
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Benjamin Ramberg Møklegård

People Detection using Transfer
learning on Deep Convolutional Neural
Networks

Master’s thesis in Electronic Systems Design

Supervisor: Snorre Aunet

June 2020

Benjamin Ramberg Møklegård

People Detection using Transfer
learning on Deep Convolutional Neural
Networks

Master’s thesis in Electronic Systems Design
Supervisor: Snorre Aunet
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Acknowledgement

I want to extend my thanks to my project supervisor Professor Snorre Aunet for
his assistance and guidance during my work on this thesis. Your feedback and aid
have been greatly appreciated. I am also grateful to the team at Disruptive Tech-
nologies AS and would like to extend thanks to both Øystein Moldsvor for giving
me an exciting assignment and Sigve Tjora for giving me feedback on my thesis
your help has been much appreciated. Finally, I must thank my family and espe-
cially my parents, for supporting me during my studies. I could not have done this
without your continuous encouragement and support.

Benjamin R. Møklegård

iii

Abstract

Convolutional neural networks have been established as one of the most efficient
ways of applying machine learning to computer vision. The purpose of this thesis
has been to investigate the concept of transfer learning and how it can be utilized
to retrain pretrained neural network models to increase detection accuracy. The
fine-tuned networks in this thesis have been trained for the task of "People Detec-
tion." That is detecting and giving an estimate of how many people are present
in an image. A subset of images from Open Image Database, a database curated
by Google, has been used to train the custom detectors. In this thesis, a set of
20000 images is used for the training phase and 4000 images for the test phase.
The images belong to the object class, "Person." The neural networks explored in
this thesis are Mobilenet V2 + SSD (Non-quantized and Quantized), YOLOv3 and
YOLOv3-Tiny.

Applying transfer learning increases the mean Average Precision (mAP) and av-
erage Recall (AR) scores for most of the models. mAP for Mobilenet V2 + SSD
increases from 0.49 to 0.62. Mobilenet V2 + SSD Quantized increases from 0.004
to 0.61. YOLOv3 suffers a slight performance reduction, where the mAP reduces
from 0.66 to 0.65. YOLOv3-Tiny sees an increase from 0.25 to 0.51.

The models have undergone further testing by being deployed on the Google Coral
Dev Board, which features an accelerator. Every model has been tested on the Dev
Board CPU, while the Quantized version of the Mobilenet V2 + SSD model has
also been tested on the TPU accelerator. Results from the testing shows that the
Mobilenet V2 + SSD (Non-quantized) model runs at a frame per second (FPS) of
1.35. The quantized model performs better at 3.61 FPS on CPU and 131.82 FPS on
the TPU. YOLOv3 and YOLOv3-Tiny performs poorly with an FPS of 0.02 and 0.23,
respectively. Estimations on the energy consumption per operation have been per-
formed, to give a better overview on the energy efficiency of each model. Since the
models are to be deployed in system for detection of people and that it is likely that
it will run on battery power, the energy consumed per network becomes vital to de-
termine which should be deployed to ensure longevity of such a system. In this the-
sis it was found that the Quantized Mobilenet V2 + SSD consumes approximately
8pJ/FLOPS when running on the TPU,increasing to 266pJ/FLOPS when running
on CPU. The non-quantized Mobilenet model consumes 474pJ/FLOPS (CPU).

v

vi Benjamin R. Møklegård: People Detection using CNNs

YOLOv3 consumes 1210pJ/FLOPS(CPU), and YOLOv3-Tiny uses 1397pJ/FLOPS
(CPU). In terms of detection, the model has been applied to an example image
containing four people. Both Mobilenet models and YOLOv3 manages to properly
detect 4 people, while YOLOv3-Tiny only manages to detect three people. The
conclusion reached in this thesis is that transfer-learning can help boost a pre-
trained model’s performance and fine-tune the models for custom tasks, such as
"People detection." The recommendation one can provide from the results of de-
ploying the neural networks is to use the Quantized Mobilenet V2 + SSD model.
This model is shown to be the most energy-efficient model when deployed on
the Edge TPU, which is vital in deploying such a system on resource-constrained
devices such as the Google Coral Dev Board.

Sammendrag

Convolutional neural networks har blitt etablert som den mest effektive metoden
for å anvende deep learning på datasyn. Denne oppgaven har som mål å utforske
hvordan man kan bruke konseptet transfere learning for å øke deteksjons effek-
tiviteten til allerede trente nevrale nett og deretter analysere disse trente mod-
ellen ved å anvende de på ressurs begrensede maskinvare. Oppgaven disse trente
nettverkene er anvendt på er person deteksjon, det vil si å detekter og gi et es-
timat på hvor mange personer som befinner seg i et bilde. Nettverkene som er
anvendt i oppgaven er trent på en del av et større datasett laget av Google, kalt
Open Image Database. I oppgaven ble 20000 bilder tilhørende klassen "Person"
brukt for å fine-tune de allerede trente modellene. Modellene som er utforsket i
denne oppgaven er Mobilenet V2 + SSD (Non-quantized og Quantized) for Ten-
sorflow, YOLOv3 og YOLOv3-Tiny for Darknet.

Ved å bruke transfer learning så kan man observere en forbedring i modellenes
mean Average Precision (mAP) og Average Recall (AR). For Mobilenet V2 + SSD
så øker mAP fra 0.49 til 0.62. Mobilenet V2 + SSD Quantized ser en økning fra
0.004 til 0.61. YOLOv3 ser en liten reduksjon fra 0.66 til 0.65 og YOLOv3-Tiny
øker fra 0.25 til 0.51.

Videre så er modellene blitt testet på Google Coral Dev Board som har en in-
nebygget akselerator for nevrale nett. Alle modellene har blitt testet på utviklings-
brettets CPU, hvorav Mobilenet V2 + SSD (Quantized) også har blitt testet på
TPUen. Resultatene fra testingen ga at Mobilenet V2 + SSD kjører med en bilde
per sekund (FPS) på 1.35. Den kvantifiserte modellen kjører raskere med 3.61 FPS
på CPU og 131.82 FPS på TPUen. YOLOv3 og YOLOv3-Tiny har en FPS på 0.02
og 0.23 respektivt. Videre ble det funnet at energy per operation for Quantized
Mobilenet V2 + SSD kunne estimeres til 8pJ/FLOPS når den kjørte på TPUen og
266pJ/FLOPS ved inferens på CPU. I motsetning så bruker den ordinere Mobilenet
modellen 474pJ/FLOPS (CPU). YOLOv3s energi per operasjon ble estimert til
1210pJ/FLOPS (CPU) og YOLOv3-Tiny bruker ca 1397pJ/FLOPS (CPU). I forhold
til deteksjon så klarer alle modellene bortsett fra YOLOv3-Tiny å detektere men-
nesker i et eksempel bilde som inneholder fire personer. Hvor YOLOv3-Tiny kun
klarer å detektere tre personer. Konklusjonen i oppgaven blir at transfer learning
kan hjelpe ved å gi modellene en økning i deteksjons nøyaktighet på egendefin-

vii

viii Benjamin R. Møklegård: People Detection using CNNs

erte datasett. videre så er anbefalingen at den kvantifiserte modellen anvendes.
Denne kan kjøres på Corals TPU, hvilket er bevist å være den mest energi effek-
tive effektive måten å kjøre modellene, noe som vil være viktig hvis modellen skal
kjøres på hardware med ressurs begrensinger, slik som Google Coral Dev Board.

Contents

Acknowledgement . iii
Abstract . v
Sammendrag . vii
Contents . ix
Figures . xiii
Tables . xv
Acronyms . xvii
1 Introduction . 1

1.1 Problem description . 1
1.2 Background and Motivation . 2
1.3 Relevant Work . 3

1.3.1 People Detection using CNNs 3
1.4 Thesis Contribution . 4
1.5 Thesis structure . 4

2 Theory . 7
2.1 A brief history of machine learning . 7
2.2 What are Artificial Neural Networks . 8

2.2.1 Biological Neuron . 9
2.2.2 Artificial Neuron . 9
2.2.3 Fully-connected Artificial Neural Network 10

2.3 Training a Neural Network . 11
2.3.1 Loss Function . 11
2.3.2 Backpropagation and Gradient Descent 13

2.4 Convolutional Neural Networks . 14
2.4.1 Convolution Operation . 14
2.4.2 Convolution Layers . 16
2.4.3 Activation Layers . 17
2.4.4 Pooling Layers . 18

2.5 Transfer learning . 19
2.6 Object Detection . 20

2.6.1 R-CNN . 20
2.6.2 Fast R-CNN . 20
2.6.3 Faster R-CNN . 21
2.6.4 SSD . 21

ix

x Benjamin R. Møklegård: People Detection using CNNs

2.6.5 YOLO . 22
3 Experimental Setup . 25

3.1 Models . 25
3.2 Datasets . 25

3.2.1 MSCOCO . 25
3.2.2 Open Image Dataset . 25

3.3 Software Implementation . 26
3.3.1 Tensorflow-based Models . 26
3.3.2 YOLO . 26
3.3.3 COCO API . 27
3.3.4 Evaluation of Darknet based Models 27
3.3.5 Network Configuration . 27

3.4 Hardware Setup . 27
3.4.1 Google Coral Dev Board . 28

4 Methodology . 29
4.1 Detection Metrics . 29

4.1.1 IoU . 29
4.1.2 Detection outcomes and the confusion matrix 29
4.1.3 Precision . 31
4.1.4 Recall . 31
4.1.5 Mean Average Precision . 31

4.2 Inference Time . 31
4.3 Number of FLOPS . 32
4.4 Frames per second . 32
4.5 Power Consumption . 32
4.6 Energy per Operation . 32

5 Results . 35
5.1 Transfer learning on pretrained models 35

5.1.1 Mobilenet V2 + SSD . 35
5.1.2 Quantized Mobilenet V2 + SSD 37
5.1.3 YOLOv3 . 39
5.1.4 YOLOv3 Tiny . 41
5.1.5 Combined performance figure 42

5.2 Energy per operation during Inference Run on Google Coral 44
5.3 Inference Time on different devices . 46
5.4 Applying Detector for Estimating People 46

6 Discussion . 51
6.1 Applying Transfer-learning to boost model performance 51
6.2 Evaluating the neural network performance in terms of Energy per

Operation . 52
6.3 Inference Time on different devices . 53
6.4 Detecting People using the trained models 54

7 Conclusion . 57
Bibliography . 59

Contents xi

A Additional Material . 63
B Detection on multiple Images . 65
C Pascal VOC Format . 69
D Copy of Specialization Report . 71

Figures

2.1 An example of a biological neuron. The image has no given name,
by Unknown artist, Licensed as "Free to Use" 9

2.2 An example of an artificial neuron with three inputs 10

2.3 Artificial Neural Network with an input layer using two input neu-
rons, a hidden layer with four neurons and a three neuron output
layer . 11

2.4 An example of a simple neural network containing two connected
neurons . 14

2.5 Example of Convolution Operation on a 4x4 input matrix with a
3x3 kernel. Reproduced from [29] . 16

2.6 An illustration of a Convolutional Neural Network with two con-
volutional layers. Not shown on the image is the pooling layer in
between the convolutional layers . 17

2.7 Pooling is performed in one of two types either max-pooling or
average-pooling. Figure reproduced from [29] 19

3.1 The Google Coral Dev Board . 28

4.1 IoU can be visualized by looking at the intersect of two boxes over
the union of the same boxes . 30

4.2 An example of a confusion matrix . 30

4.3 The UM32C USB Meter . 33

5.1 Classification, Localization and Total Loss during Training of non-
quantized model in blue and quantized model in orange. 37

5.2 Average and Total loss during training of Yolov3 39

5.3 Average and Total loss during training of YOLOv3-Tiny 41

5.4 Summarized difference in mean Average Precision before and after
training per model. Where MB is Mobilenet, (Q) means quantized
and (T) denotes YOLOv3-Tiny . 43

5.5 Energy per operation given in J/FLOPS for each neural network
model running on the Google Coral Dev Board 45

xiii

xiv Benjamin R. Møklegård: People Detection using CNNs

5.6 Detection result using the Non-Quantized Mobilenet model. Top:
using the frozen graph exported from Object Detection API. Bot-
tom: using the exported TFLite formatted model. Both tested with a
threshold set to 0.4, Image is "Group of People Sitting Inside Room"
by JopWell, Licensed as "Free to Use" 47

5.7 Detection result using the Quantized Mobilenet model with at thresh-
old set to 0.4, Image is "Group of People Sitting Inside Room" by
JopWell, Licensed as "Free to Use" . 48

5.8 Detection result using YOLOv3 with at threshold set to 0.4, Image
is "Group of People Sitting Inside Room" by JopWell, Licensed as
"Free to Use" . 49

5.9 Detection result using YOLOv3-Tiny with at threshold set to 0.4, Im-
age is "Group of People Sitting Inside Room" by JopWell, Licensed
as "Free to Use" . 49

B.1 Detection generated by Mobilenet before and after TFLite conver-
sion. Notice that after converting the model to TFLite Format, no
detection is generated. Image is "People Having Meeting Inside
Conference Room", by Christina Morillo, Licensed as Free to Use . . 65

B.2 Detection generated by the Quantized Mobilenet model. Image is
"People Having Meeting Inside Conference Room", by Christina Mo-
rillo, Licensed as Free to Use . 66

B.3 Detection generated by YOLOv3 and YOLOv3-Tiny. YOLOv3 man-
ages to detect two people in the image, while YOLOv3-Tiny only
manages to detect one. Image is "People Having Meeting Inside
Conference Room", by Christina Morillo, Licensed as Free to Use . . 67

Tables

3.1 Configuration options for each network. 28

5.1 Metrics generated by evaluation on the test set with the pretrained
Mobilenet model and the custom fine-tuned Mobilenet model 36

5.2 Metrics generated by evaluation on the test set with the quantized
pretrained Mobilenet model and the quantized fine-tune model . . 38

5.3 Metrics generated by evaluation on the test set with the pretrained
YOLOv3 model and the fine-tune model 40

5.4 Metrics generated by evaluation on the test set with the pretrained
YOLOv3-Tiny model and the fine-tune model 42

5.5 Minimum Power Consumption during Inference Run on Each Model.
Both the Total recorded power and the difference between the power
during inference and idle is shown . 44

5.6 Minimum Energy Per Operation during Inference Run on the Google
Coral using each neural network model. Here MB denotes mo-
bilenet and (Q) denotes Quantized. Y and Y-T is for YOLOv3 and
YOLOv3-Tiny respectively . 44

5.7 Average Inference Time during run on a subset of the test dataset on
Desktop CPU, Desktop GPU, Edge CPU and Edge TPU for different
frameworks. The Quantized Model is denoted with (Q) 46

xv

Acronyms

ANN Artificial Neural Network.

AP Average Precision.

CNN Convolutional Neural Network.

DNN Deep Neural Network.

IoU Intersect over Union.

LSTM Long-short Term Memory.

mAP mean Average Precision.

OID Open Image Database.

RNN Recurrent Neural Networks.

SoM System-On-Module.

TPU Tensor Processing Unit.

VLIW Very Long Instruction Word.

VPU Vision Processing Unit.

xvii

Chapter 1

Introduction

1.1 Problem description

Disruptive Technologies Research AS 1 creates tiny wireless sensors that can be
deployed in a wide variety of scenarios. One of these scenarios is "presence detec-
tion," which is detecting whether a person is in proximity to a temperature sensor
by sensing the heat emitted from the person. The sensor’s data can then be used
to determine if a person is present at his workspace or not or whether a meeting
room is empty or currently in use. Disruptive is interested in looking at alterna-
tives to the temperature sensor-based approach. The alternative is presented as
an exploration task. It is to look at the use of a wide-angle camera-based system,
where deep learning can be applied to approximate the number of people present
in an area. Also, to look at alternatives to the hardware unit given in the problem
description. This problem was previously investigated in a specialization report
as a prerequisite before starting the work on this thesis. In the specialization re-
port, the Google AIY Vision Kit V2 [1] was evaluated, a hardware kit designed for
learning machine learning. The report is attached to this thesis in Appendix A. In
this thesis, the focus changes to the exploration of the concept of transfer learn-
ing and apply this to train custom neural network models for the detection of
people. In addition to this, the use and deployment of the custom models on ac-
celerator hardware are explored and analyzed. Analyzing the models helps give
an overview of differences between models in terms of both energy efficiency and
speed. The choice of accelerator for this thesis landed on the Coral Dev Board, an
accelerator for machine learning developed by Google. The following summary
describes the modifications to the original problem description.

1. Train one or more custom detectors using transfer learning.
2. Evaluate the performance of a custom detector.
3. Test the custom detector on the Hardware kit and evaluate performance in

terms of power consumption, inference times, FPS, energy, and energy per
operations.

1https://www.disruptive-technologies.com/

1

2 Benjamin R. Møklegård: People Detection using CNNs

4. Analyze the feasibility of using the custom trained detector for detecting
and counting people.

1.2 Background and Motivation

The use and deployment of deep neural networks for tasks such as computer vision
has gained traction during the last decade. The driving factor behind this develop-
ment has primarily due to an increase in computational capability due to advances
in GPU architecture, as well as research into specialized accelerator architectures
using FPGA and ASIC. Another key factor that has led to making training and de-
ployment of Deep Neural Network feasible is due to an increase in the amount of
data available for training, this comes as a result of the internet. The reason why
Deep Neural Network can take advantage of a highly parallel architectures as can
be found in GPU and custom ASIC, is due to the fact that DNN the majority of
operations performed in a neural network can be decomposed down into matrix
multiplications. An interesting example which highlights the difference between
GPU and CPU performance when training a neural networks was shown as an
example in Baji [2]s paper. Training a network such as AlexNet using a batch of
64 images took 64s to perform on a CPU, while running the same method on a
GPU yielded a result in 7.5s. This gap in performance have seen further increase
as GPU manufacturers such as NVIDIA has developed custom APIs for running
the training process efficiently on their GPUs. In terms of ASIC the focus has been
on creating small accelerator architectures that can run neural network models in
an efficient manner. In recent years two new categories of devices have seen the
light of day, these are Tensor Processing Units and Vision Processing Units. The
TPU is a term used to describe hardware accelerators primarily developed and
used in Google’s data-centers to accelerate their AI infrastructure. They have also
developed an Edge TPU for running inference on edge devices, such as their de-
velopment board Google Coral[3]. These ASICs utilizes systolic arrays to perform
matrix multiplications [4] VPUs uses different architectures, a notable example is
the Intel Myriad VPU, this ASIC utilizes 16-SHAVE cores which are based on an
VLIW architecture[5].

Applying deep neural networks to solve problems is a relatively recent trend,
throughout the late 90s, and early to mid-2000 conventional machine learning
methods were used instead of DNNs. These methods required careful construc-
tion of algorithms and systems to do tasks such as face detection or object classifi-
cation. Some successful attempts had been made using Artificial Neural Network
and Convolutional Neural Network on problems such as digit recognition[6]. The
main challenge that came with DNNs was that they required extensive training to
do recognition, and as such, creating larger and more complex models was seen
as infeasible at that time.

Interest in applying Deep Neural Network for computer vision task flared up again

Chapter 1: Introduction 3

in 2012, when a DNN was used in the ImageNet Large Scale Visual Recognition
Challenge (ILSRC). AlexNet an 8-layer Convolutional Neural Network outper-
formed the competitors with an top-5 error rate of 15.3% with the runner up
achieving an error rate of 26.2%[7]. After AlexNet, many CNNs were developed,
trying to further improve upon accuracy. Increasing the accuracy of a model can be
achieved by adding additional convolutional layers to the CNN model. The prob-
lem with this approach is that network complexity increases. Although leading
to increased accuracy, the sheer size and complexity of the models more power-
ful hardware to run the network and led to increases in inference time, power-
and energy consumption. As a result, research has also been focused on creating
smaller and more energy-efficient networks. The models need to be light enough
to be deployed to resource-constrained devices like smartphones or smaller em-
bedded devices used in robotics or surveillance.
This thesis explores the concept of transfer learning, and looks at how this can
be applied to improve neural network performance. To do this four different neu-
ral network models are trained on a custom dataset and deployed on the Google
Coral Dev Board to analyze the networks in terms of power, energy and energy
per operation.

1.3 Relevant Work

This section presents literature on previous work done concerning the topics of this
thesis. The primary goal of this thesis is to explore the use of transfer learning to
train Convolutional Neural Networks to detect and generate estimates on people
present in data such as an image. The secondary goal of this thesis is to deploy the
trained CNNs on accelerator hardware and evaluate with metrics such as inference
time, energy consumption, and energy per operation.

1.3.1 People Detection using CNNs

Studies that apply Convolutional Neural Networks to detect and count the number
of people in an image comes in a wide variety of forms, and terms such as crowd-
estimation and pedestrian detection are often used in literature. These terms are
relevant in relation to the content for this thesis as the methods employ CNNs to
count or detect people. Since there seem to be multiple methodologies for estimat-
ing the number of detections in an input image, this section presents regression
and detection-based methods. Counting by detection is a method for estimation
that is done by applying regression to the output of an object detector (which
can be implemented by an CNN). The second method uses regression to do crowd
density estimation; that is, it uses a Convolutional Neural Network to extract high-
level features from an image and then applies regression to the extracted features
to generate an estimation. In Chahyati et al. [8], the authors applied Faster-RCNN
to predict the gender of individual persons in a video and then use this informa-
tion in conjunction with tracking methods to detect people between frames. In

4 Benjamin R. Møklegård: People Detection using CNNs

their study, they test the use of Euclidean distance and Siames Neural Networks
to improve upon tracking performance. In their study, they do not use this system
to count the number of people directly, but it applies to this problem in this thesis
since it would only require counting each detection generated by the network.
Stewart et al. [9] used GoogLeNet and recurrent neural networks to create a net-
work that generates bounding boxes that are used to detect people in crowded
scenes. Their design addresses some of the challenges in generic object detection
implementations based on CNNs. These networks often use some form of non-
maximum suppression, which is used to reduce the number of boxes generated
by the CNN. This results in the problem that objects close in proximity might not
be detected, leading to poor detection results in crowded scenes. This problem
is addressed by applying long-short term memory (LSTM), which feeds informa-
tion in the RNN part of the network. The LSTM and RNN combination allows
each consecutive detection to be generated with prior knowledge of earlier detec-
tions. This removes the need for non-maximum suppression, which can help boost
performance. Hu et al. [10] applies CNNs to estimate the number of people in a
crowded input image. The authors created a multi-scale CNN, which is trained
to detect crowd features, and this is then used with a feature-count regression
network that takes into account crowd count and crowd density. The model is de-
signed for estimating density in very dense scenes containing hundreds or even
thousands of people. In Nikouei et al. [11] developed a lightweight CNN architec-
ture for real-time detection as an edge service. They employ depthwise separable
convolutions, which separate the convolution operation into two stages, which
reduces the number of necessary calculations. They also deployed their network
to a Raspberry Pi 3 Model B, where they achieved a framerate of 1.79 FPS, which
would correspond to an inference time of 558ms. Sam et al. [12] uses a concept of
switching convolutions. That is, the model uses multiple independent crowd den-
sity regressors with different sized receptive field and field of view. This helps the
model perform better since a camera might capture the information differently in
a crowded scene, depending on its placement and field of view

1.4 Thesis Contribution

The main contributions of this thesis is to shed light on the application of transfer
learning and look at how this can be used to improve accuracy of pretrained neural
network models. Analysis of different neural network framework and models has
also been performed, where emphasis on energy consumption and specifically
energy consumed per operation has been one of the primary focuses.

1.5 Thesis structure

The thesis is structured with the following chapters:

Chapter 1: Introduction 5

• Chapter 2 - Theory which explains the theory of CNNs, object detection
and how object detection can be used to detect people.

• Chapter 3 - Experimental Setup: which details the dataset used in this
thesis. Explain the process of preparing the dataset to work with the differ-
ent frameworks. How the different neural network models are trained and
what tools are used to evaluate the different implementations.

• Chapter 4 - Methodology: explains the metrics that are used to evaluate
the trained models and presents tools used to acquire said metrics.

• Chapter 5 - Results: Presents the acquired results after applying transfer
learning and deploying the networks to the Google Coral.

• Chapter 6 - Discussion: where the results are analysed and advantages
and disadvantages in relation to the CNN, hardware and methodology are
discussed.

• Chapter 7 - Conclusion: which summarizes the findings in this thesis.

Chapter 2

Theory

This chapter will give the theoretical basis which the work of this thesis is based
on. In the following sections, the functionality of Artificial Neural Network will
be explained in Section 2.2, and the process of training a neural network will be
described Section 2.3. Theory in regards to Convolutional Neural Network, which
are applied in this thesis, will be elaborated in Section 2.4. Section 2.5 explains
the concept of transfer learning. Section 2.6 will present object detection architec-
tures and will show how the older object detection architectures have impacted
on the development of newer architectures. Mathematical theory in the following
sections are primarily based on the books Deep Learning by Ian Goodfellow [13]
and MI Algorithms by Bonaccorso [14].

2.1 A brief history of machine learning

The beginning of machine learning and neural networks can be traced back to
neuroscience in the early 1940s. In 1943, McCulloch and Pitts [15] presented a
model of an artificial neuron, where the neurons were made to function like first-
order Boolean logic. The inputs to the neuron could be either 0 or 1. Depending
on how the threshold of the output of the neuron is configured, the neuron could
implement functions like, AND, OR, NAND, and NOR, however, the McCulloch and
Pitts neuron was incapable of modeling the XOR and XNOR. Later in 1949, Hebb
[16] helped to improve upon the model by addressing how the connectivity be-
tween the neurons changed depending on how often the cells were interacting.
In his book, they postulated that when a cell repeatedly fires on another cell, the
output of the firing cell would change to improve on the efficiency of firing on
the receiving cell. The McCulloch and Pitts neuron was modified to allow weight-
ing on the inputs. This allowed the model to consider certain inputs over others,
which allowed the model to learn.

Some of the earliest attempts at implementations of neural networks came with
research into single and multilayered networks (now often referred to as per-
ceptrons) done by Rosenblatt [17] and his work in 1961 [18]. Rosenblatt’s work

7

8 Benjamin R. Møklegård: People Detection using CNNs

explored a network of interconnected neurons, in which the neurons could learn
new representations after being trained. However, the perceptron faced criticism
by Minsky and Papert [19] for not being able to learn non-linear data. Pattern
recognition in more complex data, like images or sound, was still a challenge for
earlier networks. In 1980, Fukushima [20] presented an architecture which al-
lowed for pattern recognition, and was an extension to earlier work done in 1975
[21]. The Neocognitron is recognized as the inspiration of modern-day convolu-
tional neural networks; the architecture allowed for the extraction of data from
images. One of the challenges with finding patterns in images is that objects are
positional dependant in the image. A network that does not feature positional
invariance will in most cases be incapable of detecting or recognizing features.
Fukushima [20] addressed this by having two types of cells in the network, an
S-cell which worked as the feature extractors and C-cells which correspond to the
complex cells in the visual cortex, these cells respond to and corrects the posi-
tional error in the input stimulus adding positional invariance to the model. A
huge breakthrough in neural network research came in the mid-1980s. Rumel-
hart and McClelland [22] in their report "Learning Internal Representations By
Error Propagation" presented a method for training artificial neural networks us-
ing gradient descent and was a "rediscovery" of methods researched during the
1970s, the method is called backpropagation, and it is still used to this day when
training modern neural networks. Armed with this knowledge, LeCun et al. [6]
created a convolutional neural network that used backpropagation to learn to
recognize handwritten digits. This architecture is often credited as the first defi-
nition of the modern implementation of convolutional neural networks. The 90s
and early 2000s saw less focus on research of deep neural networks, and there
are multiple reasons for this, training deep networks using backpropagation was
expensive in terms of hardware and the development of other methods for pattern
recognition and classification like support-vector machines [23] gained popular-
ity. Research into artificial neural networks flared up again during the late 2000s,
in 2012 Krizhevsky et al. [7] achieved breakthrough performance outperforming
the competition in the 2012 ImageNet Large Scale Visual Recognition Challenge.
Their paper resulted in a new wave of research into convolutional networks.

2.2 What are Artificial Neural Networks

The term artificial neural network or ANN describes a set of interconnected nodes
that form a connected network or graph. The structure of the network is loosely
based on how the neurons in a biological brain are structured. An ANN can be
applied to a wide variety of problems, such as regression and classification. How-
ever the primary purpose of an ANN is to find an approximation to an objective
function f(x)[13]. The network does this by utilizing optimization methods that
are used to reconfigure the network’s internal parameters. This is used to find the
best possible configuration of the network’s parameters, such that the network’s
loss function is minimized.

Chapter 2: Theory 9

2.2.1 Biological Neuron

Before the artificial neural network is explained, a brief explanation of how a
biological neuron works and how it is structured will be described. This should
give some idea of the similarities and inspirations concerning the structure of a
neural network.
A biological neuron is a type of cell which is found in the brain. These cells are
responsible for a lot of different functions in the body. Each neuron is connected to
other neuron forming pathways in the brain, which are used to make memories,
control motion, process things such as; thought, auditory signals from the ears,
or visual signals from the eye. Since the neuron is a cell it features a cell body
which is also called soma. The cell body houses the core or nucleus of the cell.
The connections between neurons are formed using two types of connections, the
dendrites, which acts as the input paths to the cell. The output path of a neuron
is called axon. To explain how a biological neuron operates the functionality can
be simplified and generalized. A neuron works by summing each input signals
received on the dendrites. Each of these inputs may be weighted by the cell, giving
certain inputs a higher priority than others. Depending on the value of this sum,
the cell might fire a signal on its output, this is determined by how the neuron
has been configured. [24]. Figure 2.1, shows an illustration of how a biological
neuron can be visualized1.

Figure 2.1: An example of a biological neuron. The image has no given name, by
Unknown artist, Licensed as "Free to Use"

2.2.2 Artificial Neuron

The artificial neuron is the basic building block used in artificial neural networks.
It shares similar features and functionalities to a biological neuron. An artificial
neuron takes in a fixed set of inputs x j for j = 1, ..., n, where each input corre-
sponds to a neuron’s activation in a previous layer. Each input is scaled by a set of
weights wi and summed in the neuron. The result of the summation is passed to
an activation function f(x)[24]. Figure 2.2 show how an artificial neuron can be
visualized.

1https://pixabay.com/vectors/brain-neuron-nerves-cell-science-2022398/

10 Benjamin R. Møklegård: People Detection using CNNs

f(x)

x1

x2

x3

y

w1

w2

w3

Figure 2.2: An example of an artificial neuron with three inputs

The activation yi of an artificial neuron i can be described as in Equation 2.1

yi = f

� N
∑

i=0

wi x i + b

�

. (2.1)

It can also be modeled using vectors where the output of the neuron is the dot
product between the input feature vector x and the weight vector w. In this case,
the bias term is incorporated into the feature and weight vector. Equation 2.2
describes this relation

yi = f (wT · x). (2.2)

2.2.3 Fully-connected Artificial Neural Network

When a set of artificial neurons are stacked together to form layers, a neural net-
work is formed. Here each layer contains a fixed set of neurons. Each neuron is
connected either sparsely, i.e., a neuron is connected to a subset of neurons in
the next layer, or it is fully-connected, meaning that each neuron is connected to
every neuron in the next layer. An artificial neural network has an input layer, one
or multiple hidden layers, and the output layer. To designate a neuron i in a given
layer L, each neuron can be given a designation as a(L)i . An example of an artificial
neural network that has an input layer, one hidden layer, and an output layer is
given in Figure 2.3.

Chapter 2: Theory 11

x1

x2

y1

y2

y3

Hidden
Layer

Input
Layer

Output
Layer

a1(1)

a2(1)

a3(1)

a4(1)

a1(0)

a2(0)

a1(2)

a2(2)

a3(3)

Figure 2.3: Artificial Neural Network with an input layer using two input neurons,
a hidden layer with four neurons and a three neuron output layer

2.3 Training a Neural Network

2.3.1 Loss Function

To evaluate how well a neural network model performs, the notion of a loss func-
tion must first be explained. There exist conflicting views on the difference be-
tween the term loss function and cost function [13], some use the term loss func-
tion to describe the difference between a single input sample in relation to the
generated output prediction, and that the cost function is the average loss over
the entire dataset. In this thesis, the terms are used synonymously, the reason for
this is that many papers refer to the cost function simply as the loss [25–27].

A loss function calculates the error of an ANNs generated prediction, and is found
by looking at the difference between the predicted output, that is f (x i;θ), and the
expected output yi , which is often denoted as a groundtruth. Here x i is used as a
notation to imply a single sample from a dataset X = {x0, x1, x2, ..., xn} and labels
yi from a dataset Y = {y0, y1, y2, ..., yn}. Almost all modern neural networks are
trained using some form of maximum likelihood estimation, a statistical method
that tries to minimize dissimilarity between the empirical probability distribution
of a dataset against the probability distribution generated by the model[13]. One
of the most common loss functions derived using this methodology is defined as
the negative of the log-likelihood, which is often described as the cross-entropy
between the prediction and the training data. The general form of cross-entropy

12 Benjamin R. Møklegård: People Detection using CNNs

is called categorical cross-entropy loss and is defined in Equation (2.3)[14]

L(Y, X ;θ) = −
1
N

N−1
∑

i=0

yi log [f (x i;θ).] (2.3)

Where θ is the network parameters, in the case of a generic fully-connected ANN,
θ is simply the weights (w) and bias (b) terms. The choice of loss function depends
on the type of task the network is supposed to perform, but it can be categorized
into two kinds of losses: regression loss and classification loss.

Regression Loss

Regression deals with the problem of creating a model that predicts numerical
values. An example of a regression model could be to predict housing prices from
data such as lot size, number of rooms, and location. An easy way to evaluate the
performance of a regression model would be to look at the difference between
the numerical value predicted by the model and compare this to the expected
output. Two of the most common loss functions are the mean absolute error (MAE)
and mean square error (MSE). These losses equate the mean absolute difference
or the mean squared difference between the predicted output and the correct
output value. The losses are sometimes also called L1 and L2 losses[28]. The mean
absolute error or averaged L1 loss is given in Equation (2.4) while the mean square
error or averaged L2 loss is shown in Equation (2.5)

L(Y, X ;θ) =
1
N

N−1
∑

i=0

|yi − f (x i;θ)|. (2.4)

L(Y, X ;θ) =
1
N

N−1
∑

i=0

(yi − f (x i;θ))
2. (2.5)

Classification Loss

Classification deals with the problem of accurately labeling data into one or more
classes. An example can be a model that tries to classify photos of fruit. A clas-
sification model should then correctly identify the class that each image belongs
to. For models tasked with classifying data into one of two categories, the binary
cross-entropy loss is the most commonly used function. Binary cross-entropy is a
particular case of the categorical cross-entropy and is defined in 2.6[14].

L(Y, X ;θ) = −
1
N

N−1
∑

i=0

[−yi log(f (x i;θ)) + (1− yi) log(1− f (x i;θ))] . (2.6)

Cross-entropy loss is also applicable to multi-class classification models. In that
case, the categorical cross-entropy, as defined in Equation (2.3) is used.

Chapter 2: Theory 13

2.3.2 Backpropagation and Gradient Descent

The process of training a neural network can be viewed as an optimization prob-
lem, where the goal of training is to minimize the network’s loss function by ad-
justing the network’s parameters, that is the weights and biases. This is achieved
through the use of a process known as backpropagation, which is used in con-
junction with a gradient-based optimization technique called Gradient Descent.
This process is used to modify the weights and biases in the network, which in
turn changes the output of the loss function.

Gradient Descent

Gradient Descent is an algorithm that is used to calculate the gradient of the loss
function in relation to the network’s current parameters and use this gradient to
modify the network’s weights and biases to improve the network’s loss. Minimiz-
ing the loss is achieved by moving in the negative direction of the gradient using
a limiting factor known as the learning rate ε. The parameters are updated by
applying the following equation [14]

θ ←− θ − ε∇θ L. (2.7)

One of the major challenges in calculating the gradient is to calculate the partial
derivatives of the loss since these depend on the partial derivatives for each weight
and bias in the network. This is shown in Equation 2.8.

∇ΘL =
�

δL
δwi

, ...,
δL
δwn

,
δL
δbi

, ...,
δL
δbm

�

(2.8)

Where n is the number of weights in the network, and m is the number of bias
terms.

Backpropagation

Backpropagation is the method which solves the problem of calculating the loss
gradients. It allows for efficient calculations of the derivatives in the loss gradient.
The method works by first calculating the gradient of the last layer in the network.
This is done by applying the chain rule to the loss function, simplifying some of the
calculations. The resulting derivatives are passed backward through the network,
which allows the previous layers to calculate the derivatives in relation to the loss
function efficiently. To clearly illustrate the point, let’s take a look at the output
of a single layer in a neural network. To simplify matters, let’s consider a network
containing only two connected nodes and analyze this. Such a network can be
seen in Figure 2.4. The activation on the output can be given as in Equation (2.9)

y(L) = f (a(L)). (2.9)

Where y(L) is the activation as explained in Equation (2.1) of the last neuron
in the network. a(L) denotes the weighted sum of the input and the bias of the

14 Benjamin R. Møklegård: People Detection using CNNs

x
a(L-1) a(L)

y(L)
y(L-1)

Figure 2.4: An example of a simple neural network containing two connected
neurons

neuron in layer L. Since the loss is a function of the activation of the last layer and
the activation is a function of the weight of the node, bias, and activation on the
input from the previous node in the network. The derivative of the loss in the last
node can be found by looking at the weight, bias, and activation by splitting the
calculation up into parts using the chain rule. In Equation (2.10) the derivative
is calculated with respect to the last node’s weight, but the method is identical
when calculating for bias and node activation for previous nodes.

δL
δw(L)

=
δL
δ y(L)

δ y(L)

δa(L)
δa(L)

δw(L)
(2.10)

We can apply this method to calculate the derivative in relation to the previous
layers weight. This gives the relation in Equation (2.11).

δL
δw(L−1)

=
δL
δ y(L)

δ y(L)

δa(L)
δa(L)

δ y(L−1)

δ y(L−1)

δa(L−1)

a(L−1)

δw(L−1)
(2.11)

The interesting thing to notice here is that both equations share similar deriva-
tives; this is the critical observation that makes up the foundation of backprop-
agation. That is that we can calculate all the derivatives of the last layer and then
propagate these back to the previous layers, reducing the number of derivatives that
need to be calculated, thereby reducing the required number of operations when cal-
culating the loss gradient

2.4 Convolutional Neural Networks

Convolutional neural networks are a sub-type of artificial neural networks. These
types of networks are inspired by how the receptive field in an eye captures in-
formation. In a CNN, the neurons in the convolutional layers perform a discreet
convolution between data provided to the network and pretrained filter kernels.
The CNN implements receptive fields by utilizing different sized convolutional fil-
ters. CNN is most often used on images, to do things like object classification or
detection.

2.4.1 Convolution Operation

A convolution is an operation using two functions with real-valued arguments.
The conventional mathematical definition of a convolution is given in Equation

Chapter 2: Theory 15

2.12[13]

s(t) = (k ∗ x)(t) =

∫

τ

k(τ)x(t −τ)dτ. (2.12)

The function x(t) is often referred to as the input or feature map when it is used
in neural networks, while k(t) (also often represented as f(t)) is referred to as a
filter or kernel. The result of the continuous convolution defined in Equation 2.12
is a new function s(t). s(t) can be described as the weighted average between an
input function and a time-shifted weight function.

The time-continuous convolution in Equation 2.12 differs from the types that are
applied in neural networks. In a convolutional neural network, the input to the
network is often either a 2D image (single-channel monochrome image) or a 3D
volume (multi-channel image, where each channel represents a color channel). In
this case, the convolution is applied using discreet convolution between the input
data x and the filter/kernel k.
This operation can be performed using a sliding-window technique; in this case,
the output is a sum of element-wise multiplication between the values in the ker-
nel with a subset of values in the input. This can be described as in Equation 2.13

s(i, j) =
∑

m

∑

n

k(m, n) ∗ x(i −m, j − n). (2.13)

In Equation 2.13 the value of m and n is derived from the size of the kernel k. If
the kernel is of size w ∗ h then the range of m and n can be found from:

−(w− 1)≤ m≤ (w− 1)

−(h− 1)≤ n≤ (h− 1).
(2.14)

In machine learning libraries one often applies another method called cross-correlation
which is similar in nature to a convolution [13], libraries like Tensorflow2 and
PyTorch3 uses this implementation method. The equation for cross-correlation is
given in Equation 2.15

s(i, j) =
∑

m

∑

n

k(m, n) ∗ x(i +m, j + n). (2.15)

The output of the convolution over the input image is a new "image" called feature
map. The size of a feature map generated by a convolution depends on multiple
factors. These are the size of the kernel w, h. The stride of the kernel; that is how
many pixels the kernel is displaced per calculation. Padding on the input data also
impacts on the size of the output. The size of the generated feature map can be
calculated using Equation (2.16)

Wf =
Wi −w+ 2 ∗ P

S
+ 1

H f =
Hi − h+ 2 ∗ P

S
+ 1

(2.16)

2https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/layers/convolutional.py
3https://pytorch.org/docs/stable/nn.html#convolution-layers

16 Benjamin R. Møklegård: People Detection using CNNs

Where Wi , Hi is the size of the input image, w, h is kernel width and height, S
is the stride of the kernel, and P is the padding applied on the input. Figure 2.5
shows a convolution with input of size 4x4, a kernel of size 3x3 with a stride of 1
and no padding. In this case the width and height of the output feature map can
be calculated to be 4−3+2∗0

1 + 1= 2.

1 -1
0 1
0 1

1
-1
0

5

5 04 2
2 1
5 -2
3 1

1 6
-3 8
4
5

7
1

1 -1
0 1
0 1

1
-1
0

4 2
2 1
5 -2
3 1

1 6
-3 8
4
5

7
1

Figure 2.5: Example of Convolution Operation on a 4x4 input matrix with a 3x3
kernel. Reproduced from [29]

2.4.2 Convolution Layers

In a convolutional neural network, a convolutional layer consist of a configurable
amount of nodes often referred to as filters. Each filter is applied to the input
data using the convolution operation given in Equation 2.12. The filters operate
on each channel/layer in the input data, so each filter must have the same depth
as the number of channels in the input. The output of each filter is a feature
map. Each node/filter has its own set of weights and biases, and are capable of
extracting different, distinct features based on how they have been configured
during training. These features might be simple like edges, lines, or curves, or it
can be more complex like the contour of an eye. The input to the convolution
layers is an N-dimensional volume. A color image can be seen as a 3-dimensional
volume due to being composed of three color channels. Each of the filters in a
convolution layer produces a feature map, and the feature maps are combined
into a volume which is passed as the output of the layer. The volume would be an
M-dimensional volume, where M corresponds to the number of filters/kernels in
a convolutional layer.

Chapter 2: Theory 17

Convolutional
Layer 1

Convolutional
Layer 2 Fully Connected Layers

Output
Prediction

Figure 2.6: An illustration of a Convolutional Neural Network with two con-
volutional layers. Not shown on the image is the pooling layer in between the
convolutional layers

2.4.3 Activation Layers

Following a convolutional layer, there is added an activation layer. The purpose of
this layer is to introduce non-linearity into the data on the output of the convolu-
tional layer. Convolution is a linear transformation, and as such, it is not capable of
creating non-linear separations between different classes[24]. There exist a lot of
different activation functions, the choice of activation function largely depends on
the application on the network, and layers it is applied to. For CNN, the primary
types of activation functions are the Sigmoid functions, ReLU and LeakyReLu,
and Softmax for the fully connected layers. The activation functions are briefly
explained in the following subsections.

Sigmoid function

A Sigmoid function is a class of non-linear function featuring a value between
-1 and 1 or between 0 and 1. An S-shaped curve characterizes the shape of the
sigmoid functions. Two common Sigmoid functions are the logistic function as
defined in Equation 2.17 or the hyperbolic function defined in Equation 2.18.

f (x) =
1

1+ e−x
(2.17)

f (x) = tanh x (2.18)

ReLu

ReLu or rectified linear units are one of the most common activation functions to
date. The output of the function is 0 when the input is less than zero and is equal
to the input when greater than zero. It is defined in Equation 2.19.

f (x) =max(0, x) (2.19)

18 Benjamin R. Møklegård: People Detection using CNNs

Leaky ReLu

The Leaky ReLu is a modified activation function based on the parametric ReLu
and is defined in Equation 2.20.

f (x) =max(0, x)− βmin(0, x) (2.20)

In the ordinary ReLu, the network can stop training if the gradient becomes zero,
which happens if the input is negative. Leaky ReLu solves this problem by setting
β to a small value. This allows the gradient to hold a non-zero value since a small
negative value can "leak" through the activation function[24].

Softmax

The softmax function is used in the last fully-connected layer in a classifier to gen-
erate a probability distribution over the detectors classes. It is defined in Equation
2.21

f (x) =
ex
∑n

j=1 ex j
(2.21)

2.4.4 Pooling Layers

Pooling layers are used as downsampling layers and are used to reduce the size of
a feature map. Doing this helps in reducing the number of computations needed
per convolutional layer, but it also serves another purpose in that it provides some
translational invariance to the input[24].

Pooling is often implemented in one of two fashions, either max-pooling or average-
pooling. Not all CNN architectures use pooling, recent CNNs (like Mobilenet V2)
replaces the pooling layers with a strided convolution. Max-pooling is the type
of pooling layer which is most often used. It works by dividing the input data
into regions. For each number in the region, the number with the largest value is
selected. Average-pooling is similar to max-pooling. The difference is that the re-
turned value is the average value of each region. Figure 2.7 shows the difference
between the two types of pooling methods.

Chapter 2: Theory 19

4 8

5 7

4 2

2 1

5 -2

3 1

1 6

-3 8

4

5

7

1

4 2

2 1

5 -2

3 1

1 6

-3 8

4

5

7

1

2.25 3

1.75 4.25

Average Pooling Layer

Max Pooling Layer

4 2

2 1

5 -2

3 1

1 6

-3 8

4

5

7

1

Figure 2.7: Pooling is performed in one of two types either max-pooling or
average-pooling. Figure reproduced from [29]

2.5 Transfer learning

One of the major challenges when training a neural network model is the require-
ment of a large scale dataset. There is a need for such a dataset since it allows the
model to properly generalize to the classes it should be able to classify or detect.
To overcome this problem it is better to use an already trained model as a starting
point and then fine-tune it to your specific dataset. This concept is what is known
as transfer learning. Transfer learning allows an already existing model that has
been trained on large scale datasets such as Imagenet[30], Pascal VOC[31] or
COCO[32] to be fine-tuned to a custom dataset, this can help increase the overall
accuracy of the model, but can also be used to retrain the model to detect classes
that is not present in the original dataset.

Applying transfer learning is not always the best way to improve model perfor-
mance depending on the size of your custom dataset and how similar this dataset
is to the datasets used during training of the pretrained models [24]. If the custom
dataset contains a considerable amount of images and is similar to the original
dataset the model has been trained on, transfer learning can be applied. Since
both datasets are similar, many features in each dataset are shared, making it fea-
sible to use the pretrained model as a starting point and then fine-tune the model’s
weights and biases. Another option is to retrain the model from scratch, which can
be done since the dataset is large. This sentiment is also shared in the case that

20 Benjamin R. Møklegård: People Detection using CNNs

the custom dataset is small. As long as the datasets are similar in terms of sharing
data with similar features, transfer learning and fine-tuning can be applied to "re-
train" and improve the model’s performance. In contrast, a large custom dataset
that is too dissimilar to the original dataset will not benefit much from applying
fine-tuning. Since both datasets contain features not shared by the other, the point
of using the pretrained model as a good starting point becomes moot. In this case,
it would be better to train the model from scratch, something that can be done
since the dataset is sufficiently large. The most problematic situation is a dissimi-
lar dataset that is also small. In this case, doing training from scratch would yield a
model with poor performance. There is a possibility to apply fine-tuning by using
the pretrained model. However, the performance of the model would suffer since
the already learned features would not translate well to the custom dataset[24].

2.6 Object Detection

This section will take a look at how an object detector using CNN works. It starts
by looking at the earlier attempts at doing object detection, as these have had an
impact on the design of modern architectures. One of the first object detection
networks based around CNN is the R-CNN, which was later improved upon in
Fast-R-CNN and Faster R-CNN, up to some of the more modern detectors such as
the ones used in this thesis; SSD and YOLO. Object detectors are usually divided
into two types, single-stage, and two-stage detectors. A two-stage detector uses a
region proposal network to generate a set of possible detection proposals. These
proposals are sent to the second stage, which uses a classifier to generate class
probabilities. The one-stage detector differs from the two-stage by implementing
both the region proposal and classifier into one network.

2.6.1 R-CNN

Regions with CNN features or R-CNN is an object detector based on the use of a
convolutional neural network and was developed by Girshick et al. [33] in 2014.
The detector is a two-stage detector. In R-CNN, a selective search algorithm is
first used to generate 2000 region proposals from an input image. Each proposal is
warped; that is, the spatial dimensions of the proposal region are sized to the input
size of the R-CNN network. The classifier used in the network is a combination
of a CNN implementation based on Alexnet [7], which extracts features from the
proposed regions, the features are passed to a support vector machine (SVM) for
predicting the class scores and offsets for the bounding boxes.

2.6.2 Fast R-CNN

One of the significant challenges with R-CNN is that training is expensive. The
process of training was a multi-stage process. It needs to train for CNN feature
extraction, then fit the SVM to the features and, at the end of the training, learn

Chapter 2: Theory 21

bounding-box regressors. It also required a lot of storage to cache features gener-
ated during training [33]. Fast R-CNN [27] remedied the shortcomings in R-CNN
by presenting a new algorithm which performs training in one-stage rather than
multiple stages. The architecture of Fast R-CNN is based on the work previously
done in the R-CNN paper. However, the selective search algorithm used to gener-
ate region proposals for the input is removed. Instead, Fast R-CNN takes an entire
image as input and generates features using a Backbone-CNN. This can be any pre-
trained CNN. In the Fast R-CNN implementation, VGG16 is used[27]. From these
features, regions of interest (RoI) are identified using a region proposal algorithm
like selective search. Each RoI is passed to an RoI pooling layer, followed by a set
of fully connected layers that feed into two output layers, one softmax layer used
for classification and a second layer for bounding box regression. The RoI pooling
layer reshapes the input feature to a fixed size feature map of configurable size.

2.6.3 Faster R-CNN

Faster R-CNN improves upon Fast R-CNN by replacing the selective search algo-
rithm with a second convolutional neural network, which generates region pro-
posals called Region Proposal Networks or RPN. The input to the RPN is an image
of arbitrary size; its output is rectangular object detections and an objectness score
per detection[34]. The objectness score defines whether an object is believed to
be present in a specific bounding box, or not. The RPN shares a set of its convolu-
tions layers with the object detection network to further increase the efficiency of
proposal generation. Fast R-CNN is used as the object detection network in Faster
R-CNN [34].

2.6.4 SSD

SSD is a one-stage network developed by Liu et al. [25]. The network differs from
the aforementioned R-CNN networks by replacing the region proposals and fea-
ture re-sampling with a deep feed-forward convolutional network. This generates
a fixed-size collection of bounding boxes and the score associated with the pres-
ence of an object in each bounding box[25].

Architecture-wise, the network can be seen as a compound of two parts; the base
network and the auxiliary structure, which adds extra feature layers to increase
detection accuracy. The base network is simply a repurposed CNN-based classifier,
where the last layers of the network (the fully-connected layers used for generat-
ing class probabilities) are removed.

The auxiliary structure is added to the end of the base network. This structure
adds multiple convolutional layers. Each layer decreases in size progressively and
is used to allow for the detection of objects at different scales. Feature maps gen-
erated in the layers earlier in the detection pipeline will be large and as such the
filters being applied to the feature map will detect smaller objects. In comparison,

22 Benjamin R. Møklegård: People Detection using CNNs

the smaller feature maps generated by the layers later in the network will primar-
ily detect larger objects.

The way SSD generates an object detection is by applying a set of convolutional
filters to each feature map produced by the layers in the auxiliary structure and
the last layer of the base network. For each feature map, two convolutional ker-
nels of size 3x3 with p channels are used to generate bounding box offsets and
class scores [25].
A set of k default boxes are associated with each cell in the feature map. These
boxes have prespecified aspect rations and have their position fixed in relation to
each cell. A cell, in this case, refers to a position in the feature map. For a feature
map of size m * n, the number of cells is equal to the size m * n. So the number
of default boxes applied to each feature map is of size m * n * k. For each of these
default boxes, the offset and class scores are calculated. The offset contains four
values, one for x offset, one for y offset, a value for width, and the last for height.
The network’s hyperparameters determine the number of classes. This implies that
for each feature map a total of (c + 4)kmn output values are produced for a total
of m * n * k boxes [25]. These are fed to a non-maximum suppression layer, which
reduces the number of generated predictions to produce the final output.

2.6.5 YOLO

You only look once, or YOLO is a one-stage network developed by Redmon and
Farhadi [35]. YOLOv3 features a 53-layer feature extraction network called Darknet-
53, followed by 53-extra layers for implementing object detection.

Detection in YOLOv3 is performed over three different scales, which allows the
network to better detect smaller objects, which was a challenge in earlier imple-
mentations[26, 36]. YOLOv3 also utilizes the concept of anchor boxes to reduce
the time needed to compute bounding boxes. Bounding boxes in YOLOv3 are gen-
erated on the dataset rather than using pre-computed boxes, as is the case for SSD
and Faster R-CNN. This is done to increase the network’s ability to learn to pro-
duce good detections [36].

The way YOLOv3 generates detections is by first dividing the input image into
three grids of three different sizes. For each cell in each grid, a fixed set of bound-
ing boxes are generated using anchor boxes. Each bounding box contains a set
of predicted values. Five values predict box attributes, 4 of which are values for
computing bounding box offsets (x, y, width, height) and the last value for box
confidence value. The box confidence value gives a measure of the probability of
an object being present in the generated bounding box. In addition to these 5 val-
ues, there are c class probabilities attached to each box, where c corresponds to
the number of classes. Multiple feature maps are concatenated into the different
scaled layers. Each of the scaled layers takes advantage of this concatenation to

Chapter 2: Theory 23

enhance the semantic information in the image and to generate more accurate
detections. For the scaled detection layers, the earlier layers are up-scaled and
added to the later layers to enhance the features [35].

In terms of the number of generated boxes, YOLOv3 generates k boxes per cell in
each of the three feature extraction layers, assuming each layer is of size n * n the
number of boxes generated by the network is equal to n * n * 3 * k, where the
size of the networks output tensor is of size n*n*3(k*(5 + c))[35].

Chapter 3

Experimental Setup

3.1 Models

In this thesis four object detection models are explored. These are based on Single
Shot Detection and YOLO. The SSD models uses Mobilenet V2[37] as its feature
extraction and the model is acquired from the Tensorflow Model. Zoo1. For YOLO,
YOLOv3[35] and YOLOv3-Tiny[35] was chosen.

3.2 Datasets

3.2.1 MSCOCO

Common Objects in Context or COCO2[32] is a dataset released by Microsoft. It
features over 300 thousand images, with over 1.5 Million object instances and 80
object categories. The dataset is not used directly for the experimental part of the
thesis, however, the pretrained models used in this thesis have been pretrained
on this dataset.

3.2.2 Open Image Dataset

The dataset used for the experimental part of this thesis is based on data from the
Open Image Dataset[38]3. Open Image Dataset is a dataset created and curated by
Google. It features more than 15 Million+ bounding boxes on 600 class categories,
2,7 Million+ segmentation masks for Image segmentation, and around 60 Million
image-level labels.
In this thesis, a tool called OIDv4-ToolKit4[39] is used to download a subset of
the dataset. The tool allows the user to specify the subset of the data to download
(i.e., whether to download train, test, and validation datasets) and what kind

1https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
2http://cocodataset.org/#home
3https://storage.googleapis.com/openimages/web/index.html
4https://github.com/EscVM/OIDv4_ToolKit

25

http://cocodataset.org/#home
https://storage.googleapis.com/openimages/web/index.html
https://github.com/EscVM/OIDv4_ToolKit

26 Benjamin R. Møklegård: People Detection using CNNs

of classes should be downloaded. In general, for applying transfer learning, the
dataset does not need to be very large, one can achieve relatively good results
using a few images. However, to supply the models with a decent basis to do
transfer learning in this thesis, a set of 20000 images was chosen for the training
set, and 4000 images were chosen for the test and validation set. The class label
selected is Person, since this is the object of interest.

3.3 Software Implementation

In this thesis, two types of frameworks are used to train and deploy neural net-
work models. The Tensorflow Object Detection API5 is used to train and test two
object detection models; Mobilenet V2 + SSD and a quantized Mobilenet V2 +
SSD model. The Tensorflow Object Detection API is used to do the training. While
for YOLO6 which is based on the darknet framework, training, and testing is han-
dled by the Darknet API. The following subsections explains how the data must
be processed, to convert it from Pascal VOC format to formats used by the differ-
ent frameworks. An example of the Pascal VOC format is supplied in Appendix C.
Code used to process is available at GitHub, links are given in Appendix A.

3.3.1 Tensorflow-based Models

The process of structuring the dataset and training a TensorFlow model can be
divided into the following steps:

• Generate a CSV file, by cycling trough each label file. Each label file is struc-
tured in the Pascal VOC format and contains information about the image
(filename and size), and information about detections (bounding box coor-
dinates, object class).

• From the CSV file, generate Tensorflow Records.
• Configure the relevant configuration file for the network. These are based

on the samples provided in the Tensorflow Object Detection API.
• Start the training process by using the model_main.py in the object detec-

tion folder in the Object Detection API.

These steps can be applied to multiple models in the model zoo.

3.3.2 YOLO

For YOLO, the process is somewhat similar, however, instead of generating a CSV
file that contains all the information about every image and detections. YOLO
requires a text file containing the class and bounding box coordinates in the format
(object_class x y w h) for each image in the dataset. Another caveat is that the
bounding box coordinates used for YOLO use the bounding box center for x, y

5https://github.com/tensorflow/models/tree/master/research/object_detection
6https://github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection

Chapter 3: Experimental Setup 27

coordinates, and width and height. This differs from the Tensorflow based models,
which uses the top-left corner of the bounding box x1, y1, and the bottom-right
corner of the bounding box x2, y2. So the coordinates must be transformed into
this form. The process of preparing data and model for training is as follows:

• Generate a text file containing one object ground truth per line. Each image
in the dataset requires one text file.

• Configure the YOLO architecture by modifying the yolov3.cfg configuration
file

• Start training by using the darknet command ./darknet detector train

3.3.3 COCO API

Pycocotools7 is a tool-chain used to evaluate the Tensorflow based networks dur-
ing and after training. The API is set as the standard evaluation method in the
Tensorflow Object Detection API and is, at this time, one of the more commonly
used evaluation methods. The performance metrics generated by the tool-chain
include mean Average Precision (mAP) and Recall for a variety of different Inter-
sect over Union values. These metrics will be further explained in Methodology.

3.3.4 Evaluation of Darknet based Models

There is no direct way of evaluating the Darknet based network using Pycocotools.
The results from running an inference over the test set must be translated to a
form that is accepted by the Pycocotools API. This is done by using a conversion
script created by Github user ydixon8. The program takes results generated by a
darknet model as an input. It parses this input so that the results can be passed to
Pycocotools and then evaluated using the COCO evaluation model. The purpose
of doing this conversion is to produce results using the same tool for each of the
frameworks, which in turn makes it easier to compare the different detectors.

3.3.5 Network Configuration

Each network features different configuration options. This is a result of using two
different frameworks. The following Table 3.1 outlines the training configurations.
It also states the estimated number of flops required to run inference on each
network.

3.4 Hardware Setup

To train and test the networks different hardware architectures have been used.
Training of the network was performed using the following hardware specifica-
tions:

7https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
8https://github.com/ydixon/mAP_eval

28 Benjamin R. Møklegård: People Detection using CNNs

Parameter Mobilenet Mobilenet (Quantized) YOLOv3 YOLOv3-Tiny
Batch Size 24 6 24 64

Input Shape 300 x 300 300 x 300 320 x 320 320 x 320
Learning Rate 0.004 0.004 0.001 0.001

Number of FLOPS 1.28 GFlops 1.29 GFlops 38.6 GFlops 3.2 GFlops

Table 3.1: Configuration options for each network.

• Intel I7-7700K CPU @ 4.2GHz
• 16GB of RAM
• Nvidia GTX1080 (8GB of Video memory)

.

While testing has been performed on Desktop CPU, GPU and Google Coral Dev
Boards CPU and TPU.

3.4.1 Google Coral Dev Board

The Google Coral Dev Board is a hardware platform designed specifically for run-
ning low-power, low-inference machine learning models. The board is divided into
two modules, the carrier board featuring the peripherals such as audio, HDMI,
USB connections, and GPIO. The second part is the Coral SoM. The System-On-
Module incorporates an NXP iMX 8M SoC, Google Edge TPU ML accelerator, Cryp-
tographic coprocessor, Bluetooth, Wi-fi, and more. A full list of features are avail-
able in the datasheet of the Coral SoM[40] and the datasheet of the Google Coral
Dev Board [3].

Figure 3.1: The Google Coral Dev Board

Chapter 4

Methodology

4.1 Detection Metrics

In this section, the metrics used to evaluate the performance of the retrained ob-
ject detectors are discussed. It starts by presenting the metrics: IoU and definition
of detection outcomes, then Precision and Recall will be explained as these metrics
needs to be understood to make sense of mean Average Precision (mAP) which
is the current de-facto standard for evaluation of object detection networks. The
generation of these metrics is in relation to the MS-COCO and follows this eval-
uation standard1. In addition to these metrics, the inference time of the network
and the number of floating-point operations are of interest in this thesis.

4.1.1 IoU

Intersect over Union or IoU, also known as the Jaccard Index2 is a common metric
used in the process of evaluating the accuracy of an object detector. This metric
measures how well the position and aspect ratio of two boxes correspond and is
defined mathematically in Equation (4.1).

IoU =
Area o f Overlap o f Boxes
Area o f Union o f Boxes

(4.1)

Here the area of overlap between the two boxes is related to the total area formed
by the compound of the boxes. This can be visualized, as shown in Figure 4.1.

4.1.2 Detection outcomes and the confusion matrix

An essential part of detection systems is to generate accurate and correct predic-
tions. But what constitutes a proper detection, and how can we quantify this? In
both classification and detection systems, this is done by using a concept of posi-
tives and negatives. A positive indicates that there exists an object in a given box.

1http://cocodataset.org/#detection-eval
2https://deepai.org/machine-learning-glossary-and-terms/jaccard-index

29

30 Benjamin R. Møklegård: People Detection using CNNs

Figure 4.1: IoU can be visualized by looking at the intersect of two boxes over
the union of the same boxes

The prediction of the detection system might generate erroneous detections in
relation to the actual ground truth. This results in the concept of true and false
positives and negatives. These can be defined as follows.

• True Positive - The object detection system predicts a box that overlaps to
a certain extent with a ground truth box, thereby correctly recognizing the
presence of an object.

• False Positive - The object detection system generates a prediction that does
not correspond to any box in the ground truth. This implies that there might
be an object in the detected box, but there exists no ground truth to validate
this

• True Negative - The object detection system does not generate any predic-
tion, and the ground truth does not contain any objects.

• False Negative - The object detection system does not generate any predic-
tion, while the ground truth states that there exists an object in a box.

When these metrics are structured into a matrix, it is known as a confusion matrix
and can be seen in Figure 4.2. So a detection generated by a CNN constitutes a

Positive Negative

Po
si

tiv
e

Predicted Values

N
eg

at
iv

e

Ac
tu

al
 V

al
ue

s TP FP

FN TN

Figure 4.2: An example of a confusion matrix

true positive if the predicted box belongs to the ground truth box class and that
the IoU overlap is greater than a set threshold. If a bounding box has an IoU that
is less than a set threshold, the box is labeled as a false positive.

Chapter 4: Methodology 31

4.1.3 Precision

The precision of a detection measures the ratio of correctly predicted results (i.e.,
True Positives) in relation to the total amount of generated detections. Equa-
tion (4.2) shows this relation

Precision=
True Posi t ives

True Posi t ives+ False Posi t ives
. (4.2)

4.1.4 Recall

Recall looks at the relation between the number of correct predictions (i.e., True
Positives) and the number of missed predictions (i.e., False Negatives) and is given
by Equation (4.3)

Recal l =
True Posi t ives

True Posi t ives+ False Negatives
. (4.3)

4.1.5 Mean Average Precision

The mean Average Precision is a metric used to measure how "well" an object
detector manages to generate bounding box predictions over a set of classes and
can be mathematically described as in Equation (4.4)

mAP =
1

Num Classes

∑

AP(class). (4.4)

Average Precision can be calculated in multiple ways, using 11-point interpola-
tion, all-point interpolation, integration, to mention a few. In the COCO evaluation
metric, a 101-point interpolation of precision values over a set of evenly spaced
recall values are used.

4.2 Inference Time

The inference time of the Tensorflow-based models is measured using the Python
Time module and specifically, the perf_counter, which returns a value from a
performance counter / the clock with the highest resolution in the system. This
should lead to relatively concise measurements. For the Darknet models, the Dark-
net API reports the time it uses to generate a prediction per image. This is logged
to a report file and is then processed through a custom Python script that extracts
the numerical values. The timing numbers reported in this thesis are based on the
average of inference run on a subset of the test dataset, specifically 1 sample per
image with a subset consisting of 400 images.

32 Benjamin R. Møklegård: People Detection using CNNs

4.3 Number of FLOPS

The number of floating-point operations is estimated using the Tensorflow Pro-
filer module in the Tensorflow API. This gives an approximation of the number of
floating-point operations that are needed to execute a network. One challenge in
the estimation of the number of flops is that Tensorflow allows variable-sized input
tensors to the neural networks, which makes it impossible to get a correct approx-
imation of the number of FLOPS. As such, this method only works for networks
where the input size has been fixed. However, this is generally the case for neural
networks used on a hardware accelerator. Estimation on the number of FLOPs in
regards to Darknet models is reported each time Darknet is called. The first thing
the API does is load the model weights, and it calculates the number of FLOPs per
layer from the configuration file. Estimation on the number of floating operations
per model in this thesis has already been presented in the configuration Table 3.1.

4.4 Frames per second

Frames per second denote the number of frames processed by the neural network
per second and can be approximated using the network’s inference time. This is
a valid method since the inference time is a measure of how fast the network
processes an image on its input. Equation (4.5) gives this relation.

F PS =
1

In f erence_t ime
(4.5)

For the Tensorflow models, the FPS is reported by measuring the inference time
during the invocation call to the Tensorflow Lite Interpreter. Darknet reports prediction-
time per processed image, which can be stored in a log. To get the estimated FPS
a custom python program is used to extract inference time also reports back the
FPS of the model.

4.5 Power Consumption

Power consumption is recorded using an inline multimeter, the UM32C USB tester.
The UM32C is a USB-based multimeter, which allows for the recording of voltage,
current, and power consumed by devices connected to the meter. It also features
Bluetooth, which allows for remote read-out and control. The meter can be con-
trolled through the use of the UM32C application, which can be run on Android
and iPhone. Figure 4.3 shows the UM32C meter.

4.6 Energy per Operation

The energy per operation is a useful metric when evaluating the different models.
Since the use case of the trained model is in a system for the detection of people

Chapter 4: Methodology 33

Figure 4.3: The UM32C USB Meter

and assuming the system is to be deployed on battery-powered hardware, the
energy consumed is an important consideration. To estimate the energy required
per operation, one needs to first calculate the energy consumed during inference.
This can be done by converting the recorded power consumption into consumed
energy using either the inferences time or FPS as shown in Equation (4.6).

Ener g y = Power ∗ In f erence_t ime =
Power
F PS

. (4.6)

The energy per operation is then found by taking the calculated energy and divide
that by the number of FLOPS as in Equation (4.7).

Ener g yperOperation=
Ener g y
F LOPS

(4.7)

Chapter 5

Results

In this chapter, the results from each of the fine-tune models are presented. To
make sure that Tensorflow and Yolo results are consistent, they are validated on
the same dataset, the 4000 test images. The inference time and the number of
operations required for a pass are recorded for each detector. Results from running
inference on the Google Coral Edge TPU are presented both in terms of power
consumption, inference time, and frames per second, and from this energy and
energy per operation is estimated. Finally, the last subsection shows a detection
result using each of the fine-tune models.

5.1 Transfer learning on pretrained models

5.1.1 Mobilenet V2 + SSD

The blue lines in Figure 5.1 shows the improvement in terms of classification and
localization loss during fine-tuning of the model. The total loss, which consists
of the classification, localization, and regularization (omitted due to minor con-
tribution) losses drops from 7.8 down to 5.4, a 30% improvement over the base
model. Loss is an interesting way to visualize that the network is learning, but
it does not paint the entire picture. A model may have low loss, but still make
poor detections, another factor is that loss is widely different for different archi-
tectures. This discrepancy is addressed when utilizing mean Average Precision,
IoU, and Recall as these are calculated the same way on each detector. Table 5.1
shows the COCO evaluation metrics when evaluating over the training data us-
ing the last saved checkpoint. The model achieves a mAP of 0.36 for an IoU of
0.50:0.95 and 0.62 for IoU of 0.50.

35

36 Benjamin R. Møklegård: People Detection using CNNs

Pretrained Custom Pretrained Custom
IoU Area Max Det mAP Average Recall
0.50 all 100 0.495 0.622 - -
0.75 all 100 0.309 0.362 - -

0.50:0.95 all 100 0.295 0.358 0.416 0.542
0.50:0.95 small 100 0.002 0.001 0.012 0.016
0.50:0.95 medium 100 0.047 0.067 0.108 0.222
0.50:0.95 large 100 0.366 0.441 0.509 0.644
0.50:0.95 all 1 - - 0.278 0.292
0.50:0.95 all 10 - - 0.415 0.496

Table 5.1: Metrics generated by evaluation on the test set with the pretrained
Mobilenet model and the custom fine-tuned Mobilenet model

Chapter 5: Results 37

5.1.2 Quantized Mobilenet V2 + SSD

The results which are generated by using a quantized version of Mobilenet should,
in theory, produce similar results to the original architecture. Since the quantized
model converts the original 32-bit float weights into unsigned 8-bit integers, a
drop in accuracy is to be expected. The orange lines in Figure 5.1 displays the loss
during the training of the quantized model. The loss drops from 7.3 to 5.2, which
is a 29% drop, close to the 30% for the non-quantized architecture. Table 5.2
displays the evaluation of the Quantized model before and after doing fine-tuning.
The Quantized model achieves a mAP of 0.35 for an IoU of 0.50:0.95 and 0.61
for IoU of 0.50, slightly less than its non-quantized counterpart.

0 1 2 3 4 5 6 7
Steps 104

4

5

6

Lo
ss

(C
la

ss
ifi

ca
ti

on
)

0 1 2 3 4 5 6 7
Steps 104

1

2

Lo
ss

(L
oc

al
iz

at
io

n)

0 1 2 3 4 5 6 7
Steps 104

6

8

Lo
ss

(T
ot

al
)

Figure 5.1: Classification, Localization and Total Loss during Training of non-
quantized model in blue and quantized model in orange.

38 Benjamin R. Møklegård: People Detection using CNNs

Pretrained Custom Pretrained Custom
IoU Area Max Det mAP Average Recall
0.50 all 100 0.004 0.614 - -
0.75 all 100 0.001 0.356 - -

0.50:0.95 all 100 0.001 0.353 0.227 0.540
0.50:0.95 small 100 0.000 0.003 0.000 0.028
0.50:0.95 medium 100 0.000 0.066 0.002 0.227
0.50:0.95 large 100 0.002 0.438 0.292 0.640
0.50:0.95 all 1 - - 0.000 0.291
0.50:0.95 all 10 - - 0.002 0.493

Table 5.2: Metrics generated by evaluation on the test set with the quantized
pretrained Mobilenet model and the quantized fine-tune model

Chapter 5: Results 39

5.1.3 YOLOv3

The results obtained when training YOLOv3 is interesting; overall, the trained de-
tector is performing slightly worse than the pretrained model. The loss displayed
in Figure 5.2 shows that the model converges around 500 iterations. Table 5.3
shows YOLOv3 before and after applying fine-tuning. With a mAP of 0.66, the pre-
trained YOLOv3 model performs the best. The custom detector performs slightly
worse with a 2.1% reduction in the mAP score, going from 0.66 to 0.65.

0 1000 2000 3000 4000 5000
Iterations

500

1000

1500

Lo
ss

(A
ve

ra
ge

)

0 1000 2000 3000 4000 5000
Iterations

500

1000

1500

Lo
ss

(T
ot

al
)

Figure 5.2: Average and Total loss during training of Yolov3

40 Benjamin R. Møklegård: People Detection using CNNs

Pretrained Custom Pretrained Custom
IoU Area Max Det mAP Average Recall
0.50 all 100 0.666 0.652 - -
0.75 all 100 0.402 0.334 - -

0.50:0.95 all 100 0.385 0.344 0.599 0.490
0.50:0.95 small 100 0.030 0.011 0.142 0.054
0.50:0.95 medium 100 0.212 0.096 0.375 0.232
0.50:0.95 large 100 0.444 0.414 0.624 0.573
0.50:0.95 all 1 - - 0.305 0.283
0.50:0.95 all 10 - - 0.536 0.468

Table 5.3: Metrics generated by evaluation on the test set with the pretrained
YOLOv3 model and the fine-tune model

Chapter 5: Results 41

5.1.4 YOLOv3 Tiny

YOLOv3 Tiny is a scaled-down version of YOLOv3. It uses fewer layers, which
makes the model much faster and more suitable for low-end embedded devices.
This will have an impact on the overall performance of the detector. In Figure 5.3
one can observe that the loss drops from 400 downto 8 after 400 iterations.
YOLOv3-Tiny is one of the detectors which has shown significant improvement
when training on a custom dataset. Table 5.4 shows the performance of the model
when using the weights pretrained on COCO. The model achieves a mAP of 0.249,
which is relatively poor compared to the other pretrained models. However, after
training on the custom dataset, the model has seen an improvement in the mAP
from 0.25 to 0.51, as given in Table 5.4. This is a 104% improvement over the
pretrained model.

0 1000 2000 3000 4000 5000
Iterations

100

200

300

400

Lo
ss

(A
ve

ra
ge

)

0 1000 2000 3000 4000 5000
Iterations

100

200

300

400

Lo
ss

(T
ot

al
)

Figure 5.3: Average and Total loss during training of YOLOv3-Tiny

42 Benjamin R. Møklegård: People Detection using CNNs

Pretrained Custom Pretrained Custom
IoU Area Max Det mAP Average Recall
0.50 all 100 0.249 0.512 - -
0.75 all 100 0.091 0.131 - -

0.50:0.95 all 100 0.115 0.211 0.308 0.370
0.50:0.95 small 100 0.000 0.000 0.010 0.011
0.50:0.95 medium 100 0.000 0.031 0.025 0.136
0.50:0.95 large 100 0.190 0.265 0.390 0.444
0.50:0.95 all 1 - - 0.167 0.206
0.50:0.95 all 10 - - 0.279 0.342

Table 5.4: Metrics generated by evaluation on the test set with the pretrained
YOLOv3-Tiny model and the fine-tune model

5.1.5 Combined performance figure

Figure 5.4 displays the change in the mAP using an IoU of .5 for each model,
which makes it easier to compare the performance differences between models.
The blue bar is the evaluation done using the pretrained models, and orange is
the evaluation result after applying fine-tuning.

Chapter 5: Results 43

M
B

V2 +
SS

D

M
B

V2 +
SS

D
(Q

)

YO
LO

v3

YO
LO

v3
(T

)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ea

n
A

ve
ra

ge
Pr

ec
is

io
n

Figure 5.4: Summarized difference in mean Average Precision before and after
training per model. Where MB is Mobilenet, (Q) means quantized and (T) denotes
YOLOv3-Tiny

44 Benjamin R. Møklegård: People Detection using CNNs

5.2 Energy per operation during Inference Run on Google
Coral

Table 5.5 gives the minimum recorded inference power of each network, and the
power consumed when the Coral is IDLE, i.e., not executing any inference. The
difference between the power during IDLE and during model execution is also
shown, giving an overview of power consumed primarily by the frameworks run-
ning each of the neural network models on the board. For each of the models,
the frames per second (FPS) is also reported. The FPS is reported for each infer-
ence when running the Tensorflow Lite models. For the Darknet models, the FPS
is calculated using the extracted inference time in the results log generated after
running the network. Table 5.6 shows the calculated energy and energy per op-
eration. The estimated FLOPS are also provided in the table and are equal to the
values reported in the configuration Equation (2.12). Figure 5.5 displays a graph
of each model’s energy per operation for ease of comparison. This indicates the
difference between the neural networks and the methods used for inference.

Recorded Power and Frames per Second
Minimum Power w/o Idle Power Frames per second

Coral IDLE 3.17W -
Mobilenet V2 Non-Quantized (CPU) 3.99 W 0.82W 1.35FPS

Mobilenet V2 Quantized (CPU) 4.41W 1.24W 3.61FPS
Mobilenet V2 Quantized (EDGETPU) 4.30W 1.13W 131.82FPS

YOLOv3 (CPU) 4.11W 0.94W 0.02FPS
YOLOv3-Tiny (CPU) 4.20W 1.03W 0.23FPS

Table 5.5: Minimum Power Consumption during Inference Run on Each Model. Both the Total
recorded power and the difference between the power during inference and idle is shown

Energy per Operation
FLOPs FPS J J/FLOPs

Mobilenet V2 Non-Quantized (CPU) 1.28GFLOPS 1.35FPS 606mJ 474pJ/FLOPS
Mobilenet V2 Quantized (CPU) 1.29GFLOPS 3.61FPS 343mJ 266pJ/FLOPS

Mobilenet V2 Quantized (EDGETPU) 1.29GFLOPS 131.82FPS 8.6mJ 7pJ/FLOPS
YOLOv3 (CPU) 38.6GFLOPS 0.02FPS 46.7J 1210pJ/FLOPS

YOLOv3-Tiny (CPU) 3.2GFLOPS 0.23FPS 4.5J 1397pJ/FLOPS

Table 5.6: Minimum Energy Per Operation during Inference Run on the Google Coral using each
neural network model. Here MB denotes mobilenet and (Q) denotes Quantized. Y and Y-T is for
YOLOv3 and YOLOv3-Tiny respectively

Chapter 5: Results 45

M
B

(C
PU

)

M
B

(Q
)(C

PU
)

M
B

(Q
)(T

PU
)

Y
(C

PU
)

Y-T
(C

PU
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

En
er

gy
pe

r
op

er
at

io
n
[J
/F

LO
PS
]

10-9

Figure 5.5: Energy per operation given in J/FLOPS for each neural network
model running on the Google Coral Dev Board

46 Benjamin R. Møklegård: People Detection using CNNs

5.3 Inference Time on different devices

Table 5.7 shows the average inference time recorded during inference on different
hardware for each of the trained networks. Results for Desktop GPU for Tensorflow
Lite models and Edge TPU for the Darknet Models are omitted due to lack of
compatibility with GPU and Edge TPU for Tensorflow and Darknet respectively.

Tensorflow (Lite) Models
Model Desktop CPU Desktop GPU Dev Board CPU Edge TPU

Mobilenet V2 100ms - 740ms -
Mobilenet V2 (Q) 79ms - 276ms 8ms

Darkenet Models
Model Desktop CPU Desktop GPU Dev Board CPU Edge TPU

YOLOv3 2949ms 13ms 51444ms -
YOLOv3-Tiny 265ms 2m 4564ms -

Table 5.7: Average Inference Time during run on a subset of the test dataset on
Desktop CPU, Desktop GPU, Edge CPU and Edge TPU for different frameworks.
The Quantized Model is denoted with (Q)

5.4 Applying Detector for Estimating People

In the following section, the detection results when applying images to each de-
tector are displayed. This is interesting since it shows how well each detector per-
forms and gives some indication on the feasibility of implementing a custom object
detector for detecting people. Figure 5.6 shows detection results when applying
the trained mobilenet model using both the frozen graph exported directly from
the trained model checkpoint and the result from the converted TFLite model.
Figure 5.7 shows the detection result using the Quantized Mobilenet model. Fig-
ure 5.8 and Figure 5.9 shows the detection results when applying YOLOv3 and
YOLOv3-Tiny to the same image.

Chapter 5: Results 47

Figure 5.6: Detection result using the Non-Quantized Mobilenet model. Top: us-
ing the frozen graph exported from Object Detection API. Bottom: using the ex-
ported TFLite formatted model. Both tested with a threshold set to 0.4, Image is
"Group of People Sitting Inside Room" by JopWell, Licensed as "Free to Use"

48 Benjamin R. Møklegård: People Detection using CNNs

Figure 5.7: Detection result using the Quantized Mobilenet model with at thresh-
old set to 0.4, Image is "Group of People Sitting Inside Room" by JopWell, Licensed
as "Free to Use"

Chapter 5: Results 49

Figure 5.8: Detection result using YOLOv3 with at threshold set to 0.4, Image is
"Group of People Sitting Inside Room" by JopWell, Licensed as "Free to Use"

Figure 5.9: Detection result using YOLOv3-Tiny with at threshold set to 0.4, Im-
age is "Group of People Sitting Inside Room" by JopWell, Licensed as "Free to
Use"

Chapter 6

Discussion

6.1 Applying Transfer-learning to boost model performance

Utilizing transfer-learning to boost the performance of the pretrained models was
found to increase the overall mean Average Precision for each detector except in
the case of YOLOv3. In terms of improvement, both the YOLOv3-Tiny and the
Quantized Mobilenet V2 SSD model saw major improvements compared to their
pretrained performance. During the evaluation of the non-quantized model, there
was found that there were some issues with the model leading to poor evalua-
tion results on the pretrained checkpoint. The results when evaluating the non-
quantized model first showed similar performance in terms of in mAP to the results
of the pretrained quantized model, which are shown in Table 5.2. However, this
problem was resolved after downloading a fresh copy of the non-quantized detec-
tor. After running an evaluation of the new copy, the pretrained model performed
much better and produced the results, as shown in Table 5.1. This appeared to
be the problem in the case of the quantized model as well. However, after down-
loading a fresh copy of the model and evaluating it, the results in the case of the
original pretrained model and the fresh model remained the same. YOLOv3 saw
a slight performance drop of 2.1% after being subjected to fine-tuning, one rea-
son might be that the model has been trained a bit too much, leading to a slight
overfit to the dataset, which would lead to a poorer mAP score. Using an earlier
weight checkpoint could potentially yield a better score. However, the model per-
forms generally very well on the test set both before and after training. This isn’t
that surprising given that the model is rather large compared to the other tested
models, so the capability of the network to learn features is better than for the
other detectors. YOLOv3-Tiny achieves the lowest mAP score at 0.51 compared
to the other detectors, however in comparison to the pretrained model, it sees a
104% increase boost to its performance. During the training of the of YOLOv3-
Tiny, it was found that the optimal training point was after 4000 iterations when
training, at 5000 iterations the model had overfitted the training set and was inca-
pable of generating detections on other data. From the results, one can conclude
that transfer-learning and fine-tuning can help improve the model detection ac-

51

52 Benjamin R. Møklegård: People Detection using CNNs

curacy, as observed in the increased average precision and the average recall of
the models.

6.2 Evaluating the neural network performance in terms
of Energy per Operation

The power consumption reported in Table 5.5 where extracted from a set of 300
samples recorded by the UM32C meter. Three hundred samples were found to be
the best suitable number of samples. This was decided so that one could remove
the impact that the onboard fan has when it turns on, which happens when the
SoM becomes hot. From this, the minimum power consumed was extracted since
this should better represent the energy consumed by the neural networks, min-
imizing the impact of other processes running on the Coral, as well as heating
fluctuations due to internal heating of components such as the cache.

To get an estimate on the power consumption, which could be contributed to
the models, the power that the Coral Dev board consumes when its IDLE is sub-
tracted from the total recorded power for each model. The Coral development
board was found to consume around 3.45W while running ’IDLE.’ This makes the
contribution attributable to each network to be between 0.8-1.2W of power. Each
of the network frames per second is also reported in Table 5.5.

The quantized Mobilenet model running on the Edge TPU far outperforms ev-
ery other network, running almost at 132FPS. This is not that surprising given
that the accelerator is specifically designed to run tensor operations. One can also
notice that the quantized Mobilenet model running on the Dev Board CPU is 2.6
times faster than the non-quantized model, this is probably due to the differences
in the data types used by each model. The quantized model utilizes 8-bit un-
signed integers, and 32-bit floating-point is used in the regular model. Both of the
YOLO models perform significantly worse at FPS of 0.02 for the YOLOv3 model
and 0.2FPS for the smaller YOLOv3-Tiny model. This can be attributed to differ-
ences in the runtime used by Tensorflow and Darknet, as well as differences in
the model architectures. YOLOv3 performs the worst, but this model is also the
largest in terms of the required number of FLOPS, so it is to be expected that the
model performs the worst.

Where the difference between the models comes to light is in Table 5.6, here
the energy and energy per operation is calculated using the power consumption
and FPS in Table 5.5. Each of the Tensorflow Lite models consumes less than 1J
when running on the Google Coral Dev Board. The quantized Mobilenet model
is the model that performs the best. While running on the Edge TPU, the model
consumes the lowest energy at roughly 8.6mJ. Running the quantized model on
the Dev boards CPU increases the energy consumption significantly to 343mJ a

Chapter 6: Discussion 53

40x increase over the TPU case. The non-quantized Mobilenet consumes 606mJ,
which is 70x more than the quantized model on the Edge TPU and 1,7x higher
than the quantized model running on CPU. YOLOv3 and YOLOv3-Tiny perform
poorly on the Dev board consuming 62.0J and 5.4J, respectively. This is a massive
difference in comparison to the Tensorflow models.

In terms of energy per operation, the model running on the Edge TPU performs
best using only 7pJ/FLOPS. In comparison running it on the CPU increases it to
266pJ/FLOPS. For the non-quantized model, this further increases to 474pJ/FLOPS.
YOLOv3 consumes 1210pJ/FLOPS while YOLOv3-Tiny consumes 1397pJ/FLOPS.
The separation between the two YOLOv3 models is not that far off, which can be
explained by observing that the YOLOv3-Tiny model is almost ten times smaller
than the corresponding YOLOv3 model, something which is observable in the
recorded FPS as well. So for YOLOv3, there seems to be a direct connection be-
tween the choice of accuracy and number of flops vs. the inference time or frame
per second.

It is essential to note, that these are estimates, in terms of the number of FLOPS for
the Tensorflow models, the number is generated before the models are converted
to TFLite format. This is since the TFLite API does not feature any profiling options
for FLOPS estimation. Since TFLite aims to be lightweight, one should expect to
see a significant decrease in the number of FLOPS required to run the converted
models. As such, the energy per operation would be impacted by this and would,
in all likelihood, increase. However, they still serve as a general guideline in de-
termining which of the model performs the best.

6.3 Inference Time on different devices

The results presented in Table 5.7 display the time that each model takes uses
when running an inference, which is generating a prediction on the input data.
The Darknet framework reports back the prediction time automatically when call-
ing ./darknet detector test, while the Tensorflow Lite Runtime API is void of such
an option. This was solved by measuring the start and stop times when the TFLite
Interpreter was called.

From Table 5.7 one can clearly see that all of the models perform very well, de-
pending on which hardware they are executed on. In the case of the Tensorflow
models, the model has been converted to TFLite format and is executed using the
TFLite Runtime API, the problem with this API is that there is no direct support for
CUDA which is required to run the model efficiently on an NVIDIA GPU, as is the
case in the standard version of Tensorflow. While for the Darknet API, there exists
no support for running the models using the TFLite Runtime and as such no way
to run the models on the TPU. One possible way to resolve this issue is to convert
the YOLO models to Tensorflow models using Keras or similar libraries and then

54 Benjamin R. Møklegård: People Detection using CNNs

do a conversion to TFLite format. Doing this would lead to a fairer comparison
between the models. However, one should expect that the YOLO models perform
worse than the Mobilenet models on the basis that both YOLO models require
more FLOPS to run a single inference, which implies that one should expect a
higher inference time.

Testing of YOLOv3 and YOLOv3-Tiny utilizes the Darknet framework during in-
ference run. The framework records the output of the detector in addition to the
recorded inference time per image. Using a custom python script the values were
extracted, and the average inference time was calculated from these values and
given in Table 5.7. From Table 5.7, we can see that both of the YOLOv3 models
perform very well when utilizing the Desktop GPU, both runs close to the Quan-
tized Mobilenet model running on the Coral Dev Board’s TPU. Where the YOLO
models struggle is when running inference using only CPU, here the YOLO-Tiny
model is almost 2-3 times slower than the corresponding Mobilenet models. There
exist multiple possible reasons why there is such a significant difference in infer-
ence time between the different models, which boils down to differences innate in
the frameworks, as well as variation in the required number of necessary FLOPS
per model. Another caveat by using the Darknet models is that there is no di-
rect support for running these models on the Corals TPU. There exist versions
of YOLOv3 and YOLOv3-Tiny, which are implemented in Tensorflow. However,
at the moment, these implementations utilize operations which are currently not
supported by the TPU.

6.4 Detecting People using the trained models

Each model manages to generates detections when presented with an Image con-
taining a fixed number of people, as could be seen in Figure 5.6, Figure 5.7, Fig-
ure 5.9. The non-quantized Mobilenet model performs worse than the quantized
model. This seems to be due to the conversion to Tensorflow TFLite file format.
As running the model using the frozen graph generated by Object Detections API,
the model works as intended. This is shown in Figure 5.6. The quantized model
performs better than the non-quantized model and works correctly after being
converted to TFLite, as can be observed in Figure 5.7. In the case of YOLOv3-Tiny,
the detector performs slightly worse than the Mobilenet models, managing only to
detect three out of four people. Of all the fine-tuned models, the YOLOv3-Tiny is
the one with the lowest mAP of 51.2, so this might explain the difference. YOLOv3
manages to detect all four individuals in the image accurately. One should note
that this image represents a best-case scenario; there are few obstructions. This
should make it easier for the network to detect and label the people in the im-
age correctly. In images where there are clear obstructions or where people are
positioned far away from the camera, the models are less likely to generate cor-
rect detections. An alternative example which displays this discrepancy is shown
in Appendix A, these image seems more challenging than the previous example,

Chapter 6: Discussion 55

both due to lighting conditions and the position of the individual persons in the
room. In that case each model performs significantly worse than in the previous
example. This warrants some more exploration, some of these problems can possi-
bly be fixed using better or more specialized datasets, switching to methods using
regression or by using a larger more complex model.

Chapter 7

Conclusion

In this thesis, two object detection frameworks have been used to perform fine-
tuning on four CNN-based object detection models. The Tensorflow based models
Mobilenet V2 + SSD (non-quantized and quantized) and Darknet based models
Yolov3 and Yolov3-Tiny. The models have successfully been trained on a custom
dataset containing a subset of images from the Open Image Database where the
training set features 20k images, and the test set features 4k images. Fine-tuning
the models has shown an increase in the overall performance of each model on the
custom dataset, except in the case of Yolov3. Each model has been tested on dif-
ferent hardware alternatives such as desktop CPU and GPU, embedded CPU, and
an accelerator edge TPU. The top contenders where Yolov3 and Yolov3-Tiny when
running inference using a GPU both which perform very well achieving inference
times of 13ms and 8ms, respectively. The Quantized Mobilenet model using the
Google Coral’s Edge TPU, which achieves an inference time of 8ms. In terms of
power, each model was tested on the dev board’s integrated CPU and TPU. It was
found that in terms of consumed power, each network consumed approximately
the same amount when running on the embedded hardware on the Coral. Eval-
uating the models in terms of the consumed energy showed a clear difference
between them when they were deployed on the Google Coral. The quantized Mo-
bilenet model performs the best when running on the Edge TPU. The model runs
at 131.82 FPS consuming only 8pJ/FLOPS. On the other side of the performance
scale, one can find the YOLO models where YOLOv3 is the worst contender run-
ning at 0.02 FPS and consuming 1210pJ/FLOPS on the Dev Boards CPU. In terms
of applying each detector, the example image showed that every model except the
YOLOv3-Tiny model managed to predict the correct number of people. The image
should be seen as the best-case scenario. It contains few obstructions which could
impact on the overall accuracy of the detections. In other cases the models perform
poorly as was discussed previously with the given example in the appendix. Over-
all the Mobilenet models perform best in terms of FPS, energy efficiency and when
generating predictions. The YOLOv3 models outperform every model in terms of
mean Average Precision, however, when looking at the generated predictions it
seems to perform slightly worse than the Mobilenets. It is also the largest model,

57

58 Benjamin R. Møklegård: People Detection using CNNs

leading to poor FPS when running on embedded hardware. Since one of the goals
of Disruptive is to investigate methods of applying neural networks on resource
constraint devices, that might be battery-powered, energy efficiency becomes one
of the critical design considerations. In that case, the choice of the model falls
on using the Quantized Mobilenet V2 + SSD model as this is currently the only
model that is capable of running on Googles Edge TPU which has been shown in
the case of this thesis to be the most energy-efficient method for deploying and
running a neural network.

Bibliography

[1] Google Inc, Google AIY Vision Kit Webpage, 2018.

[2] T. Baji, “GPU: the biggest key processor for AI and parallel processing,” Pho-
tomask Japan 2017: XXIV Symposium on Photomask and Next-Generation
Lithography Mask Technology, vol. 10454, no. July 2017, p. 1 045 406, 2017.

[3] Google LLC, “Coral Dev Board datasheet,” vol. 2, no. August, 2019.

[4] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. L. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R.
Gottipati, W. Gulland, R. Hagmann, C. Richard Ho, D. Hogberg, J. Hu, R.
Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D.
Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z.
Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Sev-
ern, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a ten-
sor processing unit,” Proceedings - International Symposium on Computer
Architecture, vol. Part F1286, pp. 1–12, 2017.

[5] Intel Corporation, Intel R© MovidiusTM MyriadTM X VPUs.

[6] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, Backpropagation applied to digit recognition, 1989.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems, vol. 2, 2012, pp. 1097–1105.

[8] D. Chahyati, M. I. Fanany, and A. M. Arymurthy, “Tracking People by De-
tection Using CNN Features,” Procedia Computer Science, vol. 124, pp. 167–
172, 2017.

[9] R. Stewart, M. Andriluka, and A. Y. Ng, “End-to-End People Detection in
Crowded Scenes,” Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 2325–2333,
2016.

59

60 Benjamin R. Møklegård: People Detection using CNNs

[10] Y. Hu, H. Chang, F. Nian, Y. Wang, and T. Li, “Dense crowd counting from
still images with convolutional neural networks,” Journal of Visual Commu-
nication and Image Representation, vol. 38, pp. 530–539, 2016.

[11] S. Y. Nikouei, Y. Chen, S. Song, R. Xu, B.-Y. Choi, and T. R. Faughnan, “Real-
Time Human Detection as an Edge Service Enabled by a Lightweight CNN,”
in 2018 IEEE International Conference on Edge Computing (EDGE), IEEE, Jul.
2018, pp. 125–129.

[12] D. B. Sam, S. Surya, and R. V. Babu, “Switching Convolutional Neural Net-
work for Crowd Counting,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 2017-Janua, IEEE, Jul. 2017, pp. 4031–
4039.

[13] A. C. Ian Goodfellow Yoshua Bengio, The Deep Learning Book. The MIT
Press, 2016.

[14] G. Bonaccorso, Ml Algorithms, 1st ed., 1. Packt Publishing Limited, 2018.

[15] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4,
pp. 115–133, Dec. 1943.

[16] D. O. Hebb, The Organization of Behavior; A Neuropsychological Theory.
John Wiley & Sons, Ltd, 1949.

[17] F. Rosenblatt, The Perceptron - A Perceiving and Recognizing Automaton,
1957.

[18] F. Rosenblatt, “Principles of Neurodynamics.,” 1961.

[19] M. L. Minsky and S. A. Papert, Perceptrons (1988 ed). MIT Press, 1988.

[20] K. Fukushima, “Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position,” Bio-
logical Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[21] K. Fukushima, “Cognitron: A self-organizing multilayered neural network,”
Biological Cybernetics, vol. 20, no. 3-4, pp. 121–136, 1975.

[22] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing. The
MIT Press, 1986, pp. 318–362.

[23] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, Sep. 1995.

[24] S. Pattanayak and S. Pattanayak, “Introduction to Deep-Learning Concepts
and TensorFlow,” in Pro Deep Learning with TensorFlow, Apress, 2017, pp. 1–
392.

[25] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg,
“SSD: Single shot multibox detector,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 9905 LNCS, Dec. 2016, pp. 21–37.

Bibliography 61

[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, vol. 2016-
Decem, pp. 779–788, 2016.

[27] R. Girshick, “Fast R-CNN,” Proceedings of the IEEE International Conference
on Computer Vision, vol. 2015 Inter, pp. 1440–1448, 2015.

[28] B. Planche and E. Andres, Hands-On Computer Vision with TensorFlow 2.
Packt Publishing, 2019, pp. 1–306.

[29] B. R. Møklegård, “(Unpublished) Specialization Project: AI on device visual
occupancy detection,” NTNU, Trondheim, Tech. Rep., 2019.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, vol. 20, IEEE, Jun. 2009, pp. 248–255.

[31] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The Pascal Visual Object Classes (VOC) Challenge,” International Journal
of Computer Vision, vol. 88, no. 2, pp. 303–338, Jun. 2010.

[32] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft COCO: Common Objects in Context,” in Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), PART 5, vol. 8693 LNCS,
2014, pp. 740–755.

[33] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, pp. 580–587, 2014.

[34] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.

[35] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” Apr.
2018.

[36] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceed-
ings - 30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, vol. 2017-Janua, pp. 6517–6525, 2017.

[37] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2:
Inverted Residuals and Linear Bottlenecks,” in Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, Jan.
2018, pp. 4510–4520.

62 Benjamin R. Møklegård: People Detection using CNNs

[38] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S.
Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari, “The
Open Images Dataset V4: Unified Image Classification, Object Detection,
and Visual Relationship Detection at Scale,” International Journal of Com-
puter Vision, 2020.

[39] A. Vittorio, OIDv4_ToolKit, 2018.

[40] Google LLC, “System-On-Module Datasheet,” vol. 5, no. February, 2020.

Appendix A

Additional Material

The code created to prepare the dataset for training using the Tensorflow Object
Detection API and using Darknet is supplied on GitHub trough the following link:
https://github.com/benrammok/master_thesis. The saved model checkpoint
and tensorflow lite files in addition to the trained Darknet weights are available
on Google Disk trough the following link: https://drive.google.com/drive/
folders/1dQqfVXXdPqMxZ7HTLgcNFVO83WIO3oN8?usp=sharing

63

https://github.com/benrammok/master_thesis
https://drive.google.com/drive/folders/1dQqfVXXdPqMxZ7HTLgcNFVO83WIO3oN8?usp=sharing
https://drive.google.com/drive/folders/1dQqfVXXdPqMxZ7HTLgcNFVO83WIO3oN8?usp=sharing

Appendix B

Detection on multiple Images

This section shows some of the detection result when applying the different de-
tectors on a slightly more difficult image.

(a) Result from Frozen Mobilenet
Model

(b) Result from TFLite Converted Mo-
bilenet Model

Figure B.1: Detection generated by Mobilenet before and after TFLite conversion.
Notice that after converting the model to TFLite Format, no detection is gener-
ated. Image is "People Having Meeting Inside Conference Room", by Christina
Morillo, Licensed as Free to Use

65

66 Benjamin R. Møklegård: People Detection using CNNs

Figure B.2: Detection generated by the Quantized Mobilenet model. Image is
"People Having Meeting Inside Conference Room", by Christina Morillo, Licensed
as Free to Use

Chapter B: Detection on multiple Images 67

(a) Result from YOLOv3 (b) Result from YOLOv3-Tiny

Figure B.3: Detection generated by YOLOv3 and YOLOv3-Tiny. YOLOv3 man-
ages to detect two people in the image, while YOLOv3-Tiny only manages to de-
tect one. Image is "People Having Meeting Inside Conference Room", by Christina
Morillo, Licensed as Free to Use

Appendix C

Pascal VOC Format

The following listing displays an example of how the Pascal VOC XML format is
structured.

Code listing C.1: An example of the Pascal VOC XML format. This example con-
tains a single object with name/class of Person and a bounding box position.

<annotation>
<folder>Person</folder>
<filename>filename.jpg</filename>
<path>Path_to_image_location</path>
<source>
<database>Unknown</database>

</source>
<size>
<width>1024</width>
<height>683</height>
<depth>3</depth>

</size>
<segmented>0</segmented>
<object>
<name>Person</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>78</xmin>
<ymin>0</ymin>
<xmax>989</xmax>
<ymax>566</ymax>

</bndbox>
</object>

</annotation>

69

Appendix D

Copy of Specialization Report

The following pages is a copy of the project report created during the specializa-
tion project performed during the Fall of 2019. The report serves as some of the
previous work done in relation to the content of this thesis and as such is included
as additional material.

71

4590 Specialization Project

AI on device visual occupancy detection

Benjamin Ramberg Møkleg̊ard
Kandidatnr: 10002

December 19, 2019

Summary

This report is the culmination of work done in the 7,5 credit course TFE4590 Specializa-
tion Project at NTNU. The project assignment chosen for this course is ”AI on device
visual occupancy detection.” The purpose of the assignment is to test and evaluate the
Google AIY Vision Kit and to look at the feasibility of implementing the kit into a solu-
tion for detecting and give an approximation to how many people are present in a room.
The AIY kit features a Myriad 2 Visual Processing Unit (VPU) for accelerating machine
learning tasks. With the software supplied with the kit comes a set of pre-trained con-
volutional neural network models that can execute on the VPU. There are models for
things like face detection, object detection, dish classification, and image classification.
Both the supplied object detection model and the face detection model has been tested
and verified on the AIY kit. To evaluate the performance of the kit, metrics related to
the power consumption and network inference time is recorded and a test to approximate
the accuracy of the models have been performed. The object detection uses on average
2.4W at 5VDC, and has an average inference time of 96ms during a Camera Inference
run. The power consumption drops when using Image Inference; in this case, only 1.3W
is consumed and the inference time increases to 3.18s. Face detection consumes slightly
lower power at 2W and an inference time of 76ms for Camera Inference, while for Image
Inference, the model consumes 1.3W and has an inference time of 3.16s. The aver-
age accuracy of the face detection model is 35.4% and 48.1% for the object detection
model. A simple tracker is tested with the object detector to try to see if this could help
improve detection in situations where there is a high level of occlusion, the tracker has
been successfully tested. However, it isn’t straightforward to generate metrics that verify
this implementation; this needs further exploration. Testing of the object detection and
tracking uses Camera Inference, so no accuracy has been recorded for this system. The
system consumes 2.5W. It executes at an average inference time of 98ms. The AIY
Vision Kit is easy to use and allows for quick deployment of machine learning-based
visual processing. It manages to execute the models at a decent speed and consumes a
reasonably low amount of power. It is difficult to make a definite conclusion of whether
this product should be a part of a person detection system. One of the reasons is the low
accuracy of the neural network models. The other is the constrained hardware of the
Raspberry Pi Zero. The lack of a high-speed communication option between the Pi and
the VPU limits the overall performance of the kit. Further more the limited memory on
the VPU puts constraints on the network complexity, a slightly more complex network
could potentially achieve higher average accuracy. For a high accuracy detection system
running in real-time, the AIY Kit would not be a good choice. For a low-powered system
that can accept a lower accuracy, the AIY Vision Kit could be a suitable system.

Contents

1. Introduction 1

2. Theory 3
2.1. Google AIY Vision Kit . 3

2.1.1. Intel Myriad V2 . 4
2.2. Convolutional Neural Networks . 4

2.2.1. Convolution Layer . 5
2.2.2. Pooling Layer . 5
2.2.3. Activation Layer . 6
2.2.4. Fully connected layers . 8

2.3. MobileNet + SSD . 8
2.3.1. MobileNet . 8
2.3.2. Single Shot Detection . 9

2.4. Object Tracking . 10
2.4.1. Tracking of Bounding Box Centroid 10

3. Implementation 11
3.1. Privacy and Regulations . 12

4. Methodology 14
4.1. Equipment . 14
4.2. Metrics . 14

5. Results 17

6. Discussion 21
6.1. The AIY Vision Kit . 21
6.2. Object Detection and Tracking implementation 22
6.3. Measurements and results . 22

7. Relevant Work 24

8. Conclusion 25
8.1. Future Work . 25

A. Appendix 29
A.1. Object Detection using Camera Inference 29
A.2. Object Detection using Image Inference 31

A.3. Program for measuring Accuracy - Object Detection 33
A.4. Object Detection with Centroid Tracker 35
A.5. Face Detection using Camera Inference Inference 37
A.6. Face Detection using Image Inference . 39
A.7. Program for measuring Accuracy - Face Detection 41
A.8. Multitracking using OpenCV and Object Detection 43

1. Introduction

The use of machine learning to do visual processing has grown in interest over the years,
with the reintroduction of the convolutional neural network, there has been an incred-
ible increase in performance on visual processing tasks. One of the primary focus of
research has been on creating deeper and more advanced neural network architectures
to improve accuracy. This approach has resulted in an increase in computational in-
tensity, memory requirement, and overall energy needed to run the networks efficiently.
Networks such as the VGG16 require, on average, 130 - 140 million parameters[1], it
would also need a massive amount of multiplication and additions operations, in the
range of 109 operations[2]. As such, these large and complex networks are unsuitable
for applications set in an embedded setting where the hardware resources generally are
limited, such as robotics or low-powered handheld devices. With the introduction of
architectures like MobileNet[2], the focus has shifted to creating smaller networks that
perform similar to the more computationally heavy networks at a fraction of the needed
memory and computational cost. As a result of this, there has been invested time in
creating hardware accelerators to accelerate and further improve the performance of
these devices. This makes it possible to run networks relatively effectively on smaller
low-end devices. Which in turn has spawned a new category of devices based on the
concept of AI on edge. AI on edge is a relatively new concept; the purpose is to move
the computations which have previously been done on remote servers or infrastructure
to application-specific hardware on the edge device. This leads to a wide range of bene-
fits, such as increased security as the computation is performed on the device, reduction
in communication overhead since no connection to remote servers is needed and lower
latency due to on-device computation. These devices can be applied to a wide variety of
applications and problems like facial detection and recognition, object classification or
scientific simulation. Google has been one of the significant contributors to these types
of devices, introducing educational kits like the Google AIY Voice Kit (launched in 2017)
and the Google AIY Vision Kit (launched in 2018). It also hosts a set of development
kits called Google Coral, which are devices specifically designed to run Google’s machine
learning library, Tensorflow. The purpose of this report is to test the Google AIY Kit,
evaluating the computational speed of the kit by measuring the inference time, and try
to evaluate the feasibility of using the kit in a system that detects and approximates the
number of people that are currently present in a room.

The AIY Vision Kit has been successfully tested and metric in relation to power con-
sumption and inference time has been recorded for face detection, object detection and
object detection with tracking. When using the supplied object detection model the
kit consumes on average 2.4W (at 5VDC) of power and has an average inference speed

1

of 96ms when using the Camera Inference. It consumes on average 1.3W and has an
average inference speed of 3.18s when running Image Inference. For the Face detection
model the kit consumes on average 2W and has an average inference time of 76ms for
the Camera Inference, and 1.3W with average inference time of 3.16s for Image Infer-
ence. The combination of object detection and tracking uses on average 2.5W and has a
average inference time of 98ms. The face detection model performs overall better than
the object detection model when looking at average power consumption and inference
time. However for the average accuracy of both models the object detection model have
an average accuracy of 48.1%, and 35.4% for face detection when tested on a set of 100
images, containing people in different positions, rotations and lighting conditions.

The report is divided into the following sections; Theory, which will give a general
description of neural networks and the components which is applied in the system. Im-
plementation, where suggestions on how a system can be implemented by utilizing vision
processing and object detection to estimate the number of people in a meeting room or
office. Methodology where the equipment and the method used to test the system and
to register the results are discussed. Results, which will give some details on the perfor-
mance of the implemented system. Discussion where the advantages and disadvantages
of the system will be discussed and explored. Relevant Work where similar solutions will
be explored. And the conclusion which summaries the discoveries made in this report

2

2. Theory

2.1. Google AIY Vision Kit

The AIY Vision Kit is a kit developed by Google. The purpose of the kit is to make
it easier to learn and apply knowledge of artificial intelligence and machine learning.
The primary focus of the vision kit is implementations regarding vision-based machine
learning, such as object detection, classification, facial detection, to name a few. Included
in the kit is a Raspberry Pi Zero WH, a Pi Camera V2 module, a custom extension board
called the Vision Bonnet, privacy LED, piezo buzzer, push-button, and the cardboard
which forms the housing[3]. Supplied alongside the kit is a custom version of Raspbian,
a Linux based OS. The OS contains libraries for interfacing with the components of the
kit like the Vision Bonnet and the Pi Camera module. It also has pre-trained models
which can be deployed to the Vision Bonnet and used for tasks such as object detection
and classification. The Vision Bonnet is a custom extension board for the Raspberry
Pi Zero. The board features an Intel Myriad V2 VPU, connections to the Pi Camera,
buttons, LED’s and piezo.

Figure 2.1.: Fully Assembled Google AIY Vision Kit

3

2.1.1. Intel Myriad V2

Intel Myriad V2 is a Visual Processing Unit (VPU). It’s designed for low powered im-
age and vision processing[4]. The VPU uses 12 VLIW 128-bit vector processors called
”shave” processors to accelerate machine vision. The VPU features a broad set of I/O
and supports I2C, I2S, SPI, USB3. It also has a 12 lane MIPI interface with a speed of
1.5Gbps per lane. The MIPI lanes can be either configured for CSI-2 or DSI, which are
interface standards for communicating with a camera or a display, respectively. For the
storage of machine learning models, the VPU features an on-board storage of 2MB[4].

2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNN) forms the backbone of most modern object de-
tectors as well as other image processing and classification systems and is the basis
for the models found on the AIY kit. This section gives a brief overview of how a
CNN is structured, and in the following section, a general description is given on how
the pre-trained object detection model on the AIY kit is structured and how it functions.

The structure of a Convolutional Neural Network consists of an input layer, a set of
hidden layers, and an output layer. Each layer consist of a set of nodes often referred to
as either neurons or nodes, each node can apply a wide variety of functions. When used
in Convolutional Neural Networks, each node in a layer perform the same operation. The
layers which are common in a Convolutional Neural Network are convolutional, pooling
layers, activation layers, or fully connected layers. The input and output of each layer
are usually referred to as a feature map[2].

Generally, a neural network is divided into two different types, either shallow neural
networks or deep neural networks, the difference is simply the number of hidden layers
used. A shallow network usually only has one hidden layer, where a deep neural network
has more than one layer[5]. In the context of the convolutional neural network used for
image processing, these are almost exclusively configured as deep neural networks.
The configuration of convolutional neural networks can be achieved in two different ways.
The first way works by modifying the parameters of the nodes in each layer. These pa-
rameters are only tweaked and changed during the training of the network. The way
these parameters change is by a process known as back-propagation. Back-propagation is
an algorithm performed by software or libraries one uses when designing a convolutional
neural network model and is not something the user needs to configure themselves. The
other way of configuring the network is through the network’s hyperparameters. Hyper-
parameters are parameters that are set by the network designer. These determine the
structure of the network, and so these are always set before the training of the model.
Examples of parameters can be the number of filters per convolutional layer, the size of
the input layer, size of the output layer, scaling of each subsequent layer[5].

4

2.2.1. Convolution Layer

The convolutional layer performs a discrete convolution between an input image or
feature map and convolves this with a filtering kernel, which consists of a set of weights.
A layer can consist of multiple kernels where each kernel produces a distinct feature
map. Each of these feature maps may extract specific features from the input image.
The extracted features in the feature map, depends on the configuration of the kernel
of each filter. The process of convolving the input image or feature map uses a sliding
window technique, which works by moving the kernel over the image with a configurable
stride. A stride of 1 implies that the kernel moves one pixel at a time, while a stride of
K would move the kernel K pixels at a time. Each pixel in the output feature map is
a sum of element-wise multiplication between the pixel values in the currently selected
position in the input feature map with the weights in the convolutional kernel. Equation
2.1 defines this process mathematically and is a compounded version based on the same
formula in [6] and is similar to the one given in [2].

o feature(x, y) =

N∑

i,j=0

i feature(x+ i, y + j) ∗ weights(i, j) (2.1)

Where o feature is the output feature map, i feature is the input feature map, and
weights is the kernel weights.
When doing convolution on a multilayered feature map or image, the feature map pro-
duced on the output of the filter is a linear combination of the feature maps[2].
As a result of the convolution with the kernel, the output feature map experiences a
reduction in resolution. The output resolution of the feature map largely depends on
the size and the stride of the kernel. One can also add padding to the input data, which
modifies the size of the output of the convolution. There exist two different types of
padding; the ”valid” and the ”same” padding. With ”valid” type padding, there are no
additional values applied to the edges of the input data, the output of the convolution
with ”valid” padding is a feature map with a reduced resolution in respect to the original
input. The ”same” type padding adds extra data to the edge of the input data, which
results in that the feature map on the output of the convolution having the same size as
the original map on the input[7].
An example of the convolution process is given in Figure 2.2, here the kernel is of size
3x3 and is convolved over a 4x4 image, for the first pixel in the output feature map, each
weight is multiplied by the pixel in the corresponding position in the currently selected
region marked with the colors blue and green. The resultant feature map is of size 2x2.

2.2.2. Pooling Layer

To reduce the number of calculations needed, when applying convolution to larger feature
maps, pooling layers are added to downscale the resultant feature map produced by each
convolutional layer. The pooling operation works by dividing the input feature map into
regions, where each region corresponds to a pixel in the downscaled feature map. The
value of the pixel on the output depends on the configuration of the pooling layer[5].

5

Figure 2.2.: Example of Convolution on a 4x4 Input Feature Map and a 3x3 filtering
kernel

The operation can also be viewed and implemented as a sliding window moving over
the input, similarly to how convolution is applied[8]. A pooling layers is usually either
configured as a max-pooling layer or as an average-pooling layer, the difference between
the two types is simply the value they produce when moved over a section of the data.
In a max-pooling layer, for each selection of pixels in the input data, it returns the pixel
with the highest value. While for the average-pooling layer, the average of all pixel
values is calculated and returned. Figure 2.3 shows an example of the two pooling types,
here an input feature map of size 4x4 gets reduced to a new feature map of size 2x2 by
using a 2x2 selection region. This example uses a sliding window to select a region; the
window has a stride of 2. The size of the selected region and the stride determine the
output size of the new feature map. For convolutional neural networks, max-pooling is
the type of pooling-layer, which is most often used[9, 8]. One of the other significant
advantages of doing pooling is that it manages to maintain the extracted features in
previous layers and it also allows the model to be more resistant to invariance in images
such as rotation and translation[7].

2.2.3. Activation Layer

The purpose of the activation layer is to determine which nodes in the network (”neu-
rons”) should activate and which should remain inactive. For a convolutional layer, each
output pixel from the convolution operation is fed trough an activation layer. Here the
value is modified by an activation function. The resultant output of this operation gets
passed to the pooling layer.

6

Figure 2.3.: Example of pooling Layer Types

There exist many different types of activation functions, and the choice of activation
function affects both the speed and the learning ability of the networks. The choice
of function also depends on what purpose the system should serve. For modern con-
volutional neural networks the two most commonly used activation functions are the
Sigmoid function and the ReLU function. Another commonly used activation function
is the Softmax classification function, this function is often used at the end of the net-
work to convert the values of the last layer to a set of probabilities for the object classes
the network is trained to recognize[5].

Sigmoid

The Sigmoid function is an activation function characterized by an S-like shaped curve.
The output of the function is bounded between 0 and 1, or -1 and 1, depending on
the implementation. There exist multiple different mathematical implementations of
the function, but one of the commonly used is the logistic function, which is defined in
equation 2.2.

f(x) =
1

1 + e−x
(2.2)

The challenge in using the Sigmoid based functions is that they suffer from saturation.
Sigmoid functions saturate when the input grows larger or smaller, which inevitably leads
to a decrease in the network’s ability to learn. This problem is known as the ’vanishing

7

gradient’ problem, and the result of this problem is that the network completely stops
learning[5].

ReLU

Another type of activation function is the ReLU or Rectified Linear Unit, the function
is a non-linear function defined by equation 2.3

f(x) = max{0, x} (2.3)

The function can’t saturate as it is bounded by 0 when x is less or equal to zero and is
linear when x is greater than zero. So it does not suffer from the ’vanishing gradient’
problem as the Sigmoid does. ReLU is the most common activation function in modern
convolutional neural networks. The reason is that it significantly improves network
training speed over functions that face the problem of saturation[10, 5]. In some networks
the ReLU functions are supplied with an upper bound like in the newer version of
MobileNet, MobileNet V2[11]

2.2.4. Fully connected layers

A fully connected layer differs from a convolutional and pooling layer. Each node in a
fully connected layer connects to every node in the subsequent layer. The purpose of
the fully connected layer is to combine the output of the last convolutional layer and
interpret meaning of the extracted features, this is often done by applying soft-max as
the activation function[12]. In some networks, there is no need for a fully connected
layer. This is mostly dependent on the purpose and configuration of a network[2]. But
for cases such as image classification, it is usual to see one or more fully connected layers
at the end of the convolutional network, acting as feature classifier[5, 1].

2.3. MobileNet + SSD

The model used for object detection present on the Vision kit is a re-trained model of the
MobileNet V1 + SSD architecture developed by Google. It allows for the detection and
generation of bounding boxes outlining objects for which the model has been trained to
detect. The version on the Vision kit is restricted to detecting people, cats, and dogs.
MobileNet V1 + SSD is an architecture built on two types of networks. The MobileNet
V1 architecture which functions as a feature extractor and the Single Shot Detection
(SSD) network, which generates bounding boxes and object-classification probabilities
for the features that MobileNet has extracted. The following subsections give a general
description of how these two networks work and operate.

2.3.1. MobileNet

MobileNet is a convolutional neural network model created by Google for use in embed-
ded systems. The model utilizes a process known as Depthwise Separable Convolutions[2].

8

In a regular convolution, an input image with multiple channels gets filtered and com-
bined into a feature map of one layer. In Depthwise Separable Convolutions, this process
is split up into two different operations a depthwise convolution and a 1x1 pointwise
convolution. The depthwise convolution works similarly to a standard convolution, how-
ever where a regular convolution would do both filtering and combination of the input
channels, the depthwise convolution applies a filter for each input channel, producing a
filtered output for each channel. Each of these outputs is then combined to form the
final feature map. The 1x1 pointwise convolution is applied to the feature maps; the
layer computes a linear combination of the input layers, which results in the formation
of a feature map with one channel after the operation[2].
The advantage of depthwise separable convolutions over the standard convolution is that
the separation of the two operations, filtering, and combination, results in a reduction
of the necessary computations, in comparison to a standard convolution. The network
also removes the pooling layers in favor of strided depthwise convolutions. This helps by
reducing the number of layers in the model, which in turn makes the model smaller[2].
MobileNet introduced two new hyperparameters for configuring this new network archi-
tecture. These are the width multiplier (often referred to as depth multiplier) and a
resolution multiplier. These hyperparameters give the designer the ability to customize
the size and performance of the network.
The width multiplier aims to reduce the size of the computational model by reducing
the number of channels/filters in each subsequent layer making the model smaller and
faster. This is done by scaling each layer by a constant α. It manages to reduce the
number of parameters in a network by the square of α.[2]
The resolution multiplier works similarly as the width multiplier. Instead of targeting
the number of channels, it reduces the resolution of the input layer and the hidden lay-
ers. This leads to a quadratic reduction in parameters similar to the width multiplier[2].
The trade-off from changing these parameters comes in a reduction in accuracy, however
depending on the purpose of the network, this might be acceptable, and as such effec-
tively applying these hyperparameters to a network architecture can lead to a drastic
reduction in computational intensity, saving power and computation time.

2.3.2. Single Shot Detection

Single Shot Detection is a convolutional neural network that produces bounding-boxes,
as well as a score that indicates the likelihood that an object is present and the type of
object detected. The network is structured in such a way that each convolutional layer
is smaller than the previous one. This is done to allow for the detection of objects at
different sizes. Since each convolutional filter decreases the resolution of the feature map,
the higher resolution feature maps allow for the detection of smaller objects while the
lower resolution feature maps can discern larger objects[13]. Each feature layer in the
SSD, as well as the output of the base network, produces a set of predicted detections.
These predictions specify the shape offset in relation to a set of default bounding boxes.
The default bounding boxes are specified for each feature map, it uses the combination
of shape offsets and default boxes to produce a set of bounding boxes in relation to each

9

detection[13]. The end result is fed to a non-maximum suppression layer, which creates
the finalized result[13].

2.4. Object Tracking

Object tracking is the process of correlating the position of moving objects in a set of
frames, like a video. Tracking can be implemented in multiple different ways; one of
the more straightforward ways of creating a tracker is to implement a tracker which
correlates the change in the center position of a set of supplied bounding boxes.

2.4.1. Tracking of Bounding Box Centroid

A centroid based tracker works by looking at the distances between the center of one or
more bounding boxes and tries to correlate this position to the position of a bounding
box which has previously been detected[14]. Assuming that the motion of the detected
object between subsequent detections is low, one can correlate the old position p1 and
the new centroid p2 by looking at the euclidean distance between the points the distance
is calculated using the Pythagorean theorem 2.4.

d(p1, p2) =
√

(p2,x − p1,x)2 + (p2,y − p1,y)2 (2.4)

Figure 2.4 shows two points marked in red which relates to centroid of the bounding box
and green which is the centroid of the bounding boxes which are detected in the next
frame. A simple assumption is that the shortest distance between two points indicate
that the two points correlate. To limit the correlation between points which are far apart,
one can set a limit on the maximum distance that is allowed between two points. If there
exists a point that does not correlate to any previous position, this gets registered as
the position of a new detection. Since a person can move out of the camera frame, there
needs to be a way for removing ’dead’ detections, this can be done by assigning a limit
on how long the detection is allowed to stay registered. So each detection is assigned a
value corresponding to how many frames it has been since the last successful correlation.
If no new detection which can correlate the current position to an older detection has
appeared in a fixed set of frames, the old detection is removed from the tracker [14].

Figure 2.4.: Centroid Tracking

10

3. Implementation

This section takes a look at possible implementations using the Google AIY Vision Kit as
a part of a person counting system. Three possible ways of implementing this and some
consideration of their strengths and weaknesses for each possibility is discussed. There
are potentially many ways of implementing a system for counting people. One method
can be based on the detection of faces and count the number of detected occurrences.
However, this could suffer from poor detection due to obstructions blocking the view of
the area. Also, the position and rotation of a person in the image can limit the face
detection ability to detect a face. A better way would be to utilize the built-in object
detection model to detect people since the model supplied alongside the Vision Kit is
trained to detect cats, dogs, and people. The detection of a person should be trivial.
This model should work better than a face detector since it does not matter if the person
is facing the camera or not, it infers meaning by analysing shapes of the objects detected
in the image and classify thereafter. This system would also suffer due to obstructions
in the area of detection. It can also suffer somewhat from the position of the object in
the room.
A better way to utilize these systems would be by including a tracker to predict where
the person might appear next. So if a person disappears behind an obstruction, the sys-
tem can approximate and correlate where the person might appear. This can potentially
give a better approximation of how many people have been detected. Since the tracker
stores the last position of currently detected objects, the approximation might be closer
to the actual number of people who are present in the frame.

Three configurations seem feasible, one involving the face detection model, one which
only uses the object detection model and a configuration that uses the object detec-
tion model and a simple centroid based tracker. Face detection and object detection
is done by using the supplied models on the Vision Kit. As previously explained, the
object detection model is based on the MobileNet V1 + SSD model and differentiates
between detections of a person, a cat, or a dog. The following is the configuration of
the model on the kit, the input supports an image of size 256x256, and the network has
a depth-multiplier of 0.125, this is one of the larger networks that is allowed to run on
the Vision kit. The model returns a bounding box for each detected object, in addition
to class probability. A centroid tracker module is used to implement the tracking func-
tionality. The module in the program is a pre-created tracker created by Rosebrock [14].
The centroid of each bounding box is calculated by the generated box from the object
detection model. The calculated centroid gets passed to the centroid tracker. This is
performed on each result that is returned from the VPU. The face detection and the
object detection programs use the corresponding examples supplied on the Vision Kit as

11

the base. These programs have been rewritten and extended to generate a CSV file with
the inference timing results. For the system using the object detection and the centroid
based tracker, the system extends the object detection program to include the tracker.
It counts the number of people detected by counting the number of detections that have
been registered by the tracker. The object detection and centroid tracking program has
been tested, and the program code is supplied in Section A.4 in the Appendix. It isn’t
very easy to give results to corroborate the efficiency of the tracker, so the primary focus
remains on the exploration of the object detection model. An attempt to do tracking
using OpenCV has been tested. However, due to the limited hardware on the Raspberry
Pi Zero, issues with the multitracker implementation in OpenCV, and limited time of the
project, this approach is not explored further in this report. The test program has been
supplied in Section A.8 in the Appendix. The programs for Face- and Object detection
using Camera and Image Inference can be found in Section A.1, A.2, A.5, and Section
A.6 in the Appendix.

3.1. Privacy and Regulations

Disclaimer: I am not a lawyer, this section is not legal advice, it summarises relevant
information which is of interest when dealing with camera systems.

Since the purpose of the system is to survey an area and approximate the number
of people present. It is interesting to take a look at how laws and regulations regarding
the collection and use of data would apply to such a system.

The system applies a camera to capture raw video from an area and then processes
this information to make detections. Relevant laws and regulations which governs the
use of camera systems and privacy considerations are ”lov om behandling av person-
opplysninger” which regulates the collection and storage of personal information, and
”forskrift om kameraoverv̊akning i virksomhet” which regulates the use of surveillance
systems in businesses, as well as ”lov om arbeidsmiljø, arbeidstid og stillingsvern mv.
(arbeidsmiljøloven)”, which regulates the use of forced control measures in businesses
(Chapter 9).
Since the current implementation of the system only reports on the number of people it
has detected and stores no video which could be used to identify individuals, paragraphs
regarding retention and deletion of stored surveillance material does not apply in this
case. § 4. in ”forskrift om kameraoverv̊akning i virksomhet” states that one must give
notice that a surveillance system is in use and who is responsible for the system, this
is a relevant paragraph and would come into consideration if the system is applied in a
business or similar manner, where the goal is to survey. ”lov om arbeidsmiljø, arbeid-
stid og stillingsvern mv. (arbeidsmiljøloven)” Chapter 9, clearly states that the use of
a surveillance system can only be deployed if the employer of the business has a legiti-
mate reason to deploy it, examples of reasons could be for use in security purposes or to
restrict access. Given that the purpose of the system is to detect the number of people

12

present in an area and report this back as aggregated data, it should have a marginal
impact on the privacy of people being detected by it, as no other relevant data is stored
like video or images. As this is the case, the law and regulations should most likely
not pose significant limitations when deploying a system like this. The only potential
problem could be in the reasoning of the deployment of the system. If one cannot give a
good enough reason for why the system is needed, this could constitute an unnecessary
intrusion into the employee’s privacy. This problem should be addressed by contacting
the governing agency to make sure that the laws and regulations are followed. Other
than this limitation, the only relevant action an employer would be required to take
would be to inform and give notice that the system has been put into use.

13

4. Methodology

This section presents the equipment which are used during testing of the different models,
and gives a brief overview of the metrics which are used to present the results.

4.1. Equipment

The object and face detection models, as well as the implementation using object de-
tection and tracking is tested using the Google AIY Vision kit V2, which features a
Raspberry Pi Zero W with a 1GHz Single Core CPU, 512MB of RAM, the Vision Bon-
net with the Myriad 2 VPU. Python 3.5 is used for the creation of program scripts,
and the supplied pre-trained convolutional neural network models and Python modules
found on the kit are used to evaluate the kit. Multiple tests have been devised to test the
impact of inference time when applying the different models to the VPU on the Vision
Bonnet.
Power measurement is done by using the USB Charger Doctor from Adafruit. This is
an inline current and voltmeter which can be connected to USB ports. The meter has
a resolution of 10mV and 10mA, and it supports an input dc voltage of 3.5V-7V and
a current draw in the range of 0-3A. The USB Charger Doctor does not feature digital
readout, so the results are obtained by doing multiple tests with the different models
(face and object), observing and taking note of the measured voltage and current. The
Charger Doctor is shown in Figure 4.1

4.2. Metrics

The metrics used in this report to quantify the models on the AIY kit are the inference
time, i.e., the time it takes for an image to be sent to the neural network to a result
is produced on the output. Inference time is recorded by calling python’s built-in time
function, before and after the inference has been started. The recorded inference times
are stored in a CSV file. Average inference time is calculated using normal averaging,
as shown in equation 4.1.

A =
1

N

N∑

i=0

xi (4.1)

Power is the second important consideration. The AIY Vision Kit is based around a
Raspberry Pi Zero, which is designed to consume low-power. Measuring the power of
the kit in the different scenarios can lead to a better understanding of why it can be
favorable to utilize a Visual Processing Unit to accelerate machine learning, as well as

14

Figure 4.1.: Adafruit Charger Doctor, an Inline Multimeter

to understand what factors that lead to a reduction in power when writing programs for
the system. Since the current drawn by the processor can fluctuate during processing,
multiple measurements are taken and averaged during each test of the different models
(object, face) and configurations (tracking) to get an approximation on the power con-
sumption. A metric which often is used when classifying neural network is the mean
average precision (mAP). The mean average precision is a metric used to classify how
well the object detection models generate class probability and bounding boxes, and
how well these predictions correspond to pre-specified bounding boxes (also referred to
as ground-truth). The metric is used during the training and validation of the model
and is usually validated on a large scale data set such as ImageNet and COCO[2, 1].
Since the Google AIY kit features a custom API and inference engine. It’s a bit more
difficult to evaluate the performance of object detection based on this method.
In this report, a more straightforward approach to approximate the accuracy of both
the face and object detection models is used. The accuracy metric for the implemented
system measures the accuracy by relating the number of correctly detected people in an
image versus the total number of people present in the image, which has been counted
beforehand. A custom python program has been written to do the accuracy testing. The
program works by loading a set of images, where each image has an approximate width
of 1280 and height of 720. The name of each image has been structured in the following
format: t,n.jpg. Here t is the number of people in the frame, and n is a number for
separating images that have an equal amount of people present in them.
The accuracy is calculated by using the total number of people in the image (which is
part of the image name), with the number of people detected by the detection model as

15

given in equation 4.2.

Accuracy =
Predicted Detections

Total Number of People
(4.2)

To produce a decent approximate result, a set of 100 images has been tested. The
approximation can be even more accurate if the number of images that are tested are
increased used. However, due to the limitation on transfer speed due to the use of SPI as
the communication channel between the Raspberry Pi Zero and the Vision Bonnet, the
number of images was constrained to a lower number to save time. The test programs
for determining accuracy for the Face- and Object Detection Models can be found in
Section A.7 and Section A.3 in the Appendix, respectively.

16

5. Results

This section summarises the results obtained from doing tests on the AIY Vision Kit.
The tests for inference times are separated into two different figures. This is due to the
massive difference in inference time for Camera Inference versus Image Inference.

Figure 5.1.: Average Power Consumption during Object Detection

The programs that use Camera Inference uses the Pi Camera to capture images. This
image stream gets transferred to the Raspberry Pi Zero, who processes this stream
on the built-in GPU, which then feeds the output to the HDMI. The GPU consumes
power for each operation it needs to perform. Reducing the number of frames the
Pi Camera produces should help in reducing the overall power consumption since the
GPU now needs to process fewer images. This should also reduce the power needed
by the camera when filming. Figure 5.1 shows how the average power is affected by

17

reducing the number of frames per second. The object detection model is used with
the Camera Inference in the program when generating the results, and the frame-rate
of the camera is tested with a varying configuration of frames per seconds of 5, 10, 20,
and 30. By reducing the frame-rate from 30FPS to 5FPS, a 30% reduction in average
power consumption can be observed. This is likely due to the Pi Camera having to
produce fewer frames per second, which also leads to a reduced load on the GPU. It
seems like the Pi Camera is the primary source of power consumption, this can also be
observed in Figure 5.3, where Image Inference is performed, during this program the
camera is not used. The GPU of the Raspberry Pi is active during testing in both the
Camera- and Image Inference programs. For the Image Inference programs, the GPU
is not actively used by the program, but the Raspbian OS is using the GPU to display
the desktop, and as such, the consumption due to the GPU is likely similar for both
Camera and Image Inference. Figure 5.2 looks at the average inference time versus the

Figure 5.2.: Average Power Consumption versus Average Inference Time of Different
Models using Camera Inference Engine

power consumed using the different models when Camera Inference is performed. The
face detection model performs the best with the lowest average inference time. This

18

makes sense, given that the face detection model is probably using a simpler neural
model, which might require fewer calculations than the object detection model. Both
object detection and object detection with tracking perform similarly. There is a small
change in power, most likely due to adding more load on the CPU in the form of the
tracking module. Some of the power consumption can potentially also be attributed to
the use of the annotator API. The API allows for annotation to be displayed on top of
the image stream generated by the camera. The annotator is implemented in software
and, as such, puts a load on the CPU when it’s used. This is done after each inference
result. Table 5.1 shows the obtained accuracy results. This is obtained by running a set
of 100 images on the Vision Kit. As can be seen from Table 5.1, the object detection
model performs better overall. It is not surprising, given that the face detection should
only produce a result when there are one or more faces present in the picture. People
who are turned away from the camera or where the faces are partially obstructed will
probably not give a detection. Both models suffer somewhat from low average accuracy,
so depending on the setting in which the models are used, one will most likely see very
different results using either of the models.

Model Average Accuracy

Face Detection 35.4%

Object Detection 48.1%

Table 5.1.: Average Accuracy of Face- and Object detection models when running on
100 images

Figure 5.3 shows the average power and inference time of the face and object detection
model when used with the Image Inference engine, both models have approximately the
same average inference time, and the average power consumption is also similar in both
cases. It is also clear that the power consumption when using Image Inference is lower
than the equivalent models run using Camera Inference. This corresponds to the earlier
assumptions since the Image Inference does not utilize the camera versus the Camera
Inference which does. It is likely that this is the main reason why the two differ Inference
types differ. There should also possibly be some reduction due to the program not using
the Annotation API, this should lower the CPU utilization which could potentially lead
to some reduction in power, however this reduction might be small. Image Inference
has a longer inference time in comparison to the Camera Inference. The reason why
the two differ is that in the case of Image Inference, the image has to be transferred
to the Vision Bonnet. Since SPI is used to transfer the image, this leads to a much
longer total inference time. This is one of the major limitations of the kit is configured
to communicate with the Raspberry Pi Zero, and it makes Image Inference unsuitable
for real-time detection.

19

Figure 5.3.: Average Power Consumption versus Average Inference Time on Different
Models using Image Inference Engine

20

6. Discussion

In this section, the results, as presented in the last section, are revisited and discussed
further. Both the strength and weaknesses of the kit, the implemented solution, and
the measurements are also discussed. The discussion divides into three parts. The first
discusses the hardware kit. The following discussion is on the implemented solution, and
the last section is a discussion regarding the acquisition of the measured results.

6.1. The AIY Vision Kit

The AIY Vision Kit is a relatively inexpensive and easy way to start learning and
applying machine learning to visual processing. Google has made a serious attempt
to make the kit easy to set up and easy to use. The supplied pre-trained models, in
addition to their Inference Engine and their API for doing annotation, manipulate the
hardware, and extracting information from each of the trained models makes it a breeze
to work with this kit. The approach to ease-of-use is one of the kit strengths. This
does however come at a cost, since the API and inference engine is written to interact
with the Myriad VPU closely this makes it more difficult to load the pre-built models
in other visual processing libraries, like OpenCV 2. The model files that are read by
Google’s inference engine and are used on the VPU are binaryproto files, there seems
to be no easy way to convert these models back into Tensorflow, and OpenCV is not
capable of opening these files. This makes it difficult to test the models in software,
something which would be interesting. Since it would clearly show the division between
a software-based solution and the accelerated solution. There are other downsides with
the AIY hardware, the communication between the Raspberry Pi Zero and the vision
bonnet is done by using SPI, this severely limits the performance when loading images
to the Vision Bonnet. This is not a major problem when the Camera Inference Engine
is used. In this mode, the MIPI bus on the Myriad is used to do high-speed capture of
information between the Pi Camera and the Raspberry Pi GPU. As a result, this leads to
a reduction in the total communication overhead due to only needing the SPI to deliver
the final result of the Inference. This leads to a much lower inference time, as can be seen
in Figure 5.2 were Camera Inference is used, versus the inference time when using Image
Inference in Figure 5.3. The hardware of Raspberry Pi Zero is limited as well. With
512MB of RAM, which is split between the OS and the GPU. And a single-core 1.0GHz
ARM Cortex processor, the use of highly accurate tracking algorithms is infeasible due
to computationally heavy calculations. There is also difficulty doing compilation on the
device. However, this can be somewhat alleviated by doing cross-compilation on another
machine.

21

6.2. Object Detection and Tracking implementation

As we saw in the results, the overall accuracy of the face detection model and the
object detection model is relatively low. This is somewhat expected due to the model
used for the object detection, in their paper Google managed to achieve an accuracy
of 50.6% when running only MobileNet as a classifier on ImageNet, in this case, the
input was slightly smaller 224x224[2], and the network had a depth-wise multiplier of
0.25. This is similar to the average accuracy that was found when testing the system.
It should also be noted that the network in the paper is trained on a larger data-
set. Another challenge is that the accuracy calculated in this report does not take into
consideration the generation and position of the bounding boxes, which is normally
considered when testing an object detector. Possible mispredictions are not accounted
for when calculating the average accuracy. This implies that the result might actually be
slightly lower since mispredictions might occur during testing. There is also the problem
with low accuracy of the models, the face detection model has a low accuracy simply
due to it not being capable of detecting people when no face is present in an image. The
simple centroid based tracker works fine when running the object detection model, and
by counting the currently tracked objects which have been registered by the tracker, it
seems like it manages to give numbers that correspond a bit more accurately than when
only doing the object detection. Since it is a bit more difficult to produce metrics for
this setup, more work needs to be done to verify how the accuracy is actually impacted.
There are also challenges in regard to the tracker implementation. Since the tracker
keeps a detection stored for a custom number of frames, the number generated by the
system does not always correspond to the actual number of people in the frame. Another
challenge is id swapping; if two people are close together, the tracker might assign an
ID already assigned to detection to another detection, since only the number of people
present is interesting, the problem of whether a person has the correct id or not doesn’t
matter. The main problem as a result of id swapping in regards to this system would be
that detection of a new person can potentially be linked to an already existing detection,
and as such, the number of detections can remain the same. Some of these problems can
be addressed by using a more powerful tracker, but this might require more powerful
hardware as the Raspberry Pi Zero is not capable of doing accurate real-time tracking
with its limited hardware specifications. More research needs to be done on this type of
system.

6.3. Measurements and results

There is also room for improvement regarding the acquirement of measurements. The
USB Charge Doctor works great as a tool for recording both voltage and current, but
a system with a digital readout would be a better solution. This could have been di-
rectly integrated with the timing readouts in the different programs. The way these
measurements have been acquired for this report is by observing the voltage and current
values, during multiple runs of each program. Since the current can fluctuate during the

22

program, a digital readout would yield a more accurate profile of the actual power con-
sumption, rather than the average power consumption based on observation. However,
for the sake of making a comparison between the different network models and compare
Camera Inference to Image Inference, the average power is sufficient to show the differ-
ence, as could be seen in Figure 5.2 and 5.3. The measurements also clearly show how
varying the frame-rate of the camera affects the overall power consumption, as shown
in figure 5.1. There are also some program configurations which could have been tested,
that would have yielded an even better understanding of the average power consumption
due to the utilization of the Pi Camera and the camera preview using the GPU. Testing
how the average power changes when using the Pi Camera versus not using the camera
could help explain why there is a major difference in average power when doing Camera
Inference, the main challenge here is that the GPU of the Raspberry Pi is in use regard-
less of what program is running, since it is used to display the Raspbian OS desktop.
One of the significant challenges in regards to measuring neural network performance
is the lack of a standardized system. Since networks are configured differently with a
broad set of configurable parameters, actually comparing different network types, sizes,
and configurations are challenging.

23

7. Relevant Work

There are few papers where the work has involved the use of a Google AIY Vision kit
directly as a ”people counter” or as a part of the system in general. This section will
present a some few articles that have successfully applied the Google AIY Kit or the
Myriad 2 VPU, an article that tries to do detection of people using CNN’s. There
exist some articles where the Google AIY Vision kit have been used or tested, but for
completely different tasks. An example is a poster published by Fermilab, Hawks et al.
[15] compared performance of the Vision kit, Google’s Edge TPU Coral and a Intel
i7-6700 processor when running a simulation on gravitational lens finding, they found
that the AIY kit had the worst average inference time at 73ms, this corresponds well
with the observations made in this report, the face detection model averages around
76ms. Orjuela-Canon et al. [16] used the Movidius NCS (which features the Myriad
VPU) and a Raspberry Pi B 3 to test a detection system for mobility actors (cars,
motorcycles, busses and pedestrians). The managed to get an average FPS of 11 using a
re-trained MobileNet + SSD architecture, however few details is given in regards to the
specifications of the network other than what architecture and it is therefore difficult to
compare their performance against the performance of the MobileNet + SSD architecture
running on the Vision Kit. Cojocea and Rebedea [17] looks at a multiple ways of doing
people counting in crowded places, one by doing video capture and doing the detection
on a server, and the other way is done on the embedded system. Their system is similarly
structured as the system presented in this report, it is built around the use of an object
detector for generating the initial detections then it uses an object tracking algorithm
to estimate the number of people that is present in a frame. The problem is that they
state in their report that they only have managed to test their system on a computer
running two GTX1080-Ti Graphics cards which makes it infeasible to try to compare
performance metrics.

24

8. Conclusion

This report has explored and tested the Google AIY Vision kit and presented a couple of
different possibilities for the implementation of a system for detecting and approximating
the number of people in a room or office space. The Vision Kit shows promise. It is
easy to get up and running. The supplied models and the implemented inference engine
makes it easy to test and deploy pre-trained / pre-built models. However, there are
hardware limitations both on the Raspberry Pi Zero and the Vision Bonnet, which
limits the overall performance and puts constraints on which network architectures can
be used and applied to the kit. The models suffer from a low average accuracy of
48.1% for object detection and 34.8%. This makes it somewhat problematic to utilize
the kit in a person detection system. It cannot be completely guaranteed that the
system is capable of accurately detecting how many people are present in a frame. This
can potentially be alleviated by using tracking and continuously adding new persons of
interest as they are detected, and continue tracking people who have already been seen.
The limitation on the performance of the Raspberry Pi Zero and the lack of high-speed
communications options imposes limits on how well the system can perform. Tracking
implementations with low computational footprint are capable of running decently on
the Raspberry Pi Zero, running more advanced tracking algorithms seems infeasible due
to the performance of the Pi. There is also the performance problems imposed by the
memory size limitation on the Myriad 2 chip on the Vision Bonnet, which effectively
limits the size and complexity of which network architectures can be run on the board.
As this is the case, using the kit in a system for detecting people is possible. However,
this system would suffer due to low accuracy and performance. The deployment and
use of AI on edge is still a relatively new topic of research, and more work and other
hardware platforms need to be tested to find the best way of implementing a people
detection system.

8.1. Future Work

This project has been an interesting journey, it has introduced me to the concept of
machine learning and computer vision. This is an enormous field of research and as
such I have barely scratched the surface of what one can achieve when applying machine
learning to different vision processing problems. There are multiple things which could
be improved upon or tested to further enhance my own understanding, but also to
improve upon the solution presented in this report. It would be interesting to test the
Vision Bonnet on a more powerful raspberry pi 3B+ or raspberry pi 4. Testing the Coral
TPU from Google could also make an interesting case, these runs Tensorflow on edge
and it would be interesting to see how well this device would stack up to the AIY kit.

25

There is also the possibility of improving upon the tracking solution, there exists papers
which explains relatively fast offline tracking and implementing or using these to improve
upon the detection result, however these were not focused on in this report. OpenCV
tracking has been tested on the implemented system, however due to relatively limited
hardware, the tracker it self uses multiple seconds to calculated and generate a result,
making it unsuitable to be run on resource constraint devices such as the Raspberry
Pi Zero, however running this on more powerful devices should be feasible and this is
something which also would be of interest, when developing these kinds of systems.

26

Bibliography

[1] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In 3rd International Conference on Learning Rep-
resentations, ICLR 2015 - Conference Track Proceedings, 9 2015. URL http:

//arxiv.org/abs/1409.1556.

[2] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. 4 2017. URL
http://arxiv.org/abs/1704.04861.

[3] Google Inc. Vision Kit Webpage, 2018. URL https://aiyprojects.withgoogle.

com/vision/.

[4] Intel Corporation. Myriad 2 MA2x5x Vision Processor Transforming Devices
Through Ultra Low-Power Machine Vision. Technical report, 2016. URL www.

movidius.com.

[5] Hamed Habibi Aghdam and Elnaz Jahani Heravi. Guide to Convolutional Neu-
ral Networks: A Practical Application to Traffic-Sign Detection and Classification.
2017. ISBN 978-3-319-57550-6. doi: 10.1007/978-3-319-57550-6.

[6] Steinar Thune Christensen, Snorre Aunet, and Omer Qadir. A Configurable and
Versatile Architecture for Low Power, Energy Efficient Hardware Acceleration of
Convolutional Neural Networks. ISBN 9781728127699.

[7] Tom Hope, Yehezkel S Resheff, and Itay Lieder. Learning Tensor-
Flow : a guide to building deep learning systems. O’Reilly Media Inc,
2017. ISBN 978-1491978511. URL https://www.oreilly.com/library/view/

learning-tensorflow/9781491978504/.

[8] Dan C. Cireşan, Ueli Meier, Jonathan Masci, Luca M Gambardella, and Jürgen
Schmidhuber. Flexible, high performance convolutional neural networks for image
classification. In IJCAI International Joint Conference on Artificial Intelligence,
pages 1237–1242, 2011. ISBN 9781577355120. doi: 10.5591/978-1-57735-516-8/
IJCAI11-210.

[9] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. Single-Image
Crowd Counting via Multi-Column Convolutional Neural Network. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages

27

589–597. IEEE, 6 2016. ISBN 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.70. URL
http://ieeexplore.ieee.org/document/7780439/.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in Neural Information Pro-
cessing Systems, volume 2, pages 1097–1105, 2012. ISBN 9781627480031. URL
http://code.google.com/p/cuda-convnet/.

[11] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 4510–4520, 1 2018. ISBN 9781538664209. doi:
10.1109/CVPR.2018.00474. URL http://arxiv.org/abs/1801.04381.

[12] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image
classification: A comprehensive review, 9 2017. ISSN 1530888X.

[13] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng Yang Fu, and Alexander C. Berg. SSD: Single shot multibox de-
tector. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
9905 LNCS, pages 21–37, 12 2016. ISBN 9783319464473. doi: 10.1007/
978-3-319-46448-0{\ }2. URL http://arxiv.org/abs/1512.02325http://dx.

doi.org/10.1007/978-3-319-46448-0_2.

[14] Adrian Rosebrock. Simple Object Tracking with OpenCV,
2018. URL https://www.pyimagesearch.com/2018/07/23/

simple-object-tracking-with-opencv/.

[15] Benjamin Hawks, Pradeep Jasal, Michael Wang, Brian Nord, and Iiser Pune. Real-
Time Machine Learning Inferencing with Edge Computing Devices from Google and
Intel. Technical report. URL https://coral.withgoogle.com/docs/dev-board/

datasheet/.

[16] Alvaro David Orjuela-Canon, Institute of Electrical and Electronics Engineers.
Colombia Section, Institute of Electrical and Electronics Engineers. Colombian
Caribbean Section, IEEE Computational Intelligence Society. Colombia Chapter,
and Institute of Electrical and Electronics Engineers. 2019 IEEE Colombian Con-
ference on Applications in Computational Intelligence - ColCACI : conference pro-
ceedings : June 5-7th 2019, Barranquilla, Colombia. ISBN 9781728116143.

[17] Eduard Cojocea and Traian Rebedea. Counting People in Crowded Places using
Convolutional Neural Networks. Technical Report 2, 2019.

28

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Benjamin Ramberg Møklegård

People Detection using Transfer
learning on Deep Convolutional Neural
Networks

Master’s thesis in Electronic Systems Design

Supervisor: Snorre Aunet

June 2020

	Acknowledgement
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Problem description
	Background and Motivation
	Relevant Work
	People Detection using CNNs

	Thesis Contribution
	Thesis structure

	Theory
	A brief history of machine learning
	What are Artificial Neural Networks
	Biological Neuron
	Artificial Neuron
	Fully-connected Artificial Neural Network

	Training a Neural Network
	Loss Function
	Backpropagation and Gradient Descent

	Convolutional Neural Networks
	Convolution Operation
	Convolution Layers
	Activation Layers
	Pooling Layers

	Transfer learning
	Object Detection
	R-CNN
	Fast R-CNN
	Faster R-CNN
	SSD
	YOLO

	Experimental Setup
	Models
	Datasets
	MSCOCO
	Open Image Dataset

	Software Implementation
	Tensorflow-based Models
	YOLO
	COCO API
	Evaluation of Darknet based Models
	Network Configuration

	Hardware Setup
	Google Coral Dev Board

	Methodology
	Detection Metrics
	IoU
	Detection outcomes and the confusion matrix
	Precision
	Recall
	Mean Average Precision

	Inference Time
	Number of FLOPS
	Frames per second
	Power Consumption
	Energy per Operation

	Results
	Transfer learning on pretrained models
	Mobilenet V2 + SSD
	Quantized Mobilenet V2 + SSD
	YOLOv3
	YOLOv3 Tiny
	Combined performance figure

	Energy per operation during Inference Run on Google Coral
	Inference Time on different devices
	Applying Detector for Estimating People

	Discussion
	Applying Transfer-learning to boost model performance
	Evaluating the neural network performance in terms of Energy per Operation
	Inference Time on different devices
	Detecting People using the trained models

	Conclusion
	Bibliography
	Additional Material
	Detection on multiple Images
	Pascal VOC Format
	Copy of Specialization Report

