
Em
bla Trasti Bygland

Pow
er M

odeling of Com
plex D

esigns

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Embla Trasti Bygland

Power Modeling of Complex Designs

Master’s thesis in Electronics Systems Design and Innovation

Supervisor: Snorre Aunet, Knut Austbø

July 2020

Embla Trasti Bygland

Power Modeling of Complex Designs

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Snorre Aunet, Knut Austbø
July 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

In this project, a tool for making power models of designs at the Register Transfer Level

(RTL) is implemented. The generated power model is intended to be used with a power

estimation tool, to give an early, fast and accurate power estimate. Nordic Semiconductor

ASA issues this masters project with the motivation of making RTL simulations power-

aware. Discovering power bugs early in the implementation of a design may save iterations

in the Application Specific Integrated Circuit (ASIC) design flow, and thus reduce time to

market for a product.

The method for estimating power at the RTL called the top-down method was chosen for

the implementation. Among other desired qualities, it does not require a gate-level repre-

sentation of the design to produce a power estimate. This allows for power estimation to

be done concurrently to simulations for functional verification of the RTL, before synthesis

of the design.

The power modeling problem is divided into three tasks:

1. Extracting structural information from an elaborated SystemVerilog representation

of the design.

2. Extracting information about available cells and their power consumption character-

istics from the cell library.

3. Combining the structural representation with the cell- and power information re-

trieved, in order to create a power model.

In the implementation, the structure of the design is represented by a node tree, while a cell

library object was created to represent available cells from the cell library and their power

data. In order to produce a power model, the implementation takes sequences of generic

cells from the structure tree and replace them with cells obtained from the cell library. The

power model consists of several power-aware node trees. The power model representation

is more similar to the gate-level netlist than the elaborated SystemVerilog representation.

However, more work is needed to obtain a proper comparison between them.

The implementation shows promise for accurate and fast power estimation. Several ab-

i

stractions are done in the process so that fast estimations can be made, and their effect

on the power consumption have been evaluated together with other alternatives. When

creating the power-aware node tree, cells from the generic cell library are grouped to more

complex cells from the cell library. This grouping ensures a reduction in the number of

cells, which brings the model closer to the gate-level representation.

Some work remains to complete the power model; the most complex generic cells from

the elaborated SystemVerilog file need to be constructed from several cells from the cell

library. Complex cells with no equivalent yet are those representing arithmetic operations,

shifters and comparators. When these cells have a representation, switching activity can

be propagated through the structure trees in order to get a power consumption estimate

for each of them. The final job of the power estimation tool is to solely use the activity

data from the RTL simulation, together with the power values from each structure tree to

yield the power estimate.

ii

Sammendrag

I dette prosjektet implementeres et verktøy for å lage effektmodeller av RTL design. Den

genererte effektmodellen er ment å brukes sammen med et effektestimeringsverktøy for å

gi et tidlig, raskt og nøyaktig effektestimat. Nordic Semiconductor ASA utsteder dette

masterprosjektet med motivasjonen å gjøre RTL simuleringer effektbevisste. Å oppdage

power bugs tidlig i implementeringen av en design kan spare iterasjoner i ASIC designflyten,

og dermed redusere tiden som kreves for å få et produkt på markedet.

Metoden for å estimere effekt på RTL kalt top-down metoden ble valgt for implementerin-

gen. Blant andre ønskede kvaliteter krever det ikke en syntetisert nettliste-representasjon av

designet for å produsere et effektestimat. Dette gjør at effektestimering kan gjøres samtidig

med simuleringer for funksjonell verifisering av RTL, før syntesen av designet.

Effektmodelleringen er delt inn i tre deler:

1. Hente ut strukturell informasjon fra en prosessert SystemVerilog representasjon av

designet.

2. Hente ut informasjon om tilgjengelige celler og deres effektforbruk fra cellebiblioteket.

3. Kombinere den strukturelle representasjonen med celle- og effektinformasjonen, og

lage en effektmodell.

I implementasjonen er strukturen til et design representert av et nodetre, mens et cellebib-

liotekobjekt er laget for å representere tilgjengelige celler fra cellebiblioteket og effektfor-

bruket deres. For å produsere en effektmodell tar implementasjonen sekvenser av gener-

iske celler fra strukturtreet og erstatter dem med celler hentet fra cellebiblioteket. Effekt-

modellen består av flere effektbevisste nodetrær. Den effekt-bevisste representasjonen har

mange likheter med den syntetiserte nettlisten. Dog, mer arbeid er nødvendig for å lage en

god sammenligning mellom representasjonene.

Implementasjonen er lovende for nøyaktig og rask høy-nivås estimering av effektforbruk.

Flere abstraksjoner blir gjort i prosessen slik at estimasjonen er rask. Hvordan abstrak-

sjonene påvirker effektestimatet er evaluert sammen med andre alternativer. Når et effekt-

bevisst nodetre lages, grupperes generiske celler til mer komplekse celler fra cellebiblioteket.

iii

Denne grupperingen gjør at antall celler i representasjonen reduseres, noe som bringer mod-

ellen nærmere den syntetiserte nettlisten.

Noe arbeid gjenstår for å gjøre effektmodellen komplett; flere komplekse generiske cel-

lene fra den prosesserte SystemVerilog-filen må settes sammen av tilgjengelige celler fra

cellebiblioteket. Komplekse generiske celler som ennå ikke har noen ekvivalent effektbevisst

representasjon er de som representerer aritmetiske operasjoner, skiftere og komparatorer.

Når disse generiske cellene har en representasjon i effektmodellen, kan signaler propageres

gjennom strukturtrærne, og et effektestimat lages for hvert nodetre. Jobben til effektes-

timeringsverktøyet som skal bruke effektmodellen er å kombinere aktivitetsdata fra en RTL-

simulering med effektverdiene fra hvert nodetre i et vilkårlig design, og gi et effektestimat

for designet.

iv

Preface

This Master’s Thesis concludes a five-year M.Sc. degree at the Norwegian University of

Science and Technology (NTNU) at the programme Electronics Systems Design and Inno-

vation, with a specialisation in Design of Digital Systems.

Preliminary research was done during the fall semester of 2019, which resulted in an un-

published literary review on Register Transfer Level power estimation. Methods discussed

in this review are reconsidered, and one method is selected for the implementation of a

power model.

The thesis is written in cooperation with Nordic Semiconductor ASA. They have con-

tributed with the required Synopsys licenses, a workplace with a computer, and a wonderful

supervisor Knut Austbø, who does not seem to mind late-night readthroughs of text with

too few commas in it. I also had great supervision from Snorre Aunet from the Institute

of Electronic Systems at NTNU. They both have my gratitude.

I would also like to thank my friends from my study programme for providing companion-

ship and focus through video chat during long days of working from home. I am grateful

for their help, and the opposite of grateful to the corona virus and the backache working

from my kitchen table has given me.

Lastly, I wish to thank my mom, and if there is a Best Mom Award given by any reader of

this thesis, I hereby nominate her.

v

vi

Contents

Abstract i

Sammendrag iii

Preface v

Contents v

Glossary xi

Acronyms xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem description . 3

1.3 Report structure . 4

2 Theory 7

2.1 Terminology . 7

2.2 The ASIC design flow . 8

2.3 CMOS power consumption . 10

2.3.1 Dynamic power consumption . 10

2.3.2 Static power consumption . 12

2.4 Process, Voltage and Temperature corners 12

3 Background 15

3.1 Bottom-up power estimation . 16

3.2 Top-down power estimation . 17

3.2.1 Fast synthesis power estimation . 19

3.3 Prestudy . 20

4 Suggesting a solution 23

4.1 Structural information . 25

4.2 Cell library information . 25

vii

4.3 The power modeling flow . 26

5 Design tools and file formats 29

5.1 Design elaboration . 29

5.2 Liberty file format . 33

5.2.1 Power characteristics . 33

5.2.2 Power related library attributes and groups 36

5.2.3 Cell attributes and groups . 37

5.2.4 Pin attributes and groups . 38

5.3 Test files and modules . 39

5.3.1 Test modules . 39

5.3.2 Calibration netlist . 39

5.3.3 Liberty file . 39

5.3.4 Project files . 39

6 Extracting design structure 41

6.1 Elaborated SystemVerilog . 42

6.2 Structural representation of a design . 43

6.3 Abstractions made . 45

6.4 Elaborated SystemVerilog parser implementation 46

6.4.1 Parsing . 47

6.4.2 Post-processing . 47

6.4.3 Register levelised structure trees . 48

6.5 Comparing cell counts . 49

6.6 Structural representation discussion . 51

6.6.1 Cell counts . 51

6.6.2 The register-levelised node tree . 52

6.6.3 Abstractions introduced by generic cell groups 53

6.6.4 Registers being optimised away . 53

6.6.5 Possible optimisations . 54

7 Extracting library information 55

7.1 Relevant power data . 56

7.2 Abstractions . 56

7.2.1 The difference between fall- and rise power 56

7.2.2 The difference between data input pins 57

viii

7.2.3 The state-dependency of leakage power 59

7.3 Cells with same functionality . 60

7.4 Implementation . 61

7.4.1 Parsing Liberty and storing data . 62

7.4.2 Putting together a cell library object 63

7.4.3 Summary . 63

7.5 Discussion . 63

7.5.1 Choosing a cell from a group . 63

7.5.2 Other representations . 64

7.5.3 On the calibration . 64

8 Generating a power model 65

8.1 Limitations introduced by the structural representation 66

8.2 Limitations introduced by the cell library representation 67

8.3 Combining the structural information and the liberty data 68

8.3.1 Need for optimisation . 69

8.4 Generic cells with no library equivalent . 72

8.4.1 The select cell . 72

8.5 Estimating the switching power . 74

8.6 Implementation . 74

8.7 Results . 76

8.8 Discussion . 79

8.8.1 The quality of the cell mapping . 79

8.8.2 Consequences of abstractions . 80

8.8.3 Evaluating the power model . 81

8.8.4 Improvements to consider . 82

8.8.5 The accuracy/speed trade-off . 83

9 Conclusion 85

10 Future work 87

10.1 Finishing the power model . 87

10.2 Implementing a power estimation tool . 87

A Technical implementation of the elaborated SystemVerilog parser A-1

B Technical implementation of the liberty parser B-1

ix

C Technical implementation of the power model C-1

D Code implemented in Chapter 6 D-1

E Code implemented in Chapter 7 E-1

F Code implemented in Chapter 8 F-1

x

Glossary

Dennard Scaling A MOSFET scaling law claiming the power density stays constant as

transistors scale, thus making it possible to reduce power consumption by reducing

the design size. This has held until recently, as leakage power is not negligible anymore

with the smaller gate lengths in newer technology

fan-in is the reduction of signals caused by several signals being connected to a cell with

fewer outputs than inputs. E.g. a 3-inputs AND gate has a fan-in of 3.

fan-out is the number of input gates that is driven by an output of a logic gate

JSON stands for JavaScript Object Notation and is a format for representing structured

data.

Liberty is a widely adopted library format. The format is managed by the Liberty Tech-

incal Advisory Board, which is sponsored by Synopsys [1]

one-hot is form of signal encoding where only one bit of the signal can be high at a time

power bug is a fault with the design causing the power consumption to behave unexpect-

edly. It may cause the design to violate its power constraints.

SystemVerilog is a hardware description- and hardware verification language

VHDL is a hardware description- and hardware verification language

xi

xii

Acronyms

ASIC Application Specific Integrated Circuit

BDD Binary Decision Diagram

BN Boolean Network

CDFG Control flow Data Flow Graph

CMOS Complementary Metal-Oxide-Semiconductor

HDL Hardware Descriptive Language

I/O Input/Output

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

LUT Lookup Table

RT-level Register Transfer Level

RTL Register Transfer Level

SV SystemVerilog

xiii

xiv

List of Tables

5.1 Elaborated cells . 29

5.2 Groups of elaborated SystemVerilog constructs 32

5.3 Library group and attribute overview . 36

5.4 Power related cell groups and attributes overview 37

5.5 Pin power related groups and attributes overview 38

5.7 Code listings and code documentation . 40

6.1 Gate counts from elaborated structure and synthesised file 49

7.1 Increase in leakage power from least consuming to most consuming state . . 59

8.1 Power consumption in AND cells of different sizes using AND2 as the reference 69

8.2 Power consumption in AND4 optimisations, in comparison to the three

AND2 gate implementation in Figure 8.3a 70

A.1 Overview of the functions in the elaborated SystemVerilog (SV) parser. . . . A-2

A.2 Helper functions for the elaborated SV parser A-3

A.3 Overview of classes in the elaborated SV parser and their variables and

procedures. A-4

B.1 functions for processing the liberty file information B-2

B.2 Class overview for processing the liberty file information B-3

C.1 functions for making the power model . C-2

C.2 Class overview for the power model . C-2

xv

xvi

List of Figures

1.1 Graph relating design abstraction level and power estimation accuracy. . . . 2

2.1 Illustration of the iterative ASIC design flow, [2] 9

2.2 Illustration of the short-circuit power in CMOS logic [3]. When VIN rises

and falls ISC will flow from VDD to ground for a short period of time. . . . 11

2.3 Complementary Metal-Oxide-Semiconductor (CMOS) design corners [4] . . 13

3.1 The estimation flow in the case of bottom-up power estimation 17

3.2 A top-down estimation flow. 18

3.3 The estimation flow in the case of fast synthesis estimation 20

4.1 The intended estimation flow of the top-down power estimation. The blocks

highlighted in green are already existing, while the orange ones have to be

implemented to make the top down power estimator. 24

4.2 A refined flow for the top-down power estimation. The already existing

Liberty parser is highlighted in yellow. The part of the flow that is out of

scope is drawn in dotted lines. 27

4.3 An overview of the synthesis process from RTL to netlist 28

6.1 The modeling flow with the part of the flow relevant to this chapter highlighted 41

6.2 Different methods to levelise a logic circuit 44

6.3 The elaborated SystemVerilog file is parsed and a set of structure class objects

are made . 46

6.4 A structural representation of the circuit in Figure 6.2b as a tree of structure

objects . 48

7.1 The modeling flow with the part related to retrieving power information from

the cell library highlighted. 55

7.2 The impact on power estimation when summarising rise- and fall power . . 57

7.3 ANDOR21 . 58

7.4 The dataflow of retrieving the relevant Liberty data. 61

8.1 The modeling flow with the flow relevant to this chapter highlighted. 65

xvii

8.2 Different representations of an AND4 gate 67

8.3 Different implementations of a 4-input AND gate 69

8.4 A common CMOS schematic for a NAND2 and an AND2 gate. The AND2

schematic is the same as the NAND2 but with an added inverter. 71

8.5 One-hot multiplexers with different datawidth 73

8.6 An AND4 gate as made by the power model generator 75

A.1 The function hierarchy of the elaborated SV parser. Functions at the same

level are called from left to right. A-1

B.1 The function hierarchy of the liberty parser B-1

B.2 The function hierarchy of the liberty power data retrieving B-2

C.1 Function hierarchy for the power model implementation C-1

xviii

1 Introduction

1.1 Motivation

Power consumption is becoming increasingly important in Integrated Circuit (IC) design

with the emergence of more and more battery-driven devices [5]. Transistor dimensions

have continuously been shrinking to lower the power consumption of ICs. However, with

the breakdown of Dennard Scaling [6] in the 2000s, leading to an increase in power density

with smaller dimensions, downscaling has less effect on power consumption than it used

to. Designers are now pushed to focus more on power consumption in their designs, and

designing circuits for low power usage is becoming just as important as designing for high

performance. The latter may be easier for designers, while many may lack the intuition

to create circuits with low power in mind. To aid designers in this endeavour, tools for

estimating the power consumption are essential.

Power estimation can be done at all design stages, until, in the end, it can be measured

on the physical IC. The closer one is to the final implementation; the more accurate the

power estimation typically can get. The less abstract the design representation is, the more

one knows about parameters critical to power consumption. This is illustrated in Figure

1.1.

The system-level representation of a design is very abstract, and few aspects of the physi-

cal endproduct are known. The RTL representation is less abstract than the system-level

representation, but still much remains unknown about the physical IC. The gate-level rep-

resentation is closer to the endproduct than the two others, and many parameters relating

to power consumption are determined at this level. The accuracy of power estimation will

typically follow the trend of the graph; being more accurate the less abstract the design

representation is.

1

A
b

st
ra

ct
io

n
 le

ve
l

Estimation accuracy

A
b

st
ra

ct
io

n
 le

ve
l

Estimation accuracy

System Level

Register
Transfer Level

Gate Level

Figure 1.1: Graph relating design abstraction level and power estimation accuracy.

The ASIC design process is an iterative process, described in Section 2.2. Discovery of

issues at a particular stage might bring one back to earlier stages in the design process,

where more significant changes can be done. Each iteration is costly in development time

and effort, and may increase the time to market for a product. Ideally, the design should be

made with as few iterations as possible. Discovering and fixing power bugs already at the

RTL is thus beneficial, possibly reducing the number of design iterations necessary.

There is a lack of suitable tools for estimating power at the RTL. They tend to be either

too time consuming to run or too inaccurate to give assured results. Many also output an

average power estimate with no granularity in time and space, which is needed if one is to

use this estimate to deal with power bugs.

2

1.2 Problem description

This project aims to investigate and develop power models for use in power estimation at

the RTL. A general method for making these models is found and it holds for all types

of RTL designs. To make this model, information about the cell library used is necessary

together with an RTL description of the design.

Nordic Semiconductor ASA requested this project, and their motivations are to be able to

discover power bugs early and enhance their design flow by developing a power estimation

tool able to yield power estimates corresponding to the RTL simulations. It is necessary to

have a low spatial and temporal granularity in the model made, in order to discover power

bugs.

In Chapter 4, different approaches to RTL power estimation are investigated, and an im-

plementation using the top-down method is decided upon. An advantage of the top-down

method is its ability to yield a power estimate before having a gate-level representation

of the design. This way, the estimation method does not introduce extra iterations to the

design flow described in Section 2.2.

The top-down method tends to be less accurate than other options for RTL power estima-

tion. The approach presented in this thesis tries to atone for this by using the Liberty file

to get accurate power information about the cells to be used in the design, and combine this

cell information with elaborated Hardware Descriptive Language (HDL) structural informa-

tion, which potentially yields a better structural representation than an unprocessed HDL

representation. The HDL elaboration will be done using Synopsys HDL Compiler.

This project implementation is divided into three main tasks:

1. Analysing the structure of a design

By using an elaborated HDL implementation, information about the structure of a

design, necessary for estimating power, will be retrieved. This information could be

the number of gates, number of registers, amount of combinatorial logic, how the

signals are connected, and so on.

2. Obtaining power characteristics from the technology library

Finding a means to retrieve information about the available cells and their power

characteristics from the cell library. Power characteristics being the leakage power

3

and the dynamic power of the cells. It is also necessary to retrieve information about

the cells in question to be able to relate their functionality to the power data.

3. Creating a power model

Combining information about the structure retrieved in task 1 and information about

the available cells retrieved in task 2 to make a power model of a design, representing

all the signals and logic in the HDL representation.

The novelty of this power model is its generality and its use of the elaborated HDL and

a cell library. The generality allows power models being made for any RTL as long as it

can be elaborated by Synopsys HDL Compiler. The power models can be made with any

cell library, their dimensions being irrelevant. The use of a cell library in the power model

generation and a structural representation derived from elaborated SystemVerilog aims to

achieve a high accuracy to future power estimations at the RTL.

1.3 Report structure

After this introduction this report consists of the following chapters:

2 Theory In this chapter some relevant and useful theory for

the project is presented.

3 Background This chapter presents related work and gives an

introduction to RTL power estimation.

5 Design tools and file formats Here relevant design tools and file formats are pre-

sented.

6 Extracting design structure Describes how the structural information is re-

trieved from the RTL representation.

7 Extracting library information Describes how the power relevant information in

the cell library is found, stored and used.

8 Generating a power model This chapter combines the information retrieved

in the two preceeding chapters to create a power

model.

4

9 Conclusion Concludes the work done.

10 Future work Suggestions towards future work of improving the

power model and applying it in top-down RTL

power estimation.

5

6

2 Theory

2.1 Terminology

Some terminology that will be used in this report is shown below.

GATE"N" Logic gates will be referred to in capital letters annotated with the

number of inputs the gate has. For instance, a 2-input and gate will

be written AND2. For more complex gates the numbers annotated

refer to clusters of inputs, if this number is one it often skips the

firs operator. For example ANDOR21 is a AND2 gate followed

by an OR2 gate, where one of the OR2 inputs is the output of the

AND2 gate. These more complex gates will be explained with logic

functions or figures to make this clearer.

∗ Logical AND operation

+ Logical OR operation

! Logical NOT operation

cell A building block in ASIC design. A transistor circuit encapsulated

into a logic function, such as an AND gate. Could also describe

building blocks with other purposes, but in this project this will

not be visited. All available cells are gathered in a cell library.

generic gate/cell A cell of the generic cell library used by Synopsys HDL Compiler

when doing the design elaboration. In cases where the cell repre-

sents a logic gate, it may be referred to as a generic gate instead of

a generic cell.

7

2.2 The ASIC design flow

The ASIC design flow is a mature design flow used in the making of Integrated Circuits.

This flow allows one to, step-by-step, go from an abstract design description, towards the

layout sent to a foundry for manufacturing the physical IC. The flow is iterative and may,

at any point before the physical IC is produced, return to an earlier stage, where larger

changes can be made [2].

In Figure 2.1 different ways to represent the circuit with decreasing abstraction is shown.

The steps in the design flow is described below.

System Level At this level the design is described as a set of functionalities,

characteristics and constraints.

Algorithmic level Here the design is described and verified on an algorithmic level,

often using high level programming languages.

Register Transfer Level This representation makes use of a hardware descriptive lan-

guage, to describe the design as digital signals, logic operations

and registers, and verified as such, for instance using SystemVer-

ilog or VHDL.

Logic Level The Register Transfer Level description of the design can be

synthesised into a Logic level description. Here the description

is mapped to the available logic cells in the cell library. The

synthesis process also checks timing and area constraints so one

knows whether these hold or not at this level.

Physical Layout For the physical layout representation the cells from the logic

level representation are placed and connected on a theoretical

chip. Analog phenomenon, eg. wire capacitances, are taken into

concern in an attempt to model the physical IC.

IC Here the endproduct of the process is made in a foundry. based

on a GDSII file from the physical layout, which contains all

information necessary to produce the IC.

8

System Level

Algorithmic Level

RTL

Logic Level

Physical Layout

IC

Verification & Testing

Verification & Testing

Floorplanning, place & route

Synthesis & timing verification

Layout verification

Physical testing & Verification

Figure 2.1: Illustration of the iterative ASIC design flow, [2]

9

2.3 CMOS power consumption

The power consumption in digital CMOS-based circuits can be divided into dynamic and

static power consumption. The dynamic power consumption is caused by the switching

activity in the system, while the static power consumption is caused by leakage in the

CMOS transistors [4]. The total power consumption of the system is the sum of these two

as is given by Equation (2.1).

Ptotal = Pdynamic + Pstatic (2.1)

2.3.1 Dynamic power consumption

The dynamic power consumption can be divided into switching power and short-circuit

power [4].

The main contributor to the dynamic power consumption is the switching power, which is

the power it takes to charge and discharge the output capacitance of a logic gate. It can be

calculated as shown in Equation (2.2), where α is an activity factor describing how often

the output switches (changes value). CL is the load capacitance on the gate output, Vdd is

the supply voltage and fclock is the clock frequency.

PSW =
α

2
CLV

2
ddfclock (2.2)

Another contributor to dynamic power consumption is the short-circuit current. When

CMOS logic is in the middle of switching both the NMOS and the PMOS transistor will

be partially open, allowing some current to flow from Vdd to ground. This is illustrated in

Figure 2.2.

10

Figure 2.2: Illustration of the short-circuit power in CMOS logic [3]. When VIN rises and

falls ISC will flow from VDD to ground for a short period of time.

The short-circuits contribution to power consumption can be calculated using the expression

shown in Equation (2.3), where tsc is the duration of the short circuit current, Vdd is the

supply voltage of the system, Isc is the average short-circuit current and fclock is the clock

frequency.

PSC = tscVddIscfclock (2.3)

The total dynamic power consumed in the circuit will be the sum of the switching power

and the short-circuit power consumed by all the transistors in a design, shown in Equation

(2.4). N is the number of transistors, PSW_t is the switching power- and PSC_t is the

short-circuit power of transistor t.

Pdynamic =

N∑
t=0

(
PSW_t + PSC_t

)
(2.4)

Dynamic power consumption from a logic circuit perspective

A different way of viewing switching power consumption, more suited for logic designs,

is gotten from dividing the power consumption in two contributions: The contribution

from switching of nets in a design, the switching power, and the contribution from the

switching of internal signals in a logic cell, which also includes the short-circuit contribution,

internal power. The total dynamic power of a design can thus be seen as a sum of the

switching power, PSW , of all nets, and the internal power, PIN , of all cells. This is

shown in Equation (2.5).

11

Pdynamic = PSW + PIN (2.5)

2.3.2 Static power consumption

The static power consumption in the CMOS transistors is caused by leakage current. This

leakage has traditionally been negligible compared to the switching power, but the down-

scaling of the technologies and the lower supply voltages, which in turn has lead to lower

threshold Voltage, Vt. Nowadays the static power consumption of transistors, is just as

significant as the switching power. Contributions to the leakage current come from the

sub-threshold leakage, the gate leakage and the junction leakage [4].

• Sub-threshold leakage is current leaking from source to drain while the transistor is

operating in the weak inversion region (VG < Vt). It increases exponentially when

lowering Vt [4] and is the largest contributor to the static power consumption.

• Gate leakage is current caused by electrons tunnelling through the oxide layer of the

gate.

• Junction leakage is caused by potential differences between the drain diffusion region

and the substrate. It is often negligible compared to the other two contributors.

2.4 Process, Voltage and Temperature corners

Variations in the manufacturing and the environment will lead to significant changes in the

characteristics of a transistor. These changes may cause the IC behaviour to vary. To make

a circuit operate as expected these variations should be taken into account. The sources of

these variation are process variation, supply voltage and temperature [4].

The process variation is caused by slight variations in the manufacturing process, like

the concentration of dopants or the oxide thickness.

These variations lead to manufactured transistors having varied characteristics. These are

described as; F (fast) and S (slow) for the corner-cases, where the transistor will operate

faster and slower than expected, and T (typical) describing an average transistor. For

a CMOS transistor, consisting of one PMOS and one NMOS transistor this yields four

operating corner-cases describing a constricted area, in which the pair og transistors will

always operate within. FF, SS, SF and FS. The center of this area is (TT), the average

transistor. This is illustrated in Figure 2.3.

12

V
t

-
p

M
O

S

Vt - nMOS

V
t

-
p

M
O

S

Vt - nMOS

FF

SS

SF

FS

TT

slow fast

sl
o

w
fa

st

Figure 2.3: CMOS design corners [4]

The variation in temperature also affects the transistor’s operation significantly as it

lowers the threshold voltage. If the operating temperature is high the transistor will have

a higher leakage, which increase its power consumption.

Lastly, the supply voltage can deviate from the intended value for many reasons, such as

the tolerance of the voltage regulators and noise.

Thus, it is not enough to only take an average transistor in the TT corner, operating in room

temperature with the intended supply voltage into account. One also needs to consider the

transistor in its slow corner, operating on a high temperature with a low voltage, and all

other corner-cases.

13

14

3 Background

As demands to power consumption rise, the size of battery-driven devices sink and smaller

transistor dimensions lead to higher power density, the need for power estimation tools rise.

The designers wish to optimise the ASIC design flow and minimise the time to market, while

still keeping up with state of the art power demands. Power can be estimated at all stages

in the design process described in Section 2.2.

At the system level, accurate power estimation tools are few, but maybe not for much

longer. In 2019 Institute of Electrical and Electronics Engineers (IEEE) released a new

standard for power modeling at the system level [7]. There has not been a standard way

of representing power data at the system level before. The organisation suggests the lack

of such a standard could be why the industry is still inadequate in this field.

At the functional level, there power estimation tools exist, but they are mainly meant to

speed up the simulations. One can argue that there are two main reasons one can wish to

estimate power at a high level;

1. One wants to get an approximate indication of the power consumption at this level

before lower-level representations are made.

2. Simulations at this level is faster than low-level simulation

In 2. one returns to a more abstract design representation to run faster simulations. Increas-

ing the simulation speed is the primary motivation for the functional level power estimation

tools. They are based on already existing gate-level representations.

Zhong et al. [8] try to estimate power at the functional level using some RTL power models

derived from a gate-level representation of the design. Here a cycle-accurate functional

description is merely an abstraction of the known RTL, in order to to speed up the RTL

power estimation by going up an abstraction level for the simulation. In another paper,

Zhong et al. [9] further improve their solution. Lee and Gerstlauer [10] annotates a func-

tional model of a design with constructs allowing the capturing of activity. Using machine

learning, power models can be synthesised from this functional model. An advantage of

this method is that it allows for high-speed simulations. However, the functional model

requires an existing gate-level representation of the design to train the power model.

15

The methods for estimating power at the RTL can be divided into two main methods

of implementation. They will be referred to as bottom-up and top-down methods. The

bottom-up method starts with a less abstract representation of the design, such as the

gate-level representation, and tries to relate power estimates done at this level to factors

that are also known at the RTL [11], [12], [13]. The estimation method then returns to

the RTL representation of the design and does power estimation on different scenarios

there. The top-down method, on the other hand starts at the abstract RTL and tries to

estimate lower-level information about the design in order to estimate power directly [14],

[15], [16].

3.1 Bottom-up power estimation

In Figure 3.1 a typical estimation flow of bottom-up power estimation can be seen. The

available input data is a gate-level netlist with corresponding simulation data. However, this

requires that synthesis and layout with the desired technology library have been performed.

A power estimation tool is then run on the gate level representation with a broad set of

activity data. This results in a set of power estimates and simulation data that can be used

to characterise the design, often relating the Input/Output (I/O)-switching to the power

consumption. To get a power estimate, characterisation variables or a Lookup Table (LUT)

are then fed to a general power model at the RTL, together with the simulation data of the

scenario from which one wishes to estimate power.

Ravi et al. [11] makes an extensive set of macromodels from RTL components. These mod-

els are then translated into simulatable power model libraries. The creation of new designs

then solely make use of these components for which power estimates are available.

Gupta et al. [12] made a macromodel relating gate-level power estimates to the ham-

ming distance between consecutive input vectors. A complicated characterisation stage is

necessary to exploit this relation.

Mehta et al. [13] also takes basis in making a macromodel for every possible RTL com-

ponent. A clustering algorithm is used to group input vectors leading to similar power

consumption in the circuit. These groups are then placed in a LUT. This clustering makes

their model faster, as there are fewer values to look up.

16

Figure 3.1: The estimation flow in the case of bottom-up power estimation

3.2 Top-down power estimation

The estimation flow of a top-down power estimation approach can be seen in Figure 3.2.

The method needs to take in information about the structure, readily available at the

RTL, for instance, a HDL description. It also needs to take the cell library into account.

The cell library can be considered by, for example, knowing the power characteristics of a

standard gate from the cell library, or by processing the entire cell library as an input. It

could also be possible to do some characterisation. If one, for instance, has a design that

will be synthesised with strict timing constraints, this will increase its power consumption

compared to a design with less strict timing constraints.

Zafalon et al. [14] have developed both a top-down and a bottom-up technique for power

17

Figure 3.2: A top-down estimation flow.

estimation. Their top-down approach is based on using a Binary Decision Diagram (BDD)

to represent the circuit. Representing a design as a BDD is the same as making the design

using only 2-to-1 multiplexers. This design is then optimised to some degree decided by the

user, and the power estimate is tuned to the target technology. The user decides whether

the actual synthesis will focus on power, timing or area and the model is also tuned based

on that input.

Buyuksahin and Najm [15] make use of a Boolean Network (BN), a directed acrylic graph

where each node is a boolean function, and its edges represent the connection between

nodes. They use this network to estimate the gate count of the design, which yields an

estimate of the circuit’s total capacitance.

Sambamurthy et al. [16] use a Control flow Data Flow Graph (CDFG) to represent the

circuit. This graph allows for modeling both the data operations done and conditionals. The

number of stages necessary to implement a function is then estimated from the maximum

input number of gates in the target technology and the function’s size to be computed. The

probability of switching at each node is then estimated from input switching from simulation

18

or the input switching probabilities and the likelihood of that switching propagating all the

way to the logic depth of the function. The method of Logic Effort is used to make a

capacitance estimate. All of the above is then combined into a power estimate.

3.2.1 Fast synthesis power estimation

Several vendors provide tools for estimating power at the RTL. To mention a few; Ansys

has PowerArtist [17], Synopsys has Spyglass Power [18], Mentor Graphics has PowerPro

[19] and Cadence has Joules RTL Power Solution [20]. These are typically based on some

variant of fast synthesis power estimation, mapping the RTL description to cells in a cell

library and estimating the power consumption based on these cells. This method is applied

by vendors already providing synthesis tools to provide a power estimation tool faster than

gate-level estimation.

The power estimation flow of such tools is shown in Figure 3.3. The figure is simplified

as the internal synthesis, and power estimation flow is undisclosed information private to

the tool vendors. It is based on a synthesis tool that omits information not crucial to

power estimation in order to speed up the synthesis. After the fast synthesis, an estimation

tool will be used to estimate power. It gets its parameters from the "synthesised" design,

activity data and possibly calibration data. As these methods bring the design closer to a

gate-level representation, they allow for accurate power estimates but introduces a synthesis

process which, though it is faster than a regular synthesis, may still be slow.

19

RTL

Fast synthesis

‘’Gate level’’
representation

‘’Gate level’’
power estimation

Power estimates

Simulation data

Technology
library

Calibration Data

Figure 3.3: The estimation flow in the case of fast synthesis estimation

3.3 Prestudy

This thesis is written in collaboration with Nordic Semiconductor ASA. An unpublished

literary review has been conducted on RTL power estimation to find a method suiting their

motivations, which can be summarised as:

• Wanting to make RTL simulation power-aware.

• Being able to use this power awareness to detect power bugs.

The prestudy can be found on GitHub [21]. The following is a quick outline of the main

differences between the top-down and bottom-up estimation flows and a summary of the

prestudy conclusion.

The bottom-up methods have their foundation at the gate level and thus tend to have a

20

more accurate power estimation due to more information about the design being available

as the power model is made. The challenge of bottom-up power estimation is to get the

power estimates to correlate well with the input and output switching statistics of the

design so that the model can be used at the RTL. The top-down methods tend to be less

accurate, but lack the time-consuming characterisation stage of the bottom-up methods,

making them faster for new designs and possibly more suited for design exploration if they

take the internals of the RTL description into account.

To make the RTL simulation power-aware a power estimation tool for the RTL is needed.

It is a significant advantage if this model is available before the design has been synthesised.

Otherwise, it will introduce an extra iteration into the design flow, which may be avoided

using the top-down method.

To detect power bugs with this power estimation, it needs time/cycle awareness. It could

either work for smaller time-frames or do estimation cycle-by-cycle in the simulation. The

latter is preferable. In addition to this temporal granularity, the tool should also have some

spatial granularity. When running simulations on larger modules and observing unexpected

power behaviour, it is an advantage to see where this behaviour occurs.

If the desire had been to increase simulation speeds when running power scenarios, then

going from a gate-level representation to a RTL representation makes sense. Otherwise, this

introduces an extra iteration to the design flow, which may be avoided using the top-down

method.

If a top-down estimation approach does not provide enough accuracy, it could be supported

by bottom-up models for existing design blocks to increase the estimation accuracy.

21

22

4 Suggesting a solution

The top-down method has been chosen for implementation due to its desirable estimation

flow. The top-down flow is simple and starts at the RTL and makes a power estimate

directly. For a bottom-up flow, on the other hand, a gate level representation of the design

is needed before a RTL power estimate can be made. Using the top-down method a design

can be changed or discarded because of power concerns early in the design flow, without

ever needing to be synthesised, if the power estimates are accurate enough. With the top-

down method it is possible to verify the power behaviour concurrently to the functional

verification of the RTL.

The suggested estimation flow can be seen in Figure 4.1. Here the RTL representation of a

design and data from the cell library is retrieved and processed separately, to later be com-

bined into a power model. The power model is used together with activity data by a power

estimation tool to yield a power estimate. Already existing data and tools are highlighted

in green, while the parts highlighted in orange would have to be implemented.

It is necessary to implement a system processing the structural information found in the

RTL representation, and another system processing power information related to the cell

library. Then, the retrieved information from both systems can be combined into a power

model, which will serve as an input to a power estimator together with simulation- or

activity data.

23

RTL
Technology

library

Power estimator

Simulation data

 RTL parser

Processed
structural info

Power estimate

Library processing

Power relevant
library info

Power model
generator

Power Model

Figure 4.1: The intended estimation flow of the top-down power estimation. The blocks

highlighted in green are already existing, while the orange ones have to be implemented to

make the top down power estimator.

24

4.1 Structural information

The processed structural info-block in Figure 4.1 should contain information about which

operations are done on which signals and how they are all connected. Later, in the Power

model generator -block this will be related to power information. The structural information

should also allow for some estimation of activity in the structure, depending on observable,

(input, output and/or register), switching activity. It is also important that the structure

remains relatable to the RTL it represents.

Most synthesis tools have an elaboration stage where they retrieve structural information

from the RTL as a pre-processing stage for the synthesis. This is done by breaking down

coding constructs and compiler directives and mapping the code to cells from a generic

library. This library does not correspond to any physical library and the generic cells

represent logic- and arithmetic functions on the signals only. With this representation as a

foundation the operations are the generic cells in the elaborated netlist and the signals are

their connections.

Using the elaborated structural information, rather than unprocessed RTL, brings one a

bit closer to the gate level representation of the design and possibly towards more accurate

power estimates. It is not desirable to go all the way to a gate level representation as the

synthesis process is time consuming, especially for larger designs. It is interesting to see

what kind of power model can be developed with this elaborated design as a starting point

rather than the RTL it is elaborated from or the netlist it is synthesised into. Detailed

information about the elaborated SystemVerilog format can be seen in Section 5.1

4.2 Cell library information

A common approach in high level power estimation is to abstract away the cell library

by using a general gate representing all the gates in the design instead of differentiating

between gates. Such a cell is commonly a NAND2 cell with the correct gate length and

power characteristics corresponding to the cell library. This project attempt to lay the

foundation of accurate RTL power estimation and thus want differentiate between the cells

in the design to some extent. Knowing what cells are where and what they are affected

by will possibly improve the accuracy of temporal and spatial power estimates even if

the average power estimate remains the same. Finding out what cells are available and

what power consumption these cells have will be the job of the Library Processing-block in

Figure 4.1. The library power information is commonly stored in a Liberty file. Liberty is

25

a standard format for representing timing and power characteristics of a cell library. More

information on the format is found in Section 5.2.

Nordic Semiconductor ASA has a Liberty parser that can retrieve information from the

Liberty file, but further processing is necessary to structure and select the information

necessary to do power estimates, which is information relating to the static and dynamic

power consumption of the cells. Synopsys has a HDL compiling tool doing design elab-

oration, but it will be necessary to retrieve structural information from the elaborated

SystemVerilog file. Lastly this project will combine the structural information from the

elaborated SystemVerilog and the power-focused information from the cell library into a

power-aware representation of the design, a power model, which can in turn be used for

power estimation.

4.3 The power modeling flow

Figure 4.2 is a refined version of Figure 4.1. It goes more into detail on the estimation flow

adding the Liberty parser and the elaborated SystemVerilog. The highlighted blocks are

those involved in developing a power model, and thus the scope of this project. The power

model will combine the structural information retrieved from the elaborated SystemVerilog

and the power- and cell information retrieved from the Liberty file.

The elaborated file can be made using Synopsys HDL Compiler. A tool part of the Synopsys

synthesis flow shown in Figure 4.3. In their flow the HDL is first compiled into an elabo-

rated SystemVerilog netlist. The elaborated design is then fed to Synopsys DesignCompiler

together with the Liberty file to yield the gate level netlist.

26

RTL
Technology

library

Synopsys Design
Compiler

elaboration

Elaborated RTL

Liberty parser

Library Info

Power estimator

Simulation data

Elaborated RTL
parser

Processed
structural info

Power estimate

Library processing

Power relevant
library info

Combining
information

Power Model

Figure 4.2: A refined flow for the top-down power estimation. The already existing

Liberty parser is highlighted in yellow. The part of the flow that is out of scope is drawn

in dotted lines.

27

Figure 4.3: An overview of the synthesis process from RTL to netlist

28

5 Design tools and file formats

5.1 Design elaboration

When synthesising a design, the constructs in the RTL are mapped to cells in the cell

library, creating a hardware design with equivalent functionality as the one described in the

RTL. This representation is called a netlist. Most synthesis tools do this by going through

an elaboration stage. Here the constructs in the RTL are first optimised and mapped to

cells from a generic cell library. A generic cell library is a library with functional cells

not corresponding to physical ones. They do not have any power- or timing data. The

elaboration also goes through the compiler directives, which are direct instructions on how

to process the HDL, such as ’ifdefs. The results of the elaboration stage is an intermediate

file, similar to the netlist, using cells from a generic library, rather than cells from the

library used in synthesis.

To complete the synthesis process, the elaborated file is optimised further and mapped to

the cells in the cell library. In this project, Synopsys HDL Compiler has been used to get an

elaborated representation of the design. In Table 5.1, a simplified list of these elaboration

constructs made by this synthesis tool can be seen. The module, input, output and assign

constructs are the same as in the RTL file. The wire represents all connections between

objects. The rest of the objects have replaced the more complex RTL with simple, generic

gates like an AND2 gate. The elaborated netlist is not technology-specific and, thus, does

not contain any power information.

Table 5.1: Elaborated cells

Construct generic cells Description

Module module A SystemVerilog module declaration or

instantiation

Input input An input port of variable bitwidth

Output output An output port of variable bitwidth

Wire wire A wire of variable bitwidth

29

Assign assign Assigning one wire to another wire or a

constant

Multiplexer MUX_OP A multiplexer with variable datawith and

select signal width

Register SEQGEN A one bit register

AND2 GTECH_AND2 A two-input AND gate

OR2 GTECH_OR2 A two-input OR gate

XOR2 GTECH_XOR2 A two-input XOR gate

Select SELECT_OP This sends one of several data signals out,

depending on a control signal

Adder ADD_UNS_OP,

ADD_UNS_CI_OP,

ADD_TC_OP,

ADD_TC_CI_OP

Adder with inputs and outputs of vari-

able width

Subtractor SUB_UNS_OP,

SUB_UNS_CI_OP,

SUB_TC_OP,

SUB_TC_CI_OP

Subtractor with inputs and outputs of

variable width

Shift ASH_UNS_UNS_OP,

ASH_UNS_TC_OP,

ASH_TC_UNS_OP,

ASH_TC_TC_OP,

ASHR_UNS_UNS_OP,

ASHR_UNS_TC_OP,

ASHR_TC_UNS_OP,

ASHR_TC_TC_OP,

SRA_UNS_OP,

SRA_TC_OP

Shifting a signal in a certain direction,

possible to take the sign into account

Barrel shift BSH_UNS_OP,

BSH_TC_OP,

BSHL_TC_OP,

BSHR_UNS_OP,

BSHR_TC_OP

Shifting, rolling the bit shifted out to

the opposite side of the signal instead of

shifting in zeros or ones

30

Shift-and-add SLA_UNS_OP,

SLA_TC_OP

Shift signal before adding

Multipliers MULT_UNS_OP,

MULT_TC_OP

Multiply two signals and output the re-

sult

Division DIV_UNS_OP,

MOD_UNS_OP,

REM_UNS_OP,

DIVREM_UNS_OP,

DIVMOD_UNS_OP,

DIV_TC_OP,

MOD_TC_OP,

REM_TC_OP,

DIVREM_TC_OP,

DIVMOD_TC_OP

Divide a signal by another and output

the result

Comparators LT_UNS_OP,

LT_TC_OP,

GT_UNS_OP,

GT_TC_OP,

LEQ_UNS_OP,

LEQ_TC_OP,

GEQ_UNS_OP,

GEQ_TC_OP,

EQ_UNS_OP,

NE_UNS_OP,

EQ_TC_OP,

NE_TC_OP

Compare two signals of variable width

Not GTECH_NOT An single bit inverter

Buffer GTECH_BUF An single bit buffer

Many of the more complex generic cells are grouped into the same constructs. These cells

differ depending on the representation of their input signal representations but are otherwise

similar in functionality. The Synopsys elaboration differs between unsigned, UNS, and twos’

complement, TC, representations. In the table, cells with different signal representations

but otherwise the same functionality is put in the same group.

31

Many comparators have been grouped together into one. It can be argued that their power

consumption is quite similar, as the logic needed to implement them are the same. However,

the larger-than and smaller-than comparisons introduce more complexity than the equal

and not equal, so it can also be an option to divide the comparators into two (or more)

groups.

Table 5.2 shows the elaborated cell groups sorted by functionality.

Table 5.2: Groups of elaborated SystemVerilog constructs

Group Construct

Connects inputs

outputs

wire

Buffers Buffer

Multiplexer Multiplexer

Register Register

Logic operators AND2

OR2

XOR2

Comparator

Not

Shifter

Barrel shift

Arithmetic operators Adder

Subtractor

Shift-and-add

Multiplier

Divisor

The generic select cell is unique as it does not have a cell equivalent in any cell library.

32

An if or case statement is elaborated into a generic select cell by Synopsys HDL com-

piler unless it is specified in the HDL representation that one wants it to be inferred as

a multiplexer. The select statement is then synthesised by Synopsys DesignCompiler into

either logic or a multiplexer depending on the available cells and unknown DesignCompiler

conditions.

5.2 Liberty file format

The cell library’s timing and power characteristics are found in a Liberty file. The Liberty

file format is an industry standard used to describe cells of a particular technology. Infor-

mation regarding timing, power, area, functionality and operating conditions of cells in the

cell library can be found in this file.

The Liberty file consists of three types of statements:

• Group statements

A collection of statements grouped together. In a library, the uppermost group is a

library group, and no other such groups can be made in a Liberty file. A group internal

to the library can, for example, be a cell group, and a group internal to the cell can be

a pin group.

• Attribute statements

A statement used to describe the characteristics of objects (groups) in the library. Such

attributes can, for instance, be the size of a cell or the unit of leakage current in the

library.

• Define statements

Used to define new attributes. Which kind of group they are meant to describe is also

specified.

Values are often specified without units, and the units of different values are described at

a higher level, as library attributes.

5.2.1 Power characteristics

The same cell library is characterised in the different design corners described in Section

2.4, resulting in different Liberty files for different process conditions.

In Chapter 2, it was described how power consumption could be divided into dynamic and

33

static power consumption. Here, the Liberty groups and attributes relating to the two

types of power consumption will be investigated.

Static power

The liberty cell group has a sub-group called leakage_power. In this group, a leak-

age power value is given. The group also has an optional when attribute and a re-

lated_pg_pin attribute, set to the supply pin of the cell. The when attribute describes

the different states of the input pins. For instance, if the cell is a two-input AND gate,

the attribute would be one of the 4 possible input cases; A1 & A2, A1 & !A2, !A1 & A2 or

!A1 & !A2. If the when attribute is not given, the average leakage power is the one given.

Depending on how accurate data one wants, one can choose to retrieve the average leakage

power or all the state-specific leakage power values from the liberty file. In Listing 5.1, an

example of the leakage_power group can be seen.

Listing 5.1: leakage_power group example

1 leakage_power () {

2 value : 93 . 1982 ;

3 when : "A1 & A2" ;

4 related_pg_pin : "VDD" ;

5 }

The unit of values of different groups are described at a higher level in the library.

Dynamic power

For a logic design, one can say that there are two contributions to the switching power:

• Switching power

The charging and discharging of the output load capacitance, which is determined by

the input pins the output is connected to.

• Internal power

The internal switching of transistors within the cell, both as a result of an input tran-

sition leading to an output transition and an input transition only causing some tran-

sistors within the cell to switch.

Both of these contributions are found in the internal_power group in the Liberty file.

This group is a sub-group of the pin group, which in turn is part of a cell group. The

34

internal_power group of an input pin will describe the internal power consumption of

the cell, while the internal_power group of an output pin will describe the switching

power.

Listing 5.2: pin group examples

1 pin (Z) {

2 d i r e c t i o n : " output " ;

3 related_power_pin : "VDD" ;

4 related_ground_pin : "VSS" ;

5 power_down_function : " (!VDD) + (VSS) " ;

6 f unc t i on : "A1∗A2" ;

7 max_capacitance : 0 . 0 7 8 ;

8 t iming () { . . . }

9 t iming () { . . . }

10 internal_power () {

11 re lated_pin : "A1" ;

12 when : "A2" ;

13 related_pg_pin : "VDD" ;

14 rise_power (lookup_table_template) {

15 // lookup tab l e data

16 }

17 fa l l_power (lookup_table_template) {

18 // lookup tab l e data

19 }

20 }

21 internal_power () { . . . }

22 pin (A1) {

23 d i r e c t i o n : " input " ;

24 related_power_pin : "VDD" ;

25 related_ground_pin : "VSS" ;

26 max_transit ion : 10 ;

27 capac i tance : 0 . 0 268 ;

28 r i s e_capac i t ance : 0 . 0 045 ;

29 r i se_capac i tance_range (0 . 0071 , 0 . 0089) ;

30 f a l l_capac i t anc e : 0 . 0 067 ;

31 f a l l_capac i tance_range (0 . 0032 , 0 . 0045) ;

32 r e c e i v e r_capac i t ance () { . . . }

33 internal_power () { . . . }

34 }

35

5.2.2 Power related library attributes and groups

In Table 5.3 some groups and attributes related to power consumption at a library level

can be seen.

Table 5.3: Library group and attribute overview

Group/attribute Description

voltage_unit the voltage unit used for the cell library

voltage values

capacitive_load_unit The unit for capacitive loads in the cell li-

brary

library_features (group)

default_cell_leakage_power default value for cell leakage power if cell

lacks this group, if not specified it is zero

lu_table_template (group) Describes buildup of a lookup table that

can be filled with characterisation values

cell (group) See Section 5.2.3

36

5.2.3 Cell attributes and groups

In Table 5.4 some groups and attributes related to the power consumption on a cell level

can be seen. The cell in itself is a group in the library.

Table 5.4: Power related cell groups and attributes overview

Group/attribute Description

footprint used to relate cells with same functionality

area the area of the cell

leakage_power (group)

value the leakage power value

when pin logic values for value to be valid

related_pg_pin related supply voltage pin

pin (group) See Section 5.2.4

37

5.2.4 Pin attributes and groups

Important groups and attributes of the pin group are shown in Table 5.5. The pin group

itself is a group in a cell.

Table 5.5: Pin power related groups and attributes overview

Group/attribute Description

direction Whether pin is input or output pin

related_power_pin What is the power pin relative to this pin

related_ground_pin What is the ground pin relative to this pin

capacitance (input pin) Capacitance of pin

function (output pin) Boolean function describing pin function

max_capacitance (output pin) Maximum capacitance the pin can drive

internal_power (group)

related_input input relating to this group instantiation

when conditions of other related pins

related_pg_pin the related power-ground pin

rise_power (group) the power consumption if related_input rises

(a LUT)

fall_power (group) the power consumption if related_input falls

(a LUT)

38

5.3 Test files and modules

5.3.1 Test modules

The system will be tested on several of Nordic Semiconductors designs. Here they are listed

together with a short description of their functionality:

Module1 An activity monitor

Module2 A memory management module

Module3 A queue module

Module4 A data management module

Module5 A filter module

5.3.2 Calibration netlist

The system will in Chapter 7 make use of a calibration netlist. This file is the netlist of a

full chip made by Nordic Semiconductor ASA.

5.3.3 Liberty file

The Liberty parser developed in Chapter 7 has been tested on one Liberty file. This

file is representing a library in the sub-micro dimensions, with typical process values and

operating conditions.

5.3.4 Project files

The code implemented as a part of this project can be found on GitHub [21] and also in

the Appendix of this report. References to the Appenix are given in Table 5.7

39

Table 5.7: Code listings and code documentation

Description Code listing Documentation

Implementation for retrieving the structural

information from the HDL description
Appendix D Appendix A

Implementation of retrieving and organising

library information from the Liberty file
Appendix E Appendix B

Implementation of power model generator

combining structural information from the

HDL description of a design with the cell

library information from the Liberty file

Appendix F Appendix C

40

6 Extracting design structure

This chapter presents how the structural information of a design is retrieved, what comprises

this information, and how it is shaped into a useful representation. The scope of this

chapter, relative to the rest of the project, is highlighted in Figure 6.1.

RTL
Technology

library

Synopsys Design
Compiler

elaboration

Elaborated RTL

Liberty parser

Library Info

Elaborated RTL
parser

Processed
structural info

Library processing

Power relevant
library info

Combining
information

Power Model

Figure 6.1: The modeling flow with the part of the flow relevant to this chapter highlighted

41

The structural representation consists of information about operations done on signals and

how the signals are connected as described in Section 4.1. It is needed as an input to the

power model generator. In this power model generator, the structural representation will

be combined with information about the cell library, such as which cells are available and

information on the power consumption of these cells.

In Chapter 4 an estimation flow was settled upon. The flow makes use of the elaborated

SystemVerilog made by Synopsys HDL compiler, rather than unprocessed RTL. The elab-

orated SystemVerilog format is presented in Section 5.1. Using a gate-level representation

would introduce a slow synthesis process, and is thus undesirable. Using the elaborated

RTL the code constructs and compiler directives are dealt with and a structural library-

independent netlist is available. Assuming the elaboration tool does this well, using this

representation as an input to get a structural representation of the design is ideal, and will

save some implementation time.

6.1 Elaborated SystemVerilog

The available structural information from the elaborated HDL is low level and fine-grained,

being a netlist of the design using a generic cell library. This representation does not

introduce any abstraction, except the abstraction already present as a gap between the

Register Transfer Level (RT-level) and the gate-level. On the contrary, it reduces the

gap between these representations by removing code constructs, like if, case and generate

statements in the HDL, transforming it to a netlist of generic gates. However, if any

compiler directives or parameters change, the design will have to be re-elaborated, and the

structural representation regenerated.

The information needed for the structural representation is:

• What building blocks make up the design

• How they are connected to compose the design

In the elaborated SystemVerilog, the building blocks are the cells from the generic cell library

and their connections are represented as wires, input and outputs in the elaborated design

representation, listed in Table 5.1.

It is necessary to retrieve enough information about the arrangement of generic cells, so

that a good representation of the design can be made. A goal for this project as a whole is

42

to be able to differentiate between the different types of cells and their power consumption.

This requires distinguishing between different types of cells in the structural representa-

tion.

In Table 5.2 groups are made of the generic cells in elaborated SystemVerilog. These groups

will be used, rather than representations for every generic cell type being differentiated

between.

6.2 Structural representation of a design

There are many ways to represent the structure of the design, a few methods have been

evaluated:

• The levelised circuit representation annotates gates with a level value. This annotation

makes it possible to deal with each level of switching separately and propagate switching

probabilities through the design. In [12], Gupta and Najm use this representation to

estimate power by calculating the average capacitance at each level. However, this

works for combinatorial circuits, not sequential. An illustration of this representation

can be seen in Figure 6.2a

• If one can monitor the switching of registers during simulation, another way to struc-

turally represent the circuit is to levelise it by register. One can monitor each register

and the logic on each register output affected by its switching. This representation is

illustrated in Figure 6.2b. One thing to take notice of is how each cell may be part of

more than one register level.

• Another option is large-scale register levelisation, putting all the logic between a

set of registers in one group and making a power estimate for this group depending on

switching activity. This is illustrated in Figure 6.2c. A problem this introduces can also

be seen in the figure. As "Level 2" in the figure technically also is "Level 1" due to the

input of R6 not going through "Level 1". Clear definitions on how to group registers

must be in place.

• It is also possible to represent the design module-by-module. This representation is

made by having a model/representation for each module in the design. This represen-

tation can be useful for calculating average power, but power variations over time will

be hard to consider. An advantage of this method compared to the register levelisation

is that the module borders are clear and non-ambiguous.

43

(a) A levelised circuit

(b) A register-levelised circuit

(c) A circuit with groups of registers making up one level.

Figure 6.2: Different methods to levelise a logic circuit

The problem with logic being in more than one level is present in all the design representa-

tions except the module-by-module representation as the boundaries between modules

are strict, and the register-levelised method, as the boundaries here are very loose. Ne-

44

mani and Najm [22] eliminates this problem by differentiating between the lowest level that

a gate is used at and other possible levels by saying the first level a gate is encountered is

where it is generated, while, on other levels the gate is used.

When settling on a structural representation, it must have the right level of complexity.

A too complicated representation would need more time to process the simulation data

presented to it by the power estimation tool. At the same time, a too simple model might

not be able to give accurate enough power estimates. It is necessary to make abstractions

to simplify the design representation, as this will reduce the time required to run a power

estimation. On the other hand, it is essential to retain enough information to give useful

power estimates.

For the levelised representation each gate would have to be considered which would result

in a lot of data processing during simulation, if we want the simulation to be fast this is not

suitable, even if considering each gate would give the most accurate results. The large-

scale register levelisation and the module-by-module representation both abstract

away too much information for the power estimation to be accurate as too much logic will

be in the same groups, and the different impacts of different signals will not be seen. Their

simulations would be fast, but the results not satisfactory. The register-levelised repre-

sentation considers the impact of one register at a time, which is a manageable granularity,

still being fine-grained enough the possibility for accurate estimation remains.

6.3 Abstractions made

As mentioned making abstractions are important to achieve the desired simulation speeds.

As information can later be abstracted away by the power model generator, doing too many

abstractions while making the structural representation is, however, deemed unnecessary.

It is better to abstract away information after the structural representation is related to

power information. Some abstractions done at this level are given below:

• Grouping of generic cells

In Section 5.1 generic cells are grouped together based on their basic functionalities.

This is done in Table 5.2. The biggest generic cell groups were the ones representing

complex arithmetic operations such as multiplication, but also shifters and comparators

have big groups.

• Register levelisation

45

Depending on how it is implemented, the register levelisation may introduce abstrac-

tions. If all information outside the register level loses its relation to information within

that level, the correlation between inputs and the impact these correlations have on

power consumption is lost. It will also make it harder to predict switching activity as

inputs from different register levels may not be able to relate to each other, leading to

a more inaccurate output switching probability.

Before relating the representation to the cell library used, it is good to retain as much

information as possible to make the relation simpler.

6.4 Elaborated SystemVerilog parser implementation

The elaborated SystemVerilog parser is implemented in Python. It is class-based and

has one class for each of the constructs listed in Table 5.1. It takes in the elaborated

HDL representation of the design, created by Synopsys HDL Compiler and yields a set of

node trees as the structural representation. The flow of the parser is illustrated in Figure

6.3.

Figure 6.3: The elaborated SystemVerilog file is parsed and a set of structure class objects

are made

The functions of the system, their hierarchy and the different classes are described in depth

in Appendix A. The problem can be divided into two parts;

46

1. Parsing the elaborated SystemVerilog and storing the information retrieved in objects.

2. Processing these objects to make a register-levelised structural representation.

The implementation is briefly described in the sections below. The code of the parser is

given in Appendix D and on GitHub [21].

6.4.1 Parsing

The parser begins by going through the whole input file line-by-line. It makes objects for

each instantiation of a generic cell or connection it encounters and stores them in lists.

The lists are part of a module object, representing a module instantiation. When a new

module declaration is reached, a new module object is made. A module instantiation inside

another module is another object type referring to the module objects they represent. After

a new object is created from a generic cell instantiation, its connection ports are registered

and found in the existing input-, output- or wire- object lists. The cell connection is then

registered in the related connection object.

When all the objects are made, and the parsing is done, one has all the structural informa-

tion in the lists of inputs, outputs and wires as all generic cell objects are now connected

to these.

6.4.2 Post-processing

The information obtained from the parsing needs to be made into the register-levelised

structural representation.

The object lists in the module object make it possible to start from an input or register

and see how the signals propagate, fan-in and fan-out until they do not propagate any

further. A signal stops propagating when it reaches a top-module output, another register

or a select or control signal for a SELECT or MUX generic cell. This propagation is done,

and a structure tree is made from the elements.

The structure tree is a node tree with one parent and multiple children per node. As the

goal of the register-levelised representation is to see all the cells affected by the switching of

a cell fan-out is necessary to take into consideration. Fan-in is not considered as different

inputs to a cell, may originate with different registers.

This structural representation leads to every cell with more than one input having itself

and everything connected to its output duplicated as many times as its number of inputs.

47

To deal with this expansion, and reduce the processing time caused by it, the output node

tree from a cell is stored in the cell the first time it is encountered. Later, if the cell is

reencountered as part of another structure, the node tree stored in the cell object will be

reused.

6.4.3 Register levelised structure trees

The circuit from Figure 6.2b represented as the structure trees developed from parsing

elaborated SystemVerilog and processing the retrieved data is shown in Figure 6.4. The

circuit becomes four structure trees, one for each register. Gates with inputs coming from

elsewhere will also be part of other structure trees.

It is only possible to go through the tree in the direction of the arrows, and each tree head,

starting with each of the four registers, are oblivious to the sharing of structures with the

other trees.

R1 R2

xor2

and2

or2

R3 R4

and2

and2

Figure 6.4: A structural representation of the circuit in Figure 6.2b as a tree of structure

objects

A text representation of this structural representation is shown in Listing 6.1. Here the

relation between the structure trees are more obscured.

48

Listing 6.1: Structural representation example

R1

reg

| gtech_or2

| | gtech_and2

R2

reg

| gtech_xor2

| | gtech_and2

R3

reg

| gtech_and2

R4

reg

| gtech_and2

| | gtech_and2

The first time a generic cell instantiation is encountered, the structure object created from

it is stored in the cell object. If this cell has more than one input, it will be reencountered.

When this happens, the structure object stored in the cell object will be reused.

6.5 Comparing cell counts

In Table 6.1 cell counts from the elaborated SystemVerilog parser and the synthesised file

are given. The counts are sorted into different groups based on cell functionality. The select

statement has no equivalent in the synthesised file, and others is a group representing cells

in the cell library with no generic equivalent functions, such as decap cells, preventing an

IR drop by providing current when much of the logic switches at once.

Table 6.1: Gate counts from elaborated structure and synthesised file

constructs elaborated SV parser count synthesised file count

Module1 registers 164 175

muxes 6 56

inverters 406 88

buffers 332 6

arithmetic 2 0

logic 1128 1196

49

selects 2450 -

others - 2

total 4488 1521

Module2 registers 15 13

muxes 4 0

inverters 92 13

buffers 57 8

arithmetic 0 0

logic 411 183

selects 81 -

others - 0

total 660 217

Module3 registers 12 12

muxes 0 11

inverters 22 9

buffers 20 1

arithmetic 5 0

logic 23 55

selects 26 -

others - 0

total 108 88

Module4 registers 16 16

muxes 1 16

inverters 99 22

buffers 70 0

arithmetic 0 0

logic 89 156

selects 51 -

others - 0

total 326 210

Module5 registers 180 180

muxes 0 0

inverters 6 99

buffers 5 11

arithmetic 19 226

50

logic 5 708

selects 4 -

others - 1

total 219 1225

6.6 Structural representation discussion

6.6.1 Cell counts

The most noticeable trend in Table 6.1 is the difference in total cell count. In most cases,

the number of cells after synthesis is drastically reduced. The exception to this trend is

the modules containing arithmetic cells. The generic cells for arithmetic operations may

be large, as their input signals’ width can vary. For example, a 32-bits adder could be

represented as one generic cell instantiation. This is seldom the case for arithmetic cells

in the non-generic cell library. These cells are often small and brilliantly combined to

perform complex arithmetic operations. One generic cell adding together two 32-bits non-

constant values will, after synthesis, very likely be represented by more than one arithmetic

cell.

The elaborated SystemVerilog of Module5 contains 19 arithmetic cells. It is a filtering

module performing several multiplications. The synthesis of the arithmetic cells leads to

an increase to 226 arithmetic cells. Together with four select statements, they contribute

to increasing the logic gate count from 5 to 708. The buffer counts also sink considerably

in all test modules except Module5 where the buffer count increases from 5 to 11.

The select cells do not exist in the synthesised design, and the synthesis process transforms

these to either multiplexers or logic cells. In most cases, it seems they become logic cells.

The large Module1 begins with 2450 selects in its elaborated representation, and less than

56 of these are synthesised into multiplexers. All the other modules have similar trends,

except for Module3. Here 26 selects become 11 multiplexers and the logic count increase

from 23 to 55, but this may also be due to the modules’ 5 arithmetic cells.

For modules where arithmetic operations are not done, the total gate count is reduced with

more than 2/3 from the elaborated netlist to the synthesised one.

These general trends will hold, but the difference between the elaborated netlist and the

synthesised netlist is heavily dependent on the cell library. If the cell library is similar to

the generic cell library used during elaboration the reduction in gate count will mostly be

51

due to clever optimisation. If, on the other hand, the cell library contains a wide selection of

more complex cells, the mapping from the generic library which contains simple cells to the

more complicated cells will in itself reduce the gate count significantly. The further from the

synthetic cells the actual cell library is, the more inaccurate the structural representation

made by the parser will be.

An example of this can be seen from the inverter count. It is lowered due to many gates

inverting the output being present in the cell library compared to the generic library, like

NAND-, NOR- and XNOR gates. Cells with several inputs also lowers the gate count, as

one OR5 gate can be used instead of four OR2 gates and so on.

6.6.2 The register-levelised node tree

The structural representation as a node tree introduces some limitations to the possibility

of optimising the structural representation. It allows one to follow one bit through the

circuit, but is unaware of the fan-in introduced by cells. It only sees the fan-out introduced

by wires and is thus ever-expanding but never shrinking.

When re-encountering objects, their structure will be reused. This reuse of structures pre-

vents this expansion from impairing the size of the structural representation, reducing the

processing time and preventing duplication of structural representations for one cell.

Some data is lost in this representation, as only one bit is considered at a time in multiple-

input cells. This loss of data could introduce an issue when this representation is later used

for power estimation due to the status of all inputs impacting the probability of an output

switching.

This data loss could be worked around, either by assuming a probability for the other sig-

nals being 0 or 1 or by storing some switching information in the structure object before

propagating a switching probability. The latter of these will yield a more accurate re-

sult than assuming probabilities and considering the correlation between inputs. However,

propagating input probabilities this circumspectly may make the power estimation slow,

which is not desired.

Another obstacle the structure tree faces is later being combined with power data from the

cell library. If cells with more operations and higher numbers of inputs exist in the cell

library, switching to these cells in the structural representation will be hard as we are only

able to move forward in the structure, not backward (from parent to children, not from

child to parent).

52

6.6.3 Abstractions introduced by generic cell groups

Already in Section 5.2 some choices were made abstracting away information. Several

generic cells were grouped together based on their functionality. For instance, multipliers

using signed- or unsigned input signals, (or a combination of the two), has been put into a

multiplier group. All comparator cells were also grouped together.

These generic cells often have no equivalent in the cell library. It is the job of the synthesis

tool to combine available cells to create the functionalities needed. These types of generic

cells will be subject to massive optimisations in the synthesis. For instance, if one of the

inputs to an addition or multiplication is constant, this can significantly reduce the logic

needed.

Predicting some of these optimisations may be more important than whether the inputs to

the cell are signed or unsigned.

The problem of how to represent these cells aside, grouping cells that will be represented

differently, will introduce inaccuracy. For the comparators the equality and inequality com-

parators are grouped together with the "greater than", "lesser than", "greater than or equal"

and "lesser than or equal" comparators. The logic needed for different types of comparators

will vary and dividing this group in three should be considered in the future.

6.6.4 Registers being optimised away

In Table 6.1, it can be seen that the register counts are not always the same between the

synthesised design and the elaborated SystemVerilog file.

In some cases, if input signal buses are more narrow than the module is made to handle,

some registers within the module will be optimised away as they are not needed. Predicting

this with the structural representation is hard. As each register is the head of a structure

tree, it is hard to know whether registers will be inferred. A has_parent variable introduced

in the register object and only registers having a data input get this variable set to True.

If a register has a parent, and its corresponding structure tree has children, the register is

assumed inferred. In most cases, this assumption is valid, but in Module1 it results in fewer

registers in the elaborated count than in the synthesised one, and in Module2 it results in

more.

53

6.6.5 Possible optimisations

A disadvantage with the chosen structural representation is that different branches in the

node tree do not have any relation to each other even if they are parents of the same

structure. More ideally, they would be aware of each other or even be part of the same

representation of a cell in the power model.

Such awareness would make propagating the activity data more accurate. One would have

a probability for each of the inputs rising, and thus be able to calculate a more accurate

probability of the output switching. It could also make it easier to relate the information

on available cells in the cell library to the structure trees of generic cells.

On the other hand taking several inputs into account before propagating switching activity

is complicated and such an approach may be too time consuming.

54

7 Extracting library information

This chapter presents and discusses how the information related to power consumption is

retrieved from the cell library. An illustration of the flow, highlighting the steps relevant

to this chapter, can be seen in Figure 7.1.

RTL
Technology

library

Synopsys Design
Compiler

elaboration

Elaborated RTL

Liberty parser

Library Info

Elaborated RTL
parser

Processed
structural info

Library processing

Power relevant
library info

Combining
information

Power Model

Figure 7.1: The modeling flow with the part related to retrieving power information from

the cell library highlighted.

55

The resulting representation of cells in the cell library and their power consumption will

later be used in the power model generator. The power model generator will relate the cell

information to the structural representation of the design.

The motivation for using the Liberty file for this is given in Section 4.2. As information

about the different cells available and their power characteristics is not normally introduced

to a design before synthesis. Introducing it earlier and trying to use it in power estimation

will lead to better accuracy of the power estimations if this information is related to the

design one tries to estimate the power consumption of in a good way.

7.1 Relevant power data

The information to be retrieved from the cell library consists of certain groups and at-

tributes. These are described in Section 5.2. Different cells have different power consump-

tions. An AND2 gate and a Multiplexer, for instance, will not have the same leakage power

or switching power. Differentiating between types of cells will lead to more accurate power

estimates, than, for instance, using the power data of an average cell for all cells. Using

the average cell may yield the same average power consumption for the design, with a loss

of spatial and temporal accuracy. Being able to improve accuracy with this differentiation

is depending on relating the cell information well to the RTL representation of the design.

Using the structural representation developed in Chapter 6, relating different cells and their

power data to different generic cells in the structure trees is possible.

This information will allow for estimating the switching power by adding together the power

values from the input pins’ internal_power group, which makes up the internal power of

the cell, and the power value in the output pins internal_power group, which depends on

the capacitance of the pins they drive (if any) and constitutes the switching power of the

cell. It also allows for estimating the leakage power by looking up the value in the leakage

power group.

7.2 Abstractions

7.2.1 The difference between fall- and rise power

Often it is either the fall- or the rise power consuming power in a transition. The rise power

is described in the rise_power group. It describes the power consumed as the output pin

rises when a related input pin rise. The fall power is part of the fall_power group and

56

describes the power consumed as an output pin falls after the related input pin rises. In

this implementation, these two contributions to power, the rise- and fall power, are added

together, as a signal rising implies that it has previously fallen, and conversely. This way,

one needs only observe rising transitions, but can still take the fall power into account. This

combination of the rise- and fall power effectively halves the amount of data needing to be

represented. The temporal accuracy of the power estimation will, however, be affected by

this combination. If a cell consumes the most switching power when an input falls, instead

of when the input rises, the power consumption will happen later than estimated. After a

signal rises, it is impossible to say when it will fall, and the power related to the fall of the

input will be consumed.

This inaccuracy may be worth having half the amount of data to process in a simulation.

An illustration of the abstraction is shown in Figure 7.2.

Figure 7.2: The impact on power estimation when summarising rise- and fall power

7.2.2 The difference between data input pins

The difference between data inputs in a cell will be abstracted away. The first input pin is

the only input pin for which power data will be stored. This will lead to power estimated

for different input pins in a cell to all be based on the power characteristics of the first

input pin.

A good example of this abstraction can be given with the ANDOR21 cell, shown in Figure

7.3, two of the input signals go through the AND2 gate, before the OR2 gate, while the

third input signal only goes through the OR gate.

The ANDOR21 cell does not exist in the generic cell library. Its equivalent is a generic

AND2 gate, combined with an OR2 gate. The two first inputs of these cells will go through

57

both the AND2 gate and the OR2 gate and have the structural representation given in

Listing 7.1, while the third input will only see the OR2 gate and be oblivious to the AND2

gate, as shown in Listing 7.2. The two first input transitions will naturally consume similar

power, but the last input is not going through the same operations and will have different

power characteristics.

Figure 7.3: ANDOR21

Listing 7.1: ANDOR21 gate seen from

the two first inputs

gtech_and2

| gtech_or2

| | . . .

Listing 7.2: ANDOR21 gate seen from

the last input

gtech_or2

| . . .

A comparison between two cells from the cell library; an ANDOR21 cell, as shown in Figure

7.3, and a regular OR2 cell is done. The comparable scenarios are the third input of the

ANDOR21 rises while the result of the AND operation is 0, and a rising input on the OR2

cell while the other input is 0. It turns out that the ANDOR21 consumes approximately

41% more power in this switching.

Being able to take the found difference in power consumption into account would be advan-

tageous as a more accurate power model could be made. With the structural representation

from Chapter 6, where only one bit is considered at a time, it is impossible to recognise

a cell with more operations than those the bit in question propagates through. Thus, ab-

stracting away all inputs but the most complex one, will not make the representation more

abstract, as the same limitation is already present from the structural representation. If a

way to work around this abstraction is found in the power model generator, or the struc-

tural representation is re-implemented, however, only saving data from the first input pin

of a cell is introducing some inaccuracy.

58

7.2.3 The state-dependency of leakage power

The leakage power in a cell is state-dependent. The library used contains leakage power

groups with the when condition for all possible states of the cell to model this. There is

also one leakage group containing the average leakage power between all the other leakage

groups. In this project, the average leakage power group will be used, and the state of the

cell will not be taken into account. Making use of the average leakage power removes the

need to calculate the states of cells in the power model. Thus, it is still an opportunity for

the power model to abstract away cells entirely, and only have a sum of power values in

their place when calculating the power consumption in simulation.

Knowing the leakage power as a cycle variant contribution would increase the temporal

accuracy of the power estimations, but it may introduce more computation than it is

worth. Cells that spend equal time in all states will contribute a total power equal to the

leakage power value used in this project. It is unlikely this is the case for any cell, but the

total average power contribution from leakage power will likely be close to the total leakage

power consumption nevertheless, as some cells will consume more than expected and others

less.

The difference between the states of cells is significant and shown in Table 7.1. For a regular

AND2 gate the leakage power can vary with up to 161%. If the AND2 gate is always open,

this will result in a larger actual leakage power consumption than the estimated one, and

if the gate is always closed it will result in a smaller actual leakage contribution than the

estimated value.

Table 7.1: Increase in leakage power from least consuming to most consuming state

Cell Increase in power consumption

AND2 161%

MUX2 51.9%

NOT 147%

Knowing how the leakage power varies in time is not relevant in most cases as the leakage

power contribution to power is several orders of magnitudes less than the switching power.

It is the steady, relentless power contribution every cycle that makes leakage power a big

part of a design’s power consumption. As long as the average leakage power is accurate

enough, knowing the leakage variation in a cell over time is deemed redundant for this

59

project. When qualitative results are obtained, the accuracy of the estimated leakage

power contribution should be investigated.

7.3 Cells with same functionality

In a cell library, there are several cells with the same functionality, that have different prop-

erties. They can differ in timing-, area- and power characteristics, and the load capacitance

the cell can handle and so on. Depending on requirements to a specific location in the

design, the synthesis tool may choose any of these cells.

For large fan-outs, cells with high enough driving capacity are needed. For critical paths,

faster cells may be necessary to avoid breaking the timing constraints. If it is a priority to

reduce the power consumption of a design, cells with low power consumption will be used

wherever possible.

As these cells have varying power characteristics, it is necessary to know which of them are

most likely to be used in synthesis to improve the estimation accuracy.

From the pin attributes, the maximum capacitance an output pin can drive is given. If the

total capacitance of the pin(s) this output is connected to exceeds this capacitance for any

cell, it can be discarded as a possible candidate.

Trying to choose a cell only based on the driving capacitance, however, ignores design

constraints. These will be reflected in the cells used at the gate level representation.

A representative design can be used as a calibration netlist for the Liberty parsing to take

design constraints into account. It must have been synthesised with the same frequency and

voltage as intended for the design one wants to model as which cells chosen during synthesis

depend heavily on this information. The calibration netlist needs to be large enough to give

a clear indication of which cells are likely to be used and which are less likely.

In the calibration netlist, the number of occurrences for all the available cells is counted.

Later, when comparing cells of the same functionality, this count can be compared to the

counts of other cells, and used as an indication of whether or not a cell is more likely to be

used than another.

60

7.4 Implementation

Running the Liberty parser is time-consuming. The liberty file used in this project ex-

ceeds 11 million lines, containing around 300 cells. For each cell approximately 20 lines of

information is needed. This amounts to 6000 lines constituting the information wanted.

Temporarily storing the power- and cell information outside the Liberty file is deemed

necessary. The flow of the implementation is shown in Figure 7.4.

set_cells_and_environment()

sort_cells()

stored JSON lines

Liberty file

cell_library object

Calibration file

Figure 7.4: The dataflow of retrieving the relevant Liberty data.

The implementation has been divided in two:

1. Reading out data from the Liberty file and calibration data from the calibration netlist

and storing it in JSON object lines.

61

2. Reading out the JSON lines from the intermediate file and construct an object rep-

resenting the cell library.

The implemented code can be found in Appendix E and on GitHub [21]. A detailed overview

of the functions and classes in the implementation can be found in Appendix B.

7.4.1 Parsing Liberty and storing data

Using the Liberty parser provided by Nordic Semiconductor ASA, the Liberty file was

parsed, and the information interesting for power estimation of a cell was put into a list

then transformed to a JSON object. In addition to the cell information, each cell’s oc-

currences are counted from a calibration netlist, a large synthesised design used by Nordic

Semiconductor ASA. This count can later be used to see which variations of each cell type

are more probable to be used in synthesis.

Each cell is thus made into one object on one line and all unwanted information is removed

from the cell representation. A function for reading out the representations from the JSON

file was also made. A JSON line looks like this:

([cellName , f oo tp r i n t , leakagePower , o ccurence s_ in_ca l ib ra t i on_f i l e , [

input_pins , output_pins])

The output_pins is a list of output pin objects:

[pinName , p in_direct ion , pin_function , pwrPin , gndPin , re lated_pin ,

when_condition , [r ise_cap , powerSumList]]

rise_cap is an array of load capacitance values, and PowerSumList is an array of power

values relating to each capacitance value in rise_cap. The values in PowerSumList is the

sum of the rise- and fall power values for the capacitance value in question. The input pin

object is identical to the output_pin object, except for having a capacitance value instead

of a function.

Running the liberty parser of Nordic Semiconductor ASA on the more than 11 million line

Liberty file takes 11-12 minutes. If in addition to this calibration is done on an almost 3

million line calibration netlist, the time required to get the JSON library representation

gets close to 20 minutes.

62

7.4.2 Putting together a cell library object

When the power library representation is needed, the file with the JSON objects is parsed,

and each cell found is put in a cell object. This object contains all the information on

the JSON line and a sequence of generic gates from the elaboration library corresponding

to the cell behaviour. The cells are then grouped into a cell_group object based on their

functionality. All the cell groups are then put in a cell_library class object representing

the cell library.

7.4.3 Summary

The relevant power information from the cell library can now be retrieved and stored in a

library object. The library object contains lists of groups sorted after the number of inputs

and separate lists for registers, multiplexers and empty groups for the more complex generic

cells. This library object can be used to find the power information one wants, which was

previously found in the liberty file.

To avoid the time-consuming parsing of the liberty file every time the power estimation

is done, the Liberty information is intermediately stored in JSON lines. This intermedi-

ate format reduces the time it takes to get the information from the liberty file and the

calibration data from almost 20 minutes to instantaneous.

7.5 Discussion

7.5.1 Choosing a cell from a group

When deciding which cell in a cell group to use in the power model, there are different

ways to do so. One can use the characterisation data to get the cell in a group with the

highest weight, or one can use the weights to calculate some average cell in a group based

on a weighted average.

Another option is to not care about the characterisation data and choose a cell with suitable

driver strength depending on the total input capacitance it has to drive. Although, this

selection may depend just as much on the speed needed for switching.

As this power representation contains no timing information, choosing cells based on timing

is not an option. This may introduce inaccuracy if the circuit is synthesised with strict

performance constraints. The calibration data tries to make up for this but depends on

63

the design subject to power estimation being synthesised under similar constraints as the

calibration netlist.

Choosing a cell in a cell group can be up to the user of the library by adding procedures

to it, giving out a cell depending on the user’s choice. Such a procedure could ask for a

weighted average cell or a cell corresponding to some load capacitance.

7.5.2 Other representations

A representation that does not abstract away the fall power and leakage power states is

also a possibility. Differentiating between rise- and fall power should allow for more cycle

accurate power estimation. The fall power can lead to more power consumption than the

rise power and signals may remain high for a long or short duration before falling again. A

more state-dependent estimation of the leakage power could also be possible.

The abstracting away of power data from all inputs, but the first one could be skipped to

make the library representation more general. When it is going to be combined with the

structural information from Chapter 6, however, having power data from only the first cell

input is sufficient.

7.5.3 On the calibration

The calibration script is simplistic and goes through the entire calibration netlist for each

cell to count how many times it appears. If runtime is critical, the algorithm should be

improved. A good alternative is to go through the calibration netlist looking for all cells in

a group at once, or even going through it only once counting occurrences of all library cells

simultaneously.

It could also be an option to move the calibration to a different pointing the flow, especially

if its runtime is improved. This way, the Liberty parsing remains indifferent to synthesis

settings, just extracting the information from the liberty file, and the parsing of the Liberty

file will not have to be done again if one wants to test the estimation with another calibration

netlist. The calibration data could, for example, be an input to the power model generator

instead. Using the calibration data as an input here requires the power model generator

user to be aware of the cell library, so the calibration netlist is undoubtedly from the same

library as the one used for power estimation.

64

8 Generating a power model

This chapter will present how the structural information retrieved from the elaborated

SystemVerilog file can be combined with the cell library information retrieved from the

Liberty file in order to create a power model of the design. Figure 8.1 illustrates the scope

of this chapter.

RTL
Technology

library

Synopsys Design
Compiler

elaboration

Elaborated RTL

Liberty parser

Library Info

Elaborated RTL
parser

Processed
structural info

Library processing

Power relevant
library info

Combining
information

Power Model

Figure 8.1: The modeling flow with the flow relevant to this chapter highlighted.

65

The processed structural info will, in this project, be the structure tree from the elaborated

SystemVerilog parser. The power relevant library info is the cell_library object acquired

from the Liberty file. Combining the data retrieved is necessary to relate the structural rep-

resentation to realistic power data and is the last step towards getting a power model.

8.1 Limitations introduced by the structural representation

The most major limitation introduced by the implementation in Chapter 6 is the nature

of the structure trees. The nodes in the structure tree allow for finding the children of a

structure, but not its parents. It fans out whenever a signal fans out, but does not fan in

when a cell does so. Two inputs to the same cell remain oblivious to each other in such a

structural representation.

On one hand this allows one to easily parse through all the structures affected by a register

or input changing value and estimate the amount of logic. On the other hand, not knowing

the other parents of a node can make it harder to estimate the switching activity.

Not knowing the parents of a node in the structure tree makes doing many optimisations

on the structure tree impossible. Only sequences of cells will be recognised and possibly

replaced with more complex cells. For instance, the three AND2 gates in Figure 8.2a in

an elaborated SystemVerilog representation is very likely to be optimised to one AND4

cell during synthesis, if one is available in the cell library. As the last AND2 gate in the

structure is unaware of its parents the parents remain oblivious to each other. The structure

objects created by the implementation in Chapter 6 is shown in Figure 8.2c. And the tree

made up of the structure objects is illustrated in Figure 8.2d. All the four input pins, will,

even though they share structure objects be unaware of their relation to each other.

66

(a) AND4 represented in elaborated SV (b) AND4 after synthesis

(c) AND4 in structural representation. Structure objects
are represented as dotted circles around the object they
represent.

(d) AND4 structure tree

Figure 8.2: Different representations of an AND4 gate

8.2 Limitations introduced by the cell library representation

Three abstractions were introduced in the implementation of the library processing in

Chapter 7. They are discussed further in Section 7.2.

• Combining rise- and fall power

Reducing the temporal accuracy of the power estimates. Combining the power contri-

butions will not introduce any inaccuracy on the switching power values, but the time

where power contributions happen will be inaccurate.

67

• The difference between input pins

Power data is only saved for the first input pin of a cell. Ignoring the difference may

complicate grouping of generic cells to one cell from the cell library, as one is unable

to differentiate between inputs and their impact on power. It was seen in Section 7.2.2

that the OR2 operation done in a regular OR2 cell and the OR2 operation that is part

of an ANDOR21 cell consume different power.

• State dependency of leakage power

The different leakage power values for different states of a cell were not retrieved from

the cell library. Only the average value between all the states is available after processing

the library data. As the leakage power can increase with as much as 160% from a low-

output state to a high-output state as shown in Table 7.1, the inaccuracy using only

the average leakage power of cells may introduce significant inaccuracy.

8.3 Combining the structural information and the liberty data

The cells in the actual cell library are different from the cells in the generic cell library used

in the structural representation. To combine the power information with the structural

representation, a mapping of the generic cells to cells from the cell library is necessary.

As a cell is not aware of its parents, this can only be done by going through the structural

representation and replacing generic cells or sequences of generic cells with cells from the

cell library.

After being able to determine which cell group fits one or more of the generic cells, a cell

has to be chosen from that group to get power data. As the calibration data states, the

probabilities of each cell in a group being used, some weighted average power consumption

of the cell group can be made from this. The driver strength of cells could also be used

when choosing a cell, excluding those that can drive loads differing by some margin from

the actual load.

For the generic arithmetic cells, there is seldom a suitable cell in the cell library. This is

discussed further in Section 8.4.

As so few of the buffers were still present after synthesis, as seen in Table 6.1, it is chosen

to remove buffer cells entirely from the power representation of the system. Another option

could be to let buffer cells remain only if their fan-out is high enough for it to be deemed

necessary.

68

8.3.1 Need for optimisation

When Synopsys DesignCompiler elaborates the HDL, the representation is optimised and

mapped to the generic cell library. When mapping it to corresponding cells, one option

is to find an equivalent cell for each of the generic cells, and simply replace all generic

cells with their cell library equivalent from the Liberty file. Systematic errors this may

introduce can be investigated and adjusted for to the best ability. Another option is to

do some "optimisation" and for instance map an AND2 cell followed by a NOT cell to a

NAND2 cell if one is available in the cell library.

To investigate whether the generic cells can be mapped directly to library cells by using

only the cell library equivalents of generic cells, or if several generic cells should be mapped

to one more complex cell from the cell library when possible, three options of implementing

an AND4 gate have been examined: One representation consists of three AND2 gates, one

consists of one AND2 gate and one AND3 gate, and lastly, one consists of one AND4 gate.

Power information for each of these have been retrieved from the cell library that is used

in this case. The three AND4 implementation options are shown in Figure 8.3.

(a) 3 AND2 (b) 1 AND2, 1 AND3 (c) 1 AND4

Figure 8.3: Different implementations of a 4-input AND gate

The different cells in the cell library have different power characteristics as shown in Table

8.1. Here the cells are all driving the same output capacitance having one of their inputs rise

as the other rises for the dynamic power and the average leakage power value is used. The

leakage power values are a bit lower for the bigger cells and the dynamic power consumption

is a bit higher.

Table 8.1: Power consumption in AND cells of different sizes using AND2 as the reference

AND3 AND4

Leakage power −8.4% −20.1%

Dynamic power +14.4% +18.9%

69

The average leakage power for Figure 8.3b is 36% lower than for the three AND2 gates

in Figure 8.3a. For the AND4 gate in Figure 8.3c, it is 73% lower. This is due to the

leakage power being the average of all the states in the cell and the gates with higher

inputs having more states with low power consumption. Combining the three generic cells

into one will reduce the calculated leakage power, simply by making use of the cell with

more inputs.

In reality, however, the three AND2 gates in Figure 8.3a will not all consume their average

leakage power. As one input from the second AND2 gate comes from another, the prob-

ability of that input being high is lower than if it was coming from an input propagating

through less cells. For the third AND2 gate the probability of the gate output being high

is lowered once again. As the model does not monitor states or take state-dependency into

account when calculating leakage power this is not taken into account, and the estimated

leakage power of the three AND2 cells will be higher than in reality. However, the reduc-

tion in leakage power from combining generic cells when mapping them to the cell library

is so significant that it improves the power consumption either way. The leakage power

consumption of an open AND4 cell with all inputs high, for instance, is 49% lower than

that of three open AND2 cells.

For the switching power, the scenarios that leads to the output of the AND4 gate switching

has been considered. This means that three inputs are already high, and one rises. For the

AND gate combination in Figure 8.3a, this can cause one-, two- or all of the AND2 cells

to switch. The mean case will be considered. For the second AND4 gate implementation,

in Figure 8.3b, this means either both cells will switch, or only the AND3 cell will. Lastly,

for the AND4 cell in Figure 8.3c, one cell will switch.

Using the unoptimised combination of three AND2 gates in Figure 8.3a as a basis, the

switching power will on average be 19% lower for the option in Figure 8.3b, and 41.3%

lower for the AND4 gate in Figure 8.3c if they drive the same output. The comparison in

shown in Table 8.2.

Table 8.2: Power consumption in AND4 optimisations, in comparison to the three AND2

gate implementation in Figure 8.3a

1 AND2 1 AND3, Figure 8.3b 1 AND4, Figure 8.3c

Leakage power −36% −73%

Dynamic power −19% −41%

70

Thus, combining the generic cells to suit more complex cells from the cell library is desirable

to get a more accurate power estimate. This will reduce the error in leakage power by

introducing cells with more states and reduce the error in dynamic power by using cells

more likely to be chosen by the synthesis tool.

The generic library does not contain logic cells with inverted outputs, such as NAND, NOR

and XNOR. Typically these cells need less transistors than their non-inverting equivalents.

A NAND2- and an AND2 gate will be used to understand the significance of this.

In figure 8.4 CMOS logic for a NAND2 gate and an AND2 gate is shown. An AND2 gate

consists of a NAND2 gate and an inverter. The generic cell equivalent of the NAND2 gate

is a AND2 gate followed by an inverter. If the NAND2 is implemented directly as such, four

extra transistors are needed, compared to using a NAND2 gate directly, if one is available

in the cell library.

Figure 8.4: A common CMOS schematic for a NAND2 and an AND2 gate. The AND2

schematic is the same as the NAND2 but with an added inverter.

71

The amount of logic needed, and thus, the power consumed, is reduced by optimisations in

the synthesis process as shown in Table 6.1. It is necessary not only to map the structure

from Chapter 6 to cells from the cell library, but to also do this intelligently as many cells

in the cell library are complex and does not have generic cell equivalents. The same goes

for the other way around, as many generic cells, specially the arithmetic ones will never

have an equivalent in the cell library.

8.4 Generic cells with no library equivalent

In the power model generator it is assumed that all the logic cells in the generic library

have an equivalent. This means cell libraries used must have the following cells: NOT,

AND2, OR2, XOR2. It is also assumed that the cell library contains a register cell and a

multiplexer cell.

It is possible to make a power model generator without these assumptions, but then al-

ternatives to the generic cells would have to be found and proposed. An alternative to an

AND2 cell, for instance, will be a NAND2 cell followed by an inverter.

Several of the generic cells are complex and have no equivalent in the cell libraries, as

their implementation will depend heavily on the inputs to the cells and their size. Most

of the generic arithmetic cells; multipliers, divisors, adders and subtractors fall under this

category and need an alternative implementation with cells from the cell library. For now,

all of these are left as empty shells, containing no power information and no cells from the

cell library. Alternative representations for selects, shifters and comparators will have to

be made as well.

In Section 8.4.1 a representation is investigated for the generic select cell. A similar ap-

proach can be used upon making representations for the other cells, however, the synthesis

of the arithmetic generic cells will depend highly on their inputs. An addition or multi-

plication of an arbitrary number and a constant, for instance, require less logic than an

addition or multiplication of two arbitrary numbers.

8.4.1 The select cell

The elaborated SystemVerilog netlist contains the ’select’ cell, which does not have an

equivalent in any cell library. It has the functionality of a one-hot multiplexer and is at

times synthesised using a multiplexer, and at other times synthesised using logic cells.

72

It is necessary with a consistent way to represent the ’select’ cell to incorporate it into

the power model. From the results in 6.5, it can be seen that in most cases the select

statement is not made into a multiplexer, but rather implemented in logic. A 2-input

one-hot multiplexer can be represented as two AND2 gates and one OR2 gate, which is

also equivalent to an AO22 gate. This representation can be seen in Figure 8.5. This

implementation can also be extended to an N-bits one-hot multiplexer by using N AND2

gates and one N-inputs OR gate or its equivalent. For datawidths larger than one, the

whole MUX-structure will be duplicated for each data bit

(a) One-hot MUX2 logic representation with
datawidth 1

(b) One-hot MUX2 logic representation with
datawidth 2. Twice the amount of logic is
needed compared to the MUX2 with half the
datawidth

Figure 8.5: One-hot multiplexers with different datawidth

The power consumption of possible replacements has been calculated, using a MUX2 as

a baseline. The AO22 gate is a suitable replacement with a 4.9% increase in the leakage

power and a 7.9% decrease in switching power. Two AND2 gates followed by an OR2 gate

performs worse with 37% higher leakage and a 40.8% increase in the switching power. If

an AO22 gate is available in the cell library, replacing the SELECT statement with that

one, rather than a MUX, is a good option. As a second option, if no such gate is available,

substituting the select operator with a MUX would be better than the three-cell alternative

in Figure 8.5.

The AO22 gate is equivalent to a one-hot MUX, but has two separate select signals instead

of a select input and the same select input inverted, compared to a regular MUX. Using the

AO22 gate solely to replace select statements should not introduce more than this error in

the cases where a MUX is used instead of other logic cells. The optimisation done by the

synthesis tool, concerning select operators, is still unaccounted for, however.

73

8.5 Estimating the switching power

When estimating the switching power of a design, how switching activity propagates through

the cells is important. With the register-levelised structural representation each input- and

register bit is the head of a structure tree containing all the logic affected by the input-

or register bit switching. Two methods for calculating the switching probabilities will be

investigated. Calculating the complete signal propagation, and calculating the signal prop-

agation for each structure tree separately.

• Determine the complete propagation of the signals

It is possible to know the exact propagation of signals by waiting with calculating the

output switching probability of a cell until all input switching activity is known. Then

one would know exactly how many gates switched each cycle and can estimate power

from it. However this is very complex, especially for larger modules and would take a

considerable amount of time. This is what a simulator does.

• Calculate propagation in each structure tree separately

Another option, that do not require as much calculation each cycle would be to calculate

the propagation probabilities beforehand. Then one power value can be present for

each structure tree. During simulation this value can be added to the total power

consumption each time the head of the structure tree (a register or an input) rises.

As determining the complete propagation of signals is too complex for the method to

be used efficiently in parallel with RTL simulations the second option is better suited

for propagating the switching activity through a structure tree. Having one switching

power value per structure tree is a huge advantage when it comes to calculating the power

consumption with activity data from a simulation.

8.6 Implementation

A description of the system functions, classes, and behaviour can be seen in Appendix C.

The full implementation can be found in Appendix F and on GitHub [21].

The power model generator is implemented in Python. It scans the structure trees from the

structural representation implemented in Chapter 6 and replaces generic cells, or sequences

of generic cells, with cells from the cell library and their power information. These cells and

corresponding power information is stored in a cell_group object by the library processing

74

implemented in Chapter 7. The cell_group is a group of cells with equivalent functionality.

All cell groups existing in the cell library are stored in a cell_library object.

The structure from the elaborated SystemVerilog parser, implemented in Chapter 6, is

scanned and a corresponding structure is made containing power information, in the form

of a cell_group object. This new structure tree is also doing optimisations where more

cells follow each other without fanning out. If any sequence of cells correspond to the

functionality of a more complex cell, the sequence will be replaced with that cell from the

cell library. For instance if an AND2 gate is followed by an OR2 gate, and that OR2 gate

only the sequence will be optimised to an ANDOR21 gate if one is present in the cell library.

If the AND2 gate output fans out and drives more inputs, however the optimisation will

not be done.

In Figure 8.6a the power structure representation of the AND4 gate in Figure 8.2 is

shown. The sequences of AND2 gates are combined together and optimised to two AND3

gates.

(a) AND4 in optimised structural representation. (b) Optimised AND4 structure tree

Figure 8.6: An AND4 gate as made by the power model generator

The implementation of the switching propagation through the structure tree to yield a power

75

estimate for each structure tree was deemed too time consuming. A bit more work done on

the propagation on switching probabilities can be seen in Chapter 10. The implemented

power model generator is a structure tree of cell groups and contain all the necessary

information to implement the switching power estimate suggested in Section 8.5.

8.7 Results

The structural representation of the elaborated SystemVerilog and the library information

retrieved from the Liberty file have been successfully combined into a tree structure of cells

from the cell library.

One structure tree from Module2 is given in Listing 8.1 and the same structure from

Module2, after it is processed by the power model generator is given in Listing 8.2. It

can be seen that all select operators have been replaced with an AO22 cell and that all

buffers are removed. In addition the module is able to unite sequences of generic cells

corresponding to a sequence of operations that can be done by a more complex cell from

the cell library, granted there is no fan-out between the generic cells that are being merged.

The first OR gate after the register on line 2 in Listing 8.1 is followed by a NOT gate, in

the power structure these are put together into a NOR2 operation.

Another structure tree from the elaborated SystemVerilog parser is shown in Listing 8.3,

and can be compared to the power structure tree in Listing 8.4. Here the generators ability

to combine cells is once again demonstrated as for instance the sequence on line 11-13 of

Listing 8.3, becomes the NOR3 cell on line 6 in Listing 8.4.

76

Listing 8.1: Structure from the elabo-

rated SV model

1 ' reg '

2 | ' gtech_or2 '

3 | | ' gtech_not '

4 | | | ' gtech_buf '

5 | | | | ' se lect_op '

6 | | | ' gtech_or2 '

7 | | | | ' gtech_or2 '

8 | | | | | ' reg '

9 | | | | | ' reg '

10 | ' gtech_not '

11 | | ' gtech_and2 '

12 | | | ' gtech_buf '

13 | | | | ' se lect_op '

14 | | | ' gtech_or2 '

15 | | | | ' gtech_or2 '

16 | | | | | ' reg '

17 | | | | | ' reg '

18 | | ' gtech_or2 '

19 | | | ' gtech_not '

20 | | | | ' gtech_buf '

21 | | | | | ' se lect_op '

22 | | | | ' gtech_or2 '

23 | | | | | ' reg '

24 | | | | | ' reg '

25 | | ' gtech_or2 '

26 | | | ' gtech_not '

27 | | | | ' gtech_buf '

28 | | | | | ' se lect_op '

29 | | | | | ' se lect_op '

30 | | | | | ' se lect_op '

31 | | | ' gtech_buf '

32 | | | | ' se lect_op '

33 | | | | ' se lect_op '

34 | | | | ' se lect_op '

Listing 8.2: Power structure from the

power model generator

1 ' reg '

2 | ' nor2 '

3 | | ' andor22 '

4 | | ' or3 '

5 | | | ' reg '

6 | | | ' reg '

7 | ' not '

8 | | ' and2 '

9 | | | ' andor22 '

10 | | | ' or3 '

11 | | | | ' reg '

12 | | | | ' reg '

13 | | ' nor2 '

14 | | | ' andor22 '

15 | | | ' or2 '

16 | | | | ' reg '

17 | | | | ' reg '

18 | | ' or2 '

19 | | | ' not '

20 | | | | ' andor22 '

21 | | | | ' andor22 '

22 | | | | ' andor22 '

23 | | | ' '

24 | | | | ' andor22 '

25 | | | | ' andor22 '

26 | | | | ' andor22 '

77

Listing 8.3: Structure from the elaborated SV

model

1 ' reg '

2 | ' gtech_or2 '

3 | | ' gtech_not '

4 | | | ' gtech_and2 '

5 | | | | ' se lect_op '

6 | | | | | ' reg '

7 | | | | ' gtech_and2 '

8 | | | | | ' gtech_or2 '

9 | | | | | | ' gtech_buf '

10 | | | | | | | ' se lect_op '

11 | | | | | | ' gtech_or2 '

12 | | | | | | | ' gtech_or2 '

13 | | | | | | | | ' gtech_not '

14 | | | | | | | | | ' se lect_op '

15 | | | | | | ' gtech_not '

16 | | | | | | | ' gtech_and2 '

17 | | | | | | | | ' se lect_op '

18 | | | | | | | ' gtech_and2 '

19 | | | | | | | | ' gtech_and2 '

20 | | | | | | | | | ' se lect_op '

21 | | | | ' gtech_and2 '

22 | | | | | ' gtech_or2 '

23 | | | | | | ' gtech_or2 '

24 | | | | | | | ' gtech_not '

25 | | | | | | | | ' se lect_op '

26 | | | | | ' gtech_and2 '

27 | | | | | | ' se lect_op '

28 | | | | | ' gtech_not '

29 | | | | | | ' gtech_and2 '

30 | | | | | | | ' gtech_and2 '

31 | | | | | | | | ' se lect_op '

32 | | | | ' gtech_or2 '

33 | | | | | ' reg '

34 | | | | ' gtech_and2 '

35 | | | | | ' se lect_op '

36 | | | | | | ' reg '

37 | ' sub_op '

38 | | ' se lect_op '

39 | | | ' reg '

40 | ' se lect_op '

41 | | ' reg '

Listing 8.4: Power structure from the

power model generator

1 ' reg '

2 | ' nor2 and2 '

3 | | ' andor22 reg '

4 | | ' and2 or2 '

5 | | | ' andor22 '

6 | | | ' nor3 andor22 '

7 | | | ' not '

8 | | | | ' and2 andor22 '

9 | | | | ' and3 andor22 '

10 | | ' and2 '

11 | | | ' nor3 andor22 '

12 | | | ' and2 andor22 '

13 | | | ' not and3 andor22 '

14 | | ' or2 reg '

15 | | ' and2 andor22 reg '

16 | ' andor22 reg '

17 | ' andor22 reg '

78

8.8 Discussion

Some work remains before the power model is ready to be integrated into a power estimation

tool, and the remaining work is outlined in Chapter 10, together with suggestions on how

the power estimation tool making use of the power model can be implemented. Discussions

regarding the implementation done so far is given in the subsections below.

8.8.1 The quality of the cell mapping

Mapping the structure shown in Listing 8.3 to cells from the cell library, one is left with the

structure shown in Listing 8.4. As the generic cells are not directly mapped but grouped

when possible the cell count is reduced. It was concluded in Section 8.3.1 that reducing the

number of logic cells needed would increase the overall accuracy of the representation.

Some mappings done in the power model generator are evidently increasing the accuracy

of the estimations, like combining a sequence of AND2, NOT into a NAND2 gate, as this

reduces the number of transistors needed by four. In other cases, evaluating whether the

cell mapping is bringing the representation closer to the synthesised one, is harder. The

AND4 gate in Figure 8.2 is represented as two AND3 gates in the power structure, as

shown in Figure 8.6a. Here the original elaborated representation had three AND2 gates.

Changing the AND2 gate to an AND3 gate will reduce both the leakage power and the

switching power, as the number of cells is reduced from three to two. The difference

between the power consumption of AND cells with differing numbers of inputs are not big,

as seen in Table 8.1. Further reducing these two AND3 cells to one AND4 cell would be

beneficial. This last combination is harder to do as the power structure trees implemented

are oblivious of their parents and can only be parsed in one direction. It is necessary to

change the structure trees and the cell mapping algorithm if one wishes to increase the

accuracy of the estimation further. Then, before deciding which cell from the cell library

to map a structure to, one would be able to look at the parents of a generic cell.

When mapping the structural representation to a power-aware structure, the complex cells

with many inputs and logic operations will only be chosen where a match to their most

complex paths is found. This is discussed in Section 7.2.2, using an ANDOR21 cell as

an example. Calculations done there show the difference between the OR2 gate and the

input only going through the OR operation in an ANDOR21 gate consumes differentiating

switching power.

Another option is to range the library cells by complexity and tag the generic cells with the

79

library cell of which they are included. This tag can then be changed if a more complex cell

is used. Then, the generic OR2 cell that is part of the ANDOR21 operation would know it

was part of an ANDOR21 and not just an OR2. If this method is used, it is necessary to

keep track of which input pin of a library cell is connected to a structure and to differentiate

between the power consumption of different cell inputs.

Such a method would also require a more sophisticated algorithm for mapping the generic

cells to the library cells and that the different data inputs are kept track of and their power

information stored when parsing the Liberty file.

The choice of removing all generic buffer cells in the power model has also been made.

As buffers, when present, consume a significant amount of power, how to determine when

buffers will be inferred could be advantageous. In most cases, as observed in Table 6.1,

generic buffers are not inferred. A generic buffer cell will be inferred if the cell output has

a load capacitance it is not able to drive by itself. Such a load is typically present where

large fanouts occur. Buffer cells consume considerable power, and trying to predict their

inference is a possibility, rather than assuming they will never be inferred.

8.8.2 Consequences of abstractions

No state retention

The leakage power in cells from the cell library is state-dependent and the implemented

system retains no state information. Only the average leakage power of a cell is used. If it

is discovered that this has a very negative impact on the accuracy of the estimated leakage

power, attempting to predict cell states can be considered. As the leakage power contribu-

tion is several magnitudes lower than the switching power it was argued that estimating

leakage power with a spatial and temporal accuracy may not be necessary to get good

power estimates.

Adding state information can be done by introducing a probability of how likely a gate

is to be in a specific state. Calculating that probability is hard unless fall power is also

considered, as the state of a cell depends on the cell input values. When only considering

the signal rise times, and adding the contribution from rise- and fall power together, the

time between rising and falling transitions is lost. This means one loses the information on

how long the cell has been in an open state versus a closed state.

When storing state probabilities in objects, simplifying the power model will become harder

as the power consumption will be dependent on variables in each structure object rather

80

than a constant power value. An option could be to try to estimate some state probabilities

in cells as the switching probabilities are calculated, as this could remove the need to

include the fall power contribution by itself while still increasing the accuracy of power

estimates.

Fall power and rise power combined

Abstracting away the fall power by combining it with the rise power in the implementation

in Chapter 7 allows for much faster estimation later on, by only needing half the amount

of data, but temporal information is lost. The estimates will have a lower cycle accuracy

as fall power can contribute more than the rise power to power consumption in many

cases, depending on the cell. Knowing when a cell output is probable to rise, but not

when it is likely to fall also makes state prediction harder if it is later decided that this is

necessary.

8.8.3 Evaluating the power model

The power model generated has been visually evaluated in Chapter 8.7, but more evaluation

is needed to determine the quality of the model. An option to do such an evaluation

would be to create a power estimation tool using the power model, and compare the power

estimates yielded to those of state-of-the-art tools for power estimation, both at the RTL

and the gate-level. To get the power model to work with a power estimation tool the library

cell implementation of the arithmetic operations comparisons and shifts must first be made,

and the signal propagation through structure trees must be implemented. After that is done,

a power estimation tool making use of the power model must be made. When implementing

the power estimation tool, the register- and input switching must be monitored and related

to its respective structure tree. Each cycle the contribution to power can be added together,

and give a cycle-by-cycle estimate, or transitions within a time frame can be counted and

added up to a power estimate for that frame.

It would also be useful to use smaller and simpler designs than those used in this project to

be able to investigate the relationship between the elaborated- and the synthesised netlist

further, and see how the model made compares to this. These investigations could also be

useful when developing the internals of the arithmetic cells, comparators and shifters as one

could see how such generic cells are treated by the synthesis tool in different cases.

After evaluating the power model, it would also be possible to determine if there are sys-

tematic errors. These can be atoned for by adjusting the resulting power values, and the

81

model can be improved.

8.8.4 Improvements to consider

Improved optimisation

An improvement that could have a positive effect on power estimates is to add more opti-

misation to the power model generator. It is currently only looking for sequences of cells

corresponding to larger, more complex cells. If it were able to reduce the amount of logic

needed in other ways, we would get closer to the synthesised representation.

If parents of nodes in the structure tree were known, the structure would be able to do

optimisations also in that direction. For an ANDOR21 gate, with logic function (A1 ∗
A2) +B this would mean the B input knows it is an input to the ANDOR21 gate and not

to an OR2 gate. Such optimisations would lower the power consumption and bring the

representation closer to the synthesised one. For an AND4 gate, such as the one in Figure

8.2a this would mean that the structure tree could transform it to an AND4 gate if one is

available in the cell library, rather than the two AND3 gates it currently becomes.

Other kinds of optimisations could also be considered. If two inverters are placed after

each other, there is a possibility they could be removed, and operation reordering may also

reduce the number of logic. Such optimisations could be done by viewing the gates as

logic operations and using boolean algebra to simplify the expressions. How effective such

optimisations are in bringing the design closer to its synthesised representation, depends

on the optimisations done during the elaboration of the HDL.

Constant signals

Another factor the implementation in this project is not considering is constant values. If

a signal value is set to 1 or 0, it is not necessary to consider it a signal that may have either

value. For instance, if a signal set to 1 enters an AND2 gate, the other input will always

be propagated through, and the AND2 gate can be removed. Similar conclusions can be

reached with a signal being set to 0.

Alternatives if generic cells do not exist

In the implementation it was assumed that multiplexers, AND2, OR2, XOR2 and NOT

cells were present in the cell library as equivalents to the generic logic cells. Such an

assumption may not always be the correct, and a possibility of replacing some of these cells

82

with logic equivalents should be implemented, to make the power modeling available for

cell libraries diverging from this assumption.

Not giving all registers a power structure

As the model is now all registers become the top structure of a structure tree. For modules

with many registers, this may result in too many structure trees and a more fine-grained

power estimation than needed. If the system is modified such that which registers have

their own structures can be chosen by the user instead of taking all registers into account,

the module would have modifiable granularity. The propagation of switching probabili-

ties through registers will have to be implemented for this method, as registers can now

be part of structure trees. Otherwise only minor changes are required in the elaborated

SystemVerilog parser.

Using switching probability to adjust leakage power

The difference in leakage power in different states of a cell is significant, as seen in Table

7.1. An attempt to adjust for this could be added after the switching probabilities are

calculated. If a cell output is likely to be high as a result of a register or input rising, the

leakage power increase after a transition changing its state happen. This could be taken

into account.

Still, when not considering the fall power contribution by itself when the state changes

back to a state with low leakage is unknown. It could be that by assuming a state for a

given amount of cycles after a rising output, or by calculating some state duration from

the activity data higher accuracy can be reached, than by simply using the average leakage

values.

8.8.5 The accuracy/speed trade-off

Making the power estimates more accurate and bringing the representation closer to the IC

it will become is advantageous, but solely increasing the accuracy of RTL power estimation

is not the goal of this project. Some accuracy can be sacrificed to yield fast power estimates,

as the estimation speed is also critical. Finding a balance between execution speed and

estimation accuracy is paramount.

Separating the structure trees and modeling the power without state-dependency are im-

portant steps toward fast power estimation. Both abstractions seem promising, but it

remains to be seen whether they are accurate enough. Steps towards improving the model

83

accuracy can be taken if it proves to be inaccurate. For instance using the predicted ac-

tivity of structure trees, (depending on the register- or input bit switching), to partly give

the leakage power state dependency, or improving the mapping from the generic cells to

the cells from the cell library, to better imitate the power characteristics of the synthesised

design.

If the power estimation yields systematic errors, such as estimating a consequently too high

switching probability, they can easily be adjusted for.

84

9 Conclusion

A power estimation flow for top-down power estimation at the RTL have been chosen.

Parts of this flow have been implemented to make a power model generator. The power

model generator makes use of an elaborated SystemVerilog representation of the design,

and process the format to yield a node tree for each input or register bit. This node tree

representing the design structure is then combined with information from the cell library to

be used when manufacturing the IC. The Liberty file is parsed and information regarding

all the cells available in the cell library is organised and stored in a cell_library object.

When combining the structural information and the library information some optimisation

is done on the structure tree depending on the available cells in the cell library. The resulting

structure trees contain the information needed to estimate the power consumption of the

design, and the representation has similarities to the netlist.

The implementation shows promise in finding a power-aware representation of a design

without first synthesising it. By parsing the Liberty file of a cell library, realistic power

values are obtained and integrated into the structure tree representing the design. The

grouping and mapping from generic cells to library cells ensures a reduction in the number

of cells inferred, which is shown to have a positive effect on the accuracy of power estimates

and brings the design representation closer to that of the synthesised design.

Thorough evaluation of the power model is needed to determine whether the speed/ac-

curacy trade-off is satisfactory. Such an evaluation would be more easily conducted after

integrating the model into the suggested power estimation flow. The speed and accuracy

of power estimations done using the implemented power model can then be compared to

power estimates from state-of-the-art tools for power estimation at the RTL and the gate-

level.

Some work remains in the implementation. Power-aware replacements for the arithmetic

generic cells in the structural representation will have to be made in the power model

generator. Replacements for shifters and comparators are also needed. Lastly, it is necessary

to combine the power information in each node together into one power value representing

the structure tree for a rising input or register bit. To do so, the propagation of the signal

have to be estimated. In addition to this the leakage power should be added together for

85

all the cell objects present to represent the leakage per cycle.

86

10 Future work

10.1 Finishing the power model

Some work remains for the power model to be finished. That work is listed below:

• Compose arithmetic cells from cell library

The generic, arithmetic cells need an equivalent. The amount of logic one bit from a

signal with a certain width must go through needs to be estimated together with the

switching- and leakage power of such propagation. This must be done for

– Multipliers

– Dividers

– Adders

– Subtractors

• Make equivalent for other complex generic cells

The shifter and comparator generic cells also need an equivalent consisting of cells from

the cell library with corresponding power data.

• Make estimate for each structure tree

The switching activity needs to be propagated through the structure tree for the corre-

sponding input- or register and a power estimate for each tree must be made in addition

to a leakage power per cycle estimate.

10.2 Implementing a power estimation tool

The power model, when finished, must be integrated into a power estimation tool to yield

a power estimate. Such a tool must be made. The key points in developing such a tool are

given below:

87

• Connect registers and inputs to structure trees

The registers and inputs corresponding to the structure trees in the power model must

be found and "connected".

• Use activity data to calculate switching data

The activity data from the simulation must be used to add up switching power con-

sumptions from the structure trees.

• Calculate leakage power

The structures in the structure trees must have their leakage power added together to

get a leakage-per-cycle estimate.

88

Bibliography

[1] I. S. IEEE and T. Organiztion. https://ieee-isto.org/member_programs/

liberty-technical-advisory-board/, 2020. [Online; accessed 27-May-2020].

[2] S. Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, Second Edition.

USA: Prentice Hall PTR, 2nd ed., 2003.

[3] J. Rabaey, Low Power Design Essentials. Integrated Circuits and Systems, Springer

US, 2009.

[4] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective.

USA: Addison-Wesley Publishing Company, 4th ed., 2010.

[5] J. Rabaey, “Introduction,” in Low Power Design Essentials, pp. 1–23, Boston, MA:

Springer US, 2009. Series Title: Integrated Circuits and Systems.

[6] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and A. LeBlanc, “Design

of ion-implanted MOSFET’s with very small physical dimensions,” IEEE Journal of

Solid-State Circuits, vol. 9, pp. 256–268, Oct. 1974. Conference Name: IEEE Journal

of Solid-State Circuits.

[7] Design Automation Committee, “IEEE Standard for Power Modeling to Enable

System-Level Analysis,” IEEE Std 2416-2019, pp. 1–63, July 2019.

[8] L. Zhong, S. Ravi, A. Raghunathan, and N. Jha, “Power estimation for cycle-accurate

functional descriptions of hardware,” in IEEE/ACM International Conference on Com-

puter Aided Design, 2004. ICCAD-2004., pp. 668–675, Nov. 2004. ISSN: 1092-3152.

[9] L. Zhong, S. Ravi, A. Raghunathan, and N. Jha, “RTL-Aware Cycle-Accurate Func-

tional Power Estimation,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 25, pp. 2103–2117, Oct. 2006.

[10] D. Lee and A. Gerstlauer, “Learning-Based, Fine-Grain Power Modeling of System-

Level Hardware IPs,” ACM Transactions on Design Automation of Electronic Systems

(TODAES), vol. 23, pp. 30:1–30:25, Feb. 2018.

89

https://ieee-isto.org/member_programs/liberty-technical-advisory-board/
https://ieee-isto.org/member_programs/liberty-technical-advisory-board/

[11] S. Ravi, A. Raghunathan, and S. Chakradhar, “Efficient RTL power estimation for

large designs,” in 16th International Conference on VLSI Design, 2003. Proceedings.,

pp. 431–439, Jan. 2003. ISSN: 1063-9667.

[12] S. Gupta and F. Najm, “Energy and peak-current per-cycle estimation at RTL,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, pp. 525–537,

Aug. 2003.

[13] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characterization based on clus-

tering,” in 33rd Design Automation Conference Proceedings, 1996, pp. 702–707, June

1996.

[14] R. Zafalon, M. Rossello, E. Macii, and M. Poncino, “Power macromodeling for a high

quality RT-level power estimation,” in Proceedings IEEE 2000 First International Sym-

posium on Quality Electronic Design (Cat. No. PR00525), pp. 59–63, Mar. 2000. ISSN:

null.

[15] K. Buyuksahin and F. Najm, “Early power estimation for VLSI circuits,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24,

pp. 1076–1088, July 2005.

[16] S. Sambamurthy, J. A. Abraham, and R. S. Tupuri, “A Robust Top-Down Dynamic

Power Estimation Methodology for Delay Constrained Register Transfer Level Se-

quential Circuits,” in 21st International Conference on VLSI Design (VLSID 2008),

pp. 521–526, Jan. 2008. ISSN: 2380-6923.

[17] Ansys. https://www.ansys.com/products/semiconductors/ansys-powerartist,

2019. [Online; accessed 22-June-2020].

[18] Synopsys. https://www.synopsys.com/verification/

static-and-formal-verification/spyglass/spyglass-power.html, 2019. [Online;

accessed 22-June-2020].

[19] Mentor. https://www.mentor.com/hls-lp/powerpro-rtl-low-power/

power-estimation, 2019. [Online; accessed 22-June-2020].

[20] Cadence. https://www.cadence.com/en_US/home/tools/

digital-design-and-signoff/power-analysis/joules-rtl-power-solution.

html, 2019. [Online; accessed 22-June-2020].

[21] E. T. Bygland. https://github.com/emblatbyg/thesis, 2020. [].

90

https://www.ansys.com/products/semiconductors/ansys-powerartist
https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-power.html
https://www.synopsys.com/verification/static-and-formal-verification/spyglass/spyglass-power.html
https://www.mentor.com/hls-lp/powerpro-rtl-low-power/power-estimation
https://www.mentor.com/hls-lp/powerpro-rtl-low-power/power-estimation
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://github.com/emblatbyg/thesis

[22] M. Nemani and F. N. Najm, “Towards a high-level power estimation capability [dig-

ital ICs],” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 15, pp. 588–598, June 1996.

91

A Technical implementation of the elabo-

rated SystemVerilog parser

Figure A.1 shows the function hierarchy of the elaborated SV parser. In Table A.1 a

function overview can be seen, while A.2 shows the helper functions of the parser.

The Table A.3 gives a complete overview of the elaborated SV parser classes, class variables

and procedures can be seen.

Figure A.1: The function hierarchy of the elaborated SV parser. Functions at the same

level are called from left to right.

A-1

Table A.1: Overview of the functions in the elaborated SV parser.

Function Description

parse_file(filename) Parses the elaborated SystemVerilog file object by object

module.

set_connection_points()
reads the description on how to connect the inputs and

outputs of a module from the module declaration stored

in the module object

process_dependencies() goes through the dependencies of a module and connects

them to the rest of the module

connect_structures

(top_module)
Goes through all inputs of the top module and all registers,

creating their structure trees

connect_assigns () Sets the two signals assigned to each other equal each other

make_object (line,

object_type)
processes the object line sent in from parse_file

create_object

(object_type)
calls the init function of the type specified by make_object

parse_line (line,

object_handle)
goes through the object internals and set their connection

points

process_match (match,

object_handle,

connection_type,

port_name)

connects one connection point to an input, output or wire

connect_children (parent,

i1, i2)
make a node tree including everything connected to a spec-

ified parent (input signal or register output)

A-2

Table A.2: Helper functions for the elaborated SV parser

Function Description

search_list(list, object_name) looks for object with object_name in the list of objects

find_module(line) looks for regex matching start of a module in line

find_endmodule(line) looks for regex matching end of module in line

empty_global_lists() empties global lists removing a module environment

set_global_lists(module) setting global lists to match environment of module

connect_nodes(n1, n2) set two nodes to equal each other

hline find_indexes(string) looks for an index declaration in the string

A-3

Table A.3: Overview of classes in the elaborated SV parser and their variables and pro-

cedures.

Class Variables Procedures

register id __init__(self)

name initialize object, returns object handle

Q

QN

clear

preset

next_state

clocked_on

data_in

enable

synch_clear

sync_preset

synch_toggle

synch_enable

output_nodes_q

output_nodes_qn

gtech_or2 id __init__(self)

gtech_xor2 name initialize object, returns object handle

gtech_and2 A

B

Z

output_nodes

gtech_not id __init__(self)

gtech_buf name initialize object, returns object handle

A

Z

output_nodes

shift_op id __init__(self)

b_shift_op name initialize object, returns object handle

SH

A

A-4

Z

output_nodes

shift_add_op id __init__(self)

name initialize object, returns object handle

SH

output_nodes

comp_op id __init__(self)

name initialize object, returns object handle

A

B

output_nodes

add_op id __init__(self)

sub_op name initialize object, returns object handle

mult_op A

div_op B

Z

output_nodes

mux_op id __init__(self)

name initialize object, returns object handle

D

S

Z

datawidth

output_nodes

select_op id __init__(self)

name initialize object, returns object handle

D

S

Z

selectwidth

datawidth

output_nodes

input_obj id __init__(self)

name initialize object, returns object handle

connection_nodes

A-5

width add_node_input_connection(self,i1,i2,l,index_type)

depth add a connection to the node specified by indexes and

widthoffset index_type

output_obj id __init__(self)

name initialize object, returns object handle

connection_nodes

width add_node_input_connection(self,i1,i2,l,index_type)

depth add a connection to the node specified by indexes and

widthoffset index_type

add_node_output_connection(self,i1,i2,l,index_type,k)

add a connection to the node specified by indexes and in-

dex_type

connection id __init__(self)

name initialize object, returns object handle

connection_nodes

width init_connection_nodes(self)

depth initialize an array of node objects corresponding to the

widthoffset size of the connection

add_node_input_connection(self,i1,i2,l,index_type)

add a connection to the node specified by indexes and in-

dex_type

add_node_output_connection(self,i1,i2,l,index_type,k)

add a connection to the node specified by indexes and in-

dex_type

node id __init__(self)

connected_inputs initialize object, returns object handle

connected_outputs

i1 add_input_connection(self,l)

i2 add connection to connected_inputs

add_output_connection(self,l,J)

A-6

add connection to connected_outputs and adds node to

output_nodes of connected object

dependency id __init__(self)

name initialize object, returns object handle

modulename

module_handle add_connections(self,list)

connections add a connection to connections

assign id __init__(self)

lhs initialize object, returns object handle

rhs

lhs_i1

lhs_i2

rhs_i1

rhs_i2

module name __init__(self)

connection_string initialize object, returns object handle

connection_points

regs set_lists(self)

nots set module environment lists

bufs

and2s set_connection_points(self)

or2s set the connection_points variable from the

muxes connection_string

selects

connects

inputs

outputs

dependencies

shifters

comparators

xor2s

multipliers

subtractors

b_shifters

adders

A-7

shift_adders

divisors

assigns

structure id __init__(self)

children initialize object, returns object handle

represented-

_object_handle add_child(self, child)

add child structure to children

print(self)

prints node structure

A-8

B Technical implementation of the liberty

parser

In Figure B.1 the function hierarchy of parsing the Liberty file and storing the power data

in JSON objects can be seen. In figure B.2 the function hierarchy of reading out the cells

from the JSON lines and putting them in a cell library can be seen.

Table B.1 shows the functions of the system processing the data from the liberty file,

extracting the relevant power information. Table B.2 shows a class overview of the liberty

data retrieving system.

Figure B.1: The function hierarchy of the liberty parser

B-1

Figure B.2: The function hierarchy of the liberty power data retrieving

Table B.1: functions for processing the liberty file information

Function Description

set_cells_and_environment() parses the liberty file and retrieves the cell library in-

formation. Stores it in a JSON line. Also counts the

occurence of each cell in a calibration netlist.

get_cells(filename) Reads cell JSON lines from a file and returns a list of

these lines

sort_cells(path) makes cell object from list of cells, makes a library ob-

ject containing the cells. Calibrates the library.

get_dict_N(N) get dictionary with regexes and synthetic gate se-

quences corresponding to cells with N inputs

count_ocurrence(word) count occurence of word in calibration netlist

B-2

Table B.2: Class overview for processing the liberty file information

Class Variables Procedures

cell footprint __init__(self, def_list, cell_lib)

name initialise object adds it to cell group. Adds group to

leakage_power cell library if new group is made

synthetic_gate_list

def_list

input_pins

output_pins

cell_group matching_key __init__(self, sequence, matching_key)

synthetic_gate_list initialise object

cells

cellcounts append_cell(self, cell)

weights add cell to cells, and calibration count to cellcounts

get_weights()

set weights based on cellcounts

cell_library cells_6 __init__(self)

cells_5 initialise object

cells_4

cells_3 get_list(self, N)

cells_2 get list corresponding to cells with N inputs

cells_1

muxes find_cell_group(self, list, group_key)

regs look for cell group with matching_key equal to

group_lists group_key

set_group_weights(self)

call set_weights for all cell_groups in library

print_available_cells(self)

print available cells

B-3

C Technical implementation of the power

model

Figure C.1 describes the function hierarchy of the power model generator and Table C.1 de-

scribes the functions in greater detail. Table C.2 describes the two classes in the power mod-

eling system. The value class is used to make a mutable number, while the power_structure

class make up the nodes of a node tree.

Figure C.1: Function hierarchy for the power model implementation

C-1

Table C.1: functions for making the power model

Function Description

go_through_structures() Iterate through structures from the parsed elab-

orated SystemVerilog and create power structure

equivalents

run_parse_elab(filename) Called after importing the elaborated SystemVer-

ilog parser. Runs the parser and returns the struc-

ture trees.

lists_from_top(s, power_s) recursively goes through all nodes in structure

tree from parse_elab(). Makes a parallell power

structure tree.

transform_list(cellLib, l) Transforms list of synthetic cells to list of cells

from cell library

find_sequence(to_find, cell_group) see if cell group’s synthetic gate sequence has

any match(es) in list. Return positions of oc-

curence(s) if that is the case.

Table C.2: Class overview for the power model

Class Variables Procedures

power_structure name __init__(self, def_list, cell_lib)

cell_lib_list initialise object

structural_rep_list

children

parent

value i

C-2

D Code implemented in Chapter 6

1 # Fi l e f o r par s ing . e lab f i l e s made by synopsys compi le r
2

3 import numpy as np
4 import re
5 import pandas as pd
6 import sys
7

8 #l i s t o f module ob j e c t s
9 modules = []

10 #l i s t o f s t r u c tu r e t r e e s
11 top_level_parents = []
12

13 #l i s t s s e t t i n g module environment
14 r eg s = np . array ([])
15 nots = np . array ([])
16 bufs = np . array ([])
17 and2s = np . array ([])
18 or2s = np . array ([])
19 muxes = np . array ([])
20 s e l e c t s = np . array ([])
21 connects = np . array ([])
22 inputs = np . array ([])
23 outputs = np . array ([])
24 dependenc ies = np . array ([])
25 s h i f t e r s = np . array ([])
26 comparators = np . array ([])
27 xor2s = np . array ([])
28 mu l t i p l i e r s = np . array ([])
29 sub t r a c t o r s = np . array ([])
30 b_sh i f t e r s = np . array ([])
31 adders = np . array ([])
32 sh i f t_adder s = np . array ([])
33 d i v i s o r s = np . array ([])
34 a s s i g n s = np . array ([])
35

36 #gate counts
37 reg_n = 0

38 not_n = 0
39 buf_n = 0
40 and2_n = 0
41 or2_n = 0
42 mux_n = 0
43 se l ect_n = 0
44 sh i f t_n = 0
45 comp_n = 0
46 xor2_n = 0
47 mult_n = 0
48 sub_n = 0
49 b_shift_n = 0
50 add_n = 0
51 shift_add_n = 0
52 div_n = 0
53

54 #empty g l oba l l i s t s r e l a t i n g to a module environment
55 de f empty_global_l i sts () :
56 g l oba l r eg s
57 g l oba l nots
58 g l oba l bufs
59 g l oba l and2s
60 g l oba l or2s
61 g l oba l muxes
62 g l oba l s e l e c t s
63 g l oba l connects
64 g l oba l inputs
65 g l oba l outputs
66 g l oba l dependenc ies
67 g l oba l s h i f t e r s
68 g l oba l comparators
69 g l oba l xor2s
70 g l oba l mu l t i p l i e r s
71 g l oba l sub t r a c t o r s
72 g l oba l b_sh i f t e r s
73 g l oba l adders
74 g l oba l sh i f t_adder s

D
-1

75 g l oba l d i v i s o r s
76 g l oba l a s s i g n s
77

78 r eg s = np . array ([])
79 nots = np . array ([])
80 bufs = np . array ([])
81 and2s = np . array ([])
82 or2s = np . array ([])
83 muxes = np . array ([])
84 s e l e c t s = np . array ([])
85 connects = np . array ([])
86 inputs = np . array ([])
87 outputs = np . array ([])
88 dependenc ies = np . array ([])
89 s h i f t e r s = np . array ([])
90 comparators = np . array ([])
91 xor2s = np . array ([])
92 mu l t i p l i e r s = np . array ([])
93 sub t r a c t o r s = np . array ([])
94 b_sh i f t e r s = np . array ([])
95 adders = np . array ([])
96 sh i f t_adder s = np . array ([])
97 d i v i s o r s = np . array ([])
98 a s s i g n s = np . array ([])
99

100 #se t g l oba l l i s t s r e l a t i n g to a module environment
101 de f s e t_g l oba l_ l i s t s (module) :
102 g l oba l r eg s
103 g l oba l nots
104 g l oba l bufs
105 g l oba l and2s
106 g l oba l or2s
107 g l oba l muxes
108 g l oba l s e l e c t s
109 g l oba l connects
110 g l oba l inputs
111 g l oba l outputs
112 g l oba l dependenc ies
113 g l oba l s h i f t e r s
114 g l oba l comparators
115 g l oba l xor2s
116 g l oba l mu l t i p l i e r s
117 g l oba l sub t r a c t o r s
118 g l oba l b_sh i f t e r s
119 g l oba l adders

120 g l oba l sh i f t_adder s
121 g l oba l d i v i s o r s
122 g l oba l a s s i g n s
123

124 r eg s = module . r eg s
125 nots = module . nots
126 bufs = module . bufs
127 and2s = module . and2s
128 or2s = module . or2s
129 muxes = module . muxes
130 s e l e c t s = module . s e l e c t s
131 connects = module . connects
132 inputs = module . inputs
133 outputs = module . outputs
134 dependenc ies = module . dependenc ies
135 s h i f t e r s = module . s h i f t e r s
136 comparators = module . comparators
137 xor2s = module . xor2s
138 mu l t i p l i e r s = module . mu l t i p l i e r s
139 sub t r a c t o r s = module . s ub t r a c t o r s
140 b_sh i f t e r s = module . b_sh i f t e r s
141 adders = module . adders
142 sh i f t_adder s = module . sh i f t_adder s
143 d i v i s o r s = module . d i v i s o r s
144 a s s i g n s = module . a s s i g n s
145

146 #go through e labora t ed sy s t emve r i l og f i l e l i n e by l i n e
147 de f p a r s e_ f i l e (path) :
148 #make l i s t s and t r e a t l i s t s to make ob j s l a t e r
149 pr in t ("Pars ing f i l e : " + path)
150

151 #SEARCH FOR START OF OBJECT
152 object_handle = ' f a l s e '
153 ob j e c t s t r i n g = ""
154 bitwidth = 0
155 modulename = ' '
156 in_module = Fal se
157 module l ine = ' '
158 with open (path , ' r ') as s v f i l e :
159 l i n e = s v f i l e . r e ad l i n e ()
160 l inenum = 1
161 whi le l i n e :
162 #search f o r s t a r t o f module
163 i f (in_module) :
164 #handle end o f module

D
-2

165 i f (find_endmodule (l i n e)) :
166 g l oba l modules
167 in_module = False
168 module_handle = module (modulename)
169 module_handle . s e t_ l i s t s ()
170 module_handle . connect ion_point_str ing =

module l ine
171 connect_ass igns ()
172 empty_global_l i sts ()
173 modules . append (module_handle)
174 #search f o r s t a r t o f ob j e c t
175 e l s e :
176 key , match = parse_l ine (l i n e , ' f a l s e ')
177 e l s e :
178 #search f o r s t a r t o f module
179 modulename , in_module = find_module (l i n e)
180 #pr in t (" Started module : "+modulename)
181 match = False
182 module_declaration_ongoing = True
183 #get l i n e s u n t i l end o f module d e c l a r a t i on and

catch th ings in regex
184 whi le module_declaration_ongoing :
185 f o r k , rx in rx_dict_end . i tems () :
186 ob j e c t s t r i n g = ob j e c t s t r i n g+l i n e
187 #pr in t (" o b j e c t s t r i n g to search f o r

end : \n\ t"+ob j e c t s t r i n g)
188 match = rx . search (l i n e)
189 i f match :
190 # found end , l e ave whi l e loop
191 module_declaration_ongoing =

False
192 module l ine = ob j e c t s t r i n g
193 #pr in t (module l ine)
194 e l s e :
195 # read new l i n e un t i l end i s

found
196 l i n e = s v f i l e . r e ad l i n e ()
197 l inenum = linenum +1
198 ob j e c t s t r i n g = ' '
199 match = False
200

201 i f match and in_module :
202 #i f connect ion s p l i t i tems by comma and make

ob j e c t s o f a l l
203 o f f s e t = 0

204 i f match . group (1) == ' input ' or match . group (1)
== ' output ' or match . group (1) == ' wire ' :

205

206 i f match . group (2) != None :
207 bitwidth = in t (match . group (2)) − i n t (

match . group (3)) + 1
208 l i n e = " " . j o i n (l i n e . s p l i t () [2 :])
209 o f f s e t = in t (match . group (3))
210 e l s e :
211 bitwidth = None
212 l i n e = " " . j o i n (l i n e . s p l i t () [1 :])
213 #e l s e prepare f o r f i nd i n g a t t r i b u t e s o f s i n g l e

ob j e c t
214 e l s e :
215 #object_handle = make_object (match . group (1) ,

key)
216 i f (key == ' dep ') :
217 object_handle = make_object (match . group

(2) , key)
218 object_handle . modulename = match . group

(1)
219 #pr in t ("made dep : "+match . group (2)+" o f

module "+match . group (1))
220 e l s e :
221 object_handle = make_object (match . group

(1) , key)
222 # whi le tak ing in l i s t o f equa l l y a t t r i bu t ed

connect i ons or s i n g l e item
223 # get new l i n e s u n t i l a l l o f ob j e c t (s) i s in one

s t r i n g
224 in_object = True
225 whi le in_object :
226 #merge l i n e s u n t i l end o f r e g s t e r i s found
227 #pr in t (" l ook ing f o r end o f ob j e c t ")
228 f o r k , rx in rx_dict_end . i tems () :
229 ob j e c t s t r i n g = ob j e c t s t r i n g+l i n e
230 #pr in t (" o b j e c t s t r i n g to search f o r end :

\n\ t"+ob j e c t s t r i n g)
231 match = rx . search (l i n e)
232 i f match :
233 # found end , l e ave whi l e loop
234 in_object = False
235 e l s e :
236 # read new l i n e un t i l end i s found
237 l i n e = s v f i l e . r e ad l i n e ()

D
-3

238 l inenum = linenum +1
239

240 #make s i n g l e ob j e c t or make s e v e r a l connect
ob j e c t s

241 ob j e c t s t r i n g = "" . j o i n (o b j e c t s t r i n g . s p l i t ())
242 i f (key == ' input ' or key == ' output ' or key ==

' wire ') :
243 ob j e c t s t r i n g = ob j e c t s t r i n g . s t r i p (" ; ")
244

245 ob j e c t s t r i n g = ob j e c t s t r i n g . t r a n s l a t e ({ ord (i
) : None f o r i in ' }{ ' })

246

247 o b j e c t l i s t = ob j e c t s t r i n g . s p l i t (' , ')
248 f o r name in o b j e c t l i s t :
249 object_handle = make_object (name , key)
250 #i f (object_handle != None) :
251 i f (b i twidth != None) :
252 object_handle . width = bitwidth
253 object_handle . w i d tho f f s e t = o f f s e t
254 object_handle . in it_connect ion_nodes

()
255 #pr in t ("made new connect ion ob j e c t with

name "+name+"\nand width "+ s t r (b i twidth))
256 e l s e :
257 # add connect ion node i n f o to ob j e c t
258 parse_l ine (ob j e c t s t r i n g , object_handle)
259 # when done with an object , empty ob j e c t s t r i n g
260 ob j e c t s t r i n g = ""
261

262 l i n e = s v f i l e . r e ad l i n e ()
263 l inenum = linenum + 1
264

265 # crea t e ob j e c t
266 de f make_object (l i n e , name) :
267 #pr in t ("Making ob j e c t : "+name)
268

269 l i n e = l i n e . t r a n s l a t e ({ ord (i) : None f o r i in ' }{\ ' })
270

271 i1 , i2 , object_name , index_type = f ind_indexes (l i n e)
272 i f ((i 1 != −1) or (i 2 != −1)) and name != ' r e g i s t e r ' and

name != ' a s s i gn ' :
273 object_handle = None
274 foundbool = False
275 i f name == ' input ' :

276 object_handle , foundbool = s e a r ch_ l i s t (inputs ,
object_name)

277 e l i f name == ' output ' :
278 object_handle , foundbool = s e a r ch_ l i s t (outputs ,

object_name)
279 e l i f name == ' wire ' :
280 object_handle , foundbool = s e a r ch_ l i s t (connects ,

object_name)
281 i f (foundbool) :
282 #pr in t ("Found ob j e c t in a l r eady e x i s t i n g connet ion

ob j e c t ")
283 i f (object_handle . width <= i1) : object_handle . width

= i1+1
284 i f (object_handle . depth <= i2) : object_handle . depth

= i2+1
285

286 e l s e :
287 object_handle = create_objec t (name)
288 object_handle . name = object_name
289 i f i 1 != −1: object_handle . width = i1+1
290 i f i 2 != −1: object_handle . depth = i2+1
291 object_handle . in it_connect ion_nodes ()
292 e l s e :
293 object_handle = create_objec t (name)
294 object_handle . name = l i n e
295 i f (name == ' input ' or name == ' output ' or name == ' wire '

) :
296 object_handle . in it_connect ion_nodes ()
297 i f (name == ' a s s i gn ') :
298 #pr in t ("making fancy a s s i gn ")
299 object_handle . i 1 = i 1
300 i f i 2 != −1: object_handle . i 2 = i2
301 foundbool = False
302 connected_handle , foundbool = s e a r ch_ l i s t (outputs ,

object_name)
303 i f foundbool != True :
304 connected_handle , foundbool = s e a r ch_ l i s t (inputs

, object_name)
305 i f foundbool != True :
306 connected_handle , foundbool = s e a r ch_ l i s t (

connects , object_name)
307 i f foundbool :
308 object_handle . l h s = connected_handle
309

310 r e turn object_handle

D
-4

311

312 #looks f o r indexes at end o f s t r i ng , r e tu rn s i1 , i2 , s t r (w/o)
indexes

313 de f f ind_indexes (s t r i n g) :
314 i 1 = −1
315 i 2 = −1
316 index_type = ' '
317 i ndexes = re . compi le (r " (? : \ [(\ d{1 ,4}) \]) (? : \ [(\ d{1 ,4}) \]) ?$"

)
318 s l i c e s = re . compi le (r " (? : \ [(\ d{1 ,4}) \ : (\ d{1 ,4}) \]) $")
319 i ndex f i nd = indexes . s earch (s t r i n g)
320 newl ine = indexes . sub ("" , s t r i n g)
321 i f i ndex f i nd != None :
322 index_type = ' index '
323 i f i ndex f i nd . group (1) != None :
324 i 1 = in t (index f ind . group (1))
325 i f i ndex f i nd . group (2) != None :
326 i 2 = in t (index f ind . group (2))
327 e l s e :
328 s l i c e f i n d = s l i c e s . s earch (s t r i n g)
329 i f s l i c e f i n d != None :
330 index_type = ' s l i c e '
331 i 1 = in t (s l i c e f i n d . group (1))
332 i 2 = in t (s l i c e f i n d . group (2))
333 newl ine = s l i c e s . sub ("" , s t r i n g)
334 #pr in t (" found a s l i c e ")
335 r e turn i1 , i2 , newline , index_type
336

337 #crea t e an ob j e c t o f a c l a s s s p e c i f i e d by objectname
338 de f c reate_objec t (objectname) :
339 o b j e c t s e l e c t = {
340 ' wire ' : connect ion ,
341 ' input ' : input_obj ,
342 ' output ' : output_obj ,
343 'SELECT_OP ' : se lect_op ,
344 'MUX_OP' : mux_op,
345 'GTECH_NOT ' : gtech_not ,
346 'GTECH_BUF ' : gtech_buf ,
347 'GTECH_AND2 ' : gtech_and2 ,
348 'GTECH_OR2 ' : gtech_or2 ,
349 'GTECH_XOR2 ' : gtech_xor2 ,
350 ' r e g i s t e r ' : r e g i s t e r ,
351 ' dep ' : dependency ,
352 'COMP_OP' : comp_op ,
353 'SHIFT_OP ' : shi ft_op ,

354 'SUB_OP ' : sub_op ,
355 'ADD_OP ' : add_op ,
356 'MULT_OP ' : mult_op ,
357 'DIV_OP ' : div_op ,
358 'B_SHIFT_OP ' : b_shift_op ,
359 'SHIFT_ADD_OP ' : shift_add_op ,
360 'DIV_OP ' : div_op ,
361 ' a s s i gn ' : a s s i gn
362

363 }
364 #get func t i on
365 #pr in t ("making ob j e c t : "+objectname)
366 func = ob j e c t s e l e c t . get (objectname , lambda : None)
367 i f func == None :
368 pr in t (" found no ob j e c t with objectname : "+s t r (objectname

))
369 r e turn None
370 e l s e :
371 #pr in t (" lookup su c c e s s f u l , func = "+ s t r (func))
372 r e t v a l = func ()
373 r e turn r e t v a l
374

375 #return true i f module d e c l a r a t i on i s on l i n e
376 de f find_module (l i n e) :
377 module_start = re . compi le (r "module\ s+(\S+)\ s ?\(")
378 match = module_start . s earch (l i n e)
379 i f (match) :
380 r e turn match . group (1) , True
381 e l s e :
382 r e turn None , Fa l se
383

384 #return true i f l i n e conta in s endmodule
385 de f find_endmodule (l i n e) :
386 module_end = re . compi le (r "endmodule")
387 match = module_end . search (l i n e)
388 i f (match) :
389 r e turn True
390 e l s e :
391 r e turn Fal se
392

393 #look f o r ob j e c t with name objectname in a l i s t o f ob j e c t s .
r e turn handle i f match , None otherwi se

394 de f f ind_object (o b j e c t l i s t , objectname) :
395 f o r i in range (0 , l en (o b j e c t l i s t)−1) :
396 i f o b j e c t l i s t [i] . name == objectname :

D
-5

397 r e turn o b j e c t l i s t [i]
398 r e turn None
399

400 # parse one l i n e , l ook ing f o r s t a r t o f ob j e c t or i n t e r n a l
parameters o f ob j e c t

401 de f par se_l ine (l i n e , object_handle) :
402 # pr in t (" par s ing l i n e : \n"+ l i n e + "\n in ob j e c t : \ n" + s t r (

object_handle))
403 key = ""
404 match = ""
405 i f (object_handle == ' f a l s e ') :
406 f o r key , rx in rx_dict_start . i tems () :
407 #look f o r s t a r t o f ob j e c t to determine ob j e c t type
408 match = rx . search (l i n e)
409 i f match :
410 r e turn key , match
411 #look f o r connect ob j e c t s in non−connect ob j e c t s ?
412 e l i f (object_handle . id == ' reg ') :
413 #look f o r ob j e c t s i n s i d e r e g i s t e r d i c t and end
414 f o r key , rx in rx_dict_reg . i tems () :
415 match = rx . search (l i n e)
416 #pr in t (" l i n e : " + l i n e)
417 #pr in t (" found match f o r : " + key +" group captured :

" + match . group (1))
418 i f (key == ' c l e a r ') :
419 process_match ([match . group (1)] , object_handle , '

c on t r o l ' , key)
420 object_handle . c l e a r = match . group (1)
421 e l i f (key == ' pr e s e t ') :
422 process_match ([match . group (1)] , object_handle , '

c on t r o l ' , key)
423 object_handle . p r e s e t = match . group (1)
424 e l i f (key == ' next_state ') :
425 process_match ([match . group (1)] , object_handle , '

c on t r o l ' , key)
426 object_handle . next_state = match . group (1)
427 e l i f (key == ' clocked_on ') :
428 process_match ([match . group (1)] , object_handle , '

c on t r o l ' , key)
429 object_handle . clocked_on = match . group (1)
430 e l i f (key == ' data_in ') :
431 process_match ([match . group (1)] , object_handle , '

input ' , key)
432 object_handle . data_in = match . group (1)
433 e l i f (key == ' enable ') :

434 process_match ([match . group (1)] , object_handle , '
c on t r o l ' , key)

435 object_handle . enable = match . group (1)
436 e l i f (key == 'Q ') :
437 process_match ([match . group (1)] , object_handle , '

output ' , key)
438 object_handle .Q = match . group (1)
439 e l i f (key == 'QN ') :
440 process_match ([match . group (1)] , object_handle , '

output ' , key)
441 object_handle .QN = match . group (1)
442 e l i f (key == ' synch_clear ') :
443 process_match ([match . group (1)] , object_handle , '

c on t r o l ' , key)
444 object_handle . synch_clear = match . group (1)
445 e l i f (key == ' synch_preset ') :
446 process_match ([match . group (1)] , object_handle , '

c on t r o l ' , key)
447 object_handle . synch_preset = match . group (1)
448 e l i f (key == ' synch_toggle ') :
449 process_match ([match . group (1)] , object_handle , '

c on t r o l ' , key)
450 object_handle . synch_toggle = match . group (1)
451 e l i f key == ' synch_enable ' :
452 process_match ([match . group (1)] , object_handle , '

c on t r o l ' , key)
453 object_handle . synch_enable = match . group (1)
454 e l s e :
455 pr in t ("no matching key : " + key + " in r e g i s t e r

" + object_handle)
456 #look f o r end
457 f o r key , rx in rx_dict_end . i tems () :
458 match = rx . search (l i n e)
459 e l i f object_handle . id == ' gtech_or2 ' or object_handle . id ==

' gtech_and2 ' or object_handle . id == ' gtech_xor2 ' :
460 f o r key , rx in rx_dict_AND2 . items () :
461 match = rx . search (l i n e)
462 i f (key == 'A ' and match) :
463 process_match ([match . group (1)] , object_handle , '

input ' , key)
464 object_handle .A = match . group (1)
465 e l i f (key == 'B ' and match) :
466 process_match ([match . group (1)] , object_handle , '

input ' , key)
467 object_handle .B = match . group (1)

D
-6

468 e l i f (key == 'Z ' and match) :
469 process_match ([match . group (1)] , object_handle , '

output ' , key)
470 object_handle . Z = match . group (1)
471 e l s e :
472 pr in t ("\nNo a t t r i b u t e o f ob j e c t " + s t r (

object_handle) + " matches key " + key)
473 pr in t (" from l i n e : "+l i n e+"\n")
474 f o r key , rx in rx_dict_end . i tems () :
475 match = rx . search (l i n e)
476 i f (match == False) :
477 pr in t (" looked f o r end in "+ object_handle + "

could not f i nd i t . . . ")
478 e l i f object_handle . id == ' gtech_not ' or object_handle . id ==

' gtech_buf ' :
479 f o r key , rx in rx_dict_BUF . items () :
480 match = rx . search (l i n e)
481 i f (key == 'A ' and match) :
482 process_match ([match . group (1)] , object_handle , '

input ' , key)
483 object_handle .A = match . group (1)
484 e l i f (key == 'Z ' and match) :
485 process_match ([match . group (1)] , object_handle , '

output ' , key)
486 object_handle . Z = match . group (1)
487 e l s e :
488 pr in t ("No a t t r i bu t e o f ob j e c t " + s t r (

object_handle) + " matches key " + key)
489 #look f o r end
490 f o r key , rx in rx_dict_end . i tems () :
491 match = rx . search (l i n e)
492 i f (match == False) :
493 pr in t (" looked f o r end in "+ s t r (object_handle)

+ " could not f i nd i t . . . ")
494 r e turn key , Fa l se
495 r e turn key , match
496 e l i f object_handle . id == 'mux_op ' :
497 f o r key , rx in rx_dict_MUX . items () :
498 match = rx . f i n d a l l (l i n e)
499 i f (key == 'D ' and match) :
500 dataN , datawidth , match l i s t = process_match (

match , object_handle , ' input ' , key)
501

502 object_handle . datawidth = datawidth
503 object_handle .D = match l i s t

504 f o r i in range (0 , l en (match)) :
505 object_handle .D[i] = match l i s t
506 e l i f (key == 'S ' and match) :
507 process_match (match , object_handle , ' c on t r o l ' ,

key)
508 #number o f s e l e c t s i s l ength o f match , only one

b i t widths .
509 object_handle . S = np . append (object_handle . S ,

match)
510 #i f match i s l i s t o f matches to key
511 e l i f (key == 'Z ' and match) :
512 #pr in t ("Added Z to mux")
513 process_match (match , object_handle , ' output ' ,

key)
514 #w i l l have same datawidth as D.
515 object_handle . Z = match
516

517 e l s e :
518 pr in t (" did not f i nd a t t r i b u t e s o f ob j e c t : "+

object_handle . name)
519 e l i f object_handle . id == ' se lect_op ' :
520 f o r key , rx in rx_dict_SELECT . items () :
521 #return ing everyth ing matching g iven key in a l i s t
522 match = rx . f i n d a l l (l i n e)
523 i f (key == 'DATA ' and match) :
524 dataN , datawidth , match l i s t = process_match (

match , object_handle , ' input ' , key)
525 object_handle . datawidth = datawidth
526 object_handle .D = match l i s t
527 e l i f (key == 'CONTROL ' and match) :
528 dataN , datawidth , match l i s t = process_match (

match , object_handle , ' c on t r o l ' , key)
529 object_handle . datawidth = datawidth
530 e l i f (key == 'Z ' and match) :
531 dataN , datawidth , match l i s t = process_match (

match , object_handle , ' output ' , key)
532 object_handle . Z = match l i s t
533 e l s e :
534 pr in t (" did not f i nd a t t r i b u t e s o f ob j e c t : "+

object_handle . name)
535 e l i f object_handle . id == 'comp_op ' or object_handle . id == '

add_op ' or object_handle . id == ' sub_op ' or object_handle . id
== "mult_op" or object_handle . id == "div_op" :

536 f o r key , rx in rx_dict_SUB_ADD_MULT. items () :
537 match = rx . f i n d a l l (l i n e)

D
-7

538 i f (key == 'A ' and match) :
539 dataN , datawidth , match l i s t = process_match (

match , object_handle , ' input ' , key)
540 object_handle . a_width = datawidth
541 object_handle .A = match l i s t
542 e l i f (key == 'B ' and match) :
543 dataN , datawidth , match l i s t = process_match (

match , object_handle , ' input ' , key)
544 object_handle . b_width = datawidth
545 object_handle .B = match l i s t
546 e l i f (key == 'Z ' and match) :
547 dataN , datawidth , match l i s t = process_match (

match , object_handle , ' output ' , key)
548 object_handle . z_width = datawidth
549 object_handle . Z = match l i s t
550 e l s e :
551 pr in t (" did not f i nd a t t r i b u t e s o f ob j e c t : "+

object_handle . name)
552 e l i f object_handle . id == ' sh i f t_op ' or object_handle . id == '

b_shift_op ' :
553 f o r key , rx in rx_dic t_sh i f t . i tems () :
554 match = rx . f i n d a l l (l i n e)
555 i f (key == 'A ' and match) :
556 dataN , datawidth , match l i s t = process_match (

match , object_handle , ' input ' , key)
557 object_handle . a_width = datawidth
558 object_handle .A = match l i s t
559 e l i f (key == 'SH ' and match) :
560 dataN , datawidth , match l i s t = process_match (

match , object_handle , ' c on t r o l ' , key)
561 object_handle . sh_width = datawidth
562 object_handle .SH = match l i s t
563 e l i f (key == 'Z ' and match) :
564 dataN , datawidth , match l i s t = process_match (

match , object_handle , ' output ' , key)
565 object_handle . z_width = datawidth
566 object_handle . Z = match l i s t
567 e l s e :
568 pr in t (" did not f i nd a t t r i b u t e s o f ob j e c t : "+

object_handle . name)
569 e l i f (object_handle . id == ' dep ') :
570 #look f o r dep ob j e c t s and add them to l i s t
571 f o r key , rx in rx_dict_dep_internals . i tems () :
572 match = rx . f i n d a l l (l i n e)
573 i f match :

574 object_handle . add_connections (match)
575 e l i f (object_handle . id == ' a s s i gn ') :
576 #pr in t (" Assign statement ")
577 f o r key , rx in rx_dict_ass ign . i tems () :
578 match = rx . search (l i n e)
579 i f key == ' rhs ' :
580 r h s l i n e = match . group (1)
581 r h s l i n e = r h s l i n e . t r a n s l a t e ({ ord (i) : None f o r i

in ' }{\ ' })
582 i f r h s l i n e == "1 'b0" or r h s l i n e == "1 'b1" :
583 object_handle . rhs = " constant "
584 e l s e :
585 i1 , i2 , new_rhsline , indextype =

f ind_indexes (r h s l i n e)
586 object_handle . rhs_i1 = i1
587 #look f o r new_rhsl ine in connect i ons .
588 i f (i 2 != −1) : object_handle . rhs_i2 = i2
589

590 element , foundbool = s e a r ch_ l i s t (outputs ,
new_rhsl ine)

591

592 i f foundbool == False :
593 element , foundbool = s e a r ch_ l i s t (inputs ,

new_rhsl ine)
594 i f foundbool == False :
595 element , foundbool = s e a r ch_ l i s t (

connects , new_rhsl ine)
596 i f foundbool :
597 object_handle . rhs = element
598 e l s e :
599 pr in t ("Did not f i nd match o f rhs in

a s s i gn ")
600 pr in t (new_rhsl ine)
601 e l s e :
602 pr in t (" No match found f o r ob j e c t handle id : "+

object_handle . id)
603 r e turn key , match
604

605 #i f s i g n a l i s not constant , f i nd out what i t i s connected to and
the width and r e g i s t e r connect ion

606 de f process_match (match , object_handle , connection_type ,
port_name) :

607 #pr in t ("Running proce s s match f o r ob j e c t " + s t r (
object_handle . name))

608 dataN = len (match)

D
-8

609 processed_match l i s t = []
610 i f match [0] == "" :
611 r e turn 0 , 0 , []
612 f o r i in range (0 , l en (match)) :
613 match [i] = match [i] . t r a n s l a t e ({ ord (i) : None f o r i in '

}{\ ' })
614 datawidth = match [i] . count (' , ')+1
615 match l i s t = match [i] . s p l i t (' , ')
616 processed_match l i s t . append (match l i s t)
617 datawidth_set = { ' sub_op ' , ' se lect_op ' , 'mux_op ' , '

sh i f t_op ' , 'add_op ' , 'mult_op ' , 'comp_op ' , 'div_op ' , '
b_shift_op ' , ' shift_add_op ' }

618 i f (connection_type == ' output ') :
619 i f (object_handle . id in datawidth_set) :
620 i f (object_handle . output_nodes ==[]) :
621 #dec l a r e output_nodes
622 i f object_handle . id == 'mux_op ' or

object_handle . id == ' se lect_op ' :
623 object_handle . output_nodes = [None]∗

datawidth
624 e l s e :
625 object_handle . output_nodes = [None]∗

datawidth
626 j_increment = 0
627 f o r j in range (0 , l en (match l i s t)) : #j i s i 1
628 i f match l i s t [j] == ' 1\ 'b1 ' or match l i s t [j] == ' 1\ 'b0

' :
629 datawidth = 1
630 e l s e :
631 found = False
632 i f (port_name == ' dep ') :
633 to_append = [object_handle , port_name ,

object_handle . id , connection_type , j+j_increment , i] #0]
634 e l s e :
635 to_append = [object_handle , port_name ,

object_handle . id , connection_type , j+j_increment]
636 #pr in t (" j = "+s t r (j))
637 i f (connection_type == ' input ' or

connection_type == ' c on t r o l ') : #or connection_type == '
c on t r o l ') :

638 i1 , i2 , matchobj , index_type = f ind_indexes (
match l i s t [j])

639 element , found = s ea r ch_ l i s t (inputs ,
matchobj)

640

641 i f found :
642 element . add_node_input_connection (i1 , i2

, to_append , index_type)
643 e l s e :
644 element , found = s ea r ch_ l i s t (connects ,

matchobj)
645 i f found :
646 element . add_node_input_connection (i1

, i2 , to_append , index_type)
647 e l s e :
648 element , found = s ea r ch_ l i s t (outputs

, matchobj)
649 i f found :
650 element .

add_node_input_connection (i1 , i2 , to_append , index_type)
651

652 e l s e :
653 pr in t ("Did not f i nd : "+matchobj)
654 pr in t (" ["+s t r (object_handle . name

)+" , "+s t r (port_name)+" , "+s t r (object_handle . id)+"] ")
655 i f found :
656 i f index_type == ' ' :
657 #whole s i g n a l width−1 added to j
658 j_increment = j_increment + element .

width −1
659 e l i f index_type == ' s l i c e ' :
660 #add width o f s l i c e to j '
661 j_increment = j_increment+ i1−i 2
662 #pr in t (" j_increment : "+s t r (j_increment))
663

664 e l i f (connection_type == ' output ') :
665 i1 , i2 , matchobj , index_type = f ind_indexes (

match l i s t [j])
666 element , found = s ea r ch_ l i s t (outputs ,

matchobj)
667 i f found :
668 i f (i 1 == −1 and i 2 == −1) :
669 #pr in t (" Element width : "+s t r (element

. width))
670 i f e lement . width > 1 and (element .

width != len (object_handle . output_nodes)) :
671 #red e f i n e output
672 i f (object_handle . id in

datawidth_set) :

D
-9

673 f o r i in range (element . width
−1) :

674 object_handle .
output_nodes . append (None)

675 #pr in t (l en (object_handle .
output_nodes))

676 i f e lement . width == 1 and index_type ==
' ' :

677 index_type = ' b i t '
678 element . add_node_output_connection (i1 ,

i2 , to_append , index_type , j+j_increment)
679 e l s e :
680 element , found = s ea r ch_ l i s t (connects ,

matchobj)
681 i f found :
682 i f (i 1 == −1 and i 2 == −1) :
683 #pr in t (" Element width : "+s t r (

element . width))
684 i f e lement . width > 1 and (

element . width != len (object_handle . output_nodes)) :
685 #red e f i n e output
686 i f (object_handle . id in

datawidth_set) :
687 f o r i in range (element .

width−1) :
688 object_handle .

output_nodes . append (None)
689

690 i f e lement . width == 1 and index_type
== ' ' :

691 index_type = ' b i t '
692 #pr in t (" c a l l i n g

add_node_output_connection i 1="+s t r (i 1)+" i 2 : "+s t r (i 2)+" j :
"+s t r (j))

693 element . add_node_output_connection (
i1 , i2 , to_append , index_type , j+j_increment)

694

695 e l s e :
696 pr in t ("Did not f i nd : "+matchobj)
697 pr in t (s t r (object_handle)+" "+s t r (

port_name)+" "+s t r (object_handle . id))
698 i f found :
699 #pr in t (" j = "+s t r (j))
700 i f index_type == ' ' :
701 #whole s i g n a l width−1 added to j

702 #pr in t (" Modif ied j_increment ")
703 j_increment = j_increment + element .

width −1
704 e l i f index_type == ' s l i c e ' :
705 #add width o f s l i c e to j '
706 #pr in t (" Modif ied j_increment ")
707 j_increment = j_increment+ i1−i 2
708 #pr in t (" j_increment : "+s t r (j_increment))
709 e l s e :
710 pr in t ("Did not f i nd \ t "+s t r (match l i s t [j])+"\

tANYWHERE")
711

712 #pr in t ("\ nFinished match l i s t f o r : "+object_handle . name+"\
nwidth : "+s t r (datawidth)+"\nN:" +s t r (dataN)+"\nMatchl i s t : " +

s t r (processed_match l i s t)+"\n")
713 r e turn dataN , datawidth , processed_match l i s t
714

715 #return ob j e c t in l i s t with name matching s e a r c h s t r i n g or None ,
Fa l se

716 de f s e a r ch_ l i s t (l i s t , s e a r c h s t r i n g) :
717 element = None
718 f o r element in l i s t :
719 i f (e lement . name == s e a r c h s t r i n g) :
720 #i f s e a r c h s t r i n g [0] == ' e ' : p r i n t ("FOUND: "+

s e a r c h s t r i n g)
721 r e turn element , True
722 r e turn element , Fa l se
723

724 #se t nodes invo lved in a s s i gn statements equal to each other
725 de f connect_ass igns () :
726 #pr in t ("RUNNING CONNECT ASSIGNS")
727 #pr in t (a s s i g n s)
728 f o r a in a s s i g n s :
729 #pr in t (a . name)
730 #pr in t (a . l h s . name+" "+s t r (a . l h s))
731 #pr in t (a . rhs)
732 #pr in t (a . i 1)
733 #pr in t (a . i 2)
734 i f (a . i 1 != −1) :
735 #pr in t (a . l h s . connection_nodes)
736 lhs_node = a . l h s . connection_nodes [a . i1−a . l h s .

w i d tho f f s e t] [a . i 2]
737 e l s e :
738 #pr in t (" should connect whole s i g n a l ")
739 pass

D
-10

740 i f a . rhs != None and a . rhs !=" constant " :
741 #pr in t (a . rhs . connection_nodes)
742 rhs_node = a . rhs . connection_nodes [a . rhs_i1−a . rhs .

w i d tho f f s e t] [a . rhs_i2]
743 #pr in t (" Def ined two connect ion nodes ")
744 i f (a . i 1 != −1 and a . rhs != None) :
745 #Connect b i t s o f s i n g l e node
746 i f a . rhs == " constant " :
747 a . l h s . connection_nodes [a . i 1] [a . i 2] . constant =

True
748 e l s e :
749 n1 = a . l h s . connection_nodes [a . i1−a . l h s .

w i d tho f f s e t] [a . i 2]
750 n2 = a . rhs . connection_nodes [a . rhs_i1−a . rhs .

w i d tho f f s e t] [a . rhs_i2]
751 connect_nodes (n1 , n2)
752 e l s e :
753 #connect whole node i f a . rhs e x i s t s
754 i f a . rhs != None and a . rhs != " constant " :
755 #pr in t (" Connect whole s i g n a l ")
756 f o r i in range (l en (a . l h s . connection_nodes)) :
757 f o r j in range (l en (a . l h s . connection_nodes [i

])) :
758 n1 = a . l h s . connection_nodes [i] [j]
759 n2 = a . rhs . connection_nodes [i] [j]
760 connect_nodes (n1 , n2)
761

762 #se t nodes equal to each other
763 de f connect_nodes (n1 , n2) :
764 i f n1 == n2 :
765 r e turn
766 e l s e :
767 f o r i in range (l en (n1 . connected_inputs)) :
768 n1_con = n1 . connected_inputs [i]
769 found = False
770 f o r j in range (l en (n2 . connected_inputs)) :
771 n2_con = n2 . connected_inputs [j]
772 n1 . connected_inputs . append (n2_con)
773 n2 . connected_inputs . append (n1_con)
774 i f n1 . connected_outputs == [] :
775 n1 . connected_outputs = n2 . connected_outputs
776 e l i f n2 . connected_outputs == [] :
777 n2 . connected_outputs = n1 . connected_outputs
778 i f n1 . constant == True : n2 . constant = True
779 i f n2 . constant == True : n1 . constant = True

780

781

782 #c l a s s e s
783 c l a s s r e g i s t e r :
784 id = ' reg '
785 name = ""
786 c l e a r = 0
787 pr e s e t = 0
788 next_state = 0
789 clocked_on = 0
790 data_in = 0
791 enable = 0
792 Q = 0
793 QN = 0
794 synch_clear = 0
795 synch_preset = 0
796 synch_toggle = 0
797 synch_enable = 0
798 output_structure_taken = False
799 s t ruc tu r e count = 0
800 de f __str__(s e l f) :
801 #return " Reg i s t e r : \n c l e a r = " + s t r (s e l f . c l e a r) + "\n

pr e s e t = " + s t r (s e l f . p r e s e t) + "\n next_state = " + s t r (
s e l f . next_state) +"\n clocked_on = " + s t r (s e l f . clocked_on)
+"\n data_in = " + s t r (s e l f . data_in) +"\n enable = " + s t r (
s e l f . enable) +"\n Q = " + s t r (s e l f .Q)

802 r e turn " Reg i s t e r : " + s e l f . name
803 de f __init__(s e l f) :
804 #pr in t ("made reg ! ")
805 g l oba l r eg s
806 r eg s = np . append (regs , s e l f)
807 s e l f . output_nodes_q = [None]∗1
808 s e l f . output_nodes_qn = [None]∗1
809 s e l f . has_parent = False
810 c l a s s gtech_or2 :
811 id = ' gtech_or2 '
812 name = ""
813 A = 0
814 B = 0
815 Z = 0
816 s t ruc tu r e count = 0
817 de f __str__(s e l f) :
818 r e turn "OR2: " + s e l f . name
819 de f __init__(s e l f) :
820 #pr in t ("made or2 ! ")

D
-11

821 g l oba l or2s
822 or2s = np . append (or2s , s e l f)
823 s e l f . output_nodes = [None]∗1
824 c l a s s gtech_xor2 :
825 id = ' gtech_xor2 '
826 name = ""
827 A = 0
828 B = 0
829 Z = 0
830 s t ruc tu r e count = 0
831 de f __str__(s e l f) :
832 r e turn "XOR2: " + s e l f . name
833 de f __init__(s e l f) :
834 #pr in t ("made or2 ! ")
835 g l oba l xor2s
836 xor2s = np . append (xor2s , s e l f)
837 s e l f . output_nodes = [None]∗1
838 c l a s s gtech_and2 :
839 id = ' gtech_and2 '
840 name = ""
841 A = 0
842 B = 0
843 Z = 0
844 s t ruc tu r e count = 0
845 de f __str__(s e l f) :
846 r e turn "AND2: " + s e l f . name + " A: "+s t r (s e l f .A)+" B: "+

s t r (s e l f .B)+" Z : "+s t r (s e l f . Z)
847 de f __init__(s e l f) :
848 g l oba l and2s
849 and2s = np . append (and2s , s e l f)
850 s e l f . output_nodes = [None]∗1
851 c l a s s gtech_not :
852 id = ' gtech_not '
853 name = ""
854 A = 0
855 Z = 0
856 s t ruc tu r e count = 0
857 de f __str__(s e l f) :
858 r e turn "NOT: " + s e l f . name
859 de f __init__(s e l f) :
860 g l oba l nots
861 s e l f . output_nodes = [None]∗1
862 nots = np . append (nots , s e l f)
863 c l a s s gtech_buf :
864 id = ' gtech_buf '

865 name = ""
866 A = 0
867 Z = 0
868 s t ruc tu r e count = 0
869 de f __str__(s e l f) :
870 r e turn "BUF: " + s e l f . name
871 de f __init__(s e l f) :
872 s e l f . output_nodes = [None]∗1
873 g l oba l bufs
874 bufs = np . append (bufs , s e l f)
875 c l a s s mux_op :
876 id = 'mux_op '
877 name = ""
878 D = np . array ([])
879 S = np . array ([])
880 Z = np . array ([])
881 datawidth = 0
882 s t ruc tu r e count = 0
883 de f __init__(s e l f) :
884 g l oba l muxes
885 s e l f . output_nodes = []
886 muxes = np . append (muxes , s e l f)
887 de f __str__(s e l f) :
888 r e turn "mux : " + s e l f . name + "# inputs : " + s t r (s e l f .

d_size ()) + " datawidth : " + s t r (s e l f . datawidth)
889 de f d_size (s e l f) :
890 D = s e l f .D
891 pr in t (s t r (D))
892 #pr in t ("number o f Ds " + s t r (l en (D)))
893 r e turn l en (D) #D. s i z e ()
894 de f s_s ize (s e l f) :
895 S = s e l f . S
896 r e turn l en (S)
897 #def datawidth (s e l f) :
898 # D = s e l f .D
899 # return l en (D. item (0))
900 de f p r i n t (s e l f) :
901 pr in t ("mux : " + s e l f . name + "# inputs : " + s t r (s e l f .

d_size ()) + " datawidth : " + s t r (s e l f . datawidth))
902 c l a s s se lect_op :
903 #NB s e l e c t a l s o has width o f s e l e c t to take in to account
904 id = ' se lect_op '
905 name = ""
906 D = np . array ([])
907 CONTROL = np . array ([])

D
-12

908 Z = np . array ([])
909 datawidth = 0
910 s e l e c tw id th = 0
911 s t ruc tu r e count = 0
912 de f __init__(s e l f) :
913 g l oba l s e l e c t s
914 s e l f . output_nodes = []
915 s e l e c t s = np . append (s e l e c t s , s e l f)
916 de f __str__(s e l f) :
917 r e turn " s e l e c t : " + s e l f . name + " inputs : \n" + s t r ((

s e l f .DATA)) + " \ n s e l e c t : \ n" + s t r ((s e l f .CONTROL)) +"\n
datawidth = " +s t r (s e l f . datawidth)+ " s e l e c tw id th = "+ s t r (
s e l f . s e l e c tw id th)

918 c l a s s connect ion :
919 id = ' connect ion '
920 name = ' '
921 width = 1
922 depth = 1
923 wid tho f f s e t = 0
924 de f __init__(s e l f) :
925 g l oba l connects
926 connects = np . append (connects , s e l f)
927 s e l f . connection_nodes = []
928 s e l f . in it_connect ion_nodes ()
929 de f in it_connect ion_nodes (s e l f) :
930 s e l f . connection_nodes = [[node (j , i) f o r i in range (s e l f .

depth)] f o r j in range (s e l f . width)]
931 de f add_node_input_connection (s e l f , i1 , i2 , l , index_type) :
932 #to increment l [4]
933 add = 0
934 i f index_type == ' ' :
935 f o r i in range (s e l f . width) :
936 l i = l [:]
937 l i [4] = l [4] + add
938 add = add+1
939 f o r j in range (s e l f . depth) :
940 s e l f . connection_nodes [i] [j] .

add_input_connection (l i)
941

942 e l i f index_type == ' index ' :
943 s e l f . connection_nodes [i1−s e l f . w i d tho f f s e t] [i 2] .

add_input_connection (l)
944 e l i f index_type == ' s l i c e ' :
945 f o r i in range (i2 , i 1) :
946 l i = l [:]

947 l i [4] = l [4] + add
948 s e l f . connection_nodes [i−s e l f . w i d tho f f s e t] [0] .

add_input_connection (l i)
949 add = add+1
950

951 de f add_node_output_connection (s e l f , i1 , i2 , l , index_type , k)
:

952 add = 0
953 i f index_type == ' ' :
954 f o r i in range (s e l f . width) :
955 l i = l [:]
956 l i [4] = l [4] + add
957 k = l i [4]
958 f o r j in range (s e l f . depth) :
959 s e l f . connection_nodes [i] [j] .

add_output_connection (l i , k)
960 add = add+1
961 e l i f index_type == ' b i t ' :
962 s e l f . connection_nodes [i1−s e l f . w i d tho f f s e t] [i 2] .

add_output_connection (l , k)
963

964 e l i f index_type == ' index ' :
965 s e l f . connection_nodes [i1−s e l f . w i d tho f f s e t] [i 2] .

add_output_connection (l , k)
966 e l i f index_type == ' s l i c e ' :
967 f o r i in range (i2 , i 1) :
968 l i = l [:]
969 l i [4] = l [4] + add
970 k = l i [4]
971 s e l f . connection_nodes [i] [0] .

add_output_connection (l i , k)
972 add = add+1
973 c l a s s a s s i gn :
974 id = ' a s s i gn '
975 l h s = ' '
976 rhs = ' '
977 i 1 = 0
978 i 2 = 0
979 l h s = None
980 rhs = None
981 rhs_i1 = 0
982 rhs_i2 = 0
983 de f __init__(s e l f) :
984 g l oba l a s s i g n s
985 a s s i g n s = np . append (a s s i gns , s e l f)

D
-13

986 # s e l f . l h s = lh s
987 # s e l f . rhs = rhs
988 c l a s s node :
989 id = ' node '
990 de f __init__(s e l f , i1 , i 2) :
991 s e l f . connected_inputs = []
992 s e l f . connected_outputs = []
993 s e l f . i 1 = i 1
994 s e l f . i 2 = i 2
995 s e l f . constant = False
996 de f add_input_connection (s e l f , l) :
997 s e l f . connected_inputs . append (l)
998 de f add_output_connection (s e l f , l , j) :
999 s e l f . connected_outputs . append (l)

1000 connected_object_handle = l [0]
1001 i f l [2] != ' reg ' :
1002 #add output node to connected ob j e c t
1003 connected_object_handle . output_nodes [j] = s e l f
1004 e l s e :
1005 #add output node to r e g i s t e r
1006 connected_object_handle . output_nodes_q [0] = s e l f
1007

1008 connected_object_handle . output_nodes_qn [0] = s e l f
1009 de f p r i n t (s e l f) :
1010 pr in t ("Node : ")
1011 pr in t ("\ t input s ")
1012 pr in t (s e l f . connected_inputs)
1013 pr in t ("\ toutputs : ")
1014 pr in t (s e l f . connected_outputs)
1015 pr in t ("Endnode")
1016 c l a s s input_obj () :
1017 id = ' input '
1018 name = ""
1019 width = 1
1020 depth = 1
1021 wid tho f f s e t = 0
1022 de f __init__(s e l f) :
1023 g l oba l inputs
1024 inputs = np . append (inputs , s e l f)
1025 s e l f . connection_nodes = []
1026 de f in it_connect ion_nodes (s e l f) :
1027 #pr in t ("\ n i n i t i a l i z i n g connect ion nodes ")
1028 s e l f . connection_nodes = [[node (j , i) f o r i in range (s e l f .

depth)] f o r j in range (s e l f . width)]
1029 #pr in t (s e l f . connection_nodes)

1030 de f add_node_input_connection (s e l f , i1 , i2 , l , index_type) :
1031 add = 0
1032 i f index_type == ' ' :
1033 i f (i 1 == −1 and i 2 == −1) :
1034 f o r i in range (s e l f . width) :
1035 l i = l [:]
1036 l i [4] = l [4] + add
1037 f o r j in range (s e l f . depth) :
1038 #pr in t (" added input connect ion with l

[4] : "+s t r (l i [4]))
1039 s e l f . connection_nodes [i] [j] .

add_input_connection (l i)
1040 add = add+1
1041

1042 e l i f index_type == ' index ' :
1043 s e l f . connection_nodes [i1−s e l f . w i d tho f f s e t] [i 2] .

add_input_connection (l)
1044 e l i f index_type == ' s l i c e ' :
1045 f o r i in range (i2 , i 1) :
1046 l i = l [:]
1047 l i [4] = l [4] + add
1048 s e l f . connection_nodes [i] [0] . add_input_connection

(l i)
1049 add = add+1
1050 c l a s s output_obj () :
1051 id = ' output '
1052 name = ""
1053 width = 1
1054 depth = 1
1055 wid tho f f s e t = 0
1056 de f __init__(s e l f) :
1057 g l oba l outputs
1058 outputs = np . append (outputs , s e l f)
1059 s e l f . connection_nodes = []
1060 de f in it_connect ion_nodes (s e l f) :
1061 #pr in t ("\ n i n i t i a l i z i n g connect ion nodes ")
1062 s e l f . connection_nodes = [[node (j , i) f o r i in range (s e l f .

depth)] f o r j in range (s e l f . width)]
1063 #pr in t (s e l f . connection_nodes)
1064 de f add_node_output_connection (s e l f , i1 , i2 , l , index_type , k)

:
1065 add = 0
1066 i f index_type == ' ' :
1067 f o r i in range (s e l f . width) :
1068 l i = l [:]

D
-14

1069 l i [4] = l [4] + add
1070 k = l i [4]
1071 f o r j in range (s e l f . depth) :
1072 s e l f . connection_nodes [i] [j] .

add_output_connection (l i , k)
1073 add = add+1
1074 #pr in t (add)
1075 e l i f index_type == ' b i t ' :
1076 s e l f . connection_nodes [i1−s e l f . w i d tho f f s e t] [i 2] .

add_output_connection (l , k)
1077

1078 e l i f index_type == ' index ' :
1079 s e l f . connection_nodes [i1−s e l f . w i d tho f f s e t] [i 2] .

add_output_connection (l , k)
1080 e l i f index_type == ' s l i c e ' :
1081 f o r i in range (i2 , i 1) :
1082 l i = l [:]
1083 l i [4] = l [4] + add
1084 k = l i [4]
1085 s e l f . connection_nodes [i] [0] .

add_output_connection (l i , k)
1086 add = add+1
1087 de f add_node_input_connection (s e l f , i1 , i2 , l , index_type) :
1088 add = 0
1089 i f index_type == ' ' :
1090 i f (i 1 == −1 and i 2 == −1) :
1091 f o r i in range (s e l f . width) :
1092 l i = l [:]
1093 l i [4] = l [4] + add
1094 f o r j in range (s e l f . depth) :
1095 s e l f . connection_nodes [i] [j] .

add_input_connection (l i)
1096 add = add+1
1097

1098 e l i f index_type == ' index ' :
1099 s e l f . connection_nodes [i1−s e l f . w i d tho f f s e t] [i 2] .

add_input_connection (l)
1100 e l i f index_type == ' s l i c e ' :
1101 f o r i in range (i2 , i 1) :
1102 l i = l [:]
1103 l i [4] = l [4] + add
1104 s e l f . connection_nodes [i] [0] . add_input_connection

(l i)
1105 add = add+1
1106 c l a s s module :

1107 name = ""
1108 connect ion_point_str ing = ""
1109 de f __init__(s e l f , name) :
1110 s e l f . r e g s = []
1111 s e l f . nots = []
1112 s e l f . bufs = []
1113 s e l f . and2s = []
1114 s e l f . o r2s = []
1115 s e l f . muxes = []
1116 s e l f . s e l e c t s = []
1117 s e l f . connects = []
1118 s e l f . inputs = []
1119 s e l f . outputs = []
1120 s e l f . dependenc ies = []
1121 s e l f . s h i f t e r s = []
1122 s e l f . comparators = []
1123 s e l f . xor2s = []
1124 s e l f . mu l t i p l i e r s = []
1125 s e l f . s ub t r a c t o r s = []
1126 s e l f . b_sh i f t e r s = []
1127 s e l f . adders = []
1128 s e l f . sh i f t_adder s = []
1129 s e l f . d i v i s o r s = []
1130 s e l f . a s s i g n s = []
1131 s e l f . name = name
1132 s e l f . connect ion_points = []
1133 de f s e t_ l i s t s (s e l f) :
1134 g l oba l r eg s
1135 g l oba l nots
1136 g l oba l bufs
1137 g l oba l and2s
1138 g l oba l or2s
1139 g l oba l muxes
1140 g l oba l s e l e c t s
1141 g l oba l connects
1142 g l oba l inputs
1143 g l oba l outputs
1144 g l oba l dependenc ies
1145 g l oba l s h i f t e r s
1146 g l oba l comparators
1147 g l oba l xor2s
1148 g l oba l mu l t i p l i e r s
1149 g l oba l sub t r a c t o r s
1150 g l oba l b_sh i f t e r s
1151 g l oba l adders

D
-15

1152 g l oba l sh i f t_adder s
1153 g l oba l d i v i s o r s
1154 g l oba l a s s i g n s
1155

1156 s e l f . r e g s = np . copy (r eg s)
1157 s e l f . nots = np . copy (nots)
1158 s e l f . bufs = np . copy (bufs)
1159 s e l f . and2s = np . copy (and2s)
1160 s e l f . o r2s = np . copy (or2s)
1161 s e l f . muxes = np . copy (muxes)
1162 s e l f . s e l e c t s = np . copy (s e l e c t s)
1163 s e l f . connects = np . copy (connects)
1164 s e l f . inputs = np . copy (inputs)
1165 s e l f . outputs = np . copy (outputs)
1166 s e l f . dependenc ies = np . copy (dependenc ies)
1167 s e l f . s h i f t e r s = np . copy (s h i f t e r s)
1168 s e l f . comparators = np . copy (comparators)
1169 s e l f . xor2s = np . copy (xor2s)
1170 s e l f . mu l t i p l i e r s = np . copy (mu l t i p l i e r s)
1171 s e l f . s ub t r a c t o r s = np . copy (sub t r a c t o r s)
1172 s e l f . b_sh i f t e r s = np . copy (b_sh i f t e r s)
1173 s e l f . adders = np . copy (adders)
1174 s e l f . sh i f t_adder s = np . copy (sh i f t_adder s)
1175 s e l f . d i v i s o r s = np . copy (d i v i s o r s)
1176 s e l f . a s s i g n s = np . copy (a s s i g n s)
1177 de f set_connect ion_points (s e l f) :
1178 s e l f . connect ion_point_str ing = s e l f .

connect ion_point_str ing . t r a n s l a t e ({ ord (i) : None f o r i in ' \
\n ' })

1179 #pr in t (s e l f . connect ion_point_str ing)
1180 connec t i onpo in t s = []
1181 f o r key , rx in rx_dict_module_connections . i tems () :
1182 match = rx . f i n d a l l (s e l f . connect ion_point_str ing) #rx

. f i n d a l l (l i n e)
1183 #pr in t (" found "+s t r (l en (match))+" matches in

modulestr ing ")
1184 i f match :
1185 #pr in t (s t r (match))
1186 f o r m in match :
1187 i f (m[0] == ' ') : connec t i onpo in t s . append (

tup l e ([m[2]]))
1188 e l s e :
1189 l = m[1] . t r a n s l a t e ({ ord (i) : None f o r i

in ' }{ ' })
1190 l = l . s p l i t (' , ')

1191 connec t i onpo in t s . append (tup l e ([m[0] , l])
)

1192 #connec t i onpo in t s . append (match)
1193 #pr in t (connec t i onpo in t s)
1194 s e l f . connect ion_points = connec t i onpo in t s
1195 c l a s s dependency :
1196 #name o f i n s t a n t i a t i o n
1197 id = ' dep '
1198 name = ""
1199 #modulename
1200 modulename = ""
1201 module_handle = None
1202 possible_HINST = False
1203 de f __init__(s e l f) :
1204 g l oba l dependenc ies
1205 dependenc ies = np . append (dependencies , s e l f)
1206 s e l f . connect i ons = []
1207 de f add_connections (s e l f , l i s t) :
1208 s e l f . connect i ons . append (l i s t)
1209 c l a s s sh i f t_op :
1210 id = ' sh i f t_op '
1211 name = ' '
1212 A = 0
1213 SH = 0
1214 Z = 0
1215 a_width = 0
1216 sh_width = 0
1217 z_width = 0
1218 s t ruc tu r e count = 0
1219 de f __init__(s e l f) :
1220 g l oba l s h i f t e r s
1221 s h i f t e r s = np . append (s h i f t e r s , s e l f)
1222 s e l f . output_nodes = []
1223 c l a s s comp_op :
1224 id = "comp_op"
1225 name = ""
1226 A = 0
1227 B = 0
1228 Z = 0
1229 a_width = 0
1230 b_width = 0
1231 z_width = 0
1232 s t ruc tu r e count = 0
1233 de f __init__(s e l f) :
1234 g l oba l comparators

D
-16

1235 comparators = np . append (comparators , s e l f)
1236 s e l f . output_nodes = []
1237 #pr in t ("Made comparator ")
1238 c l a s s sub_op :
1239 id = "sub_op"
1240 name = ""
1241 A = 0
1242 B = 0
1243 Z = 0
1244 s t ruc tu r e count = 0
1245 de f __init__(s e l f) :
1246 g l oba l sub t r a c t o r s
1247 sub t r a c t o r s = np . append (subt rac to r s , s e l f)
1248 s e l f . output_nodes = []
1249 #pr in t ("made subt rac to r ")
1250 c l a s s add_op :
1251 id = "add_op"
1252 name = ""
1253 A = 0
1254 B = 0
1255 Z = 0
1256 a_width = 0
1257 b_width = 0
1258 z_width = 0
1259 s t ruc tu r e count = 0
1260 de f __init__(s e l f) :
1261 g l oba l adders
1262 adders = np . append (adders , s e l f)
1263 s e l f . output_nodes = []
1264 #pr in t ("made adder ")
1265 c l a s s mult_op :
1266 id = "mult_op"
1267 name = ""
1268 A = 0
1269 B = 0
1270 Z = 0
1271 a_width = 0
1272 b_width = 0
1273 z_width = 0
1274 s t ruc tu r e count = 0
1275 de f __init__(s e l f) :
1276 g l oba l mu l t i p l i e r s
1277 mu l t i p l i e r s = np . append (mu l t i p l i e r s , s e l f)
1278 s e l f . output_nodes = []
1279 #pr in t ("made mu l t i p l i c a t o r ")

1280 c l a s s div_op :
1281 id = "div_op"
1282 name = ""
1283 A = 0
1284 B = 0
1285 Z = 0
1286 a_width = 0
1287 b_width = 0
1288 z_width = 0
1289 s t ruc tu r e count = 0
1290 de f __init__(s e l f) :
1291 g l oba l d i v i s o r s
1292 d i v i s o r s = np . append (d i v i s o r s , s e l f)
1293 s e l f . output_nodes = []
1294 #pr in t ("Made d i v i s o r ")
1295 c l a s s b_shift_op :
1296 id = "b_shift_op"
1297 name = ""
1298 A = 0
1299 SH = 0
1300 Z = 0
1301 a_width = 0
1302 sh_width = 0
1303 z_width = 0
1304 s t ruc tu r e count = 0
1305 de f __init__(s e l f) :
1306 g l oba l b_sh i f t e r s
1307 b_sh i f t e r s = np . append (b_sh i f t e r s , s e l f)
1308 s e l f . output_nodes = []
1309 #pr in t ("made b a r r e l s h i f t ")
1310 c l a s s shift_add_op :
1311 #dont know what content should be here , may need to

implement as I go i f I encounter i t dur ing t e s t i n g
1312 id = "shift_add_op"
1313 name = ""
1314 s t ruc tu r e count = 0
1315 de f __init__(s e l f) :
1316 g l oba l sh i f t_adder s
1317 sh i f t_adder s = np . append (sh i f t_adders , s e l f)
1318 s e l f . output_nodes = []
1319 #pr in t ("Made s h i f t adder ")
1320

1321

1322 #d i c t i o n a r i e s conta in ing r e gu l a r e xp r e s s i on s to handle d i f f e r e n t
con s t ru c t s from the e l abora t ed sy s t emve r i l og

D
-17

1323 rx_dict_module_start = {
1324 ' begin ' : r e . compi le (r "module\ s+(\S+)")
1325 }
1326 rx_dict_objectconnect ion = {
1327 ' b i t ' : r e . compi le (r " (1 'b\d) ") ,
1328 ' connect ' : r e . compi le (r " (\S+) (? : \ [(\ d{1 ,4}) \]) ? (? : \ [(\ d

{1 ,4}) \]) ?")
1329 }
1330 rx_dict_start = {
1331 ' r e g i s t e r ' : r e . compi le (r "\\\∗\∗SEQGEN\∗\∗\ s+(\S+)\ s ")

,
1332 'GTECH_OR2 ' : r e . compi le (r "GTECH_OR2\ s+(\S+)\ s ") ,
1333 'GTECH_NOT ' : r e . compi le (r "GTECH_NOT\ s+(\S+)\ s ") ,
1334 'GTECH_BUF ' : r e . compi le (r "GTECH_BUF\ s+(\S+)\ s ") ,
1335 'GTECH_AND2 ' : r e . compi le (r "GTECH_AND2\ s+(\S+)\ s ") ,
1336 'GTECH_XOR2 ' : r e . compi le (r "GTECH_XOR2\ s+(\S+)\ s ") ,
1337 'MUX_OP' : r e . compi le (r "MUX_OP\ s+(\S+)\ s ") ,
1338 'SELECT_OP ' : r e . compi le (r "SELECT_OP\ s+(\S+)\ s ") ,
1339 #TODO: mux add , sub , mult , s h i f t s and compares remain at

l e a s t . . .
1340 #a l l o f the se can be s i n g l e b i t or mu l t i b i t . i f square

bracke t s be f o r e name
1341 #multi , e l s e s i n g l e (group capture ?)
1342 ' input ' : r e . compi le (r " (input) \ s +(? : \ [(\ d{1 ,3}) : (\ d

{1 ,3}) \]) ?") ,
1343 ' output ' : r e . compi le (r " (output) \ s +(? : \ [(\ d{1 ,3}) : (\ d

{1 ,3}) \]) ?") ,
1344 ' wire ' : r e . compi le (r " (wire) \ s +(? : \ [(\ d{1 ,3}) : (\ d

{1 ,3}) \]) ?") ,
1345 ' dep ' : r e . compi le (r " (\S+)\ s+(\S∗u_\S+)\ s ∗\(") ,
1346 'COMP_OP' : r e . compi le (r "^\s ∗ (? :EQ_UNS_OP|NE_UNS_OP|

EQ_TC_OP|NE_TC_OP|GEQ_UNS_OP|GEQ_TC_OP|LEQ_UNS_OP|LEQ_TC_OP|
GT_UNS_OP|GT_TC_OP|LT_UNS_OP|LT_TC_OP)\ s+(\S+)\ s ") ,

1347 'SUB_OP ' : r e . compi le (r "SUB_(? :UNS_OP|UNS_CI_OP|TC_OP
|TC_CI_OP)\ s+(\S+)\ s ") ,

1348 'ADD_OP ' : r e . compi le (r "ADD_(? :UNS_OP|UNS_CI_OP|TC_OP
|TC_CI_OP)\ s+(\S+)\ s ") ,

1349 'MULT_OP ' : r e . compi le (r "MULT_(? :UNS_OP|TC_OP)\ s+(\S+)
\ s ") ,

1350 'DIV_OP ' : r e . compi le (r " (? :DIV |MOD|REM|DIVREM|DIVMOD)
_(? :UNS|TC)_OP\ s+(\S+)\ s ") , #only div in Yoda

1351 'SHIFT_OP ' : r e . compi le (r " (? :ASH|ASHR|SRA)_(? :UNS|TC)_
(? :UNS|TC|OP) (? :_OP) ?\ s+(\S+)\ s ") ,

1352 'B_SHIFT_OP ' : r e . compi le (r "BSH(? :_UNS_OP|_TC_OP|L_TC_OP|
R_UNS_OP|R_TC_OP)\ s+(\S+)\ s ") , #not in Yoda

1353 'SHIFT_ADD_OP ' : r e . compi le (r " (? :SLA_UNS_OP|SLA_TC_OP)\ s+(\
S+)\ s ") , #not in Yoda

1354 ' a s s i gn ' : r e . compi le (r " a s s i gn \ s ([^=]+)")
1355 # 'SRA ' :
1356 }
1357 rx_dict_dep_internals = {
1358 # ' dep ' : r e . compi le (r "\(\ s ? (? : \ . ([^ \ (\ s ,]+) \ (([^\ (\) ; \ s] ∗)

\) , ?)+\s ?\) ; ")
1359 ' dep ' : r e . compi le (r "\ s ? (? : \ . (?P<connection_point >[^\(\ s

,]+) \((?P<connected_to >[^\(\) ; \ s] ∗) \) , ?) \ s ?")
1360 }
1361 rx_dict_ass ign = {
1362 ' rhs ' : r e . compi le (r "=([^=]+) ; ")
1363 }
1364 rx_dic t_sh i f t = {
1365 'A ' : r e . compi le (r " \ .A\ (([^\)] ∗) \) ") ,
1366 'SH ' : r e . compi le (r " \ .SH\ (([^\)] ∗) \) ") ,
1367 'Z ' : r e . compi le (r " \ .Z\ (([^\)] ∗) \) ")
1368 }
1369 rx_dict_module_connections = {
1370 # ' reconnect ' : r e . compi le (r "\ s ? ((? : \ . (?P<connection_point

>[^\(\ s ,]+) \((?P<connected_to >[^\(\) ; \ s] ∗) \))) [, \)] \ s ?")
| ([^ , \ . \ (\) \{\}\ [\]]+) [, \)] \ s ?") ,

1371 # ' p l a in ' : r e . compi le (r "\ s ∗ ([^\(\ s ,]+) \ s ? [, \)] ")
1372 ' connect ion ' : r e . compi le (r " (? : [, \ (] \ . ([^ \ (\) ,]+) \ (([^\ (\)

]+) \)) | (? : [, \ (] ([^ \ .] [^ \) \ (, ;] ∗)) ")
1373 }
1374 rx_dict_end = {
1375 # ' end ' : r e . compi le (r "\) ; ") ,
1376 ' semi ' : r e . compi le (r " ; ") #hope fu l l y t h i s does not ru in

anything and a l l s emico lons are ends
1377 }
1378 rx_dict_in_out_wire = {
1379 ' varname ' : r e . compi le (r " [^\ s ,]+ ") #one or more char not

whitespace comma
1380 }
1381 rx_dict_SELECT = {
1382 'DATA ' : r e . compi le (r " \ .DATA\d{1 ,2}\ (([^\)] ∗) \) ") ,
1383 'CONTROL ' : r e . compi le (r " \ .CONTROL\d{1 ,2}\ (([^\)] ∗) \) ") ,
1384 'Z ' : r e . compi le (r " \ .Z\ (([^\)] ∗) \) ")
1385 }
1386 rx_dict_comp = {
1387 'A ' : r e . compi le (r " \ .A\ (([^\)] ∗) \) ") ,
1388 'B ' : r e . compi le (r " \ .B\ (([^\)] ∗) \) ") ,
1389 'QUOTIENT ' : r e . compi le (r " \ .QUOTIENT\(([^\)] ∗) \) ")

D
-18

1390 }
1391 rx_dict_SUB_ADD_MULT = {
1392 'A ' : r e . compi le (r " \ .A\ (([^\)] ∗) \) ") ,
1393 'B ' : r e . compi le (r " \ .B\ (([^\)] ∗) \) ") ,
1394 'Z ' : r e . compi le (r " \ .Z\ (([^\)] ∗) \) ")
1395 }
1396 rx_dict_MUX = {
1397 'D ' : r e . compi le (r " \ .D\d{1 ,2}\ (([^\)] ∗) \) ") , # SEEMS TO

BE SOME THAT HAS UP TO D31 AS D INPUTS. HOW DO i HANDLE
THese VARYING THINgS

1398 # ALSO SOME
ONLY GOING TO D3 BUT ATTACHING 5 BIT TO EACH D data width o f

d var i e s , number o f D inputs v a r i e s
1399 'S ' : r e . compi le (r " \ . S\d {1 ,2}\ (([^\)] ∗) \) ") , # make

ar rays f o r the mux
1400 'Z ' : r e . compi le (r " \ .Z\ (([^\)] ∗) \) ")
1401 }
1402 rx_dict_BUF = {
1403 'A ' : r e . compi le (r " \ .A\ (([^\)] ∗) \) ") ,
1404 'Z ' : r e . compi le (r " \ .Z\ (([^\)] ∗) \) ")
1405 }
1406 rx_dict_NOT = {
1407 'A ' : r e . compi le (r " \ .A\ (([^\)] ∗) \) ") ,
1408 'Z ' : r e . compi le (r " \ .Z\ (([^\)] ∗) \) ")
1409 }
1410 rx_dict_AND2 = {
1411 'A ' : r e . compi le (r " \ .A\ (([^\)] ∗) \) ") ,
1412 'B ' : r e . compi le (r " \ .B\ (([^\)] ∗) \) ") ,
1413 'Z ' : r e . compi le (r " \ .Z\ (([^\)] ∗) \) ")
1414 }
1415 rx_dict_OR2 = {
1416 'A ' : r e . compi le (r " \ .A\ (([^\)] ∗) \) ") ,
1417 'B ' : r e . compi le (r " \ .B\ (([^\)] ∗) \) ") ,
1418 'Z ' : r e . compi le (r " \ .Z\ (([^\)] ∗) \) ")
1419 }
1420 rx_dict_reg = {
1421 ' c l e a r ' : r e . compi le (r " \ . c l e a r \ (([^\)] ∗) \) ") ,
1422 ' pr e s e t ' : r e . compi le (r " \ . p r e s e t \ (([^\)] ∗) \) ") ,
1423 ' next_state ' : r e . compi le (r " \ . next_state \ (([^\)] ∗) \) ") ,
1424 ' clocked_on ' : r e . compi le (r " \ . clocked_on \ (([^\)] ∗) \) ") ,
1425 ' data_in ' : r e . compi le (r " \ . data_in \ (([^\)] ∗) \) ") ,
1426 ' enable ' : r e . compi le (r " \ . enable \ (([^\)] ∗) \) ") ,
1427 'Q ' : r e . compi le (r " \ .Q\ (([^\)] ∗) \) ") ,
1428 'QN ' : r e . compi le (r " \ .QN\(([^\)] ∗) \) ") ,

1429 ' synch_clear ' : r e . compi le (r " \ . synch_clear \ (([^\)] ∗) \) ")
,

1430 ' synch_preset ' : r e . compi le (r " \ . synch_preset \ (([^\)] ∗) \) "
) ,

1431 ' synch_toggle ' : r e . compi le (r " \ . synch_toggle \ (([^\)] ∗) \) "
) ,

1432 ' synch_enable ' : r e . compi le (r " \ . synch_enable \ (([^\)] ∗) \) "
)

1433 }
1434

1435 #proce s s module i n s t a n t i a t i o n s
1436 de f process_dependenc ies () :
1437 f o r top_module in modules :
1438 s e t_g l oba l_ l i s t s (top_module)
1439

1440 f o r dep in top_module . dependenc ies :
1441 found_dep = False
1442 #pr in t (" Looking f o r "+dep . modulename+" in

dependenc ies ")
1443 modulename = dep . modulename
1444 #f ind modulename in module l i s t
1445

1446 f o r dep_module in modules :
1447

1448 i f dep_module . name == modulename :
1449 found_dep = True
1450 dep . module_handle = dep_module
1451 module_connect ion_list = dep_module .

connect ion_points
1452

1453 f o r dependency_connection_tuple in dep .
connect i ons [0] :

1454 cleaned_dependency_connection_point =
dependency_connection_tuple [0] . t r a n s l a t e ({ ord (i) : None f o r i
in ' \ ' })

1455 found = False
1456

1457 f o r module_connection_tuple in
module_connect ion_list :

1458

1459 i f
cleaned_dependency_connection_point ==
module_connection_tuple [0] :

1460 found = True

D
-19

1461 c l eaned_dep_connect ion l i s t =
dependency_connection_tuple [1] . t r a n s l a t e ({ ord (i) : None f o r i
in ' }{\ ' })

1462 c l eaned_dep_connect ion l i s t =
c leaned_dep_connect ion l i s t . s p l i t (' , ')

1463

1464 f o r i in range (l en (
c l eaned_dep_connect ion l i s t)) :

1465 i f l en (
module_connection_tuple) > 1 :

1466 i1 , i2 ,
module_connection , typeindex = f ind_indexes (
module_connection_tuple [1] [i])

1467 e l s e :
1468

1469 i1 , i2 ,
module_connection , typeindex = f ind_indexes (
module_connection_tuple [0])

1470

1471 dep_handle , found_dep =
s ea r ch_ l i s t (dep_module . inputs , module_connection)

1472 i f found_dep :
1473

1474 pr in t (" sending "+s t r (
c l eaned_dep_connect ion l i s t [i])+" in to proce s s match")

1475 dataN , datawidth ,
processed_match l i s t = process_match ([
c l eaned_dep_connect ion l i s t [i]] , dep_handle , ' input ' , ' dep ')

1476

1477

1478

1479 e l s e :
1480 dep_handle , found_dep =

s ea r ch_ l i s t (dep_module . outputs , module_connection)
1481 #pr in t (dep_connection)
1482 i f found_dep :
1483

1484 dataN , datawidth ,
processed_match l i s t = process_match ([
c l eaned_dep_connect ion l i s t [i]] , dep_handle , ' input ' , ' dep ')

1485 e l s e :
1486

1487 pr in t ("Did not f i nd
dep "+dep_module . name)

1488

1489

1490 #DEP NOT FOUND IN MODULES, MAYBE HINST
1491 i f found == False :
1492 dep . possible_HINST = True
1493

1494 i f found_dep == False :
1495 pr in t ("Did not f i nd dep : "+dep . modulename)
1496 top_module . s e t_ l i s t s ()
1497 empty_global_l i sts ()
1498 #f ind dep por t s in inputs or outputs
1499

1500 #pr in t name o f a l l o b j e c t s in a l i s t
1501 de f print_list_names (l) :
1502 f o r e in l :
1503 pr in t ("\ t "+e . name)
1504

1505

1506 #go s t ru c tu r e heads and make s t r u c tu r e t r e e s
1507 de f connect_structure (module) :
1508 g l oba l top_level_parents
1509

1510 f o r inp in module . inputs :
1511

1512 f o r n l in range (l en (inp . connection_nodes)) :
1513 f o r n in range (l en (inp . connection_nodes [n l])) :
1514 #pr in t (s t r (n l)+" "+s t r (n))
1515 structure_handle = s t ru c tu r e (None , inp , n l)
1516 top_level_parents . append (structure_handle)
1517 connect_chi ldren (structure_handle , nl , n)
1518

1519 f o r m in modules :
1520 f o r reg in m. r eg s :
1521 #pr in t (reg . name)
1522 structure_handle = s t ru c tu r e (None , reg , 0)
1523 top_level_parents . append (structure_handle)
1524 connect_chi ldren (structure_handle , 0 , 0)
1525

1526

1527 #r e c u r s i v e l y connects a l l c h i l d r en to a parent and expand
s t r u c tu r e t r e e

1528 de f connect_chi ldren (parent , i1 , i 2) :
1529 object_handle = parent . represented_object_handle
1530

1531 i 1 = parent . i 1
1532

D
-20

1533 i f object_handle . id != ' input ' and object_handle . id != '
output ' :

1534

1535 datawidth_set = { ' sub_op ' , ' se lect_op ' , 'mux_op ' , '
sh i f t_op ' , 'add_op ' , 'mult_op ' , 'comp_op ' , 'div_op ' , '
b_shift_op ' , ' shift_add_op ' }

1536

1537 object_handle . s t ruc tu r e count = object_handle .
s t ruc tu r e count+1

1538

1539 g l oba l top_level_parents
1540 #pr in t (" Current ob j e c t : "+object_handle . name)
1541 output_nodes = []
1542 output_nodes_q = []
1543 output_nodes_qn = []
1544 #pr in t (" parent : "+object_handle . name)
1545 i f object_handle . id == ' output ' :
1546 output_nodes = []
1547 e l i f object_handle . id == ' reg ' :
1548

1549 i f object_handle . output_structure_taken == False :
1550 output_nodes_q = object_handle . output_nodes_q
1551 output_nodes_qn = object_handle . output_nodes_qn
1552 object_handle . output_structure_taken = True
1553

1554 i f parent != None :# and parent . connected_inputs [0] !=
None :

1555 i f parent . parent != None :
1556 object_handle . has_parent = True
1557

1558 e l i f object_handle . id == ' input ' :
1559

1560 output_nodes . append (object_handle . connection_nodes [i 1] [
i 2])

1561

1562 e l i f object_handle . id == 'comp_op ' :
1563 output_nodes = object_handle . output_nodes
1564 e l s e :
1565

1566 output_nodes = [object_handle . output_nodes [i 1]]
1567

1568 #ADDED to shorten r e cu r s i on
1569 object_handle . output_nodes [i 1] = parent
1570 #pr in t (output_nodes)
1571 f o r node in output_nodes :

1572

1573 i f node != None :
1574 i f node . id == ' s t r u c tu r e ' :
1575

1576 parent = node
1577

1578 r e turn
1579 e l i f (node != None) :
1580

1581 f o r con in node . connected_inputs :
1582 chi ld_handle = con [0]
1583

1584 structure_handle = s t ru c tu r e (parent ,
chi ld_handle , con [4])

1585 added = parent . add_child (structure_handle)
1586 i f added :
1587 structure_handle . s t ructure_type =

chi ld_handle . id
1588 structure_handle .

s t ru c tu r e_connec t i on_cha rac t e r i s t i c = con [3]
1589

1590 i f con [2] == ' reg ' and con [2] != '
c on t r o l ' :

1591 con [0] . has_parent = True
1592 i f s t ructure_handle .

represented_object_handle . id != ' reg ' and structure_handle .
represented_object_handle . id != ' input ' :

1593 structure_handle .
represented_object_handle . output_nodes [0] = structure_handle

1594 i f (con [3] != ' c on t r o l ' and con [2] != '
reg ' and con [2] != ' input ') :

1595 connect_chi ldren (structure_handle ,
con [4] , node . i 2)

1596 e l i f (con [2] == ' input ') :
1597 #i f input i 2 needs to be s e t

c o r r e c t l y
1598 connect_chi ldren (structure_handle ,

con [4] , con [5])#node . i 2)
1599 e l s e :
1600 pass
1601 f o r node in output_nodes_q :
1602

1603 i f (node != None) :
1604

1605 f o r con in node . connected_inputs :

D
-21

1606 chi ld_handle = con [0]
1607

1608 structure_handle = s t ru c tu r e (parent ,
chi ld_handle , con [4])

1609 added = parent . add_child (structure_handle)
1610 i f added :
1611 structure_handle . s t ructure_type =

chi ld_handle . id
1612 structure_handle .

s t ru c tu r e_connec t i on_cha rac t e r i s t i c = con [3]
1613 i f con [2] == ' reg ' and con [2] != ' c on t r o l ' :
1614 con [0] . has_parent = True
1615 i f s t ructure_handle .

represented_object_handle . id != ' reg ' and structure_handle .
represented_object_handle . id != ' input ' :

1616 structure_handle .
represented_object_handle . output_nodes [0] = structure_handle

1617 i f (con [3] != ' c on t r o l ' and con [2] != ' reg '
and con [2] != ' input ') :

1618 connect_chi ldren (structure_handle , con
[4] , node . i 2)

1619 e l i f (con [2] == ' input ') :
1620 connect_chi ldren (structure_handle , con

[4] , con [5])
1621

1622 f o r node in output_nodes_qn :
1623 i f (node != None) :
1624

1625 i f node . id == ' s t r u c tu r e ' :
1626 parent = node
1627

1628 r e turn
1629

1630 f o r con in node . connected_inputs :
1631 chi ld_handle = con [0]
1632 #pr in t (con)
1633 structure_handle = s t ru c tu r e (parent ,

chi ld_handle , con [4])
1634 added = parent . add_child (structure_handle)
1635 i f added :
1636 structure_handle . s t ructure_type =

chi ld_handle . id
1637 structure_handle .

s t ru c tu r e_connec t i on_cha rac t e r i s t i c = con [3]
1638 i f con [2] == ' reg ' and con [2] != ' c on t r o l ' :

1639 con [0] . has_parent = True
1640 i f s t ructure_handle .

represented_object_handle . id != ' reg ' and structure_handle .
represented_object_handle . id != ' input ' :

1641 structure_handle .
represented_object_handle . output_nodes [0] = structure_handle

1642 i f (con [3] != ' c on t r o l ' and con [2] != ' reg '
and con [2] != ' input ') :

1643 connect_chi ldren (structure_handle , con
[4] , node . i 2)

1644 e l i f (con [2] == ' input ') :
1645 connect_chi ldren (structure_handle , con

[4] , con [5])
1646

1647

1648

1649 #st ru c tu r e t r e e c l a s s
1650 c l a s s s t r u c tu r e :
1651 structure_type = ' '
1652 s t ru c tu r e_connec t i on_cha rac t e r i s t i c = ' '
1653 id = ' s t r u c tu r e '
1654 de f __init__(s e l f , parent , represented_object_handle , i 1) :
1655 s e l f . parent = parent
1656 s e l f . c h i l d r en = []
1657 s e l f . represented_object_handle =

represented_object_handle
1658 s e l f . i 1 = i 1
1659 s e l f . powerStructure = None
1660 de f add_child (s e l f , c h i l d) :
1661 i f c h i l d . represented_object_handle == s e l f .

represented_object_handle :
1662 r e turn Fal se
1663 f o r c in s e l f . c h i l d r en :
1664 i f c . represented_object_handle == ch i l d .

represented_object_handle :
1665 r e turn Fal se
1666 s e l f . c h i l d r en . append (ch i l d)
1667 r e turn True
1668 de f p r i n t (s e l f) :
1669 i f s e l f . c h i l d r en != [] : p r i n t ("{" , end = ' ')
1670 f o r c h i l d in s e l f . c h i l d r en :
1671 pr in t (c h i l d . represented_object_handle . id+" , " , end =

' ')
1672 ch i l d . p r i n t ()
1673

D
-22

1674 i f s e l f . c h i l d r en != [] : p r i n t ("}" , end = ' ')
1675

1676 de f __repr__(s e l f , l e v e l =0) :
1677 r e t = "\ t "∗ l e v e l+repr (s e l f . represented_object_handle . id)

+"\n"
1678 i f l e v e l < 11 :
1679 f o r c h i l d in s e l f . c h i l d r en :
1680 r e t += ch i l d .__repr__(l e v e l +1)
1681 r e turn r e t
1682

1683 #c a l l s a l l the f unc t i on s in the r i g h t order to c r e a t e the
s t r u c t u r a l r ep r e s en t a t i on

1684 de f run_parse_elab (f i l ename) :
1685 pa r s e_ f i l e (f i l ename)
1686 f o r m in modules :
1687 m. set_connect ion_points ()
1688 process_dependenc ies ()
1689

1690 connect_structure (modules [0])
1691

1692 #need to a l s o count module i n s t a n t i a t i o n s with no content−
assume h in s t

1693 count_gates (modules [0])
1694 pr int_gates ()
1695 r e turn modules , top_level_parents
1696

1697 #count gate s in r ep r e s en t a t i on
1698 de f count_gates (module) :
1699 g l oba l reg_n
1700 g l oba l not_n
1701 g l oba l buf_n
1702 g l oba l and2_n
1703 g l oba l or2_n
1704 g l oba l mux_n
1705 g l oba l se l ect_n
1706 g l oba l sh i f t_n
1707 g l oba l comp_n
1708 g l oba l xor2_n
1709 g l oba l mult_n
1710 g l oba l sub_n
1711 g l oba l b_shift_n
1712 g l oba l add_n
1713 g l oba l shift_add_n
1714 g l oba l div_n
1715 m = module

1716 i f m != None :
1717 f o r r in m. r eg s :
1718 i f r . output_nodes_q [0] != None or r . output_nodes_qn

[0] != None :
1719 i f r . has_parent :
1720 #pr in t (r . name)
1721 reg_n = reg_n +1
1722 #e l s e :
1723 # reg_n = reg_n+1
1724 not_n = not_n + len (m. nots)
1725 buf_n = buf_n + len (m. bufs)
1726 and2_n = and2_n + len (m. and2s)
1727 or2_n = or2_n + len (m. or2s)
1728 mux_n = mux_n + len (m. muxes)
1729 se l ect_n = se lect_n + len (m. s e l e c t s)
1730 sh i f t_n = shi f t_n + len (m. s h i f t e r s)
1731 comp_n = comp_n + len (m. comparators)
1732 xor2_n = xor2_n + len (m. xor2s)
1733 mult_n = mult_n + len (m. mu l t i p l i e r s)
1734 sub_n = sub_n + len (m. sub t r a c t o r s)
1735 b_shift_n = b_shift_n + len (m. b_sh i f t e r s)
1736 add_n = add_n + len (m. adders)
1737 shift_add_n = shift_add_n + len (m. sh i f t_adder s)
1738 div_n = div_n + len (m. d i v i s o r s)
1739 f o r d in module . dependenc ies :
1740 m = d . module_handle
1741 count_gates (m)
1742

1743 #pr in t gate counts
1744 de f pr int_gates () :
1745 pr in t (" r eg s \ t \ t "+ s t r (reg_n))
1746 pr in t ("muxes\ t \ t "+ s t r (mux_n))
1747 pr in t (" nots \ t \ t "+ s t r (not_n))
1748 pr in t (" bufs \ t \ t "+ s t r (buf_n))
1749 pr in t (" a r i thmet i c : \ t "+s t r (mult_n+sub_n+add_n+shift_add_n+

div_n))
1750 pr in t (" l o g i c : \ t \ t "+s t r (and2_n+or2_n+shi f t_n+comp_n+xor2_n+

b_shift_n))
1751

1752 pr in t (" s e l e c t s \ t \ t "+ s t r (se l ect_n))
1753 pr in t ()
1754 pr in t ("Total : \ t \ t "+s t r (reg_n+not_n+buf_n+and2_n+or2_n+mux_n

+se lect_n+shi f t_n+comp_n+xor2_n+mult_n+sub_n+b_shift_n+add_n
+shift_add_n+div_n))

D
-23

E Code implemented in Chapter 7

1 from l i b e r t y . pa r s e r import pa r s e_ l ibe r ty
2 #spec = l i b e r t y . pa r s e r (" l i b e r t y . pa r s e r " ,)
3 from path l i b import Path
4 import argparse
5 import numpy as np
6 import os , sys
7 import random
8 from datet ime import datet ime
9 import j son

10 import re
11

12 path_to_l ib f i l e = sys . argv [1]
13 s t a r t t ime = datet ime . now()
14 path_to_ca l ib ra t i on_f i l e = sys . argv [2]
15 c e l l s = ' '
16 processed_l ibrary_path = " power l ib . txt "
17

18 input_set = {"A1" , " I " , "S" , " I0 " , "TE" , "CI" , "CO" , "A" , "CDN" ,
"D" , "SDN"}

19 output_set = {"Z" , "ZN" , "Q" , "QN" , "ZN"}
20

21 de f set_cells_and_environment (l i b f i l e) :
22 l i b r a r y = par s e_ l ibe r ty (open (l i b f i l e) . read ())
23 #pr in t (" done par s ing l i b e r t y a f t e r "+s t r ((datet ime . now()−

s t a r t t ime) /60)+" minutes ")
24

25 voltage_unit = s t r (l i b r a r y . get (" voltage_unit ")
) . r ep l a c e ("\"" , "")

26 current_unit = s t r (l i b r a r y . get (" current_unit ")
) . r ep l a c e ("\"" , "")

27 leakage_power_unit = s t r (l i b r a r y . get ("
leakage_power_unit ")) . r ep l a c e ("\"" , "")

28 capac i t ive_load_unit = s t r (l i b r a r y . get ("
capac i t ive_load_unit ")) . r ep l a c e ("\"" , "")

29 #what i s un i t o f power in power templates ?
30 #a l s o un i t o f l eakage power
31

32 c e l l s = l i b r a r y . get_groups (" c e l l ")
33 j s o n s t r i n g = json . dumps ([voltage_unit , current_unit ,

leakage_power_unit , capac i t ive_load_unit])
34 fp = open (processed_library_path , "w")
35 fp . wr i t e (j s o n s t r i n g+"\n")
36 f o r c e l l in c e l l s :
37

38 dynamic_current = c e l l . get_groups ("dynamic_current")
39 leakage_power = c e l l . get_groups (" leakage_power")
40 pins = c e l l . get_groups ("pin ")
41 cellName = s t r (c e l l . a rgs [0])
42 occu r ence s_ in_ca l i b ra t i on_f i l e = count_occurence (

cellName)
43 leakagePower = s t r (leakage_power [−1] . get (" value "))
44

45 f o o t p r i n t = c e l l . get (" c e l l_ f o o t p r i n t ")
46

47 #p inL i s t s = []
48 input_pins =[]
49 output_pins = []
50 f o r pin in p ins :
51 #pinL i s t = []
52 pinName = pin . args [0]
53 d i r e c t i o n = pin . get (" d i r e c t i o n ")
54 p in f u c t i on = None
55 i n tPwr_l i s t s = []
56 pin_cap = 0
57 pwrPin = pin . get (" related_power_pin")
58 gndPin = pin . get (" related_ground_pin")
59 i f (d i r e c t i o n == "output") :
60 p in func t i on = pin . get (" func t i on ")
61 e l s e :
62 pin_cap = pin . get (" capac i tance ")
63 #get i n t e r n a l power groups :
64 internal_power_groups = pin . get_groups ("

internal_power ")
65 f o r intPwr in internal_power_groups :

E
-1

66 re lated_pin = intPwr . get (" re lated_pin ")
67 when = intPwr . get ("when")
68 risePwrGroup = intPwr . get_group (" rise_power ")
69 fal lPwrGroup = intPwr . get_group (" fa l l_power ")
70

71 r i s e_arg = risePwrGroup . args [0]
72 f a l l_a rg = fallPwrGroup . args [0]
73

74 i f r i s e_arg != " s c a l a r " :
75 r i s e_ i 1 = risePwrGroup . get_array (" index_1")
76 r i s e_va lue s = risePwrGroup . get_array (" va lue s

")
77 i f f a l l_a rg != " s c a l a r " :
78 f a l l_ i 1 = fallPwrGroup . get_array ("

index_1")
79 f a l l_va l u e s = fallPwrGroup . get_array (" va lue s

")
80 f a l l_va lue s_ i = []
81 r i s e_va lues_i = []
82 f a l l_cap = []
83 r i se_cap = []
84 powersum_list = []
85 i f d i r e c t i o n == "output" :
86 i f f a l l_a rg != " s c a l a r " :
87 fall_cap_np = fallPwrGroup . get_array ("

index_2")
88 f a l l_cap = fall_cap_np . t o l i s t () [0]
89 f o r t imeIndex in range (0 , l en (f a l l_ i 1

[0])) :
90 #pr in t (f a l l_ i 1 [0] [t imeIndex])
91 i f s t r (f a l l_ i 1 [0] [t imeIndex]) == "

0 .46 " :
92 f a l l_va lue s_ i = f a l l_va l u e s [

t imeIndex]
93 break
94

95 f a l l_va lue s_ i = fa l l_va lue s_ i . t o l i s t ()
96 i f r i s e_arg != " s c a l a r " :
97 rise_cap_np = risePwrGroup . get_array ("

index_2")
98 r i se_cap = rise_cap_np . t o l i s t () [0]
99 f o r t imeIndex in range (0 , l en (r i s e_ i 1

[0])) :
100 #pr in t (r i s e_ i 1 [0] [t imeIndex])

101 i f s t r (r i s e_ i 1 [0] [t imeIndex]) == "
0 .46 " :

102 r i s e_va lues_i = r i s e_va lue s [
t imeIndex]

103 break
104

105 r i s e_va lues_i = r i se_va lues_i . t o l i s t ()
106 i f r i s e_arg != ' s c a l a r ' and f a l l_a rg != '

s c a l a r ' :
107 powersum_list = sum_list (r i se_values_i ,

f a l l_va lue s_ i)
108 e l i f r i s e_arg == ' s c a l a r ' :
109 powersum_list = fa l l_va lue s_ i
110 e l i f f a l l_a rg == ' s c a l a r ' :
111 powersum_list = r i s e_va lues_i
112 e l s e :
113 #both s c a l a r
114 powersum_list = [f l o a t (0)]
115 e l i f d i r e c t i o n == " input " :
116 i f r i s e_arg != " s c a l a r " :
117 f o r t imeIndex in range (0 , l en (r i s e_ i 1

[0])) :
118 #pr in t (r i s e_ i 1 [0] [t imeIndex])
119 i f s t r (r i s e_ i 1 [0] [t imeIndex]) == "

0 .46 " :
120 r i s e_va lues_i = r i s e_va lue s [0] [

t imeIndex]
121 break
122 r i s e_va lues_i = [f l o a t (r i s e_va lues_i)]
123 i f f a l l_a rg != " s c a l a r " :
124 f o r t imeIndex in range (0 , l en (f a l l_ i 1

[0])) :
125 #pr in t (f a l l_ i 1 [0] [t imeIndex])
126 i f s t r (f a l l_ i 1 [0] [t imeIndex]) == "

0 .46 " :
127 f a l l_va lue s_ i = f a l l_va l u e s [0] [

t imeIndex]
128 break
129 f a l l_va lue s_ i = [f l o a t (f a l l_va lue s_ i)]
130 i f r i s e_arg != ' s c a l a r ' and f a l l_a rg != '

s c a l a r ' :
131 powersum_list = sum_list (

r i se_values_i , f a l l_va lue s_ i)
132 e l i f r i s e_arg == ' s c a l a r ' :
133 powersum_list = fa l l_va lue s_ i

E
-2

134 e l i f f a l l_a rg == ' s c a l a r ' :
135 powersum_list = r i s e_va lues_i
136 e l s e :
137 #both s c a l a r
138 powersum_list = [f l o a t (0)]
139

140

141 re lated_pin = s t r (re lated_pin) . r ep l a c e ("\"" , "")
142 when = s t r (when) . r ep l a c e ("\"" , "")
143 #make one f o r s c a l a r as we l l so not that many

empty l i s t s ?
144 i f (d i r e c t i o n == "output" and (re lated_pin in

input_set)) :
145 in tPwr_l i s t = [re lated_pin , s t r (when) .

r ep l a c e ("\"" , "") , [r ise_cap , powersum_list]] #[rise_cap ,
r i s e_va lues_i] , [fa l l_cap , f a l l_va lue s_ i]]

146 i n tPwr_l i s t s . append (intPwr_l i s t)
147 #inputs do not have r e l a t e d pins , remove them

from l i s t ?
148 e l i f (d i r e c t i o n == " input ") :
149 in tPwr_l i s t = powersum_list #[re lated_pin ,

s t r (when) . r ep l a c e ("\"" ,"") , powersum_list]# r i se_values_i ,
f a l l_va lue s_ i]

150 i n tPwr_l i s t s . append (intPwr_l i s t)
151

152 i f d i r e c t i o n == "output" : #and (s t r (pinName) in
output_set) :

153 output_pins . append ([s t r (pinName) , s t r (d i r e c t i o n)
. r ep l a c e ("\"" , "") , s t r (p in func t i on) . r ep l a c e ("\"" , "") , s t r (
pwrPin) . r ep l a c e ("\"" , "") , s t r (gndPin) . r ep l a c e ("\"" , "") ,
in tPwr_l i s t s])

154 e l s e :# (s t r (pinName) in input_set) :
155 input_pins . append ([s t r (pinName) , s t r (d i r e c t i o n) .

r ep l a c e ("\"" , "") , s t r (pin_cap) , s t r (pwrPin) . r ep l a c e ("\"" , "")
, s t r (gndPin) . r ep l a c e ("\"" , "") , in tPwr_l i s t s])

156 #pr in t (p i nL i s t s)
157 j s o n s t r i n g = json . dumps ([s t r (cellName) , s t r (f o o t p r i n t) .

r ep l a c e ("\"" , "") , leakagePower , o ccurence s_ in_ca l ib ra t i on_f i l e
, [input_pins , output_pins]] , s epa ra t o r s=(' , ' , ' : '))

158 fp . wr i t e (j s o n s t r i n g+"\n")
159

160 #make j son l i n e with dumps
161 fp . c l o s e ()
162 pr in t ("done ex t r a c t i n g data a f t e r "+s t r ((datet ime . now()−

s t a r t t ime) /60)+" minutes ")

163

164 de f g e t_c e l l s (f i l ename) :
165 #c e l l L i b = c e l l_ l i b r a r y ()
166 c e l l _ l i s t = []
167 #open f i l e
168 #read f i l e l i n e f o r l i n e
169 with open (f i l ename , ' r ') as s v f i l e :
170 l i n e = s v f i l e . r e ad l i n e ()
171 l inenum = 1
172 whi le l i n e :
173 #json loads on l i n e to get a l l v a r i a b l e s
174 decoded_ce l l_l ine = j son . l oads (l i n e)
175 c e l l _ l i s t . append (decoded_ce l l_l ine)
176

177 l i n e = s v f i l e . r e ad l i n e ()
178 r e turn c e l l _ l i s t
179

180 #se t_c e l l s ()
181 de f sum_list (l1 , l 2) :
182 r e t u r n l i s t = []
183 i f l en (l 1) == len (l 2) :
184 f o r i in range (0 , l en (l 1)) :
185 r e t u r n l i s t . append (f l o a t (l 2 [i])+f l o a t (l 1 [i]))
186 e l s e :
187 pr in t (" t ry ing to sum l i s t s o f d i f f e r e n t l ength ")
188 r e turn r e t u r n l i s t
189

190 #so r t c e l l s in regs , mux and l o g i c ?
191 de f s o r t_ c e l l s (processed_l ibrary_path) :
192 c e l l s = ge t_ce l l s (processed_l ibrary_path)
193 ce l l_environment = c e l l s . pop (0)
194 c e l l _ l i s t = []
195 c e l l L i b = c e l l_ l i b r a r y ()
196 f o r c in c e l l s :
197 one_ce l l = c e l l (c , c e l l L i b)
198 c e l l _ l i s t . append (one_ce l l)
199 c e l l L i b . set_group_weights ()
200

201 #make groups handl ing select_op , add_op and comp_op
202 adder = ce l l_group (['add_op '] , ' adder ')
203 c e l l L i b . combinat ion_ce l l s . append (adder)
204 comp = cel l_group (['comp_op '] , 'comp ')
205 c e l l L i b . combinat ion_ce l l s . append (comp)
206

207

E
-3

208 mult = ce l l_group (['mult_op '] , ' mult ')
209 c e l l L i b . combinat ion_ce l l s . append (mult)
210 #c e l l L i b . p r i n t_ava i l ab l e_ce l l s ()
211 r e turn c e l l L i b
212

213 c l a s s c e l l :
214 f o o t p r i n t = ' '
215 name = ' '
216 leakage_power = 0
217 #synthe t i c_gate_ l i s t = [] # l i t s t conta in ing equ iva l en t

s yn th e t i c gate l i s t
218 de f __init__(s e l f , d e f_ l i s t , c e l l _ l i b) :
219 s e l f . s yn the t i c_gate_ l i s t = []
220 s e l f . f o o t p r i n t = d e f_ l i s t [1]
221 s e l f . d e f_ l i s t = d e f_ l i s t
222 s e l f . name = de f_ l i s t [0]
223 s e l f . leakage_power = de f_ l i s t [2]
224 s e l f . ca l ib ra t i on_count = de f_ l i s t [3]
225 s e l f . p i n_ l i s t = d e f_ l i s t [4]
226 s e l f . input_pins = de f_ l i s t [4] [0]
227 s e l f . output_pins = de f_ l i s t [4] [1]
228 s e l f . N_inputs = len (s e l f . input_pins)
229 s e l f . N_outputs = len (s e l f . output_pins)
230 #look through d i c t and s e t syn gate sequence and name o f

c e l l .
231 #d i c t corresponds to # inputs
232

233 #need to append to c o r r e c t l i s t in c e l l_ l i b
234 #check i f mux, check i f reg , e l s e , check N_inputs
235 match = False
236 f o r key , l in rx_dict_reg_ce l l s . i tems () :
237 #look f o r name match among r e g i s t e r s
238 match = l [0] . s earch (s e l f . name)
239 i f match :
240 s e l f . s yn the t i c_gate_ l i s t = l [1]
241 #look through l i s t in c e l l l i b f o r ce l l_group

with matching key ,
242 group = c e l l_ l i b . f ind_cel l_group (c e l l_ l i b . regs ,

key)
243 i f group == None :
244 # make new c e l l group
245 group = cel l_group (s e l f . synthet i c_gate_l i s t ,

key)
246 #append c e l l to l i s t in group
247 group . append_cel l (s e l f)

248 #append c e l l group to l i s t in l i b r a r y
249 c e l l_ l i b . r eg s . append (group)
250 e l s e :
251 #e l s e append c e l l to l i s t in ce l l_group
252 group . append_cel l (s e l f)
253 break
254 i f not match :
255 f o r key , l in rx_dict_mux_cells . i tems () :
256 #look f o r name match among mu l t i p l e x e r s
257 match = l [0] . s earch (s e l f . name)
258 i f match :
259 s e l f . s yn the t i c_gate_ l i s t = l [1]
260 group = c e l l_ l i b . f ind_cel l_group (c e l l_ l i b .

muxes , key)
261 i f group == None :
262 # make new c e l l group
263 group = ce l l_group (s e l f .

synthet i c_gate_l i s t , key)
264 #append c e l l to l i s t in group
265 group . append_cel l (s e l f)
266 #append c e l l group to l i s t in l i b r a r y
267 c e l l_ l i b . muxes . append (group)
268 e l s e :
269 #e l s e append c e l l to l i s t in ce l l_group
270 group . append_cel l (s e l f)
271 break
272 i f not match :
273 f o r key , l in rx_dic t_se l_ce l l s . i tems () :
274 #look f o r name match among mu l t i p l e x e r s
275 match = l [0] . s earch (s e l f . name)
276 i f match :
277 s e l f . s yn the t i c_gate_ l i s t = l [1]
278 group = c e l l_ l i b . f ind_cel l_group (c e l l_ l i b .

s e l e c t s , key)
279 i f group == None :
280 # make new c e l l group
281 group = ce l l_group (s e l f .

synthet i c_gate_l i s t , key)
282 #append c e l l to l i s t in group
283 group . append_cel l (s e l f)
284 #append c e l l group to l i s t in l i b r a r y
285 c e l l_ l i b . s e l e c t s . append (group)
286 e l s e :
287 #e l s e append c e l l to l i s t in ce l l_group
288 group . append_cel l (s e l f)

E
-4

289 break
290 #f i r s t look through mux d i c t and reg d i c t f o r matches ,

i f none :
291 i f not match :
292 d i c t i ona ry = get_dict_N (s e l f . N_inputs)
293 f o r key , l in d i c t i ona ry . i tems () :
294 match = l [0] . s earch (s e l f . name)
295 i f match :
296 #found regex , s e t l i s t and break
297 s e l f . s yn the t i c_gate_ l i s t = l [1]
298 l = c e l l_ l i b . g e t_ l i s t (s e l f . N_inputs)
299 group = c e l l_ l i b . f ind_cel l_group (l , key)
300 i f group == None :
301 # make new c e l l group
302 group = cel l_group (s e l f .

synthet i c_gate_l i s t , key)
303 #append c e l l to l i s t in group
304 group . append_cel l (s e l f)
305 #append c e l l group to l i s t in l i b r a r y
306 l . append (group)
307 e l s e :
308 #e l s e append c e l l to l i s t in ce l l_group
309 group . append_cel l (s e l f)
310 break
311

312 #group toge the r a l l c e l l s with equ iva l en t f u n c t i o n a l i t y
313 #i f no ce l l_group matching "matching_key" i s found , make new

match group
314 #put c e l l groups in l i b r a r y in s t ead o f c e l l s
315 c l a s s ce l l_group :
316 matching_key = ' '
317 de f __init__(s e l f , sequence , matching_key) :
318 s e l f . matching_key = matching_key
319 s e l f . s yn the t i c_gate_ l i s t = sequence
320 s e l f . c e l l s = []
321 s e l f . c e l l c o un t s = []
322 s e l f . we ights = []
323 de f append_cel l (s e l f , c e l l) :
324 #N = count_occurence (c e l l . name)
325 s e l f . c e l l c o un t s . append (c e l l . ca l ib ra t i on_count)
326 s e l f . c e l l s . append (c e l l)
327 #pr in t ("Appended c e l l "+ c e l l . name)
328 #pr in t (" Occurences : "+s t r (N))
329 de f get_weights (s e l f) :
330 total_count = 0

331 f o r i in s e l f . c e l l c o un t s :
332 total_count = total_count +i
333 f o r i in range (0 , l en (s e l f . c e l l c o un t s)) :
334 count = s e l f . c e l l c o un t s [i]
335 i f tota l_count > 0 :
336 s e l f . we ights . append (round (count/ total_count , 2))
337 e l s e :
338 s e l f . we ights . append (round (1/ l en (s e l f . c e l l c o un t s)

, 2))
339 f o r c in s e l f . c e l l s :
340 pr in t (c . name+" , " , end= ' ')
341 pr in t ()
342 pr in t (s e l f . we ights)
343

344

345 de f get_dict_N (N) :
346 i f N == 1 :
347 r e turn rx_dict_1_cel l s
348 e l i f N == 2 :
349 r e turn rx_dict_2_cel l s
350 e l i f N == 3 :
351 r e turn rx_dict_3_cel l s
352 e l i f N == 4 :
353 r e turn rx_dict_4_cel l s
354 e l i f N == 5 :
355 r e turn rx_dict_5_cel l s
356 e l s e :
357 r e turn rx_dict_6_cel l s
358

359

360 rx_dict_1_cel l s = {
361 ' not ' : [r e . compi le (r "INV") , [' gtech_not ']] ,
362 }
363 rx_dict_2_cel l s = {
364 ' and2 ' : [r e . compi le (r "AN2X?D") , [' gtech_and2 ']] ,
365 ' ind2 ' : [r e . compi le (r "IND2D") , [' gtech_not ' , '

gtech_and2 ' , ' gtech_not ']] ,
366 'nand2 ' : [r e . compi le (r "ND2D") , [' gtech_and2 ' , '

gtech_not ']] ,
367 ' nor2 ' : [r e . compi le (r "^NR2X?D") , [' gtech_or2 ' , ' gtech_not

']] ,
368 ' xnor2 ' : [r e . compi le (r "XNR2") , [' gtech_xor2 ' , '

gtech_not ']] ,
369 ' or2 ' : [r e . compi le (r "^OR2X?D") , [' gtech_or2 ']] ,
370 ' xor2 ' : [r e . compi le (r "^XOR2") , [' gtech_xor2 ']] ,

E
-5

371 ' i no r2 ' : [r e . compi le (r "INR2X?D") , [' gtech_not ' , ' gtech_or2 '
, ' gtech_not ']] ,

372 ' andor22 ' : [r e . compi le (r "AO22D") , [' se lect_op ']] , #
dup l i ca t ed here to be found when l i s t are shor t

373 }
374 rx_dict_3_cel l s = {
375 ' and3 ' : [r e . compi le (r "AN3X?D") , [' gtech_and2 ' , '

gtech_and2 ']] ,
376 'nand3 ' : [r e . compi le (r "^G?ND3D") , [' gtech_and2 ' , '

gtech_and2 ' , ' gtech_not ']] ,
377 ' inand3 ' : [r e . compi le (r "^IND3D") , [' gtech_not ' , '

gtech_and2 ' , ' gtech_and2 ' , ' gtech_not ']] ,
378 ' nor3 ' : [r e . compi le (r "^G?NR3") , [' gtech_or2 ' , '

gtech_or2 ' , ' gtech_not ']] ,
379 ' i no r3 ' : [r e . compi le (r "^INR3") , [' gtech_not ' , '

gtech_or2 ' , ' gtech_or2 ' , ' gtech_not ']] ,
380 ' i ao21 ' : [r e . compi le (r "^IAO21") , [' gtech_or2 ' , '

gtech_not ' , ' gtech_or2 ' , ' gtech_not ']] ,
381 ' or3 ' : [r e . compi le (r "^OR3X?D") , [' gtech_or2 ' , '

gtech_or2 ']] ,
382 ' xor3 ' : [r e . compi le (r "^XOR3") , [' gtech_xor2 ' , '

gtech_xor2 ']] ,
383 ' andor i21 ' : [r e . compi le (r "^G?AOI21D") , [' gtech_and2 ' , '

gtech_or2 ' , ' gtech_not ']] ,
384 ' orand21 ' : [r e . compi le (r "OA21") , [' gtech_or2 ' , '

gtech_and2 ']] ,
385 ' xnor3 ' : [r e . compi le (r "XNR3") , [' gtech_xor2 ' , '

gtech_xor2 ' , ' gtech_not ']] ,
386 ' iorand21 ' : [r e . compi le (r "IOA21D") , [' gtech_and ' , '

gtech_not ' , ' gtech_and ' , ' gtech_not ']] ,
387 ' andor i222 ' : [r e . compi le (r "MAOI222") , [' gtech_and2 ' , '

gtech_or2 ' , ' gtech_or2 ' , ' gtech_not ']]
388 }
389 rx_dict_4_cel l s = {
390 ' and4 ' : [r e . compi le (r "AN4X?D") , [' gtech_and2 ' , '

gtech_and2 ' , ' gtech_and2 ']] ,
391 ' nor4 ' : [r e . compi le (r "^NR4") , [' gtech_or2 ' , '

gtech_or2 ' , ' gtech_or2 ' , ' gtech_not ']] ,
392 'nand4 ' : [r e . compi le (r "^ND4D") , [' gtech_and2 ' , '

gtech_and2 ' , ' gtech_and2 ' , ' gtech_not ']] ,
393 ' xnor4 ' : [r e . compi le (r "XNR4") , [' gtech_xor2 ' , '

gtech_xor2 ' , ' gtech_xor2 ' , ' gtech_not ']] ,
394 ' xor4 ' : [r e . compi le (r "^XOR4") , [' gtech_xor2 ' , '

gtech_xor2 ' , ' gtech_xor2 ']] ,

395 ' orand211 ' : [r e . compi le (r "OA211") , [' gtech_or2 ' , '
gtech_and2 ' , ' gtech_and2 ']] ,

396 ' or4 ' : [r e . compi le (r "^OR4X?D") , [' gtech_or2 ' , '
gtech_or2 ' , ' gtech_or2 ']] ,

397 ' i i n o r 4 ' : [r e . compi le (r "IINR4") , [' gtech_not ' , '
gtech_or2 ' , ' gtech_or ' , ' gtech_or ' , ' gtech_not ']] ,

398 ' andor211 ' : [r e . compi le (r "AO211D") , [' gtech_and2 ' , '
gtech_or2 ' , ' gtech_or2 ']] ,

399 # i d e n t i c a l to 21 ' iandor22 ' : [r e . compi le (r "IAO22D") , ['
gtech_or2 ' , ' gtech_not ' , ' gtech_or2 ' , ' gtech_not ']] ,

400 # i d e n t i c a l to 21 ' orandi22 ' : [r e . compi le (r "OAI22D") , ['
gtech_and2 ' , ' gtech_not ' , ' gtech_and2 ' , ' gtech_not ']] ,

401

402 # ' andor22 ' : [r e . compi le (r "AO22D") , [' se lect_op ']] ,
403 ' andor i31 ' : [r e . compi le (r "AOI31D") , [' gtech_and2 ' , '

gtech_and2 ' , ' gtech_or2 ' , ' gtech_not ']] ,
404 ' andor31 ' : [r e . compi le (r "AO31D") , [' gtech_and2 ' , '

gtech_and2 ' , ' gtech_or2 ']] ,
405 ' ind4 ' : [r e . compi le (r "IND4D") , [' gtech_not ' , '

gtech_and2 ' , ' gtech_and2 ' , ' gtech_not ']]
406 }
407 rx_dict_5_cel l s = {
408 ' and5 ' : [r e . compi le (r "^G?AN5D") , [' gtech_and2 ' , '

gtech_and2 ' , ' gtech_and2 ' , ' gtech_and2 ']] ,
409 ' nor5 ' : [r e . compi le (r "^G?NR5") , [' gtech_or2 ' , '

gtech_or2 ' , ' gtech_or2 ' , ' gtech_or2 ' , ' gtech_not ']] ,
410 ' or5 ' : [r e . compi le (r "^OR5") , [' gtech_or2 ' , '

gtech_or2 ' , ' gtech_or2 ' , ' gtech_or2 ']] ,
411 ' xor5 ' : [r e . compi le (r "XOR5D") , [' gtech_xor2 ' , '

gtech_xor2 ' , ' gtech_xor2 ' , ' gtech_xor2 ']] ,
412 ' xnor5 ' : [r e . compi le (r "XNR5D") , [' gtech_xor2 ' , '

gtech_xor2 ' , ' gtech_xor2 ' , ' gtech_xor2 ' , ' gtech_not ']] ,
413 'nand5 ' : [r e . compi le (r "ND5D") , [' gtech_and2 ' , '

gtech_and2 ' , ' gtech_and2 ' , ' gtech_and2 ' , ' gtech_not ']] ,
414 ' oa221 ' : [r e . compi le (r "OA221") , [' gtech_or2 ' , '

gtech_and2 ' , ' gtech_and2 ']] ,
415 ' ao221 ' : [r e . compi le (r "AO221") , [' gtech_and2 ' , '

gtech_or2 ' , ' gtech_or ']] ,
416 }
417 rx_dict_6_cel l s = {
418 ' and6 ' : [r e . compi le (r "AN6D") , [' gtech_and2 ' , '

gtech_and2 ' , ' gtech_and2 ' , ' gtech_and2 ' , ' gtech_and2 ']] ,
419 'nand6 ' : [r e . compi le (r "ND6D") , [' gtech_and2 ' , '

gtech_and2 ' , ' gtech_and2 ' , ' gtech_and2 ' , ' gtech_and2 ' , '
gtech_not ']] ,

E
-6

420 ' xnor6 ' : [r e . compi le (r "XNR6") , [' gtech_xor2 ' , '
gtech_xor2 ' , ' gtech_xor2 ' , ' gtech_xor2 ' , ' gtech_xor2 ' , '
gtech_not ']] ,

421 ' nor6 ' : [r e . compi le (r "^NR6") , [' gtech_or2 ' , '
gtech_or2 ' , ' gtech_or2 ' , ' gtech_or2 ' , ' gtech_or2 ' , ' gtech_not '
]] ,

422 ' or6 ' : [r e . compi le (r "^OR6") , [' gtech_or2 ' , '
gtech_or2 ' , ' gtech_or2 ' , ' gtech_or2 ' , ' gtech_or2 ']] ,

423 ' xor6 ' : [r e . compi le (r "XOR6") , [' gtech_xor2 ' , '
gtech_xor2 ' , ' gtech_xor2 ' , ' gtech_xor2 ' , ' gtech_xor2 ']] ,

424 }
425 rx_dict_reg_ce l l s = {
426 ' reg ' : [r e . compi le (r "DF[C| S |Q|N] [N|D|C] ") , [' reg ']] ,
427 ' reg ' : [r e . compi le (r " (L [H|N]Q) ") , [' reg ']]
428 }
429 rx_dict_mux_cells = {
430 'mux2n ' : [r e . compi le (r "MUX2N") , ['mux_op ' , ' gtech_not ']] ,
431 'mux2 ' : [r e . compi le (r "MUX2") , ['mux_op ']]
432 }
433 rx_dic t_se l_ce l l s = {
434 ' andor22 ' : [r e . compi le (r "AO22D") , [' se lect_op ']] , #

dup l i ca t ed here to be found when l i s t are shor t
435 }
436

437

438 c l a s s c e l l_ l i b r a r y :
439 de f __init__(s e l f) :
440 s e l f . c e l l s_6 = []
441 s e l f . c e l l s_5 = []
442 s e l f . c e l l s_4 = []
443 s e l f . c e l l s_3 = []
444 s e l f . c e l l s_2 = []
445 s e l f . c e l l s_1 = []
446 s e l f . muxes = []
447 s e l f . r e g s = []
448 s e l f . s e l e c t s = []
449 s e l f . combinat ion_ce l l s = []
450 s e l f . g roup_l i s t s = [s e l f . ce l l s_6 , s e l f . ce l l s_5 , s e l f .

ce l l s_4 , s e l f . ce l l s_3 , s e l f . ce l l s_2 , s e l f . ce l l s_1 , s e l f .
muxes , s e l f . r e g s]

451 de f g e t_ l i s t (s e l f , N) :
452 l i s t_d i c t = {
453 1 : s e l f . ce l l s_1 ,
454 2 : s e l f . ce l l s_2 ,
455 3 : s e l f . ce l l s_3 ,

456 4 : s e l f . ce l l s_4 ,
457 5 : s e l f . ce l l s_5 ,
458 6 : s e l f . c e l l s_6
459 }
460 l = l i s t_d i c t . get (N, lambda : None)
461 i f l == None :
462 pr in t (" could not get l i s t , no cor re spond ing N")
463 r e turn l
464 e l s e :
465 r e turn l
466 de f f ind_cel l_group (s e l f , l , group_key) :
467 f o r g in l :
468 i f g . matching_key == group_key :
469 #found , re turn group
470 r e turn g
471 #not found , re turn none
472 #i f none make new group out s id e func t i on
473 r e turn None
474 de f set_group_weights (s e l f) :
475 f o r l in s e l f . g roup_l i s t s :
476 f o r g in l :
477 g . get_weights ()
478 de f p r i n t_ava i l ab l e_c e l l s (s e l f) :
479 pr in t ("6 input ")
480 f o r c in s e l f . c e l l s_6 :
481 pr in t ("\ t "+c . matching_key)
482 pr in t ("5 input ")
483 f o r c in s e l f . c e l l s_5 :
484 pr in t ("\ t "+c . matching_key)
485 pr in t ("4 input ")
486 f o r c in s e l f . c e l l s_4 :
487 pr in t ("\ t "+c . matching_key)
488 pr in t ("3 input ")
489 f o r c in s e l f . c e l l s_3 :
490 pr in t ("\ t "+c . matching_key)
491 pr in t ("2 input ")
492 f o r c in s e l f . c e l l s_2 :
493 pr in t ("\ t "+c . matching_key)
494 pr in t ("1 input ")
495 f o r c in s e l f . c e l l s_1 :
496 pr in t ("\ t "+c . matching_key)
497 pr in t (" r e g i s t e r s ")
498 f o r c in s e l f . r eg s :
499 pr in t ("\ t "+c . matching_key)
500 pr in t ("muxes")

E
-7

501 f o r c in s e l f . muxes :
502 pr in t ("\ t "+c . matching_key)
503

504 # f ind c e l l group in l i s t o f c e l l groups
505 de f f i nd_c e l l (key , l) :
506 f o r ce l l_group in l :
507 i f key == cel l_group . matching_key :
508 r e turn ce l l_group
509 r e turn None
510

511 # count occurence o f a word in a f i l e
512 de f count_occurence (word) :
513 path = path_to_ca l ib ra t i on_f i l e
514 fp = open (path , " r ")
515 f = fp . read ()
516 r e turn f . count (word)
517

518

519 #make l i s t o f s yn th e t i c c e l l s i n to l i s t o f c e l l s from c e l l
l i b r a r y

520 de f t r an s f o rm_l i s t (c e l l_ l i b , to_transform) :
521 i f l en (to_transform) < 6 :
522 i = l en (to_transform)+1#6
523 e l s e :
524 i = 6
525 #make l i s t o f index s t ruc t s , s o r t l i s t , then go through l i s t

and append
526 ind = []
527 t emp l i s t = l i s t (to_transform)
528 #look f o r r eg s
529 r eg indexe s = find_sequence (templ i s t , c e l l_ l i b . r eg s [0])
530 i f r eg indexe s != [] :
531 f o r r in r eg indexe s :
532 ind . append (r)
533 t emp l i s t [r [0]] = 0
534 s e l i n d e x e s = find_sequence (templ i s t , c e l l_ l i b . s e l e c t s [0])
535 i f s e l i n d e x e s != [] :
536 f o r r in s e l i n d e x e s :
537 ind . append (r)
538 t emp l i s t [r [0]] = 0
539

540

541 muxindexes = find_sequence (templ i s t , c e l l_ l i b . muxes [0])
542 #fo r mux in muxindexes :
543 i f muxindexes != [] :

544 f o r m in muxindexes :
545 ind . append (m)
546 t emp l i s t [m[0]] = 0
547 l = c e l l_ l i b . combinat ion_ce l l s
548 f o r element in l :
549 i ndexes = find_sequence (templ i s t , e lement)
550 i f indexes != [] :
551 f o r k in indexes :
552 ind . append (k)
553

554 #pr in t ("Found "+s t r (element . syn the t i c_gate_ l i s t)
+" in "+s t r (to_transform))

555 f o r i i in indexes :
556 f o r r in range (i i [0] , i i [1]) :
557 #pr in t (r)
558 #temp l i s t . pop (r)
559 t emp l i s t [r] = 0
560 #look through l i s t s l ook ing f o r matches to r ep l a c e sequences
561 whi le i != 0 :
562 l = c e l l_ l i b . g e t_ l i s t (i)
563 #pr in t (" c a l l e d c e l l_ l i b . g e t_ l i s t "+s t r (i))
564 #go through d i c t with that many inputs :
565 #need to r e l a t e t h i s l i s t to c e l l group somehow as we l l

to have power i n f o a v a i l a b l e
566 f o r element in l :
567 #pr in t (" l ook ing f o r "+s t r (element .

syn the t i c_gate_ l i s t)+" in "+s t r (to_transform))
568 i ndexes = find_sequence (templ i s t , e lement) #need

element as we l l in l i s t , not only indexes
569

570 i f indexes != [] :
571 f o r k in indexes :
572 ind . append (k)
573 #pr in t ("Found "+s t r (element . syn the t i c_gate_ l i s t)

+" in "+s t r (to_transform))
574 f o r i i in indexes :
575 f o r r in range (i i [0] , i i [1]) :
576

577 t emp l i s t [r] = 0
578

579 i = i−1
580 #rep l a c e found indexes when they are found so they cannot be

found again
581 ind . s o r t ()
582 e l emen t l i s t = []

E
-8

583

584 f o r indexelement in ind :
585

586 e l emen t l i s t . append (indexelement [2])
587

588 r e turn e l emen t l i s t
589

590 # retu rn s none i f indexes not in l i s t or l i s t o f (s ta r t index ,
s top index) f o r each occurence

591 # a l s o r e tu rn s the index (es) i t found
592 de f f ind_sequence (to_find , element) :

593 l = element . syn the t i c_gate_ l i s t
594 i ndexes = []
595 temp = l i s t (to_find)
596

597 f o r i in range (l en (temp)) :
598

599 i f temp [i : i+l en (l)] == l :
600 temp [i : i+l en (l)] = [0] ∗ l en (l)
601

602 i ndexes . append ((i , i+l en (l) , e lement))
603 r e turn indexes

E
-9

F Code implemented in Chapter 8

1 import parse_elab
2 import l iber ty_data
3 import sys
4

5 f i l ename = sys . argv [1]
6

7

8

9

10 #l i s t o f a l l c e l l s from the c e l l l i b r a r y
11 c e l l L i b = l iber ty_data . s o r t_ c e l l s (l ibe r ty_data .

processed_l ibrary_path)
12

13

14 powerStructures = []
15

16 #i t e r a t e through s t r u c t u r e s
17 de f go_through_structures () :
18 modules , top_structures = parse_elab . run_parse_elab (f i l ename

)
19 f o r s in top_structures :
20

21 p = power_structure (s)
22 p . parent = None
23 p . name = s . represented_object_handle . name
24 powerStructures . append (p)
25

26 e l emen t l i s t = l iber ty_data . t r an s f o rm_l i s t (c e l l L i b , [s .
represented_object_handle . id])

27 p . c e l l _ l i b _ l i s t = e l emen t l i s t
28 p . s t ru c tu r a l_r ep_ l i s t = [s]
29

30 s r ep r = repr (s)
31 pr in t (s . represented_object_handle . name)
32 pr in t (s r ep r)
33 count_powerStructure (p)
34 l i s ts_from_top (s , p)

35 f o r p in powerStructures :
36

37 pr in t (p . name)
38 #v = value ()
39 #p . p r i n t (v , 0)
40 #pr in t ()
41

42 r = repr (p)
43 pr in t (r)
44 print_powercount ()
45

46 de f p r i n t_s tu f f (top_structures) :
47 f o r s in top_structures :
48 pr in t ("Top s t r u c tu r e : ")
49 pr in t (s . represented_object_handle . name)
50 pr in t ("Chi ldren : ")
51 f o r c in s . c h i l d r en :
52 pr in t ("\ t "+c . represented_object_handle . name)
53 #pr in t ("\ t l v l 3 : ")
54 f o r gc in c . c h i l d r en :
55 pr in t ("\ t \ t "+gc . represented_object_handle . name)
56 f o r ggc in gc . ch i l d r en :
57 pr in t ("\ t \ t \ t "+ggc . represented_object_handle

. name)
58

59

60 de f l i sts_from_top (s , power_s) :
61 #pr in t (s . represented_object_handle . name)
62

63 l = []
64 #whi le s != None :
65 s t = None
66 f o r c in s . c h i l d r en :
67 #s = c
68 #l = []
69 #s t r u c t u r e_ l i s t = []
70 #add_s_list = []

F
-1

71 ##goes through s t r u c tu r e e lements u n t i l fanout
72 #st = add_structure (l , s t r u c tu r e_ l i s t , c , add_s_list)
73 ##pr in t ("\ t " , end= ' ')
74 ##pr in t (l)
75 ##go through c e l l l i s t s compare to l
76 #e l emen t l i s t = l iber ty_data . t r an s f o rm_l i s t (c e l l L i b , l)
77 #make power s t r u c tu r e ob j e c t with s as parent
78 #p = power_structure (s , s t r u c tu r e_ l i s t , e l emen t l i s t)
79 #power_s . ch i l d r en . append (p)
80 i f c . powerStructure == None :
81 l = []
82 s t r u c t u r e_ l i s t = []
83 add_s_list = []
84 #goes through s t r u c tu r e e lements un t i l fanout
85 s t = add_structure (l , s t r u c tu r e_ l i s t , c , add_s_list)
86 #pr in t ("\ t " , end= ' ')
87 #pr in t (l)
88 #go through c e l l l i s t s compare to l
89 e l emen t l i s t = l iber ty_data . t r an s f o rm_l i s t (c e l l L i b , l)
90

91 p = power_structure (power_s)
92 f o r s in s t r u c t u r e_ l i s t :
93 s . powerStructure = p
94 power_s . ch i l d r en . append (p)
95 p . s t ru c tu r a l_r ep_ l i s t = s t r u c t u r e_ l i s t
96 p . c e l l _ l i b _ l i s t = e l emen t l i s t
97 #count_powerStructure (p)
98 #i f output_nodes [0] == None or i s reg
99 i f c . s t ru c tu r e_connec t i on_cha rac t e r i s t i c != ' c on t r o l

' :
100 #i f c . represented_object_handle . output_nodes [0]

!= None :
101 count_powerStructure (p)
102 f o r add_l in add_s_list :
103 #a f t e r fanout , go through ch i l d r en un t i l fanout

. . .
104 #fo r c in s t . c h i l d r en :
105 l i s ts_from_top (add_l , p)
106 e l s e :
107 p = c . powerStructure
108 power_s . ch i l d r en . append (p)
109

110 #fo r e in e l emen t l i s t :
111 # pr in t (e . matching_key)
112 #i f s t != None :

113 #fo r add_l in add_s_list :
114 # #a f t e r fanout , go through ch i l d r en un t i l fanout . . .
115 # #fo r c in s t . c h i l d r en :
116 # lists_from_top (add_l , p)
117

118 de f add_structure (l , s t r u c tu r e_ l i s t , s , s_ l i s t) :
119

120 #look at what rep obj handle i s and change i t i f s e l e c t , add
e tc

121 l . append (s . represented_object_handle . id)
122 s t r u c t u r e_ l i s t . append (s)
123 #pr in t ("\ t"+s . represented_object_handle . name)
124 i f l en (s . c h i l d r en) == 1 and s . ch i l d r en [0] != None :
125 #pr in t (s . represented_object_handle . name)
126 add_structure (l , s t r u c tu r e_ l i s t , s . c h i l d r en [0] , s_ l i s t)
127 e l i f l en (s . c h i l d r en) == 0 :
128 #no ch i l d
129 r e turn None
130 e l s e :
131

132 s_ l i s t . append (s)
133 r e turn s
134

135 #save f i r s t e lements parent , and l a s t e lements ch i ld r en ,
136 #envelop with s t r u c tu r e having o ld ob j e c t s in l i s t and new

ob j e c t s in l i s t
137 c l a s s power_structure :
138 name = ' '
139 countedBool = False
140 de f __init__(s e l f , parent) :
141 s e l f . s t r u c tu r a l_r ep_ l i s t = []
142 s e l f . c e l l _ l i b _ l i s t = []
143 s e l f . c h i l d r en = []
144 s e l f . parent = parent
145 #def p r i n t s t a r t (s e l f) :
146 # fo r c in s e l f . c e l l
147 de f p r i n t (s e l f , depth , s t a r t l v l) :
148

149 #pr in t (s e l f . represented_object_handle . id +", " , end = ' ')
150 #i f s e l f . c h i l d r en != [] : p r i n t ("{" , end = ' ')
151 #pr in t ("{ " , end = ' ')
152 i f s e l f . c e l l _ l i b _ l i s t != [] :
153 pr in t ("{" , end = ' ')
154 depth . i = depth . i+1
155 #i f s e l f . c h i l d r en != [] : p r i n t ("{" , end= ' ')

F
-2

156 f o r c in range (l en (s e l f . c e l l _ l i b _ l i s t)) :
157 i f c+1 == len (s e l f . c e l l _ l i b _ l i s t) :
158 pr in t (s e l f . c e l l _ l i b _ l i s t [c] . matching_key+" " , end

= ' ')
159 i f s e l f . c h i l d r en != [] :
160 depth . i = depth . i+1
161 pr in t ("{" , end = ' ')
162 #e l s e :
163 # i f l a s t c h i l d : p r i n t ("}" , end = ' ')
164 e l s e :
165 pr in t (s e l f . c e l l _ l i b _ l i s t [c] . matching_key+" {" ,

end = ' ')
166 depth . i = depth . i +1
167 #i f s e l f . c e l l _ l i b _ l i s t != [] :
168 # pr in t ("}" , end = ' ')
169

170 #e l i f (l en (s e l f . c h i l d r en))
171 #i f s e l f . c h i l d r en != [] :
172 # pr in t ("{" , end= ' ')
173 #ch i ldbracke t count = len ()
174

175 f o r c h i l d in range (l en (s e l f . c h i l d r en)) :
176 #pr in t (s e l f . represented_object_handle . id +", " , end =

' ')
177 i f c h i l d+1 == len (s e l f . c h i l d r en) :
178 s e l f . c h i l d r en [c h i l d] . p r i n t (depth , depth . i)
179 e l s e :
180 s e l f . c h i l d r en [c h i l d] . p r i n t (depth , depth . i)
181 #i f s e l f . c h i l d r en [c h i l d] . c h i l d r en == [] :
182 # pr in t ("}" , end= ' ')
183 #ch i ldbracke t count = ch i ldbracketcount −1
184 #e l s e :
185 # pr in t (" , " , end= ' ')
186

187 #i f l a s t c h i l d : p r i n t ("}" , end= ' ')
188 #i f s e l f . c h i l d r en == [] : p r i n t ("}" , end= ' ')
189 #i f s e l f . c h i l d r en != [] : p r i n t ("}" , end= ' ')
190 #i f s e l f . c e l l _ l i b _ l i s t != [] and s e l f . c h i l d r en == [] :
191 # pr in t ("}" , end = ' ')
192 # depth . i = depth . i −1
193

194 whi le depth . i != s t a r t l v l :
195 pr in t ("}" , end = ' ')
196 depth . i = depth . i−1
197 #i f s e l f . c h i l d r en != [] : p r i n t ("}" , end= ' ')

198 #i f s e l f . c e l l _ l i b _ l i s t == [] :
199 # pr in t ("}" , end = ' ')
200 #pr in t ()
201 #pr in t ("}" , end = ' ')
202 #fo r c in ch i l d . c e l l _ l i b _ l i s t :
203 # pr in t (c . matching_key+" ," , end = ' ')
204

205 de f __repr__(s e l f , l e v e l =0) :
206 value = ' '
207 f o r v in s e l f . c e l l _ l i b _ l i s t :
208 value = value+v . matching_key+" "
209 r e t = "\ t "∗ l e v e l+repr (va lue)+"\n"
210 i f l e v e l < 11 :
211 f o r c h i l d in s e l f . c h i l d r en :
212 r e t += ch i l d .__repr__(l e v e l +1)
213 r e turn r e t
214 c l a s s va lue :
215 i = 0
216 #i f s e l f . c h i l d r en == [] : p r i n t ("}" , end = ' ')
217

218 nots = 0
219 l o g i c = 0
220 mux = 0
221 arithm = 0
222 comp = 0
223 r eg s = 0
224 de f count_powerStructure (s) :
225 no t s t ru c t = { ' not ' }
226 l o g i c s t r u c t = { ' and5 ' , ' nor5 ' , ' or5 ' , ' xor5 ' , ' xnor5 ' , '

nand5 ' , ' oa221 ' , ' ao221 ' , ' andor22 ' , ' andor i31 ' , ' andor31 ' ,
' ind4 ' , ' and4 ' , ' nor4 ' , 'nand4 ' , ' xnor4 ' , ' xor4 ' , ' orand211 ' , ' or4
' , ' i i n o r 4 ' , ' andor211 ' , ' and3 ' , 'nand3 ' , ' inand3 ' , ' nor3 ' , ' i no r3
' , ' i ao21 ' , ' or3 ' , ' xor3 ' , ' andor i21 ' , ' orand21 ' , ' xnor3 ' , '
iorand21 ' , ' andor i222 ' , ' and2 ' , ' ind2 ' , 'nand2 ' , ' nor2 ' , '
xnor2 ' , ' or2 ' , ' xor2 ' , ' i no r2 ' }

227 r e g s t r u c t = { ' reg ' }
228 muxstruct = { 'mux ' , 'mux2n ' }
229 ar i thmst ruc t = { ' adder ' , ' mult ' }
230 compstruct = { 'comp ' }
231 g l oba l nots
232 g l oba l l o g i c
233 g l oba l mux
234 g l oba l arithm
235 g l oba l comp
236 g l oba l r eg s

F
-3

237 #pr in t (s . c e l l _ l i b _ l i s t)
238 s t r_rep_of f s e t = 0
239 s t r l i s t 2 = []
240 removestruct = { ' input ' , ' output ' , ' gtech_buf ' }
241 i f s . countedBool == False :
242 f o r obj in s . s t r u c tu r a l_r ep_ l i s t :
243 h = obj . represented_object_handle
244 i f h . id in removestruct :
245 pass
246 e l s e :
247 s t r l i s t 2 . append (obj)
248 s . countedBool = True
249 f o r c e l l i n d e x in range (0 , l en (s . c e l l _ l i b _ l i s t)) :
250

251 c e l l = s . c e l l _ l i b _ l i s t [c e l l i n d e x]
252

253 s t r u c tu r e = s t r l i s t 2 [c e l l i n d e x+st r_rep_of f s e t]
254 handle = s t ru c tu r e . represented_object_handle
255

256 handle = s t ru c tu r e . represented_object_handle
257

258 s t r_rep_of f s e t = st r_rep_of f s e t + len (c e l l .
s yn the t i c_gat e_ l i s t)−1

259

260 i f handle . id == ' reg ' :
261

262 i f handle . has_parent :
263 i f c e l l . matching_key in r e g s t r u c t and

c e l l i n d e x < 1 :
264 r eg s = reg s +1
265 pr in t ("added reg ")

266 e l i f handle . id != ' input ' and handle . id != ' output '
and s t r u c tu r e . s t ru c tu r e_connec t i on_cha rac t e r i s t i c != '
c on t r o l ' :

267 i f handle . output_nodes [0] != None :
268 i f c e l l . matching_key in no t s t ru c t :
269 nots = nots+1
270 pr in t ("added not")
271 e l i f c e l l . matching_key in l o g i c s t r u c t :
272 l o g i c = l o g i c+1
273 pr in t ("added l o g i c ")
274 e l i f c e l l . matching_key in muxstruct :
275 mux = mux+1
276 pr in t ("added mux")
277 e l i f c e l l in a r i thmst ruc t :
278 arithm = arithm +1
279 pr in t ("added arithm")
280 e l i f c e l l . matching_key in compstruct :
281 comp = comp+1
282 pr in t ("added comp")
283

284 #need to f i nd a good way to count so not mu l t i p l i e d
s t r u c tu r e . . . make ob j e c t s ?

285 de f print_powercount () :
286 pr in t (" nots : \ t "+s t r (nots))
287 pr in t (" r eg s : \ t "+s t r (r eg s))
288 pr in t (" l o g i c : \ t "+s t r (l o g i c))
289 pr in t ("mux: \ t "+s t r (mux))
290 pr in t (" arithm :\ t "+s t r (arithm))
291 pr in t ("comp :\ t "+s t r (comp))
292 pr in t (" t o t a l : \ t "+s t r (nots+l o g i c+mux+arithm+comp+regs))
293 go_through_structures ()

F
-4

Em
bla Trasti Bygland

Pow
er M

odeling of Com
plex D

esigns

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Embla Trasti Bygland

Power Modeling of Complex Designs

Master’s thesis in Electronics Systems Design and Innovation

Supervisor: Snorre Aunet, Knut Austbø

July 2020

	Abstract
	Sammendrag
	Preface
	Contents
	Glossary
	Acronyms
	Introduction
	Motivation
	Problem description
	Report structure

	Theory
	Terminology
	The ASIC design flow
	CMOS power consumption
	Dynamic power consumption
	Static power consumption

	Process, Voltage and Temperature corners

	Background
	Bottom-up power estimation
	Top-down power estimation
	Fast synthesis power estimation

	Prestudy

	Suggesting a solution
	Structural information
	Cell library information
	The power modeling flow

	Design tools and file formats
	Design elaboration
	Liberty file format
	Power characteristics
	Power related library attributes and groups
	Cell attributes and groups
	Pin attributes and groups

	Test files and modules
	Test modules
	Calibration netlist
	Liberty file
	Project files

	Extracting design structure
	Elaborated SystemVerilog
	Structural representation of a design
	Abstractions made
	Elaborated SystemVerilog parser implementation
	Parsing
	Post-processing
	Register levelised structure trees

	Comparing cell counts
	Structural representation discussion
	Cell counts
	The register-levelised node tree
	Abstractions introduced by generic cell groups
	Registers being optimised away
	Possible optimisations

	Extracting library information
	Relevant power data
	Abstractions
	The difference between fall- and rise power
	The difference between data input pins
	The state-dependency of leakage power

	Cells with same functionality
	Implementation
	Parsing Liberty and storing data
	Putting together a cell library object
	Summary

	Discussion
	Choosing a cell from a group
	Other representations
	On the calibration

	Generating a power model
	Limitations introduced by the structural representation
	Limitations introduced by the cell library representation
	Combining the structural information and the liberty data
	Need for optimisation

	Generic cells with no library equivalent
	The select cell

	Estimating the switching power
	Implementation
	Results
	Discussion
	The quality of the cell mapping
	Consequences of abstractions
	Evaluating the power model
	Improvements to consider
	The accuracy/speed trade-off

	Conclusion
	Future work
	Finishing the power model
	Implementing a power estimation tool

	Technical implementation of the elaborated SystemVerilog parser
	Technical implementation of the liberty parser
	Technical implementation of the power model
	Code implemented in Chapter 6
	Code implemented in Chapter 7
	Code implemented in Chapter 8

