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Abstract

In this thesis we investigate 3D shape completion and reconstruction of volumetric objects from
a single view, to enable a robot arm controller to make inference of the 3D object’s shape during
the manipulation stage when equipped with 3D vision. It deals with one of the fundamental
problems in robotic object manipulation: perception. Objects may from a single viewpoint
be only partially observable by a visual sensor due to various occlusions. As such there are
many perception ambiguities to solve before building 3D models of objects, and consequently
gripping them, becomes possible.

We investigated a machine learning approach based on implicit surfaces, leveraging the novel
study of neural fields which has recently become popular. This data-driven learning paradigm
handles arbitrary shape topologies and reduce the system requirements by an order of magnitude
compared to previous state-of-the-art methods typically based on convolution. Our shape
completion method is based on searching for the shape embedded in latent space that best
conforms to the single-view observation data, using stochastic gradient decent.

We trained deep neural networks, whose input is a single continuous 3D Cartesian coordinate, to
represent implicit surfaces in latent space by approximating their signed distance function (SDF).
We experimented with the size of these networks, with LReLU and sinusoidal nonlinearities, and
with how to best train the networks on the 3D models of the YCB dataset using various novel
regularization techniques and loss functions. We showed that supervising sinusoidal networks
with a truncated SDF signal and its spatial derivative yield better shape reconstructions, scored
with Chamfer distance, earth movers distance, mesh cosine similarity and F-score.

The aim and primary contribution of this thesis was to construct a latent space of not only a wide
selection of shapes, but of shapes over a continuous space of orientations, effectively combining
shape completion with pose estimation. This had the benefit of promoting learning rotationally
invariant shape features. We analyzed how similar shapes cluster and transition between each
other in latent spaces learned by auto-decoders. We discovered that including multiple objects
in each training batch drastically improved the convergence rate. We additionally proposed a
method to sample SDF values from real-world depth sensor data. We showcased the ability of
our model to perform shape completion on partial and noisy 3D data in a single-view real-world
context. Based on these results, our methodology is a valuable contribution to the robotic
based single-view 3D shape completion.

Preface

This master thesis is the result of the work performed over the course of the spring semester 2021
carried out at the Department of Computer and Information Science (IDI), at the Norwegian
University of Science and Technology (NTNU). This thesis is also a part of the GentleMAN
project at SINTEF Ocean which aims to develop a learning framework using visual and tactile
sensing to aid the manipulation of 3D compliant objects with a robot controller by equipping
it with 3D RGB-D vision. I want to thank Ekrem Misimi and Theoharis Theoharis for their
guidance and proofreading.



Sammendrag

Vi undersgker i denne oppgaven rekonstruksjon av fullstendige volumetriske 3D modeller fra et
enkelt synspunkt, for & gi en robotarm utstyrt med 3D syn ferdigheten til & antyde fasongen til
objekter og derav handtere dem. Dette er en av de grunnleggende utfordringene for robotisert
manipulasjon: visuell forstaelse. Objektene kan veere kun delvis synlig fra et enkelt synspunkt,
ettersom de kan vare tildekket av andre objekter eller fysiske barrierer. Sddan er det uklarheter
Igse opp i fgr robotagenter kan bygge fullstendige 3D modeller av objekter og analysere disse
for & gripe dem.

Vi tok i bruk den nye maskinleeringsmetoden kjent som nevrale felt, og undersgkte implisitte
overflater. Denne leeringsparadigmen handterer fasonger av vilkarlig genus og bruker faerre
systemresurser enn tidligere toppmoderne metoder basert pa eksplisitte fasongrepresentasjoner
og konvolusjon. Var metode for a fullfore 3D fasonger er basert pa a sgke etter fasonger bedt i
et latentrom som best anpasser seg til sensordata.

Vi trente dype nevrale nettverk til & representere fasongen til objekter i latentrom ved a
approksimere deres fortegnede avstandsfunksjon (SDF): en 3D koordinatfunksjon. Vi eksperi-
menterte med stgrrelsen til disse nettverkene, med LReLU og sinus ikke-linezriterer, og med
hvordan & best trene nettverkene pa 3D modellene fra YCB datasettet med forskjellige nye
regulariseringsmetoder og tapsfunksjoner. Vi oppdaget at det & trene nettverkene med data fra
flere forskjellige objekter i hver treningsbunt fgrte til en gkt konvergeringsrate. Vi demonstrerte
at det & trene sinusbaserte nettverk med trunkerte avstander og deres romslige deriverte fgrer
til de beste fasonsrekonstruksjonene scoret med Camfer avstand, earth movers distance, mesh
cosinussimileerhet og F-score.

Vart hovedbidrag i denne oppgaven var a konstruere et latentrom av ikke bare et bredt utvalg
av fasonger, men av kontinuerlig orienterbare fasonger, som effektivt kombinerer fasongrekon-
struksjonen med stillingsestimering. Dette motiverte nettverkene til & leere rotasjonsmessig
uavhengige fasongtrekk. Vi analyserte hvordan neere fasonger klynget seg sammen og gled mel-
lom hverandre i latentrommene formet av auto-dekodere. Vi foreslo en ny metode for a fordele
treningseksemplene gjennom en treningsepoke, for a gke konvergeringsraten. Vi foreslo ogsa en
ny metode for & beregne fortegnede avstander fra dybdesensordata tatt fra et enkelt synspunkt
i virkeligheten. Vi viste frem hvordan var modell klarer & fullfgre fasonger fra forurenset og
bedekket sensordata tatt fra et enkelt synspunkt. Basert pa disse resultatene er var metode et
verdifullt bidrag til robotisert visuell forstaelse.

Forord

Denne masteroppgaven ble utfgrt over varsemesteret 2021 pa Institutt for datateknologi og
informatikk (IDI) pd Norges teknisk-naturvitenskaplige universitet (NTNU). Oppgaven er ogsa
en del av GentleM AN-prosjektet ved SINTEF Ocean som har som mal a utvikle et maskin-
leeringsrammeverk som bruker visuelle og taktile sanser til & assistere robotisert handtering
av fgyelige objekter ved & utruste dem med 3D syn. Jeg vil takke Ekrem Misimi og Theoharis
Theoharis for deres veiledning og korrekturlesing.
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ix

99

60

61

61

64



LIST OF FIGURES

6.19

6.20

6.21

Al

A2

A3

A4

Ab

The YCB 001_chips_can at 285° for all BigBIRD depth camera perspectives NP1
- NP5 shown in figure 3.2a. We fit the near-surface SDF samples (blue and red)
within the green sphere. The orange axis-aligned cube is the reconstruction volume
we traverse with marching cubes. Note how the walls of the chips can disappear as
the 3D camera moves towards to the zenith: depth cameras often fail to measure
steep surfaces. Shape completion on NP4 and NP5 scans fail for this reason, as
they lack any indication of how long the can ought be. . . . . . .. ... ... ..
Shape completion on real-world SDF clouds extracted from YCB RGB-D images,
by network #18 (a 6D SIREN) in table 6.2. The first row in each subfigure display
the single-view SDF' clouds used to supervise the search. We display the best
TSDF PSNR scoring shape out of ten, which took one minute to optimize for 600
steps and score. In (A-D) we augment the depth maps with occlusions: in one
we slice of the mid-section and in the other we cut away half with a barrier. The
latter augmentation affects how the SDF cloud is fitted within the reconstruction
volume, further illustrated in figure 6.19. In (E) we inject into each depth pixel
noise on drawn from N(0,02). The “Global Centroid” completion in (E) started
searching from the global centroid, while all the other completions started at their
respective class centroid. All RGB-D images are taken from the NP2 camera angle,
shown in figure 3.2a. . . . . . . ... L
A diagram based on figure 5.2 of a scan ray cast from a camera into a scene with
our shape of interest. The uniform single-view SDF points are sampled within
the free-space covered by scan rays traced from the camera into the scene. We
compute the SDF value (radius of dotted sphere) for each of these uniform points
(blue dot) as the distance to the nearest hit point, that is, the visible surface of
our object of interest (bold). Uniform points sampled far behind the shape end
up with rather large SDF values, which end up “carving out” hidden parts of the
object obscured by its own shadow. Non-truncated loss functions (like Lpisn L1

and L1 from eq. 5.9) struggle with single-view shape completion for this reason.

Their L2 variants are even more affected. Lrgpr mitigates this issue by clipping
how much uniform points contribute to the loss, making it nearly unaffected.

Pearson product-moment correlation matrices for the three sets of learned shape

features exhibited in figure 6.8. It measures the linear dependence between features.

The # numbers refer to the rows in table 6.2. . . . . . . ... ... ... .....

The 3D YCB meshes we trained our networks with, rendered in their canonical pose.

We use the Google scanner meshes if available, falling back to BigBIRD Poisson
reconstructions otherwise. The meshes are colored according to our assigned classes,
using the same colors as other figures. Apparent here is how few of the objects
have been aligned to one another, leading to poor knowledge discovery. . . . . . .
All training metrics measured across the validation dataset during training,
smoothed with a=0.8 EMA. We show the networks without positional encoding in
table 6.1. There are two runs for every loss function: LReLUs trained with and
without gradient supervision, while the STRENS trained with both 3D (Euler) and
6D rotation vectors (expanded with a cross product). Red dots and crosses are
NaNs, the latter indicating the network never recovered. SIRENs seem to produce
and recover from regressing NaNs quite often, a characteristic not observed with
LReLU. . . . .
A visual explanation in 2D of how some of some of class centroids reported in
figure 6.16 may have such a low magnitude despite how all its members each have a

66

67

78

magnitude near the global mean. This issue is more pronounced in higher dimensions. 82

A 2D visualization of the hull we tried normalizing the LReLU shape codes to
during "aggressive' shape completion search. The distance from the global centroid

to the hypersurface is determined by the magnitude of similar known latent vectors. 82



Chapter 1

Introduction

1.1 Background and Motivation

Humans exhibit an incredible capability for visual understanding. We rapidly learn new tasks
in a way that still to this day continues to defy our expectation and understanding. We
continually learn new relations by combining our senses with our prior experiences, learning
from demonstrations by others and through self-exploration. We aim in this thesis to give
machines the visual understanding required to perform complex object manipulation tasks. For
this purpose we explore novel techniques to teach machines to see and understand a scene and
all of the objects in it. The intent is to enable the manipulation of these objects with a robotic
arm.

Grasping unknown objects is a complex operation plagued with ambiguities: Which object do
we want to grab? What is the object we are about to grab? What do the hidden parts of the
object look like? Where are the most affordable spots to place the grippers? How much force
can one safely apply to the object to successfully lift it without deforming it? These are central
questions in the field of visual servoing, with a plethora of different approaches one might take.
In this thesis we look to humans for inspiration:

Humans can infer the occluded parts of objects from just a single viewpoint. This incredible
inference ability draws from our previous experiences and knowledge of shapes commonly found
in a given context. Drawing from these priors we arrive at a good guess about the backside
and other occluded parts of the object. This guess equips us with a lot of information to then
determine how to grip and manipulate the object.

The aim of this thesis is to investigate a new approach on how to make a machine agent able to
infer the full shape of an object from just a single viewpoint. This is an area of research in
computer vision commonly referred to as shape completion: inferring a full 3D shape from only
a partial observation. Single-view perspectives are subject to many occlusion states, such as self
object occlusion, inter-object occlusion and background occlusion. We present a motivational
scenario riddled with occlusions in figure 1.1.

Recent developments in the field of representation learning have resulted in the novel discovery of
neural fields, a deceptively simple and powerful data-driven learning paradigm. These networks
learn continuous implicit representations, such as the signed distance field whose zero level
set is an implicit surface. They do so in a memory efficient and expressive manner, enabling
the reconstruction of shapes with arbitrary mesh resolution, mesh topology and genera. We
leverage mathematical properties of these implicit functions to boost feature extraction and the
reconstruction quality, then apply these methods to single-view shape completion.
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FIGURE 1.1: An example scene showcasing occlusions a robotic arm needs to be able to
handle. The mug is subject to self occlusions as its handle occludes a part of its own body.
The sugar box is subject to inter-object occlusions, as it is blocked by both the strawberry
and the mug. The mug occludes the light cast onto the sugar box, further impeding its
classification. The banana is largely cut off by the mug, but with previous knowledge
about the typical depth of a mug it is possible to infer the length of the banana.

This master thesis is part of the GentleMAN project at SINTEF Ocean!, aiming to develop
learning frameworks using visual and tactile sensing for manipulation of 3D compliant objects
with a robot controller by equipping it with 3D vision. As a part of Work Package 1 - Visual
Intelligence - this assignment fits with the Task aiming to develop novel 3D reconstruction
methods for robotic applications in the presence of the intra object occlusions but also those
including physical occlusions, resulting in partial visual observability of the object to be
manipulated.

Most related works have trained on and been evaluated against synthetic data, whereas we
target a real-world robotic lab environment. As such we base our work on the YCB object
dataset (Calli, Walsman, et al. 2015; Calli, Singh, et al. 2015), which is a benchmark for visual
servoing.

Thttps://prosjektbanken.forskningsradet.no/en/project/FORISS/2997577Kilde=FORISS&distribution=Ar
&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&result Count=30& offset=0& F'ri
tekst=gentleman


https://prosjektbanken.forskningsradet.no/en/project/FORISS/299757?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=gentleman
https://prosjektbanken.forskningsradet.no/en/project/FORISS/299757?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=gentleman
https://prosjektbanken.forskningsradet.no/en/project/FORISS/299757?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=gentleman
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1.2 Problem Formulation

Succinctly, our problem formulation is as follows:

Shape completion of 3D objects only partially observable to the visual sensor due
to single-view occlusions, and the generation of a 3D mesh models with an accurate
camera space pose. The resulting 3D shape completion technique must be fit for
use with real-world depth sensor data.

1.3 Research Goals

Our primary goal is to create a deep learning framework to infer 3D shapes from a single
viewpoint, satisfying the requirements stated in our problem formulation. To help ac