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Abstract

IoT Protocol Stack Current Optimizations for the nRF9160 SiP

by Røstad

This thesis presents current measurements of the nRF9160 configured with a common
IoT use-case. With optimal power-saving features enabled, the nRF9160 is capable of
consuming an average of 267mC for cellular network attachment, 213.9mC for server
connection establishment, 29.52mC for PSM sleep, and 28.76mC of application pay-
load transmission of 536-bytes every hour. This yields a theoretical battery life of
772.15 days for a reference battery capacity of 300mAh. These results are based on
the nRF9160 getting PSM T3412 timer greater than the utilized publication interval of
1 hour, PSM T3324 timer of 0 seconds (disabling eDRX), C-DRX interval timer of 0.32
seconds and CAT-NB1 as LPWAN of choice. However, the overall current consump-
tion and battery life can be greatly extended by setting a larger publication interval,
extending the utilized battery capacity, and reducing the overall payload size.



IV

Denne oppgaven presenterer aktuelle målinger av nRF9160 konfigurert for et ordinært
IoT bruksområde. Med optimale strømsparende funksjoner aktivert, er nRF9160 i
stand til å konsumere et gjennomsnitt på 267 mC for oppkobling til mobilnettverket,
213,9 mC for etablering av serverforbindelse, 29,52 mC i PSM-søvn og 28,76 mC for
overføring av applikasjonsspesifikk data på 536 byte, en gang hver time. Dette gir en
teoretisk batterilevetid på 772,15 dager for en referansebatterikapasitet på 300mAh.
Disse resultatene er basert på at nRF9160 får PSM T3412 timer verdi større enn det ut-
nyttede publikasjonsintervallet på 1 time, PSM T3324 timer verdi på 0 sekunder (eDRX
deaktivert), C-DRX interval ltimer på 0,32 sekunder og CAT-NB1 som valgt LPWAN. Det
det totale strømforbruket og batteriets levetid kan utvides kraftig ved å sette et større
publiseringsintervall, forlenge den utnyttede batterikapasiteten og redusere den totale
størrelsen på overført data.
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Chapter 1

Introduction

Throughout the information age, there has existed a tremendous push to connect ev-
erything to everything. This concept of interconnecting devices, often referred to as
the Internet of Things, aims to utilize wireless technology to enable device intercom-
munication over short and vast distances. In the last decade, the combination of new
features in cellular standards and more energy-efficient computing have spawned a
new wave of cellular IoT devices focused on high mobility and power conservation.
Cellular IoT devices are designed to be lightweight, compact, and maintenance-free,
meaning that they cannot carry large batteries and must possess the ability to last
years in between battery charges. Developers aim to make cellular IoT devices as
energy efficient as possible through the exploitation of new features in cellular stan-
dards and optimizing each wireless node for current consumption and low operating
expenses. Examples of such new wave IoT devices are long-range environmental mon-
itors and GPS based asset trackers.

1.1 Problem Statement

This project carries out the design and current measurements of an nRF9160 based
testbench system configured to mimic the behavior of a wireless sensor node. The pur-
pose of this project is to identify the IoT protocol stack configuration for the nRF9160
that yields the lowest possible current consumption, and possibly uncover some trade-
offs in achieving so. In other words, What is the lowest possible current consump-
tion obtainable for a common IoT use-case utilizing the nRF9160?. The process
of answering this problem statement involves testing for different publication inter-
vals, payload sizes, message-transport stack protocols, and parameters present in the
LTE-M and NB-IoT cellular standards. The test results will form the basis of future
implementations targeted towards making the nRF9160 more current efficient and aid
developers in making informed choices when configuring the nRF9160 for power con-
servation.

1.2 Disposition

This project divides into eight chapters, where each chapter documents some essential
elements of this research paper. Chapter two covers the theoretical motivation of
the assignment by explaining in necessary detail the functionality and features of the
technology utilized in this project. Chapter three documents a configurable testbench
capable of mimicking different IoT use-cases. It explains every component of, as well
as the synergy between firmware, software, and hardware in the system. Chapter
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four documents the use-case the testbench is configured with, and why. It also covers
the current measurement and simulation process, and choices made during the test
phase to adequately substantiate the test results. Chapter five contains test results
from two independent current measurement sources, along with the purpose of each
test, utilized test parameters, and discussion of the individual tests. The final chapters,
six, seven, and eight discusses and concludes the entirety of the project, and presents
further work.
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Chapter 2

Theory

2.1 nRF9160 SiP

The nRF9160 is an ultra-low-power System in Package with an integrated modem that
is compliant with 3GPPs LTE release 13 LTE-M (CAT-M1) and release 13/14 NB-IoT
(CAT-NB1, CAT-NB2) LPWAN protocol specifications. The nRF9160 is a globally cer-
tified SiP that supports operation on a wide range of LTE bands. In addition to the
onboard modem, the SiP includes an ARM Cortex-M33 application processor, on-chip
flash and RAM along with cryptographic security features. [25]

MQTT	/	CoAP	/	HTTP	/	LWM2M

BSD	Sockets	API

User	Application

TLS	/	DTLS

TCP	/	UDP

IPv4	/	IPv6

LTE	L1+L2+L3

Application	Processor

Modem

Figure 2.1: nRF9160 application- and modem firmware protocol stack.
[20]

The onboard modem LTE stack layers L1-L3, and Ipv4/Ipv6 + TCP/UDP network pro-
tocols are integrated components of the modem firmware which interfaces with the
application processor through a BSD secure sockets API. The BSD secure sockets API
abstracts application-layer behavior and protocols such as MQTT and CoAP away from
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modem coherent tasks. See figure 2.1 for an illustration of the nRF9160 network pro-
tocol stack. To enable ultra-low-power applications, the nRF9160 support PSM, eDRX,
and RAI power-saving features present in the CAT-M1 and CAT-NB1 protocol standards.
The nRF9160 operates between 3.0 and 5.5 volts.

2.2 nRF9160 DK

The nRF9160 Development Kit is a hardware development platform designed for the
evaluation of, and firmware development for the nRF9160. Figure 2.2 depicts a phys-
ical sample of the nRF9160 DK, and in the following list, key features of the DK are
listed. [24]

• nRF9160 SiP

• nRF52840 SoC

• LTE antenna

• GPS antenna

• UI elements such as Buttons,
switches and LEDs.

• Segger J-Link onboard debugger

• UART interface

• USB I/O interface

• SIM card socket for nano-SIM

• External power interface

• External current measurement inter-
face

Figure 2.2: nRF9160 DK

Energy Measurement Current drawn by the nRF9160 can be monitored by connect-
ing a power analyzer to the VDD_nRF bus on connector P24 on the DK. The nRF9160
is powered either via USB or VCC and GND on external supply connector P28. The ex-
ternal Segger J-Link debugger must be disconnected from the power supply to ensure
clean current measurements; this is done by setting the switch SW1 to the leftmost
position.
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2.3 nRF Connect SDK

The nRF Connect SDK (sdk-nrf) is a software development kit hosted by Nordic Semi-
conductor. NCS depends on a set of partially open source projects that facilitates
application development for the nRF9160. As of March 2020 NCS primarily depended
on nrfxlib, MCUboot, and The Zephyr Project. [23]

nrfxlib The nrfxlib repository contains RTOS-independent libraries compatible with
Nordic Semiconductors SoCs and SiPs. The BSD library, which is a part of nrfxlib,
is Nordic Semiconductors implementation of the BSD sockets API, which is a set of
standard function calls that can be used in a firmware application. The BSD library is
the primary interface to operate the nRF9160 modem via the application processor in
order to establish LTE-M, NBIOT, and GNSS connections. [26].

Zephyr Project The Zephyr Project is a scalable RTOS supporting multiple hardware
architectures, optimized for resource-constrained embedded devices. NCS depends on
a GitHub fork of the Zephyr Project, which is updated frequently to take advantage of
new features in the RTOS. Zephyr includes standard kernel services that can be taken
advantage of in application firmware development. Such kernel services include multi-
threading, timers, interrupts, dynamic memory allocation, and power management.
[14].

MCUBoot The MCUBoot Project is a secure bootloader for 32-bit MCUs. MCUboots
intention is to provide a common infrastructure for the bootloader and system flash
layout of the MCU system and enable easy software upgrade. [11]

nRF	Connect	SDK

Zephyr	RTOS

nrfxlib

MCUBoot

Application	firmware Modem	firmware

Closed	source*

Figure 2.3: nRF9160 firmware dependencies.
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2.4 The IoT Protocol Stack

The IoT Protocol Stack is visualized as an extension of the TCP/IP protocol model and
involves six layers; the physical layer, data link layer, network layer, transport layer,
application protocols layer, and the application service layer. The application protocols
and application service layer are often combined into the application layer, and the
data link and physical layers are often combined into the network access layer. Figure
2.4 illustrates the TCP/IP model along with popular protocols associated to their re-
spective layer. The figure also illustrates each layer’s contribution to the payload size
of a transmitted message. [15]

User	DataApp
Header

User	Data

User	DataApp
Header

TCP/UDP
Header

User	DataApp
Header

TCP/UDP
HeaderIP	Header

User	DataApp
Header

TCP/UDP
HeaderIP	HeaderEthernet

Header
20-bytes
/8-bytes

20-bytes20-bytes

Application

Transport

Network

Data	Link

Physical

Figure 2.4: IoT Protocol Stack [29]

Application Layer Application protocols handle the communication between appli-
cation layer entities and often do support readings or measurements from environ-
mental sensors. Application protocols are used to manage control information that ul-
timately affects UI elements and actuators on the device. Application protocols dictate
semantics and mechanisms for message exchange between communicating endpoints.
There exist a range of competing application layer message protocols with MQTT and
CoAP crowning as the most popular protocols in IoT.

Transport Layer The primary responsibility of the transport layer is to permit de-
vices to communicate on a source-to-destination basis. The transport layer defines a
level of services and status of the connection used when transporting data. The main
protocols included in the Transport Layers are TCP and UDP. TCP provides a connected
service where all packets are acknowledged. In contrast, UDP offers a fire-and-forget
solution where packets are not acknowledged offering a smaller overhead in terms of
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packet header size compared to TCP. Figure 2.5 illustrates the fundamental difference
between TCP and UDP in how messages are transmitted between a client and server.

Client Server

TCP	packet

TCP	ACK

Client Server

UDP	packet

Figure 2.5: TCP vs UDP

Additionally, the TCP spesification includes the concept of retransmission. If a packet
sent from either the client or server gets damaged or lost. The corresponding part will
retransmitt its original TCP packet until a TCP ACK is received. In general, the TCP
header conists of 20-bytes while the UDP header consist of 8-bytes.

Network Layer The network layer packages the data to be transmitted into data
packets, commonly referred to as IP datagrams. The datagrams contain source and
destination address information that is used to forward the datagrams across networks
between hosts. The most common protocol in the internet layer is the IP protocol.

Network Access Layer The network access layer combines the data link layer and
the physical layer of the OSI model. It defines specifications on how data is transmitted
over the network, including how bits are electrically or optically signaled by hardware
devices. The most common protocols included in the network access layer is Ethernet.
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2.4.1 Transport Layer Security

Transport Layer Security provides a secure communication channel between a client
and a server in transport protocols such as TCP and UDP. TLS is a cryptographic pro-
tocol which uses a handshake mechanism to negotiate various parameters to create
a secure connection between a client and a server. A TLS handshake consists of a
predetermined sequence of exchanged packets between the client and the server. The
network sequence diagram in figure 2.6 illustrates a typical TLS handshake. TLS for
UDP is often referred to as DTLS.

ServerClient

ClientHello

ServerHello	+	Certificate	+	Done

ClientKeyExchange	+	ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Figure 2.6: TLS Handshake

The TLS handshake consists of five overall steps. Initially, the client and server ne-
gotiate a cipher suite for the secure connection. The client transmits a ClientHello
packet to the server containing a list of all supported cipher suites. The server then
chooses a cipher suite found in that list and sends a ServerHello packet containing the
selected cipher suite along with the public and private certificates to be used in the
secure connection, and a packet telling the client that the server is done exchanging
certificates. The client then authenticates the certificate and digital signature used
in the connection. The last step is to perform key exchange functions that generate
symmetric session keys for the client and server. After all these steps are performed,
the connection is encrypted, and application data can be communicated securely.
The negotiated cipher suite determines the parameters of the TLS handshake, which
effectively sets the strength of the secure connection. A cipher suite is a combination
of algorithms used to negotiate security parameters during the TLS handshake. The
following list contains typical algorithms of TLS/DTLS cipher suites. [6] [10]

• Key Exchange Algorithms (RSA, DH, ECDH, DHE, ECDHE, PSK)

• Authentication/Digital Signature Algorithm (RSA, ECDSA, DSA)

• Bulk Encryption Algorithms (AES, CHACHA20, Camellia, ARIA)

• Message Authentication Code Algorithms (SHA-256, POLY1305)
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2.4.2 MQTT

The Message Queuing Telemetry Transport protocol is a lightweight, open, and easy-to-
implement publish/subscribe messaging protocol that is designed for constrained em-
bedded devices. MQTT is an application layer protocol that is considered a standard for
communication within IoT products and is supported by most message broker/server
services. MQTT enables interoperability and easy integration between supporting soft-
ware solutions and IoT products. [12, 13]

Control Packet Types

The functionality present in the MQTT protocol revolves around specific MQTT Control
Packets being exchanged in a specified manner between the MQTT Client and MQTT
Broker. Table 2.1 lists the most fundamental Control Packet types in the MQTT speci-
fication.

Control Packet Direction of flow Description
CONNECT Client ->Broker Client request connection to Broker
CONNACK Client <- Broker Connection request acknowledgement
PUBLISH Client ->Broker Publish message containing application payload

Table 2.1: Fundamental MQTT Control Packet types.

2.4.3 CoAP

The Constrained Application Protocol is a specialized web transfer protocol for use
with constrained nodes and constrained networks. CoAP provides a request/response
interaction model between the application layers of the interacting client and server,
where by default, messages are exchanged over UDP. [8]

Request/Response Model

CoAP requests and response semantics are carried in CoAP messages, which include
either a Method Code or a Response Code. A request is either sent in a Confirmable
(CON) or Non-Confirmable message (NON). Confirmable messages are confirmed with
a corresponding (ACK) message, while Non-Confirmable message are not. If the end-
point does not respond to a Confirmable message, the message will be re-transmitted
with exponentially increasing intervals until the acknowledgment is received.

Method Definitions

CoAP makes use of GET, PUT, POST, and DELETE methods in a similar manner to HTTP.

PUT The PUT method requests that content associated with a specified resource is
to be replaced with the application payload present in the request.
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2.4.4 LTE-M and NB-IoT

LTE-M and NB-IoT are modern cellular radio access technologies initially specified
by 3GPP in release 13. LTE-M and NB-IoT address the fast-expanding market of low
power wide area connectivity and do both undergo the LPWAN category of wireless
network types. CAT-M1 and CAT-NB1 are subcategories of LTE-M and NB-IoT, which
features the specifications listed in figure 2.2. [4] [5]

CAT-M1 CAT-NB1
Bandwidth 1.4 MHz 200 KHz
Downlink 1 Mbps ∼27 kbps
Uplink 1 Mbps ∼60 kbps
Power class 23 dBm 23 dBm
Distance ∼13 Km [9] ∼15 Km [9]
Power-saving PSM, eDRX, RAI PSM, eDRX, RAI

Table 2.2: CAT-M1 and CAT-NB1 release 13 specifications. [19]

Discontinuous Reception

In radiocommunications, there are, in general, two types of operating modes when the
User Equipment (UE) is switched on. These operating modes are often referred to
as Radio Resource Control (RRC) states where the UE can exist in either connected
mode (RRC connected) or idle mode (RRC idle). In RRC connected mode, the UE
uploads data to the network and monitors the physical control channel (PDCCH) for
information about the cellular network and potential incoming network packets. Being
in RRC connected consumes a lot of power because the UEs radio either transmits
data or monitors for available data, meaning the radio is always active. Discontinuous
reception (DRX) allows the UE to stop monitoring the PDCCH and enter sleep mode for
a certain period of time. Higher DRX interval will affect the UE’s responsiveness but
does, in turn, offer lower current consumption, which is especially useful for energy
constraint devices, not demanding high responsiveness. Figure 2.7 illustrates RRC
connected DRX (C-DRX).

DATA
RX/TX

PDCCH
monitor

PDCCH
monitor

PDCCH
monitor

PDCCH
monitor

UE	sleep

RRC	connected

Figure 2.7: C-DRX
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Upon a RRC connection release due to explicit signaling by the network or the RRC
inactivity timer1 timing out, the UE will change its RRC state to RRC idle. In RRC
idle mode, the UE performs network maintenance procedures such as Public Land
Mobile Network (PLMN) selection, cell selection, and reselection and receive/transmit
DateTime from/to the cellular network. DRX in RRC idle mode, often referred to as
I-DRX, enables the UE to sleep between such network maintenance procedures in a
similar fashion as C-DRX. The first illustration in figure 2.8 illustrates the behavior of
the UE in I-DRX mode.

RRC
connected

DRX
paging

RRC	idle

DRX
paging

DRX
paging

RRC
connected

DRX	cycle	<	2.56	s

RRC
connected

DRX
paging

DRX
paging

RRC
connected

DRX	cycle	<	minutes	or	hours

Figure 2.8: DRX vs eDRX

Extended Discontinuous Reception Extended Discontinuous Reception (eDRX) al-
lows the UE to extend the sleep cycle between DRX paging to hours and minutes, offer-
ing even more significant savings in energy consumption than traditional DRX. Figure
2.8 illustrates the main difference between I-DRX and I-eDRX in RRC idle mode. The
same principle applies to C-eDRX, where the C-DRX paging sleep cycles can be greatly
extended.

1The RRC inactivity timer is a cellular network controlled timer that is based on the UE not having any
downlink or uplink data within a set amount of time.
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Power Saving Mode

Power Saving Mode (PSM) is a power-saving technique that further exploits the con-
cept of sleep between communication instances in order to achieve even lower current
consumption compared to eDRX. PSM introduces two new timers, Tracking Area Up-
date (TAU) timer T3412 and Active Timer (AT) T3324. To enable PSM, the UE will
include desired timer values for the two timers in either the initial connection request
ATTACH2 or in a standalone TAU request to the cellular network. When the network
accepts a timer request, it will include the granted timer values in its network ATTACH-
accept- or standalone TAU-accept message. Note that it is not guaranteed that the
network accepts LTE parameter values requested by the UE. Figure 2.9 illustrates the
correlations between PSM timers in the context of UE network communication behav-
ior. When the cellular network has given its granted timer values, the UE can enter
PSM.

RRC
connected TAU

RRC	idle

PSM

I-DRX

T3324

T3412

Radio	on

Figure 2.9: UE behaviour in PSM.

Release Assistance Indication

Release Assistance Indication (RAI) allows the UE to include an additional flag in its
transmission message, signifying that it has no more data to transmit and that it does
not expect any data from the cellular network. This makes the cellular network release
the UE to RRC idle mode earlier than usual, enabling the UE to preserve more energy.

2ATTACH is the initial message transmitted by the UE signifying that it wants to connect to the cellular
network.
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Chapter 3

Testbench

3.1 System Synergy

The testbench system’s main purpose is to measure the current consumption of the
nRF9160 while it is running a configurable application firmware that supports multiple
IoT use-case instances. The testbench comprises of components to measure current
consumption, analyze network stack behavior, and to carry out behavior specific to a
use-case. See figure 3.1 for a general overview of the testbench setup.

Mosquitto	MQTT
Broker

Californium	CoAP
server

MQTT/TLS/TCP/LTE CoAP/DTLS/UDP/LTE

UART/USB

nRF9160	DK	+	iot_publisher	FW

VDD_nRF

N6705B	DC	Power
AnalyzernRFInsight

Wireshark 14585A	Control
and	Analysis	SW

Figure 3.1: Testbench System Synergy

The application firmware runs on an nRF9160 DK exchanging data with either a Mosquitto
MQTT broker or a Californium CoAP server, both running on a remote public IP server
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[1]. The nRF9160 DK connects to a computer running Linux via USB where nRFin-
sight1 is used to capture modem data traces that are forwarded to Wireshark to mon-
itor network traffic between the nRF9160 and the remote MQTT/CoAP servers. To
measure power consumption, a Keysight N6705B DC Power Analyzer connects to the
power supply of the nRF9160 on the DK. The Power Analyzer also supplies the power of
the DK to control input power parameters such as voltage and maximum current. The
Power Analyzer can also simulate battery capacities2. The Keysight 14585A Control-
and-Analysis-Software is used to manage the Power Analyzer and visualize the current
consumption of the nRF9160.

3.2 The iot_publisher Application Firmware

The iot_publisher application firmware was developed according to three design ob-
jectives. These are reconfigurability, flexibility, and simplicity. The design objectives
were chosen to streamline the testing process enabling fast switching between device
test parameters, easy debugging upon firmware malfunction, isolation of test critical
network functionality, and support for the necessary modem/network parameters. The
application firmware sequentially publishes data to a remote server and supports a
range of configurable options. The configurable options alter the network capabilities
of the device, application payload, message format, and the frequency in which the de-
vice will publish data. The application firmware supports four network protocol stack
combinations depicted in figure 3.2.

CAT-M1 CAT-M1CAT-NB1 CAT-NB1

TCP UDPTCP UDP

TLS	(Optional) DTLS(Optional)TLS(Optional) DTLS(Optional)

MQTT CoAPMQTT CoAP

IPIPIPIP

Figure 3.2: IoT Network Protocol Stack

For more information regarding the iot_publisher application firmware refer to the
project GitHub repository [16] and the attached API reference in appendix A.2. The
application firmware version GitHub commit hash for this project is
24f12578df5869609468716b80db11bbeafa58bb.

3.2.1 Application Firmware Architecture

Figure 3.3 illustrates the correspondence between the different firmware modules uti-
lized in the application firmware. Only the most relevant modules and interconnections
are illustrated for simplicity. For extended information regarding non-project specific

1Nordic Semiconductor internal modem trace capture and analysis software tool.
2A large portion of Embedded IoT devices runs on battery, being able to simulate battery capacities

enables the testbench to support a broader range of use-cases.
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firmware module refer to the NCS documentation [21] and the Zephyr RTOS documen-
tation [14].

Main

CoAP	cloud
backend

Cloud	API

MQTT	cloud
backend

MQTT

BSD	sockets	API

CoAP

Link	controller

AT	command
interface

Figure 3.3: Application firmware modules, grey marks project specific
libraries.

Main Governing module. Decides how frequent data is to be published to the dedi-
cated server, payload format, -size and -content, desired message/transport layer pro-
tocol combination, and the desired LTE network parameters.

Cloud API NCS module The generic Cloud API enables cloud backends with dif-
ferent functionality to be interchanged by manipulating a single configurable option.
This functionality maintains the integrity of the main module and does not require al-
tering of top-level code in order to satisfy each cloud backends distinct network stack
combination.

CoAP cloud backend The CoAP cloud backend is designed to support communica-
tion with a CoAP server and supports both non-secure UDP communication and secure
DTLS over UDP server communications. The CoAP cloud backend is compatible with
the generic cloud API.

MQTT cloud backend The MQTT cloud backend is designed to support communica-
tion with an MQTT message broker and supports both non-secure TCP communication
and secure TLS over TCP server communications. The MQTT cloud backend is com-
patible with the generic cloud API.
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CoAP and MQTT Zephyr RTOS modules The CoAP and MQTT modules formats
and controls the data traffic according to the specification of the respective message
protocol.

Link controller and AT command interface NCS modules The link controller
module issues single or combinations of AT commands to the onboard modem to con-
figure the desired LTE network parameters. Responses from the modem can also be
subscribed to for applications depending on data received from the modem.
The link controller utilizes the AT command interface module to issue AT commands to
the modem through the BSD socket API.

BSD Sockets API Zephyr RTOS module The BSD Sockets API is the primary in-
terface for communication between the application and the nRF9160 onboard modem.
[18]. See figure 2.1 in section 2.1 for a general network protocol stack implementation
for the iot_publisher application- and modem firmware.

3.2.2 Configurations

The application firmware configurable options are a part of Zephyr RTOS’s Kconfig
configurable system. For more information regarding Kconfig, refer to section 2.3.
Table 3.1 lists testbench relevant configurations.

Configuration Description
CLOUD_MESSAGE Message published to the server in string format.

CLOUD_PUBLICATION_INTERVAL
Interval in which messages will be published to
the server.

CLOUD_BACKEND Sets the utilized cloud backend.
MQTT_BACKEND_BROKER_HOST_NAME MQTT broker hostname address.
MQTT_BACKEND_BROKER_PORT MQTT broker hostname adress port.
MQTT_BACKEND_TLS_ENABLE Enables secure connection to MQTT broker.

MQTT_BACKEND_SEC_TAG
Location of the security credentials used
in the secure connection.

MQTT_BACKEND_KEEP_ALIVE
The frequency that the device sends periodic
pings to server.

COAP_BACKEND_BROKER_HOST_NAME CoAP server hostname address.
COAP_BACKEND_BROKER_PORT CoAP server hostname adress port.
COAP_BACKEND_DLTS_ENABLE Enables secure connection to CoAP server.

COAP_BACKEND_SEC_TAG
Location of the security credentials used
in the secure connection.

COAP_BACKEND_KEEP_ALIVE
How often the device sends periodic
pings to server3.

LTE_PSM_REQ Enable PSM.
LTE_PSM_REQ_RPTAU Sets the PSM requested periodic TAU.
LTE_PSM_REQ_RAT Sets the PSM requested active time.
LTE_EDRX_REQ Enable eDRX.
LTE_EDRX_REQ_VALUE Sets the eDRX intervals.
LTE_RAI_REQ Sets the RAI level.

Table 3.1: iot_publisher configurations
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3.2.3 Code Environment Setup

The application firmware code was developed with NCS on the nRF9160 DK using
the Linux operating system with the tools specified in table 3.2. To install the tools
required to build the firmware the following commands must be executed: [21]

1 sudo apt install --no-install-recommends git cmake ninja-build gperf \
2 ccache dfu-util device-tree-compiler wget \
3 python3-pip python3-setuptools python3-tk python3-wheel xz-utils file \
4 make gcc gcc-multilib
5 sudo pip3 install west -U

These commands do not install the GNU Arm Embedded Toolchain and Segger J-Link
Software so they must be downloaded and installed separately. Note that only version
7-2018-q2-update of the GNU Arm Embedded Toolchain is as of March, 2020 is com-
patible with NCS. After installation the GNU Arm Embedded Toolchain must be added
to the PATH environmental variable. The recommendation is to rename the folder to
"gnuarmemb", next add the following code line to the .bashrc shell script:

1 export ZEPHYR_TOOLCHAIN_VARIANT=gnuarmemb
2 export GNUARMEMB_TOOLCHAIN_PATH="~/gnuarmemb" # location to gnuarmemb folder

Create a folder with an appropriate name, access it, and clone the iot_publisher GitHub
repository using the following command:

1 git clone https://github.com/simensrostad/fw-iot-publisher

Access the newly cloned repository and run the following commands to build all the
NCS dependent repositories outside the iot_publisher folder.

1 west init -l
2 west update

After setting up NCS, the following three commands must be run from the folder con-
taining the newly cloned repositories. The commands install additional python pack-
ages that the NCS code environment depends on.

1 pip3 install -r zephyr/scripts/requirements.txt
2 pip3 install -r nrf/scripts/requirements.txt
3 pip3 install -r mcuboot/scripts/requirements.txt

After the aforementioned steps are executed the file three should look like the below
code listing:

1 <user specified name>
2 |___ .west
3 |___ mcuboot
4 |___ fw-nrfconnect-nrf
5 |___ nrfxlib
6 |___ zephyr
7 |___ fw-iot-publisher
8 |___ ...
9
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Building and Flashing

To build and flash the iot_publisher application firmware to a nRF9160 DK access the
fw-iot-publisher folder and run the following commands with the nRF9160 DK con-
nected to the USB interface of the PC.

1 west build -b nrf9160_pca20035ns
2 west flash

Modem Credentials

To set up a TLS/DTLS connection with a server, the onboard modem must be provided
with security credentials. The security credentials enable cryptographic functional-
ity in the onboard modem to properly negotiate the TLS/DTLS handshake and to en-
crypt/decrypt the secure server communications. The security credentials are flashed
independently of the application firmware, directly to the modem using the LTE link
monitor application present in the nRF Connect for Desktop application suite. nRF
Connect for Desktop is downloadable through Nordic Semiconductors official website
[22]. In the LTE link monitor application under Certificate Manager the desired cre-
dential combinations can be downloaded to the onboard modem and associated with a
security tag. Upon a secure connection, the application firmware informs the onboard
modem what credentials it wants to use by configuring the secure socket with a secu-
rity tag. The modem then uses the security credentials associated with that particular
security tag in the secure connection. Note that the modem can store multiple combi-
nations of security credentials associated with different security tags. [28]

The nRF Connect for Desktop application suite contains a programmer application
which can be used to flash the onboard modem with the latest firmware. The modem
firmware utilized in this testbench is v1.2.0.

Tool Type

IDE Visiual Studio Code
Software development version Control GitHub

Compilation tool Cmake
Programming language Python

Compilation tool Device Tree Compiler
Arm processor compiler tool GNU Arm Embedded Tool-chain

Repository manager West v0.7.0
nRF9160 programming tool Segger J-Link Software
nRF9160 programming tool nRF Command-Line Tools

Development kit for nRF9160 nRF9160 DK v0.9.0
C compiler GCC

nRF9160 programming tool Ninja
Operating system LINUX v18.04

Modem/link analyzer LTE link monitor v1.1.1
Modem network tracer nRFinsight v.1.1.5

Network packet capturer Wireshark

Table 3.2: Tools and equipment utilized during firmware development
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3.3 Test Servers

In order to properly test the iot_publisher application firmware, test servers for the
configurable network stacks was created with support for secure communication chan-
nels to properly handle and decrypt/encrypt transferred data for different application
firmware use-cases. The test servers are set up to have as many commonalities as
possible in order to properly compare the different configurations of the iot_publisher
application firmware.

Figure 3.4: Eclipse Californium CoAP and Mosquitto MQTT server frame-
works, logos.

By default, the test servers listens on all IPv4 and IPv6 addresses on the local machine,
port 1993 for the CoAP server and 1992 for the MQTT server. To test and monitor the
secure connections the test servers uses Pre-shared-key authentication. PSK does not
support the strongest ciphersuites available for TLS and DTLS, but allows for network-
transport-layer-data-traffic decoding in wireshark4. Both servers uses the following
PSK credentials, and ciphersuite in their TLS and DLTS connection:

• Pre-shared Key: 73656372657450534b ("secretPSK" in hex representation)

• PSK identity: Client_identity

• Ciphersuite: TLS_PSK_WITH_AES_128_CBC_SHA256

The testbench system also supports a more secure cipher suite based on ECDHE,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256. This cipher suite is very com-
mon in modern network solutions and would typically be supported by a finished IoT
products demanding a highly secure connection. This level of security is often required
for MQTT and CoAP communications with cloud providers’ standards solutions.

4Wireshark can be configured to decrypt secure communication between client and server by associat-
ing the pre-shared key with the cryptographic protocol.
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3.3.1 MQTT Eclipse Mosquitto Broker

The configurations and executables for the test servers can be cloned using the fol-
lowing command. The GitHub repository is located at [17]. GitHub commit hash
aab877cb0854bf96d582092d547f302e39a2589d

1 git clone https://github.com/simensrostad/iot-test-servers

The MQTT broker test server uses Eclipse Mosquitto v.1.6.8. To download Mosquitto
run the following command:

1 sudo apt-get install mosquitto

In order to run the MQTT TLS server run the following command:

1 cd iot-test-servers/mqtt_tls_test_server
2 mosquitto -c mosquitto.conf -v

The MQTT broker can be configured by manipulating the mosquitto.conf file with valid
configurations found in the Mosquitto MQTT broker documentation. [3]

3.3.2 CoAP Eclipse Californium Server

A CoAP/DTLS server was created in java utilizing the Eclipse Californium CoAP server
framework [2] v.2.0.0. The server supports a single customizable CoAP storage re-
source that retains the application payload of incoming CoAP PUT requests5, by de-
fault the resource is named iot_publisher. The CoAP server was developed with the
tools specified in figure 3.3.

Tool Type

Build automation tool Maven
Programming language Java DK v11.0.6

Code library Eclipse Califorium CoAP/DTLS framework v.2.0.0

Table 3.3: Tools and equipment utilized during development of the CoAP
test server.

To run the CoAP test server, access the folder containing the server JAR executables
and run one of the following commands depending on if the application firmware is
configured to use DTLS + UDP or plain UDP without security.

1 cd iot-test-servers/coap_dtls_test_server
2 java -jar coap-dtls-server.jar PSK # Secure option
3 java -jar non-secure-coap-server.jar # Non-secure option

The executable JAR file uses the server configuration present in the Californium.properties
file located in the same folder. These configurations can be altered to change the be-
havior of the CoAP test server.

5If the server receives multiple PUT requests addressing the iot_publisher resource, the server will
replace the older retained application message with the new one.
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Chapter 4

Use-Case and Test Conditions

4.1 Wireless Sensor Network Node

A common use-case of portable embedded devices enabled by wireless technology is a
WSN node. A WSN node is typically a low powered device that continuously samples
sensor data and transmits the data sequentially to a higher power node over a wireless
network. These types of low-powered devices are often utilized as environmental moni-
tors where the device reports changes in some environmental factors such as pressure,
temperature, and position. This use-case configuration mimics the behavior of a typi-
cal low powered WSN node connected to the LTE network transmitting an application
payload of a predetermined size sequentially. The WSN node use-case is ideal when
testing current consumption over different IoT Protocol Stack configurations. This is
due to the non-complex behavior of the WSN node, making testing, debugging, and re-
configuring easier. In the undermentioned lists, the constant and variable application
firmware configurations for this use-case are listed. The constant configurations do not
change throughout physical testing, which aids in isolating the variable configurations
that are of interest to be evaluated.

Constant Test Configurations

• Application Payload: 536 byte JSON object string1

• QoS: Non-confirmable (CoAP), At most once (MQTT)

• CoAP storage resource, MQTT topic: iot_publisher

• MQTT Broker keepalive: negligible2

• Mobile Network Provider (MNO): Telia

Variable Test Configurations

• Message/transport protocol

• Publication interval

• PSM T3412 and T3324 timers

• eDRX interval timer

• LPWAN (Cellular network mode)

• RAI

1The JSON object string format is utilized during physical testing with the DC Power Analyzer testbench
setup, while testing with the Online Power Profiler utilizes variable payload sizes with undefined content.

2A MQTT broker keepalive time exceeding the device publication interval is always requested, ensuring
that the link is kept alive solely by publication messages.
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Application Payload and Network Sequence Diagrams The application payload
comprises of multiple JSON string objects containing data retrieved from the onboard
modem of the nRF9160. This payload includes LTE network data, GPS data, and gen-
eral device data, such as SiP supply voltage. Also, data from an external accelerometer
is included. All data value entries have corresponding timestamps representing the
time the data was sampled in UNIX time. See appendix A.1 for the entire application
payload JSON string object. The WSN node use-case supports two message protocols
that manifest different network stack behavior, MQTT and CoAP. The sequence dia-
grams illustrated in figure 4.1 and 4.2 describes the behaviour of the iot_publisher
application firmware configured with the WSN node use-case for both the MQTT and
CoAP stack configurations. The network sequence diagrams represent the message,
transport, and internet layer communication between the client (nRF9160) and the
server.

TCP/IP TCP/IP MQTT
Broker

MQTT
Client

CONNECT	(67	B)
27	B	MQTT	header	+	40	B	TCP/IP	header

CONNACK	(44	B)
4	B	MQTT	packet	+	40	B	TCP/IP	header

PUBLISH	(594	B)
554	B	MQTT	packet	+	40	B	TCP/IP	header

TCP	ACK
40	B	TCP/IP	header

TCP	ACK
40	B	TCP/IP	header

TCP	ACK
40	B	TCP/IP	header

Figure 4.1: MQTT/TCP network stack implementation.
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UDP/IP UDP/IP CoAP
Server

CoAP
Client

PUT	(584	B)
556	B	CoAP	packet	+	28	B	UDP/IP	header

Figure 4.2: CoAP/UDP network stack implementation.

Use-Case Parameters The device’s configurable publication interval is respected by
disabling frequent ping requests to the server. The ping requests purpose is to keep
the MQTT connection alive by upholding the MQTT server’s keepalive time. By default,
the MQTT client requests a connection keepalive greater than its publication interval,
meaning that the MQTT connection is kept alive solely by publication messages. CoAP
does not possess the concept of keepalive timeout. However, like MQTT, the underly-
ing transport layer "connection" depends on the NAT session timeout. [7]

The Quality of service of publication messages is set to the lowest possible. At most
once for MQTT and non-affirmative for CoAP. This level of QoS means that none of the
messages containing the application payload published to the server gets an acknowl-
edgment at message-protocol level. This suits the low powered WSN node use-case
where limiting network traffic is more important than acknowledging every publica-
tion of sensor readings. Even though the use-case parameters do not support higher
levels of QoS, it still exists a fundamental difference between the CoAP and MQTT
stack configurations. MQTT uses TCP, which relies on transport level acknowledgment
while CoAP, which relies on UDP, does not. This means that even though there exist no
acknowledgement at message-protocol level for MQTT, all messages are still acknowl-
edged at transport level.
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4.2 Current Measurement and Simulations

The testing was conducted with two primary tools of measuring the total average cur-
rent consumption of the nRF9160 configured with the WSN node use-case specified in
section 4.1.

1. Online Power Profiler (OPP), theoretical setup [27]

2. DC Power Analyzer (DCPA) setup described in section 3.1, physical setup

Tradeoffs between OPP and DCPA The OPP is theoretical with certain constraints.
It is limited to a transmission output power of 23, 10 or 0 dBm, UDP packets only,
nRF9160 supply voltage level of 3.7V, no support for C-DRX estimations and no support
for eDRX Paging Time Window (PTW). On the other hand, the OPP allows for fast result
generation from input parameters, which makes it suitable to test over a vast amount
of input parameters in a stable and controlled environment. In contrast to the OPP, the
DCPA setup has no restrictions but generally consumes more time per test, especially
in tests depending on intervals and timers spanning several hours. The application
firmware also has to be flashed with new configurations between every test, which is
not feasible when performing extended testing of hundreds of stack configurations. In
addition to monitoring current consumption in the DCPA setup, the IoT protocol stack
of the UE needs to be continuously monitored with nRFinsight/Wireshark to ensure
that no unexpected behavior occurs during testing, polluting the results. Such unex-
pected behavior can be a modem/cellular network related (for instance, not getting the
requested LTE parameters from the cellular network and SIM card not shutting down
properly in PSM) or firmware related (crashing/halting). The OPP produces ideal re-
sults that are most likely not obtainable during real-world physical testing. However,
the intention of using the OPP is not to provide accurate real-world-reflective current
consumption results but mapping the impact of different UE configurations / LTE pa-
rameters have on current consumption for the given use-case. In other words, the
relationship between different IoT protocol stack configurations with respect to cur-
rent consumption. For stack configurations not supported by the OPP such as TCP
traffic, the DCPA setup is utilized.

Method of Testing The testing was conducted in two stages. Initially, the OPP was
used to map the current consumption of the nRF9160 over supported LTE- and de-
vice configurations. Then, the configurations from the OPP results yielding the most
promising results were applied to the iot_publisher application firmware during phys-
ical testing with DCPA setup. The test results are presented in section 5.0.1 in the
following format. Each test is associated with a number identifying the test, a pur-
pose of the test, test configurations, utilized current measuring tool, results in the
form of graphical depictions, and evaluation of the test. The graphical representations
are based on measured values located in appendix A.6 and A.5. The. The evaluation
contains battery lifetime estimations. This is to provide a human graspable metric rel-
ative to current consumption averages. This makes it easier to highlight good and bad
results based on each configuration’s contribution to the current consumption of the
UE.
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Battery Lifetime Estimations Battery lifetime estimations are calculated based on
ideal conditions (100 % battery discharge efficiency) using equation 4.1 and 4.2 using
a reference battery capacity of 300mAh. The following abbreviations are referred to
throughout testing and discussion.

• UE: Device Under Test, nRF9160 DK

• BC: Battery capacity in mAs

• TAC: Total average current consumption in mA

• PSM: PSM event in mC

• PSMD: Duration of PSM event in seconds

• ATT: LTE attach to cellular network in mC

• CON: DNS + TLS handshake (optional) + MQTT connect (optional) in mC

• PUB: Publication of application data in mC.

• PUBD: Duration of publication event in seconds

• HS: 3600, seconds in a hour.

• HD: 24, hours in a day.

Measurements based on total average current (OPP):

BC
TAC ∗ HS ∗ HD

= Days (4.1)

Measurements based on charge (DCPA):

((BC − ATT − CON) ∗ PSMD + PUBD
PSM + PUB

)÷ (HS ∗ HD) = Days (4.2)

Payload size The payload size referred to in the test results under Test configura-
tions is the total size of the payload accumulated down to transport layer level. This
means that the size of the payload reflects a combination of the application payload,
MQTT/CoAP header, and TCP/UDP header.
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Results

5.0.1 OPP - Test #1; Baseline Simulations

Purpose of the test The purpose of this test is to identify the current consumption
of the UE over varying payload sizes with PSM and eDRX disabled. This is to provide
worst-case baseline measurements that can be compared against in tests where power-
saving features are enabled.

Test Configurations
• Message protocol: NA

• Publication interval: 1 hour

• Payload size: Varying

• PSM disabled

• eDRX disabled

• C-DRX: 0.32 seconds CAT-M1, not
supported in OPP for CAT-NB1

• TX output power: 23dBm

• Clock stop current: 30µA

• Inactivity timer disabled

• Voltage: 3.7V
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Figure 5.1: OPP - Test #1; Baseline Simulations
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According to 5.1, a significant difference in current consumption at mA level is not
noticeable until the payload size is incremented in terms of kilobytes. The total aver-
age current consumption for 0kB and 10kB transmissions for CAT-M1 and CAT-NB1 is
1.7mA to 1.73mA for CAT-M1 and 35.3mA to 42.87mA for CAT-NB1. Battery lifetime
estimations with the reference battery charge for the aforementioned current con-
sumption averages amounts to 7.353 days (1.7mA), 7.225 days (1.73mA), 0.3541 days
(35.3mA) and 0.2916 days (42.87mA). This means that if the UE continuously stays in
RRC connected, the difference between transmitting 100-byte payload sizes in contrast
10kB payload is only ∼ 3 hours for CAT-M1 and 1.5 hours for CAT-NB1. The test results
suggest a very high radio start-up current consumption, which favors larger batched
data transmissions at less frequent transmission intervals compared to smaller pack-
ets published at more frequent intervals. Being in RRC connected mode consumes
1.7mA on average for CAT-M1. That is for small payload sizes. In contrast, publishing
100kB payloads consumes 2.02mA on average in RRC connected mode. This fact sug-
gests that the majority of the UE’s current consumption occurs during network RRC
connected network procedures such as monitoring the PDCCH and not when actually
publishing application-specific data.
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5.0.2 OPP - Test #2; PSM enabled - Variable Publication Intervals

Purpose of the test The purpose of this test is to look at the current consumption of
the UE when PSM is enabled over different data publication intervals.

Test Configurations
• Message protocol: NA

• Publication interval: Varying

• Payload size: 100 bytes

• PSM T3412: Varying

• PSM T3324: 0 seconds

• eDRX disabled

• C-DRX: 0.32 seconds CAT-M1, not
supported in OPP for CAT-NB1

• TX output power: 23dBm

• Clock stop current: 30µA

• Inactivity timer: 0 seconds

• Voltage: 3.7V
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Figure 5.2: OPP - Test #2; PSM enabled - Variable Publication Intervals

Figure 5.2 illustrates a clear trend in the UE’s current consumption, starting at 12.81µA
for CAT-M1 and 36.43µA for CAT-NB1 when using a publication interval of 1 hour. The
graphical trend in the figure displays a convergence of the UE’s current consumption
around the PSM floor current of 4µA [25] which makes sense becuase the UE spends
most of its time in PSM. At 24 hours between transmissions, the UE consumes, on aver-
age 4.37µA for CAT-M1 and 5.35µA for CAT-NB1 yielding a theoretical battery lifetime
of 2860.4 days (7.831 years) for CAT-M1 and 2336.4 days (6.397 years) for CAT-NB1
when calculating for the reference battery capacity. The difference in battery life when
comparing the current consumption of the UE with and without PSM enabled is ∼ 2.6
years for publication intervals of 1 hour when using CAT-M1 and ∼ 1 year for CAT-NB1
proving that PSM offers substantial increases in current consumption.
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5.0.3 OPP - Test #3; PSM enabled - Variable Payload Sizes

Purpose of the test The purpose of this test is to look at the current consumption of
the UE with PSM enabled over increasing payload sizes.

Test Configurations
• Message protocol: NA

• Publication interval: 1 hour

• Payload size: Varying

• PSM T3412: 1 hour

• PSM T3324: 0 seconds

• eDRX disabled

• C-DRX: 0.32 seconds CAT-M1, not
supported in OPP for CAT-NB1

• TX output power: 23dBm

• Clock stop current: 30µA

• Inactivity timer: 0 seconds

• Voltage: 3.7V
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Figure 5.3: OPP - Test #3; PSM enabled - Variable Payload Sizes

With PSM enabled a substantial increase in battery life can be achieved by reducing the
payload in terms of bytes. The average difference in battery life between increments
of 100 bytes is about 400 hours, meaning that if the application payload is reduced
with only 100 bytes, it amounts to about 17 days of extended battery life. The graph in
figure 5.3 displays a clear trend in the UE’s current consumption, starting at 12.81µA
(975.8 days) and 36.43µA (343.1 days) for CAT-M1 and CAT-NB1 respectively when us-
ing a payload size of 100 bytes. When utilizing a 1kB payload size, the average current
consumption amounts to 15.27µA (818.7 days) and 43.04µA (297.34 days) for CAT-M1
and CAT-NB1. By reducing the payload with 900 bytes, ∼ 520 days of prolonged bat-
tery life is achieved. This highly encourages compression and alternative serialization
formats to reduce the overall payload size.



Chapter 5. Results 31

5.0.4 OPP - Test #4; eDRX enabled - Variable I-eDRX Intervals

Purpose of the test The purpose of this test is to look at the current consumption of
the UE for different I-eDRX intervals when PSM is disabled.

Test Configurations
• Message protocol: NA

• Publication interval: 1 hour

• Payload size: 100 bytes

• PSM disabled

• eDRX interval: Varying

• C-DRX: 0.32 seconds CAT-M1, not
supported in OPP for CAT-NB1

• TX output power: 23dBm

• Clock stop current: 30µA

• Inactivity timer: 0 seconds

• Voltage: 3.7V
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Figure 5.4: OPP - Test #4; eDRX enabled - Variable I-eDRX Intervals.
Note that the y-axis scales logarithmically

The current consumption of the UE for different eDRX intervals starts at 3.14mA (CAT-
M1) and 10.34mA (CAT-NB1) for eDRX intervals of 0.16 seconds and approaches the
idle eDRX floor current of ∼ 25µA. This number is heavily influenced by the SIM clock
stop current because the SIM does not shut down during I-DRX sleep (frequently ac-
cessed). When comparing the current consumption of PSM and eDRX utilized indepen-
dently, PSM has the lowest consumption of 12.81µA compared to 30.17µA for eDRX
with the longest allowed value for CAT-M1 at 2621.44 seconds and 10485.6 for CAT-
NB1. Long I-eDRX intervals affect the responsiveness of the device. In the case of an
I-eDRX interval of 2621.44 seconds, one single I-DRX paging event occurs in-between
data transmissions when transmitting with 1-hour intervals. The UE consumes less
current taking advantage of PSM but will be less responsive than if standalone eDRX
is used instead. The onboard modem of the nRF9160 supports different eDRX intervals
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depending on the LPWAN. This is visible in the depicted graph where specific eDRX
interval values are not present in the measurements. When comparing the battery life
duration of standalone PSM versus standalone I-eDRX in CAT-M1, the PSM configu-
ration yields a battery lifetime of 975.8 days while the I-eDRX configuration yields a
battery lifetime duration of 414.3 days making the PSM configuration over twice as
energy-efficient. For CAT-NB1, this is also the case. If the I-eDRX interval of the UE is
increased to a maximum of 10485.76 seconds over a publication interval of 24 hours,
the UE still consumes a higher sleep current in eDRX. This is also highly colored by the
SIM clock stop current and the fact that every 10485.76 seconds, a DRX paging event
occurs consuming additional current. Figure 5.5 graphically represents the same test
but for I-eDRX values spanning from 40.96 to 10485.76.
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Figure 5.5: OPP - Test #4; eDRX enabled - Variable I-eDRX Intervals.
Zoomed in from I-eDRX interval 40.96. Linear y-axis.
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5.0.5 OPP - Test #5; PSM and eDRX enabled - Variable I-eDRX Intervals

Purpose of the test The purpose of this test is to look at the current consumption of
the UE for different I-eDRX intervals when PSM is enabled.

Test Configurations
• Message protocol: NA

• Publication interval: 1 hour

• Payload size: 100 bytes

• PSM T3412: 1 hour

• PSM T3324: 10 and 30 seconds

• eDRX interval: Varying

• C-DRX: 0.32 seconds CAT-M1, not
supported in OPP for CAT-NB1

• TX output power: 23dBm

• Clock stop current: 30µA

• Inactivity timer: 0 seconds

• Voltage: 3.7V
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Figure 5.6: OPP - Test #5; PSM and eDRX enabled - Variable I-eDRX
Intervals

Figure 5.6 illustrates the current consumption of the UE when both eDRX and PSM
power-saving features are enabled using a PSM T3324 timer value of 10 and 30 sec-
onds for both LTE modes. The graph states that CAT-NB1 benefits the most of in-
creasing the duration of the I-eDRX timer interval for both PSM active timer durations
because of its higher current consumption in general. When the I-eDRX timer interval
is set to 20.48 seconds, the UE manages to perform one single DRX paging interval
during the PSM active timer period before it enters PSM mode. For CAT-M1 the cur-
rent consumption of the UE for an I-eDRX interval timer of 20.48 amounts to 13.06µA
or ∼ 957.1 days which is an 18.7-day decrease compared to not utilizing I-eDRX at all
essentially setting the PSM T3324 timer to 0 seconds making the UE go straight to
PSM after RRC connected mode.
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5.0.6 OPP - Test #6; PSM enabled - Variable C-DRX Intervals

Purpose of the test The purpose of this test is to look at the current consumption of
the UE for different C-DRX intervals when PSM is enabled.

Test Configurations
• Message protocol: NA

• Publication interval: 1 hour

• Payload size: 564 bytes

• PSM T3412: 1 hour

• PSM T3324: 0 seconds

• eDRX disabled

• C-DRX: Variable

• TX output power: 23dBm

• Clock stop current: 30µA

• Inactivity timer: 60 seconds

• Voltage: 3.7V

• LPWAN: CAT-M1
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Figure 5.7: OPP - Test #6; PSM enabled - Variable C-DRX Intervals

See figure 5.7. With an inactivity time of 60 seconds, the UE consumes at average
105.05µA with a C-DRX interval of 0.01 seconds, yielding a battery lifetime estimation
of 118.54 days. If the highest allowed value for C-DRX is utilized (10.24 seconds), the
current consumption averages at 15.05µA, yielding an estimated battery life of 830.56
days, which is about eight times as effective. It should be noted that this is for quite
a large inactivity time that greatly exceeds the highest allowed value for C-DRX. The
lower inactivity time, the less C-DRX intervals contribute to the UE’s current conser-
vation unless PSM is disabled. When PSM is enabled, the UE enters PSM after RRC
connected if PSM AT (T3324) is set to 0 seconds, and in PSM, the UE consumes less
current than in between C-DRX and I-DRX paging events. The current measurements
in this test gave very inconsistent values between 0.04 and 0.512 seconds of C-DRX.
The expected trend is a graph that decreases exponentially. Perhaps these inconsistent
values are due to corrupt sampled values in the OPP.
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5.0.7 OPP - Test #7; LTE event charge - Variable Payload Sizes

Purpose of the test The purpose of this test is to look at the total charge per LTE
publication event over various payload sizes.

Test Configurations
• Message protocol: NA

• Publication interval: NA

• Payload size: Various

• PSM: NA

• eDRX: NA

• C-DRX: 0.32 seconds CAT-M1, not
supported in OPP for CAT-NB1

• TX output power: 23dBm

• Clock stop current: 30µA

• Inactivity timer: 0 seconds

• Voltage: 3.7V
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Figure 5.8: OPP - Test #7; LTE event charge - Variable Payload Sizes

The graph in figure 5.8 depicts a linear trend between payload size and charge per LTE
event for both LPWAN technologies. Utilizing this linear trend to calculate for charge
per payload byte results in LTE event costs of 7.5µC per payload byte + 33.17µC base
charge for CAT-M1 and 26.5µC per payload byte + 114.01µC base charge for CAT-
NB1. The base charge is the total charge cost of transmitting a LTE event without any
payload.
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5.0.8 DCPA - Test #1; Various Configurations

Purpose of the test The purpose of this test is to look at the real-world current con-
sumption of the UE when publishing the reference application payload in a sequential
manner over various stack configurations.

Test Configurations
• Message protocol: MQTT / CoAP

• Publication interval: 1 hour

• Payload size: 584/594 bytes

• PSM T3412 timer: 70 minutes

• PSM T3324 timer: 0 seconds

• eDRX disabled

• C-DRX: 0.32 seconds

• TX output power: 23dBm

• Clock stop current: 30µA

• Inactivity timer: NA

• Voltage: 3.7V
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Figure 5.9: DCPA - Tests; Various Configurations

1. MQTT + TCP + CAT-M1

2. MQTT + TCP + CAT-NB1

3. MQTT + TCP/TLS(PSK) + CAT-M1

4. MQTT + TCP/TLS(PSK) + CAT-NB1

5. MQTT + TCP/TLS(EDCHA) + CAT-M1

6. MQTT + TCP/TLS(EDCHA) + CAT-
NB1

7. CoAP + UDP + CAT-M1

8. CoAP + UDP + CAT-NB1

9. CoAP + UDP/DTLS(PSK) + CAT-M1

10. CoAP + UDP/DTLS(PSK) + CAT-NB1

11. CoAP + UDP/DTLS(PSK) + CAT-NB1,
RAI
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The graph in figure 5.9 illustrates current measurements across four types radio seg-
ments over eleven individual tests. The type of segment and its purpose are listed in
section 4.2. The ATT segment is equal for each test and only measured once for each
LPWAN. In the case of the ATT segment, CAT-NB1 consumes more current than CAT-
M1 when attaching to the cellular network, by about 90mC. Note that this is the case
of the modem having "cached" the cellular tower it connects to. This is probably the
more common case for most IoT WSN nodes and can be compared to being in close
proximity to a single cell tower over longer durations. This type of retention can dras-
tically reduce the time the modem needs to connect to a cellular tower.

For CON segments, the measurements display the same trend where CAT-M1 is more
energy-efficient than CAT-NB1. In general, the MQTT/TCP based configurations have
higher current consumption than the CoAP/UDP based configurations. This is due to
the fact that MQTT establishes a connection at the message-protocol level during this
segment. This means that a CONNECT will be transmitted to the MQTT broker with
a corresponding TCP ACK received, and a CONNACK will be receiving with a corre-
sponding TCP ACK transmitted. In CoAP/UDP, only a single DNS request is requested
during a CON segment. Comparing the non-secure tests to the PSK and EDCHA based
cipher suite options, the results are also as expected for CON segments. The non-
secure configurations do not have a TLS/DTLS handshake and thus consumes less cur-
rent. The PSK based handshake consumes a little more than the non-secure option and
less than the EDCHA based handshake. The EDCHA based handshake uses far more
than the PSK cipher suite. This is mainly because of the exchange of a much larger
certificate for the connection and the computing needed to encrypt/decrypt data.

In the DCPA measurements, the average PSM floor current and modem off1 current
was measured to ∼ 8.2µA average current. This is 4.2µA more than specified in the
specification for the nRF9160. This number is also constant through all the DCPA tests
and a number identical for both LPWAN technologies. PSM for one hour amounts to ∼
29.52mC.

For PUB segments, the total charge was, in general, higher for CAT-M1 than for CAT-
NB1. This is directly contradictory to the OPP simulations, where the CAT-M1 results
always yielded the lowest current consumptions. The PUB segments for non-secure,
PSK, and EDCHA were about the same having a difference of the only mC per LTE
event, translating to +-30 days in battery lifetime estimations, proving that a very
secure connection does not have to be very expensive in terms of current consumption
over time. The TLS/DTLS handshake will ideally only contribute a one time cost to
the consumption. From that point, every publication packet has a limited amount of
overhead associated with the particular encryption. The fact that every transmission
has a very expensive baseline start-up cost and that each byte has less impact that the
start-up cost supports that fact. The measurements were also taken in ideal conditions
when the RRC inactivity time was close to zero. This can be noticed by the impactless
contribution RAI has to current consumption, as seen in test number 10 and 11.

1Modem off current is the current drawn by the nRF9160 when the UE has disconnected from the
cellular network and shut down.
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5.0.9 DCPA - Test #2; RAI

Purpose of the test The purpose of this test is to look at the real-world current con-
sumption of the UE when publishing the reference application payload in a sequential
manner over various stack configurations with an extended RRC inactivity timer.

Test Configurations
• Message protocol: CoAP

• Publication interval: 1 hour

• Payload size: 584 bytes

• PSM T3412 timer: 70 minutes

• PSM T3324 timer: 0 seconds

• eDRX disabled

• C-DRX: 0.32

• TX output power: 23dBm

• Clock stop current: 30µA

• Inactivity timer: ∼ 12 seconds

• Voltage: 3.7V

• LPWAN: CAT-NB1

0

50

100

150

200

250

300

350

400

450

1 2

To
ta

l c
h

ar
ge

 (
m

C
)

IoT Protocol Stack configuration

ATT CON PSM PUB

Figure 5.10: DCPA - Test #2; RAI with ∼ 12 seconds RRC inactivity timer

1. CoAP + UDP/DTLS + CAT-NB1

2. CoAP + UDP/DTLS + CAT-NB1, RAI

The graph in figure 5.10 displays the effects of RAI in the situation where an extended
inactivity time has been given. RAI effectively shortens the time in RRC connected
mode with about 10 seconds from 12 to 1.47 seconds, proving the effects of RAI. Note
that RAI is only compliant with CAT-NB1 as per nrf9160 specification, and the benefits
gained by enabling RAI is mostly limited to the given RRC inactivity timer. In the case
of 12 seconds of inactivity time, the difference in charge per LTE event amounts to
395.03mC (106.26 days) without RAI and 28.15mC (780 days) with RAI enabled, which
is about 13 times more current effective per LTE event.
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Chapter 6

Discussion

6.1 Test Results

Compression and Serialization The results suggest that using compression algo-
rithms and alternative serialization formats to reduce the size of the application pay-
load probably is not beneficial as seen per device if the obtained size reduction is not
in the kB domain when power-saving features are not enabled. This is because of the
little impact small payload sizes have on current consumption when continually being
connected to the network. On the other hand, considering data transfer costs charged
by the MNO and potential cloud services, limiting the size of the payload can have a
viable accumulative impact. In a more extensive system comprising hundreds, even
thousands of devices, optimizing packet sizes and formats will have a sizeable accumu-
lative impact, and therefore reducing the transferred packet sizes must be considered.
On the other hand, conserving data can have a tremendous impact when power-saving
features are enabled, as shown in OPP - Test #3 where 100 bytes amounts to over
400 hours additional battery life. In a more extensive system, this would amount to
substantial accumulative savings across only limited of the numbers of system nodes.

DCPA vs OPP Because the OPP does not support receiving packages, the comparison
between the OPP and DCPA is based on DCPA test #1 subtest 7 through 10 (CoAP/UDP
configuration). By taking the utilized payload of 564 bytes in DCPA and multiplying it
with the charge per event (ratio found in 5.0.7 + the base charge), the total charge
per PUB event amount to 37.4mC for CAT-M1 and 129mC for CAT-NB1 based on the
OPP numbers. Comparing this to the DCPA test measurements of 75.2mC for CAT-M1
and 28.76mC for CAT-NB1, it is clear that the OPP and DCPA in this particular test
case directly contradict each other. In the DCPA test, it is CAT-NB1 that possesses the
lowest current consumption, not CAT-M1, that is stated throughout the OPP testing.

It is suspected that the CAT-NB1 measurements for DCPA test # 1 subtest 8 did not
yield the correct readings, which could be due to a number of reasons. Considering
the DCPA #1 tests for CoAP/DTLS(PSK), a lot more sensible numbers are given, where
the DTLS(PSK) configuration utilizes less current consumption for PUB segments than
wits MQTT/TLS(PSK) counterpart. In general, the measurements from the OPP outper-
forms the test results from the physical testing. This is expected as the OPP measure-
ments are sampled under highly ideal conditions unobtainable when measuring in live
networks. The reason why CAT-NB1 performs better than CAT-M1 for PUB segments
could perhaps be because UE got C-DRX during DCPA testing and that the OPP does
not support C-DRX for CAT-NB. Another observation is that CAT-NB1 performs better
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in the DCPA tests for segments involving the most amount of data in the transfer. Per-
haps the bandwidth of the UE when using CAT-NB1 is sufficient enough to transfer
small packet sizes at the same rate as CAT-M1, enabling the UE to go to sleep at a
similar time for both cellular technologies. When transferring larger packet sizes, the
UE has to stay connected for an extended amount of time when using CAT-NB1. On
the contrary, CAT-M1’s superior bandwidth enables the UE to transfer the large data
chunk at a much faster rate and go to sleep at an earlier point in time, conserving
energy.

MQTT vs CoAP There is a noticeable difference in current consumption between
the MQTT and CoAP based configurations. On almost all accounts, the CoAP solution
outperforms the MQTT solutions. This is due to the fact that MQTT has more over-
head in its communication compared to CoaP. But, this does not mean that CoAP over
UDP is the most reasonable choice for every application. In fact, for larger publica-
tion intervals, it might be more important to utilize a message protocol depending on
acknowledgment, such as MQTT over TCP for the client-server communication. This
is due to the fact that UDP packets are not guaranteed to arrive at the destination
port because of network packet loss. On the other hand, it is possible to implement
acknowledgment at the message-protocol level for CoAP, which resolves this issue, but
this is highly dependent on the client and server implementation. Another reason why
UDP based communications might be a better choice than TCP is the retransmission
functionality present in the TCP specification. In particularly lossy networks, TCP re-
transmissions of packets can have a noticeable effect on the current consumption of
constrained devices were in the worst case, and the UE will use a lot of current re-
transmitting TCP packets which effectively forces the UE to stay in RRC connected
mode.

Another issue that is contributing to the overall current consumption in either message-
protocol is the fact that the resource name and the topic name has to be present in
every CoAP request and MQTT PUBLISH message. This is to properly address the
information carried in the message. Over time, transmitting as little as 13 bytes
(iot_publisher) would amount to hundreds of hours of wasted battery life depending
on the size of the battery, refer to OPP test #3.
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Conclusion

This thesis presents current measurements of the nRF9160 configured with a common
IoT use-case. With optimal power-saving features enabled, the nRF9160 is capable of
consuming an average of 267mC for cellular network attachment, 213.9mC for server
connection establishment, 29.52mC for PSM sleep, and 28.76mC of application pay-
load transmission of 536-bytes every hour. This yields a theoretical battery life of
772.15 days for a reference battery capacity of 300mAh. These results are based on
the nRF9160 getting PSM T3412 timer greater than the utilized publication interval of
1 hour, PSM T3324 timer of 0 seconds (disabling eDRX), C-DRX interval timer of 0.32
seconds and CAT-NB1 as LPWAN of choice. However, the overall current consumption
and battery life can be greatly extended by setting a larger publication interval, ex-
tending the utilized battery capacity, and reducing the overall payload size.

This level of current consumption enables the nRF9160 to be deployed in remote ar-
eas over long durations of time. By utilizing a reasonably small battery capacity of
300mAh, the nRF9160 can, under ideal conditions, last years in between each battery
charge while still maintaining a small form factor and publication frequency. This ideal
current-consumption-to-publication-ratio widens the field of application for the nRF91
enabling it to be fitted on smaller and more demanding objects and subjects.
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Chapter 8

Further Work

8.1 Use-Case Expansion

This project only documents the current consumption of a WSN node use-case where
the UE publishes data sequentially to the remote server. There are countless IoT ap-
plications where the current consumption of the device needs to be mapped in order
to propose new current efficient solutions. For instance, use-cases where the server
requests information of the device, meaning that data publication is triggered by the
server and not the client and use-cases that introduce GPS behavior.

8.2 Coverage of multiple TLS/DTLS Cipher Suites

There exists a vast amount of different TLS/DTLS cipher suites that can be utilized
to ensure a secure connection to TCP/UDP-based server implementations. A lot of
these cipher suites are based on different technologies and algorithms that each con-
tribute differently to the application’s security and the UE’s current consumption. The
overhead associated with each cipher suite should be mapped to find the sweet spot
between security and UE current consumption.

8.3 Extended Coverage of LTE Parameters

This thesis did not cover LTE power-saving parameters such as eDRX Paging Time
Window (PTW) and potentially other LTE parameters designed to reduce the current
consumption of the UE. The comparison between CAT-M1 and CAT-NB1 also needs fur-
ther testing to determine which of the two cellular technologies that truly the most
energy preserving based on the fact that the DCPA and OPP test results gave contra-
dicting answers.

8.4 Power Saving Library

A possible implementation based on the test results of this project is a power-saving
library (PSL) for the nRF9160. The purpose of such a library would be to abstract
away LTE parameter optimizations from the developer by providing functionality that
automatically reconfigures the LTE modem in real-time. This would counteract the
fact that power-saving features in CAT-M1 and CAT-NB1 networks may or may not be
supported by the different network providers. The PSL would provide functionality
for the nRF9160 that always makes sure the device uses the lowest amount of power
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possible, given the circumstances. In other words, if given LTE parameters are not suf-
ficient enough, the PSL would engage fallback functionality that actively requests less
optimal LTE parameters and even shuts down the modem in between transmissions to
preserve current, avoiding prolonged durations in RRC connected mode. A suggested
API reference for a PSL is located in appendix A.4. Figure 8.1 illustrates a potential
position of the PSL in the application firmware stack.

Main

BSD	sockets	API

AT	command
interface

Link	controller

Power	saving
library

Power	saving
library

Figure 8.1: Application firmware PSL stack placement.
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A.1 Example Application Payload
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Code/format.JSON

1 {
2 "dev": {
3 "v": {
4 "band": 3,
5 "nw": "NB-IoT GPS",
6 "iccid": "89450421180216254864",
7 "modV": "mfw_nrf9160_1.1.0-40.rc",
8 "brdV": "nrf9160_pca10090",
9 "appV": "1.0.2"

10 },
11 "ts": 1581412370663
12 },
13 "roam": {
14 "v": {
15 "rsrp": 64,
16 "area": 3305,
17 "mccmnc": 24202,
18 "cell": 34237203,
19 "ip": "10.81.160.193"
20 },
21 "ts": 1581438337056
22 },
23 "bat": {
24 "v": 4125,
25 "ts": 1581438332150
26 },
27 "acc": {
28 "v": [6.442969, 7.256921, -1.019891],
29 "ts": 1574251825404
30 },
31 "gps": {
32 "v": {
33 "lng": 10.437156350160675,
34 "lat": 63.421399614436105,
35 "acc": 5.192617416381836,
36 "alt": 152.19400024414062,
37 "spd": 0.0854216143488884,
38 "hdg": 0
39 },
40 "ts": 1581438332000
41 }
42 }
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A.2 MQTT Backend API Reference
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1 /*
2 * Copyright (c) 2020 Nordic Semiconductor ASA
3 *
4 * SPDX−License−Identif ier : LicenseRef−BSD−5−Clause−Nordic
5 */
6

7 /** @file
8 *@brief MQTT Backend library header .
9 */

10

11 #ifndef MQTT_BACKEND_H__
12 #define MQTT_BACKEND_H__
13

14 #include <stdio .h>
15 #include <net /mqtt .h>
16

17 /**
18 * @defgroup mqtt_backend MQTT Backend library
19 * @{
20 * @brief Library to connect a device to a MQTT Backend message broker .
21 */
22

23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26

27 /** @brief MQTT Backend topics , used in messages to specify which
28 * topic that wil l be published to .
29 */
30 enum mqtt_backend_topic_type {
31 MQTT_BACKEND_TOPIC_MSG = 0x1
32 };
33

34 /** @brief MQTT Backend notif ication event types , used to signal the application . */
35 enum mqtt_backend_evt_type {
36 /** Connected to MQTT broker . **/
37 MQTT_BACKEND_EVT_CONNECTED = 0x1,
38 /** MQTT broker ready . */
39 MQTT_BACKEND_EVT_READY,
40 /** Disconnected from MQTT broker . * /
41 MQTT_BACKEND_EVT_DISCONNECTED,
42 /** Data received from MQTT broker . * /
43 MQTT_BACKEND_EVT_DATA_RECEIVED,
44 /** FOTA update done, request to reboot . * /
45 MQTT_BACKEND_EVT_FOTA_DONE
46 };
47

48 /** @brief Struct with data received from MQTT broker . * /
49 struct mqtt_backend_evt {
50 /** Type of event . * /
51 enum mqtt_backend_evt_type type ;
52 /** Pointer to data received from the MQTT broker . * /
53 char *ptr ;
54 /** Length of data . * /
55 size_t len ;
56 };
57

58 /** @brief MQTT Backend topic data . * /
59 struct mqtt_backend_topic_data {
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60 /** Type of topic that wil l be published to . * /
61 enum mqtt_backend_topic_type type ;
62 /** Pointer to string of application specific topic . * /
63 char *str ;
64 /** Length of application specific topic . * /
65 size_t len ;
66 };
67

68 /** @brief MQTT Backend transmission data . * /
69 struct mqtt_backend_tx_data {
70 /** Topic that the message wil l be sent to . * /
71 struct mqtt_backend_topic_data topic ;
72 /** Pointer to message to be sent to the MQTT broker . * /
73 char *str ;
74 /** Length of message. */
75 size_t len ;
76 /** Quality of Service of the message. */
77 enum mqtt_qos qos ;
78 };
79

80 /** @brief MQTT Backend library asynchronous event handler .
81 *
82 * @param[ in ] evt The event and any associated parameters .
83 */
84 typedef void (*mqtt_backend_evt_handler_t ) ( const struct mqtt_backend_evt *evt ) ;
85

86 /** @brief Structure for MQTT Backend broker connection parameters . * /
87 struct mqtt_backend_config {
88 /** Socket for MQTT broker connection */
89 int socket ;
90 /** Client id for MQTT broker connection . */
91 char * client_id ;
92 /** Length of client_id string . */
93 size_t client_id_len ;
94 };
95

96 /** @brief In i t ia l i ze the module.
97 *
98 * @warning This API must be called exactly once , and i t must return
99 * successfully .

100 *
101 * @param[ in ] config Pointer to struct containing connection parameters .
102 * @param[ in ] event_handler Pointer to event handler to receive MQTT Backend
103 * module events .
104 *
105 * @return 0 I f successful .
106 * Otherwise , a (negative ) error code is returned .
107 */
108 int mqtt_backend_init ( const struct mqtt_backend_config *const config ,
109 mqtt_backend_evt_handler_t event_handler ) ;
110

111 /** @brief Connect to the MQTT broker .
112 *
113 * @details This function exposes the MQTT socket to main so that i t can be
114 * polled on.
115 *
116 * @param[out ] config Pointer to struct containing the connection parameters ,
117 * the MQTT connection socket number wil l be copied to the
118 * socket entry of the struct .
119 *
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120 * @return 0 I f successful .
121 * Otherwise , a (negative ) error code is returned .
122 */
123 int mqtt_backend_connect( struct mqtt_backend_config *const config ) ;
124

125 /** @brief Disconnect from the MQTT broker .
126 *
127 * @return 0 I f successful .
128 * Otherwise , a (negative ) error code is returned .
129 */
130 int mqtt_backend_disconnect ( void ) ;
131

132 /** @brief Send data to MQTT Backend broker .
133 *
134 * @param[ in ] tx_data Pointer to a struct containing data to be transmitted to
135 * the MQTT broker .
136 *
137 * @return 0 I f successful .
138 * Otherwise , a (negative ) error code is returned .
139 */
140 int mqtt_backend_send(const struct mqtt_backend_tx_data *const tx_data ) ;
141

142 /** @brief Get data from MQTT broker .
143 *
144 * @return 0 I f successful .
145 * Otherwise , a (negative ) error code is returned .
146 */
147 int mqtt_backend_input( void ) ;
148

149 /** @brief Ping the MQTT broker . Must be called periodically
150 * to keep connection to broker alive .
151 *
152 * @return 0 I f successful .
153 * Otherwise , a (negative ) error code is returned .
154 */
155 int mqtt_backend_ping( void ) ;
156

157 #ifdef __cplusplus
158 }
159 #endif
160

161 /**
162 *@}
163 */
164

165 #endif /* AWS_IOT_H__ */

Code/mqtt_backend.h
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1 /*
2 * Copyright (c) 2020 Nordic Semiconductor ASA
3 *
4 * SPDX−License−Identif ier : LicenseRef−BSD−5−Clause−Nordic
5 */
6

7 /** @file
8 *@brief CoAP library header .
9 */

10

11 #ifndef COAP_BACKEND_H__
12 #define COAP_BACKEND_H__
13

14 #include <stdio .h>
15

16 /**
17 * @defgroup CoAP library
18 * @{
19 * @brief Library to connect the device to a UDP server .
20 */
21

22 #ifdef __cplusplus
23 extern "C" {
24 #endif
25

26 /** @brief CoAP notif ication event types , used to signal the application . */
27 enum coap_backend_evt_type {
28 /** Connected to the CoAP server . * /
29 COAP_BACKEND_EVT_CONNECTED = 0x1,
30 /** CoAP server ready . */
31 COAP_BACKEND_EVT_READY,
32 /** Disconnected from the CoAP server . * /
33 COAP_BACKEND_EVT_DISCONNECTED,
34 /** Data received from the CoAP server . * /
35 COAP_BACKEND_EVT_DATA_RECEIVED,
36 /** CoAP Backend library error . * /
37 COAP_BACKEND_EVT_ERROR,
38 /** CoAP Backend Fota done, request to reboot . * /
39 COAP_BACKEND_EVT_FOTA_DONE
40 };
41

42 /** @brief Struct with data received from UDP server . * /
43 struct coap_backend_event {
44 /** Type of event . * /
45 enum coap_backend_evt_type type ;
46 /** Pointer to data received from the UDP server . * /
47 char *ptr ;
48 /** Length of data . * /
49 size_t len ;
50 };
51

52 /** @brief UDP backend transmission data . * /
53 struct coap_backend_tx_data {
54 /** Pointer to message to be sent to UDP server . * /
55 char *str ;
56 /** Length of message. */
57 size_t len ;
58 };
59
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60 /** @brief CoAP library asynchronous event handler .
61 *
62 * @param[ in ] evt The event and any associated parameters .
63 */
64 typedef void (*coap_backend_evt_handler_t ) ( const struct coap_backend_event *evt ) ;
65

66 /** @brief Structure for UDP server connection parameters . * /
67 struct coap_backend_config {
68 /** Socket for UDP server connection */
69 int socket ;
70 };
71

72 /** @brief In i t ia l i ze the module.
73 *
74 * @warning This API must be called exactly once , and i t must return
75 * successfully .
76 *
77 * @param[ in ] config Pointer to struct containing connection parameters .
78 * @param[ in ] event_handler Pointer to event handler to receive CoAP module
79 * events .
80 *
81 * @return 0 I f successful .
82 * Otherwise , a (negative ) error code is returned .
83 */
84 int coap_backend_init ( const struct coap_backend_config *const config ,
85 coap_backend_evt_handler_t event_handler ) ;
86

87 /** @brief Connect to the UDP server .
88 *
89 * @details This function exposes the UDP socket to main so that i t can be
90 * polled on.
91 *
92 * @param[out ] config Pointer to struct containing connection parameters ,
93 * the UDP connection socket number wil l be copied to the
94 * socket entry of the struct .
95 *
96 * @return 0 I f successful .
97 * Otherwise , a (negative ) error code is returned .
98 */
99 int coap_backend_connect( struct coap_backend_config *const config ) ;

100

101 /** @brief Disconnect from the UDP server .
102 *
103 * @return 0 I f successful .
104 * Otherwise , a (negative ) error code is returned .
105 */
106 int coap_backend_disconnect( void ) ;
107

108 /** @brief Send data to the UDP server .
109 *
110 * @param[ in ] tx_data Pointer to struct containing data to be transmitted to
111 * the UDP server .
112 *
113 * @return 0 I f successful .
114 * Otherwise , a (negative ) error code is returned .
115 */
116 int coap_backend_send(const struct coap_backend_tx_data *const tx_data ) ;
117

118 /** @brief Get data from the UDP server .
119 *
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120 * @return 0 I f successful .
121 * Otherwise , a (negative ) error code is returned .
122 */
123 int coap_backend_input( void ) ;
124

125 /** @brief Ping the UDP server . Must be called periodically
126 * to keep socket open.
127 *
128 * @return 0 I f successful .
129 * Otherwise , a (negative ) error code is returned .
130 */
131 int coap_backend_ping( void ) ;
132

133

134 #ifdef __cplusplus
135 }
136 #endif
137

138 /**
139 *@}
140 */
141

142 #endif /* COAP_BACKEND_H__ */

Code/coap_backend.h
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A.4 PSL API Reference
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1 /*
2 * Copyright (c) 2020 Nordic Semiconductor ASA
3 *
4 * SPDX−License−Identif ier : LicenseRef−BSD−5−Clause−Nordic
5 */
6

7 #ifndef PSL_H__
8 #define PSL_H__
9

10 #include <zephyr / types .h>
11

12 /**
13 * @defgroup psl Power Saving Library
14 * @{
15 * @brief Library that configures the LTE modem in real time based on
16 * application firmware configurations and requested / given LTE
17 * parameters .
18 */
19

20 #ifdef __cplusplus
21 extern "C" {
22 #endif
23

24 enum psl_evt_type {
25 /* Current consumption < Latency . */
26 PSL_MODE_HIGHEST,
27 /* Current consumption = Latency . */
28 PSL_MODE_MEDIUM,
29 /* Current consumption > Latency . */
30 PSL_MODE_LOWEST,
31 /* Parameters requested by the PSL. */
32 PSL_LTE_PARAMETERS_REQUESTED,
33 /* Optimal parameters given by the network . */
34 PSL_LTE_OPTIMAL_PARAMETERS_GIVEN,
35 /* Current battery percentage*/
36 PSL_LTE_BATTERY_LIFETIME,
37 };
38

39 enum psl_rai_type {
40 /* Control plane one response . */
41 PSL_RAI_ONE_RESPONSE,
42 /* Control plane no response . */
43 PSL_RAI_NO_RESPONSE
44 };
45

46 struct psl_cfg_param {
47 /* PSM TAU timer . * /
48 f loat psm_tau;
49 /* PSM active timer . * /
50 f loat psm_at ;
51 /* eDRX interval timer . * /
52 f loat edrx_int ;
53 /* eDRX Paging Time Window. */
54 f loat edrx_ptw;
55 /* Release Assistance Information . */
56 struct psl_rai_type rai ;
57 };
58

59 struct psl_cfg {
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60 /* UE publication interval . * /
61 int pub_int ;
62 /* Size of sequential payloads . * /
63 int payload_size ;
64 /* Parameters given by the network . */
65 struct psl_cfg_param param;
66 };
67

68 struct battery_level {
69 /* Battery percentage . */
70 int battery_lvl ;
71 /* Battery lifetime estimation days . * /
72 int battery_lifetime_days ;
73 };
74

75 struct psl_evt {
76 /* Power Saving Library event type . */
77 enum psl_evt_type type ;
78 /* Additional information included in the PSL event . * /
79 union {
80

81 int bat_lvl ;
82 /* Parameters given by the network . */
83 struct psl_cfg_param param;
84 };
85 };
86

87 /* Asynchronous event handler notifying the calling module of PSL events . * /
88 typedef void (* psl_evt_handler_t ) ( const struct psl_cfg *const evt ) ;
89

90 /** @brief In i t ia l i ze the power saving library .
91 *
92 * @return 0 I f the operation was successful .
93 * Otherwise , a (negative ) error code is returned .
94 */
95 int psl_ in i t ( psl_evt_handler_t handler ) ;
96

97 /** @brief Update the power saving library with the latest LTE parameters and
98 * application firmware configurations .
99 *

100 * @param[ in ] cfg Pointer to a configuration struct .
101 *
102 * @return 0 I f the operation was successful .
103 * Otherwise , a (negative ) error code is returned .
104 */
105 int psl_param_update( struct psl_cfg *cfg ) ;
106

107 #ifdef __cplusplus
108 }
109 #endif
110

111 #endif /* PSL_H__ */

Code/psl.h
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A.5 DCPA Current Measurements
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TAC: Total Average Current

OPP TEST #1

Payload (KB) TAC CAT-M1 TAC CAT-NB1

0 1.7 mA 35.3 mA

10 1.73 mA 42.87 mA

20 1.77 mA 43.54 mA

30 1.8 mA 43.79 mA

40 1.83 mA 43.92 mA

50 1.86 mA 44 mA

60 1.9 mA 44.05 mA

70 1.93 mA 44.09 mA

80 1.96 mA 44.12 mA

90 1.99 mA 44.14 mA

100 2.02 mA 44.16 mA

OPP TEST #2

PSM TAU inter TAC CAT-M1 TAC CAT-NB1

1 12.81 uA 36.43 uA

2 8.4 uA 20.22 uA

3 6.94 uA 14.81 uA

4 6.2 uA 12.11 uA

5 5.76 uA 10.49 uA

6 5.47 uA 9.41 uA

7 5.26 uA 8.63 uA

8 5.1 uA 8.05 uA

9 4.98 uA 7.6 uA

10 4.88 uA 7.24 uA

11 4.8 uA 6.95 uA

12 4.73 uA 6.7 uA

13 4.68 uA 6.49 uA

14 4.63 uA 6.32 uA

15 4.59 uA 6.16 uA

16 4.55 uA 6.03 uA

17 4.52 uA 5.91 uA

18 4.49 uA 5.8 uA

19 4.46 uA 5.71 uA

20 4.44 uA 5.62 uA

21 4.42 uA 5.54 uA

22 4.4 uA 5.47 uA

23 4.38 uA 5.41 uA

24 4.37 uA 5.35 uA



OPP TEST #3

payload size TAC CAT-M1 TAC CAT-NB1

100 12.81 uA 36.43 uA

200 13.06 uA 37.16 uA

300 13.31 uA 37.89 uA

400 13.58 uA 38.62 uA

500 13.85 uA 39.35 uA

600 14.12 uA 40.09 uA

700 14.41 uA 40.82 uA

800 14.69 uA 41.56 uA

900 14.98 uA 42.3 uA

1000 15.27 uA 43.04 uA

OPP TEST #4

eDRX interval TAC CAT-M1 TAC CAT-NB1

0.16 3140 uA 10340 uA

0.32 1580 uA 6090 uA

0.64 806.97 uA 3350 uA

1.28 418.5 uA 1780 uA

2.56 224.26 uA 930.93 uA

5.12 127.15 uA uA

10.24 78.51 uA uA

20.48 54.2 uA 152.62 uA

40.96 42.05 uA 95.58 uA

61.44 38.04 uA uA

81.92 35.97 uA 67 uA

102.4 34.86 uA uA

122.88 34.04 uA uA

143.36 33.48 uA uA

163.84 32.93 uA 52.69 uA

327.68 31.41 uA 45.53 uA

655.36 30.72 uA 42.27 uA

1310.72 30.31 uA 40.32 uA

2621.44 30.17 uA 39.66 uA

5242.88 uA 39.01 uA

10485.76 uA 39.01 uA

OPP TEST #5

eDRX interval TAC CAT-M1 TAC CAT-NB1

0.16 21.43 uA 76.82 uA

0.32 17.15 uA 56.67 uA

0.64 14.93 uA 46.25 uA

1.28 13.82 uA 41.04 uA

2.56 13.27 uA 38.43 uA

5.12 12.97 uA uA



OPP TEST #5

eDRX interval TAC CAT-M1 TAC CAT-NB1

0.16 38.81 uA 157.97 uA

0.32 25.82 uA 97.06 uA

0.64 19.33 uA 66.53 uA

1.28 16.15 uA 51.57 uA

2.56 14.48 uA 43.75 uA

5.12 13.64 uA uA

10.24 13.2 uA uA

20.48 13.06 uA 37.2 uA

OPP TEST #6

C-DRX interval TAC CAT-M1

0.01 105.45 uA

0.02 59.9 uA

0.032 42.82 uA

0.04 37.13 uA

0.064 76.63 uA

0.08 64.17 uA

0.128 84.28 uA

0.16 70.29 uA

0.256 49.26 uA

0.32 42.35 uA

0.512 31.81 uA

0.64 28.22 uA

1.024 23 uA

1.28 21.21 uA

2.048 18.68 uA

2.56 17.78 uA

5.12 15.98 uA

10.24 15.05 uA

OPP TEST #7

payload size CAT-M1 (C-DRX 0.32) CAT-NB1

100 34.28 116.77

200 35.18 119.38

300 36.1 122.01

400 37.05 124.64

500 38.03 127.28

600 39.02 129.93

700 40.03 132.58

800 41.06 135.23

900 42.1 137.89

1000 43.15 140.55
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