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Abstract
When infants are born with a heart defect, catheter intervention or heart surgery may
fix the issue. Such interventions can cause air bubbles, or emboli, to flow into the blood
stream. The exact reason for this is mostly unknown, but the consequences include
clogged arteries and other major problems for the patient. A method of detecting when,
where and how many bubbles enter the blood stream is important to get an insight of
which procedures should and should not be performed. By looking at the ultrasound
Doppler image of the cerebral blood flow using the newly developed NeoDoppler sys-
tem with the accompanying EarlyBird software, the higher intensity echo signals of air
bubbles can be recognised among the surrounding blood signal.

Today, the bubbles are counted by manually searching through the ultrasound im-
age of the signal. This is time consuming as it has to be done multiple times to be sure
all bubble signals have been detected, and is sometimes done by multiple people to
see if they reach the same conclusion. In this project, the aim is to develop an auto-
matic detection algorithm to increase the efficiency and accuracy of the bubble detec-
tion compared to manually going through each recording. The algorithm automatically
goes through each depth and counts signals with an intensity above a threshold. To be
detected as bubbles, the signal length is compared to an expected bubble length found
by the Doppler shift. The algorithm also checks that the high intensity signal is not an
artifact caused by medical instruments, and estimates the background signal by me-
dian filtering. By trial and error, the threshold giving most correct detections with as
few false positives as possible for all 16 recordings in the training set was 9 dB above the
background signal. A low pass filter with a cutoff frequency of 20 Hz proved to discard
most of the unwanted false detections in recordings with no bubbles. The algorithm has
a run time of roughly 30 seconds for a 30 minute recording. With the mentioned set-
tings, the training set had in total 59 correct, 10 false positive and 39 missed detections
compared to the manual counting.

The test set used for final evaluation of the algorithm consisted of 405 recordings
from 16 patients during catheter intervention and 2 patients with recordings pre, during
and post heart surgery. The test set had 1623 detections where 1337 were false positives,
mostly due to cyclic variations with the heart frequency. In a smaller data set, 84.6% of
false positives were due to cyclic variations. Other reasons are movement of the ultra-
sound probe, double detections and pulsations of the artery wall. There were not many
examples of this in the training set, which is why the algorithm does not compensate
for these types of false positives. To improve the rate of correct detections, artifacts of
these types should be avoided by adding functions taking each type of false detection
into consideration. This could also make it possible to lower the threshold, increasing
the number of correct and reducing the number of missed detections.
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Sammendrag
Når spedbarn er født med en form for hjertefeil kan kateterintervensjon eller hjerte-
kirurgi hjelpe. Dette kan føre til at luftbobler, eller embolier, kommer inn i blodstrøm-
men. Årsaken er for det meste ukjent, men konsekvensene kan være tette arterier og
andre alvorlige komplikasjoner hos pasienten. En metode for å detektere når, hvor
og hvor mange bobler som kommer inn i blodstrømmen er viktig for å få et innblikk
i hvilke metoder som bør brukes eller unngås. Ved å se på ultralyd Doppler-bildet av
den cerebrale blodstrømmen, målt med det nylig utviklede NeoDoppler-systemet og
det tilhørende EarlyBird-programmet, kan ekkosignalene fra bobler med høyere inten-
sitet gjenkjennes blant blodsignalet.

I dag telles boblene ved å søke gjennom ultralydbildet av signalet manuelt. Dette
er tidkrevende siden det må gjøres flere ganger for å være sikker på at alle boblesig-
naler har blitt telt, og det må noen ganger gjennomføres av flere personer for å se om
de kommer fram til det samme. Dette prosjektet hadde som mål å utvikle en automa-
tisk deteksjons-algoritme for å detektere bobler mer effektivt og nøyaktig enn manuelt
å gå gjennom alle dybder av hvert opptak i ultralydbildet. Algoritmen går automatisk
gjennom hver dybde og teller signaler med intensitet over en viss terskel. For å bli de-
tektert som en boble, blir lengden av signalet sammenliknet med en forventet boble-
lengde funnet ved Dopplerskiftet. I algoritmen sjekkes det også at signalet ikke kom-
mer av medisinske instrumenter, og et bakgrunnssignal estimeres ved medianfiltrering.
Ved å prøve og feile ble det funnet at terskelverdien som ga flest korrekte deteksjoner
med så få falske positive som mulig for alle 16 opptak i treningssettet var 9 dB over
bakgrunnssignalet. Et lavpassfilter med cutoff-frekvens på 20 Hz fjernet også de fleste
falske deteksjonene i opptak uten bobler. Algoritmen har en kjøretid på omtrent 30
sekunder for et 30 minutter langt opptak. Med de nevnte innstillingene ga treningsset-
tet 59 riktige, 10 falske positive og 39 tapte deteksjoner sammenliknet med de manuelt
telte boblene.

Testsettet som ble brukt for endelig evaluering av algoritmen besto av 405 opptak
fra 16 pasienter under kateterintervensjon og 2 pasienter med opptak før, under og et-
ter hjerte-kirurgi. Testsettet hadde 1623 deteksjoner der 1337 av dem var falske positive,
for det meste grunnet sykliske variasjoner med hjertefrekvensen. I et mindre datasett
var 84.6% av de falske positive på grunn av sykliske variasjoner. Andre grunner er beveg-
else av ultralydproben, doble deteksjoner og pulsasjoner av blodåreveggen. Det var ikke
mange eksempler på dette i treningssettet, som er grunnen til at algoritmen ikke kom-
penserer for disse typene falske positive. For å få flere riktige deteksjoner må artefakter
av disse typene gjenkjennes ved å lage funksjoner som tar seg av hver sin type falsk de-
teksjon i algoritmen. Dette kan også gjøre det mulig å senke terskelen så flere bobler
detekteres riktig uten for mange falske.
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Chapter 1
Introduction

1.1 Background and Motivation

Emboli, or air bubbles, in blood vessels can cause major problems to patients. When
a patient, an infant in the case of this project, goes through a cardiac surgery with use
of a heart-lung machine, the heart needs to be completely emptied of blood. After the
surgery, the heart is filled with blood once more, which can lead to air bubbles entering
the arteries, travelling to organs in the body [O’Brien et al. [1997]]. Large air bubbles
can block the path like blood clots, leading to oxygen deficiency in the given organ,
most relevant to this project, in the brain. There are different methods of refilling the
heart after heart surgery, but their impact on the appearance of air bubbles is unknown.
Bubbles also appear in the arteries during catheter interventions to fix heart defects.
In these cases a heart-lung machine is not used and the reason for air bubbles is not
understood.

During surgery, or in clinical situations, with today’s technology it is difficult to
know how many bubbles are in the blood stream, and how big they are. In experimental
research, however, the bubbles are usually counted manually by looking at the m-mode
or ultrasound Doppler image of a blood vessel, counting any points with a higher inten-
sity in one or multiple depths. Not only is counting bubbles manually time consuming,
the results may vary depending on who is counting and what criteria they use to sep-
arate bubbles from the surrounding blood signal. The counting therefore needs to be
done multiple times and by different people who know the criteria in order to be cred-
ible. This is not something that can realistically be done in real time, which is why an
automatic detection algorithm would be an advantage.

An algorithm that automatically detects and counts bubbles using an m-mode im-
age of the blood vessel, either in one or multiple depths at the same time, would save a
lot of time and might make it possible to get an overview of bubbles in the bloodstream
for clinical use. Such an algorithm will objectively count the same way every single time
using the same sets of criteria. This will save a lot of time for experimental studies, and
might also make it possible for doctors to see how many bubbles are present in real time
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Chapter 1. Introduction

and therefore what methods should be used or avoided considering the appearance of
air bubbles.

1.1.1 Literature Review

Counting emboli from ultrasound imaging has been done in a few different ways. The
research report Improved Detection of Microbubble Signals Using Power M-Mode Doppler
[Saqqur et al. [2004]] describes criteria for counting embolic signals. For the Power M-
mode Doppler (PMD) Transcranial Doppler (TCD), the report gives the following crite-
ria:

1. ""Embolic signature" visible at least 3 dB higher than the highest spontaneous
PMD display of background blood flow signal."

2. ""Embolic signature" reflects motion in one direction at a minimum spatial ex-
tent of 7.5 mm and a minimum temporal extent of 30 ms. An MCA embolic signa-
ture is required to move toward the probe, with a positively sloped track. An ACA
embolic signature moves away from the probe, with a negatively sloped track."

3. "The "embolic signature" must traverse a specific depth determined by the high-
est intensity of the insonated artery in order to avoid repeated counting of the
same embolus. For this study we chose the depth defined by the optimal spectro-
gram waveform."

According to the study, any signal with an intensity above the threshold (at least 3
dB higher than the highest spontaneous power m-mode (PMD) display of background
blood flow signal) should thus be registered as a bubble. If there are too many bubbles
close together, the number of bubbles will be set to a seamingly random number of 50.
The recordings used in this report where from stroke and transient ischaemic attack
(TIA) patients, and bubbles were counted using the mentioned criteria. In the detec-
tion, the power of the intensity signal in dB was used and compared to a threshold to
determine emboli from blood signals.

In the report Consensus on Microembolus Detection by TCD [Ringelstein et al. [1998]],
TCD ultrasound is used to detect microembolic material within the intracranial cere-
bral arteries. The goal in this study was to see if microembolus detection in symp-
tomatic patients can recognise individuals at high risk of recurrent stroke. Backscatter
from the ultrasound signal of flowing blood is usually lower than that of solid emboli,
which can be used for the detection. They used the multigated technique, meaning
sampling from several depths to reveal the movement of the embolus and check for
artifacts that affect all channels simultaneously.

Another report on this topic is Power M-Mode Doppler (PMD) for Observing Cerebral
Blood Flow and Tracking Emboli [Moehring et al. [2002]]. Here, transcranial Doppler
studies where done while calculating a power m-mode Doppler image. In this case,
the user chooses the threshold and sets it for further analysis instead of calculating it
based on the In-phase Quadrature signal (IQ-signal). Any power detected below the
chosen threshold is assigned no color, meaning black, while anything above is given
color depending on its intensity.

2



1.2 Aims of Study

A situation with a similar set of patients to the one in this project is described in
the article Cerebral Emboli during Cardiac Surgery in Children [O’Brien et al. [1997]]. 25
children with congenital cardiac defects went through repairing cardiac surgery while
measuring the blood flow with carotid artery Doppler. This was used to observe em-
bolic signals after the fact and connect them to events during the surgery.

1.2 Aims of Study

The aim of this project is to develop an algorithm for automatic detection of air bub-
bles passing through the ultrasound beam. This could be used to learn what proce-
dures should be done during heart surgery or catheter interventions, in this case of
infants born with some form of heart defect, to avoid bubbles getting into the blood
stream. This algorithm should, given the best threshold, mark all bubbles in an m-
mode Doppler image. The more specific goals of the project are therefore:

• To find the best possible threshold to detect bubbles and compare it to the thresh-
olds found in the literature review.

• To detect clouds, or curtains, of bubbles when multiple embolic signals are close
together, and find a limit of the bubble length to separate them from singular
bubbles.

• To identify artifacts, or signals with a higher intensity from medical instruments
or noise, and not count them as bubbles.

• To estimate the number of bubbles passing through the ultrasound beam and the
relative size of each bubble.

1.3 Outline of the Report

This report is divided into six main chapters, beginning with the introduction, back-
ground and motivation and previous work in the field of embolic detection. Further,
all background theory is presented to form the basis of the rest of the thesis. Chapter
3 includes the methods to obtain the recordings used in the analysis and the hardware
and software systems. It also describes the algorithm developed in this project in detail.
All results of the detection and how well the algorithm worked on both the training set
and test set will be presented in chapter 4 before discussing it in chapter 5. Finally, be-
fore the references and appendix with the complete algorithm, chapter 6 will consider
any conclusions that can be made from this project as well as possible future work and
improvements.
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Chapter 2
Theory

In this chapter, the theory relevant to the project will be presented, starting with issues
emboli can cause to the patient. Following this, the acoustic effects regarding bubbles
and blood will be discussed before presenting the ultrasound technology and signal
processing used.

2.1 Issues Caused by Emboli

Emboli, in this case air bubbles, in blood vessels can cause major problems for the pa-
tient. If large enough, the bubbles can clog the artery, leading to blood clots that can
prevent oxygen from reaching the brain or other parts of the body. This in turn can
cause severe injuries.

Depending on where in the body the bubbles occur, important organs such as the
brain, heart, and lungs can get a reduced blood supply causing the organ to lose all or
some of its function. This can result in different conditions, one of the most serious
being stroke from a blocked blood supply to the brain [NHS [2020]].

There are different reasons why emboli can occur in blood vessels, but with regards
to bubbles appearing during heart surgeries, it is commonly due to systemic venous
return, meaning when the blood returns to the heart [O’Brien et al. [1997]]. During
surgeries where a heart-lung machine is used, the heart is emptied of blood, and then
refilled while using a method to get all the air out of the heart. There are multiple ways
this can be done, and they can lead to different amounts of bubbles passing into the
arteries and moving towards organs in the body. By monitoring exactly when and where
bubbles appear, and how many, it can be possible to connect them to events during the
surgery and possibly see what methods of filling the heart with blood leaves the fewest
air bubbles. This project also considers patients going through catheter interventions
to fix heart defects, where a heart-lung machine is not used. Monitoring of the blood
flow could explain what procedures causes bubbles here as well.

4



2.2 Ultrasound Technology

2.2 Ultrasound Technology

The type of ultrasound technique relevant to this project, is diagnostic ultrasound [NIH
[2016]]. It is a non-invasive method to image the inside of the body using transducers,
or probes, that send out high frequent sound pulses. A subsection of diagnostic ultra-
sound called functional ultrasound can provide information maps to visualize changes
in the organ structure. This is done by observing the velocity of tissue and blood inside
the body, which is used in this project.

In an ultrasound system, the transducers produce waves and send them into the
body (or other material), and detect them when echoes are reflected back. A special
ceramic crystal called piezoelectric materials usually make up the active elements of
ultrasound transducers. They have the necessary properties due to their ability to both
produce sound waves when an electric field is applied, and produce an electric field
when a sound wave hits [NIH [2016]]. When using this type of materials in an ultra-
sound scanner, the sound waves propagate through the body before being reflected by
boundaries between the tissues. This generates electrical signals that are sent to the ul-
trasound scanner while calculating the distance between the transducer and the tissue
boundary using the speed of sound. With this information, 2D-images can be made of
the tissues and organs to search for deviations inside the body.

2.2.1 Ultrasound Doppler

Common ultrasound imaging looks at still images of the inside of the body. A technique
important to this project that images the blood flow through blood vessels or organs,
such as the heart, is ultrasound Doppler [MedlinePlus [2019]]. This method uses ultra-
sound technology with the Doppler effect to measure sound waves reflected from red
blood cells in the arteries, or other matter, to capture movement.

There are two types of ultrasound Doppler - Continuous Wave (CW) and Pulsed
Wave (PW) Doppler. CW Doppler continuously emits ultrasound waves that are ana-
lyzed when reflected [ecgwaves.com [a]]. This is done by using one piezoelectric crystal
to emit, and one to reflect instead of using the same crystal for both. In this project,
PW Doppler was used. Rather than sending continuous waves, PW Doppler uses short
pulses of ultrasound that are analyzed between the pulses when reflected [ecgwaves.com
[b]]. By doing this, the Doppler phase shift can be compared from pulse to pulse. PW
Doppler also makes it possible to separate the signal in different depths from the probe.

Even though blood signals are weaker than those of other tissues, the movements
can be extracted using ultrasound Doppler. Blood signals are normally high frequent,
while clutter, consisting of signals of other tissues and noise, reverberations, and echoes,
is usually at lower frequencies [Støylen]. In order to attenuate the low frequency clutter,
while letting through the weaker high frequency blood signal of interest, a high pass
filter can be used.

Blood flow can be observed by using Colour Doppler. By making an image of the
blood flow using colours on a computer, the direction of the blood flow, and for instance
air bubbles, can be shown with red for movement in one direction and blue for the
opposite. From this, the velocity of the blood can also be found. Figure 2.1 shows the
m-mode, or motion mode, image of a blood signal with bubbles in multiple depths at
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the same time.

Figure 2.1: Motion mode ultrasound image of blood signal with bubbles

There are two examples of bubbles in figure 2.1 marked by red circles; one in depth
22 and one in depth 17. They can be separated from the rest of the IQ-signal by their
lighter colour, due to higher intensity as the air bubbles reflect more of the ultrasound
beam than the blood signal. They are also oblique, stretching in time and depth. The
faster the bubble moves through the ultrasound beam of the transducer, as explained
with figure 2.2, the steeper is the oblique line.

2.3 Doppler Signal from Bubbles

When using an ultrasound Doppler system, the blood flow can be measured continu-
ously by placing the probe above an artery. The blood vessel, and also any air bubbles
in the blood flow, might not pass the ultrasound beam at a 90◦ angle. The angle, ϕ, of
the bubble’s path through the beam can be used to calculate the velocity of the bubble
provided one knows the diameter of the ultrasound beam. Figure 2.2 shows a rough ex-
ample of this with the ultrasound transducer on top with a 10 mm diameter. The bubble
is in this case assumed to be in the near field giving a beam diameter, d t , equal to the
transducer’s.
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2.3 Doppler Signal from Bubbles

Figure 2.2: Transducer with a bubble crossing the ultrasound beam

Each dot on the trajectory of the bubble shown by an arrow depicts the echo that is
returned for each pulse of the ultrasound beam. The bubble will send an echo back to
the transducer for each pulse it is placed inside the beam. An example of an echo signal
for a bubble in one depth is shown in figure 2.3.

Figure 2.3: Doppler signal of bubble and blood

In this figure, the bubble is marked with a red star at its maximum intensity. It has
roughly 10 periods of oscillation, which was chosen for the transmitted pulse, and the
amplitude is larger than the surrounding blood signal. This shows how the Doppler
signal of a bubble can be recognisable compared to that of blood.
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2.4 Acoustics

In order to calculate scatter of sound waves from air bubbles in the blood stream, like
ultrasound signals being reflected, the bubble can be modelled as a linear oscillator
[Hoff [2000]]. For this to be true, the oscillation amplitude has to be small compared to
the equilibrium radius of the bubble, which will be discussed in the next section.

2.4.1 The Resonance Phenomena

Bubbles in water, and in blood, are powerful ultrasound scatterers that can be seen
as harmonic oscillators, as described by Minnaert in On musical air-bubbles and the
sounds of running water [Minnaert [1933]]. This view explains the resonance frequency
characteristic to oscillating bubbles under linear conditions. The resonance phenom-
ena of small bubbles in blood is described in the book Advances in Biomedical Mea-
surement [E. R. Carson and Krekule [2012]]. When small bubbles are in an ultrasound
field, they start to vibrate. The relation between the bubble radius and the resonance
frequency f0 is given by

f0 = 1

R0

√
3γP̄i

ρ0
(2.1)

where R0 is the resonance radius of the bubble, P̄i is the average pressure inside
of the bubble, γ is the specific heat of gas and ρ0 is the density of blood [E. R. Carson
and Krekule [2012]]. This can be used to find the bubble size if the other parameters
are known. For example, the resonance frequency of the data in this project is f0 = 7.8
MHz, so the radius of each bubble is relatively small. As long as the radius of the bubble
is smaller than the wavelength of the ultrasound signal, the pressure surrounding the
whole bubble will oscillate around a mean value given by the resonance radius [Hoff
[2000]]. This means that if the pressure increases, the bubble will become smaller, while
if the pressure decreases, the bubble will grow in size.

In order to consider bubbles in blood as linear oscillators, which is a much used
model, the oscillation amplitude needs to be small in comparison to the equilibrium
radius [Hoff [2000]]. The liquid surrounding the bubble also has to be displaced for the
bubble to oscillate. This adds inertia to the system, and the liquid mass can be viewed
as the mass of a mechanical oscillator, or the inductor of an electrical oscillator. This
image can also be used when looking at the gas in the system and how the gas pressure
acts like a spring. The gas compresses and expands which makes a spring force act
against the change in volume, introducing resistance and dampening into the system.

2.4.2 Stiffness of Bubbles

Compression usually does not include heat transport in acoustics, but this does not
apply to all bubble diameters and frequencies [Hoff [2000]]. The compression and ex-
pansion of a bubble can be compared to that of a spring with a weight, given by Hooke’s
law with a spring constant s = 12πaκpe . Here a is the radius of the bubble, and κ is the
adiabatic constant γ of the gas for adiabatic oscillations, no heat is transferred, or 1 for
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isothermal oscillations, where heat is transferred to obtain a constant temperature. It is
generally a function of bubble radius and sound frequency, while pe is the equilibrium
pressure inside the bubble. This does not, however, consider the surface tension of the
bubble or the effect of a shell encapsulating it as it is in blood, which will both increase
the stiffness of the bubble [Hoff [2000]]. A surface tension will increase pe to

pe = p0 + 2τ

a
(2.2)

where p0 is the hydrostatic pressure in fluid and τ the surface tension. The surface
tension is much lower in blood than in water due to blood containing surface active
protein molecules [Hoff [2000]].

2.4.3 Backscattering of Bubbles and Blood

The backscatter coefficient is defined as the scattering cross section per unit volume,
when the scattering angle is 180◦ [Nam et al. [2011]]. The scattering cross section varies
with frequency and diameter [Hoff [2000]]. For frequencies, f , a lot lower than the res-
onance, the scattering cross section increases by f 4. For higher frequencies, the cross
section is independent of the frequency and is very different from the Rayleigh scatter.
For bubbles with a smaller diameter than the resonance diameter, the scattering cross
section will increase with d 16, where d is the diameter. If the diameter is larger than the
resonance, the scattering cross section increases with d 2.

When the concentration of bubbles is relatively low, like in this project, the oscilla-
tions from different bubbles do not interact [Hoff [2000]]. Because of this, and the fact
that the power a bubble suspension absorbs is the sum of the total power absorbed by
each bubble, the expression for the scattering cross section σs (ae ,ω) is given as equa-
tion (2.3) where ae is the equilibrium radius of the bubble.

σs (ae ,ω) = 4πa2
e

Ω4(
Ω2 −1

)2 +Ω2δ2
(2.3)

Ω is the angular frequency given asΩ= ω
ω0

. ω= 2π f , where ω0 comes from the res-
onance frequency, f0, in equation (2.1). This equation gives the scattering cross section
in every direction of every solid angle. It is the energy emitted in total of every direction
of each bubble. For this project, only one direction is of interest; the backscattering
cross section towards the ultrasound transducer as explained in section 2.3. Assuming
the energy is emitted equally in all directions, the total scattering cross section can be
divided by the solid angle, in the case of a circular bubble; 4π. This gives the backscat-
tering cross section in equation (2.4).

σs (ae ,ω) = a2
e

Ω4(
Ω2 −1

)2 +Ω2δ2
(2.4)

For the bubbles considered in this project, the resonance frequency is very large,
so the bubble sizes are relatively small. Therefore, assuming f is much larger than the
resonance frequency, f0, Ω is very large which means equation (2.4) can be simplified
by dividing each element byΩ4. The resulting equation is shown in (2.5).
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σs (ae ,ω) = a2
e

1

1− 2
Ω2 + 1

Ω4 + δ2

Ω2

(2.5)

This makes the fraction in equation (2.3) go towards 1 for largeΩ, so equation (2.6)
can be used for the backscattering cross section.

σs (ae ,ω) = a2
e (2.6)

In bubbles, the backscattered cross section, found from the resonance formula, can
be estimated as σbubble = 1

4 D2
bubble , where Dbubble is the bubble diameter (Dbubble =

2ae ). The backscattered cross section of blood can be estimated as σblood = ε ·Vbl ood ,
where ε is the backscatter coefficient given by equation (2.7) [Cobbold [2007]].

ε= ε1(HC T ) · f 4
0 (2.7)

Dbubble is the diameter of the bubble, while Vbl ood is the blood volume. HCT stands
for hematocrit, meaning the percentage volume level of red blood cells in the blood
[Evensen [2020]]. For normal hematocrit levels, ε is given as ε(HC T=40) = 7 ·10−4.

Equation (2.8) shows the emboli to blood ratio, EBR.

EBR = σbubble

σblood
= 1

16εvbl ood
·D2

bubble (2.8)

where vblood is the sample volume, which leads to the expression

D2
bubble = 2πcN f 3

0 ε1
D2

v

N ·cosΘ
EBR (2.9)

where N is the number of bubbles in the sample volume, giving an expression for the
size of the bubbles if the emboli to blood ratio is known. c is the speed of sound,Θ is the
scattering angle, while Dv is the complete volume diameter. The bubbles are transient
signals of high intensity, and have very different traits to blood and soft tissues. Because
of the difference in density and speed of sound in the bubbles, they will have much
more backscattering than the rest of the signals. This is because ultrasound signals are
reflected most at the transition from one medium to another with different densities
[Lønnebakken et al.]. Therefore, air bubbles can be distinguished from the surrounding
blood and tissue signals like in this project, as shown in figure 2.3.

The diameter of the bubble, Dbubble , can be used to determine how dangerous a
bubble could be [Hoff [2000]]. Larger bubble size increases the risk of stopping the
blood flow through the artery. By calculating the bubble size of each bubble, smaller
and less dangerous bubbles can possibly be disregarded while the larger ones are de-
tected.

In order to determine the relative bubble size in this project, the maximum emboli,
or bubble, amplitude to background amplitude ratio (EBR) was found. Both the bubble
amplitude and the background signal amplitude are in dB, so the ratio is found by sub-
tracting the background amplitude from the bubble amplitude. From this, the relative
bubble size, and how much larger the bubble amplitude is than the background signal
in dB is found.
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2.4 Acoustics

2.4.4 The Doppler Equation

The Doppler effect, or the Doppler shift, is the change in sound frequency due to a
reflector moving towards or away from the source [Murphy et al.]. One example is an
ultrasound beam with a bubble moving in the blood stream. The Doppler equation that
is used to calculate the Doppler shift is given in equation (2.10) [Murphy et al.].

∆ f = 2 f0 · v

c
(2.10)

where ∆ f is the Doppler shift, f0 is the frequency that is sent out, v is the velocity
along the ultrasound beam, and c is the ultrasound velocity in blood given as 1570 m/s
[Nave [2016]]. From the Doppler shift, the expected length of a bubble in time can be
calculated which is useful to the algorithm developed in this project.

2.4.5 Signal Processing

A block diagram of the full signal chain until the power signal that is used in the algo-
rithm is shown in figure 2.4, with inspiration from [Devi and Asokan [2014]].

Figure 2.4: Block diagram of the full signal chain

In the block diagram in figure 2.4, the transmit pulse generator first generates a
transmit pulse that will be sent from the front end part of the ultrasound system. The
next block, Tx Amp, amplifies the transmit pulse before it is sent to the transmit/receive
switch. The switch first sends the amplified transmit pulse to the transducer, and when
it receives it once more from the transducer, which transmits the signal and receives the
reflected one by converting electric signals to acoustic pressure waves and vice versa, it
sends the received signal from the transducer to the TGC block. TGC is short for Time
Gain Control or Time Gain Compensation. It compensates for the depth and reflec-
tions of the transmitted signal. The ADC block is the Analog to Digital Converter, which
converts the signal from analog to digital for further signal processing. Next, signal pro-
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cessing is done to the signal digitally which is also where the algorithm developed in
this project comes in.

Autocorrelation

The autocorrelation of a time series is the degree of similarity between the time series
itself and a lagged version of the same series over a time interval [Proakis and Manolakis
[2014]].

In the algorithm developed in this project, an estimate of the autocorrelation of each
bubble was used to calculate the Doppler shift, and from this, the expected length of a
bubble signal. The Doppler equation, equation (2.10) shows the function used to find
the expected length given by

lexpected = abs

(
10

∆ f

)
(2.11)

where ∆ f is the Doppler shift and lexpected is the expected length of a certain bub-
ble. 10 divided by the Doppler shift comes from the fact that the transmitted pulse was
set equal to 10 cycles. The reflected bubble signals will therefore also have 10 periods of
oscillations.

An estimate of the autocorrelation function can be used to find an approximate ve-
locity of the bubble, which is used to find the Doppler shift and can be seen in equation
(2.12) [Lai et al. [1997]] where pr f is the pulse repitition frequency.

v = c ·pr f

4 f0 cosθ
(2.12)

Filtering

In this project, the cerebral blood flow was measured using ultrasound Doppler. The
reflections from bubbles generally have higher intensity than blood, which makes it
possible to differentiate the two by setting a threshold. Some parts of the IQ-signal, con-
sisting of reflections from blood and noise, might exceed the threshold and be confused
as bubbles. A low pass filter (LPF) was used to smooth out the background blood signal
without affecting the bubble signal too much. It will let the parts of the signal with fre-
quencies below a cutoff, the bubble signals, pass through untouched while dampening
higher frequencies.

The noise can come from a variety of different sources and it is important that the
actual signal is not altered, as dampening or distortion is a possibility. Another effect
of filtering is lower peak values and time delays. There are different low pass filters
to choose from depending on the purpose. A Butterworth filter, an infinite impulse
response (IIR) filter, with an order as low as possible can be used. Low pass Butterworth
filters are all-pole filters characterized by the magnitude-squared frequency response
[Proakis and Manolakis [2014]]. This is given by equation (2.13), where N is the filter
order.

|H(Ω)|2 = 1

1+ (Ω/Ωc )2N
= 1

1+ε2(Ω/Ωp )2N
(2.13)
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In equation (2.13), Ωc is the -3 dB frequency of the filter, and Ωp is the pass band
edge frequency. For the best possible results, the filter should have a flat pass band
where the wanted signal is so that the complete signal will be passed through the filter
without any dampening or distortion. A finite impulse response (FIR) filter will give
the best phase response as it has a linear phase, but an IIR Butterworth filter has less
latency, which might be the best choice if the system is to be used in real time.

Another type of filtering used in this project to estimate a threshold to separate the
bubble signals from the blood is median filtering. By using the MATLAB function med-
filt1(), an nth order one-dimensional median filter was applied to the dB power sig-
nal to get an approximate background signal based on the closest values of the signal
[MathWorks [2020]]. This will avoid the overall background signal getting too high due
to artifacts or other high intensity signals, and will make the bubble signals stand out
more. The maximum bubble amplitudes were compared to the background amplitude
just before the bubble in the EBR. The threshold was set a certain number of dB above
the background which will be discussed in the next chapter.

2.5 Artifacts and Noise Signals

Different types of noise signals can interfere with the wanted bubble and blood signals
in ultrasound imaging. Electromagnetic noise provides signals similar to that of a bub-
ble with higher intensity than the surrounding blood signal. The noise can come from
electromagnetic waves in the room, picked up by the patient’s body, or be from high
frequent medical instruments like electric knives. In these cases, the signals last for a
longer time, but there are also shorter electromagnetic noise sources.

It is difficult to know what causes the momentary noise signals, but common for all
electromagnetic noise is that it is independent of the ultrasound pulses and can be seen
in all or most depths of the ultrasound image, something a bubble cannot [Ringelstein
et al. [1998]]. There is also a second type of noise that can impact the recordings. If the
ultrasound probe is not completely stable during the measurement, the Doppler shift
of all depths will be detected due to the movement. This will also be seen in all depths,
especially the earliest ones.

An example of artefacts, likely from using an electrical knife during surgery, is shown
as horizontal lines in the right figures of figure 2.5, or to the far left of the left figures. The
software this is from will be presented in the next chapter.
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Figure 2.5: Example of artefacts
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Chapter 3
Methods

In this chapter, the methods used will be described. This includes the setup and data
aquisition, including hardware and software, as well as the way to manually count bub-
bles, and the algorithm developed in this project. A simulation of blood signals was also
made and used to test the algorithm on different types of data with varying numbers of
bubbles in the earliest development stages.

3.1 Patients

This project focuses on detecting and counting bubbles, or emboli, in the brain of in-
fants, but the used data sets come from two different sources. In all, 13 patients were
young children going through heart surgery, while 18 were children going through a
catheter intervention, but not all of them were analysed with the algorithm.

Air bubbles can come into the blood stream if a patient is connected to a heart-lung-
machine, as for the children going through heart surgery in this data set. It is, however,
not known for sure what induces these bubbles when the patient has a catheter inter-
vention, where a heart-lung machine is not used. The individual cases are very different
and involve many types of surgeries and interventions. All patients were, however, born
with some sort of heart defect, or congenital heart disease.

3.1.1 Catheter Interventions

Among the 18 infants with a heart failure repaired by catheter intervention, a few suf-
fered from pulmonary stenosis [Ritz [2017]]. This is a condition seen in young children
where the pulmonary valve, a valve in the heart between the right ventricle and the
pulmonary, or lung, artery, is too small, stiff or narrow to allow enough blood to pass
through from the heart to the lungs. The treatment of this, which was performed while
measuring the cerebral blood flow using the Doppler ultrasound system NeoDoppler,
was to insert a balloon into the valve by using a catheter. Once the balloon was in the
wanted position, it was inflated to open up the valve, leaving more room for blood to
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flow through.
Another, in a way similar condition and intervention, is aortic valve stenosis [AHA

[2020]], where the aortic valve in the heart is too narrow, preventing blood to pass
through. This is, once again, solved by catheter intervention where a balloon is inserted
into the valve to open up for the blood flow. This method was also done to infants suf-
fering coarctation of the aorta [Holmström et al. [2019]]. This is a condition where the
aortic arch is narrowed.

Some of the patients with heart conditions repaired by catheter interventions also
had PDA, or Persisting Ductus Arteriosus [Clinic [2017a]]. PDA is a condition where
there is a persitent opening between the two main blood vessels of the heart. This open-
ing is called the ductus arteriosus, and usually closes a short while after birth. If it does
not close, it becomes PDA and can in some cases lead to blood flowing in the wrong
direction. This causes overcirculation of the lungs and can cause heart failure.

There were also some patients with more complex heart failures among the data
sets used. These conditions will not be discussed further, but were also repaired by a
form of catheter intervention.

Due to bad recordings or conditions, among other things giving a weak artery signal,
catheter intervention patients 1 and 18 had to be taken out. No recordings of these two
patients will be considered in the analysis.

3.1.2 Open Heart Surgery

The remaining 13 infants had open heart surgery to repair different kinds of heart fail-
ure. Multiple of these had AVSD, Atrioventricular Septum Defect, which means there is
a hole in the wall between the atriums and between the heart chambers [Clinic [2019]].
This is accompanied by a valve deficiency, and can be repaired by closing the holes with
a Gore Tex patch. It is, however, usually fixed by using the pericardium, a sac containing
the heart [Wikipedia [2020]], of the patient. It is also resolved by sowing the atrioven-
tricular valve. A longer recording was used to improve the algorithm developed in this
project in its last stages. The patient of this recording suffered from AVSD which was
closed by a Gore Tex patch between the chambers and a pericardium patch between
the atriums. The system was also sown so that big leakages were avoided.

Some of the patients suffered VSD, Ventricular Septum Defect [Clinic [2017b]], which
means the problem is a hole in the wall between the two lower heart chambers. This
leads to blood being pumped back into the lungs instead of out to the rest of the body,
which means the heart needs to work harder. This was solved by closing the hole using
a Gore Tex patch like before. Another condition some patients suffered from was TGA
[CCHMC [2019]], Transposition of the Great Arteries. This involves that the main artery
and the lung artery (pulmonary) have switched places. The open heart surgery to fix
this is an "arterial switch", meaning the arteries are moved to their usual spot, while
also moving the coronary arteries to their correct place.

Open heart surgery while monitoring the cerebral blood flow was also done on in-
fants with total anomalous pulmonary venous return [Mai et al. [2019]]. With this con-
dition, the veins that drains the oxygen filled blood from the lungs to the left atrium are
wrongly connected. This drains the blood to the right side of the heart instead. The
surgery fixes this by connecting this to the left atrium. Once again, as for the catheter
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intervention patients, some suffered from coarctation in the aortic arch. In this case, it
was repaired by cutting the narrow area and then reconnecting the same vein.

Another condition among the patients was tetralogy of Fallot [Clinic [2017c]], a heart
condition which is a combination of four defects. These are pulmonary valve stenosis
as described in the catheter interventions section, ventricular septum defect like men-
tioned above, overriding aorta, meaning the aorta is shifted slightly and is positioned
just above the ventricular septum defect, and right ventricular hypertrophy. The last
is a condition where the muscular wall of the heart thickens due to working too hard.
Tetralogy of Fallot is repaired by filling the hole and extending the outlet in the right
side of the heart by cutting out muscle beams and possible using a patch to extend the
pulmonary vein.

3.2 Setup and Data Aquisition

The data used in this project are from neonates during heart surgery and catheter in-
tervention as presented above. A newly developed ultrasound technology system with
an accompanying software was used to obtain the data, and will be described in the
following subsections.

3.2.1 Ultrasound System - NeoDoppler

The data was obtained using a new ultrasound technology for continuous measure-
ments of cerebral blood flow in neonates, called NeoDoppler [Vik et al. [2019]]. NeoDoppler
aims to reduce the incidence of brain injury in premature infants and critically ill neonates
by monitoring of the cerebral blood flow.

The instrument works by placing an ultrasound probe on top of the open fontanelle
on the head of the neonate. This way, the cerebral blood flow can be measured contin-
uously while being out of the way. NeoDoppler uses ultrasound Doppler as described
in section 2.2.1, and has been developed by Professor Hans Torp and the Ultrasound
Group at the Department of circulation and medical imaging at NTNU.

The system consists of three main components; an ultrasound probe connected
above the fontanelle on the baby’s head, an ultrasound module with power supply, and
a computer with software for processing and displaying the data. The software, also
developed at the Department of circulation and medical imaging at NTNU in collabo-
ration with NTNU Technology Transfer [Nguyen [2019]], will be described in the next
section.

3.2.2 Software - EarlyBird

The software developed for the NeoDoppler ultrasound system is called EarlyBird, and
version 5.26a was used in this project. It obtains the raw data from the probe and scan-
ner to process, and then presents it as a Doppler spectrum to be analysed. Different
vessels can be chosen by choosing the depth of the focal point, and the gain and pa-
rameters used for filtering are adjustable [Jarmund [2019]]. EarlyBird also gives the op-
portunity to, among other things, search for bubbles or emboli in the blood flow in

17



Chapter 3. Methods

multiple depths at the same time, which is useful to recognise bubbles that appear in
different depths at different times or that stretches in time or depth. It also makes it
possible to see if an artery has gone in and out of the image during the recording, which
could possibly make the same bubbles be counted multiple times in different depths
or times. An example of what a data set showing bubbles in a bloodstream looks like is
shown in figure 3.1.

Figure 3.1: Color Doppler image of blood stream showing multiple bubbles in EarlyBird software

In figure 3.1, the top windows show the color m-mode image of the blood stream
near the heart of a child during heart surgery. All yellow circles in the top left image
mark manually counted bubbles. The signal is zoomed in on a smaller segment in the
windows on the right hand side. Here it is easier to see how bubbles stand out from the
surrounding blood signal. As described in section 2.2.1 about color Doppler ultrasound
imaging, blue and red display movement in opposite directions of the artery. The blue
and red oblique lines are clearly different to the rest of the image and are probably bub-
bles. If in doubt, the bottom window can be used. This shows the intensity of the signal,
and the gain can be altered as needed. Around where the oblique lines can be seen in
the top right image, the bottom right figure shows white parts in the otherwise grey sig-
nal. Again, this indicates the presence of bubbles. The bottom left figure depicts the
Doppler spectrum.

3.3 Manual Counting of Bubbles

After getting data using NeoDoppler and EarlyBird as previously described, the count-
ing of bubbles has been done manually at St. Olavs Hospital. Oblique red or blue lines
depicting bubbles are marked by clicking them in the EarlyBird interface. When the
whole signal has been checked and all detected bubbles are marked, the total num-
ber of bubbles are counted. Figure 3.1 shows a quite clear example, but the difference
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between bubbles and blood might not always be as obvious. It is also difficult to see if
only one bubble is present, or multiple close by each other. If enough bubbles are in the
same area, they are counted as a cloud or curtain of bubbles without a specific number.
In order to get a number of bubbles as correct as possible, the same data sets need to
be counted multiple times, and may be checked by multiple people which is very time
consuming. This is why, as previously mentioned, an automatic algorithm for embolic
detection would be an advantage.

3.4 Simulation

Simulated blood signals were used to get data sets with a known number of bubbles
and clouds of bubbles for control. The blood and bubble signals were simulated to act
as similar to real IQ-signals as possible, including a random blood signal and chosen
bubble signals in different depths and time. The same sampling frequency and other
variables are used as in the real signals obtained from Rikshospitalet. The code for this,
made by Hans Torp, is given in the appendix.

The code is written in MATLAB, and first sets important parameters to the same as
the original ultrasound system used for the recordings, such as the ultrasound speed
in blood, c, and the frequency, f 0. The center point of trajectory for every simulated
bubble is adjustable, and the number of bubbles is chosen by the user who can add and
remove them at will. This makes the signal more accurate to the original recordings,
and gives the option of multiple bubbles close together or in different depths, times,
and with different trajectory center points.

Clouds, or curtains, of bubbles can be added to the simulated signal together with
the background blood signal and single bubble signals. The clouds can be placed any-
where and consist of a lot of randomly distributed bubbles given the start time and
duration of the cloud set by the user.

After all wanted bubbles and clouds are placed, the blood and bubble signals are
convoluted before the total signal is displayed. The thermal noise, which should be
included to better simulate a real life environment, is set by randomized vectors of the
same length as the IQ-signal. The total IQ-signal including the thermal noise is then
calculated before plotting the signal using a grayscale colormap. These signals were
used in the first stages of the algorithm development to see how well the algorithm
detected a controlled set of data.

3.5 Algorithm for Automatic Detection of Embolis

The training set consisted of four recordings with bubbles and 12 without and was used
to adjust the different parameters in the algorithm for best possible detection. Other,
shorter recordings were also used in the early stages of the algorithm development. Two
of the recordings were from the same patient at different times and will be referenced
as pilot recording 1 and 2. Due to its number of bubbles and the length of the record-
ing (30 minutes), pilot recording 1 was mostly used to develop the algorithm before the
final testing. It will therefore mainly be used in examples. An overview of the complete
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algorithm is shown in figure 3.2 with the most important inputs and outputs. The differ-
ent parts of the algorithm will be presented in this chapter, and the functions, in boxes
with thicker edges, will be described in detail.

Figure 3.2: Overview of the Automatic Detection Algorithm

The automatic detection algorithm developed in this project uses the power signal
straight from the EarlyBird software. It is developed to go through one depth at a time,
through all depths chosen by the user. If multiple depths are chosen, a correction al-
gorithm will correct duplicate detections of bubbles. This is described in section 3.5.2.
Before the bubble detection can start, the complete power signal of the recording is fil-
tered using a 2nd order Butterworth LPF. The indexes of the signal containing artifacts
are then found. These are higher intensity noise signals due to medical instruments or
other causes that are not bubbles as explained in section 2.5. All parameters that can be
changed by the user will be presented in more detail with values chosen for the training
set in section 3.5.4.

1 art_detect = zeros ( 1 , length (cmmode. PdB) ) ;
2 for x = 1 : n_artefact
3 Pow_dB = pow_dB( x , : ) ; %Power in dB for depth n
4 Pow = 10.^(Pow_dB/10) ; %Power in depth n
5 bgs_dB = 10* log10 (Pow) ; %Background signal
6 thresh = median( bgs_dB ) + thresh_var ; %Threshold
7 for a = 1 : length (Pow_dB)
8 i f (Pow_dB( a ) > thresh−1) && ( a > artLim ) && ( a < length (Pow_dB)−artLim )
9 art_detect ( a ) = 1 ; %This index i s registered as an a r t e f a c t

10 art_detect ( a−artLim : a+artLim ) = 1 ; %Some a r t e f a c t s are s l i g h t l y oblique
11 end
12 end
13 end

To check if and where artifacts are present, the first depths of the m-mode image are
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considered, the number of depths is chosen by user input n_artefact. Artefacts due to
medical instruments stretch through all or most depths, and as the background signal is
usually lower in the first depths, they are more clearly visible here. Another factor is that
there usually are no arteries at the lower depths, only veins which are not that relevant
for the bubble detection in this project. If a high intensity signal is detected in the lower
depths, the index is registered as an artifact to be compared in the bubble detection by
changing the value at this point in a vector from 0 to 1. If the index is registered as an
artifact, any bubbles detected here will be disregarded as an artifact. It could also be
done by checking if the signal stays above the threshold in multiple depths at the same
index. This proved to be a poorer solution that still counted a lot of artifacts as bubbles
and was therefore not used in the finished algorithm.

The Doppler shift is calculated using an autocorrelation estimator, as explained in
section 2.4.5, to find an expected length of a potential bubble in each point in time.
This is done to make sure no short spikes or clouds of multiple bubbles are counted as
singular bubbles. The length of each potential bubble signal is therefore compared to
the expected length and has to be within an interval around the expected length, set by
the user.

The user chooses in which depths of the m-mode image to check for bubbles, and
an approximation of the background signal is found by median filtering of the signal
in each depth. The background signal is then converted to dB, and a threshold is set a
certain number of dB above this, determined by the variable thresh_var.

3.5.1 Bubble Detection Function

The bubble detection is done inside a function called detectBubble in the algorithm
shown in the appendix. In the MATLAB code just below, the bubble detection is done
by first converting the power in the chosen depth from dB to be filtered using median
filtering of length N. The background signal is the dB conversion of the filtered signal,
giving the background amplitude of each point. The threshold is set a number of dB
above the background signal with thresh_var chosen by the user.

1 function [ bubble_bgs , bubble_amp , nbub, time_bubble , time_art , time_c , maxval , thresh ,Pow,
bgs_dB ] = detectBubble (n , minLength , prevBub , cloudLength ,N, Pow_dB, T , tIncr , t ,
art_detect , thresh_var )

2 Pow = 10.^(Pow_dB/10) ; %Power in depth n
3 F i l t e r e d = medfilt1 (Pow,N) ; %Median f i l t e r i n g using every Nth point
4 bgs_dB = 10* log10 ( F i l t e r e d ) ; %Background signal in dB
5 thresh = bgs_dB + thresh_var ; %Threshold
6 %%
7 a = 1 ; num_art = 0 ; c = 0 ; cloud_count = 0 ; prev = 0 ; bubbles = 0 ;
8 time = zeros ( s i z e ( t ) ) ; time_art = zeros ( s i z e ( t ) ) ; time_c = zeros ( s i z e ( t ) ) ;

The input and output variables of the detectBubble function are presented in table
3.1 with descriptions. The input variables are placed above the double line, while the
output variables are below.
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Table 3.1: Input and output variables of the bubble detection function

Variable Description

n The current depth in the for-loop

minLength Minimum length of a bubble

prevBub Minimum space between bubble detections

cloudLength Maximum length of bubble before it is counted as a cloud

N Length of the median filter
Pow_dB The signal power in dB for the current depth n

T
A vector of expected length of each point in time,

found from the Doppler shift

tIncr Time increment of the signal

t Time vector from the EarlyBird software

art_detect Vector containing indexes of artifacts

thresh_var
The number of dB above the background

signal the threshold is

bubble_bgs Vector with background signals of detected bubbles

bubble_amp Vector with maximum amplitudes of detected bubbles

nbub
Vector of the depth of detected bubbles to be
added to vector containing all bubble depths

time_bubble
time_art
time_c

Vector with times of each detected bubble,
artefact and cloud/curtain

maxval
Vector of maximum intensity of all bubbles and

potential bubble signals

thresh Vector of thresholds for current depth

Pow Signal power for current depth

bgs_dB Background signal in dB of current depth

The next step in the algorithm is a for-loop going through every index of the dB
power signal in the chosen depth. Following this, the number of indexes the power sig-
nal stays above the threshold is counted using a while-loop to find the length of the
potential bubble signal. By looking at the signal segment above the threshold, the max-
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imum value, and its index, is found based on the amplitude of the power signal at this
point in time. They are then added to the vectors maxval and maxind. This is the max-
imum amplitude of the potential bubble signal, and its index, and can be used to ap-
proximate the relative bubble size by comparing it to the background signal of the first
index of the bubble signal. The reason why the background signal is not taken from the
index of the maximum bubble signal is that the background is not supposed to contain
any bubbles, only the surrounding signal.

1 for i = 1 : length (Pow_dB)
2 i f i >= a
3 b_length = 0 ;
4 l_expected = round (T(n , i ) / t I ncr ) ; %Expected length
5 a = i ; %S t a r t index for possible bubble
6 while (Pow_dB( a ) > thresh ( a ) ) && ( a < length (Pow_dB) ) %Finds how long

the signal stays above thresh + ending index
7 b_length = b_length + 1 ;
8 a = a + 1 ;
9 end

10 c = c + 1 ;
11 [ maxval ( c ) ,maxind ( c ) ] = max(Pow_dB( i : a ) ) ; %index and value of max point

from i ( s t a r t ) to a ( stops being above threshold )

To make sure this is not an artifact, the index of the maximum value is compared to
art_detect. If art_detect contains 1 at this index, a variable counting artifacts adds one,
and the time is added to a different vector containing artefact times.

1 i f ( i < length (Pow_dB) − maxind ( c ) ) && ( art_detect ( i + maxind( c ) ) == 1)
2 time_art ( i + round (maxind( c ) ) ) = t ( i + round ( maxind ( c ) ) ) ; %To mark

a r t e f a c t s in f i g u r e
3 num_art = num_art + 1 ;

If the index of art_detect contains a 0, meaning no artifact was detected, a number
of previous indexes, chosen with the prevBub parameter, are checked to see if a bubble
has recently been detected. This is to avoid double detections of the same bubble in
the same depth. If no bubbles are found, the length of the bubble signal is compared
to the expected bubble length calculated from the Doppler shift. A new parameter,
cloudLength, is used to decide the maximum length of a singular bubble before it is
counted as a cloud. A counter adds 1 if it is detected as a cloud, while it is otherwise
counted as a bubble if the length is larger than l_expected/mi nLeng th, where min-
Length is a user input. The time of each bubble peak is saved in a vector to be plotted
in an m-mode image.

1 e l s e i f ( i < length (Pow_dB) − maxind ( c ) )
2 for k = 1 : prevBub %To avoid bubbles very close together that are

probably the same one
3 i f ( i > k ) && ( time ( i − k ) ~= 0)
4 prev = 1 ;
5 end
6 end
7 i f ( b_length > cloudLength * l_expected ) && ( prev == 0) %Minimum

length of cloud
8 cloud_count = cloud_count + 1 ;
9 time_c ( i + round ( maxind( c ) ) ) = t ( i + round (maxind( c ) ) ) ; %To mark

clouds in f i g u r e
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10 e l s e i f ( prev == 0) && ( l_expected > 0) && ( b_length > l_expected /
minLength ) %Minimum length for bubble

11 bubbles = bubbles + 1 ;
12 bubble_amp( bubbles ) = maxval ( c ) ;
13 bubble_bgs ( bubbles ) = bgs_dB ( i ) ;
14 nbub( bubbles ) = n ;
15 time ( i + round ( maxind ( c ) ) ) = t ( i + round ( maxind( c ) ) ) ; %To mark

bubbles in f i g u r e
16 end
17 end
18 short = 0 ; prev = 0 ;
19 end
20 end
21 end

The power signal in dB and the m-mode image is plotted with all detected bubbles
marked with a *. In figure 3.3, a short part of pilot recording 1 in depth 17 is shown. The
power signal in figure 3.3a shows the light blue dB power signal in this depth, with the
black background signal, and the red threshold.

(a) Power signal in dB (b) M-mode image

Figure 3.3: Example of pilot recording 1 in depth 17

There is only one marked bubble in figure 3.3a even though there seems to be three
or four visible peaks above the threshold. From figure 3.3b it can be seen that two of
these, the peaks around 1060 and 1240 seconds, have been detected in depth 16 and
are therefore disregarded in this depth. The method of removing duplicate detections
will be explained in section 3.5.2. The peak around 1100 seconds is not detected as a
bubble as it is just below the threshold. The last bubble in depth 17, visible in figure 3.3b
around 1250 seconds, is also below the threshold and is not detected by the algorithm
in this depth.

3.5.2 Function to Correct Duplicate Detections

Because the algorithm was implemented to check individual depths, some bubbles are
counted multiple times in different depths. To fix this, all detected bubbles are checked
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afterwards to only include one of the duplicate detections in the results. The function
is called removeDuplicates in the automatic detection algorithm in the appendix. The
number of detected bubbles is also corrected. The input and output variables of the
function are shown in table 3.2 with descriptions. Input variables are above the double
line, while output variables are below.

Table 3.2: Input and output variables of the duplicate correction function

Variable Description

bubble_amp_all Struct containing maximum amplitude of bubbles in all depths

bubble_bgs_all Struct containing background signal of bubbles in all depths

nbub_all Struct containing depth of bubbles in all dephts

time_bubble_all Struct containing time of bubbles in all depths

n_start First depth the algorithm checks

n_end Last depth the algorithm checks

time_bubble_all
Updated struct containing time bubbles in all depths

without the duplicates

bubble_amp_all
Updated struct containing maximum amplitude of bubbles in all

depths without the duplicates

bubble_bgs_all
Updated struct containing background signals of bubbles in all

depths without the duplicates

nbub_all
Updated struct containing depth of bubbles in all

depths without the duplicates

3.5.3 Comparing Manually Counted and Automatically Detected Bub-
bles

In order to evaluate how good the algorithm detects bubbles, the results of the training
and test set were compared to manually counted bubbles. The full MATLAB code can
be seen in the appendix as the function compareBubbles in the automatic detection
algorithm. It uses for-loops to go through every detected bubble of the algorithm and
compare each to the manually counted bubbles. If a bubble from the algorithm and
a manually counted are close enough in time, less than half a second apart, and close
enough in depth, maximum four depths apart, they are assumed to be the same bubble.
A counter then adds one to a variable showing correctly counted bubbles.

If any bubbles in the vector containing the manually counted bubbles are not de-
tected, each of them will be added to a counter showing missed bubbles. A vector con-
taining the time of each of these bubbles is also updated, but will include some bubbles
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that are detected in later depths. Detected bubbles from the algorithm that were not
counted manually are added to a counter showing false detections, or false positives.
The compareBubbles function is only run if the user input manual is equal to 1 as the
algorithm is supposed to be used on recordings that have not been counted manually.
The function is mainly used to evaluate how well the algorithm works. The input vari-
ables of the function are shown above the double line in table 3.3, while the output
variables are below.

Table 3.3: Input and output variables of the comparison function

Variable Description

crange
figh

cmmode

Parameters to plot in the m-mode-image previously
generated and get manually counted bubbles

n The current depth

time_bubble Vector containing time of bubbles in current depth

time_correct_all
time_fake_all
time_miss_all

time_corr_other_depth_all

Structs with time of correct, false, missed, and correct
bubbles of other depths updated within the function

bubbles_correct
bubbles_fake

bubbles_missed

Number of correct, false and missed bubbles up to
the current depth

bubbles_manual
bubbles_correct

bubbles_fake
bubbles_missed

Updated number of manually counted, correct,
false and missed bubbles

time_correct_all
time_fake_all
time_miss_all

time_corr_other_depth_all

Updated struct containing time of correct, fake, missed and
correctly detected bubbles of other depths in all depths so far

3.5.4 User Inputs

There are a few parameters that can be changed by the user in a struct called userVar.
These are presented in table 3.4 with the parameter name, description and value chosen
for the algorithm based on the training set.
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Table 3.4: User inputs of the algorithm

Parameter
Value chosen

for training set Description

N
100

(0.25 seconds)
Length of the median filter

thresh_var 9 dB
Variable set by user, determines how many dB above

the background signal the threshold is

n_start 7 The first depth the algorithm goes through

n_end 24 The final depth the algorithm goes through

fc 20 Hz The cutoff frequency of the LPF

n_artefact 5 The number of depths used to detect artefacts

artLim
5

(0.01 seconds)

Points ± this value
from a detected artefact will also be marked

as an artefact

cloudLength 40
The maximum length of a bubble before

it is classified as a cloud is the
expected length multiplied by cloudLength

prevBub
200

(0.5 seconds)
Variable to avoid bubble detections too close together

minLength 2
The minimun length of a bubble is determined
by the expected length divided by minLength

manual 1 or 0
If equal to 1, the comparison function is run

if equal to 0, the comparison funciton is not run

The values in table 3.4 gave the best results of the training set as a whole but can
be changed for other recordings. Although thresh_var = 9 dB still gave a few false and
missed detections, it was the best compromise. The manual parameter can be set equal
to 1 if the data set has been manually counted. The algorithm will then run the com-
pareBubbles function and compare automatically detected bubbles to the manually
counted ones, reporting on the number of correct, missed and false detections. This
is mainly for testing and evaluation of the algorithm. There were no examples of clouds
of bubbles in the training set. Therefore, the maximum length of a bubble was set as
small as possible, seeing that no manual single bubbles were counted as clouds. A max-
imum bubble length of 40 times the expected length was the smallest limit that did not
detect manually counted bubbles as clouds in the training set. This also gave correct
cloud detection of shorter recordings used in the earliest stages of the algorithm devel-
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opment.

The power signal was filtered using a Butterworth LPF in the beginning of the algo-
rithm. Three different cutoff frequencies, fc , each tested using four values of thresh_var,
are presented in table 3.5 showing the total number of correct, false and missed detec-
tions of the training set.

Table 3.5: Results from the training set with different thresholds and filter cutoff frequencies

fc

[H z] thresh_var Correct False Missed

Total number
of detected

bubbles

Total number
of manually

counted bubbles

10 8.0 54 8 44 62 98

8.5 52 6 46 58 98
9.0 50 4 48 54 98
9.5 48 2 50 50 98

20 8.0 65 37 33 102 98

8.5 64 21 34 85 98
9.0 59 10 39 69 98
9.5 52 6 46 58 98

30 8.0 69 51 29 120 98

8.5 68 29 30 97 98
9.0 63 17 35 80 98
9.5 58 9 40 67 98

From table 3.5 it looks like fc = 20 Hz gave the most correct detections while keep-
ing the number of false positives to a minimum. When testing the cutoff frequencies,
only half steps of the threshold were used. To estimate a more precise threshold, values
around thresh_var = 9 dB were tested as this seemed to give the best results in table 3.5.
The results are shown in figure 3.6.

Table 3.6: Results from training set with more precise thresholds for fc = 20 Hz

thresh_var Correct False Missed
Total number of

detected bubbles

Total number
of manually

counted bubbles

8.8 60 15 38 75 98
8.9 59 13 39 72 98
9.0 59 10 39 69 98
9.1 57 8 41 65 98
9.2 56 8 42 64 98
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A threshold 9 dB above the background signal seemed to provide the best results.
This gave the same number of correct detections as 8.9 dB, but with three less false
positives. It also resulted in two more correct detections than 9.1 dB, but with two more
false positives. In all cases, the number of missed bubbles is quite high, but it is difficult
to improve with the current algorithm without obtaining many false detections. Using
these settings, maximum two bubbles were detected in the recordings containing no
bubbles, whereas lower thresholds or a higher fc resulted in more false detections.

The given cutoff frequency, fc = 20 Hz, provided the overall best results. Although
more correct detections of bubbles were made in pilot recording 1 without a filter, more
bubbles were also falsely counted. Figure 3.4 shows the unfiltered (top) and filtered
using fc = 20 Hz (bottom) power signal in dB and m-mode image of pilot recording 1 in
depth 21.

(a) Power signal, unfiltered (b) M-mode image, unfiltered

(c) Power signal, filtered (d) M-mode image, filtered

Figure 3.4: The effects of filtering on pilot recording 1

In the left figures, the filtered power signal is not that different from the unfiltered
signal, but it is filtered enough to avoid a lot of false detections. Two examples of false
detections in depth 21 of pilot recording 1 are shown in the m-mode image of the un-
filtered signal in figure 3.4b. The bubbles are marked with pink * in the left figure. The
two false detections in the unfiltered signal are not detected in the filtered signal which
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can be seen in figure 3.4c and its m-mode image in figure 3.4d. In the m-mode images,
a bubble is also falsely detected in depth 22 of the unfiltered signal while it is not de-
tected in the filtered one. The filtered signal does, however, also miss two more correct
bubbles in the part of the m-mode image shown in figure 3.4.
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4.1 Simulation

The simulation, that was previously mentioned and can be seen in full in the appendix,
gives an overview of how the bubble and blood signals from a real patient might look.
The simulated signals were used in the first phases of the algorithm development, be-
fore pilot recording 1 was used, and when the IQ-signal was analyzed instead of the
power signal. An example of the resulting simulated IQ-signal, power signal and m-
mode image with three bubbles is shown in figure 4.1.

Figure 4.1: IQ-signal (top), power signal in dB with threshold (middle), and m-mode image (bot-
tom) of a simulated signal

The top part of figure 4.1 shows the real (blue) and imaginary (red) parts of the total
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IQ-signal plotted on top of each other. The IQ-signal includes the blood signal, thermal
noise and the higher intensity echo of three bubbles. They all quite clearly have a larger
amplitude than the surrounding blood signal in the top figure. In the middle figure, the
power signal in dB of depth 3 (just before 0.03 mm) is shown. The amplitude is higher
where the three bubble signals are, and are all above the red line giving an example of a
suitable threshold for the simulation. In this case, the threshold is set equal to the same
value throughout the signal, while it varies with a mean filter of the closest values in the
actual algorithm. This was done because the newest version of the algorithm has been
changed so much since the simulation was used that a lot of parameters were missing
or had to be changed in order to run the algorithm on the simulated signal. The bubble
signals can be seen as much lighter, oblique lines in the m-mode image at the bottom,
moving slightly through time and depths. This is expected of the m-mode image of
real life air bubbles in blood moving through the ultrasound beam. The lighter gray
background simulates the blood signal from the m-mode image of the cerebral blood
flow.

For comparison, similar plots are shown in figure 4.2 of pilot recording 1. Figure
4.2a shows the power signal in dB of one depth, while figure 4.2b is the corresponding
m-mode image, similar to the one of the simulated signal.

(a) Power signal (b) M-mode image

Figure 4.2: Example of pilot recording 1

The recording in figure 4.2 is from pilot recording 1 in depth 16. Two bubbles are
present, marked by a red circle in figure 4.2b, and are clearly different from the back-
ground blood signal. The light blue power signal in figure 4.2a reaches above the thresh-
old in two places. The threshold is marked by a red line, while the black dotted line is
the estimated background signal. This is a much more zoomed in image of the power
signal than for the simulation, but shows the similarities. A power signal that is not
zoomed in can be seen in figure 3.4 to compare the overall look of it. The bubble signals
in the m-mode image shows the similarities between a real signal from a patient and
the simulated signal, and how the simulation can be useful in development where the
training set is quite small.
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4.2 Results of the Training Set

The best compromise of the threshold was 9 dB above the background signal, as pre-
sented in section 3.5.4, which is used in all examples.

4.2.1 Pilot Recording

All recordings and data sets used up to this point were shorter signals of less than one
minute while pilot recording 1 is 30 minutes long. The data set had been manually
counted with 26 bubbles in total. The m-mode image of the full signal with marked
bubbles is shown in figure 4.3.

Figure 4.3: Manually counted bubbles marked by red circles in the m-mode image

In figure 4.3 multiple artifacts can be seen as lighter vertical lines, mainly in the
beginning of the recording. These are most likely from a surgical electric knife used to
cut open the chest of the patient to reach the heart for the operation. This leads to high
intensity signals that exist in all depths of the ultrasound m-mode image as seen mainly
from 0 to 400 seconds in the figure. The manually counted bubbles are marked in the
m-mode image with red circles, while the yellow circle indicates an uncertain bubble,
or a signal that might be a bubble, but is not clear enough to be counted for sure.

In pilot recording 1 there are no bubbles prior to depth number 11. The first 5 depths
have a very low background signal intensity which can be used to identify artifacts as
they stand out even more here than in the lower depths. The probability of finding bub-
bles in the earlier depths is quite small as there are mainly veins here and most bubbles
are found in the arteries. It could also be more difficult for the algorithm to separate
bubble signals from noise in these depths which can result in a lot of false detections.
Because of this, the algorithm searches for bubbles starting at depth number 7. The
depths the algorithm goes through can be changed manually for each data set.

Bubble Detection in All Relevant Depths Simultaneously

The automatic detection algorithm was run on the training set going through all depths
from number 7 to 24. Because the algorithm checks each depth individually and counts
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bubbles that might also be counted in a different depth, all detections had to be checked
using the double detection function described in section 3.5.2. The resulting m-mode
image of pilot recording 1 with manually and automatically marked bubbles is shown
in figure 4.4a. The similar m-mode image of pilot recording 2 is shown in figure 4.4b.

(a) Pilot recording 1 (b) Pilot recording 2

Figure 4.4: Results from pilot recording 1 and 2

Like before, the red circles are manually counted bubbles and the yellow circle is an
uncertain, manually counted bubble. The green stars mark bubbles that are automat-
ically counted correctly, and there are 7 in pilot recording 1. White stars depict falsely
detected bubbles that are counted automatically but not manually. There are no false
detections in pilot recording 1, but the algorithm missed 19 bubbles. Figure 4.4b shows
there is one false positive, and two missed bubbles in pilot recording 2. It does, how-
ever, only have 5 manually detected bubbles in total where 3 were counted correctly.
For comparison and to get a more complete picture, the results from the remaining
recordings of the training set with bubbles are presented in figure 4.5.

(a) Training recording 1 (b) Training recording 2

Figure 4.5: M-mode results of the remaining training set

There are no false positives in training recording 1, but in this case, 15 of the total
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49 bubbles were missed. There are three missed detections in training recording 2, and
three false. One of these is within the group of correctly detected bubble signals around
120 to 140 seconds. This is zoomed in and shown in figure 4.6 to be discussed in the
next chapter. Figure 4.6 also shows two of the three missed bubbles in depth 9 and 11.

Figure 4.6: False bubble in training recording 2

Most of the falsely detected bubbles in the training set were due to movement arti-
facts. This is a type of artifact caused by movement of the probe or the structures that
reflect the ultrasound signal, relative to the probe. A Doppler shift is then obtained in
multiple depths at the same time that is usually strongest in smaller depths. A solution
to the problem was not found during this project, but could be a possible improvement
of the algorithm. By looking at multiple depths at the same time, and not each depth
separately, false detections caused by movement could be avoided.

The number of bubbles counted correctly and missed, and false positives, are pre-
sented in table 4.1 for each depth of pilot recording 1. The missed detections will be dis-
cussed more in the next chapter. In total, 7 bubbles were detected automatically while
there were 26 manually counted bubbles. The values are from using thr esh_var = 9
dB and a cutoff frequency of fc = 20 Hz, which did not provide the best results in pilot
recording 1.
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Table 4.1: Results from pilot recording 1

Depth Correct Missed False Comments

7 1 0 0
One bubble counted

from depth 11

8, 9, 10 0 0 0 No bubbles
11 0 3 0
12 0 3 0

13, 14 0 0 0 No bubbles
15 0 1 0

16 3 1 0
Two bubbles counted

from depth 18

17 1 4 0
18 0 1 0
19 0 1 0
20 2 0 0

21 0 1 0
One bubble counted

from depth 17

22 0 4 0
23, 24 0 0 0 No bubbles
Total 7 19 0

The results in figure 4.4 and table 4.1 will be discussed further in the next chapter.

4.2.2 Bubble Size

The relative size of bubbles is necessary when considering how important missed de-
tections are. Larger bubble size can cause more problems, while smaller might not be a
big issue. In this section, the maximum amplitude of the bubbles will be compared to
the background signal at the same index, which gives an insight into its size. The am-
plitude of each missed and falsely detected bubble, and its corresponding background
signal, was studied to see why the algorithm made mistakes. By running through every
recording in the training set, three Excel files were generated, one containing all de-
tected bubbles, one with false positives and one with missed detections. There were
some errors with the missed detections file, so this was generated manually for the
training set, but not for the test set. An example of which values are saved to the Ex-
cel file is shown in figure 4.7.
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Figure 4.7: Example of Excel file containing all detected bubbles of the training set

The parameters saved in the Excel files are the name of the recording, Recording in
column A of figure 4.7, and the time of each bubble in three formats: the one used in
EarlyBird which is when the recording was done (both date and time), SingleBubbles,
the index used in the algorithm to represent this time, t_datenum, and the time in sec-
onds from the beginning of the recording, tb. The depth of each detected bubble, zb,
is also saved along with the maximum bubble amplitude, AmpdB, and the background
signal, BgsdB, just before the bubble, both in dB. From these Excel files, histograms can
be made to show the distribution of the relative bubble sizes. A histogram showing the
maxmimum emboli, or bubble, amplitude (MaxAmp) to background amplitue (Bgs) ra-
tio (EBR) in the training set is presented in figure 4.8.

Figure 4.8: EBR of all detected bubbles in the training set

From figure 4.8, the maximum amplitude of most bubble signals in the training set
are between 10 and 12 dB above the background signal. There are, however, quite a few
bubbles between 8 and 10 dB above the background signal as well, and as the thresh-
old is set 9 dB above the background, it seems like the threshold could not be much
higher without loosing many bubbles. A lot of the total 69 detected bubbles have a max-
imum amplitude higher than 12 dB above the background signal, and clearly should be
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counted as bubbles if they are not artifacts.

A similar plot of all the missed bubbles of the complete training set is shown in figure
4.9. There were 39 missed detections out of the total 98 manually counted bubbles.

Figure 4.9: EBR of all missed bubbles in the training set

There were most missed bubbles with a maximum amplitude between 0 and 5 dB
above the background signal. This is quite a lot lower than the threshold of 9dB above
the background. There were also 9 bubbles with a maximum amplitude between 0
and 10 dB below the background signal, and 1 bubble with a maximum amplitude be-
tween 20 and 25 dB above the background. The bubble with the maximum amplitude
more than 20 dB above the background signal had an amplitude of 36 dB in the manual
counting. This means that it probably has a large radius and could cause major prob-
lems. The background signal was at this point estimated to be 15.1 dB by the algorithm,
which is way lower and should make the bubble detectable at more than 9 dB above
the background signal. The maximum bubble amplitude was, however, estimated to be
20.7 dB at this index by the algorithm, which is 3.4 dB below the threshold.

The 10 falsely detected bubbles of the training set were also analysed by looking at
the ratio between the maximum amplitudes of the detected signals and the background
signal at this time in dB. The results are shown in figure 4.10.
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Figure 4.10: EBR of all false positives in the training set

All of the false detections naturally had a maximum amplitude more than 9 dB
above the background signal as this is the limit to be counted as a bubble by the al-
gorithm. One of the signals even had a maximum amplitude between 12 and 14 dB
above the background.

Table 4.2 will only include some of the missed detections of pilot recording 1, com-
paring the saved amplitudes of the manually counted bubbles to the threshold of the
algorithm. All amplitudes in table 4.2 are in dB while time is in seconds.

Table 4.2: Amplitude of missed bubbles in pilot recording 1

Amplitude of
missed manually
counted bubbles Threshold Depth Time

17 24.17 11 1596

8 17.91 12 960.1

18 24.57 12 1048.8

16 22.58 17 1089.6

8 26.06 18 1061.6

4 12.30 19 673.5

2 12.14 22 731.5

14 15.01 22 1078.8

39



Chapter 4. Results

In some cases, the threshold is a lot higher than the amplitude of the manually
counted bubbles. In other cases, like the one in depth 22 at time 1078.8 seconds, the
threshold is just over 1 dB above the bubble amplitude. One possible reason is that the
amplitude of the signal surrounding the bubble is high due to artifacts, or just have a
generally higher intensity. This should in most cases be solved by the median filtering,
but a higher intensity signal could still affect the threshold. In some cases, the ampli-
tude of the missed bubble is very low. Two examples are the one in depth 19 at time
673.5 seconds and the one in depth 22 at time 731.5 seconds with an amplitude of only
4 and 2 dB respectively. Their m-mode images are presented in figure 4.11.

(a) Missed bubble in depth 19 (b) Missed bubble in depth 22

Figure 4.11: M-mode image of two missed bubbles with low intensity

The bubble that was not detected in depth 19 does not immediately seem like a
bubble signal by only looking at the m-mode image in figure 4.11a. The background
signal generally has a low intensity and the bubble signal is not very clear from this. In
the same figure, an example of a correct detection can be seen in depth 16. Figure 4.11b
shows another missed bubble signal with low intensity next to a correctly detected bub-
ble in depth 20. The correctly detected bubble stands out from the background signal
more than the missed bubble which does not seem to have an intensity much higher
than the low background signal. These differences illustrate how high the intensity has
to be for the algorithm to detect bubbles.

From the amplitudes in table 4.2, the bubble sizes can be estimated. The bubbles
with a small amplitude, like the two previously mentioned in depth 19 and 22, are most
likely small and not as critical to detect. They will probably not cause too many issues to
the patient. Other bubbles, like the one in depth 11 at time 1596 seconds and in depth
12 at 1048.8 seconds, are probably larger in size and can possibly cause problems like
clogging the artery. These bubbles should have been detected, but as can be seen from
the table, the threshold was very high in both cases. The m-mode images of the two
missed bubbles are shown in figure 4.12.
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(a) Missed bubble in depth 11 (b) Missed bubble in depth 12

Figure 4.12: M-mode image of two missed bubbles with high intensity

The missed bubble in depth 11, shown in figure 4.12a, seems to be surrounded by
a quite high intensity background. This will affect the estimated background signal
and make the threshold higher which can result in missed detections as the bubble
signal does not stand out a lot from the background signal. The oblique line can be seen
by the human eye, but might be more difficult to detect by the algorithm because of
the background intensity. This also requires the algorithm to consider multiple depths
simultaneously. The same is true for the missed bubble in depth 12 of figure 4.12b.
The bubble close by in the same figure has been correctly detected in a different depth.
This bubble signal does, however, seem to have an intensity separating it more from the
background signal than the one in depth 12.

The training set also consisted of 12 recordings of healthy patients with no bubbles
in the blood stream. With the final settings of the algorithm, only 6 bubbles were de-
tected in total as shown in table 4.3, where the counted bubbles in each recording are
presented separately. The butterworth LPF was mainly added to avoid too many false
positives in these recordings.

Table 4.3: Number of counted bubbles in training set recordings with no bubbles

Recording #
without bubbles

1 2 3 4 5 6 7 8 9 10 11 12

Number of
detected bubbles

0 0 0 1 0 1 2 1 0 1 0 0

4.3 Test Recordings

The test recordings in this project consisted of recordings from two patients going through
heart surgery, and 18 during catheter intervention to fix heart defects. Figure 4.13a
shows the ratio of the maximum bubble amplitudes and the background signal in dB
for the complete test set.
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(a) All bubbles in the test set (b) All false bubbles in the test set

Figure 4.13: EBR of the complete test set

In all recordings of the test set, 1623 bubbles were counted. Just over 400 of these
had a maximum amplitude 11 dB above the background signal. Some of the bubbles
had an EBR of up to 45 dB but most were below 25 dB. These will be looked into more
when considering the two types of patients separately. Of the total number of detected
bubbles, most were false positives. 1337 detected bubbles were not detected manually,
or were double detections of the same bubble. This will be analyzed later in this chapter.

The total number of manually and automatically detected bubbles, as well as the
number of false positives and missed detections are shown for each patient in the test
set in table 4.4. The 18 catheter intervention patients are shown on top, with the results
of the 2 heart surgery patients below.
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Table 4.4: Results from test set

Patient
Manually
Counted

Automatically
Counted

False
Detections

Missed
Detections

Correct
Detections

Catheter
Intervention

Patients

1 - - - - -
2 7 19 17 5 2
3 29 24 8 13 16
4 13 72 63 4 9
5 78 400 328 6 72
6 - - - - -
7 12 13 10 9 3
8 1 2 1 0 1
9 9 34 26 1 8

10 7 220 216 3 4
11 0 2 2 0 0
12 0 21 21 0 0
13 24 102 83 5 19
14 0 16 16 0 0
15 148 316 226 58 90
16 19 19 4 4 15
17 8 78 74 4 4
18 - - - - -

Total 355 1338 1095 112 243

Heart Surgery
Patients

1 21 88 69 2 19
2 40 197 174 17 23

Total 61 285 242 19 42

There are large variations in the number of false and missed detections in the test
set. Catheter intervention patient 5 has 328 false detections in 60 minutes, patient 10
has 216 in 40 minutes, while patient 15 has 226 false positives in 41 minutes. Other
patients, like catheter intervention patient 8, 11 and 16 have only 1, 2 and 4 false detec-
tions respectively, detected within 30 to 45 minutes. Some clouds were also manually
counted, but are not included in table 4.4. None of them were counted as clouds by the
algorithm, but most were detected as single bubbles. In total, 21 clouds were manually
detected, where 13 were in catheter patient 5. 2 clouds were counted in catheter patient
9 and 15, while 4 clouds were manually counted in surgery patient 2. The 4 clouds were
counted as multiple single bubbles by the algorithm, and caused 13 of the false detec-
tions. This is shown in the m-mode image in figure 4.14. As before, the red circles are
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manually counted bubbles, green stars are correct automatic detections, while white
stars are false positives. The blue circles are manually detected clouds.

Figure 4.14: 4 clouds counted as multiple single bubbles

To get an overview of what types of artefacts or mistakes contribute most to the false
positives in the test set, all falsely detected bubbles in the catheter intervention patients
with no manually counted bubbles, and catheter intervention patient 2 through 5 were
looked into in detail. In catheter patient 2, 3, 4, 5, 11, 12, and 14, a total of 455 fake
bubbles were detected in 257 minutes, or 4.3 hours. This means that, on average, 1.77
bubbles were falsely detected every minute in the test set. The false positives were cat-
egorized into six different groups as shown in table 4.5.

Table 4.5: Number of false positives in each category of a smaller group of recordings

Type of false detection Number of detected bubbles

Cyclic variations
with heart frequency

385

Movement artifact 45
Double detection 15

Cloud 4
Overlooked bubble 3

Pulsations of the artery wall 2
Uncertain bubble 1

There were most false positives due to cyclic variations that follow the heart fre-
quency in the analyzed data set. Roughly 84.6% of the 455 false detections were be-
cause of cyclic variations. In these cases, each pulsation of a higher intensity signal
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lasts roughly one heart cycle and look like the example shown in figure 4.15 from pa-
tient 5 where two false positives are marked. These variations can be seen in almost all
recordings in varying degrees. To avoid detecting the signals, the background median
filter has to be longer than one heart cycle, roughly 0.25 seconds. In the training set this
was not a problem, and the median filter was set equal to roughly 0.246 seconds as a
longer window resulted in more false detections in these recordings.

Figure 4.15: Cyclic variations with the heart frequency causing false positives

The second most common cause of false detections in the analysis was movement
artifacts as previously described. An example is shown in figure 4.16a. Pulsations of
the artery wall can also cause the algorithm to detect more bubbles than are actually
present. These pulsations are also cyclic, but are shorter in time and depth than the
example shown above. Although this did not give that many false positives in the test
set, an example from patient 18, which was taken out as described in chapter 3.1.1 but
had a lot of false detections due to this, is presented in figure 4.16b.
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(a) Movement artifact (b) Pulsations of the artery wall

Figure 4.16: False positives due to two different reasons

15 of the 455 false bubbles in this analysis were caused by double detections of the
same bubble signal. These have not been removed by the function removeDuplicates in
the automatic detection algorithm because they were all too far away from each other,
either in time, depht or both. 3 of the bubbles look like bubble signals that have been
overlooked and not counted by mistake in the manual detection, while 4 automatic
bubble detections were manually counted as clouds. An example of a duplicate detec-
tion and a cloud being counted as a bubble, as well as two false detections due to cyclic
variations with the heart frequency, is shown in figure 4.17. The cloud is marked by a
blue circle in depth 23 around 56.6 seconds.

Figure 4.17: Detected bubbles in catheter intervention patient 5

The last cause of false positives observed in the analysis was an automatically de-
tected bubble that was manually detected as an uncertain bubble. This is not directly
a false positive, and the fact that the algorithm detected it might suggest that it actually
is a bubble signal. There is only one example of this in the smaller analysis, which is
shown in figure 4.18.
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Figure 4.18: A bubble marked as uncertain in the manual detection that was detected as a bubble
by the algorithm

The yellow circle in figure 4.18 in depth 20 at 120.15 seconds marks a bubble that
was manually counted as a possible bubble. This was detected twice by the automatic
detection algorithm, but neither were marked as correctly detected bubbles.

A similar tendency to the smaller data set that was analysed, can be seen in the
remaining recordings. In one recording of catheter intervention patient 15, a lot of false
detections were done in the beginning of the signal in multiple depths due to cyclic
variations that followed the heart frequency. The m-mode image and the power signal
in dB showing the amplitudes are shown in figure 4.19.

(a) M-mode image (b) Power signal in depth 11

Figure 4.19: Many false positives in catheter intervention patient 15

The power signal in figure 4.19b shows how the part of the signal before 100 sec-
onds, also shown in depth 11 of the m-mode image of figure 4.19a, has a much lower
amplitude than the rest of the signal. All the diastolic velocities, diastiole is the phase
of the heart cycle when the heart is filled with blood, are close to 0 in the beginning of
the recording, so the cyclic amplitude variations are very large. This resulted in a lot of
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false bubbles in depth 7 to 16 at the beginning of the recording. The rest of the power
signal mostly stayed around 20 dB.

4.3.1 Heart Surgery Patients

In the heart surgery patients, multiple recordings were done before, during, and after
the surgery of both patients. The total number of bubbles with their maximum ampli-
tude above the background signal of the individual patients are shown in figure 4.20.

(a) Heart surgery patient 1 (b) Heart surgery patient 2

Figure 4.20: EBR of both heart surgery patients

Although there are more bubbles detected in heart surgery patient 2, the distribu-
tion of the maximum amplitude above the background signal is similar in shape. Most
detections have a maximum amplitude between 10 and 12 dB above the background
signal, while a few have a relative amplitude of up to 24 dB. The combined EBR dis-
tribution with the total number of bubbles in both heart surgery patients is shown in
figure 4.21.
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Figure 4.21: EBR of both heart surgery patients combined

In the two heart surgery patients, 285 bubbles were detected. Nearly 80 of these
had an EBR of 10 dB. There were, however, some bubbles with up to 24 dB amplitudes
above the background. Mostly, the EBR stayed between 9 dB and 14 dB, which again
shows that the threshold should not be any higher unless a lot of these detections are
false positives.

242 of the 285 detected bubbles in the two heart surgery patients were false detec-
tions. A histogram showing the distribution of the EBR in these fake bubbles is shown
in figure 4.22.

Figure 4.22: EBR of false detections of both heart surgery patients

Most of the detected bubbles are false positives, especially the ones with a lower
EBR. There are some correct detections with an EBR of 11 dB, but 70 of these nearly 80
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bubbles were falsely detected. This indicates that the threshold could have been higher
when considering these two patients alone.

4.3.2 Catheter Intervention Patients

The recordings of 16 patients going through catheter interventions were analysed, and
the total results are shown in figure 4.23.

Figure 4.23: EBR of all catheter intervention patients

In the catheter intervention patients, 1338 bubbles were counted in total, most of
which had a maximum amplitude 10 or 11 dB above the background signal. There were
some bubbles with an EBR of up to 45 dB, but most stayed below 25 dB.

There were many fake bubble detections in the catheter intervention patients as
shown in figure 4.24. The specific number of false positives for each catheter patient is
presented in section 4.3. The EBR of the 1095 false positives have a similar distribution
to all detected bubbles, with a peak at 10 to 11 dB. Some detections in the catheter
patients had a maximum amplitude up to 45 dB above the background signal, and most
of these seem to be false when considering the histogram in figure 4.24.
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Figure 4.24: EBR of false detections of all catheter intervention patients
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5.1 Threshold

In the research report Improved Detection of Microbubble Signals Using Power M-Mode
Doppler [Saqqur et al. [2004]], the threshold was set 3 dB above the maximum back-
ground blood flow signal. Using the maximum background signal is a very imprecise
way of calculating the threshold, and was not used in this project. Instead, the thresh-
old was found to work best for the training set 9 dB above the background signal found
by median filtering. This gives an estimated mean background signal of each point, cal-
culated by the nearest values. Due to this, the threshold is higher than the 3 dB found
above the maximum signal in [Saqqur et al. [2004]].

Although different thresholds could have worked better for individual data, 9 dB
was the best compromise. This provided as many correct detections without too many
false positives in the training set. Even though more correct detections could be done
by lowering the threshold or increasing the cutoff frquency, this increased the number
of false detections by a lot. An example can be seen in table 3.5 where a cutoff frequency
of 30 Hz and a threshold 8 dB above the background signal gave 69 correct detections.
The number of false positives in this case was 51, a lot compared to the 10 false positives
with the chosen parameters. In comparison, only 10 less missed detections were done.

There are two types of mistakes to consider. Firstly, the number of false detections
is important because it could indicate many embolis at times where only cyclic vari-
ations are present. This type of mistake does not affect the patient directly, but gives
the wrong indication of what medical procedures cause air bubbles. The second type
of mistake, missed detections, could be more severe as large bubbles can damage the
patient. However, larger bubbles are easier to detect by the algorithm as the EBR, max-
imum emboli amplitude to background amplitude ratio, is larger, meaning the signal is
higher above the threshold than for smaller bubbles.

In conclusion, with 59 correct bubble detections and 10 false positives, a threshold
9 dB above the background signal gave the best results in the training set. Although
more correct detections could be made, the number of false detections increased by
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so much more that it outweighed the benefits, at least assuming all missed bubbles
were of a smaller size. Different thresholds worked best for different recordings, and
the variations were very large in some cases, which might explain poor results in some
of the recordings.

5.2 Training Set

5.2.1 Pilot Recording

There are a few reasons why the automatic detection algorithm missed bubbles or count-
ed too many in the pilot recordings. The results are presented in section 4.2.1. The
missed bubbles will be discussed first. These are bubbles that were counted manually,
the red circles in figure 4.3, but were not detected as bubbles by the algorithm. Some of
these bubbles in pilot recording 1 had very low intensity, as seen in table 4.2 and figure
4.11, and the intensity might not be high enough compared to the background signal to
be detected. Some other examples, like in figure 4.12, had quite high intensity, but were
still not counted. This could be due to a generally higher background signal, or high in-
tensity signals close by which will bring the estimated background signal and threshold
up.

There were no false positives in pilot recording 1 with the final settings of the algo-
rithm. There were not that many correctly detected bubbles either due to the threshold
being higher than needed for this specific recording. However, with more correct detec-
tions using a lower threshold, the more false detections would be made as well. Again, a
compromise must be made between the number of correctly detected bubbles and the
number of false detections.

The best possible results found for pilot recording 1 were 13 correct detections, 8
false and 13 missed by having no filtering and a threshold 6 dB above the background
signal. These are not great results either, and provided up to 140 false detections for the
remaining recordings in the training set. There were generally not very good results for
pilot recording 1 compared to the other data sets with optimised settings.

Pilot recording 2 only had five manually counted bubbles where three were counted
correctly. One false detection was made, and two were missed. Two missed bubbles is
not that much, but the maximum amplitude of one of these was 26 dB. The background
signal just before the missed bubble signal was, however, also quite high at 21.9 dB,
which is why the bubble was not detected. The second bubble had a maximum am-
plitude of 12 dB with an estimated 13.8 dB background signal just before the bubble.
The m-mode image of the two bubbles is shown in figure 4.4b, where they visually do
not seem to stand out from the background that much. The recording is quite long, so
the fact that only one false detection was made is a good sign. On the other hand, it is
difficult to say whether 3 correct detections is good with so few bubbles present.

5.2.2 Remaining Training Set

As seen in figure 4.5 and table 3.5, the results using thr esh_var = 9 dB and cutoff fc =
20 Hz gave OK results, but not the best for all recordings in the training set. Training
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recording 1, seen in figure 4.5a, provided quite good results with 34 correct and no false
positives. The recording had 49 manually counted bubbles in total which means that 15
were missed. The best results of recording 1 was with no filtering and thr esh_var = 9.5
dB. This gave 40 correct detections with no false positives but provided bad results for
the recordings without bubbles. The missed recordings, included in figure 4.9 showing
the EBR of the complete training set, seemed to be due to their intensity being slightly
below the threshold, either because the background signal around the bubble was too
high, or because the intensity of the bubble was relatively low. This might be due to
the methods used to estimate the background signal. In this project, median filtering
with a window size of 0.25 seconds was used, but alternatives should be considered for
further development of the algorithm.

Recording 2, seen in figure 4.5b, had three false positives. Most of the manually
counted bubbles were detected, only missing 3 in the lower depths (9 to 11). It did,
however, falsely detect three bubbles, two of which were in depth 12, earlier in time
than the actual bubbles. The background signal seems to vary a lot here, indicating
cyclic variations causing false detections. The last false positive was within the group of
correctly detected bubbles. By closer inspection, it does look like a bubble signal that
might have been missed in the manual counting. The signal is presented in figure 4.6
in the previous chapter. As there are so many bubbles close together in this recording,
it seems like the function that compares detected bubbles to manually counted ones
might make some mistakes. It is difficult to determine exactly which bubbles are de-
tected where as the time and depth might vary from the manual counting due to the
algorithm using the exact maximum intensity of the bubble in the detection. Another
thing to consider is that the algorithm might detect the same bubble in multiple depths
up to 3 depths apart from the manual detection, but only keeping one of them. If the
one furthest apart is kept, it is more difficult to see afterwards which bubble the green
star actually detects.

The EBR of most detected bubbles in the complete training set was between 10 and
12 dB as presented in figure 4.8. This means that the maximum amplitude of most
bubbles were 10 to 12 dB above the background signal just before the bubble. Some
bubbles had an amplitude up to 20 dB above the background, but most had a relative
amplitude below 14 dB. The larger a bubble is, the more potential damage it can do to
the patient. The large bubbles in the training set are therefore most important to detect,
as long as they are actual bubble signals and not noise.

A histogram showing the distribution of the EBR of each missed bubble in the train-
ing set is in figure 4.9. There were 39 missed bubbles in total. The deviations in the fig-
ure could be explained by the fact that the maximum amplitudes are from the manual
detections, while the background signal is estimated with mean filtering of the power
signal that sometimes had different amplitudes than the manually registered ones in
the same indexes. This seems to be the case for all missed bubbles with a maximum
amplitude more than 9 dB above the threshold in figure 4.9. They should, however, be
counted. One reason for the differences in the maximum amplitudes could be the low
pass filtering of the power signal. This should not change the bubble signal, but with
the wrong cutoff frequency, it could happen. This is why the EBR of some bubbles are
below zero, or higher than the threshold. One missed bubble had a relative size be-
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tween 20 and 25 dB above the background signal according to the histogram. In this
case, the manually detected maximum amplitude was a lot higher than the automat-
ically detected amplitude and background signal. The background was estimated at
15.1 dB just before this bubble, with a maximum amplitude of 20.7 dB. This is not more
than 9 dB above the background signal which it needs to be for the algorithm to detect
it. The manually detected maximum amplitude, however, was 36 dB, which is 20.9 dB
above the background. Most of the missed bubbles with a relative size between 0 and
10 dB seemed to have approximately the same estimated amplitude from the manual
and automatic detection. These bubbles might not be critical to detect as their sizes are
relatively small, assuming the maximum bubble amplitude and background signal are
correctly estimated.

The distribution of sizes of the false positives in the total training set is presented in
figure 4.10. 10 bubbles were falsely detected in the training set, were 6 of them had a
maximum amplitude between 9 (the threshold) and 10 dB above the background signal.
These are just large enough to be counted and would not be detected with an increased
threshold value. The remaining 4 bubbles had a relative size between 10 and 14 dB,
which could imply large bubbles. However, these are from higher intensity signals, ei-
ther because of variations in the background signal, or from noise.

5.3 Test Recordings

The complete test set consisted of 2 heart surgery patients with 57 and 69 recordings
each, and 16 catheter intervention patients with a varying number of recordings. 1623
bubbles were detected in total of both groups of patients, with a relative size distribu-
tion presented in figure 4.13a. Most of these bubbles had a maximum bubble amplitude
to background amplitude ratio (EBR) between 10 and 15 dB with a few exceptions which
will be discussed later.

There were generally many false positives in the test set, with up to 328 false detec-
tions in one of the catheter intervention patients. In total, 1337 of the 1623 detected
bubbles were false positives, roughly 80%. This is a lot, and most were caused by cyclic
variations based on the smaller data set were all false detections were looked into in
detail. From the results in section 4.3 and table 4.4, the total length of the three patients
with most false positives, and the three patients with least false positives were roughly
the same. The total length of all recordings of each patient was between 30 and 60 min-
utes. Although catheter patient 5, which had most false detections at 328, also had the
longest total recording time at 60 minutes, patient 10 and 15 also had many false de-
tections with a total recording time of 40 and 41 minutes. This is roughly the same as
the total recording time of the patients with fewest false positives. This means that the
time of the recordings do not greatly affect the number of false detections. However, if
the false positives are due to cyclic variations, a longer recording time will lead to more
false positives.

Nearly 70% of the manually counted bubbles in the test set were detected correctly
by the automatic detection algorithm. In the catheter intervention patients, a total of
243 bubbles were correctly detected compared to the 355 manually counted bubbles.
In the heart surgery patients, 43 bubbles were correctly detected of the 61 manually
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counted. All in all, the largest problem in the detection algorithm seems to be the num-
ber of false detections. A lot of bubbles are missed as well, but this is connected to the
number of false positives as this number increases with more correct detections. Most
false detections are due to cyclic variations that follow the heart frequency. This should
be avoidable in a future version of the algorithm by considering the length of a heart
cycle and when these types of signals show up.

The parameters found to work best for the training set were not optimal for all
recordings of the test set. Some patients of the test set had quite good results with few
false and missed bubbles, but others had a lot of false and missed detections. The re-
sults in table 4.4 show the total number of bubbles of all recordings in each patient.
Generally, by rough inspection, it seemed like most false positives in recordings with
many fake bubble detections were due to cyclic variations. By lowering the threshold
in the algorithm, more correct detections were done in the training set, but more false
positives were also detected. This is probably because the cyclic variation differ a lot
in intensity and more of them were detected with a lower threshold. If a method is in-
cluded to detect these variations and avoid counting them as bubbles, the threshold
could be set lower, which would provide more correct detections. One way would be to
look at the complete signal and check if any higher intensity signals appear frequently
with certain intervals, indicating cyclic variations. These indexes and depths could then
be saved in a matrix, in a similar way to the artefact detection in the algorithm, to dis-
miss of any bubbles being detected at these specific times and depths. The current
threshold is too high for most recordings of the training set, and probably the test set,
but was set this high to avoid false positives. The parameters in the algorithm, like the
threshold, are difficult to set to one value fitting all recordings due to large variations
in each patient. Some parameters that are now set the same for each patient, should
maybe be calculated in a different way based on the signal of each recording.

There were also false detections due to movement artifacts, pulsations of the artery
wall, double detections and bubble signals that were overlooked in the manual detec-
tion. All of these categories of false positives can possibly be avoided in a new version
of the algorithm. Cyclic variations were not particularily a problem in the training set,
and was therefore not properly compensated for in the algorithm. There were a lot of
double detections in the training set as well, but all of these were within 3 or 4 depths
from each other, and no more than 0.5 seconds apart. In the test set, double detections
were done despite of the function to remove duplicates because they were further away
from each in time, depth or both. Movement artifacts and pulsations of the artery wall
were not largely represented in the training set either, and could be better avoided in an
improved algorithm.

The rest of the test set results will be discussed in two separate sections. First, the
detected bubbles of the 2 heart surgery patients will be considered, before talking about
the results of the 16 catheter intervention patients.

5.3.1 Heart Surgery Patients

The two patients going through heart surgery that were analysed in this project each
had multiple recordings pre, during and post surgery. Patient 1 had 2 recordings pre
surgery, 16 during and 39 post surgery, while patient 2 had 4 pre, 16 during and 51 post
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surgery.
All detected bubbles in total of the three instances of each patient is presented in

figure 4.20. They both follow a similar distribution with most detected bubbles having
a maximum amplitude between 10 and 12 dB above the background signal. In patient
1, 88 bubbles were detected, three of which had a maximum amplitude more than 18
dB above the background signal as seen in figure 4.20a. Similarily for patient 2, some
bubbles were detected with a maximum amplitude up to 24 dB above the background
signal. There were 197 detected bubbles in total for patient 2. All bubbles naturally have
an amplitude more than 9 dB above the background as this is the threshold decided
for a bubble to be detected. There were 174 false positives in heart surgery patient 2,
where 13 were due to 4 clouds being detected as single bubbles, as presented in figure
4.14. This is probably because the signal did not stay above the threshold constantly
for a long enough time period. It also seems like the maximum length of a singular
bubble, or the minimum length of a cloud, is set too high as this fit the training set
best. However, as no clouds were manually counted in the training set, this parameter
is likely not ideal.

A histogram showing the combined results of the maximum amplitudes of the 285
detected bubbles is presented in figure 4.21. Nearly 80 bubbles had an amplitude 10
dB above the background signal, while the majority had an EBR between 9 dB and 14
dB. The distribution curve flattens when considering bubbles with an amplitude more
than 15 dB above the background signal. The bubbles with a large EBR seem to be large
in size and are important to detect as they could lead to the most serious issues for the
patient. Bubbles with smaller amplitude and relative size do not cause as dangerous
problems and are not as crucial to detect.

The difference in maximum bubble amplitude and background signal of the false
positives in the two heart surgery patients is shown in figure 4.22. The plot follows
the same distribution as the total bubbles, with a peak of 70 bubbles with an EBR of
11 dB. Some fake bubble detections have a maximum amplitude of up to 24 dB above
the background, which usually indicates bubbles with a large radius that can be more
harmful. These signals could be from artifacts that were not recognised or shorter high
intensity spikes in the signal.

5.3.2 Catheter Intervention Patients

There were 16 patients undergoing catheter intervention to fix heart defects in the test
set of this project. The total number of detected bubbles in these patients was 1338,
where most had an EBR between 10 and 15 dB as seen in figure 4.23. A few had an
EBR up to 45dB, which is very large and indicates a large bubble size assuming they are
signals from real bubbles and not artifacts, but most stayed below 25 dB.

There were many false positives in the catheter intervention patients as seen in fig-
ure 4.24. 1095 of the 1338 automatically detected bubbles were false positives, and
some of them had an EBR of up to 45 dB. From this it seems like most detected bubbles
with an apparently large bubble radius were false positives. Most of the falsely detected
bubbles did, however, have an EBR between 10 and 15 dB, with nearly 350 bubbles 11 dB
above the background. 3 of the catheter intervention patients had manually detected
clouds, although no clouds were automatically detected. 13 clouds were detected in
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patient 5, 2 in patient 9, and 2 in patient 15. These were all detected as single bubbles,
where some were disregarded as double detections if they were too close to other bub-
ble detections. The fact that no clouds were automatically detected indicates that the
limit between single bubbles and clouds is too high. Currently, a high intensity signal
needs to stay above the threshold for more than 40 times the expected bubble length as
this gave the best results in the training set. With a lower limit, manually counted sin-
gle bubbles were detected as clouds. As there were no cloud signals in the training set,
this was the only criteria to follow. It also gave correct cloud detections in the shorter
recordings that were used in early stages of the development without being part of the
training set.

5.3.3 Main Cause of False Positives

As presented in table 4.5, one type of artifact caused a lot more false positive detections
in the test set than any other. In this analysis, all patients with no manually counted
bubbles, and catheter patient 2 through 5 were included as these had a varying number
of false detections and hopefully reflects the overall trends of the test set. Of the total
455 false positives in the smaller analysis, 385 were due to cyclic variations with heart
frequency. This also caused two false detections in training recording 2, and hugely
impact the results of the test set. There clearly needs to be a method of detecting cyclic
variations so that they are not counted as bubbles.

The second most prominent type of false detection was due to movement artifacts.
This also gave a few false detections in the training set, but was difficult to avoid with
the current algorithm going through one depth at a time. 45 of the 455 false positives in
the analysis in table 4.5 were due to movement, and a solution to recognise them should
be included allthough it is not as critical as the cyclic variations. Double detections is
also a problem in the test set although there already is a function to remove duplicates.
In these cases, the duplicate detections were further away from each other than the
limits set in the duplicate removal function in the algorithm. The limits were set from
the results of the training set so that no duplicates were detected in these, but may have
to be changed to fit other recordings. This did not, however cause a lot of false positives
with only 15 of the 455 in the smaller analysis.

Four more types of false detections were observed in the analysis, but none of them
gave a lot of false detections. 4 of the false positives were manually counted as clouds,
3 were due to bubbles possibly overlooked in the manual counting, 2 were because of
pulsations of the artery wall, and 1 was manually counted as an uncertain bubble. There
is no way to improve the number of false detections due to overlooked or uncertain
bubbles in the algorithm, but pulsations of the artery wall was also observed in heart
surgery patient 2, and may be something to consider in further development of the
algorithm.

5.4 Sources of Error

As presented in the discussion on the results from the pilot recording, bubbles might
have too low intensity to be counted as bubbles while noise could be seen as a bubble
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signal by the algorithm.
Although this does not seem to provide big issues for the algorithm in a recording

without too much noise, artifacts from medical instruments can be a big factor. The al-
gorithm might not register all artifacts which can lead to false detections, or the artifacts
could increase the overall background intensity, and therefore the threshold, leading to
missed detections if the bubble signals are too weak. Movement artefacts is also a large
problem. No solution to this was found in the project, but might be possible in further
development of the algorithm. The algorithm also did not recognise cyclic variations
with the heart frequency, resulting in a lot of false positives in the test set.

It is difficult to know where to separate bubbles and clouds. In this project, the limit
was set by trial and error on the recordings in the training set, but an appropriate limit
might vary from patient to patient. The signals from different people can be very differ-
ent, which can lead to the algorithm working very well for some patients, and poorly for
others. An example of this is the recordings in the training set which all needed different
values of the variable thresh_var in order to detect bubbles as correctly as possible.

An important factor is that there were not a lot of recordings or patients in the train-
ing set with bubbles. There were enough to see how the algorithm behaves in some
different cases, but probably not enough to get a full understanding of how the differ-
ent parameters should be chosen. An example of this, as previously mentioned, is the
fact that the algorithm detects some cyclic variations with the heart frequency as bub-
bles. Although this phenomena caused two false positives in recording 2 of the training
set, it was not represented enough to get a proper basis to detect them. This was a huge
problem for some recordings of the test set, and caused most of the false detections.
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Chapter 6
Conclusion

The algorithm was developed and adjusted to fit a training set containing four record-
ings with bubbles, and 12 without. The most suitable cutoff frequency of an LPF was
found to be 20 Hz, which provided the most correct detections without too many false
bubbles, especially in the recordings where there were no bubble signals. Multiple
threshold values were tested, and the most suitable threshold for each recording var-
ied a lot. A fitting compromise was found to be 9 dB above the background signal esti-
mated by median filtering. In the articles presented in section 1.1.1, the threshold was
usually set 3 dB above the maximum background signal, meaning it is higher than the
background signal estimated using median filtering. As the values were estimated with
quite different methods, it is difficult to compare them directly, and the threshold found
in this project is naturally higher than the threshold found to work best in the article by
Saqqur [Saqqur et al. [2004]].

The algorithm developed in this project does detect air bubbles passing through the
ultrasound beam, and gives an estimated number of bubbles and their placement in
time and depth. It is also possible to calculate the relative size of each bubble from the
results of the algorithm, and each bubble can be shown visually in an m-mode image
of the complete signal in all recorded depths. The detection is, however, not perfect,
and the main problem is that a lot of bubbles are falsely detected. 1337 of the 1623
detected bubbles in the complete test set were false bubble detections, mainly due to
cyclic variations. In a smaller part of the test set, 385 of the 455 false positives, 84.6%,
were due to cyclic variations with the heart frequency.

The algorithm also considers clouds, or curtains, of bubbles, but the detection does
not work as wanted. In the training set, the limit between single bubbles and clouds was
set so that no manual bubble detections were automatically detected as clouds. This
was the only criteria used as there were no manually detected clouds in these recording.
There is a counter that counts clouds separate to the single bubbles, but as the limit was
set too high, no clouds were detected.

Artifacts are found before any bubble detection is done in the algorithm to avoid
falsely detecting them as bubbles. This part of the algorithm seems to work as intended
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when considering artifacts due to medical instruments. It does, however, not recognise
movement artifacts, cyclic variations or pulsations of the artery wall.

The relative size of each bubble was calculated as EBR, and can be seen from the
histograms presented in chapter 4. In general, the algorithm overestimates the number
of emboli present in the ultrasound image. Although the algorithm does not provide
exact numbers of bubbles in the blood stream, and sometimes gives wrong placements
of bubbles, it could be used to get an insight into when bubbles appear during surgery
and what procedure was done at the time. It saves a lot of time compared to manually
searching for bubbles, which needs to be weighed against the number of missed and
false detections of the automatic detection algorithm. The algorithm could possibly
be used to recognise bubbles missed in the manual counting if the results from the
algorithm and the manual results do not agree. Some examples of this was found in the
test set.

6.1 Future Work and Improvements

In order to get fewer false detections, the algorithm should neglect high intensity sig-
nals appearing in just one depth as this is probably not from a bubble, but could be a
movement artifact. Functions to recognise cyclic variations with heart frequency and
pulsations of the artery wall should also be included. These types of false detections
were not present in a large degree in the training set and were not considerd much in
the final algorithm. The cyclic variations differ a lot in intensity, so more were detected
with lower thresholds even though this also gave more correct detections. By includ-
ing functions to take care of false detections due to cyclic variations with the heart fre-
quency, and movement artifacts, the threshold could possibly be lowered, giving more
correct detections.

In the test set, some double detections were done because the bubbles stretched
further in time or depth than was represented in the training set. In developing the al-
gorithm further, a change in the limits of how far apart the signals can be to be detected
as correct bubbles should be considered, as long as they do not affect actual bubbles
close by. This does, however, only impact the comparison algorithm and situations
were manual detections have been done.

The current limit between singular bubbles and clouds is not fitted for the record-
ings of the test set. No clouds were automatically detected, while 21 were counted man-
ually. The length a high intensity signal needs to be for cloud detection is too high, and
many were counted as single bubbles instead. Recordings with manually counted cloud
signals should be included in the training set to get a better basis to distinguish single
bubbles from clouds.

The algorithm in this project is not implemented to work in real time, but a future
version that detects bubbles consecutively is possible. The algorithm uses roughly half
a minute to go through all relevant depths of the m-mode image in the pilot recording
of 30 minutes. This is a lot less than the length of the recording which is important if
the algorithm is to work in real time.

A possible future solution is to use machine learning to get an algorithm as good as
possible with more suited parameter values. At the current time, there are not enough
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recordings for this to be plausible. By including more data sets in the training of the
algorithm, parameters could also be better suited to the recordings. Some more record-
ings with clear examples of cyclic variations should be included in the training set so
these types of false positives can be avoided.

To get better result, another possible improvement is to have better resolution in the
recordings from the NeoDoppler and EarlyBird system. This could potentially improve
the detection algorithm, but will lead to other problems such as increased file size and
longer run time.

One way to detect some of the missed bubbles is by making the algorithm consider
multiple depths at the same time instead of just one like in this project. By determining
oblique "lines" in the m-mode image, the algorithm could detect the trail of the bub-
ble signal. This, in turn, would make bubble signals stand out more and avoid double
detections along one of these trails.

Further developments of the algorithm should also consider improvements of the
filtering as this may have impacted the maximum amplitude of some missed bubbles.
However, the best cutoff frequency is very much dependant on the patient and varies a
lot from recording to recording. Variations in patients should be considered in a larger
degree to get a detection algorithm more suited to each individual case.
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Appendix

Automatic Detection Algorithm

1 userVar = s t r u c t ( ’N’ ,100 , ’ thresh_var ’ ,9 , ’ n_start ’ ,7 , ’n_end ’ ,24 , ’ fc ’ ,20 , ’ n_artefact ’
,5 , ’ artLim ’ ,5 , ’ cloudLength ’ ,40 , ’ prevBub ’ ,200 , ’ minLength ’ ,2 , ’manual ’ , 0 ) ;

2 t i c ;
3 N = userVar .N; thresh_var = userVar . thresh_var ; n_start = userVar . n_start ; n_end =

userVar . n_end ; fc = userVar . fc ; n_artefact = userVar . n_artefact ; artLim =
userVar . artLim ; cloudLength = userVar . cloudLength ; prevBub = userVar . prevBub ;
minLength = userVar . minLength ; manual = userVar . manual ;

4 depthIncr = 0.0016;
5 %%
6 i f e x i s t ( ’D’ ) == 1
7 cmmode = D.Cmmode; %Gets the signal from opened f i l e
8 else
9 cmmode = f igh . UserData .Cmmode; %Gets signal s t r a i g h t from Eb software

10 end
11 t Incr = cmmode. timeAx ( 2 )−cmmode. timeAx ( 1 ) ; %Finds time increment for the signal
12 prf = 1/ tIncr ; %Pulse r e p i t i t i o n frequency
13 i f sum( strcmp ( fieldnames (cmmode) , ’ dBStep ’ ) ) ~= 1 %Checking i f cmmode. dBStep e x i s t s
14 cmmode. dBStep = 1 ; %I f not : set equal to 1
15 end
16 %% Plots the signal as m−mode image that i s l a t e r updated
17 f i g u r e (20) ; imagesc (cmmode. timeAx ,cmmode. depthAx/ depthIncr ,cmmode. PdB) ; colormap

gray ; colorbar ; gain=−55; crange = caxis ; hold on ;
18 %% Finds power in a l l depths
19 pow_dB = cmmode. dBStep* double (cmmode. PdB) ; %Power in dB for a l l depths
20 [ depth_iq , ~ ] = s i z e (pow_dB) ; %Finds number of depths
21 pow = 10.^(pow_dB/10) ; %Power for a l l depths
22 %% Low Pass F i l t e r
23 [ b , a]= butter ( 2 , fc /( prf /2) ) ; %Butterworth f i l t e r of 2nd order
24 pow_dB = f i l t e r (b , a , pow_dB, [ ] , 2 ) ; %F i l t e r s pow_dB
25 %% Checks for a r t e f a c t s in depths 1 : n_artefact
26 art_detect = zeros ( 1 , length (cmmode. PdB) ) ;
27 for x = 1 : n_artefact
28 Pow_dB = pow_dB( x , : ) ; %Power in dB for depth n
29 Pow = 10.^(Pow_dB/10) ; %Power in depth n
30 bgs_dB = 10* log10 (Pow) ; %Background signal
31 thresh = median( bgs_dB ) + thresh_var ; %Threshold
32 for a = 1 : length (Pow_dB)
33 i f (Pow_dB( a ) > thresh−1) && ( a > artLim ) && ( a < length (Pow_dB)−artLim )
34 art_detect ( a ) = 1 ; %This index i s registered as an a r t e f a c t
35 art_detect ( a−artLim : a+artLim ) = 1 ; %Some a r t e f a c t s are s l i g h t l y oblique
36 end
37 end
38 end
39 %% Autocorrelation Estimator to Calculate Doppler s h i f t
40 t = double (cmmode. timeAx ) ;
41 v e l o c i t y = double (cmmode. f i ) /128*double (cmmode. vNyquist ) ;
42 cb = 1570; f0 = 7812500; %f0 from EarlyBird
43 fd = (2* f0 * v e l o c i t y ) /cb ; T = abs ( 1 0 . / fd ) ; %fd i s the Doppler s h i f t , T the expected

length of a potential bubble in each point
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44 time_bubble_all = { } ; t ime_c_all = { } ; bgs_dB_all = { } ; t h r e s h _ a l l = { } ; maxval_all
= { } ; Pow_dB_all = { } ;

45 %%
46 for n = n_start : n_end
47 Pow_dB = pow_dB(n , : ) ; %Power in dB for depth n
48 %% The Automatic Detection Algorithm
49 [ bubble_bgs , bubble_amp , nbub, time_bubble , time_art , time_c , maxval , thresh ,Pow, bgs_dB

] = detectBubble (n , minLength , prevBub , cloudLength ,N, Pow_dB, T , tIncr , t ,
art_detect , thresh_var ) ;

50 %time_bubble −> time vector for bubbles
51 %time_art −> time vector for a r t e f a c t s
52 %time_c −> time vector for clouds
53 %maxval −> max value of each bubble , used for plo tt i ng
54 %thresh −> threshold of t h i s depth ( changes every Nth index )
55 time_bubble_all {n} = time_bubble ; bgs_dB_all {n} = bgs_dB ; t h r e s h _ a l l {n} = thresh

; bubble_amp_all {n} = bubble_amp ; bubble_bgs_all {n} = bubble_bgs ;
t ime_c_all {n} = time_c ; nbub_all {n} = nbub ; Pow_dB_all {n} = Pow_dB ; %Saves
the vector of every depth in a s t r u c t

56 end
57 %% Function for removing duplicates
58 [ time_bubble_all , bubble_amp_all , bubble_bgs_all , nbub_all ] = removeDuplicates (

bubble_amp_all , bubble_bgs_all , nbub_all , time_bubble_all , n_start , n_end ) ;
59 toc ;
60 %%
61 t i c ;
62 t ime_correct_al l = { } ; t ime_fake_al l = { } ; time_miss_all = { } ;

time_corr_other_depth_all = { } ; bubbles = 0 ; bubbles_correct = 0 ; bubbles_fake =
0 ; bubbles_missed = 0 ; bubbles_manual = 0 ; clouds = 0 ;

63 tb = [ ] ; nb = [ ] ; bgsb = [ ] ; ampb = [ ] ;
64 for n = n_start : n_end
65 bgs_dB = bgs_dB_all {n } ; thresh = t h r e s h _ a l l {n } ; Pow_dB = Pow_dB_all {n } ;
66 time_bubble = time_bubble_all {n } ; time_c = time_c_all {n } ;
67 i f manual == 1 %Comparison function i s run i f already manually counted
68 [ bubbles_manual , bubbles_correct , bubbles_fake , bubbles_missed , t ime_correct_al l

, t ime_fake_all , time_miss_all , time_corr_other_depth_all ] = compareBubbles
( crange , figh ,cmmode, n , time_bubble , t ime_correct_al l , t ime_fake_all ,
time_miss_all , time_corr_other_depth_all , bubbles , bubbles_correct ,
bubbles_fake , bubbles_missed ) ;

69 %time_correct −> time vector of c o r r e c t l y counted bubbles
70 %time_fake −> time vector of bubbles counted automatically but not manually
71 %time_miss −> time vector of bubbles counted manually but not automatically
72 %time_corr_other_depth −> time of c o r r e c t l y counted bubbles of other depths
73 end
74 %% P l o t t i ng the power signal and detected bubbles of one chosen depth
75 i f n == 22
76 f i g u r e (30) ;
77 plot ( t , Pow_dB, ’ c ’ ) ; hold on ;
78 plot ( t , thresh , ’ r ’ , t , bgs_dB , ’−−k ’ ) ;
79 plot ( time_bubble , maxval ( 1 : length ( time_bubble ) ) , ’m* ’ ) ; %Bubbles counted
80 plot ( time_c , maxval ( 1 : length ( time_c ) ) , ’b* ’ ) ; %Clouds counted
81 t i t l e ( ’Power Signal in dB, Depth 22 ’ ) ;
82 xlabel ( ’Time [ s ] ’ ) ; y label ( ’Power [dB] ’ ) ;
83 end
84 bubbles = bubbles + nnz ( time_bubble ) ; %Total number of bubbles for a l l depths
85 clouds = clouds + nnz ( time_c ) ; %Total number of clouds for a l l depths
86 %% In case any vectors are empty :
87 i f isempty ( time_bubble )
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88 time_bubble = i n f ;
89 end
90 for i = 1 : length ( time_bubble )
91 i f time_bubble ( i ) == 0
92 time_bubble ( i ) = i n f ;
93 end
94 end
95 i f manual ~= 1
96 %Plot m−mode image with counted bubbles , t h i s i s done in the comparison

function for already manually counted bubbles
97 f i g u r e (20) ;
98 plot ( time_bubble , n , ’ r * ’ ) ; caxis ( crange ) ;
99 xlabel ( ’Time [ s ] ’ ) ; y label ( ’Depth number ’ ) ;

100 end
101 tb = [ tb nonzeros ( time_bubble_all {n } ) ’ ] ; nb = [nb nonzeros ( nbub_all {n } ) ’ ] ; bgsb

= [ bgsb nonzeros ( bubble_bgs_all {n } ) ’ ] ; ampb = [ampb nonzeros ( bubble_amp_all {
n } ) ’ ] ;

102 end
103 bubbles_fake = bubbles − bubbles_correct ; %Total number of f a l s e l y detected bubbles
104 bubbles_missed = bubbles_manual − bubbles_correct ; %Total number of missed bubbles
105 toc ;
106 %% Functions
107 function [ bubble_bgs , bubble_amp , nbub, time_bubble , time_art , time_c , maxval , thresh ,Pow,

bgs_dB ] = detectBubble (n , minLength , prevBub , cloudLength ,N, Pow_dB, T , tIncr , t ,
art_detect , thresh_var )

108 Pow = 10.^(Pow_dB/10) ; %Power in depth n
109 F i l t e r e d = medfilt1 (Pow,N) ; %Median f i l t e r i n g using every Nth point
110 bgs_dB = 10* log10 ( F i l t e r e d ) ; %Background signal in dB
111 thresh = bgs_dB + thresh_var ; %Threshold
112 %%
113 a = 1 ; num_art = 0 ; c = 0 ; cloud_count = 0 ; prev = 0 ; bubbles = 0 ;
114 time = zeros ( s i z e ( t ) ) ; time_art = zeros ( s i z e ( t ) ) ; time_c = zeros ( s i z e ( t ) ) ;
115 bubble_bgs = [ ] ; bubble_amp = [ ] ; nbub = [ ] ;
116 for i = 1 : length (Pow_dB)
117 i f i >= a
118 b_length = 0 ;
119 l_expected = round (T(n , i ) / t I ncr ) ; %Expected length
120 a = i ; %S t a r t index for possible bubble
121 while (Pow_dB( a ) > thresh ( a ) ) && ( a < length (Pow_dB) ) %Finds how long

the signal stays above thresh + ending index
122 b_length = b_length + 1 ;
123 a = a + 1 ;
124 end
125 c = c + 1 ;
126 [ maxval ( c ) ,maxind ( c ) ] = max(Pow_dB( i : a ) ) ; %index and value of max point

from i ( s t a r t ) to a ( stops being above threshold )
127 i f ( i < length (Pow_dB) − maxind ( c ) ) && ( art_detect ( i + maxind( c ) ) == 1)
128 time_art ( i + round (maxind( c ) ) ) = t ( i + round ( maxind ( c ) ) ) ; %To mark

a r t e f a c t s in f i g u r e
129 num_art = num_art + 1 ;
130 e l s e i f ( i < length (Pow_dB) − maxind ( c ) )
131 for k = 1 : prevBub %To avoid bubbles very close together that are

probably the same one
132 i f ( i > k ) && ( time ( i − k ) ~= 0)
133 prev = 1 ;
134 end
135 end
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136 i f ( b_length > cloudLength * l_expected ) && ( prev == 0) %Minimum
length of cloud

137 cloud_count = cloud_count + 1 ;
138 time_c ( i + round ( maxind( c ) ) ) = t ( i + round (maxind( c ) ) ) ; %To mark

clouds in f i g u r e
139 e l s e i f ( prev == 0) && ( l_expected > 0) && ( b_length > l_expected /

minLength ) %Minimum length for bubble
140 bubbles = bubbles + 1 ;
141 bubble_amp( bubbles ) = maxval ( c ) ;
142 bubble_bgs ( bubbles ) = bgs_dB ( i ) ;
143 nbub( bubbles ) = n ;
144 time ( i + round ( maxind ( c ) ) ) = t ( i + round ( maxind( c ) ) ) ; %To mark

bubbles in f i g u r e
145 end
146 end
147 short = 0 ; prev = 0 ;
148 end
149 end
150 i f e x i s t ( ’ maxval ’ ) == 0 %In case there are no bubbles
151 maxval = 0 ;
152 end
153 time ( time==0) = nan ; time_bubble = ( time (~ isnan ( time ) ) ) ;
154 time_art ( time_art ==0) = nan ; time_art = time_art (~ isnan ( time_art ) ) ;
155 time_c ( time_c==0) = nan ; time_c = time_c (~ isnan ( time_c ) ) ;
156 end
157 %% Function to remove duplicates :
158 function [ time_bubble_all , bubble_amp_all , bubble_bgs_all , nbub_all ] = removeDuplicates

( bubble_amp_all , bubble_bgs_all , nbub_all , time_bubble_all , n_start , n_end )
159 for n = n_start : n_end
160 t_bub1 = time_bubble_all {n } ; %Times of detected bubbles in depth n
161 for m = n_start : n_end
162 t_bub2 = time_bubble_all {m} ; %Times of detected bubbles in depth m
163 for i = 1 : length ( t_bub1 )
164 for j = 1 : length ( t_bub2 )
165 d i f f _ t = abs ( t_bub1 ( i )−t_bub2 ( j ) ) ; %Distance in time between the

two bubbles
166 d i f f _ n = abs (n − m) ; %Distance in depth between the two bubbles
167 i f ( d i f f _ t < 0 . 5 ) && ( d i f f _ n < 4) && (n ~= m) && (

time_bubble_all {m} ( j ) ~= 0) %I f close enough in time and
depth

168 time_bubble_all {m} ( j ) = 0 ; %Removes duplicate
169 bubble_amp_all {m} ( j ) = 0 ;
170 bubble_bgs_all {m} ( j ) = 0 ;
171 nbub_all {m} ( j ) = 0 ;
172 end
173 end
174 end
175 end
176 end
177 end
178 %% Function to compare automatically detected and counted bubbles
179 function [ bubbles_manual , bubbles_correct , bubbles_fake , bubbles_missed ,

t ime_correct_al l , t ime_fake_all , time_miss_all , time_corr_other_depth_all ] =
compareBubbles ( crange , figh ,cmmode, n , time_bubble , t ime_correct_al l , t ime_fake_all ,
time_miss_all , time_corr_other_depth_all , bubbles_correct , bubbles_fake ,
bubbles_missed )

180 % A l l time vectors of bubbles , incl luding correct , f a l s e and missed bubbles in
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previous depths . Updated vectors as output
181 % Get e x c e l l data from Eb containing manually counted bubbles
182 ob=guidata ( f igh ) ;
183 fName= f u l l f i l e (ob . datapath , [ ob . filename ( 1 : 1 6 ) , ’ Hits . x l s x ’ ] ) ;
184 myTableBub=readtable (fName, ’ Sheet ’ , 1 ) ; %Counted bubbles
185 i f ~isempty (myTableBub)
186 tb=myTableBub . tb ; zb=myTableBub . zb ;
187 tbSec=dateNum2sec ( figh , tb ) ;
188 AmpdB=myTableBub .AmpdB;
189 for k = 1 : length ( zb ) %Converts the depths of bubbles to r i g h t format
190 [~ , zb_f ix ( k ) ] = min( abs (cmmode. depthAx−1e−3*zb ( k ) ) ) ;
191 end
192 end
193 %{
194 myTableCloud=readtable (fName, ’ Sheet ’ , 2 ) ; %Counted clouds
195 i f ~isempty ( myTableCloud )
196 tc=myTableCloud . tc ; zc=myTableCloud . zc ;
197 tcSec=dateNum2sec ( figh , tc ) ;
198 for o = 1 : length ( zc ) %Converts the depths of bubbles to r i g h t format
199 [~ , z c _ f i x (o) ] = min( abs (cmmode. depthAx−1e−3*zc (o) ) ) ;
200 end
201 end
202 myTableU=readtable (fName, ’ Sheet ’ , 3 ) ; %Uncertain bubbles
203 i f ~isempty (myTableU)
204 tu=myTableU . tu ; zu=myTableU . zu ;
205 tuSec=dateNum2sec ( figh , tu ) ;
206 for h = 1 : length ( zu ) %Converts depths of uncertain bubbles to r i g h t format
207 [~ , zu_f ix (h) ] = min( abs (cmmode. depthAx−1e−3*zu (h) ) ) ;
208 end
209 end
210 %}
211 %%
212 i _ c o r r = zeros ( 1 , length ( tbSec ) ) ; i_corr_other_depth = zeros ( 1 , length ( tbSec ) ) ;

i_miss = zeros ( 1 , length ( tbSec ) ) ;
213 time_corr_other_depth = zeros ( 1 , length ( tbSec ) ) ; time_fake = zeros ( 1 , length ( tbSec

) ) ; check_detected = zeros ( 1 , length ( time_bubble ) ) ;
214 time_miss = zeros ( 1 , length ( tbSec ) ) ; time_correct = zeros ( 1 , length ( tbSec ) ) ;

time_corr_check = zeros ( 1 , length ( tbSec ) ) ;
215 x = 0 . 1 ; t1 = 0 . 5 ; t2 = 0 . 3 ; a = 1 ; b = 1 ; l = 1 ;
216 for i = 1 : length ( tbSec ) %Checking in same depth so that e a r l i e r bubbles in other

depths won’ t " f i l l " the spot of a correct spot in the same depth
217 d i f f _ d = abs ( zb_f ix ( i )−n) ;
218 for j = 1 : length ( time_bubble )
219 d i f f _ t = abs ( tbSec ( i )−time_bubble ( j ) ) ;
220 i f ( check_detected ( j ) ~= 1) && ( d i f f _ t < t2 ) && ( d i f f _ d < x ) && ( (

isempty ( time_correct ) ) | | (~ismember ( tbSec ( i ) , time_correct ) ) ) && ( (
isempty ( time_miss ) ) | | (~ismember ( tbSec ( i ) , time_miss ) ) )

221 time_correct ( a ) = tbSec ( i ) ;
222 t ime_correct_al l {n } ( a ) = time_correct ( a ) ;
223 i _ c o r r ( a ) = i ;
224 check_detected ( j ) = 1 ;
225 a = a + 1 ;
226 end
227 end
228 i f ( d i f f _ d == 0) && ( ( isempty ( time_correct ) ) | | (~ismember ( tbSec ( i ) ,

time_correct ) ) ) && ( ( isempty ( time_miss ) ) | | (~ismember( tbSec ( i ) ,
time_miss ) ) ) %To only count bubbles close enough in depth that they
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should be counted
229 time_miss (b) = tbSec ( i ) ;
230 time_miss_all {n } ( b) = time_miss (b) ;
231 i_miss (b) = i ;
232 b = b + 1 ;
233 end
234 end
235 for i = 1 : length ( tbSec ) %Checking for other depths
236 for j = 1 : length ( time_bubble )
237 d i f f _ t = abs ( tbSec ( i )−time_bubble ( j ) ) ;
238 d i f f _ d = abs ( zb_f ix ( i )−n) ;
239 i f ( check_detected ( j ) ~= 1) && ( d i f f _ t < t1 ) && ( ( d i f f _ d == 1) | | (

d i f f _ d == 2) | | ( d i f f _ d == 3) | | ( d i f f _ d == 4) ) && ( ( isempty (
time_correct ) ) | | (~ismember( tbSec ( i ) , time_correct ) ) ) && ( ( isempty (
time_miss ) ) | | (~ismember( tbSec ( i ) , time_miss ) ) )

240 time_corr_other_depth ( l ) = time_bubble ( j ) ; %To get exact point for
pl ott ing

241 time_corr_other_depth_all {n } ( l ) = time_corr_other_depth ( l ) ;
242 i_corr_other_depth ( l ) = i ;
243 check_detected ( j ) = 1 ;
244 time_corr_check ( l ) = tbSec ( i ) ;
245 l = l + 1 ;
246 end
247 end
248 end
249 for l = 1 : length ( time_bubble )
250 i f ( check_detected ( l ) ~= 1)
251 time_fake ( l ) = time_bubble ( l ) ; t ime_fake_al l {n } ( l ) = time_fake ( l ) ;
252 end
253 end
254 bubbles_correct = bubbles_correct + nnz ( time_correct ) + nnz (

time_corr_other_depth ) ; %Counts non−zero elements in time vectors
255 %% I f any vectors are empty
256 i f isempty ( time_fake )
257 time_fake = i n f ; t ime_fake_al l {n} = time_fake ;
258 end
259 i f isempty ( time_correct )
260 time_correct = i n f ; t ime_correct_al l {n} = time_correct ;
261 end
262 i f isempty ( time_corr_other_depth )
263 time_corr_other_depth = i n f ; time_corr_other_depth_all {n} =

time_corr_other_depth ;
264 end
265 i f isempty ( time_bubble )
266 time_bubble = i n f ;
267 end
268 for i = 1 : length ( time_bubble )
269 i f time_bubble ( i ) == 0
270 time_bubble ( i ) = i n f ;
271 end
272 end
273 for i = 1 : length ( time_fake )
274 i f time_fake ( i ) == 0
275 time_fake ( i ) = i n f ; t ime_fake_al l {n} = time_fake ;
276 end
277 end
278 %Plot m−mode image with counted bubbles , updating f i g u r e 20
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279 f i g u r e (20) ;
280 plot ( tbSec , zb_fix , ’ ro ’ , tuSec , zu_fix , ’ yo ’ , time_bubble , n , ’ g* ’ , time_fake , n , ’w* ’ ) ;

caxis ( crange ) ;
281 bubbles_manual = nnz ( tbSec ) ; %Number of manually counted bubbles
282 xlabel ( ’Time [ s ] ’ ) ; y label ( ’Depth number ’ ) ;
283 end
284 %% Function to convert time vectors from EarlyBird to correct format
285 function t =dateNum2sec ( figh ,tNum)
286 %convert timeaxis tNum from detenum to seconds
287 ob=guidata ( f igh ) ;
288 t =(tNum−datenum(ob . acq_p . date_time ) ) *60*60*24;
289 end
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Blood and Bubble Simulation - Code by Hans Torp

1 % Respons s i n g l e s c a t t e r s and blood
2 % 2020.03.15 Hans Torp
3 % 2020.03.26 version 2
4 %%
5 close a l l ; c lear ; c l c ;
6 %addpath ( ’ / Users/ htorp /Dropbox/Hans/Matlab/ Field_II_ver_3_22_mac ’ ) ;
7 f i e l d _ i n i t ;
8 %% setup transducer
9 c=1540;%lydhastighet

10 f0 =7.8 e6 ;%frekvens
11 f s =300e6 ;
12 a t t = 0 . 5 ;%dB/cm/MHz
13 lambda=c/ f0 ;
14 elem_size =0.1e−3;
15 Rxd=5e−3;
16 set_sampling ( f s ) ;
17 i f e x i s t ( ’Th ’ ) , xdc_free (Th) ; c lear Th ; end ;
18 Th = xdc_piston (Rxd , elem_size ) ;
19

20 % Tx pulse
21 Tp=10/ f0 ;
22 impulse_response=sin (2* pi * f0 * ( 0 : 1 / f s : 2 / f0 ) ) ;
23 impulse_response=impulse_response . * hanning (max( s i z e ( impulse_response ) ) ) ’ ;
24 xdc_impulse (Th , impulse_response ) ;
25 e x c i t a t i o n =sin (2* pi * f0 * ( 0 : 1 / f s : Tp) ) ;
26 xdc_excitation (Th , e x c i t a t i o n ) ;
27 Nz=40;Nx=50;Ny=40;
28 xmax=8e−3;
29 ymax=6e−3;
30 zmax=40e−3;
31 xaxis=linspace(−xmax , xmax , Nx) ;
32 yaxis=linspace(−ymax, ymax,Ny) ;
33 zaxis=linspace (1e−3,zmax , Nz) ;
34 attCorr =10 .^(− zaxis *100* a t t /10* f0 /1e6 ) ;
35

36 %% x p r o f i l e
37 depth=20e−3;
38 %points =[ zeros (Nz, 2 ) , zaxis ’ ] ;
39 points =[ xaxis ’ , zeros (Nx, 1 ) , zeros (Nx, 1 ) +depth ] ;
40

41 [ rfZ , start_t ime ]= calc_hhp (Th , Th , points ) ;
42 x p r o f i l e =mean( rfZ . ^ 2 ) ;
43 x p r o f i l e = x p r o f i l e /max( x p r o f i l e ) ;
44 f i g u r e ( 1 ) ;
45 plot ( xaxis ,10* log10 ( x p r o f i l e ) ) ;
46

47 %% Doppler s ignal from si ngle buble
48 prf =9.76e3 / 4 ;
49 v=−0.03;
50 f i =60/180* pi ;
51 Nt=800;%number of timepoints 2*Nt+1
52 T=Nt/ prf ;
53 t =(−Nt : Nt ) / prf ; t =t ’ ;
54 y0=4e−3;x0 =0; z0=20e−3;%centerpoint of t r a j e c t o r y
55 points =[ x0−v * sin ( f i ) * t , y0+0* t , z0−v * cos ( f i ) * t ] ;%p o s i t i v e v e l o c i t y towards transducer (
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negative z direction
56 [ r fx , start_t ime ]= calc_hhp (Th , Th , points ) ;%Pulse echo response
57 [ Ntf , Nts ]= s i z e ( r f x ) ;
58 t f =start_t ime + ( 0 : Ntf−1)/ f s ;
59 zax1=c /2* t f ;
60 Qdec=10;
61 rfDec=resample ( rfx , 1 , Qdec) ;%decimate to f s =30 MHz
62 rfDec=rfDec /max( rfDec ( : ) ) ;
63 NtD= s i z e ( rfDec , 1 ) ;
64 iq1= h i l b e r t ( rfDec ) ;
65

66 f i g u r e ( 2 ) ;
67 nt=round (NtD/2) ;
68 subplot ( 2 , 1 , 1 ) ; plot ( t , r e a l ( iq1 ( nt , : ) ) , t , imag ( iq1 ( nt , : ) ) ) ;
69

70 mmode=20* log10 ( abs ( iq1 ) ) ;
71 subplot ( 2 , 1 , 2 ) ; imagesc ( t , zax1 ,mmode) ; colormap gray ; colorbar ;
72 caxis ([ −40 ,0]) ;
73

74 %% Blood and bubble s c a t t e r e r s
75 Trec =2;% recording time
76 Dvessel=3e−3;%diameter blood vessel
77 dz=c/2/ f s *Qdec ;%depth increment in zdirection
78 Nr=round ( Dvessel / sin ( f i ) /dz ) ;%N samples in z−direction
79 dt=1/ prf ;
80 NTrec=round ( Trec/ dt ) ;
81 sScatBlood=randn (Nr , NTrec ) ;% blood s c a t t e r e r s in blood vessel
82 % Bubble s c a t t e r e r s
83 sScatBubles =0* sScatBlood ; %%HERFRA: KAN LEGGE INN ENKELTBOBLER OG SKYER
84 nzBub=round (Nr/2) ;%bubble in center of blood vessel
85 tBub=Trec / 2 ; ntBub=round(1+tBub/ dt ) ;%bubble at time tBub
86 sScatBubles (nzBub , ntBub ) =500;%1000;%one buble in position (nzBub , ntBub ) in array

sScatBubles
87 tBub=Trec /2+0.3; ntBub=round(1+tBub/ dt ) ;%bubble at time tBub %tBub=Trec /2+0.03;
88 sScatBubles (nzBub , ntBub ) =500;%one more buble in position (nzBub , ntBub ) in array

sScatBubles
89 tBub=Trec /2+0.4; ntBub=round(1+tBub/ dt ) ;%bubble at time tBub %tBub=Trec /2+0.03;
90 sScatBubles (nzBub , ntBub ) =500;%one more buble
91 tBub=Trec /2+0.5; ntBub=round(1+tBub/ dt ) ;%bubble at time tBub %tBub=Trec /2+0.03;
92 sScatBubles (nzBub , ntBub ) =500;%one more buble
93 % Add cloud of bubles
94 tCloud = 0 . 1 ; ntCloud=round(1+ tCloud/ dt ) ;%s t a r t−time cloud
95 Tcloud = 0 . 2 ; Ncloud=round ( Tcloud/ dt ) ;% duration cloud
96 sScatBubles ( : , ntCloud + ( 1 : Ncloud ) ) =10*randn (Nr , Ncloud ) ;%l o t of randomly distr ibuted

bubbles
97

98 sScat=sScatBlood+sScatBubles ;
99 %% convolution to get s ignal from blood + bubbles ( t h i s w i l l take some time to

calculate . . . )
100 t i c
101 s= conv2 ( rfDec , sScat ) ;
102 iq= h i l b e r t ( s ) ;
103 toc
104 %% Display t o t a l s ignal
105 Nz= s i z e ( iq , 1 ) ;
106 zAx= z0 + (−Nz/ 2 :Nz/2) *dz ;
107 iqNoise =0.2*Nr * ( randn ( s i z e ( iq ) ) + i *randn ( s i z e ( iq ) ) ) ;%thermal noise
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108 iqTot=iq+iqNoise ;%iq signal including thermal noise
109 f i g u r e ( 3 ) ;
110 t rec = ( 1 : s i z e ( iq , 2 ) ) * dt ;
111 subplot ( 2 , 1 , 1 ) ;
112 nt=round ( s i z e ( iq , 1 ) /2) ;
113 plot ( trec , r e a l ( iqTot ( nt , : ) ) , trec , imag ( iqTot ( nt , : ) ) ) ;
114 subplot ( 2 , 1 , 2 ) ;
115 imagesc ( trec , zAx ,20* log10 ( abs ( iqTot ) ) ) ; colormap gray ; colorbar
116 gain=−60;
117 caxis ([−40 ,0]−gain ) ;
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