak_eff)[0]][0])

77 polarizabilities.update({r: a})

78

79

80 # Plot lattice peak locations vs lattice constant

81 plt.plot(latconsts*1e9, latresonances*1e9)

82 plt.plot(latconsts*1e9, latconsts*1e9, ’r--’)

83 plt.xlabel(’Lattice const (nm)’)

84 plt.ylabel(’Lattice peak location (nm)’)

85

86 # Display the data

87 pd.DataFrame({’Lattice const (nm)’: latconsts*1e9, ’Peak location (nm)’: latresonances*1e9})

Adding random periodicities. Replace lines 39-50 with the following:

1 # lattice const

2 latconsts = np.array([470, 500, 550, 600, 650, 700])*1e-9 # meters

3 epsilon = 10 # nanometers

4 latresonances = np.array([])

5 polarizabilities = {}

6

7 for r in latconsts:

8 # dipole sum

9 S = 0 # mˆ-3

10 if N > 1:

11 # ’s’ polarisation

12 for i in range(1,int(N/2) + 1):

13 rd = np.random.randint(r*1e9 - epsilon, r*1e9 + epsilon)*1e-9

14 S += (exp(1j*k*i*rd)*((1j*k*i*rd - 1)/(i*rd)**3 + k**2/(i*rd)))*2

E.4 Coupled-dipole approximation - 2D square array

Replace lines 36-50 in code listing E.3 with the following:

1 from numpy import pi, sqrt, round, exp, where, cos, sin, sqrt, arctan

2

3 def distance(x,y):

4 ’’’ Calculates the norm of the r vector from origin to a point P

5 in a square lattice array, given the coordinates of the point.

6

7 Arguments
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8 ============

9 x,y - coordinates of point P as real scalar values.

10

11 Returns

12 ===========

13 The norm of the vector’’’

14 return r*sqrt(x**2 + y**2)

15

16 # particles in array

17 Nx = Ny = 1001

18 N = Nx*Ny

19

20 latconsts = np.array([470, 500, 550, 600, 650, 700, 750])*1e-9

21 latresonances = np.array([])

22 for r in latconsts:

23

24 # dipole sum

25 S = 0 # mˆ-3

26

27 if N > 1:

28 # ’s’ polarisation

29 for x in range(0,int(Nx/2) + 1):

30 for y in range(0, int(Ny/2) + 1):

31 if x == 0 and y == 0:

32 next

33

34 elif x == 0 and y > 0:

35 S += 2*exp(1j*k*y*r)*((1j*k*y*r - 1)/(y*r)**3 + k**2/(y*r))

36

37 elif y == 0 and x > 0:

38 next # no contribution along x axis when orthogonal polarization

39

40 else:

41 S += 4*exp(1j*k*distance(x,y))*((1-1j*k*distance(x,y))*(3*(cos(arctan(y/x)))**2 - 1)/distance(x,y)**3 \

42 + k**2*(sin(arctan(y/x)))**2/distance(x,y))

E.5 Coupled-dipole approximation - 2D hexagonal ar-

ray

1 ###########################################################################

2 #

3 # Coupled-dipole approximation model of far field coupling of plasmonic

4 # particles ordered in a 2D hexagonal lattice array.

5 # source file: cda2d_hx.py

6 # author: Roman Malyshev

7 #

8 ###########################################################################

9

10 import numpy as np

11 import matplotlib.pyplot as plt

12 from numpy import pi, sqrt, round, exp, where, cos, sin, sqrt, arctan, dot

13 from numpy.linalg import norm

14 import pandas as pd

15

16 def ldaToEv(lda):

17 ’’’Converts a wavelength in meters to electron volts

18

19 Arguments

20 ============
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21 lda - wavelength (scalar or vector) in meters

22

23 Returns

24 ============

25 eV - the equivalent electron-volt value’’’

26 c = 3e8 # m/s

27 h = 6.63e-34 # Js

28 e0 = 1.6e-19 # C

29 eV = h*c/lda/e0 # eV

30 return round(eV,2)

31

32 def pnormangle(m,n):

33 ’’’ Returns the norm and angle (with x-axis) of a 2D vector

34 representing a the distance from the origin to a point ’p’

35 in a hexagonal lattice.

36 Assumes that the angle between each lattice vectors and the

37 x-axis is 60 degrees.

38

39 Arguments

40 ==========

41 m - scalar value to represent a coordinate in terms of a1 lattice vector

42 n - represents a coordinate in terms of a2 vector

43

44 Returns

45 ==========

46 Array consisting of the norm of constructed vector p and the angle

47 between p and the x-axis.

48 ’’’

49

50 # Lattice vectors

51 a1 = np.array([0.5, -0.5*sqrt(3)])

52 a2 = np.array([0.5, 0.5*sqrt(3)])

53

54 # Point in terms of lattice vectors

55 p = m*a1 + n*a2

56

57 return [norm(p), np.angle(p[0]+1j*p[1])]

58

59 def dipoleSum(Nx, Ny, r):

60 ’’’Computes the dipole sum, given the array period r and dimensions Nx and Ny.

61

62 Arguments

63 ===========

64 Nx - scalar value that gives the dimension of array in the direction of vector a1, positive integer.

65 Ny - Dimension of array in the direction of vector a2, positive integer

66 r - array period in hexagonal lattice, real scalar

67

68 Returns

69 ==========

70 S - the dipole sum as a floating point value

71 ’’’

72

73 # dipole sum

74 S = 0 # mˆ-3

75

76 for m in range(0,int(Nx/2) + 1):

77 for n in range(0, int(Ny/2) + 1):

78 if m == 0 and n == 0:

79 next

80 elif m == n:

81 S += 4*exp(1j*k*m*r)*(1 - 1j*k*m*r)/(m*r)**3
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82 elif m == 0 and n > 0:

83 S += 0.5*exp(1j*k*n*r)*((1j*k*n*r - 1)/(n*r)**3 + 3*k**2/(n*r))

84 elif n == 0 and m > 0:

85 S += 0.5*exp(1j*k*m*r)*((1j*k*m*r - 1)/(m*r)**3 + 3*k**2/(m*r))

86 else:

87 [pnorm, pang] = pnormangle(m,n)

88 S += 4*exp(1j*k*pnorm*r)*((1-1j*k*pnorm*r)*(3*(cos(pang))**2 - 1)/(pnorm*r)**3 \

89 + k**2*(sin(pang))**2/(pnorm*r))

90

91 return S

92

93 # particle radius, meters

94 R = 50e-9

95 # surface plasmon resonance frequency for a 100 nm Ag sphere, from Mie solution

96 wp = ldaToEv(415e-9) # for Ag. 515e-9 for Au.

97

98 # wavelengths

99 ldas = np.arange(350,801,1)*1e-9

100 w = ldaToEv(ldas)

101 # wavevectors

102 k = 2*pi/ldas

103

104 # Array dimensions

105 Nx = Ny = 1001

106 # Total particle count

107 N = Nx*Ny

108

109 latconsts = np.array([470, 500, 550, 600, 650, 700, 750])*1e-9

110

111 plt.rcParams.update({’font.size’: 15})

112 for r in latconsts:

113 # Drude half-width - HWHM

114 gamma = 0.43 # eV # for Ag. 0.7 eV for Au

115 # polarizability

116 A = 0.5*wp*R**3

117 S = dipoleSum(Nx, Ny, r)

118 a_small = -A/(w - wp + 1j*gamma + A*S)

119 a = a_small/(1 - a_small * S)

120 # extinction cross section

121 Cext = 4*pi*k*a.imag # mˆ2

122 Qext = Cext/(pi*R**2) # Extinction efficiency

123

124 # plots the extinction efficiencies

125 plt.plot(ldas*1e9, Qext, label=f’{int(r*1e9)} nm’)

126

127 plt.xlabel(’Wavelength (nm)’)

128 plt.ylabel(’$Q_{ext}$’)

129 plt.rcParams.update({’font.size’: 13})

130 plt.legend()

E.6 Parallelization of DDSCAT model - paraddscat.py

Note: The shell commands integrated into the Python code assume a Linux environment or

similar. Before running this, make sure that all the files listed in Figure D.1 are present in

the main model folder. runddscat can be empty, as it will be written by the code below.

1 ###############################################

2 #

3 # paraddscat.py - parallelizes DDSCAT model.

4 # author: Roman Malyshev

5 #
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6 ###############################################

7

8 import subprocess as sp

9 import numpy as np

10 import os

11 import pandas as pd

12 import matplotlib.pyplot as plt

13

14 ###################################################################

15 # retrieve the number of "CPUs" on current pc (threads, in reality)

16 ###################################################################

17 sp.run(’lscpu > cpuout’, shell=True)

18 f = open(’cpuout’, ’r’)

19 lines = f.readlines()

20

21 for line in lines:

22 if ’CPU(s):’ in line:

23 str = line

24 break

25

26 cpus = [int(i) for i in str.split() if i.isdigit()][0]

27 cmd = sp.run(’rm cpuout’, shell=True)

28 cpus = int(cpus)

29 print(f’Will use {cpus} CPUs’)

30 print(’Working directory: ’ + os.getcwd())

31

32 # Parameters to modify in ddscat.par

33

34 ldas = [450, 650] # nm # specifies start and end of wavelength range

35 step = 1 # nm

36 nrsteps = len(np.arange(ldas[0], ldas[1] + step/2, step))

37 print(nrsteps) # range of wavelengths to solve for

38

39 # read ddscat.par of main model and print contents

40 backupdir = ’nanoshell_au2s_au_2_4’ # This is the main model directory

41 f = open(f’{backupdir}/ddscat.par’, ’r’)

42 lines = f.readlines()

43 f.close()

44

45 ##############################################################

46 # Copy main model the number of times defined in ’cpus’ above

47 ##############################################################

48 dirnm = f’nanoshell_au2s_au_2_4_155075N’ # all submodel directories are kept in this dir

49

50 cmd = sp.run(f’mkdir {dirnm}’, shell=True)

51 cmd = sp.run(f’cp -r runddscat.py {dirnm}’, shell=True) # This script will run all other ones.

52

53 # Update main python script for running the processes

54 f = open(f’{dirnm}/runddscat.py’, ’r’)

55 lines = f.readlines()

56 f.close()

57

58 dirs = []

59 # creates submodel dirs and writes the main python file to run all submodels at once.

60 for cpu in range(cpus):

61 subdir = f’{dirnm}/{cpu}’

62 cmd = sp.run(f’cp -r {backupdir} {subdir}’, shell=True)

63 print(f’cp -r {backupdir} {subdir}: {cmd.returncode}’)

64 os.chdir(f’{subdir}’)

65 cmd = sp.run(f’ln -s ../../../src/ddscat ddscat’, shell=True)

66 os.chdir(’../../’)
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67 if cpu < cpus - 1:

68 lines.append(f" run(’{cpu}/runddscat’),\n")

69 else:

70 lines.append(f" run(’{cpu}/runddscat’))\n")

71 dirs.append(f’{subdir}’)

72 lines.append(’\n\n’)

73 lines.append(f’asyncio.run(main())\n’)

74 lines.append(’\n’)

75 f = open(f’{dirnm}/runddscat.py’, ’w’)

76 f.writelines((lines))

77 f.close()

78

79

80 # read ddscat.par in each submodel dir and modify it to distribute the parameter range on CPUs

81 # modify bash script ’runddscat’ in each process directory to run ddscat from that directory

82

83 paramstr = "’LIN’ = wavelengths (first,last,how many,how=LIN,INV,LOG)\n"

84 param = ldas[0]

85 stps = nrsteps

86

87 x = np.arange(0,cpus,1)

88 ldascpu = -51.1*x**(1/10) + 70

89 ldascpu = np.round(ldascpu).astype(’int’)

90 print(ldascpu)

91 print(sum(ldascpu))

92 plt.plot(x,ldascpu)

93

94 for i in range(cpus):

95 subdir = f’{dirnm}/{i}’

96 n = ldascpu[i]

97 f = open(f’{subdir}/ddscat.par’, ’r’)

98 lines = f.readlines()

99 f.close()

100

101 f = open(f’{subdir}/runddscat’, ’r’)

102 runlines = f.readlines()

103 f.close()

104

105 for j in range(len(lines)):

106 if paramstr in lines[j]:

107 print("old line: " + lines[j])

108 lines[j] = f"{param/1000} {(param + step*(n-1))/1000} {n} {paramstr}"

109 param += step*n

110 print("new line: " + lines[j])

111 break

112

113 for j in range(len(runlines)):

114 if "cd " in runlines[j]:

115 print("old line: " + runlines[j])

116 runlines[j] = f"cd {i}\n"

117 print("new line: " + runlines[j])

118 break

119

120 # write params to ddscat.par

121 f = open(f’{subdir}/ddscat.par’, ’w’)

122 r = f.writelines((lines))

123 f.close()

124

125 # write lines to runddscat

126 f = open(f’{subdir}/runddscat’, ’w’)

127 r = f.writelines((runlines))
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128 f.close()

129

130

131 # Write file to run the simulation

132 f = open(’ddscatrun’, ’w’)

133 f.writelines(([runlines[0], f’cd {dirnm}\n’, ’python3 runddscat.py &\n’]))

134 f.close()

135 sp.run(’chmod a+x ddscatrun’, shell=True)

136

137 # Run it from terminal by typing ’./ddscatrun’

138

139 # Run this after the simulation ends (or during to look at incoming data)

140 # Extracts data from all ’qtable’ files in all submodel dirs.

141

142 radii= []

143 ldas = []

144 Qext = []

145 Qabs = []

146 Qsca = []

147

148 for i in range(cpus):

149 subdir = f’{dirnm}/{i}’

150 f = open(f’{subdir}/qtable’, ’r’)

151 lines = f.readlines()

152 f.close()

153

154 for l in range(15, len(lines)):

155 line = lines[l].split()

156 if ’NaN’ not in line:

157 radii.append(line[0])

158 ldas.append(line[1])

159 Qext.append(line[2])

160 Qabs.append(line[3])

161 Qsca.append(line[4])

162

163 radii = np.array(radii).astype(float)*1000

164 ldas = np.array(ldas).astype(float)*1000

165 Qext = np.array(Qext).astype(float)

166 Qabs = np.array(Qabs).astype(float)

167 Qsca = np.array(Qsca).astype(float)

168 print(ldas)

169 print(len(ldas))

170

171 # Plots the extinction efficiency data

172 plt.plot(ldas, Qext)

173 plt.xlabel(’Wavelength (nm)’)

174 plt.ylabel(’$Q_{ext}$’)

175

176 print(f’Max ext = {max(Qext)}, at {int(ldas[np.where(Qext == max(Qext))[0]][0])} nm’)
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