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Sammendrag

Denne masteroppgaven undersøker et talegjenkjenningssystem som trent p̊a en
delvis annotert database innenfor fagomr̊adet talegjenkjenning (ASR). Et dypt
nevralt nettverk (DNN) klassifiserte tilstander som tilhørte individuelle kontekst-
uavhengige fonemer (CI) og kontekstavhengige fonemer (CD). DNN-ene ble brukt
i en lærer-student-metode (T/S). Lærermodellen og studentmodellen ble trent p̊a
to separate DNN. De akustiske modellene ble trent med MFCC og fMLLR in-
formasjonsvektorer. I denne oppgaven ble nøyaktighetsraten til riktig klassifiserte
fonemstilstander, fonem feilrate og forvirringsmatriser evaluert p̊a TIMIT taleko-
rpus. I tillegg ble lærermodellen som er trent p̊a en manuelt annotert database
evaluert mot studentmodellen som er trent p̊a automatisk dannede annotasjoner.

Resultatene viser at de akustiske modellene oppn̊ar høyst nøyaktighetsrate med
fMLLR informasjonsvektorer. Bruk av CI fonemer gir ogs̊a større nøyaktighet enn
det bruk av CD fonemer gjør. Det T/S nettverket som gir høyest ytelse er trent
p̊a fMLLR informasjonsvektorer med CI fonemer, og gir en nøyaktighetsrate p̊a
63.64% for riktig klassifiserte fonemstilstander, og en fonem feilrate p̊a 27.47% for
studentmodellen. Det nettverket som har værst ytelse var trent p̊a MFCC infor-
masjonsvektorer med CD fonemer, og har en nøyaktighetsrate p̊a 35.02% for riktig
klassifiserte fonemstilstander og en fonem feilrate p̊a 39.77% for studentmodellen.
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Abstract

This thesis explores semi-supervised learning for automatic speech recognition
(ASR) through a teacher-student (T/S) learning technique. Frame-by-frame clas-
sifiers were implemented with deep neural networks (DNNs), using either mono-
phones or triphones as targets. The teacher model and the student model were
trained on two separate DNNs. The acoustic models were trained on Mel-frequency
cepstral coefficients (MFCC) and feature-space maximum likelihood linear regres-
sion (fMLLR) features. In this work, frame-by-frame state accuracy, phoneme error
rate (PER), and confusion matrices were evaluated on the TIMIT speech corpus.
Additionally, the teacher model trained with hard targets was evaluated against
the student model, which was trained on soft targets.

The obtained results indicate that the T/S network achieves the highest accu-
racy when trained on fMLLR features. Using monophones over triphones provided
higher accuracy as well. The best performing T/S network trained on fMLLR fea-
tures and monophone targets, and yielded a relative frame accuracy rate of 63.64%
and a PER of 27.42% on the student model. Our experiment’s worst-performing
T/S network had a frame accuracy rate of 35.02% and a PER of 39.77% on the
student model when trained with MFCCs features and triphone targets.
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Chapter 1
Introduction

1.1 Motivation
Automatic speech recognition (ASR) technology can be found in many applica-
tions. These include voice search on mobile and computer devices, or interaction
with smart home devices such as Google Home and Amazon Echo for real-world
applications such as personal assistance or shopping to name a few.

Despite the vast use of ASR, the technology has some limitations. Machine
learning algorithms require hours of transcribed data of speech recordings to achieve
an acceptable speech recognition accuracy. Not only is it time-consuming to pro-
duce such annotations, but it is also expensive to collect. A way of dealing with
limited transcribed data is by implementing semi-supervised learning to the ASR
system, which trains acoustic models on partly annotated data.

1.2 Problem description
This thesis aims to study a semi-supervised learning algorithm for ASR using a
teacher-student (T/S) technique and to optimize the acoustic models of the T/S
network. ASR model A is trained on a full set of manually annotated data, and is
later used to produce labels for a broader set of non-annotated data. Afterward,
model B is trained on a full data set (with the automatically created annotations).
Additionally, for the optimization part; various features are to be evaluated against
each other and evaluate context-dependent phonemes against context-independent
phonemes.

1.3 Outline
Chapter 2 provides the theoretical foundation and main principles of ASR, acoustic
models, and semi-supervised learning. For Chapter 3, state-of-the-art research in
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1.3 Outline

speech recognition is presented. Methods implemented and tested in this thesis
are described in Chapter 4. Chapter 5 introduces the TIMIT speech corpus used
for evaluating the acoustic models used in our work. Experiments, the actual
parameters and toolkits used in methods are described in Chapter 6. Chapter 7
and 8 provides the results obtained in this work, discussions around the results and
suggestions for future work. Lastly, Chapter 9 provides the conclusion.
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Chapter 2
Theory

This chapter describes the fundamental theory behind semi-supervised learning for
automatic speech recognition (ASR). Section 2.1 provides a description of phonetics
and phonetic models. In Section 2.2, general ASR theory is presented. Section 2.3
and 2.4 gives an explanation of feature extraction and acoustic models used to
recognize phonemes. Finally, in Section 2.5, semi-supervised learning is explained.

2.1 Phonetics
Phonetics is the study of speech sounds and their production, classification, and
transcription. Speech sounds are based on a sequence of phonemes, where the
phonemes are discrete sound segments and are linked in time.

Phonemes are the smallest units of speech that serve to distinguish words from
each other. Each phoneme has a unique articulatory and distinguishable acoustic
characteristic. In combination with other phonemes, they can form larger units
such as syllables and words. For example, the words ”pin” and ”bin” differs with
the phoneme /p/ and /b/, giving the words completely different meanings. Also,
the words ”bin” and ”bean” sound similar but have different meanings since the
sound between the letter b and n are different by the phonemes /i/ and /ea/.

The acoustic characteristics of a given phoneme change based on its imme-
diate phonetic environment. The phonetic environment refers to having various
anatomical structures (lips, tongue, and vocal cords) and the degree of effort put
into making the sound. For example, the phoneme /t/ has different acoustic char-
acteristics in different words, e.g., in ”tea”, ”tree”, ”city”, ”beaten” and ”steep”
[7].

2.1.1 Context-independent phonemes
One can model the acoustic realization of words with phoneme models. Context-
independent (CI) phonemes are modeled to be independent of their neighboring

3



2.2 Automatic speech recognition

phonetic context. Monophones are such CI phonemes and represent the acoustic
parameters of a single phoneme. For a language with only N phonemes, only N
unit instances are necessary. A disadvantage of using CI phones is that they do
not model co-articulation, providing a lower accuracies in speech recognition.

2.1.2 Context-dependent phonemes
The acoustic realization of words can also be modeled with context-dependent (CD)
phoneme models. CD phonemes can improve speech recognition accuracy signifi-
cantly, given that there are enough training data to estimate the CD parameters.
Here, the context is limited to its left and right neighboring phonemes, only the im-
mediate left and right phonetic context matters. Triphones are such CD phonemes
that depend on their neighboring phones. At most, there are N3 units instances;
however, the number of unit instances is usually much lower.

A disadvantage of using context-dependent phones is that they provide an exces-
sive amount of model parameters in speech recognition. Thus, training thousands
of triphone units can be a complicated and time-consuming procedure [7].

2.2 Automatic speech recognition

Figure 2.1: Architecture for automatic speech recognition.

Automatic speech recognition (ASR) is the process of automatically converting
acoustic signals of a speech utterance into text transcription. The overall structure
for ASR is illustrated in Figure 2.1. The most likely spoken words are determined
based on the given speech signal. They are achievable by comparing a set of
parameters describing the speech signal with trained acoustic model parameters.
A trained acoustic model predicts either words or phones.

Speech recognition is stated as follows. Given a sequence of acoustic feature
vectors (observations) O = o1, o2, ..., on and a word sequence W = w1, w2, ..., wm,
the most likely word sequence W* is given by

W* = arg max
W

P (W|O) (2.1)

Applying Bayes’ Theorem to Eq. 2.1 gives
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2.3 Feature extraction

P (W|O) = P (O|W)P (W)
P (O) , (2.2)

where P (W) is the probability of an uttered word W and the conditional prob-
ability P(O|W) computes the likelihood of observation O given word sequence W.
P (O) is the probability that the observation O will occur. Since variable O is
already fixed, Equation (2.1) is reduced to

W* = arg max
W

P (O|W)P (W) (2.3)

P (O|W) also represents an acoustic model (AM) and P (W) a language model
(LM). The language model provides the a priori probability that a sequence of
words W is uttered. This thesis focuses mainly on the acoustic model.

2.3 Feature extraction
Feature extraction is performed to provide a compact representation of the speech
waveform. The process converts speech signals into sequences of acoustic vectors
O = {o1, o2, ..., oN}. Afterward, the acoustic vectors are used as input to an
acoustic model.

There are several feature extraction techniques. Two feature extraction tech-
niques discussed in this chapter include Mel-frequency cepstral coefficients (MFCCs)
and Feature-space maximum likelihood linear regression (fMLLR).

2.3.1 Mel-frequency cepstral coefficients
Mel-frequency cepstral coefficients (MFCCs) are typical feature vectors in speech
recognition.

Figure 2.2: Process of generating MFCCs.
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2.3 Feature extraction

MFCCs are generated in several steps, as illustrated in Figure 2.2. Firstly, the
audio signal is pre-emphasized and parted into frames. The next step calculates
each frame’s spectral coefficients using a fast Fourier transform (FFT) and is further
sent to a Mel filterbank to filter the spectrum of speech signals using triangular
bandpass filters. The Mel filterbank indicates how much energy occurs at various
frequency regions. Lastly, discrete cosine transformation (DCT) is applied to the
logarithm of the filterbank energies. Hence, the cepstral features for each frame are
obtained. Typically the first 13 cepstral coefficients are used in speech recognition
as input features to an acoustic model.

The time derivatives (deltas) and accelerations (delta deltas) improves the ro-
bustness of the recognition task. These features are concatenated to the original
cepstral features, thus providing a 39-dimensional MFCC feature vector for each
frame [13].

Feature normalization

A popular data preprocessing technique is to take the per-sample feature normal-
ization of the extracted features. For example, the cepstral mean normalization
(CMN) technique subtracts the per-utterance mean µi of MFCC features in order
to reduce acoustic channel distortion. The CMN is computed by first estimating
the per-utterance mean

µ̄i = 1
T

T∑
t=1

oti, (2.4)

for dimension i and T total number of frames in the utterance, and then the
mean is subtracted from all frames in the utterance as

ōti = oti − µ̄i. (2.5)

2.3.2 Feature-space maximum likelihood linear regression
Feature-space maximum likelihood linear regression (fMLLR) is a feature adaption
technique that deals with speaker variability. The speaker variability is reduced
through the estimation of a feature transformation matrix. The goal of fMLLR is
to normalize features to fit the speaker better.

In fMLLR, feature-space transformations are performed, where the features o(t)
are transformed directly according to

ô(s)(τ) = A(s)o(τ) + b(s) = W(s)ξ(τ) (2.6)

where

W(s) =
[
A(s),b(s)

]
, (2.7)

W(s) represents the transformation matrix and ξ(t)=[oTt , 1]T is the extended
feature vector. Matrices A(s) and B(s) are estimated iteratively and have to be

6



2.4 Acoustic models

initialized, e.g. as a diagonal matrix with ones on the diagonal and a zero vector,
respectively [4].

A linear transform is applied to the feature vectors for every frame, where the
transform parameters are estimated by optimizing the following auxiliary function

Q(M,M) = K − 1
2

S∑
s=1

M∑
m=1

T (s)∑
τ=1

γm(τ)
[
K(m) + log(|Σ(m)|)− 2 log(|A(s)|)

+(A(s)o(τ) + b(s) − µ(m))TΣ(m)−1(A(s)o(τ) + b(s) − µ(m))
]
,

(2.8)

for M total number of components associated with the particular transform
and normalization constant Km associated with Gaussian component m. The
transformed mean and variance for component m are given by

µ̂(m) =
∑S
s=1

∑T (s)

τ=1 γm(τ)(ô(s)(τ)− µ̂(m))(ô(s)(τ)− µ̂(m))T∑S
s=1

∑T (s)

τ=1 γm(τ)
(2.9)

and

Σ̂(m) =
∑S
s=1

∑T (s)

τ=1 γm(τ)(ô(s)(τ)− µ̂(m))(ô(s)(τ)− µ̂(m))T∑S
s=1

∑T (s)

τ=1 γm(τ)
(2.10)

at time τ , respectively.
For deep neural networks (DNNs), fMLLRs are optimized to maximize the

cross-entropy using backpropagation. This discriminative criterion is referred to
as feature-space discriminative linear regression (fDLR). The transformation is
applied to either each input vector in the DNN or to individual frames before
concatenation [19].

2.4 Acoustic models
This section deals with the quantity P (O|W). The acoustic model (AM) in ASR
is about modeling a sequence of feature vectors (observations) given a sequence of
words.

2.4.1 Hidden Markov models
A hidden Markov model (HMM) is a commonly used acoustic model in ASR. Each
word is represented as a sequence of phonetic units, and each unit is represented
by an HMM containing a predefined number of states.

An HMM augments the Markov chain. A Markov chain computes the proba-
bility of a sequence of observable events. A first-order Markov chain assumes that
when predicting the current state j at a given time, it is only dependent on the
previous state i. A second-order Markov chain assumes that the two previous states

7



2.4 Acoustic models

and the current state matters when predicting the next state. HMMs differ in that
they observe states indirectly, also referred to as hidden states.

The following parameters characterize HMMs:
Q = q1, q2, ..., qN - State sequence containing N states.
A = a11, ..., aij , ..., aNN - a transition probability A where each aij represents

the probability of moving from state i to state j.
O = o1, o2, ..., oT - observation sequence with T observations.
B = bi(ot) - emission probability, a sequence of observation likelihoods. Each

probability expresses the probability of an observation ot being generated from a
state i.

π = π1, π2, ..., πN - initial probability distribution over states where πi is the
probability that the Markov chain will start in state i.

Figure 2.3: Example of a HMM with 3 states.

Figure 2.3 illustrates a HMM with 3 states. The figure provides a visualization
of the mentioned characterized parameters for the HMM.

Like a first-order Markov chain, the probability of a state depends only on the
previous state in a first-order HMM. The formal definition of dependency follows.

P (qi|q1...qi−1) = P (qi|qi−1) (2.11)

Additionally, in terms of computing the probability of an output observation
oi of a HMM, only the state that produced the observation matters and not any
other states or observations. More formally,

P (oi|q1...qi, ..., qT , o1, ..., oi, ..., oT ) = P (oi|qi) (2.12)

Overall an HMM deals with the three following fundamental problems [8].
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2.4 Acoustic models

Problem 1 (Likelihood)

Given an HMM λ = (A,B) and an observation sequence O, determine the likelihood
P (O|λ).

An HMM with N hidden states and an observation sequence of T observations
have a complexity of NT . The complexity can be a large number. Therefore,
it is more feasible to compute the total observation likelihood through a forward
algorithm. The forward algorithms sums the probability over all possible hidden
state paths that could generate the observation sequence. The algorithm efficiently
calculates

αt(j) = P (o1, o2...ot, qt = j|λ) (2.13)

recursively at time t given current state j.
For a given state qj at time t, the value αt(j) is computed as

αt(j) =
N∑
i=1

αt−1(i)aijbj(ot) (2.14)

In Equation 2.14, αt−1(i) is the previous forward path probability, aij is the
transition probability from previous state qi to current state qj , and bj(ot) the state
observation likelihood of the observation symbol ot given current state j. This gives,

P (O|λ) =
N∑
i=1

αT (i) (2.15)

Problem 2 (Decoding)

Decoding deals with finding the most probable sequences of states Q = q1, q2, q3, ..., qT ,
given an HMM λ = (A,B) and a sequence of observations O = o1, o2, ..., oT .

The most common decoding algorithm for HMMs is the Viterbi algorithm. The
Viterbi algorithm takes the most probable path over the previous path probabilities.

Figure 2.4: HMM trellis.
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2.4 Acoustic models

Figure 2.4 illustrates an HMM trellis, where the Viterbi trellis processes the
observation sequence left to right, filling out the trellis. Each cell of the trellis,
νt(j), represents the probability of being in state j after seeing the first observations
and passing through the most probable state sequences q1, ..., qt−1, given λ.

νt(j) = max
q1,...qt−1

P (q1...qt−1, o1, o2...ot, qt = j|λ) (2.16)

The value of each cell νt(j) is computed by recursively taking the most probable
path that could lead to this cell.

vt(j) = Nmax
i=1

νt−1(i)aijbj(ot) (2.17)

In Equation 2.17, νt−1(i) is the previous Viterbi path probability from the
previous time step and bj(ot) the state observation likelihood of the observation
symbol ot given the current state j.

The Viterbi algorithm also has back pointers. By keeping track of the path
of hidden states that led to each state, and then returning the best path to the
beginning, one can obtain the best state sequence.

Problem 3 (Learning)

The goal of training an HMM is to learn the HMM parameters A and B, given
an observation sequence O and the set of states in the HMM. One can solve the
problem by using the forward-backward algorithm.

The forward-backward algorithm, or Baum-Welch algorithm, trains on both
the transition probabilities A and the emission probabilities B of the HMM. It is
an iterative algorithm that computes an initial estimate for the probabilities, then
uses those estimates to compute even better estimates. This way, the probabilities
are improving iteratively as the model learns.

Given state i at time t, the backward probability β is the probability of seeing
the observations from time t+1 to the end.

βt(i) = P (ot+1, ot+2...oT |qt = i, λ) (2.18)

The backward probability processes are
1. Initialization:

βT (i) = 1, 1 ≤ i ≤ N (2.19)

2. Recursion:

βt(i) =
N∑
j=1

aijbj(ot+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t < T (2.20)

3. Termination:
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2.4 Acoustic models

P (O|λ) =
N∑
j=1

πjbj(o1)β1(j) (2.21)

The forward and backward probabilities are used to compute the transition
probability aij and the observation probability bi(ot) from an observation sequence.

To learn the HMM model, the probability γt(j) of being in state j at time t,
and the probability ξt of being in state i at time t and state j at time t+1 given
the observation sequence, is used to estimate A and B, where

γt(j) = αt(j)βt(j)∑N
j=1 αt(j)βt(j)

(2.22)

and

ξti, j = αt(i)aijbj(ot+1)βt+1(j)∑N
j=1 αt(j)βt(j)

(2.23)

The total expected number of transitions from state i is found by summing over
all transitions out of state i

âij =
∑T−1
t=1 ξt(i, j)∑T−1

t=1
∑N
k=1 ξt(i, k)

(2.24)

and the percentage of times that one were in state j and saw symbol vk is defined
by

b̂j(vk) =
∑T
t=1 1ot=vk

γi(t)∑T
t=1 γi(t)

(2.25)

Consequently, assuming that the previous estimate of A and B is found, the
transition A and observation B from an observation sequence O can be re-estimated
using Equation 2.24 and 2.25.

To sum up, the forward-backward algorithm starts with some initial estimate
of the HMM parameters λ = (A, B). Then two steps are iteratively run. Because
the forward-backward algorithm is a special case of the Expectation-Maximization
(EM) algorithm, the expectation step computed in our case is the expected state
occupancy count γ and the expected state transition count ξ from preceding A
and B probabilities. The M-step used γ and ξ to recompute the new A and B
probabilities [8].

2.4.2 Hidden Markov models use for speech recognition
Left-to-right HMM

A common HMM-topology is a left-to-right HMM.
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2.4 Acoustic models

Figure 2.5: Left-to-right HMM wit three states for phonemes.

Figure 2.5 illustrates the left-to-right HMM with three states, where each state
represents a sub phone. There are three states for each phoneme because a phoneme
is not stationary. The first and the last part of a phoneme are typically different
from the middle part. The states 0, 1, and 2 correspond to the beginning, middle,
and end of a phoneme, respectively. Moreover, word and sentence HMMs are
constructed by concatenating these phoneme-level HMMs.

Decision tree clustering

The CD phonemes could hold a large number of units. In such cases, the CD units
can be clustered into a smaller set whose distribution is robustly estimated using
decision trees. Additionally, contexts with little data are combined until sufficient
data are available. Clustering can occur at a phoneme level or a state level.

A decision tree is a binary tree, where yes/no phonetic questions are attached
to each node. Initially, all states are placed at the root of the tree. Based on the
answer to the phonetic question, the states are split and continue to split until the
states have reached the leaf-nodes.

The decision trees are built on a top-down sequential optimization process. The
phonetic questions are chosen based on which split of the root node gives the best
split. This process will be repeated until the increase in the log-likelihood falls
below a specified threshold. The decrease in the log-likelihood is calculated for the
merging terminal nodes with different parents. If the decrease in log-likelihood is
smaller than the threshold, the splitting process is stopped and the leaf nodes will
then be merged.

2.4.3 Gaussian mixture model
The output probability density function for each state of an HMM, or the emission
probability bi(ot), can be modeled by a Gaussian mixture model (GMM). A GMM
is an acoustic model, and is as a weighted sum of single Gaussian models of different
means and covariances.
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A continuous random observation o has a Gaussian mixture distribution if its
probability density function (PDF) is defined by

p(o) =
∑M

m=1

cm√
2πσm

exp
[
−1

2

(
o− µm
σm

)2
]

=
∑M

m=1
cmN (o;µm, σ2

m),

(−∞ < o <∞;σm > 0; cm > 0)

(2.26)

The PDF of a multivariate D-dimensional Gaussian mixture distribution is
defined by

p(o) =
M∑
m=1

cm

(2π) D
2 |Σm|

1
2

exp
[
−1

2(o− µm)TΣ−1
m (o− µm)

]
=
∑M

m=1
cmN (o;µm,Σm), (cm > 0)

(2.27)

of a D-dimensional observation vector o, with M being the total number of
mixture components, and cm, µm and Σm are the weighting factor, mean vector and
covariance matrix of the m normal component of a state respectively. Additionally,
the positive mixture weights satisfy

∑M
m=1cm = 1 [19].

Forced alignment

Figure 2.6: Waveform of spoken sentence ”She had your dark suit in greasy wash water
all year”, from the TIMIT Corpus dataset.

Forced alignment is the process of aligning a known sequence of phonemes from
a transcription to the corresponding audio recording. Fig. 2.6 displays an audio
waveform and its corresponding transcription data ”She had your dark suit in
greasy wash water all year” from the TIMIT Corpus dataset [3]. One can think of
the alignments as audio with time-stamps, in which the time-stamps correspond to
spoken phonemes in the audio.

In ASR, through forced alignment, a GMM-HMM assigns an HMM to state to
each corresponding frame. The Viterbi algorithm in the HMM outputs the most
probable observed sequence given the input speech signals. The alignments are
further used as labels for training an acoustic model.
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2.4 Acoustic models

2.4.4 Deep neural networks
Deep neural networks (DNNs) have been shown to outperform GMMs as acoustic
models in speech recognition over the last few years [6].

Figure 2.7: Perceptron architecture.

Figure 2.7 illustrates a perceptron, a building block for the DNN. The figure
shows inputs {x1, x2, ..., xn} from the input layer generating an output y at the
output node. The perceptron sums all the weights {w1, w2, ..., wn} from the previ-
ous layer (l-1), adds a bias b and applies an activation function f to the weighted
sum. The mapping of the inputs xi from the previous layer to the output y is
defined by

y = f(b+
∑
i

wixi) = f(z), (2.28)

where f is the predefined activation function. An activation function is a non-
linear function, typically tanh function f(z) = (exp(2z) − 1)/(exp(2z + 1), the
sigmoid function f(z) = 1/(1 + exp(−z)) or a rectified linear unit (ReLU) f(z) =
max(0, z) [10].

In multi-class classification tasks where there are k distinctive classes, an output
unit j converts the total inputs, xj , into a class probability, pj through a non-linear
softmax function defined by

pj = exp(xj)∑
k exp(xk) (2.29)
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Figure 2.8: A deep neural network model.

A DNN is an artificial neural network with more than one layer of hidden units
between its inputs and its outputs, as shown in Figure 2.8. A Multilayer Perceptron
(MLP) is often used as a baseline DNN. MLP consists of two or more hidden layers
and is a feed-forward neural network where all the neurons in one layer are fully
connected to the neurons in the adjacent layer.

DNNs can be discriminatively trained by backpropagation. After each forward
pass through the network, backpropagation performs a backward pass while ad-
justing the weights and the biases. The backpropagation aims to minimize the cost
function that measures the difference between the target outputs, and the actual
predicted output is performed. The cost function C is a cross-entropy between the
target probabilities, d, and the outputs of the softmax, p,

C = −
∑
j

dj logpj (2.30)

where the target probabilities are the class labels provided to train the DNN
classifier [6].

Overfitting

DNNs as acoustic models are prone to overfitting. Overfitting is when the DNN
does not generalize well on new data and can be prevented by using regularization
techniques. Conventional regularization techniques are dropout, early stopping,
and L1 and L2 regularization. Dropout works by temporarily ignoring a given
number of units in a layer of the neural network given a dropout rate p. For early
stopping, the training of a DNN is stopped when the model does not improve on
the validation set for a specific number of epochs. Lastly, L1 and L2 regularization
adds a regularization term to prevent the coefficients from fitting so perfectly [14].
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2.4.5 Performance evaluation
The performance of an ASR system can be evaluated on frame-by-frame recogni-
tion or phoneme recognition. A frame-by-frame phoneme classifier measures either
the state level accuracy of a phoneme or a phoneme level accuracy. The classi-
fier returns a score indicating the confidence that the predicted frame is correctly
matched against the reference frame, a target. The best candidates have the high-
est scores. In contrast, phoneme recognition identifies individual phonemes in a
sentence. The phonemes, in such cases, spans over several frames. In this work,
the focus is mainly on evaluation of frame-by-frame recognition.

Concerning the frame-by-frame recognition, there are several methods for cal-
culating the prediction accuracy.

Phone error rate

The phoneme error rate (PER), or phone accuracy rate, is the most common eval-
uation metric in ASR. The formula of PER is based on the following expressions
· Substitution (S) = number of substitutions
· Insertion (I) = number of insertions
· Deletion (D) = number of deletions

PER = S +D + I

N
× 100, (2.31)

where N is the total number of labels in the reference utterance. The phone
accuracy rate is calculated by

Accuracy = 100− PER (2.32)

Classification accuracy

Another metric is the classification accuracy. It is the ratio of the number of correct
predictions to the total number of input samples.

Accuracy = Number of correct predictions
Total number of predictions

F1 score

Additionally, F1 score is a weighted average of the precision and recall, where the
F1 score reaches its best score at 1 and the worst score at 0. The formula for the
F1 score is defined by

F1 = 2× (precision× recall)
(precision + recall) (2.33)

16



2.5 Semi-supervised learning

Confusion matrix

Another conventional method is using a confusion matrix (CM). The CM is a table
that depicts the performance of a classifier on correctly classified and misclassified
labels. It is the counts of the classified and misclassified labels that fill the table.
Each row of a CM represents the predicted classes, and each column represents the
actual classes (the opposite is also correct).

2.5 Semi-supervised learning
Semi-supervised learning (SSL) combines supervised and unsupervised learning
techniques. Supervised learning trains an artificial neural network on the labeled
data, while unsupervised learning trains the ANN on the unlabeled data. Hence,
SSL methods use both labeled and unlabeled data to improve learning performance.
SSL is mostly used when the labeled data are scarce.

2.5.1 Teacher-student training

Figure 2.9: Teacher-student network.

A possible method of implementing SSL is by using teacher-student (T/S) network,
as illustrated in Fig. 2.9.

The teacher network is an artificial neural network (ANN) that has already been
trained on labeled data achieved from forced alignment, also called hard targets [16]
and is later used to produce labels on the unlabeled data. The network outputs
class probabilities, also referred to as soft labels. The student network tries to
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mimic the teacher network’s behavior by trying to replicate its outputs at every
time step. The student network uses the teacher model’s soft labels as its targets.

T/S learning aims to minimise the Kullback-Leibler (KL)-divergence between
the output distribution of the teacher model PT (q|x) and the student model PS(q|x)

KL(PT ||PS) =
∑
t

N∑
i=1

PT (qi|xt)log
(
PT (qi|xt)
PS(qi|xt)

)
, (2.34)

for i frame index, N total number of HMM states, the i-th shared state q and
xt input vector at time t [11]. Minimizing the KL-divergence is equivalent to
minimizing the loss function between PT and PS

L = −
∑
t

N∑
i=1

PT (qi|xt)logPS(qi|xt). (2.35)
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Chapter 3
Related literature

This chapter provides a brief literature review on state-of-the-art methods per-
formed on ASR systems. Section 3.1 investigates research made on T/S networks,
Section 3.2 introduces two state-of-the-art acoustic models, and lastly, Section 3.3
introduces a research paper that experimented with a toolkit to reduce PER.

3.1 Teacher/student learning
Cambridge University and Li et al. (2017) released a paper regarding experimen-
tal studies on teacher/student (T/S) training of DNN acoustic models [11]. The
experiment was performed on the TIMIT speech corpus. In the experiment, the
student models were restricted by both model complexity and teacher performance.
The student model was trained from a fully-connected 7-layer teacher model. A
PER of 25.76% was achieved from the student baseline. The paper also examines
training on recurrent neural networks (RNN) and ensemble learning, and achieved
lowest PER of 23.73% using ensemble learning.

Kim et al. (2017) proposed using T/S learning to transfer knowledge from a
large speech recognition model to an end-to-end online model. An offline end-to-
end model as a teacher model was made by a deep bidirectional RNN with LSTM
units (BLSTM) to predict the correct label sequence given the entire utterance.
Once the model was trained, the knowledge was transferred to the student model,
an LSTM-KL model that could operate online without access to the future input
frames. The proposed model was shown to outperform models that are trained
from random initialization [9].

In 2019, another research paper experimented with teacher models trained on
large audio databases, and student models were trained on a small-sized audio
database. Li et al. (2019) proposed using a cross-modal T/S training framework,
where the teacher and student audio models consisted of DNNs. The DNN proposed
in this paper was composed of six hidden layers and 1024 sigmoid units in each
layer, trained on fMLLR features. The proposed solutions reduced the PER from
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26.7% to 21.3%. The improvement was partly from using a more extensive training
set, covering a broader acoustic space [12].

3.2 State-of-the-art acoustic models
3.2.1 Reccurent neural networks
Recurrent neural networks (RNNs) can be used as acoustic models in ASR. The
advantage of using RNNs is that they can capture temporal information and learn
short and long-term speech dependencies. A popular type of RNN, are long-short
memory networks (LSTMs), which rely on memory cells that are controlled by
forget, input, and output gates. The research paper conducted by Ravanelli et
al. (2018) proposed a simplified architecture of Gated Recurrent Units (GRUs),
called Light GRU (Li-GRU). GRUs simplified the complex LSTM cell design. The
gating mechanism controlled the flow of information through various time-steps
better. In Li-GRUs, the reset gate is removed, and ReLU activation functions
implemented. Batch normalization is also used. Li-GRU reduced the per-epoch
training time by more than 30% and improved recognition accuracies across differ-
ent ASR paradigms.

3.2.2 Convolutional neural networks
Utilizing deep convolutional neural networks (CNN) over the commonly used DNNs
on speech tasks was investigated by Tóth (2015). The CNNs are ANNs which detect
features that are local in frequency and also tolerates small shifts in their positions.
In this paper, the CNN was turned into a hieratical model which extended the
locality to the time axis. The hieratical model trains another network on some
posterior estimates. The paper also experimented with using maxout activation
functions in the CNNs, which turned out to outperformed the commonly used
ReLU and sigmoid functions. The proposed CNN provided a phoneme error rate
reduction of 4.3% over ReLU CNNs. Additionally, it was also showed that adding
dropout to the CNN also contributed to a lower phoneme error rate. [18].

3.3 Toolkits
There are various software available for performing speech recognition tasks. Open-
source softwares such as the HTK, CMU Sphinx, and Kaldi toolkit are popular
choices. In 2019, Ravanelli et al. (2019) experimented with the Kaldi toolkit
and the Pytorch framework in the Python language that builds neural networks,
and the Pytorch-Kaldi project was created. Results confirmed that the Pytorch-
Kaldi toolkit could be effectively used to develop modern state-of-the-art speech
recognizers. The toolkit gave a phone error rate (PER) of 13.8% on the TIMIT
speech corpus and is amongst the lowest error rates dated so far on the TIMIT
corpus [17].
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Chapter 4
Method

In this chapter, the implemented and tested methods completed in our work are
presented. Section 4.1 describes the overall ASR system implemented, and Section
4.2 provides further details on the acoustic models used in this work.

4.1 ASR system
The semi-supervised learning model, a teacher-student (T/S) network, was imple-
mented. In this work, the ASR system was parted into two parts: a teacher model
trained on labeled data and a student model trained on unlabeled data. First off,
the teacher model was built on a DNN. After, the student model was built on a
separate yet same DNN architecture as the teacher model.

When training the DNNs, the teacher model was trained on hard targets which
were generated by GMM-HMM through forced alignment, and the student model
was trained on soft targets obtained from the output of the teacher model. The
hard targets were state posteriors computed on the speech data in the teacher
model. This way, the student model will not be trained on labeled data and, at
the same time, receives gains from the trained teacher model.

The teacher and the student models were trained on the full training set with
MFCC features and fMLLR features.
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Figure 4.1: Teacher-student network.

The structure of the teacher-student network is illustrated in Figure 4.1.

4.2 Classifier
The purpose of the DNN is to act as a classifier where it classifies states frame-by-
frame. From there, the aim is to perform phoneme recognition on given utterances.
Evaluation was performed on two DNN models, a monophone model and a triphone
model. Therefore, two teacher-student networks were implemented, one network
built on the monophone models and the other on the triphone models.

4.2.1 Input features
In this experiment, 13 MFCC coefficients and 40-dimensional fMLLR feature vec-
tors were extracted for each frame from the speech waveforms. Before feeding the
features to the DNNs, preprocessing using cepstral mean and variance normaliza-
tion was performed on the features.

4.2.2 Targets
For frame-by-frame phoneme classification, the predictions made by the DNN were
compared to targets for every frame. The targets were a list of states, one state
for each frame in the utterance. The frames predicted by the DNN were compared
to the target for the same frame. The targets are also known as the true labels of
the network.
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4.2.3 Evaluation
The teacher-student network was evaluated in three different forms. The first form
evaluated the training, test, and validation set with frame-by-frame classification
accuracies, checking which frames were classified correctly on the data set. Subse-
quently, when the predicted states made by the classifier were obtained, they were
further mapped into phonemes. The final evaluation form used a CM to visualize
which phonemes were classified the most and to see what kind of errors the models
make.
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Chapter 5
The TIMIT Corpus

5.1 Database
The experiments conducted in this paper were evaluated on the TIMIT Corpus data
set. The TIMIT speech corpus is an acoustic-phonetic speech corpus developed
by Texas Instruments (TI), SRI International (SRI), and Massachusetts Institute
Of Technology (MIT) to provide speech data for development and evaluation of
ASR systems. TIMIT contains recordings of 630 speakers of eight major dialects
of American English, each reading ten phonetically rich sentences. The corpus
includes time-aligned phonetic and word transcriptions and a 16-bit, 16kHz speech
waveform file for each utterance [5].

Moreover, there are 44 phones in the English language. However, the TIMIT
corpus has a total of 48 phonemes, including the speech units silence and closure
as phonemes.

Table 5.1: TIMIT corpus 48-phoneme set.

Speech unit
Phoneme /aa/, /ae/, /ah/, /ao/, /aw/, /ax/, /ay/, /b/, /ch/,

/d/, /dh/, /dx/, /eh/, /el/, /en/, /er/, /ey/, /f/, /g/,
/hh/, /ih/, /ix/, /iy/, /jh/, /k/, /l/, /m/, /n/, /ng/,
/ow/, /oy/, /p/, /r/, /s/, /sh/, /t/, /th/, /uh/, /uw/,
/v/, /w/, /y/, /z/, /zh/

Silence /sil/, /epi/
Closure /cl/, /vcl/

Table 5.1 shows the phonemes found in the TIMIT corpus.
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Table 5.2: Number of utterances, speakers and frames in the training set, validation set
and test set in the TIMIT Corpus.

Data set
Spoken Utterances # speakers

Training set 3696 462
Validation set 400 50
Test set 192 24
Total data set 6300 630

The TIMIT corpus has a training set, a validation set, and a test set. The
training set has 3696 utterances, the validation has 400 utterances, and the test
set has 192 utterances, as shown in Table 5.2.

For this experiment, the original phoneme set in TIMIT was used for evaluation
and not the reduced set that is commonly used.
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Chapter 6
Experiment

This chapter gives a general description of the experiments performed with the
TIMIT corpus in this work. Section 6.1 gives details on the system architecture
and the actual parameters utilized to build the networks in this experiment, and
Section 6.2 presents the toolkits employed in the experiments and how they were
used.

6.1 DNN
The teacher-student (T/S) networks were built on deep neural networks (DNNs).
Two T/S networks were made, one on monophone models which were DNNs trained
on monophone targets and the other on triphone models which were DNNs trained
on triphone targets. The teacher model was trained on a completely labeled training
set and the student model on completely unlabeled training set.
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(a) Architecture of monophone model. (b) Architecture of triphone model.

Figure 6.1: Architectures of DNNs.

Figure 6.1 shows the architecture of the two separately implemented monophone
models and triphone models, respectively.

Table 6.1: Toplogy of monophone model.

Layer type Nodes Activation function
Input 256 ReLU
Fully connected 256 ReLU
Droput
Fully connected 256 ReLU
Output 144 Softmax
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Table 6.2: Toplogy of triphone model.

Layer type Nodes Activation function
Input 512 ReLU
Fully connected 512 ReLU
Droput
Batch normalization
Fully connected 256 ReLU
Droput
Output 1896 Softmax

Table 6.1 and Table 6.2 illustrates the topology of the monophone models and
triphone models. The DNNs in the teacher-student models were trained to classify
the central frame of an 11-frame acoustic context window. The total number of
frames in the training set was 1124823. The input layer had the same shape as the
training data. For MFCCs, the shape was (11x13)=143, and for the fMLLRs, the
input shape was (11x40)=440.

Moreover, the input layer of the monophone models was followed by a fully
connected layer, a dropout layer, and another fully connected layer before the
output layer. Each layer consisted of 256 nodes, and the dropout rate was set to
0.25. For the triphone models, the input layer was followed by four fully connected
layers, with two dropout layers and a batch normalization between them. Each
layer consisted of 512 neurons, and the dropout rate was also set to 0.25. The
dropout and batch normalization was implemented to reduce overfitting that had
occurred while training. Both models used ReLU activation functions in each layer,
except for the output layer, where a softmax function was chosen as it is a common
standard for classification tasks. All of these parameters were chosen based on trial
and error, choosing the parameters that provided the highest frame accuracy. The
trail and error experiments will not be reported in this paper.

The output layer of the monophone model consisted of 144 nodes and the tri-
phone model of 1896 nodes. The numbers are chosen given the total amount of
class labels in the targets. The monophones were obtained through a forced align-
ment using GMM-HMM with a left-to-right topology, giving a total of 144 states
(3 states x 48 phonemes in TIMIT) as each phoneme had three corresponding
states. Additionally, the triphones had in total 1896 states, where each phoneme
had various amounts states.

The network was trained using the Adam optimizer and categorical cross-
entropy as loss function, as these are commonly used parameters in classification
tasks.
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6.2 Implementation details
6.2.1 Kaldi
The experimental part of this work is based on the Kaldi toolkit [15]. Kaldi is an
open-source toolkit used for speech recognition research. The toolkit’s purpose is
to be used by speech recognition researchers. The aim of the toolkit is to have a
modern and flexible code that is easily understood, can be modified and extended.
Kaldi is written in C++ and licensed under Apache License v2.0. The tools are
compiled on Unix-like systems and Microsoft Windows.

Kaldi was developed based on the demand for an open-source toolkit that deals
with finite-state transducer (FST) based framework, and have detailed documen-
tation and scripts for building recognition systems. Some of the other features
included in Kaldi are extensive linear algebra support, generic algorithms, com-
plete recipes for building speech recognition systems, and thorough testing [15].

Recipes

The toolkit contains recipes for training acoustic models on various speech corpora
such as TIMIT and Wall street journal corpus, including the option to use other
speech data. The TIMIT corpus used in this experiment were obtained from Kaldi.

Features

Kaldi also provides feature extraction approaches and waveform-reading code for
creating acoustic features and modifying the features. For our experiment, MFCCs
and fMLLR features were extracted from the toolkit. The MFCCs were extracted
using a 25 ms window and a 10 ms frameshift.

Targets

The targets were available in Kaldi through forced-alignment, where GMM-HMM
models had already realigned the transcription at the state level to the speech
material. In total, 30 alignment files were obtained in the toolkit. Each alignment
file contains utterances, utterance identifiers, and a list of integer identifiers, one
for each frame in the utterance. In the toolkit, the identifiers are called transition
models (final state transducer). The correspondence between HMM state and
the transition models were found by converting the ids into PDF ids. In Kaldi’s
terminology, the PDFs are HMM states, where there were in total 144 states for
the monophones and 1896 states for the triphones.

Phoneme mapping

The state labels mentioned in the previous section had corresponding phonemes.
Each monophone provided three emitting states (or PDFs), making in total of
48 phonemes (144 states / 3 = 48). For the triphones, the number of states per
phoneme was more unsymmetric as individual phonemes had more states to it than
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others. The mapping between HMM states and phonemes were found in the Kaldi
toolkit.

6.2.2 Python 3
The teacher-student networks were implemented using the deep learning frame-
works Tensorflow [1] and Keras [2] in Python 3.7.4. Both the teacher models and
the student models were trained on 20 epochs. The performance of the DNNs was
monitored over each epoch. See Appendix A, B, C and D to view the Python codes.
The codes are repetitive and similar; therefore, Python libraries are not included
in Appendix B, C, and D, and dictionaries with the states will not be included in
Appendix C and D.

Feature extraction and targets

The feature vectors were normalized with zero mean and a unit variance over the
whole training set. These features were then concatenated and fed into the DNN.
For the targets, they were one hot encoded and concatenated before training them
on the DNNs.

Mapping states to phonemes

The misclassified states were compared to the true labels in each frame. If the
misclassified state and true state for the same frame corresponded to the same
phoneme, for example, state 4 was classified as state 3, then it will be counted
as a correctly classified phoneme because both of those states belong to phoneme
/aa/. Afterward, the total amount of times the classes were misclassified but were
in the same phoneme was summed up. By summing this number and the number
of the total amount of times the model correctly classified states in each frame, the
actual correctly classified phone accuracy rate is found. The phone accuracy rate
was evaluated on the test set, and was subtracted from 100 to find the phoneme
error rate (PER).

Data generator

The triphones were too large and memory consuming. The GPUs have around
11GB of RAM, which was not enough to generate the triphones in Python. There-
fore, the data set were processed using a data generator. The Python package
Keras provided the framework. Rather than loading the entire data set at once, a
data generator generated 12929 data batches to the DNN. The number was chosen
because it provided the highest training and validation accuracy for our models.
The generator had trained each full epoch on 87 steps of generate batches. The
step number was based on the formula[

#samples
batch size

]
, (6.1)

with batch size equal to 12929 and a total of 1124823 samples.
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6.2 Implementation details

6.2.3 Aulus1
The experiments were run on 64-bit Ubuntu 18.04, using Aulus1 machine at the
Norwegian university of science and technology (NTNU). The Aulus1 machine has
16 core Intel(R) Core(TM) i7-5960X CPU @ 3.00GHz processor, with with 32 GB
of RAM and 2 x GeForce GTX 1080 Ti GPUs.
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Chapter 7
Results

In the following chapter, the experimental activity conducted to assess the pro-
posed teacher/student (T/S) network is described. The experiments reported in
the following are based on a DNN frame-by-frame classifier. The speech recognition
performance will be reported for the TIMIT corpus.

7.1 Frame rate accuracy

(a) Frame accuracy of teacher model. (b) Frame accuracy of student model.

Figure 7.1: Frame accuracies of T/S models fed with 13 MFCC features and mono-
phones.

Figure 7.1 shows the frame accuracy rate for the teacher model and the student
model, respectively. The teacher model’s performance improves for the majority of
epochs on both training data and test data. Contrarily, the student models per-
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7.1 Frame rate accuracy

formance is slightly improving on the training data but not on test data. Besides,
the student model is overfit by a large margin.

(a) Frame accuracy of teacher model. (b) Frame accuracy of student model.

Figure 7.2: Frame accuracies of T/S models fed with 13 MFCC features and triphones.

The performance of the teacher model and student model when fed with MFCCs
and triphone targets are shown in Figure 7.2. The student model overfits for this
case as well.

(a) Frame accuracy of teacher model. (b) Frame accuracy of student model.

Figure 7.3: Frame accuracies of T/S models fed with fMLLR features and monophones.

In Figure 7.3, the teacher model and student model are trained on fMLLR
features and monophone targets. Compared to the teacher model, the student
model achieves higher accuracy on the training data, but worse on test data.
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7.1 Frame rate accuracy

(a) Frame accuracy of teacher model. (b) Frame accuracy of student model.

Figure 7.4: Frame accuracies of T/S models fed with fMLLR features and triphones.

In Figure 7.4, the frame accuracy rates for the T/S models trained on triphone
models and fMLLR features are shown.

Table 7.1: Frame accuracy rate (%) on teacher models based on the training set, test
set and validation set on the TIMIT database.

Results on TIMIT
Feature Phoneme training acc. (%) valid. acc. (%) test acc. (%)
MFCC CI 60.63 57.47 56.65
MFCC CD 39.23 34.35 34.91
fMLLR CI 66.71 64.24 64.21
fMLLR CD 56.25 48.53 49.18

The results of training the teacher model on a frame-by-frame classifier are
shown in Table 7.1. The models trained on the fMLLR have higher frame accuracy
rates than the models trained on MFCCs.

34



7.2 Mapped phoneme accuracy

Table 7.2: Frame accuracy rate (%) on student models based on the training set, test
set and validation set on the TIMIT database.

Results on TIMIT
Feature Phoneme training acc. (%) valid. acc. (%) test acc. (%)
MFCC CI 82.15 57.22 56.52
MFCC CD 76.21 34.40 35.03
fMLLR CI 83.44 63.71 63.64
fMLLR CD 81.42 48.14 48.77

Lastly, the performance accuracy of the student model is summarized in Table
7.2. Training the student model on fMLLR features and CI targets provided the
highest accuracy amongst the presented models.

7.2 Mapped phoneme accuracy

Table 7.3: PER for context-dependent and context-independent models.

Results on TIMIT
T/S model Features CI PER (%) CD PER (%) Epochs
Teacher MFCC 35.77 40.24 20
Student MFCC 36.34 39.77 20
Teacher fMLLR 27.05 28.75 20
Student fMLLR 27.42 28.99 20

The PER on the CI and CD models are shown in Table 7.3. The PER was calcu-
lated by subtracting 100 by the phone accuracy rate that was obtained from having
mapped states to phonemes. For the T/S networks, higher phoneme recognition
rates were obtained for fMLLRs compared to the MFCCs. Furthermore, models
trained on CI phonemes surprisingly gave a higher phoneme recognition rate than
CD phonemes. The phoneme accuracy rate is slightly higher for the teacher model
compared with its student model.

7.3 Confusion matrices
Confusion matrices were computed based on the correctly classified and misclas-
sified phonemes. Because there were exceedingly many states and phonemes, the
performance of the model is displayed through colors rather than numbers. The
phonemes that have been predicted the most are shown as stronger green colors,
while the lighter the green colors indicate that the classifier did not make predic-
tions on these phonemes as often. A white pixel indicates that the phoneme was
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7.3 Confusion matrices

not predicted at all. The y-axis has the true labels, and the x-axis has the predicted
labels. The correctly classified phonemes are displayed along the diagonal of the
figures below.

Figure 7.5: CM of CI student model trained on MFCC features.

Figure 7.5 shows the CM for the CI student model trained on MFCC features.
The most classified phonemes were around clusters of phonemes {/aa/, /ae/, /ah/,
/ao/, /aw/, /ax/, /ay/}, {/cl/, /d/, /dh/}, {/ih/, /ix/, /iy/}, {/l/, /m/, /n/,
/ng/} and {/s/, /sh/, /t/}. There are several misclassified phonemes off-diagonal
as well.
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7.3 Confusion matrices

Figure 7.6: CM of CD student model trained on MFCC features.

Figure 7.6 shows the CM for the CD student model trained on MFCC features.
The figure shows a significant amount of misclassified phonemes.
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7.3 Confusion matrices

Figure 7.7: CM of CI student model utrained on fMLLR features.

Figure 7.7 shows the CM for the CI student model trained on fMLLR features.
The most classified phones were around clusters of phonemes {/aa/, /ae/, /ah/, /ao/},
{/cl/, /d/, /dh/} and {/ih/, /ix/, /iy/}, {/l/, /m/, /n/, /ng/, /ow/}.
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7.3 Confusion matrices

Figure 7.8: CM of CD student model trained on fMLLR features.

Figure 7.8 shows the CM for the CD student model trained on fMLLR features.
The most classified phones were along the diagonal and partly on various clusters
of phonemes along the figure.
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Chapter 8
Discussion

This chapter provides a discussion concerning the results achieved in this work.
Section 8.1 starts by discussing the teacher/student (T/S) performance. Section
8.1.1 evaluates the features used in the T/S learning, and Section 8.1.2 evaluates the
various phonemes impact on the T/S network. Section 8.1.3 provides an analysis of
the confusion matrices. Lastly, Section 8.2 briefly compares our results to state-of-
the-art results on T/S learning and explains how one can further extend the work
in this thesis.

8.1 Teacher/Student network
The frame accuracy rates in Figures 7.1, 7.2, 7.3 and 7.4 depicts that the teacher
models slightly improves for every epoch. The student models, on the other hand,
barely improves on unlabeled data. Additionally, Table 7.1 and 7.2 shows that the
student model’s frame accuracy rates compared to its teacher model are not too
indifferent on the validation and test accuracy when trained on MFCC features.
For the fMLLR features, the student model had a slightly worse frame accuracy
rate on the test set and validation set than its teacher model. These results are
rather reasonable, because training on fully labeled data will always outperform a
model trained on unlabeled data.

Additionally, the gap between the training accuracy and the test accuracy of
the student models is high compared to the gap of teacher models accuracies. This
indicates that the student model overfits by a large margin. Because the student
model had the same DNN architecture as its teacher model, it can replicate sim-
ilar accuracy as the teacher model. However, the student model’s higher training
accuracies are a result of the model starting with a base knowledge gained from
the teacher model, and from there improving its knowledge on new input data.
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8.1 Teacher/Student network

8.1.1 Features
Comparing the confusion matrices in Figure 7.5 to 7.7, one can see that the CM
for the MFCC features contains more cases of misclassified phonemes than the
CM for the fMLLR features as there are more off-diagonal green colors in Figure
7.5. Likewise with Figure 7.6 compared to Figure 7.8. The results match with
the phoneme recognition rates in Table 7.3, and one can conclude that the student
model performs better on fMLLR features than for MFCCs. fMLLR features gave
a PER of 27.42% for the CI student model, giving a reduced PER rate of 8.92%
from the CI student model trained on MFCCs features with PER of 36.34%.

8.1.2 Phoneme models
The frame accuracy rates on the teacher/student models are lower for CD models
than the CI models, as shown in Tables 7.1 and 7.2. The lower state accuracy for
the CD models could perhaps be a result of some triphones in the given data set
having a significant number of states bound to them, compared to other triphones
that did not have nearly as many states. Most of the misclassified states among the
1896 labels could, therefore, be between states that belong to the same phonemes.
The state accuracy for the monophone models did not differ significantly from the
phoneme accuracy rates as each monophone has fewer states (only 3) bound to
them.

Context-independent phonemes vs. context-dependent phonemes

Moreover, the triphone model did not outperform the monophone model to classify
the most amounts of correct phonemes, which goes against what is mentioned in
Chapter 2, Section 2.1.2. The PER was slightly lower for the monophones compared
to the triphones. While the PER on monophones was 36.34%, the equivalent PER
on triphones was 39.77% for the student model trained with MFCC features, giving
a difference of 3.43%. For fMLLR features, the CI PER was 27.42%, and the CD
phoneme recognition rate was 28.99% for the student model, giving a difference of
1.57%.

A possible reason for the higher PER on triphone models is that the triphones
were fed to the DNN improperly using a data generator. When implementing
the data generator in Python, several issues were encountered, including memory
issues. Eventually, a training generator was made, where instead of having the
generators stop once they had run through the entire training set, the generator
would re-run the batch generation process again by starting from the first element
of the data sets. Ideally, the generator would have stopped once it had run through
the entire training set. However, this was the only way of sending batches of data
to the DNNs without encountering any problems. Though not optimal, at least
the data was fed to the DNNs.

A last possible explanation, though less likely, for the triphones low accuracy
could be that the states of the triphones provided by the Kaldi toolkit are not 100%
accurate. The GMM-HMM models may not have given the actual correct states
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for each frame concerning some cases.

8.1.3 Classified phonemes
Comparing the confusion matrices in Figures 7.5, 7.6, 7.7 and 7.8, the figures for
the CI student models have fewer green colors spread around the diagonals than
for the CD student models. The CM for the models trained on fMLLRs also has
fewer green colors off-diagonal than the models trained on MFCCs, indicating fewer
phonemes were misclassified using fMLLR features and monophone targets in our
T/S network.

The CD student model trained on MFCCs comes out as the worst model
amongst the four mentioned models. This is also confirmed given that the frame
accuracy and phoneme recognition rates were the lowest for this specific model.

Moreover, the phonemes that were correctly predicted the most amounts of
times were /sil/, /cl/, /er/, /ey/, /f/, /l/, /m/, /n/, /s/, and /z/. These phonemes
were often found in the data sets as well. The phonemes that were correctly
classified the least amounts of times were /en/, /epi/, /th/, /uh/ and /zh/, possibly
because they were not often represented in the data set.

8.2 Future work
There is definitively room for improvements in this work. The work in this thesis
was carried out over ten months. Several obstacles occurred during this period,
such as program failure and lack of memory. Nevertheless, despite the lack of
resources and time limits, our results are still comparison worthy to other research
performed on T/S learning.

Our teacher model at its best had a PER of 27.05%, and our student model
had a PER of 27.42%. Though not equivalent, the accuracy is not far from the
PER of 25.76% from the student baseline presented in the research paper by Li et
al. (2017). Compared to the newer research performed by Li et al. (2019), where a
PER of 21.3% was achieved, our results are not that impressive. However, though
our results are not too impressive, considering that the triphones did not perform
optimally in our experiment, it is still a possibility to have even lower PER on our
T/S network once the triphones are implemented correctly. Therefore, it would be
necessary to fix the data generator or figure out a new way of training a triphone
model without encountering any form of memory issues.

Additionally, it would be interesting to experiment with other toolkits as well.
Perhaps using the Kaldi toolkit with the Pytorch framework in the Python lan-
guage, as proposed by Ravanelly et al. (2019), our T/S network could have achieved
lower PER on the teacher model and consequently on the student model as well.

Out of personal interest, implementing T/S network on other acoustic models
(AMs), such as recurrent neural networks (RNNs) or convolutional neural networks
(CNNs), or train our data on an HMM, and comparing those AM to our T/S net-
work trained on DNNs would be intriguing. Besides, our teacher-student networks
is just one of many possible ways of implementing semi-supervised learning. It
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8.2 Future work

would also have been interesting to try other semi-supervised learning techniques
to see how robust our method is.

It is also worth mentioning that the teacher model was initially supposed to be
trained on a partly labeled training set, but was trained on a fully labeled training
set in this work. Therefore, it is of high interest to see how the teacher model and
student model would perform when the teacher model is trained on partly labeled
training data and the student on completely unlabeled data. The main goal of semi-
supervised learning is to implement a system that gives low PER when trained on
partly labeled data due to the lack of annotated data in the real world. Therefore,
would a student model outperform a teacher model trained on 30% labeled data?
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Chapter 9
Conclusion

Two teacher/student (T/S) networks were implemented to explore semi-supervised
learning for ASR. The teacher model was built on a deep neural network (DNN),
and the student model was built on the same DNN architecture. The T/S net-
works were trained on Mel-frequency cepstral coefficients (MFCC) and feature-
space maximum likelihood linear regression (fMLLR) features. Both monophones
and triphones were used as targets in two separate networks. The features and the
targets were obtained through the Kaldi toolkit.

The teacher model was trained on a full set of manually annotated data and a
student model trained on a full set of automatically annotated data provided by
the teacher model. The models achieved the most optimal results when trained
on fMLLR features. A PER of 27.42 % was achieved from the baseline student
model when trained on fMLLRs and monophone targets. The worst student model
achieved a PER of 39.77% when trained on MFCCs and triphone targets. Addition-
ally, the monophone models outperformed the triphone models. Due to memory
issues and inaccurate implementation of data generators for the triphones, the
triphones achieved surprisingly lower accuracy rates than expected.

Regarding the T/S network performance, the student model achieved similar
accuracies as its teacher model on the test set. However, the student model did
not improve its performance on new, unlabeled data. The student models relied
heavily on the performance of the teacher models. Hence, if the frame accuracy
rates of the teacher model were to be improved, the student model’s performance
would also improve, considering it copies teacher models behavior.

Although the T/S network for semi-supervised learning shows promising results,
our results also indicate that higher accuracy rates are achievable for T/S models
if the triphones had been appropriately implemented.
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A MFCC and monophones

from keras.preprocessing.sequence import TimeseriesGenerator
from keras.models import Sequential
from keras.layers import Input, Dense, Activation, Dropout
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping
from keras.callbacks import Callback
from keras.utils import to categorical
from keras.models import Model, load model
from sklearn.metrics import classification report , confusion matrix
from matplotlib.ticker import PercentFormatter
import matplotlib.ticker as mtick

from sklearn.model selection import GridSearchCV
from keras.wrappers.scikit learn import KerasClassifier

import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow.keras as keras
import numpy as np
import pickle
import pandas as pd
import random
import sys
import itertools

#Show full numpy array
np. set printoptions (threshold=sys.maxsize)

#We have the saved pickle file , now we need to access the pickled file :
# open a file , where you stored the pickled data
file = open('mfcc train.pckl', 'rb')

# dump information to that file
mfcc train = pickle.load( file )
# close the file
file . close ()
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file = open('mfcc test.pckl', 'rb')
mfcc test = pickle.load( file )
file . close ()

file = open('mfcc dev.pckl', 'rb')
mfcc val = pickle.load( file )
file . close ()

#Monophones
#Targets for the training data:
targets = {}
nTargets = 0
for n in range(1, 31):

with open('mono ali.'+str(n)+'.pdf.txt') as f :
monoali1 = [x.strip() for x in f . readlines () ]

for item in monoali1:
#print(item)
data = item.split () #Split a string into a list where each word is a

list item
#print(data)
numdata = np.array([int(el) for el in data [1:]]) #here each words

become a item
#print(numdata)
targets [data [0]] = numdata
nTargets = np.max([nTargets, numdata.max()])

nTargets += 1

devTargets = {}
dev nTargets = 0

for n in range(1,2):
#Targets for the validation data:
with open('mono ali dev.'+str(n)+'.pdf.txt') as f :

monoali dev = [x.strip() for x in f . readlines () ]
for item in monoali dev:

data dev = item.split() #Split a string into a list where each word is
a list item

numdata dev = np.array([int(el) for el in data dev [1:]]) #here each
words become a item

devTargets[data dev[0]] = numdata dev
dev nTargets = np.max([dev nTargets, numdata dev.max()])

dev nTargets += 1
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testTargets = {}
test nTargets = 0
for n in range(1,2):

with open('mono ali test.'+str(n)+'.pdf.txt') as f :
monoali test = [x. strip () for x in f . readlines () ]

for item in monoali test:
data test = item.split () #Split a string into a list where each word is

a list item
numdata test = np.array([int(el) for el in data test [1:]]) #here each

words become a item
testTargets [ data test [0]] = numdata test
test nTargets = np.max([test nTargets, numdata test.max()])

test nTargets += 1

phonemes = ['sil' , 'aa' , 'ae' , 'ah' , 'ao' , 'aw', 'ax' , 'ay' , 'b' , 'ch' , ' cl ' , '
d' , 'dh', 'dx', 'eh' , ' el ' , 'en' , 'epi ' , 'er ' , 'ey' , ' f ' , 'g' , 'hh', ' ih ' ,
' ix ' , ' iy ' , ' jh ' , 'k' , ' l ' , 'm', 'n' , 'ng' , 'ow', 'oy' , 'p' , 'r ' , 's ' , 'sh'
, 't ' , 'th' , 'uh', 'uw', 'v' , ' vcl ' , 'w', 'y' , 'z ' , 'zh' ]

states = {' sil ' : [0, 1, 2], 'aa' : [3, 4, 5], 'ae' : [6, 7, 8], 'ah' : [9, 10,
11], 'ao' : [12, 13, 14], 'aw': [15, 16, 17], 'ax' : [18, 19, 20], 'ay' :
[21, 22, 23], 'b' : [24, 25, 26], 'ch' : [27, 28, 29], ' cl ' : [30, 31, 32], '
d' : [33, 34, 35], 'dh': [36, 37, 38], 'dx': [39, 40, 41], 'eh' : [42, 43,
44], ' el ' : [45, 46, 47], 'en' : [48, 49, 50], 'epi ' : [51, 52, 53], 'er ' :
[54, 55, 56], 'ey' : [57, 58, 59], ' f ' : [60, 61, 62], 'g' : [63, 64, 65], '
hh': [66, 67, 68], ' ih ' : [69, 70, 71], ' ix ' : [72, 73, 74], ' iy ' : [75, 76,
77], ' jh ' : [78, 79, 80], 'k' : [81, 82, 83], ' l ' : [84, 85, 86], 'm': [87,
88, 89], 'n' : [90, 91, 92], 'ng' : [93, 94, 95], 'ow': [96, 97, 98], 'oy' :
[99, 100, 101], 'p' : [102, 103, 104], 'r ' : [105, 106, 107], 's ' : [108, 109,
110], 'sh' : [111, 112, 113], ' t ' : [114, 115, 116], 'th' : [117, 118, 119],

'uh': [120, 121, 122], 'uw': [123, 124, 125], 'v' : [126, 127, 128], ' vcl ' :
[129, 130, 131], 'w': [132, 133, 134], 'y' : [135, 136, 137], 'z ' : [138,
139, 140], 'zh' : [141, 142, 143]}

def frameConcat(x,splice, splType):
validFrm = int( np.sum(np.sign( np.sum( np.abs(x), axis=1) )) )
nFrame, nDim = x.shape

if ( splType == 1):
spl = splice
splVec = np.arange(0, int(2∗spl+1), 1)

else:
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spl = int(2∗splice)
splVec = np.arange(0, int(2∗spl+1), 2)

xZerosPad = np.vstack([np.zeros((spl, nDim)), x[0:validFrm ,:], np.zeros((
spl , nDim))])

xConc = np.zeros( (validFrm, int(nDim∗(2∗splice+1))) )

for iFrm in range(validFrm):
xConcTmp = np.reshape(xZerosPad[iFrm+splVec,:], (1,int((2∗splice+1)∗

nDim)) )
xConc[iFrm, :] = xConcTmp

return xConc

model = Sequential()
model.add(Dense(143, activation='relu', input shape=(143,)))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(256, activation='relu'))
model.add(Dense(nTargets, activation='softmax'))
model.compile(optimizer='adam', loss='categorical crossentropy', metrics=['

accuracy'])
model.summary()

#13 MFCC:
x train = np.zeros((0, 143)) #13∗11, 5 frames on each side of the current mfcc
x test = np.zeros((0, 143))
x val = np.zeros((0, 143))
y train = np.zeros((0, nTargets))
y test = np.zeros((0, test nTargets))
y val = np.zeros((0, dev nTargets))

#Monophones:
for keys in mfcc train.keys() :

mfccarray = mfcc train[keys]
x mean = np.mean(mfccarray, axis=0)
x std = np.std(mfccarray, axis=0)
mfcctrain normalized = ( mfccarray − x mean ) / x std
trainConc=frameConcat(mfcctrain normalized, 5, 1) #should give 13∗11
x train = np.vstack((x train, trainConc)) #concatenate mfcc

targetsarray = targets[keys]
Labels = np.eye(nTargets)
targetOneHot = Labels[targetsarray, :]
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y train = np.vstack((y train, targetOneHot)) #concatenated targets

for keys in mfcc val.keys() :
valarray = mfcc val[keys]
mfccval normalized = ( valarray − x mean ) / x std
valConc=frameConcat(mfccval normalized, 5, 1)
x val = np.vstack((x val, valConc))

targetsarray val = devTargets[keys]
Labels val = np.eye(dev nTargets)
targetOneHot val = Labels val[targetsarray val, :]
y val = np.vstack((y val, targetOneHot val))

for keys in mfcc test .keys() :
testarray = mfcc test[keys]
mfcctest normalized = ( testarray − x mean ) / x std
testConc=frameConcat(mfcctest normalized, 5, 1)
x test = np.vstack((x test, testConc))

targetsarray test = testTargets[keys]
Labels test = np.eye(test nTargets)
targetOneHot test = Labels test[ targetsarray test , :]
y test = np.vstack((y test, targetOneHot test))

callback = tf.keras. callbacks .EarlyStopping(monitor='val loss', patience=6)
history = model.fit(x train , y train , validation data=(x val, y val) ,

batch size=256, epochs=20, callbacks=[callback], verbose=1, shuffle=True)
numberOfEpochs = len(history.history['loss'])

#Test model: (on full data set)
score , acc = model.evaluate(x test, y test , batch size=256, verbose=1)
print('Test score : ' , score)
print('Test accuracy:' , acc)

targetClass = np.where(y test==1)[1]
predictedClass = model.predict classes(x test )

#MAKES LIST OF LIST FROM DICTIONARY
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statesValues = []
for keys in states .keys() :

phonemeStates = states[keys] #this is a list
statesValues .append(phonemeStates)

### PHONEME RECOGNITION ####

mapedState = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7,
7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13,

14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20,
20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26,

26, 26, 27, 27, 27, 28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32,
32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38,

38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44,
45, 45, 45, 46, 46, 46, 47, 47, 47]

# I've made two ways of checking whether the predicted states belong to the
same phoneme as the target states, both methods are correct:

#Method 1:
counter = 0
for i in range(len(predictedClass)):

if predictedClass[ i ] != targetClass[ i ]:
if mapedState[predictedClass[i]] == mapedState[targetClass[i]]:

counter += 1

'''
#Method 2:
correctPhonemePosition = []
stateInPhoneme = []
for i in range(len(y test )) :

if (predictedClass[ i ] != targetClass[ i ]) :
for index, nested list in enumerate(newArray):

if predictedClass[ i ] in nested list and targetClass[ i ] in
nested list :

correctPhonemePosition.append(index)
stateInPhoneme.append(i)

'''

###Recalculating accuracy
correct = 0
for j in range(len(y test)):

if predictedClass[ j ] == targetClass[j]:
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correct +=1

correctPhonemes = counter+correct

#Phoneme recognition:
newAccuracy = 100 ∗ (correctPhonemes/len(x test))
print('Phoneme recognition accuracy: ', newAccuracy)

### END PHONEME RECOGNITION ###

### SSL: Student model###

predicted = model.predict(x train, batch size=256, verbose=1)

model.save('model1.h5')
del model

student = load model('model1.h5')
student.summary()

callback = tf.keras. callbacks .EarlyStopping(monitor='val loss', patience=6)
history1 = student.fit (x=x train, y=predicted, validation data=(x val, y val) ,

batch size=256, epochs=20, callbacks=[callback], verbose=1, shuffle=True)

score , acc = student.evaluate(x test , y test )
print('Test score : ' , score)
print('Test accuracy: ' , acc)

### PHONEME RECOGNITION ###
predictedClass = student. predict classes (x test )

stateInPhoneme = []
for i in range(len(y test)):

if (predictedClass[ i ] != targetClass[ i ]) :
for index, nested list in enumerate(statesValues):

if predictedClass[ i ] in nested list and targetClass[i ] in
nested list :

stateInPhoneme.append(i)
#print(index)
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#Recalculating accuracy
correct = 0
for j in range(len(y test)):

if predictedClass[ j ] == targetClass[j]:
correct +=1

print('correct : ' , correct)

correctPhonemes = len(stateInPhoneme)+correct)

newAccuracy = 100 ∗ (correctPhonemes/len(predictedClass))
print('Phoneme recognition accuracy: ', newAccuracy)

### END PHONEME RECOGNITION ###

posPhoneme = []
posTarget = []
for i in range(len(y test)):

for index, nested list in enumerate(statesValues):
if predictedClass[ i ] in nested list :

posPhoneme.append(index)
if targetClass [ i ] in nested list :

posTarget.append(index)

y pred = posPhoneme
y = posTarget

cm=confusion matrix(y, y pred)

cm df2 = np.log(cm df)
plt . figure ( figsize =(31, 22))
plt .imshow(cm df2, interpolation='nearest', aspect='auto', cmap='Greens')
tick marks = np.arange(len(phonemes))
plt . xticks(tick marks, phonemes, fontsize=17)
plt . yticks(tick marks, phonemes, fontsize=17)
plt . savefig ( 'CMmonomfcc.png')
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B MFCC and triphones

np. set printoptions (threshold=sys.maxsize)

file = open('mfcc train.pckl', 'rb')

# dump information to that file
mfcc train = pickle.load( file )
# close the file
file . close ()

file = open('mfcc test.pckl', 'rb')
mfcc test = pickle.load( file )
file . close ()

file = open('mfcc dev.pckl', 'rb')
mfcc val = pickle.load( file )
file . close ()

states = {' sil ' : [0, 54, 49], 'aa' : [1, 134, 234, 394, 426, 574, 592, 610, 624,
816, 817, 849, 1065, 1213, 1315, 1470, 1506, 1507, 1595, 1596, 1618, 1628,
1666, 1691, 1721, 57, 115, 283, 380, 624, 791, 903, 938, 941, 1008, 1083,

1131, 1359, 1400, 1505, 1573, 95, 165, 321, 387, 541, 682, 699, 749, 1414,
1597, 1784, 1803], 'ae' : [59, 168, 296, 331, 383, 479, 606, 769, 806, 973,
976, 1201, 1335, 1426, 1456, 1737, 1800, 1830, 52, 666, 784, 841, 922,
1095, 1119, 1298, 1306, 1347, 1406, 1424, 1471, 1517, 1594, 1648, 1670,
1676, 1678, 1717, 1797, 2, 152, 198, 215, 464, 505, 716, 892, 911, 970,
1021, 1023, 1192, 1281], 'ah' : [3, 143, 245, 585, 586, 884, 1040, 1154,
1211, 1288, 1316, 1459, 1532, 1539, 1571, 1779, 1782, 1815, 1826, 1865, 77,
260, 452, 570, 751, 821, 885, 1117, 1343, 1550, 1570, 1713, 1729, 1852,

1856, 166, 356, 581, 727, 851, 989, 1006, 1078, 1257, 1713, 1714], 'ao' :
[4, 69, 157, 225,420, 485, 523, 601, 602, 622, 638, 665, 906, 936, 1019,
1068, 1262, 1362, 1443, 1465, 1525, 1582, 1635, 1642, 1707, 1791, 1792,
167, 444, 781, 889, 1019, 1224, 1250, 1536, 1566, 1790, 100, 117, 186, 219,
358, 623, 652, 765, 824, 1546, 1754, 1789], 'aw': [612, 628, 636, 811,

1181,1331, 1616, 1814, 76, 521, 932, 1003, 1232, 1549, 5, 110, 270, 330,
812, 994, 1175, 1294, 1428, 1831, 1843], 'ax' : [112, 206, 466, 562, 876,
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951, 999, 1203, 1333, 1436, 1547, 1654, 1719, 1723, 1734, 1785, 1861, 1869,
6, 177, 218, 278, 291, 323, 425, 549, 683, 750, 804, 1070, 1196, 1233,

1252, 1348, 1806, 1810, 1861, 1885, 291, 336, 466, 549, 561, 654, 750, 753,
804, 860, 1096, 1097, 1144, 1233, 1364, 1464, 1527, 1806, 1817, 1854,

1880], 'ay' : [7, 75, 326, 441, 609, 772, 773, 913, 955, 1012, 1035, 1243,
1275, 1313, 1346, 1444, 1542, 1560, 1602, 1606, 1643, 1644, 1645, 217, 857,
909, 1012, 1164, 1317, 1318, 1329, 1346, 1629, 1639, 50, 92, 181, 339,

355, 375, 378, 544, 546, 745, 833, 1141, 1165, 1208, 1329, 1346, 1447,
1492, 1553], 'b' : [481, 626, 757, 802, 943, 1177, 1278, 98, 391, 402, 589,
801, 871, 943, 944, 1277, 8, 158, 265, 415, 584, 715, 748, 912, 943, 1066],
'ch' : [9, 135, 1029, 1475, 1520, 1775, 197, 332, 545, 759, 958, 1029,

1220, 1412, 1610, 1674], ' cl ' : [10, 60, 179, 244, 248, 320, 351, 366, 418,
448, 467, 511, 551, 583, 607, 639, 879, 887, 977, 1045, 1058, 1079, 1110,
1182, 1189, 1319, 1388, 1395, 1423, 1457, 1460, 1544, 1556, 1637, 1682,
1686, 1733, 88, 170, 220, 250, 251, 294, 338, 365, 595, 598, 831, 858, 861,
878, 916, 931, 1004, 1044, 1088, 1176, 1241, 1370, 1373, 1386, 1515, 1524,
1540, 1608, 1636, 1673, 1684, 1686, 1701, 1736, 1751, 56, 129, 146, 169,

211, 243, 293, 308, 386, 408, 411, 414, 721, 831, 868, 1024, 1087, 1174,
1349, 1425, 1486, 1564, 1683, 1700, 1703, 1766], 'd' : [11, 498, 502, 508,
1009, 1401, 1600, 1726, 205, 502, 554, 898, 918, 1325, 1420, 1452, 126,
184, 205, 501, 593, 762, 893, 894, 920, 1325, 1387], 'dh': [12, 125, 335,
518, 1067, 1129, 1149, 1296, 1304, 1320, 196, 359, 635, 760, 946, 1848,
1855, 108, 368, 785, 908, 1129, 1194, 1273, 1599, 1794, 1809], 'dx': [651,
778, 832, 1013, 1240, 1502, 1662, 149, 1114, 1476, 1702, 13, 288, 633,
1094, 1310, 1503, 1529], 'eh' : [14, 164, 317, 403, 416, 461, 486, 573, 670,
741, 901, 1011, 1059, 1237, 1270, 1378, 1498, 1584, 1601, 1652, 1658,

1663, 1689, 1748, 1767, 1801, 1874, 1876, 63, 102, 162, 423, 462, 531, 687,
901, 1120, 1230, 1251, 1260, 1495, 1706, 1812, 136, 202, 207, 377, 407,

492, 631, 708, 910, 1121, 1225, 1258, 1495, 1561], ' el ' : [15, 547, 648,
1055, 1402, 1581, 1888, 1893, 104, 455, 718, 1461, 1485, 1842, 1879, 173,
273, 342, 815, 995, 1336, 1461, 1866, 1878], 'en' : [16, 771, 983, 1763,
1894, 290, 1091, 1323, 1339, 1895, 228, 525, 657, 1053, 1836], 'epi ' : [17,
345, 924, 1687, 1732, 345, 364, 528, 872, 1718, 1732, 872, 877, 963, 1338,
1718, 1732, 1802], 'er ' : [18, 124, 472, 520, 522, 538, 577, 616, 681, 722,
810, 827, 882, 921, 1071, 1173, 1183, 1212, 1434, 1451, 1453, 1462, 1513,
1563, 1578, 1580, 1603, 1604, 1656, 1657, 1669, 51, 187, 192, 249, 341,
412, 480, 490, 565, 605, 770, 865, 888, 917, 1038, 1046, 1199, 1231, 1383,
1391, 1516, 1534, 1559, 1638, 1655, 1697, 74, 127, 145, 292, 314, 406, 491,
537, 559, 600, 742, 803, 862, 919, 925, 975, 1005, 1060, 1116, 1158, 1185,
1467, 1512, 1649], 'ey' : [19, 147, 174, 333, 346, 433, 504, 823, 1010,

1082, 1268, 1301, 1321, 1382, 1523, 1626, 1795, 1805,1839, 1841, 1882, 71,
240, 445, 625, 1089, 1153, 1299, 1398, 1545, 1557, 1585, 1849, 1857, 1883,
1886, 1889, 1892, 55, 212, 247, 252, 434, 517, 603, 676, 705, 867, 899,
935, 1113, 1269, 1667, 1681, 1783, 1891], ' f ' : [20, 266, 376, 470, 558,
560, 863, 956, 980, 1187, 1358, 1407, 68, 107, 216, 347, 552, 557, 572,
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674, 743, 1168, 254, 347, 515, 572, 744, 754, 934, 1167, 1186, 1198, 1256],
'g' : [21, 474, 1478, 1479, 257, 318, 685, 907, 1169, 161, 257, 720, 826,

1477, 1572], 'hh': [396, 580, 655, 1105, 1133, 1350, 1354, 1396, 1634,
1664, 1675, 1679, 1828, 1829, 148, 155, 350, 566, 755, 880, 1289, 1538,
1625, 1832, 22, 286, 316, 859, 968, 971, 1161, 1172, 1450, 1497, 1765], ' ih
' : [132, 153, 263, 389, 487, 510, 691, 818, 883, 896, 959, 1034, 1061,
1126, 1244, 1380, 1390, 1484, 1494, 1499, 1537, 1609, 1617, 1646, 1647,
1709, 1730, 1770, 1845, 1859, 1860, 1871, 1875, 23, 62, 185, 284, 468, 478,
702, 792, 839, 967, 1041, 1309, 1409, 1469, 1659, 1693, 1735, 87, 180,

194, 325, 329, 582, 619, 627, 647, 768, 828, 967, 1085, 1586, 1735], ' ix ' :
[24, 111, 235, 334, 354, 410, 442, 482, 599, 663, 700, 1150, 1267, 1324,
1371, 1558, 1612, 1641, 1712, 1725, 1727, 1771, 1781, 1808, 1824, 1825,
1837, 1840, 1870, 81, 89, 259, 281, 392, 393, 454, 659, 830, 1049, 1104,
1200, 1253, 1291, 1326, 1330, 1463, 1680, 1710, 1769, 1808, 1820, 1840,
1850, 1872, 116, 222, 281, 322, 370, 453, 550, 926, 1049, 1052, 1115, 1276,
1291, 1381, 1411, 1458, 1631, 1680, 1722, 1728, 1823], ' iy ' : [70, 191,

233, 303, 306, 357, 449, 512, 563, 618, 634, 783, 842, 869, 964, 996, 1190,
1202, 1218, 1254, 1342, 1369, 1431, 1432, 1437, 1449, 1472, 1493, 1543,

1757, 1758, 1772, 1774, 25, 123, 236, 237, 542, 621, 667, 713, 761, 965,
1007, 1138, 1242, 1284, 1356, 1393, 1521, 1551, 1552, 1633, 1653, 1661,
1704, 1756, 53, 103, 119, 189, 213, 241, 421, 422, 424, 646, 814, 844, 900,
942, 1015, 1036, 1074, 1122, 1138, 1145, 1229, 1368, 1372, 1551, 1715,

1716], ' jh ' : [26, 1226, 1367, 1755, 209, 253, 1018, 144, 344, 604, 678,
680, 1421, 1508, 1838], 'k' : [27, 246, 315, 495, 794, 1016, 1101, 1227,
1340, 1341, 1468, 114, 279, 477, 579, 693, 840, 915, 1102, 1147, 1209,
1214, 1312, 1496, 79, 203, 255, 277, 328, 381, 430, 432, 519, 649, 686,
738, 793, 822, 969, 1293, 1389, 1496], ' l ' : [28, 67, 99, 276, 343, 382,
514, 540, 594, 669, 746, 766, 800, 836, 886, 949, 1048, 1072, 1075, 1081,
1178, 1179, 1180, 1188, 1271, 1290, 1344, 1394, 1510, 1569, 86, 122, 182,
287, 469, 553, 696, 735, 736, 789, 864, 1028, 1106, 1108, 1109, 1283, 1305,
1455, 1568, 1630, 139, 188, 227, 340, 367, 379, 597, 664, 735, 805, 837,

940, 984, 1076, 1090, 1107, 1140, 1142, 1204, 1223, 1345, 1510, 1531], 'm':
[29, 101, 299, 447, 656, 672, 689, 697, 954, 960, 978, 1063, 1124, 1125,

1143, 1156, 1157, 1577, 160, 443, 483, 734, 854, 945, 978, 1025, 1063,
1084, 1086, 1171, 1473, 1535, 1567, 83, 91, 138, 256, 274, 275, 483, 484,
587, 608, 673, 731, 838, 937, 1026, 1155, 1374, 1504], 'n' : [30, 66, 567,
611, 617, 694, 853, 891, 979, 1054, 1162, 1195, 1249, 1376, 1441, 1446,
1575, 1579, 1607, 1627, 1692, 1743, 1760, 1762, 105, 193, 232, 319, 360,
398, 526, 588, 752, 756, 852, 1002, 1152, 1195, 1248, 1249, 1274, 1332,
1375, 1377, 1518, 82, 106, 172, 175, 352, 372, 397, 429, 588, 591, 630,
643, 834, 835, 875, 985, 1032, 1092, 1100, 1205, 1363,1500, 1695, 1745,
1773], 'ng' : [690, 717, 902, 1351, 1385, 1665, 137, 413, 719, 966, 1014,
1206, 31, 280, 300, 571, 905, 1352, 1385, 1593, 1708], 'ow': [64, 109, 363,
494, 578, 613, 662, 763, 1043, 1247, 1279, 1541, 1583, 1632, 1677, 1711,

1819, 1847, 1877, 178, 262, 458, 726, 847, 991, 1062, 1287, 1300, 1548,
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1555, 1696, 1834, 32, 231, 261, 298, 698, 737, 992, 1042, 1132, 1308, 1487,
1746, 1787, 1833, 1835], 'oy' : [576, 895, 1448, 1483, 1761, 130, 1148,

1864, 33, 190, 950, 1307, 1430, 1739], 'p' : [34, 615, 645, 764, 796, 1454,
72, 369, 404, 417, 456, 874, 961, 1170, 1216, 1217, 1490, 151, 327, 456,
457, 493, 614, 695, 797, 1136, 1217, 1282, 1334, 1511], 'r ' : [35, 61, 94,
239, 374, 431, 503, 509, 724, 740, 758, 779, 807, 914, 981, 1051, 1077,
1103, 1261, 1263, 1366, 1509, 1514, 1605, 1685, 1688, 1690, 171, 258, 313,
437, 463, 497, 530, 704, 739, 790, 829, 856, 957,974, 997, 1146, 1236,
1264, 1408, 1417, 1439, 1519, 1615, 1619, 78, 141, 159, 302, 362, 399, 435,
436, 437, 497, 564, 640, 658, 733, 739, 782, 990, 1207, 1210, 1286, 1397,

1418, 1429, 1519, 1530, 1740], 's ' : [36, 120, 131, 230, 267, 295, 309, 440,
471, 499, 536, 660, 767, 819, 845, 933, 1057, 1093, 1127, 1303, 1311,

1314, 1365, 1403, 1501, 1660, 1699, 1804, 1851, 1858, 1890, 48, 84, 513,
534, 535, 661, 688, 788, 1303, 1528, 1750, 1881, 1887, 58, 118, 183, 268,
348, 373, 388, 653, 730, 799, 846, 962, 1000, 1135, 1184, 1360, 1474, 1528,
1587, 1747, 1844, 1884], 'sh' : [37, 142, 460, 820, 1137, 1238, 1239, 1399,
80, 264, 728, 1415, 1416, 1438, 80, 337, 516, 642, 1001, 1022, 1037,

1694], ' t ' : [38, 385, 529, 947, 1080, 1197, 1228, 1410, 1590, 1788, 121,
272, 507, 590, 684, 701, 1056, 1099, 1404, 1533, 1788, 90, 204, 271, 312,
427, 446, 465, 506, 709, 848, 850, 1017, 1215, 1788], 'th' : [39, 787, 1123,
1873, 361, 873, 927, 214, 361, 777, 1031, 1255, 1413], 'uh': [711, 1234,

1235, 1357, 40, 1111, 1234, 1744, 40, 242, 533, 632, 1234, 1744], 'uw':
[41, 199, 238, 405, 668, 671, 729, 775, 986, 1020, 1047, 1098, 1222, 1614,
1822, 93, 140, 371, 671, 732, 1221, 1327, 1328, 1384, 1392, 1419, 1491,
1640, 1768, 195, 307, 401, 451, 475, 532, 596, 774, 786, 855, 866, 1030,
1039, 1219, 1295, 1322, 1328, 1361, 1384, 1392, 1589, 1613, 1752, 1753,
1827, 1846, 1862, 1863], 'v' : [42, 226, 703, 780, 843, 982, 1266, 1297,
1422, 1738, 1786, 229, 555, 556, 825, 998, 1069, 1246, 1554, 1562, 1759,
1799, 163, 289, 395, 438, 575, 692, 897, 1151, 1160, 1246, 1466, 1522,
1574, 1724], ' vcl ' : [43, 97, 282, 568, 650, 710, 747, 930, 993, 1064, 1130,
1139, 1355, 1442, 1480, 1591, 1598, 1620, 1624, 1668, 1796, 1818, 150,

201, 301, 349, 409, 459, 548, 569, 629, 706, 890, 1033, 1112, 1128, 1272,
1353, 1481, 1576, 1621, 1623, 1624, 1798, 96, 200, 223, 285, 297, 324, 384,
641, 679, 712, 723, 795, 798, 928, 929, 952, 1134, 1193, 1285, 1588, 1622,
1764], 'w': [44, 133, 476, 543, 637, 714, 725, 1027, 1163, 1265, 1302,

1565, 1611, 1813, 85, 221, 305, 450, 527, 539, 675, 813, 870, 948, 1405,
1526, 1650, 113, 210, 353, 524, 620, 808, 939, 1073, 1166, 1245, 1280,
1435, 1651], 'y' : [45, 208, 400, 473, 1592, 1698, 1720, 1780, 1868, 154,
224, 489, 677, 809, 1440, 1778, 1867, 488, 707, 1488, 1741, 1742], 'z ' :
[46, 269, 304, 310, 644, 987, 1050, 1159, 1191, 1259, 1427, 1433, 1482,
1777, 1807, 1816, 73, 128, 176, 439, 500, 776, 881, 904, 1118, 1445, 1672,
1749, 1776, 1811, 65, 156, 311, 390, 419, 428, 923, 953, 988, 1292, 1337,
1379, 1489, 1671, 1705, 1793, 1821], 'zh' : [47, 496, 1853, 972, 1853]}

phonemes = ['sil' , 'aa' , 'ae' , 'ah' , 'ao' , 'aw', 'ax' , 'ay' , 'b' , 'ch' , ' cl ' , '
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d' , 'dh', 'dx', 'eh' , ' el ' , 'en' , 'epi ' , 'er ' , 'ey' , ' f ' , 'g' , 'hh', ' ih ' ,
' ix ' , ' iy ' , ' jh ' , 'k' , ' l ' , 'm', 'n' , 'ng' , 'ow', 'oy' , 'p' , 'r ' , 's ' , 'sh'
, 't ' , 'th' , 'uh', 'uw', 'v' , ' vcl ' , 'w', 'y' , 'z ' , 'zh' ]

#Triphones
tritargets = {}
nTriTargets = 0
for n in range(1, 31):

with open('tri3 ali . '+str(n)+'.pdf.txt') as f :
triali = [x. strip () for x in f . readlines () ]

for item in triali :
data = item.split ()
numdata = np.array([int(el) for el in data [1:]])
tritargets [data [0]] = numdata
nTriTargets = np.max([nTriTargets, numdata.max()])

nTriTargets += 1

trival = {}
nTriVal = 0
for n in range(1, 2):

with open('tri3 ali dev . '+str(n)+'.pdf.txt') as f :
triali = [x. strip () for x in f . readlines () ]

for item in triali :
data = item.split ()
numdata = np.array([int(el) for el in data [1:]])
trival [data [0]] = numdata
nTriVal = np.max([nTriVal, numdata.max()])

nTriVal += 1

tritest = {}
nTriTest = 0
for n in range(1, 2):

with open(' tri3 ali test . '+str(n)+'.pdf.txt') as f :
triali = [x. strip () for x in f . readlines () ]

for item in triali :
data = item.split ()
numdata = np.array([int(el) for el in data [1:]])
tritest [data [0]] = numdata
nTriTest = np.max([nTriTest, numdata.max()])
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nTriTest += 1

def frameConcat(x,splice, splType):
validFrm = int( np.sum(np.sign( np.sum( np.abs(x), axis=1) )) )
nFrame, nDim = x.shape

if ( splType == 1):
spl = splice
splVec = np.arange(0, int(2∗spl+1), 1)

else:
spl = int(2∗splice)
splVec = np.arange(0, int(2∗spl+1), 2)

xZerosPad = np.vstack([np.zeros((spl, nDim)), x[0:validFrm ,:], np.zeros((
spl , nDim))])

xConc = np.zeros( (validFrm, int(nDim∗(2∗splice+1))) )

for iFrm in range(validFrm):
xConcTmp = np.reshape(xZerosPad[iFrm+splVec,:], (1,int((2∗splice+1)∗

nDim)) )
xConc[iFrm, :] = xConcTmp

return xConc

#13 MFCC:
x tri = np.zeros((0, 143)) #13∗11, 5 frames on each side of the current mfcc
x test = np.zeros((0, 143))
x val = np.zeros((0, 143))
y test = np.zeros((0, nTriTest))
y val = np.zeros((0, nTriVal))

trimodel = Sequential()
trimodel.add(Dense(512, activation='relu', input shape=(143,)))
trimodel.add(Dense(512, activation='relu'))
trimodel.add(Dropout(0.25))
BatchNormalization(axis=1)
trimodel.add(Dense(512, activation='relu'))
trimodel.add(Dropout(0.25))
trimodel.add(Dense(nTriTargets, activation='softmax'))
trimodel.compile(optimizer='adam', loss='categorical crossentropy', metrics=['

accuracy'])
trimodel.summary()
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for keys in mfcc train.keys() :
mfccarray = mfcc train[keys]
x mean = np.mean(mfccarray, axis=0)
x std = np.std(mfccarray, axis=0)
mfcctrain normalized = ( mfccarray − x mean ) / x std
trainConc=frameConcat(mfcctrain normalized, 5, 1) #should give 13∗11
x tri = np.vstack((x tri , trainConc)) #concatenate mfcc

triarray = np.concatenate(list( tritargets .values()))

def tri generator () :
used so far = 0
batch size=12929
OHE = K.one hot(triarray, nTriTargets)
while True:

if (used so far < (len(x tri)−batch size)+1):
x batch = x tri [ used so far :( used so far + batch size), :]
y batch = OHE[used so far:(used so far + batch size), :]
yield(x batch, y batch)
used so far += batch size

else:
used so far = 0

for keys in mfcc val.keys() :
valarray = mfcc val[keys]
mfccval normalized = (valarray − x mean ) / x std
valConc=frameConcat(mfccval normalized, 5, 1)
x val = np.vstack((x val, valConc))

target trival = trival [keys]
Labels val = np.eye(nTriVal)
val OHE = Labels val[target trival , :]
y val = np.vstack((y val, val OHE))

for keys in mfcc test .keys() :
testarray = mfcc test[keys]
mfcctest normalized = ( testarray − x mean ) / x std
testConc=frameConcat(mfcctest normalized, 5, 1)
x test = np.vstack((x test, testConc))

tri test = tritest [keys]
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Labels test = np.eye(nTriTest)
test OHE = Labels test[tri test , :]
y test = np.vstack((y test, test OHE))

callback = tf.keras. callbacks .EarlyStopping(monitor='val loss', patience=6)
history = trimodel. fit generator (generator=(tri generator()) , steps per epoch=

np.ceil(len(x tri )/12929), epochs=20, callbacks=[callback],
use multiprocessing=False, validation data=(x val, y val) , shuffle =True)

#Test model: (on full data set)
score , acc = trimodel.evaluate(x test , y test , verbose=0)
print('Test score : ' , score)
print('Test accuracy:' , acc)

targetClass = np.concatenate(list( tritest .values()))
predictedClass = trimodel. predict classes (x test )

#MAKES LIST OF LIST FROM DICTIONARY
statesValues = []
for keys in states .keys() :

phonemeStates = states[keys] #this is a list
statesValues .append(phonemeStates)

### PHONEME RECOGNITION TEST SET ###

stateInPhoneme = []
correctIndexStates = []
for i in range(len(x test)):

if (predictedClass[ i ] != targetClass[ i ]) :
for index, nested list in enumerate(statesValues):

if predictedClass[ i ] in nested list and targetClass[i ] in
nested list :

stateInPhoneme.append(i)

#Recalculating accuracy
correct = 0
for j in range(len(x test)):

if predictedClass[ j ] == targetClass[j]:
correct +=1
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correctPhonemes = len(stateInPhoneme)+correct

#Phoneme recognition:
newAccuracy = 100 ∗ (correctPhonemes/len(predictedClass))
print('Phoneme recognition accuracy TEST SET: ', newAccuracy)

### END PHONEME RECOGNITION ###

################### SSL: STUDENT ###
predTarget =trimodel.predict(x tri)

trimodel.save( 'modelTrimono.h5')
del trimodel

student2 = load model('modelTrimono.h5')
student2.summary()

def student generator():
used so far = 0
batch size=12929
while True:

if (used so far < (len(x val)−batch size)+1):
x batch = x tri [ used so far :( used so far + batch size), :]
y batch = predTarget[used so far:(used so far + batch size)]
yield(x batch, y batch)
used so far += batch size

else:
used so far = 0

callback = tf.keras. callbacks .EarlyStopping(monitor='val loss', patience=6)
history2 = student2.fit generator (generator=(student generator()),

steps per epoch=np.ceil(len(x tri )/12929), epochs=20, use multiprocessing
=False, validation data=(x val, y val) , callbacks=[callback] , shuffle =
True)

score , acc = student2.evaluate(x test , y test )
print('Test score : ' , score)
print('Test accuracy: ' , acc)
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### PHONEME RECOGNITION SSL ###
predictedClass = student2. predict classes (x test )
stateInPhoneme = []
for i in range(len(y test)):

if (predictedClass[ i ] != targetClass[ i ]) :
for index, nested list in enumerate(statesValues):

if predictedClass[ i ] in nested list and targetClass[i ] in
nested list :

stateInPhoneme.append(i)
#print(index)

#Recalculating accuracy
correct = 0
for j in range(len(y test)):

#for j in range(len(x train)) :
if predictedClass[ j ] == targetClass[j]:

correct +=1
print('correct : ' , correct)

correctPhonemes = len(stateInPhoneme)+correct
print(correctPhonemes)

#Phoneme recognition:
newAccuracy = 100 ∗ (correctPhonemes/len(predictedClass))
print('Phoneme recognition accuracy: ', newAccuracy)

posPhoneme = []
posTarget = []
for i in range(len(predictedClass)):

for index, nested list in enumerate(statesValues):
if predictedClass[ i ] in nested list :

posPhoneme.append(index)

if targetClass [ i ] in nested list :
posTarget.append(index)

y pred = posPhoneme
y = posTarget

cm=confusion matrix(y, y pred)
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C fMLLR and monophones

fMLLR features and monophone targets

from kaldiio import ReadHelper

#Show full numpy array
np. set printoptions (threshold=sys.maxsize)

train = dict()
with ReadHelper('scp:data−fmllr−tri3/train/feats.scp') as reader:

for key, feats in reader:
train [key] = feats

test = dict()
with ReadHelper('scp:data−fmllr−tri3/test/feats.scp') as reader:

for key, feats in reader:
test [key] = feats

dev = dict()
with ReadHelper('scp:data−fmllr−tri3/dev/feats.scp') as reader:

for key, feats in reader:
dev[key] = feats

#Monophones
#Targets for the training data:
targets = {}
nTargets = 0
for n in range(1, 31):

with open('mono ali.'+str(n)+'.pdf.txt') as f :
monoali1 = [x.strip() for x in f . readlines () ]

for item in monoali1:
#print(item)
data = item.split ()
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numdata = np.array([int(el) for el in data [1:]])
targets [data [0]] = numdata
nTargets = np.max([nTargets, numdata.max()])

nTargets += 1

devTargets = {}
dev nTargets = 0

for n in range(1,2):
#Targets for the validation data:
with open('mono ali dev.'+str(n)+'.pdf.txt') as f :

monoali dev = [x.strip() for x in f . readlines () ]
for item in monoali dev:

data dev = item.split()
numdata dev = np.array([int(el) for el in data dev [1:]])
devTargets[data dev[0]] = numdata dev
dev nTargets = np.max([dev nTargets, numdata dev.max()])

dev nTargets += 1

#Targets for the test data:
testTargets = {}
test nTargets = 0
for n in range(1,2):

with open('mono ali test.'+str(n)+'.pdf.txt') as f :
monoali test = [x. strip () for x in f . readlines () ]

for item in monoali test:
data test = item.split ()
numdata test = np.array([int(el) for el in data test [1:]])
testTargets [ data test [0]] = numdata test
test nTargets = np.max([test nTargets, numdata test.max()])

test nTargets += 1

phonemes = ['sil' , 'aa' , 'ae' , 'ah' , 'ao' , 'aw', 'ax' , 'ay' , 'b' , 'ch' , ' cl ' , '
d' , 'dh', 'dx', 'eh' , ' el ' , 'en' , 'epi ' , 'er ' , 'ey' , ' f ' , 'g' , 'hh', ' ih ' ,
' ix ' , ' iy ' , ' jh ' , 'k' , ' l ' , 'm', 'n' , 'ng' , 'ow', 'oy' , 'p' , 'r ' , 's ' , 'sh'
, 't ' , 'th' , 'uh', 'uw', 'v' , ' vcl ' , 'w', 'y' , 'z ' , 'zh' ]

def frameConcat(x,splice, splType):

66



validFrm = int( np.sum(np.sign( np.sum( np.abs(x), axis=1) )) )
nFrame, nDim = x.shape

if ( splType == 1):
spl = splice
splVec = np.arange(0, int(2∗spl+1), 1)

else:
spl = int(2∗splice)
splVec = np.arange(0, int(2∗spl+1), 2)

xZerosPad = np.vstack([np.zeros((spl, nDim)), x[0:validFrm ,:], np.zeros((
spl , nDim))])

xConc = np.zeros( (validFrm, int(nDim∗(2∗splice+1))) )

for iFrm in range(validFrm):
xConcTmp = np.reshape(xZerosPad[iFrm+splVec,:], (1,int((2∗splice+1)∗

nDim)) )
xConc[iFrm, :] = xConcTmp

return xConc

model = Sequential()
model.add(Dense(440, activation='relu', input shape=(440,)))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(256, activation='relu'))
model.add(Dense(nTargets, activation='softmax'))
model.compile(optimizer='adam', loss='categorical crossentropy', metrics=['

accuracy'])

model.summary()

#40−dimensional fMLLR:
x train = np.zeros((0, 440)) #40∗11, 5 frames on each side of the current mfcc
x test = np.zeros((0, 440))
x dev = np.zeros((0, 440))
y train = np.zeros((0, nTargets))
y test = np.zeros((0, test nTargets))
y dev = np.zeros((0, dev nTargets))

for keys in train .keys() :
fmllr = train[keys]
x mean = np.mean(fmllr, axis=0)
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x std = np.std(fmllr, axis=0)
train normalized = ( fmllr − x mean ) / x std
trainConc=frameConcat(train normalized, 5, 1) #should give 13∗11
x train = np.vstack((x train, trainConc)) #concatenate mfcc

targetsarray = targets[keys]
#numberOfClasses = np.max(targetsarray)+1
Labels = np.eye(nTargets)
targetOneHot = Labels[targetsarray, :]
y train = np.vstack((y train, targetOneHot)) #concatenated targets

for keys in dev.keys() :
devarray = dev[keys]
dev normalized = ( devarray − x mean ) / x std
devConc=frameConcat(dev normalized, 5, 1)
x dev = np.vstack((x dev, devConc))

targetsarray dev = devTargets[keys]
Labels dev = np.eye(dev nTargets)
targetOneHot dev = Labels dev[targetsarray dev, :]
y dev = np.vstack((y dev, targetOneHot dev))

for keys in test .keys() :
testarray = test[keys]
test normalized = ( testarray − x mean ) / x std
testConc=frameConcat(test normalized, 5, 1)
x test = np.vstack((x test, testConc))

targetsarray test = testTargets[keys]
Labels test = np.eye(test nTargets)
targetOneHot test = Labels test[ targetsarray test , :]
y test = np.vstack((y test, targetOneHot test))

callback = tf.keras. callbacks .EarlyStopping(monitor='val loss', patience=6)
history = model.fit(x train , y train , validation data=(x dev, y dev),

batch size=256, epochs=20, callbacks=[callback], verbose=1, shuffle=True)
numberOfEpochs = len(history.history['loss'])

score , acc = model.evaluate(x test, y test , batch size=256, verbose=0)
print('Test score : ' , score)
print('Test accuracy:' , acc)
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### PHONEME RECOGNITION ###
targetClass = np.where(y test==1)[1]
predictedClass = model.predict classes(x test )

mapedState = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7,
7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13,

14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20,
20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26,

26, 26, 27, 27, 27, 28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32,
32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38,

38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44,
45, 45, 45, 46, 46, 46, 47, 47, 47]

#MAKES LIST OF LIST FROM DICTIONARY
statesValues = []
for keys in states .keys() :

phonemeStates = states[keys] #this is a list
#print(phonemeStates)
statesValues .append(phonemeStates)

counter = 0
for i in range(len(y test)):

if (predictedClass[ i ] != targetClass[ i ]) :
for index, nested list in enumerate(statesValues):

if predictedClass[ i ] in nested list and targetClass[i ] in
nested list :

counter += 1

#Recalculating accuracy
correct = 0
for j in range(len(y test)):

if predictedClass[ j ] == targetClass[j]:
correct +=1

correctPhonemes = counter+correct

newAccuracy = 100 ∗ (correctPhonemes/len(x test))
print('Phoneme recognition accuracy: ', newAccuracy)

### END PHONEME RECOGNITION
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### SSL Student network ###

predicted = model.predict(x train, batch size=256, verbose=1)

model.save('modelfmllr.h5')
del model

student = load model('modelfmllr.h5')
student.summary()

callback = tf.keras. callbacks .EarlyStopping(monitor='val loss', patience=6)
history1 = student.fit (x=x train, y=predicted, validation data=(x dev, y dev),

batch size=256, epochs=20, callbacks=[callback], verbose=1, shuffle=True)

score , acc = student.evaluate(x test , y test )
print('Test score : ' , score)
print('Test accuracy: ' , acc)

### PHONEME RECOGNITION SSL ####
predictedClass = student. predict classes (x test )

stateInPhoneme = []
for i in range(len(y test)):

if (predictedClass[ i ] != targetClass[ i ]) :
for index, nested list in enumerate(statesValues):

if predictedClass[ i ] in nested list and targetClass[i ] in
nested list :

stateInPhoneme.append(i)

correct = 0
for j in range(len(y test)):

if predictedClass[ j ] == targetClass[j]:
correct +=1

print('correct : ' , correct)

correctPhonemes = len(stateInPhoneme)+correct
print(correctPhonemes)

newAccuracy = 100 ∗ (correctPhonemes/len(predictedClass))
print('Phoneme recognition accuracy: ', newAccuracy)
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### END PHONEME RECOGNITION SSL ###

### CONFUSION MATRIX ###

posPhoneme = []
posTarget = []
for i in range(len(y test)):

for index, nested list in enumerate(statesValues):
if predictedClass[ i ] in nested list :

posPhoneme.append(index)
if targetClass [ i ] in nested list :

posTarget.append(index)

y pred = posPhoneme
y = posTarget

cm=confusion matrix(y, y pred)
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D fMLLR and triphones

#Show full numpy array
np. set printoptions (threshold=sys.maxsize)

train = dict()
with ReadHelper('scp:data−fmllr−tri3/train/feats.scp') as reader:

for key, feats in reader:
train [key] = feats

test = dict()
with ReadHelper('scp:data−fmllr−tri3/test/feats.scp') as reader:

for key, feats in reader:
test [key] = feats

val = dict()
with ReadHelper('scp:data−fmllr−tri3/dev/feats.scp') as reader:

for key, feats in reader:
val [key] = feats

tritargets = {}
nTriTargets = 0
for n in range(1, 31):

with open('tri3 ali . '+str(n)+'.pdf.txt') as f :
triali = [x. strip () for x in f . readlines () ]

for item in triali :
numdata = np.array([int(el) for el in data [1:]])
tritargets [data [0]] = numdata
nTriTargets = np.max([nTriTargets, numdata.max()])

nTriTargets += 1

trival = {}
nTriVal = 0
for n in range(1, 2):
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with open('tri3 ali dev . '+str(n)+'.pdf.txt') as f :
triali = [x. strip () for x in f . readlines () ]

for item in triali :
data = item.split ()
numdata = np.array([int(el) for el in data [1:]])
trival [data [0]] = numdata
nTriVal = np.max([nTriVal, numdata.max()])

nTriVal += 1

tritest = {}
nTriTest = 0
for n in range(1, 2):

with open(' tri3 ali test . '+str(n)+'.pdf.txt') as f :
triali = [x. strip () for x in f . readlines () ]

for item in triali :
data = item.split ()
numdata = np.array([int(el) for el in data [1:]])
tritest [data [0]] = numdata
nTriTest = np.max([nTriTest, numdata.max()])

nTriTest += 1

ef frameConcat(x,splice, splType):
validFrm = int( np.sum(np.sign( np.sum( np.abs(x), axis=1) )) )
nFrame, nDim = x.shape

if ( splType == 1):
spl = splice
splVec = np.arange(0, int(2∗spl+1), 1)

else:
spl = int(2∗splice)
splVec = np.arange(0, int(2∗spl+1), 2)

xZerosPad = np.vstack([np.zeros((spl, nDim)), x[0:validFrm ,:], np.zeros((
spl , nDim))])

xConc = np.zeros( (validFrm, int(nDim∗(2∗splice+1))) )

for iFrm in range(validFrm):
xConcTmp = np.reshape(xZerosPad[iFrm+splVec,:], (1,int((2∗splice+1)∗

nDim)) )
xConc[iFrm, :] = xConcTmp

return xConc

#13 MFCC:
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x tri = np.zeros((0, 440)) #13∗11, 5 frames on each side of the current mfcc
x test = np.zeros((0, 440))
x val = np.zeros((0, 440))
y test = np.zeros((0, nTriTest))
y val = np.zeros((0, nTriVal))

trimodel = Sequential()
trimodel.add(Dense(512, activation='relu', input shape=(440,)))
trimodel.add(Dense(512, activation='relu'))
trimodel.add(Dropout(0.25))
BatchNormalization(axis=1)
trimodel.add(Dense(512, activation='relu'))
trimodel.add(Dropout(0.25))
trimodel.add(Dense(nTriTargets, activation='softmax'))
trimodel.compile(optimizer='adam', loss='categorical crossentropy', metrics=['

accuracy'])
trimodel.summary()

for keys in train .keys() :
fmllrarray = train[keys]
x mean = np.mean(fmllrarray, axis=0)
x std = np.std(fmllrarray, axis=0)
train normalized = ( fmllrarray − x mean ) / x std
trainConc=frameConcat(train normalized, 5, 1)
x tri = np.vstack((x tri , trainConc)) #concatenate mfcc

triarray = np.concatenate(list( tritargets .values()))

def tri generator () :

used so far = 0
batch size=12929
OHE = K.one hot(triarray, nTriTargets)
while True:

if (used so far < (len(x tri)−batch size)+1):
x batch = x tri [ used so far :( used so far + batch size), :]
y batch = OHE[used so far:(used so far + batch size), :]
yield(x batch, y batch)
used so far += batch size

else:
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used so far = 0

for keys in val .keys() :
valarray = val[keys]
val normalized = (valarray − x mean ) / x std
valConc=frameConcat(val normalized, 5, 1)
x val = np.vstack((x val, valConc))

target trival = trival [keys]
Labels val = np.eye(nTriVal)
val OHE = Labels val[target trival , :]
y val = np.vstack((y val, val OHE))

history = trimodel. fit generator (generator=(tri generator()) , steps per epoch=
np.ceil(len(x tri )/12929), epochs=20, use multiprocessing=False,
validation data=(x val, y val) , shuffle =True)

for keys in test .keys() :
testarray = test[keys]
test normalized = ( testarray − x mean ) / x std
testConc=frameConcat(test normalized, 5, 1)
x test = np.vstack((x test, testConc))

tri test = tritest [keys]
Labels test = np.eye(nTriTest)
test OHE = Labels test[tri test , :]
y test = np.vstack((y test, test OHE))

#Test model: (on full data set)
score , acc = trimodel.evaluate(x test , y test , verbose=0)
print('Test score : ' , score)
print('Test accuracy:' , acc)

targetClass = np.concatenate(list( tritest .values()))
predictedClass = trimodel. predict classes (x test )

#MAKES LIST OF LIST FROM DICTIONARY
statesValues = []
for keys in states .keys() :

phonemeStates = states[keys] #this is a list
statesValues .append(phonemeStates)
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### PHONEME RECOGNITION ####
stateInPhoneme = []
correctIndexStates = []
for i in range(len(x test)):

if (predictedClass[ i ] != targetClass[ i ]) :
for index, nested list in enumerate(statesValues):

if predictedClass[ i ] in nested list and targetClass[i ] in
nested list :

stateInPhoneme.append(i)

#Recalculating accuracy
correct = 0
for j in range(len(x test)):

if predictedClass[ j ] == targetClass[j]:
correct +=1

correctPhonemes = len(stateInPhoneme)+correct

newAccuracy = 100 ∗ (correctPhonemes/len(predictedClass))
print('Phoneme recognition accuracy TEST SET: ', newAccuracy)

###END PHONEME RECOGNITION ###

### SSL: Student model ###

predTarget =trimodel.predict(x tri)

trimodel.save( 'modelTrifmllr.h5')
del trimodel

studentS = load model('modelTrifmllr.h5')
studentS.summary()

def student generator():
used so far = 0
batch size=12929
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while True:
if (used so far < (len(x val)−batch size)+1):

x batch = x tri [ used so far :( used so far + batch size), :]
y batch = predTarget[used so far:(used so far + batch size)]
yield(x batch, y batch)
used so far += batch size

else:
used so far = 0

history2 = studentS.fit generator(generator=(student generator()),
steps per epoch=np.ceil(len(x tri )/12929), epochs=20, use multiprocessing
=False, validation data=(x val, y val) , shuffle =True)

score , acc = studentS.evaluate(x test, y test )
print('Test score : ' , score)
print('Test accuracy: ' , acc)

### PHONEME RECOGNITION SSL ###
predictedClass = studentS.predict classes (x test )

stateInPhoneme = []
for i in range(len(y test)):

if (predictedClass[ i ] != targetClass[ i ]) :
for index, nested list in enumerate(statesValues):

if predictedClass[ i ] in nested list and targetClass[i ] in
nested list :

stateInPhoneme.append(i)
#print(index)

#Recalculating accuracy
correct = 0
for j in range(len(y test)):

if predictedClass[ j ] == targetClass[j]:
correct +=1

print('correct : ' , correct)

correctPhonemes = len(stateInPhoneme)+correct

newAccuracy = 100 ∗ (correctPhonemes/len(predictedClass))
print('Phoneme recognition accuracy: ', newAccuracy)

### CM ###
posPhoneme = []
posTarget = []
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for i in range(len(predictedClass)):
for index, nested list in enumerate(statesValues):

if predictedClass[ i ] in nested list :
posPhoneme.append(index)

if targetClass [ i ] in nested list :
posTarget.append(index)

y pred = posPhoneme[0:len(posTarget)]
y = posTarget

cm=confusion matrix(y, y pred)
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