
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Peder Bergebakken Sundt

Single-View 3D Shape Completion
for Robotic Grasping of Objects
via Deep Neural Fields

Master’s thesis in Computer Science
Supervisor: Ekrem Misimi, Sintef OCEAN
Co-supervisor: Theoharis Theoharis, IDI

June 2021

M
as

te
r’s

 th
es

is

Peder Bergebakken Sundt

Single-View 3D Shape Completion
for Robotic Grasping of Objects
via Deep Neural Fields

Master’s thesis in Computer Science
Supervisor: Ekrem Misimi, Sintef OCEAN
Co-supervisor: Theoharis Theoharis, IDI
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

In this thesis we investigate 3D shape completion and reconstruction of volumetric objects from
a single view, to enable a robot arm controller to make inference of the 3D object’s shape during
the manipulation stage when equipped with 3D vision. It deals with one of the fundamental
problems in robotic object manipulation: perception. Objects may from a single viewpoint
be only partially observable by a visual sensor due to various occlusions. As such there are
many perception ambiguities to solve before building 3D models of objects, and consequently
gripping them, becomes possible.

We investigated a machine learning approach based on implicit surfaces, leveraging the novel
study of neural fields which has recently become popular. This data-driven learning paradigm
handles arbitrary shape topologies and reduce the system requirements by an order of magnitude
compared to previous state-of-the-art methods typically based on convolution. Our shape
completion method is based on searching for the shape embedded in latent space that best
conforms to the single-view observation data, using stochastic gradient decent.

We trained deep neural networks, whose input is a single continuous 3D Cartesian coordinate, to
represent implicit surfaces in latent space by approximating their signed distance function (SDF).
We experimented with the size of these networks, with LReLU and sinusoidal nonlinearities, and
with how to best train the networks on the 3D models of the YCB dataset using various novel
regularization techniques and loss functions. We showed that supervising sinusoidal networks
with a truncated SDF signal and its spatial derivative yield better shape reconstructions, scored
with Chamfer distance, earth movers distance, mesh cosine similarity and F-score.

The aim and primary contribution of this thesis was to construct a latent space of not only a wide
selection of shapes, but of shapes over a continuous space of orientations, effectively combining
shape completion with pose estimation. This had the benefit of promoting learning rotationally
invariant shape features. We analyzed how similar shapes cluster and transition between each
other in latent spaces learned by auto-decoders. We discovered that including multiple objects
in each training batch drastically improved the convergence rate. We additionally proposed a
method to sample SDF values from real-world depth sensor data. We showcased the ability of
our model to perform shape completion on partial and noisy 3D data in a single-view real-world
context. Based on these results, our methodology is a valuable contribution to the robotic
based single-view 3D shape completion.

Preface
This master thesis is the result of the work performed over the course of the spring semester 2021
carried out at the Department of Computer and Information Science (IDI), at the Norwegian
University of Science and Technology (NTNU). This thesis is also a part of the GentleMAN
project at SINTEF Ocean which aims to develop a learning framework using visual and tactile
sensing to aid the manipulation of 3D compliant objects with a robot controller by equipping
it with 3D RGB-D vision. I want to thank Ekrem Misimi and Theoharis Theoharis for their
guidance and proofreading.

i

Sammendrag

Vi undersøker i denne oppgaven rekonstruksjon av fullstendige volumetriske 3D modeller fra et
enkelt synspunkt, for å gi en robotarm utstyrt med 3D syn ferdigheten til å antyde fasongen til
objekter og derav håndtere dem. Dette er en av de grunnleggende utfordringene for robotisert
manipulasjon: visuell forståelse. Objektene kan være kun delvis synlig fra et enkelt synspunkt,
ettersom de kan være tildekket av andre objekter eller fysiske barrierer. Sådan er det uklarheter
løse opp i før robotagenter kan bygge fullstendige 3D modeller av objekter og analysere disse
for å gripe dem.

Vi tok i bruk den nye maskinlæringsmetoden kjent som nevrale felt, og undersøkte implisitte
overflater. Denne læringsparadigmen håndterer fasonger av vilkårlig genus og bruker færre
systemresurser enn tidligere toppmoderne metoder basert på eksplisitte fasongrepresentasjoner
og konvolusjon. Vår metode for å fullføre 3D fasonger er basert på å søke etter fasonger bedt i
et latentrom som best anpasser seg til sensordata.

Vi trente dype nevrale nettverk til å representere fasongen til objekter i latentrom ved å
approksimere deres fortegnede avstandsfunksjon (SDF): en 3D koordinatfunksjon. Vi eksperi-
menterte med størrelsen til disse nettverkene, med LReLU og sinus ikke-lineæriterer, og med
hvordan å best trene nettverkene på 3D modellene fra YCB datasettet med forskjellige nye
regulariseringsmetoder og tapsfunksjoner. Vi oppdaget at det å trene nettverkene med data fra
flere forskjellige objekter i hver treningsbunt førte til en økt konvergeringsrate. Vi demonstrerte
at det å trene sinusbaserte nettverk med trunkerte avstander og deres romslige deriverte fører
til de beste fasonsrekonstruksjonene scoret med Camfer avstand, earth movers distance, mesh
cosinussimilærhet og F-score.

Vårt hovedbidrag i denne oppgaven var å konstruere et latentrom av ikke bare et bredt utvalg
av fasonger, men av kontinuerlig orienterbare fasonger, som effektivt kombinerer fasongrekon-
struksjonen med stillingsestimering. Dette motiverte nettverkene til å lære rotasjonsmessig
uavhengige fasongtrekk. Vi analyserte hvordan nære fasonger klynget seg sammen og gled mel-
lom hverandre i latentrommene formet av auto-dekodere. Vi foreslo en ny metode for å fordele
treningseksemplene gjennom en treningsepoke, for å øke konvergeringsraten. Vi foreslo også en
ny metode for å beregne fortegnede avstander fra dybdesensordata tatt fra et enkelt synspunkt
i virkeligheten. Vi viste frem hvordan vår modell klarer å fullføre fasonger fra forurenset og
bedekket sensordata tatt fra et enkelt synspunkt. Basert på disse resultatene er vår metode et
verdifullt bidrag til robotisert visuell forståelse.

Forord
Denne masteroppgaven ble utført over vårsemesteret 2021 på Institutt for datateknologi og
informatikk (IDI) på Norges teknisk-naturvitenskaplige universitet (NTNU). Oppgaven er også
en del av GentleMAN-prosjektet ved SINTEF Ocean som har som mål å utvikle et maskin-
læringsrammeverk som bruker visuelle og taktile sanser til å assistere robotisert håndtering
av føyelige objekter ved å utruste dem med 3D syn. Jeg vil takke Ekrem Misimi og Theoharis
Theoharis for deres veiledning og korrekturlesing.

ii

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Formulation . 3
1.3 Research Goals . 3
1.4 Structure of the Thesis . 3

2 Theoretical Background 4
2.1 3D Shape Representations . 4

2.1.1 Object Topology . 4
2.1.2 Point Cloud Representations . 5
2.1.3 Mesh based Representations . 5
2.1.4 Voxel based Representations . 5
2.1.5 Implicit Surface based Representations . 6

2.2 Transformations and Processing . 7
2.2.1 Affine Transformations . 7
2.2.2 The Model-View-Projection Matrix . 8
2.2.3 Unprojecting RGB-D Images to Point Clouds 8
2.2.4 6D Continuous Representation of Rotation 9

2.3 Machine learning . 10
2.3.1 Artificial Neural Networks . 10
2.3.2 Transfer Functions . 10
2.3.3 Activation Functions . 11
2.3.4 Supervised Training . 12
2.3.5 Deep Learning . 14
2.3.6 Representation Learning and Latent Spaces 14
2.3.7 Convolutional Neural Networks (CNN) . 15
2.3.8 Generative Adversarial Networks (GAN) 16
2.3.9 Auto-Encoders (AE) . 16
2.3.10 Neural Fields and Deep Implicit Surfaces 17
2.3.11 Auto-Decoders (AD) . 18
2.3.12 Probabilistic Decoders . 18
2.3.13 Shape Reconstruction and Completion . 19
2.3.14 Pose Estimation and Registration . 19
2.3.15 Classification and Segmentation . 19

3 Technical Background 20
3.1 Data- and Object Sets . 20

3.1.1 ShapeNet . 20
3.1.2 YCB and the BigBIRD Scanner . 21
3.1.3 Falling Things (FAT) . 21

3.2 Platforms . 22
3.2.1 PyTorch and CUDA . 22
3.2.2 PyTorch Lightning and Slurm . 22
3.2.3 Intel RealSense . 22

3.3 System Setup . 22

iii

CONTENTS iv

4 Related Works 23
4.1 Visual Servoing and Robotic Manipulation . 23
4.2 Object Detection and Classification . 24
4.3 3D Shape Completion . 24

4.3.1 Implicit Representation Learning . 25
4.4 Fall Project by the Author . 26

5 Methodology 27
5.1 Overall Approach and Motivation . 27
5.2 Data Preparation . 29

5.2.1 3D Model Pre-Processing and Normalization 29
5.2.2 Sampling Full-View SDF Clouds . 30
5.2.3 Sampling Single-View SDF Clouds . 30
5.2.4 Processing RGB-D Images . 31

5.3 Learning Architecture . 32
5.4 Training . 33

5.4.1 Augmenting for Pose Estimation . 33
5.4.2 Shaping the Latent Space of Shapes . 34
5.4.3 Training Order . 35

5.5 Shape Completion Method . 35
5.6 Experimental Setup . 36
5.7 Evaluation Metrics . 38

6 Evaluation 40
6.1 Data Preparation . 40

6.1.1 Sampling SDF Gradients . 40
6.1.2 Single-View Point Clouds . 41

6.2 Training . 43
6.2.1 Discoveries, Optimization and Re-Design 43
6.2.2 Finding the Best Combination . 45
6.2.3 The Final Training Batch . 47
6.2.4 Training Time . 48

6.3 Evaluation of Reconstructed Shapes . 49
6.3.1 Evaluation Metric Details . 52

6.4 Examination of the Latent Space of Shapes . 52
6.4.1 Latent Space Saturation . 52
6.4.2 Knowledge Discovery . 53
6.4.3 Latent Space Smoothness . 55

6.5 Single-View Shape Completion . 57
6.5.1 A Naive Approach . 58
6.5.2 A Class-Aware Approach . 61
6.5.3 Real-World Data and Occlusions . 65
6.5.4 Non-Truncated Single-View Shape Completion 67

7 Discussion 68
7.1 Pose Estimation and Local Minima . 68
7.2 Learning Shapes by Learning to Pose Estimate 68
7.3 Transfer of Knowledge . 69
7.4 Setbacks . 69
7.5 Meeting our Research Goals . 70

8 Conclusion & Future Work 71
8.1 Conclusion . 71
8.2 Future work . 72

Bibliography 73

A Supplementary 78

List of Tables

2.1 The basic 2D affine transformation matrices. 7
2.2 A collection of common activation functions used in neural networks, some relevant

to computer vision. 11

6.1 The final SDF MSE(×107), PSNR and mean 〈∇x〉 (gradient cosine similarity)
measurements for a batch of networks trained for 1500 epochs. Bold highlights the
best scores in each group. The networks were trained with weight normalization,
0.042Lcodereg, and zshape vectors 128 features wide. PE is positional encoding, n is
the number of network stages not counting the final NeRF stage. These metrics
are defined in chapter 5.7, and graphed over time in supplementary figure A.3. . 47

6.2 The mean and ˜median CD(×104), EMD(×107) and COS, defined in chapter 5.7,
for each network in table 6.1. CD and EMD measure distances inside the unit-scale
reconstruction volume. Bold highlights the best scores in each group, and the three
best performing networks. Network #7 is comparable to DeepSDF. We further
explore the those marked * from here on, chosen by their median performance. . 49

6.3 The mean F1-score defined in chapter 5.7 (higher is better), for varying thresholds
as a % of reconstruction volume side length. We include networks from table
6.2 marked *, as well as the best TSDF MSE and PSNR scoring SIRENs. Bold
highlights the best scores in each group. ∇ indicate the network was supervised
with Lsim. 50

A.1 The post-processing filters applied by default to the depth image stream in Intel
RealSense Viewer in order. In general they filter out high-frequency noise and
increase the dynamic sensor range. 78

A.2 Our whitelist of objects in the YCB object and dataset used to train our shape
completion network, along with the class labels we assigned to them. We present a
render of each object in figure A.2. We filtered many of the objects due to either
distortions or poor alignment. 79

v

List of Figures

1.1 An example scene showcasing occlusions a robotic arm needs to be able to handle.
The mug is subject to self occlusions as its handle occludes a part of its own body.
The sugar box is subject to inter-object occlusions, as it is blocked by both the
strawberry and the mug. The mug occludes the light cast onto the sugar box,
further impeding its classification. The banana is largely cut off by the mug, but
with previous knowledge about the typical depth of a mug it is possible to infer
the length of the banana. 2

2.1 The Stanford Bunny represented as a surface point cloud, as a occupancy grid
voxel model, and as a triangular surface mesh. (From Hoang et al. 2019.) 4

2.2 The surface distance field of a 2D circle and of a Lego cross-section. White is near
0, blue is positive and red is negative. 6

2.3 A simple neural network with 3 inputs and a single output; a simple multilayer
perceptron. It has 3 hidden fully connected layers of size 5, 6 and 4, respectively.
FC is short for Fully Connected. The labels at the bottom of each layer in (b)
denote their width and activation function. 10

2.4 Plots of ReLU, LReLU, SiLU, Tanh, Sigmoid and SIREN activations. 11
2.5 A shallow neural network compared to a deep neural network. 14
2.6 Image (green) * kernel (blue) = convolution (orange), with an intermediate calcu-

lation shown in red. 15
2.7 A 2x2 (max-)pool operation with stride=2, where the separate pools have been

visualized with different colors. 16
2.8 The architecture of a General Adversarial Network (GAN). It consists of a generator

and a discriminator network, each tasked with besting the other. Samples from a
training dataset are used to train the Discriminator to tell the fakes generated by
the Generator apart from the real ones. 16

2.9 A simple fully-connected auto-encoder network, with the Encoder and Decoder
sections labeled. At the information bottleneck a latent space code emerges. . . . 17

2.10 A 2D RGB neural field and its reconstruction: an image of the Stanford Bunny. One
must traverse the two input axes and sample the computed colors to reconstruct
the image. 17

2.11 An auto-encoder (AE) compared to an auto-decoder (AD). AE compresses the
input down into a latent vector with an encoder, then decode it again with its
decoder trying to match the original input. AD forgoes the encoder and instead
maintains a database of n latent vectors (one per item in the dataset), optimizing
these vectors along with the rest of the network weights. 18

2.12 A SDF decoder network for a single shape, compared to a coded SDF decoder
embedding multiple shapes. 19

3.1 The YCB object. (a) is a real-world image of the objects in the YCB object set
(from Calli, Singh, et al. 2015), and (b-e) are synthetic images from the Falling
Things dataset (from Tremblay, To, and Birchfield 2018). 20

3.2 The Berkeley BigBIRD 3D scanner. It captures images from 5 polar angles and
120 azimuthal angles equally spaced apart by 3◦. (From Singh et al. 2014.) . . . 21

vi

LIST OF FIGURES vii

5.1 Our envisioned real-world single-view 3D shape completion pipeline, based on
searching through a latent space for the shape that best conforms to the single-view
observation data. This graph illustrates the flow of data from a RGB-D camera
to the iterative optimization of a shape code (blue), which we use to reconstruct
the full shape at the end. We limit our focus to shape completion (orange cluster,
dotted border), and assume accurate class and segmentation data of single objects.
We need the segmentation mask to extract signed distances from the single-view
data (purple), to supervise the decoder network (green). We assume an abstract
external "agent" isolates a single object segment for us to shape complete. 28

5.2 A diagram of scan rays cast from a camera into a scene with our shape of interest
and an occluding object. Scan rays hitting the visible surface of the shape (bold)
are counted as hits. Rays hitting the either the background or other objects are
counted as misses. We sample uniform SDF samples within the volume covered by
scan rays. Near-surface SDF samples are generated along the bold surface. 31

5.3 The structure of our neural signed distance field decoder, inspired by DeepSDF
and NeRF. It models a probabilistic decoder over a space of shapes. This variant
is 512 neurons wide, use ReLU nonlinearities, and is two stages deep with a final
NeRF stage. Our latent vectors consists of a shape and pose component. Skip
connections concatenate the network input onto the activations of preceding stages.
FC is short for Fully Connected. 32

5.4 How the truncated (TSDF) and weighted (DISN) loss functions deviate from a
baseline linear loss when we fix the prediction to zero. Truncating the signed
distance reduces the range which needs to be accurately approximated. Biasing
the zero-crossing with a large weight promotes learning more intricate surface details. 37

6.1 A full-view SDF cloud of the 001_chips_can YCB object. Our training dataset
consists of clouds like these, where 92% of the points are sampled near-surface and
8% are sampled uniformly within a sphere with radius

√
3. Here we show a coarse

cloud with radius
√

2: (a) has 1200 uniform and 3500 near-surface SDF samples.
(b) has 600 uniform and 600 near-surface vectors. 41

6.2 The process of generating a synthetic single-view point cloud from a 3D mesh. The
035_power_drill mesh (a) is here rasterized to a depth buffer (b) where orange
is near the camera. The buffer is unprojected into model space as a hit+miss point
cloud (c) where blue points are hits, orange are misses, and green is the camera
position. The hit+miss cloud is used to sample a SDF cloud (d) where blue points
are positive and red are negative. Note how the near-surface samples in (d) are
distributed more uniformly than the hit points in (c). 42

6.3 A segmentation mask (a), color image (b) and depth image (c) of the YCB object
001_chips_can taken from the NP3 BigBIRD perspective. Note how the color
and depth images have slightly different camera perspectives. (d) shows the results
of applying discontinuity filtering to (c). (f-j) show hit point clouds produced
from these images for various turntable rotations, aligned to the checkerboard. (e)
visualize all the miss points merged into a single cloud. In (k-o) we showcase
single-view SDF clouds sampled from the corresponding hit+miss point clouds,
where blue points are positive and red negative. 42

6.4 ReLU-based networks with one and two stages, trained with both L1 and L2
variants of LDISN. We plot the SDF PSNR measured across the validation dataset,
smoothed with α=0.8 EMA. L2 (b) loss began converging earlier than L1 (a) did.
A L2→L1 schedule (c-d) proved unstable and difficult to tune. H denotes when
the loss changed. Note how (a) is smoother than (b-d). 44

6.5 SIRENs (ω0=25) with one and two stages, trained both with and without weight
normalization. We plot the TSDF PSNR measured across the validation dataset,
smoothed with α=0.8 EMA. Observe how (b) and (d) trained with weight normal-
ization converged more steadily, and had yet to plateau after 600 epochs. Red dots
and crosses show NaNs, the latter indicating the network never recovered. SIRENs
seem to produce and recover from regressing NaNs quite often, a characteristic not
observed with ReLU. 45

LIST OF FIGURES viii

6.6 ReLU-based networks without weight normalization, trained both with and without
positional encoding (PE). We plot the SDF PSNR measured across the validation
dataset, smoothed with α=0.8 EMA. PE seems to aid the deeper networks learn,
while slowing down the more shallow ones. The red crosses are NaNs, showcasing
how networks may suddenly diverge without weight normalization. 46

6.7 A handful of YCB objects reconstructed by the 6 networks in table 6.2 and
6.3 tagged with a *, along with a smaller LReLU network with only 64 shape
dimensions. We showcase the ground truth mesh alongside reconstructions from
the learned latent vectors. PE denotes positional encoding, while ∇ indicates
supervision with SDF gradients. The meshes were constructed with marching
cubes in a 1233 voxel grid. We note that the SIRENs are only half as the size
of the LReLU MLPs, showcasing their superior efficiency. This figure does not
showcase single-view completions. 51

6.8 Raw known zshape codes along with the standard deviation of each feature, learned
by network #12 and #18 in table 6.2, and a third SIREN. The two first networks
are representative for most LReLU MLPs and SIRENs. (a) and (b) trained with
0.042Lcodereg, while (c) only used 0.012. Observe how all features in (a) vary
uniformly, while a sizeable number in (b) go unused. SIRENs produce at times
stray features not seen in LReLU, visible here as bright or dark spots. We attribute
these to the periodicity of SIRENs, believing they have nudged themselves in a
neighboring phase. This appears to have happened to a whole object (row) in (b):
the banana. Figure 6.9 explore these latent vectors in further detail. Supplementary
table A.2 map the objects IDs. 53

6.9 Three visualizations for the raw latent codes shown in figure 6.8. Each row explores
a separate network. The t-SNE scatter plots illustrate the layout of and relation
between the classes and how they cluster, distribute, and interlink in latent space.
The similarity matrices show how similar each latent vector pair are, assuming
a zero-centered spherical distribution: 0 indicates orthogonality while non-zero
values are correlated: positive scores are similar while negative are dissimilar. As
the “relaxed” SIREN is likely not zero-centered, we additionally report a similarity
matrix centered around the geometric mean vector, revealing a near-orthogonal
set. However, (g) still indicates the object classes cluster as in (a) and (d).
Finally we present the Euclidean magnitude of each known shape vector, colored
by object class. These magnitudes proved instrumental in tuning single-view vector
optimization. Supplementary table A.2 map the object IDs. 54

6.10 Linear interpolations in latent space between pairs of known shapes, by network #12,
#14 and #18 in table 6.2. Inspecting the appearance of in-between reconstructions
may aid our understanding of the latent space distribution. LReLU latent spaces
appears highly uniform, although it seems to struggle with poorly aligned shapes.
The SIRENs behave well between closely related shapes, but do at time leave the
manifold. We note that the banana in network #18 is a major outlier, apparent in
fig. 6.9f. The meshes were marched in a 1283 grid in the spatial range [−1.1, 1.1]
with marching cubes. For each (a, b) pair of objects we mix the codes z from left
to right as (1− c)za + czb for c ∈ { i10}

10
i=0. 56

6.11 Naive single-view shape completions with “gentle” search from the global centroid
on synthetic data. Leftmost column is the single-view SDF target, with blue and
red being positive and negative, and green being the camera position. LReLU spent
five minutes searching 25 codes for 600 steps and scoring the winner, while SIREN
spent one minute searching ten. We present here winning shapes determined with
both TSDF PSNR and IoU. LReLU struggled to conform to the single-view data,
while SIREN performed well once it found a nearby shape: It found the pear
correctly. For the chips can it matched the side of a lego piece. For the cup it
likely matched the master chefs can. All ground truth shapes are rendered in
supplementary figure A.2. Network numbers refer to rows in table 6.2. 59

LIST OF FIGURES ix

6.12 Single-view shape completions with “aggressive” search, constrained by equation
6.7. Here we show the two best completions out of 25 optimization attempts,
determined by TSDF PSNR and IoU. It took five minutes to search 25 codes for
600 steps. Network numbers refer to rows in table 6.2. 59

6.13 Single-view shape completions with “aggressive” search, constrained by equation
6.8 with n = 10. The shapes do not conform as well as in figure 6.12, but the
reconstructed fields are now valid SDF fields, making PSNR the better judge. It
took five minutes to search 25 codes for 600 steps. Network numbers refer to rows
in table 6.2. 60

6.14 Shapes at the global centroid reconstructed by the networks marked * and numbered
in table 6.2. These are the “starting shapes” for a naive search approach. They’re
different for each network, as they have not been constrained to a shape beneficial
for single-view shape completion, other than what Lcodereg managed to carve. . . 61

6.15 The shape at each class centroid. First row is a LReLU (#12) and the second is
a SIREN (#18) from table 6.2. These are the “starting shapes” for class-aware
search approaches. It differs for each network, but these are a lot more guided by
the embedded shapes than the global centroids shown in figure 6.14 are. Note: the
airplane class is in figure 6.16 shown to have a large error. 61

6.16 Bar plots of the Euclidean distance between the global centroid and the class
centroids, for network #12, #14 and #18 in table 6.2. These plots hint at how well
a classifier may aid shape completion for each object class. The error bars measure
the class deviation, with the upper bound calculated from the codes further away
from the global centroid than the class centroid, and the lower bound by those
closer. The blue line and span measure the mean code magnitude and its standard
deviation. In (d) we show the same network as in (c), with the outlier code for
011_banana removed. Supplementary figure A.2 render all the training shapes in
matching category colors. 62

6.17 Class-aware single-view shape completions with “gentle” search from the class
centroid on synthetic data. Leftmost column is the single-view SDF target, with
blue and red being positive and negative. We tested the LReLU network twice for
each shape. LReLU spent five minutes searching 25 codes for 600 steps and scoring
the winner with TSDF PSNR, while the SIRENs spent 18 seconds searching three.
SIREN completed most of the shapes accurately. We explore in figure 6.18 the
shape completions shown with red grids (g, i, m, r and v) in further detail. All
ground truth shapes are rendered in supplementary figure A.2. Network numbers
refer to rows in table 6.2. 63

6.18 “Animations” of intermediate shapes while searching through latent space for
the shape completions in figs. 6.17g, 6.17i, 6.17m, 6.17r, 6.17v. (a-d) is from a
different camera perspective, while (e) has a matching camera. These animations
cover the first 200 out of 600 optimizations steps. Only changes to the shape and
rotation are obvious, as the change in scale and translation is difficult to convey
in a grid. (a) started at a box-like class centroid, but still managed to reorient
and adapt its shape. (b) initially moved away from the can class towards one of
the airplane parts, backtracking once it was oriented correctly. (c) started at
a class centroid with a very low shape error, then drifted away while reorienting
itself. Once the pose matched it solved the shape again. (d) initially matched with
a clamp in the wrong orientation, but elected to change its shape to a different
clamp instead of rotating the one it had already found. (There are clamps in two
different orientations in our dataset, see fig A.2.) (e) started of initially matching
a clamp. While reorienting the clamp it matched with the drill, but upside-down.
From here it tried to “morph” that upside-down drill to the best of its ability. . . 64

LIST OF FIGURES x

6.19 The YCB 001_chips_can at 285◦ for all BigBIRD depth camera perspectives NP1
- NP5 shown in figure 3.2a. We fit the near-surface SDF samples (blue and red)
within the green sphere. The orange axis-aligned cube is the reconstruction volume
we traverse with marching cubes. Note how the walls of the chips can disappear as
the 3D camera moves towards to the zenith: depth cameras often fail to measure
steep surfaces. Shape completion on NP4 and NP5 scans fail for this reason, as
they lack any indication of how long the can ought be. 65

6.20 Shape completion on real-world SDF clouds extracted from YCB RGB-D images,
by network #18 (a 6D SIREN) in table 6.2. The first row in each subfigure display
the single-view SDF clouds used to supervise the search. We display the best
TSDF PSNR scoring shape out of ten, which took one minute to optimize for 600
steps and score. In (a-d) we augment the depth maps with occlusions: in one
we slice of the mid-section and in the other we cut away half with a barrier. The
latter augmentation affects how the SDF cloud is fitted within the reconstruction
volume, further illustrated in figure 6.19. In (e) we inject into each depth pixel
noise on drawn from N (0, σ2). The “Global Centroid” completion in (e) started
searching from the global centroid, while all the other completions started at their
respective class centroid. All RGB-D images are taken from the NP2 camera angle,
shown in figure 3.2a. 66

6.21 A diagram based on figure 5.2 of a scan ray cast from a camera into a scene with
our shape of interest. The uniform single-view SDF points are sampled within
the free-space covered by scan rays traced from the camera into the scene. We
compute the SDF value (radius of dotted sphere) for each of these uniform points
(blue dot) as the distance to the nearest hit point, that is, the visible surface of
our object of interest (bold). Uniform points sampled far behind the shape end
up with rather large SDF values, which end up “carving out” hidden parts of the
object obscured by its own shadow. Non-truncated loss functions (like LDISN,L1
and LL1 from eq. 5.9) struggle with single-view shape completion for this reason.
Their L2 variants are even more affected. LTSDF mitigates this issue by clipping
how much uniform points contribute to the loss, making it nearly unaffected. . . 67

A.1 Pearson product-moment correlation matrices for the three sets of learned shape
features exhibited in figure 6.8. It measures the linear dependence between features.
The # numbers refer to the rows in table 6.2. 78

A.2 The 3D YCB meshes we trained our networks with, rendered in their canonical pose.
We use the Google scanner meshes if available, falling back to BigBIRD Poisson
reconstructions otherwise. The meshes are colored according to our assigned classes,
using the same colors as other figures. Apparent here is how few of the objects
have been aligned to one another, leading to poor knowledge discovery. 80

A.3 All training metrics measured across the validation dataset during training,
smoothed with α=0.8 EMA. We show the networks without positional encoding in
table 6.1. There are two runs for every loss function: LReLUs trained with and
without gradient supervision, while the SIRENs trained with both 3D (Euler) and
6D rotation vectors (expanded with a cross product). Red dots and crosses are
NaNs, the latter indicating the network never recovered. SIRENs seem to produce
and recover from regressing NaNs quite often, a characteristic not observed with
LReLU. 81

A.4 A visual explanation in 2D of how some of some of class centroids reported in
figure 6.16 may have such a low magnitude despite how all its members each have a
magnitude near the global mean. This issue is more pronounced in higher dimensions. 82

A.5 A 2D visualization of the hull we tried normalizing the LReLU shape codes to
during "aggressive" shape completion search. The distance from the global centroid
to the hypersurface is determined by the magnitude of similar known latent vectors. 82

Chapter 1

Introduction

1.1 Background and Motivation
Humans exhibit an incredible capability for visual understanding. We rapidly learn new tasks
in a way that still to this day continues to defy our expectation and understanding. We
continually learn new relations by combining our senses with our prior experiences, learning
from demonstrations by others and through self-exploration. We aim in this thesis to give
machines the visual understanding required to perform complex object manipulation tasks. For
this purpose we explore novel techniques to teach machines to see and understand a scene and
all of the objects in it. The intent is to enable the manipulation of these objects with a robotic
arm.

Grasping unknown objects is a complex operation plagued with ambiguities: Which object do
we want to grab? What is the object we are about to grab? What do the hidden parts of the
object look like? Where are the most affordable spots to place the grippers? How much force
can one safely apply to the object to successfully lift it without deforming it? These are central
questions in the field of visual servoing, with a plethora of different approaches one might take.
In this thesis we look to humans for inspiration:

Humans can infer the occluded parts of objects from just a single viewpoint. This incredible
inference ability draws from our previous experiences and knowledge of shapes commonly found
in a given context. Drawing from these priors we arrive at a good guess about the backside
and other occluded parts of the object. This guess equips us with a lot of information to then
determine how to grip and manipulate the object.

The aim of this thesis is to investigate a new approach on how to make a machine agent able to
infer the full shape of an object from just a single viewpoint. This is an area of research in
computer vision commonly referred to as shape completion: inferring a full 3D shape from only
a partial observation. Single-view perspectives are subject to many occlusion states, such as self
object occlusion, inter-object occlusion and background occlusion. We present a motivational
scenario riddled with occlusions in figure 1.1.

Recent developments in the field of representation learning have resulted in the novel discovery of
neural fields, a deceptively simple and powerful data-driven learning paradigm. These networks
learn continuous implicit representations, such as the signed distance field whose zero level
set is an implicit surface. They do so in a memory efficient and expressive manner, enabling
the reconstruction of shapes with arbitrary mesh resolution, mesh topology and genera. We
leverage mathematical properties of these implicit functions to boost feature extraction and the
reconstruction quality, then apply these methods to single-view shape completion.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: An example scene showcasing occlusions a robotic arm needs to be able to
handle. The mug is subject to self occlusions as its handle occludes a part of its own body.
The sugar box is subject to inter-object occlusions, as it is blocked by both the strawberry
and the mug. The mug occludes the light cast onto the sugar box, further impeding its
classification. The banana is largely cut off by the mug, but with previous knowledge
about the typical depth of a mug it is possible to infer the length of the banana.

This master thesis is part of the GentleMAN project at SINTEF Ocean1, aiming to develop
learning frameworks using visual and tactile sensing for manipulation of 3D compliant objects
with a robot controller by equipping it with 3D vision. As a part of Work Package 1 - Visual
Intelligence - this assignment fits with the Task aiming to develop novel 3D reconstruction
methods for robotic applications in the presence of the intra object occlusions but also those
including physical occlusions, resulting in partial visual observability of the object to be
manipulated.

Most related works have trained on and been evaluated against synthetic data, whereas we
target a real-world robotic lab environment. As such we base our work on the YCB object
dataset (Calli, Walsman, et al. 2015; Calli, Singh, et al. 2015), which is a benchmark for visual
servoing.

1https://prosjektbanken.forskningsradet.no/en/project/FORISS/299757?Kilde=FORISS&distribution=Ar
&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fri
tekst=gentleman

https://prosjektbanken.forskningsradet.no/en/project/FORISS/299757?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=gentleman
https://prosjektbanken.forskningsradet.no/en/project/FORISS/299757?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=gentleman
https://prosjektbanken.forskningsradet.no/en/project/FORISS/299757?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=gentleman

CHAPTER 1. INTRODUCTION 3

1.2 Problem Formulation
Succinctly, our problem formulation is as follows:

Shape completion of 3D objects only partially observable to the visual sensor due
to single-view occlusions, and the generation of a 3D mesh models with an accurate
camera space pose. The resulting 3D shape completion technique must be fit for
use with real-world depth sensor data.

1.3 Research Goals
Our primary goal is to create a deep learning framework to infer 3D shapes from a single
viewpoint, satisfying the requirements stated in our problem formulation. To help achieve our
primary goal we define these respective sub goals:

T1 Investigate previous state-of-the-art single-view shape completion approaches.
T2 Define and design a deep learning model for single-view shape completion.
T3 Implement and train this model with the YCB object dataset.
T4 Evaluate and discuss the results for 3D single-view shape completion.
T5 Outline future work.

1.4 Structure of the Thesis
This thesis is structured as follows:

Chapter 1 introduces the topic of this thesis.
Chapter 2 covers relevant theoretical background, with recent novel developments.
Chapter 3 describes technical background information pertinent to our implementation.
Chapter 4 explores related works this thesis builds on.
Chapter 5 outlines our approach and methodology.
Chapter 6 presents and evaluates measured results and findings.
Chapter 7 discusses details our evaluation revealed and how it fared.
Chapter 8 concludes our findings and proposes further work.
Appendix A contains supplementary information and explanations, deemed excessive for the

main thesis.

Chapter 2

Theoretical Background

This chapter covers relevant theory to understand our approach and methodology. We encourage
the reader to examine referenced sources for further insight. A majority of this chapter is either
adapted or reprinted from the preparatory specialization thesis by the same author (Sundt
2020).

Section 2.1 covers ways to represent 3D objects and implication for machine learning.
Section 2.2 explains common 3D transformations and depth sensor processing.
Section 2.3 dives into machine learning, covering many techniques and concepts discussed or

used in this thesis.

2.1 3D Shape Representations
There are many ways of representing 3D shapes and objects. Section 2.1.1 briefly goes through
terms used to describe different classes of objects. Then section 2.1.2, 2.1.3 and 2.1.4 go over
common ways to explicitly represent these 3D shapes (illustrated in fig. 2.1), while comparing
their trade-offs in fidelity and efficiency with machine learning in mind. Section 2.1.5 then
explores implicit functions and surfaces, only recently leveraged in shape representation learning.

Figure 2.1: The Stanford Bunny represented as a surface point cloud, as a occupancy
grid voxel model, and as a triangular surface mesh. (From Hoang et al. 2019.)

2.1.1 Object Topology
Topology is a subfield in mathematics concerned with properties of geometric objects. Specifically
the properties preserved during deformations that do not cause tears in the surface. Topology

4

CHAPTER 2. THEORETICAL BACKGROUND 5

introduces the concept of the object genus: the number of “holes” in objects. For example: a
sphere has a genus of 0, a torus has a genus of 1, and a mug as a genus of 1. As far as the field
of topology is concerned, a torus and a mug are identical.

Pointing outward of surfaces are normal vectors: a vector scaled to unit length denoting the
orientation of the surface. These vector define a tangental plane along the surface, intersecting
the base of the normal vector.

Mesh topology is a somewhat related concept. It describes the layout of vertices on a mesh,
and how they connect to each other into faces. A normal vector can be derived for each face,
assuming the mesh follows a winding direction convention. Each vertex may optionally include
their own normal vectors.

2.1.2 Point Cloud Representations
A point cloud is a set or collection of 3D Cartesian coordinates, also known as points or
vertices. A 3D object may be represented as a cloud of vertices. The vertices may contain
additional data such as color or other physical attributes such as density. For 3D graphic
purposes, these vertices are usually sampled along the surface of the object. Point clouds are a
good light-weight representation for raw data from sensors such as depth cameras and LiDAR
scanners. Information such as object topology is not trivially represented in point clouds and
must be inferred. The Stanford Bunny can be seen as a surface point-cloud in fig. 2.1.

2.1.3 Mesh based Representations
A mesh-based 3D object representation consists of a list of vertices sampled along the surface of
the object, along with a list a of faces defined as a sequence of at least three or more edges.
An edge is a pair of two connected vertices. The faces, also known as polygons, of a mesh are
usually in the form of triangles. A triangular surface mesh of the Stanford Bunny is visualized
in fig. 2.1.

One of the greater strengths of mesh-based object representations is that it encodes many
topological qualities. As such, meshes are well suited for further analysis.

A problem with meshes is that they do not easily map to a intuitive machine learning architecture,
due to their high irregularity. These learning architectures are either not guaranteed to produce
non-degenerate watertight1 meshes, or are limited to a fixed mesh topology. The non-uniformity
and irregularity of meshes inhibits efforts using neural networks that combine convolution and
pooling operations.

2.1.4 Voxel based Representations
A voxel model is a 3D grid of discrete samples covering a volume. A surface can be extracted
from a voxel model by defining a boundary condition. If “density” is sampled, then the surface
can simply be defined by a target threshold density. The most common form of voxel 3D models
are occupancy grids, where the samples are limited to {0, 1}. Figure 2.1 illustrates the Stanford
Bunny as an occupancy voxel model. It is not unusual for voxels models to sample fields such
as the signed distance field (SDF). Voxel models sampling a continuous field can be converted
into a mesh using the marching cubes algorithm.

Voxels are the most straight forward extension from the 2D image domain, as 2D learning
techniques such as convolution can be directly applied. Voxels have proved not to be an efficient
surface representation however, neither computationally nor with regards to memory use. This
is primarily due to the square-cube law. As the surface fidelity scale in a squared manner, the
computation and memory requirements scale cubically. As such, current voxel based machine
learning methods can only handle smaller resolutions up to 1283. Some works manage to

1Watertight meshes consist of closed surfaces, that do not have any holes and have a clearly defined inside.

CHAPTER 2. THEORETICAL BACKGROUND 6

push the effective resolution up to 5123 by using octrees2 to omit areas of lower complexity
(Tatarchenko, Dosovitskiy, and Brox 2017).

2.1.5 Implicit Surface based Representations
An implicit surface is defined as the 0-level set or isosurface of a 3D function f :

f(x, y, z) = 0 (2.1)

“Implicit” refers to how f is not solved for x, y or z ∈ R. Explicit surface representations can
depending on the type of implicit function be extracted numerically.

2.1.5.1 Signed Distance Functions and Fields (SDF)

A signed distance function is a function that “queries” a signed distance field. The SDF
abbreviation refers to both. The absolute value of the field describes the distance to the nearest
surface. The sign of the field denotes whether the point is on the inside or on the outside of the
object, with positive distances being on the outside.

SDFs embed implicit surfaces as their 0-level set or isosurface. We show in equation 2.2 the
SDF of a sphere centered in p ∈ R3 with radius r ∈ R, expressed using both p-norm notation
and expanded to a simplified form where xi is the i’th scalar in the vector x and likewise for pi
and p.

SDFsphere(x) = ‖x− p‖2 − r

= 2
√

(x1 − p1)2 + (x2 − p2)2 + (x3 − p3)2 − r
(2.2)

We present a rendered 2D slice of the sphere, or put differently a circle, in figs. 2.2a, 2.2b. We
additionally showcase a Lego piece slice in fig. 2.2c.

(a) Circle in 3D (b) Circle (c) Lego

Figure 2.2: The surface distance field of a 2D circle and of a Lego cross-section. White
is near 0, blue is positive and red is negative.

The SDF of two objects can be combined into a single SDF using the min function. This is the
basis of the field known as constructive solid geometry (CSG).

If we require SDF(·) to be continuous, to be over Euclidean space, and to cross the boundary
at least once then it is guaranteed that SDF(·) = 0 defines a surface without any holes. The
shape is guaranteed to be watertight if we require lim‖x‖2→∞ SDF(x) = ∞. We can render
surfaces described by SDFs by either ray-marching them, or by rasterizing a mesh created with
marching cubes.

2Octrees are tree structures where each node has 8 children. Octrees are commonly used to recursively
partition or subdivide 3D volumes or cubes into eight octants.

CHAPTER 2. THEORETICAL BACKGROUND 7

Since neural networks are universal function approximators, they can be trained to predict the
signed distance value at any query point. The shapes inferred by these networks are not limited
to any kind of mesh topology or genera. The output is just a single scalar, making the size of
the network a lot smaller than explicit shape representation networks that compute multiple
points, triangles, or samples at a time.

A nice property of SDFs is that the normal vector of the isosurface can be computed analytically
as the spatial gradient ∇xSDF(x) = ∂SDF(x)

∂x . If the SDF is over Euclidean space and has a
piecewise smooth zero boundary then ‖∇xSDF(x)‖2 = 1. The spatial derivative can be derived
via backpropagation if the SDF is approximated by a neural network (Park et al. 2019).

2.2 Transformations and Processing
This section covers basic spatial transformations and their relation to depth maps and machine
learning. A transformation is a function or operation transforming some input to some output.
Transforms are often non-singular, enabling corresponding inverse transformations to undo the
original transformation. We cover here transformations that can be performed on 3D objects.

2.2.1 Affine Transformations
We can perform linear transformations on points using matrix multiplication. When transforming
a 3D coordinate, we first convert it to homogeneous coordinates: a 4D vector where the first
3 scalars come from the original 3D vector, with the last scalar set to 1. Using homogeneous
coordinates allows us to perform any affine transformation with matrix multiplication. The
added 1 acts as a bias term, mainly reserved for the translation transform and projection.

All the basic affine 2D transformations (3× 3 homogeneous matrices) are showcased in table
2.1. Similar 4× 4 matrices exist in 3D space. Other transformations, such as reflection, can
be decomposed into a combination of these basic affine transforms. Multiple transformation
matrices M ∈ R4×4 can be composed into a single transformation using matrix multiplication:

Mtranslate ×Mrotate = Mrotate then translate (2.3)

Matrix multiplication is a noncommutative operation, making the order transformations are
applied matter. Combining multiple matrices into a single matrix greatly reduces the amount
of computations needed to transform a large batch of 3D vectors.

Table 2.1: The basic 2D affine transformation matrices.

Name Transformation matrix

Translation

1 0 tx
0 1 ty
0 0 1


Scale

sx 0 0
0 sy 0
0 0 1


Rotate

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


Shear

 1 cx 0
cy 1 0
0 0 1



CHAPTER 2. THEORETICAL BACKGROUND 8

2.2.2 The Model-View-Projection Matrix
Here we briefly cover projection to better understand unprojection. We perform a sequence of
transformations when rendering a 3D object in a 3D scene onto a 2D canvas. These following
four terms are common when discussing where along this sequence of transformation we currently
are:

MCS - Model Coordinate System: the coordinate system used to define the vertices of a
single 3D model.

WCS - World Coordinate System: the shared coordinate system used within a scene,
unifying all the models in it.

ECS - Eye Coordinate System: a coordinate system where the camera is centered at the
origin.

CSS - Clipspace: the coordinate system of the viewport, which is a frustum extruded from
the edges of the canvas in ECS, and “squeezed” into a cube in CSS.

One transforms the vertices and normal vectors of a mesh from on system to another using
transformation matrices. The matrix transforming from MCS to WCS is known as the Model
matrix, from WCS to ECS is the View matrix, and ECS to CCS is the Projection matrix.
Composed they form the model-view-projection (MVP) matrix MMVP ∈ R4×4:

MMVP = MProjection ×MView ×MModel (2.4)

The full perspective transform is not an affine transformation, as it requires an additional
perspective divide:

MMVP


x
y
z
1

 =


uw
vw
dw
w

 perspective
division−−−−−−−→


u
v
d
1

 (2.5)

where x, y, z are MSC coordinates, u, v are canvas coordinates, and d is the viewport depth.

For our purposes we use the term camera space for ECS and object space for MCS. We use
the concept of a canonical pose when constructing a normalized coordinate system for learned
shapes.

2.2.3 Unprojecting RGB-D Images to Point Clouds
RGB-D images contain both color (RGB) and depth (D) information. Using the depth
information it is possible to unproject the pixels of the image into a point cloud (see section
2.1.2) using the inverse of the intrinsic camera matrix:

K−1


ud
vd
d
1

 =


x
y
d
1

 (2.6)

where K is the intrinsic matrix, u, v are the pixel coordinates, d is the measured depth, and
x, y, d are the camera space coordinates.

The intrinsic camera matrix is a 4 × 4 transformation matrix for calibrating ideal pinhole
cameras. They embed the sensor resolution, the focal length, and the focal point. If w from
equation 2.5 is known then one can instead use the inverse of the projection matrix.

In addition to these linear parameters, there are a couple of nonlinear intrinsic parameters
to account for. Real world cameras can not be treated as ideal pinhole cameras, as they

CHAPTER 2. THEORETICAL BACKGROUND 9

suffer from lens distortions. It is common to model two major kinds of lens distortion: radial
distortion (eq. 2.7) and tangential distortion (eq. 2.8). These distortions are defined as infinite
series. OpenCV and BigBIRD (Singh et al. 2014) has deemed 3 and 2 terms of the respective
distortions sufficient, and calibrate 5 distortion coefficient: (k1, k2, p1, p2, k3).

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6)

(2.7)

xdistorted = x+ (2p1xy + p2(r2 + 2x2))
ydistorted = y + (p1(r2 + 2y2) + 2p2xy)

(2.8)

where x and y are coordinates along the image plane with the distortion centered at 0, and
r =

√
x2 + y2.

More often than not are the RGB and D images captured with different cameras from slightly
different perspectives. As such it is common to calibrate an extrinsic transformation matrix
that transforms from the infrared (D) camera to the RGB camera. It is now possible to find
the corresponding color of a depth pixel by first correcting for depth camera distortion, then
unproject the point into 3D, transform it to the color camera coordinate system, project it onto
the image plane, then finally apply the color camera distortion.

One can in a multi-camera setup (BigBIRD, see sec. 3.1.2) select a common reference point for
all the cameras. This allows us to maintain only a single extrinsic transformation matrix from
that reference point to each camera. One can then construct a transformation matrix MA→B
between any two cameras A and B with the following equation:

MRef→B ×M−1
Ref→A = MRef→B ×MA→Ref = MA→B (2.9)

2.2.4 6D Continuous Representation of Rotation
All possible rotations in 3D space about the origin (i.e. the 3D rotation group SO(3)) can be
represented using Euler angles: a vector in R3. Euler angles are however affected by the gimbal
lock problem3, making it tricky for machine learning to properly infer the rotation for a given
observation. The gimbal lock problem problem was alleviated in computer graphics by using a
different representation rotation in R4: quaternions.

Zhou et al. (2019) show that neither Euler angles nor quaternions are well suited for ReLU-based
machine learning due to their discontinuities. They further go on to prove that all representations
of SO(3) within four or fewer dimensions must be discontinuous. They demonstrate empirically
that the continuous 6D representation b = (bx,by) where bx,by ∈ R3 yield far better results
in machine learning applications. This 6D representation can be converted into a 3D rotation
matrix R ∈ R3×3 given by:

R =

 | | |
rx ry rz
| | |

, rx = N(bx)
rz = N(rx × by)
ry = rz × rx

(2.10)

where × is the vector cross product, and N(·) is the unit vector normalization function.

The two 3D vectors bx and by are very resistant to becoming malformed or degenerate. They
encode a valid rotation provided they are non-zero and linearly independent, making them
ideal targets for inference. Their canonical form has ‖bx‖2 = ‖by‖2 = 1 and bx × by = 0. A

3The gimbal lock problem occurs when two of the axes of rotation are driven into a parallel configuration.
This causes the loss of a degree of freedom.

CHAPTER 2. THEORETICAL BACKGROUND 10

6D rotation vector can be normalized into its canonical form cheaply using two unit vector
normalization operations and a single Gram–Schmidt orthogonalization.

2.3 Machine learning
Machine learning is a field within artificial intelligence with the aim of developing programs
that can learn from data and perform tasks not explicitly programmed. Machine learning has
close ties with statistics and mathematical optimization.

2.3.1 Artificial Neural Networks
Neural networks are commonly thought of as universal function approximators. These networks
consists of neurons with connections between them. The connections may perform transforma-
tions on the incoming data passing through. Artificial neural network are often constructed
with layers of neurons: a input layer, some hidden layers and an output layer. If the network
has no hidden layer then it is known as a single-layer perceptron. Networks with at least one
hidden layer is known as a multilayer perceptron (MLP).

A transfer function is applied between each layer and is responsible for propagating and
combining the data between the neuron layers. The neurons may each have an activation
function introducing nonlinearities into the system. Nonlinearities make the network better
able to learn complex relations, and is the reason why we are able to train these network via
backpropagation.4 In figure 2.3 we illustrate a fully connected neural network both as a graph
of neurons and as a pipeline of transfer and activation functions.

x1

x2

x3

y

(a) Nodes and edges

x 1

x 2

x 3

3

5
ReLU

FC

6
ReLU

FC

4
ReLU

FC
y

1
Tanh

FC

(b) Layers and interconnect

Figure 2.3: A simple neural network with 3 inputs and a single output; a simple
multilayer perceptron. It has 3 hidden fully connected layers of size 5, 6 and 4, respectively.
FC is short for Fully Connected. The labels at the bottom of each layer in (b) denote
their width and activation function.

2.3.2 Transfer Functions
In this thesis we primarily use linear layers and vector concatenation. Linear layers, also known
as fully connected layers, defines a matrix of learnable weights A and vector of biases b, and
applies a linear transform on the incoming data with xAT + b. Vector concatenation is simply
the joining of two vectors, where the scalars in one is followed by the scalars of the other:
Rn × Rm → Rn+m. Common notation for vector concatenation is (x,y) and x⊕ y.

4Optimization of the neural networks is based on the derivative of the learnable parameters with regard to
the error of their predictions. The derivative of the network would be constant with no relation to the input if
the network is fully linear.

CHAPTER 2. THEORETICAL BACKGROUND 11

2.3.3 Activation Functions
In artificial neural networks, the Activation Function transforms the output from a node/layer
before passing it on to the next layer. Different activation functions introduce different
mathematical properties to the system. Common properties to consider include: linear vs
nonlinear, range, whether it is continuously differentiable and how approximate the function is
to the identity near the origin. We list a handful of common activation functions in table 2.2,
further graphed in figure 2.4.

Table 2.2: A collection of common activation functions used in neural networks, some
relevant to computer vision.

Name Description Activation f(x) Derivative f ′(x)
Identity Linear x 1

Binary
step

Easy to convert to a circuit,
but difficult to train

{
0 for x < 0
1 for x ≥ 0

{
0 for x 6= 0
? for x = 0

ReLU Rectified linear unit, has a
monotonic derivative

max{0, x}
{

0 for x ≤ 0
1 for x > 0

LReLU Leaky ReLU, its derivative is
never zero.

max{0.01x, x}
{

0.01 for x ≤ 0
1 for x > 0

SiLU Sigmoid linear unit, a smooth
approximation of ReLU

x · σ(x) = exx
ex+1

ex(1+ex+x)
(1+ex)2

SIREN Approximates identity near
origin, periodic, has infinite
derivatives

sin(ω0x), ω0 ∈ R>0 ω0 cos(ω0x)

Tanh Nonlinear, cheap to compute
derivative, approximates
identity near origin

tanh(x) = ex−e−x
ex+e−x 1− f(x)2

Sigmoid Nonlinear, cheap to compute
derivative, always positive

σ(x) = 1
1+e−x f(x)(1− f(x))

Note: What denotes a SIREN network is not the sinusoidal activation function alone. SIRENs
use a principled initialization scheme based on the ω0 hyperparameter to draw the initial weight
of the network from a uniform distribution: The first layer is drawn from U

(
− 1
n ,

1
n

)
, and the

following layers are drawn from U
(
− 1
ω0

√
6
n ,

1
ω0

√
6
n

)
, where n is the number of input features.

(Sitzmann, Martel, et al. 2020)

Figure 2.4: Plots of ReLU, LReLU, SiLU, Tanh, Sigmoid and SIREN activations.

CHAPTER 2. THEORETICAL BACKGROUND 12

2.3.4 Supervised Training
Machine learning is based on learning behavior and relations. It is commonly through training
that a network is able to learn. The goal of the network Φθ is to map some input x to some
desired output y. The training is supervised if it has access to examples of desired output for
some given input.

To train a network Φθ one start by initializing the learnable parameters θ of the network with
random values. Xavier initialization5 is the most common scheme. To train a neural network
we:

• Pick a random training sample from the training dataset: (x,y) ∈ Ω
• Ask the neural network to predict the output: yprediction = Φθ(x)
• Compute the loss (error) by comparing the network output to the known ground truth

value, using some loss function: L(y,yprediction)
• Compute the derivative of the loss of the network with regard to the learnable network

parameters, through backpropagation6: ∇θL = ∂L(y,Φθ(x))
∂θ

• Adjust the learnable weights θ of the network using the loss gradient ∇θL, according to
some optimization strategy: θnext = Optimize (θ,∇θL)

• Repeat

Non-learnable parameters are commonly known as hyperparameters. These are often set by
humans, but can be derived through automatic means such as Bayesian Optimization.

2.3.4.1 Overfitting

A neural network unable to generalize has a low error on the training dataset but a high error
on new unseen data. This may be caused by insufficient training data or poor modeling of the
network. A certain class of poor generalization is known as overfitting: when the network has
been too closely fitted to a limited training dataset.

A common approach to observe overfitting is to split the dataset into three parts known as train,
validation and test. During training the network should only ever update its weight using the
training dataset, while periodically monitoring the network performance across the validation
data. The network is considered to be overfitting when validation error increase despite the
training error remaining low.

The final measurements and benchmarking of a network is done using a separate and unseen
test dataset, due to hyper-parameters usually being selected based on validation performance.

2.3.4.2 Generalization through Regularization

It is customary to use different regularization techniques to increase the ability of a network to
generalize over the training data, in turn making it more robust to outliers and noise.

The simplest regularization scheme is one commonly known as early stopping, where you monitor
the network and terminate its training when the validation accuracy stagnates.

Another regularization technique is data augmentation. The basic idea is to artificially increase
the amount of training data. These are domain dependent random transformations applied
to the input and target output examples used during training. For 3D point clouds these
augmentations could be added stochastic noise, affine transformations or occlusions. Data
augmentation can be leveraged to ensure the network is resistant to certain classes of reductions.

5Xavier initialization is a principled initialization scheme drawing initial weights from a normal distribution,
but may also use a uniform distribution. It is also known as Glorot initialization.

6Backpropagation refers to the computation of gradients with respects to some input, often being the learnable
network parameters with respect to the loss. All the parameter gradients are computed using the chain rule
when “backpropagating” a forward pass. The term also refers loosely to gradient based network optimization.

CHAPTER 2. THEORETICAL BACKGROUND 13

For image recognition networks, the input images can be augmented with random rotations to
ensure that upside-down images do not cause erroneous predictions.

Noise, commonly drawn from a Gaussian distribution, is often injected into the network input
to prevent it from overfitting on irrelevant high-frequency patterns. Quantization error from
a reduced floating point precision may act as regularization in the same manner other noise
distributions would. (Micikevicius et al. 2018)

Dropout is a regularization technique in which you randomly set the output of a neurons to
zero, effectively disabling it. This technique is used to fit only a random subset of the neurons
at a time. It is usually used to regularize the fully connected layers and ensure the learned
relations and patterns are evenly spread throughout the network.

When computing the loss of a network during training, L1 and L2 loss (eq. 2.11) are often
the ones used. L1 estimates the median of the data while L2 estimates the mean, based
on Lasso Regression and Ridge Regression respectably. Both loss functions are subject to
omitted-variable bias, making them to not punish certain features which could produce a more
accurate prediction.

LL1(yground truth, ypredicted) = |yground truth − ypredicted|
LL2(yground truth, ypredicted) = (yground truth − ypredicted)2 (2.11)

The idea behind both L1 and L2 loss is to penalize all features equally. If the features are
scaled differently however this assumption may break. As such it is customary to include some
form of normalization scheme in the network. Network normalization primarily come in the
following three flavors:

Input normalization: The network input is normalized to always be represented in some
canonical form and amplitude. Quaternions and 6D rotation vectors (sec. 2.2.4) can
be normalized with quaternion standardization7 and Gram–Schmidt orthogonalization
respectably. Positional encoding (see sec. 2.3.4.3) can be thought of as input normalization.

Layer normalization: These are dedicated layers in the network that normalize the whole
layer (Ba, Kiros, and Hinton 2016) before passing it further down the network. The
coefficients used in this linear scaling operation are learnable parameters subject to
optimization. Also commonly known as batch normalization.

Weight normalization: Here the weights of fully connected layers are decoupled into sepa-
rate magnitude and a direction components, both subject to optimization as learnable
parameters. (Salimans and Kingma 2016) Weight normalization is often faster to compute
than batch normalization, as it is not a network feature but instead a reparametrization
trick only performed in between optimization steps.

Networks with either layer normalization or batch normalization have been both theorized and
shown to learn efficiently within a much wider range of learning rates. They adapt to higher
learning rates by decreasing the scale feature and increasing the magnitude of the direction
features. (Salimans and Kingma 2016)

2.3.4.3 Positional Encoding

Positional Encoding was first proposed and used in NeRF by Mildenhall et al. (2020).
Observing that multilayered perceptrons are biased towards learning low-frequency relations
on the input, they mapped the inputs to higher dimensional space using high frequency
functions. This enables better fitting of data that contains high frequency patterns and
variation. γn(·) : R → R2n+1 elaborated below in eq. 2.12 maps a continuous input p into
2n+ 1 features.

γn(p) =
(
p, sin (20πp), cos (20πp), · · · , sin (2n−1πp), cos (2n−1πp)

)
(2.12)

7Quaternion standard form: in which the real part is non-negative.

CHAPTER 2. THEORETICAL BACKGROUND 14

2.3.4.4 Gradient Decent - Adaptive Moment Estimation (Adam)

Neural networks are trained through gradient decent: gradient-based iterative methods that
satisfy an objective function. We specifically use Adam: adaptive moment estimation, based
on adaptive estimation of first and second-order moments. (Kingma and Ba 2017) It is a
stochastic approximation of gradient descent using the gradients calculated through network
backpropagation. It takes care to roll past smaller local optimums in parameter space to find
one off the better solutions within the wider basin of attraction. It is computationally efficient
for problems with a large scale of learnable parameters. It handles sparse gradients on noisy
problems quite well, and reduce the need for fine-tuning hyperparameters or online adjustments
during training. Adam primarily use three hyperparameters: a learning-rate η determining the
learning speed, and two decay rates β1 and β2.

2.3.5 Deep Learning
Deep learning is a class of machine learning using artificial neural networks, with “deep” meaning
the networks have more than one hidden layer, as illustrated in fig. 2.5. Stacking more layers
allow the network to learn more complex relations thanks to the addition of more nonlinearities
and higher number of parameters to embed relations into.

Deep networks have different inductive biases than wide networks. Classically the universal
approximation theorem only proves that arbitrarily wide network with a bounded depth can
approximate any signal with arbitrary precision. It has since been expanded to include arbitrarily
deep network with a bounded width. Deep networks are cheaper to compute than wide networks,
as stacking nonlinearities is cheaper than scaling up matrix multiplication. Deeper networks are
however more affected by exploding or vanishing gradients, where the gradients either increase
or decrease due to the repeated application of nonlinear activations.

The term deep learning is also used to describe how the network aims to generalize from a
training dataset, as opposed to reinforcement learning in which more dynamic agents perform
actions and learn through trial and error seeking some reward.

(a) Feed-forward network (b) Deep feed-forward network

Figure 2.5: A shallow neural network compared to a deep neural network.

2.3.6 Representation Learning and Latent Spaces
Representation learning or feature learning is the study of extracting features from complex
raw data such as images and 3D models. Representation learning use GANs, AEs, VAEs and
ADs (covered in the following sections) to learn these features, embedded as structures in latent
spaces.

Latent spaces are a central concept in representation learning, simply representing compressed
data in a high-dimensional hidden space. One can encode data as a latent space coordinate, and
decode it to reconstruct the original data. These spaces are mathematically and computationally
convenient to process, as they are designed to cluster similar data points closer together by
their structural similarities, or form manifolds. As such they enable us to better understand
complex data and its patterns.

A manifold is in data science a high-dimensional space that locally resemble smooth Euclidean

CHAPTER 2. THEORETICAL BACKGROUND 15

spaces. Manifolds are spaces where similar data points group and cluster in such a way that
transitions are smooth, without sharp “spikes”, “edges” or “holes”. A common mental model
for manifolds is that a small ant walking along the manifold “plane” believe from its point of
view that the plane is flat.

Latent spaces enable many means of data analysis. T-distributed Stochastic Neighbor Embedding
(t-SNE) is a stochastic dimensionality reduction technique that groups data points by affinity
(Maaten and Hinton 2008). It is designed to project high-dimensional data points into low-
dimensional spaces we can intuitively visualize and understand. T-SNE projections are commonly
used to reveal the inherent structure of latent spaces, unfolding how data points either clusters
or form manifolds.

2.3.7 Convolutional Neural Networks (CNN)
Convolutional Neural Networks are a class of neural networks using convolution or pooling
layers instead fully connected layers, to reduce the dimensionality of the input. This reduces the
amount of network weights to learn and store. It additionally makes the network better able
learn relations uniformly across the whole input instead of overfitting on select input features.

2.3.7.1 Convolution

In 2D image processing, convolution is the act of processing an image using a kernel matrix.
The kernel is a n×m matrix of coefficients, which you slide across the image and multiply the
overlapping pixels in the image with the matching coefficient in the kernel. Then you sum the
result and store it as a pixel in the output image. A convolution operation is illustrated in
fig. 2.6.

x 00 x 01 x 02 x 03 x 04 x 05

x 10 x 11 x 12 x 13 x 14 x 15

x 20 x 21 x 22 x 23 x 24 x 25

x 30 x 31 x 32 x 33 x 34 x 35

x 40 x 41 x 42 x 43 x 44 x 45

x 50 x 51 x 52 x 53 x 54 x 55

k 00 k 01 k 02

k 10 k 11 k 12

k 20 k 21 k 22

×

x 11 ·k 00 x 12 ·k 01 x 13 ·k 02

x 11 ·k 10 x 12 ·k 11 x 13 ·k 12

x 11 ·k 20 x 12 ·k 21 x 13 ·k 22

=
y 00 y 01 y 02 y 03

y 10 y 11 y 12 y 13

y 20 y 21 y 22 y 23

y 30 y 31 y 32 y 33

∑

Figure 2.6: Image (green) * kernel (blue) = convolution (orange), with an intermediate
calculation shown in red.

For a 2D kernel f(u, v) and a 2D image g(u, v), convolution is defined as:

(f ∗ g)(u, v) =
∑
i

∑
j

f(i, j)g(u− i, v − j) (2.13)

Convolution can be generalized to continuous functions over both higher or lower dimensional
domains. The mental model equation 2.13 describes is here sufficient to understand how to
apply convolution to neural networks. A convolutional layer in a neural network is based on
the same idea, but can be applied to more dimensions. The input image is the input to the
convolution layer, the kernel are the learnable weights in the layer, and the output is the filtered
image. Convolution layers use parameter sharing to aid generalization.

Convolution is often used to create image filters such as blurs, sharpening and edge detection
filters among many. These kinds of neural network layers are instrumental for tasks such as
image classification and segmentation.

CHAPTER 2. THEORETICAL BACKGROUND 16

2.3.7.2 Pooling

Pooling is a nonlinear down-sampling operation, simpler and cheaper to compute than a
convolution layer. The input is subdivided into pools defined by their dimensions spaced apart
by a stride. The pools may overlap if the stride is lower than than the pool dimensions. Each
pool is then aggregated using some function, commonly the max function.

x 00 x 01 x 02 x 03

x 10 x 11 x 12 x 13

x 20 x 21 x 22 x 23

x 30 x 31 x 32 x 33

y 00 y 01

y 10 y 11

2×2 Pool
with stride=2

Figure 2.7: A 2x2 (max-)pool operation with stride=2, where the separate pools have
been visualized with different colors.

2.3.8 Generative Adversarial Networks (GAN)
A Generative Adversarial Network (GAN) consists of a generator and a discriminator network.
The generator network generates fake samples similar to the samples found in the training
dataset. The discriminator network is trained to detect fake samples. The two networks
are trained as adversaries: the generator is incentivized to fool the discriminator, while the
discriminator get more and more skilled at spotting fakes in an arms-race against each other. An
overview of the GAN architecture is illustrated in fig. 2.8. GANs are an example of unsupervised
learning.

The generator network generates samples from random noise passed into it. This random noise
vector can be viewed as a coordinate in a latent space representing the training samples, and
the generator can be seen as the decoder of this latent space.

Training data Sample

Generator Sample

Discriminator

accept or reject

Loss
Random

Noise

Figure 2.8: The architecture of a General Adversarial Network (GAN). It consists of a
generator and a discriminator network, each tasked with besting the other. Samples from
a training dataset are used to train the Discriminator to tell the fakes generated by the
Generator apart from the real ones.

2.3.9 Auto-Encoders (AE)
An auto-encoder is an unsupervised learning technique. Its goal is to reconstruct the original
input after first passing it through a bottleneck. The bottleneck lies in between the encoder (e)
and the decoder (d) parts of the network, illustrated in fig. 2.9. The networks train to make
d(e(x)) ≈ x produce the lowest error possible. The bottleneck becomes a latent vector, also
known as a code. The encoder encodes samples into latent vectors, and the decoder reconstruct
the samples.

Auto-encoders are well suited for learning relations on the input data without direct supervision
with information such as shape orientation or animal species. The decoder part of the network
can be further trained in a GAN if it is desirable that all possible latent codes result a believable

CHAPTER 2. THEORETICAL BACKGROUND 17

Encoder

Code

Decoder

x x'

Figure 2.9: A simple fully-connected auto-encoder network, with the Encoder and
Decoder sections labeled. At the information bottleneck a latent space code emerges.

output, or in other words: that the latent space is highly regular. It is however difficult to
ensure that the encoder maps the latent space in such a regular fashion.

Variational auto-encoders (VAE) use reparametrization to perturb the codes with (Gaussian)
noise before decoding them again, to encourage smooth and complete latent spaces and avoid
overfitting (Kingma and Welling 2019). Instead of modeling the latent code as a single vector
within the latent space, it is modeled as a probability distribution over the latent space which is
then sampled accordingly. Therefore the code is partitioned into a mean and a variation feature,
each used as parameters for the stochastic sampler. It is possible to chose other distributions
than the Normal distribution, but it tends to perform well with when making little to no
assumptions about the true underlying distributions.

2.3.10 Neural Fields and Deep Implicit Surfaces

Figure 2.10: A 2D RGB neural field and its reconstruction: an image of the Stanford
Bunny. One must traverse the two input axes and sample the computed colors to
reconstruct the image.

Implicit representation networks approximate functions that query into continuous fields. We
illustrate a 2D RGB neural field in figure 2.10. This is a new emerging subfield of representation
learning, which has yet to converge on a single generalizing term denoting the concept. We have
seen these terms used interchangeably: Implicit representation networks, implicit functions,
neural fields, and coordinate-based neural representations.

In this thesis we train neural networks (Φ) to represent implicit 3D surfaces (sec. 2.1.5) of
objects, by having them approximate a 3D field that describe some attribute of our shape or
surface of interest: the signed distance field (SDF):

Φ(x) ≈ SDF(x) : x ∈ R3 (2.14)

CHAPTER 2. THEORETICAL BACKGROUND 18

These coordinate-based neural networks can be viewed as a simplified and continuous variant of
convolutional neural networks. Whereas convolution aids generalization by parameter sharing
its kernels, coordinate-based networks apply the whole network across the input domain. A
weakness of implicit representation networks however are that there is not always an obvious
way to supervise encoders for them.

2.3.11 Auto-Decoders (AD)
Auto-encoders are expensive to train, due to having to train both the encoder and the decoder
parts of the network. Often only one of the parts are needed for inference purposes once the
training has completed. The unused part are in these cases simply discarded. What if there is
no known or suitable input to supervise an encoder with? What if we could omit having to
train an encoder at all?

The structural difference between an auto-encoder and an auto-decoder is illustrated in fig. 2.11.
In short: omit training any encoder at all and instead learn the optimal latent space vectors
directly via backpropagation (Park et al. 2019). This is done by assigning a random latent
space code to each unique item in the dataset and optimize these codes as if they were a part
of the learnable parameters of the network during training.

z

(a) Auto-encoder

z 1

⋯

z n

→

z i

(b) Auto-decoder

Figure 2.11: An auto-encoder (AE) compared to an auto-decoder (AD). AE compresses
the input down into a latent vector with an encoder, then decode it again with its decoder
trying to match the original input. AD forgoes the encoder and instead maintains a
database of n latent vectors (one per item in the dataset), optimizing these vectors along
with the rest of the network weights.

2.3.12 Probabilistic Decoders
A probabilistic decoder is a distribution p(x | z) over each value x ∈ Rn given the code z ∈ Rm
(Tran 2016). Here z can be interpreted as a latent space vector, and x can be seen as our query
into this latent space. These decoders are also commonly referred to as coded decoders.

Probabilistic decoders are a great tool for representation learning: Instead of training the
weights θi for a whole network Φ to represents a single shape i, you could instead train the
weights θΩ to represent a wider collection of shape priors in Ω. To embed such a large number
of shapes into the network you can map each shape i to a point in a latent space, each with
their own code zi, and concatenate this code together with the query location x before passing
it into the network, thus treating it as a coded decoder.

Compared to a simple network where the learned weights θi only embeds a single shape i (left
in eq. 2.15 and fig. 2.12a), a probabilistic decoder (right eq. 2.15 and fig. 2.12b) is capable of
embedding all the shapes i ∈ Ω with a single set of learned weights θΩ.

CHAPTER 2. THEORETICAL BACKGROUND 19

Φθi(x) ≈ SDFi(x) ΦθΩ(x | zi) ≈ SDFi(x) (2.15)

{x, y, z} SDF

(a) Single shape SDF decoder

code

{x, y, z}

SDF

(b) Coded shape SDF decoder

Figure 2.12: A SDF decoder network for a single shape, compared to a coded SDF
decoder embedding multiple shapes.

2.3.13 Shape Reconstruction and Completion
Reconstruction is the process decoding a latent vector into the corresponding uncompressed data,
such as 2D images or 3D meshes. Shape reconstruction is for our purposes the reconstruction
of 3D meshes.

Shape completion aims to infer the unseen parts of a shape from only a partial observation. An
example of shape completion could be the inference of the whole surface mesh, given only a
subset of the vertices and faces as the input. Single-view shape completion and reconstruction
is the task of inferring a full 3D shape from only a single perspective or viewpoint and produce
a closed 3D model. 3D shape completion is analogous to 2D image in-painting.

Shape completion is often based on inferring or by other means discovering the latent space
vector that best describes the observable parts of the shape, followed by reconstructing the
missing parts of the shape from this latent space vector.

2.3.14 Pose Estimation and Registration
Given an observation of a known shape from some point of view, pose estimation is the task of
finding the spatial transform needed to move that shape into the observed pose.

Registration is the problem of finding the spatial transform that aligns two observations. Point
cloud registration is often used to align and merge two point cloud scans taken from different
viewpoints.

2.3.15 Classification and Segmentation
Classification is the task of determining the class8 of a given observation. Classifier networks
can be designed for tasks such as object recognition in images.

Segmentation is the task of segmenting a given observation into multiple segments. Semantic
segmentation aims to divide the observation data according to some set of classes. Instance
segmentation aims to divide multiple instances (e.g. separate objects) into separate segments.
Panoptic segmentation is the combination of semantic and instance segmentation, and aims to
segment the observation into single classes and instances of these classes.

For example in computer vision, a panoptic object segmentation network aims to segment an
image such that every instance of an object is uniquely segmented, and that all the segments
are appropriately labeled or classified.

8Classes are also known as categories or labels. The scope of what a class means depends on what the author
aims to achieve.

Chapter 3

Technical Background

Here we briefly cover technical details such as datasets, frameworks and hardware setup.

Section 3.1 covers a few datasets used or discussed.
Section 3.2 presents AI and computation frameworks.
Section 3.3 discloses the hardware used to run our implementation.

3.1 Data- and Object Sets
To train a shape reconstruction and completion model one needs a large dataset of shape priors
to learn from. The following three subsections cover some particular ones in further detail.

(a) Some physical objects of the YCB object set

(b) RGB (c) Semantic segmentation (d) Depth map (e) Bounding boxes

Figure 3.1: The YCB object. (a) is a real-world image of the objects in the YCB object
set (from Calli, Singh, et al. 2015), and (b-e) are synthetic images from the Falling Things
dataset (from Tremblay, To, and Birchfield 2018).

3.1.1 ShapeNet
ShapeNet by Chang et al. (2015) is an effort to establish a large annotated dataset of 3D shapes.
The shapes are grouped into different categories, and the shapes within each category are
highly aligned. It includes categories such as planes, cars, tables and chairs. These categories

20

CHAPTER 3. TECHNICAL BACKGROUND 21

are largely not ones we are interested in for our research purposes. Most of the related 3D
completion works described in chapter 4 use the ShapeNet dataset and need to be adapted to
other datasets to suit our research goals.

3.1.2 YCB and the BigBIRD Scanner
BigBIRD by Singh et al. (2014) is a 3D scanner at Berkeley, as well as an object dataset
addressing the lack of 3D object dataset with corresponding real-world RGB-D images with
included pose and camera calibration information. The scanner is constructed of five 3D cameras
alongside five high-resolution cameras, situated in a quarter-circular arc over a turntable in a
well-lit photo bench. The scanner is pictured in fig. 3.2. The dataset contains for each object
reconstructed 3D meshes using both volumetric range image integration (TSDF) and Poisson
surface reconstruction, along with 600 registered RGB-D images per object.

(a) 5 Carmine 1.09 (labeled NP1-NP5) and 5
Canon T3s camera (labeled N1-N5) situated in
a quarter-circular arc.

(b) Ortery Photobench
260 with a motorized glass
turntable.

Figure 3.2: The Berkeley BigBIRD 3D scanner. It captures images from 5 polar angles
and 120 azimuthal angles equally spaced apart by 3◦. (From Singh et al. 2014.)

The YCB Object and Model Set (Calli, Walsman, et al. 2015; Calli, Singh, et al. 2015) is
designed to facilitate benchmarking in robotic manipulation. The set consists of both a digital
dataset and of a corresponding physical set of objects available for purchase. A selection of
these objects are pictured in fig. 3.1a. The digital models have been created using both the
Berkeley scanner and the more accurate Google scanner. The Berkeley and Google models are
not posed alike however.

The reconstructed meshes in these two datasets vary in quality due to various object properties
such as transparency, reflectance and size. As such we handpicked a selection of sound non-
degenerate meshes, disclosed in the supplementary table A.2 and rendered in figure A.2. The
table includes the object categories we assigned to each object, from here on referred to as their
class.

3.1.3 Falling Things (FAT)
Falling Things (Tremblay, To, and Birchfield 2018) is a synthetic dataset for object detection
and pose estimation. It contains 60 000 annotated images constructed from 21 objects from
YCB, vizualised in figure 3.1 (b-e). The object models are combined with complex backgrounds
to render photorealistic images. Each image is annotated with 3D object poses, bounding boxes,
and per-pixel class segmentation.

CHAPTER 3. TECHNICAL BACKGROUND 22

3.2 Platforms
3.2.1 PyTorch and CUDA
PyTorch is a machine learning framework for Python by Paszke et al. (2019) at Facebook. It
includes facilities to construct neural networks and other kinds of machine learning models.
PyTorch provides a tensor math library inspired by Numpy, with a sizeable collection of
activation and transfer functions. It constructs a differentiable computation graph automatically
during runtime via auto-differentiation. To leverage these it provides many gradient based
optimizers. PyTorch can offload computations onto peripheral hardware, such as GPUs1 via
CUDA and TPUs.2 CUDA let developers to use CUDA-enabled GPUs for general purpose
processing, such as machine learning.

3.2.2 PyTorch Lightning and Slurm
PyTorch Lightning (PL) by Falcon (2019) is a module providing something PyTorch does
not: a training loop. It aims to reduce the amount of engineering required to implement a
self-contained machine learning model, enabling rapid experimentation. It provides tools to
distribute and offload the training across across multiple machines, GPUs, and TPUs. PL
simplifies common tasks such as early stopping, logging, creation of checkpoints and experiment
management. This enabled us to efficiently leverage the SLURM-based3 compute cluster by
Själander et al. (2019).

3.2.3 Intel RealSense
Intel RealSense is a range of depth and tracking products, designed to give machines capable
depth perception. They provide the library librealsense2 for their newer RGB-D cameras,
the D4xx series and the SR300, as well as for the T265 tracking camera. Their SDK4 provides
ample calibration data and allows for real-time streaming of color and depth data. Included
in the SDK is a small collection of tools, one being the Intel RealSense Viewer : a program to
view and interact with their cameras in real time. We report in supplementary table A.1 their
default post-processing filters.

3.3 System Setup
We trained our neural networks with resources provided by the NTNU IDUN/EPIC computing
cluster, equipped with Nvidia Tesla P100 and V100 GPGPUs (Själander et al. 2019).

We evaluated our model on a Intel Core i7-6700 CPU machine with a Nvidia GTX 1080 GPU.
The machine runs Ubuntu 18.04 LTS with Nvidia Driver 455.32 on CUDA 11.1.

We used Python 3.7, Pytorch 1.8.1 and Pytorch lightning 1.2.8 on both setups.

1GPU: Graphical Processing Unit
2TPU: Tensor Processing Unit
3SLURM: a job scheduler and workload manager for large compute clusters.
4SDK: Software Development Kit

Chapter 4

Related Works

In this chapter we explore related works in computer vision and visual servoing. Computer
vision is a scientific field concerned with how computers can gain a high-level understanding of
images and shapes. It has a long history with shape analysis, object classification and shape
reconstruction. Visual servoing is closely tied, but focuses on real-world robotic application
and evaluation. Our research goal is enabling robotic grasping of unknown objects by learning
to see and understand the scene from a single-view. We cover here the strengths, approaches
and shortcomings of older machine learning approaches, along with the current state-of-the-art.

Section 4.1 explores requirement and affordances in robotic object manipulation.
Section 4.2 cover what object recognition and classification can provide.
Section 4.3 examines historical and the current state of 3D shape reconstruction and shape

completion.

4.1 Visual Servoing and Robotic Manipulation
Visual Servoing is a field aiming to control robots with information extracted from a vision
sensor. We want our findings to be applicable to robotic manipulation, and perform for this
reason a quick investigation into these fields.

Researchers at Berkeley University developed the BigBIRD scanner and the YCB object and
model set (Singh et al. 2014; Calli, Walsman, et al. 2015; Calli, Singh, et al. 2015), which
enables researchers to easily compare different manipulation approaches.

Within the GentleMAN project, Pedersen, Misimi, and Chaumette (2020) propose a novel
approach to transfer knowledge learned in a simulated environment to the real-world. Their
approach is based on “tricking” a robot agent into believing it is operating in the synthetic
environment by using style transfer techniques on the sensor data.

Yen-Chen et al. (2020) introduce the concept of gripping affordance. They use past records
of successes and failures in gripping to train a learning model to estimate gripping affordance.
This inferred affordance is then used as heuristic to determine on which object and where along
the object to place the robot grippers.

From this we have learned we need a method to transform real-world data into a format the
model is trained to understand. Furthermore, our method should be controllable by some
external heuristic or agent.

23

CHAPTER 4. RELATED WORKS 24

4.2 Object Detection and Classification
The ability to tell objects apart from other objects and the background, and to tell what exactly
an object is, may prove instrumental to single-view shape-completion. For this reason we briefly
look into what fields of object detection and classification has to offer.

He et al. (2018) present Mask R-CNN, a framework for efficiently detecting the classes of
objects in images while simultaneously generating a high-quality segmentation mask for each
object instance. Wu et al. (2019) improve on this work with additional features and reduced
the training time, packaged into a PyTorch library called Detectron2. Focusing on point clouds
instead of images, Chaton et al. (2020) provide Torch-Points3D, a library for performing object
detection, classification, segmentation and registration on point clouds.

From this we have learned that there is an abundance of ready-made solutions for image
classification and segmentation. Instance segmentation on images enables filtering RGB-D
sensor data such that single-object shape completion is possible.

4.3 3D Shape Completion
There have been multiple studies on single-view 3D shape completion. Consequently a plethora
different methods have been proposed, each with their own strengths and weaknesses. Standing
on the shoulders of such abundant work we seek to design our own method based in the
requirements of our targeted robotic environment.

There have been many shape completion approaches that use 2D images to predict 3D voxel
models, inspired by how well convolutional techniques and concepts from 2D computer vision
translate over to 3D voxels (Yan et al. 2017; Girdhar et al. 2016; Zhu et al. 2017; Wu et
al. 2017, 2018; Tulsiani et al. 2017; Yang et al. 2018). These methods have difficulties
representing finer surface details, due to how poorly voxel models scale with regards to memory
and computational resources. The resulting reconstructions are often not pleasing to look at
due to their either cubified look or their poor ability to infer accurate surface normals. Some
turned to octrees as a means of increasing the effective resolution near high-detail areas (Häne,
Tulsiani, and Malik 2017; Tatarchenko, Dosovitskiy, and Brox 2017; P.-S. Wang et al. 2019),
leaving areas of lower complexity less densely subdivided. Some approaches infer voxel grids of
signed distances (Dai, Qi, and Nießner 2017; Zeng et al. 2017; Stutz and Geiger 2018). The
introduction of the signed distance results in a smoother output with sound normals, but are
still subject to aliasing due to the discrete grid.

Methods inferring 3D meshes directly from images often produce non-watertight and degenerate
meshes, attributed to their high irregularity (Pontes et al. 2017; Hanocka et al. 2019). Instead
of directly inferring meshes, Zou et al. (2017) and Niu, Li, and Xu (2018) perform shape
completion into a collection of predetermined shapes primitives. Building on this idea, AtlasNet
by Groueix et al. (2018) performs shape completion by producing a collection of parametric
surface elements combined with constructive solid geometry. Meanwhile, Wang et al. (2018)
introduce Pixel2Mesh, a graph-based network reconstructing 3D manifold meshes. 3DN by W.
Wang et al. (2019) introduce the idea of deforming the vertices of a source mesh to conform to
single-view observations instead of inferring them from the ground up. Wen et al. (2019) build
further on this idea in a multi-view environment, proposing Pixel2Mesh++. GEOMetrics by
Smith et al. (2019) exploits geometric structures in graph-encoded objects. Liu et al. (2019)
likewise took the mesh deformation approach, but with a novel twist: they introduced the
concept of a differentiable renderer. It models the whole rendering pipeline as a differentiable
probabilistic process, enabling backpropagation. As such it can extract textures and simple
lighting conditions from images.

Approaches based on surface point clouds achieved quite early on impressive 3D shape inference
from RGB-D images, as they are not impeded by having to infer sound mesh topologies (Fan,
Su, and Guibas 2016; Han et al. 2017). These methods are limited to producing a fixed number

CHAPTER 4. RELATED WORKS 25

of points however, tied to the number of output neurons. They also spend a great amount
of computational resources to ensure the network are invariant to the ordering of the points
consumed and produced. PointNet (C. R. Qi, Su, et al. 2017; C. R. Qi, Yi, et al. 2017) address
this problem by using max-pool operations to extract global shape features. It has since become
a widely used encoder and discriminator for larger generative point cloud networks. Due to
the fixed output size, most point cloud networks do not have the ability to selectively generate
more points in areas of higher complexity, making them hard to disambiguate. This problem is
further amplified by how point clouds often are subject to error-prone post-processing when
being converted into meshes (Kazhdan and Hoppe 2013). RL-GAN-Net, a very capable point
cloud completion model by Sarmad, Lee, and Kim (2019), address this issue by combining the
output of an auto-encoder and a GAN with a special reinforcement learning agent, making it
able to (selectively) infer high quality point clouds in real-time.

4.3.1 Implicit Representation Learning
All of the aforementioned methods are based on explicit 3D shape representations. These
methods either suffer from a limited spatial resolution, are prone to erroneous post-processing,
produce degenerate meshes, or are limited to a fixed mesh topology. Recently a popular
alternative to these explicit representations have emerged: implicit surfaces approximated with
neural fields.

IM-NET (Chen and Zhang 2019) and Occupancy Networks (Mescheder et al. 2019) were the
first to explore learning shapes represented as implicit continuous functions. They approximate
a binary occupancy function of 3D shapes for a given 3D query coordinate and a feature
vector. Occupancy Networks consists of 5 ResNet1 blocks, while IM-NET is a MLP 6-layers
deep. Occupancy Networks further use binary search to help disambiguate areas of higher
complexity, indicating that the binary occupancy field is not ideal for shape reconstruction.
Implicit occupancy functions are further explored by Littwin and Wolf (2019), who adapt the
learning of implicit functions to the field of meta-learning2 by constructing a hypernetwork
encoder that infer decoder weights from single-view images.

DeepSDF by Park et al. (2019) regress signed distance fields instead of the binary occupancy
field, using a 8 layer MLP with a skip-connection that concatenates the network input to layer
4. This architecture set a trend for following works. Their method predicts the distance to
the implicit isosurface, removing the need for an iterative disambiguation procedure like in
Occupancy Networks. DeepSDF additionally pioneered the use of the auto-decoder training
framework for representation learning.

Multiple works continue exploring deep implicit surfaces and signed distance fields following
DeepSDF. DISN (Xu et al. 2019) address the poor shape completion time of DeepSDF by
replacing the auto-decoder architecture with a convolutional neural network using RGB images
as its input. Their CNN encoder predicts the latent space code of a shape, which is then feed
into a SDF decoder network much like DeepSDF. DISN adds additional networks to perform
pose estimation and infer further local features along the surface of the global shape. Their
method requires supervision with a lot of RGB images annotated with corresponding 3D models
and poses. As such it proves difficult to adapt to the real-world. Chabra et al. (2020) keep
the auto-decoder architecture of DeepSDF and instead focus their attention on local shape
completion, applying their network DeepLS on subdivided spatial chunks of point clouds at
a time. This makes their model unsuited for single-view shape completion, but results in a
surface reconstruction method outperforming TSDF reconstruction. As such it can alleviate
the post-processing issue inherent to point cloud based shape completion methods. MetaSDF
(Sitzmann, Chan, et al. 2020) applies a meta-learning approach to implicit functions, resulting

1ResNet blocks are elaborate constructions applying multiple convolutions and activations before adding the
activations of the previous layer via a skip connection.

2Meta-learning improves generalization in general. Commonly, meta-learning is the application of hyper-
networks trained to predict the weights of a separate network. Used to either predict the initial network weights
for few-shot optimization, or to fully predict the weights of a decoder network from a latent vector.

CHAPTER 4. RELATED WORKS 26

in an order of a magnitude faster time to perform the shape completion while making weaker
assumptions of the underlying latent space of shapes. They propose using a few-shot approach
from a meta-learned initialization, averaging the weights learned from separate short-lived
diverging runs. This comes at the cost of being very memory intensive to train. Kleineberg, Fey,
and Weichert (2020) combine continuous implicit shape learning with generative adversarial
modeling (GAN), applying implicit surfaces to shape synthesis. PIFu (Saito et al. 2019) performs
single-view completion by re-projecting 3D points into a pixel-aligned feature representation,
learning highly detailed implicit models of humans. PIFu is developed further by Saito et al.
(2020) and He et al. (2020).

NeRF (Mildenhall et al. 2020) applies the network architecture of DeepSDF to radiance fields3

to synthesize novel views of complex scenes. Instead of learning SDF values they regress RGB
colors along with a density. They propose using positional encoding which improves the ability
of ReLU-based MLPs to learn higher frequency patterns and relations on low dimensional
inputs. Tancik et al. (2020) analyze positional encoding further in greater detail, generalizing
it and discovering that there is a balance required to avoid overfitting. Tancik et al. (2021)
further explore the application of few-shot meta-learning to neural radiance fields, much like
that of MetaSDF.

Sitzmann, Martel, et al. (2020) use neural fields to solve boundary value problems. They call
attention to how the gradients of the output of the network with regards to the input can be
supervised during training. To make use of this they propose a novel alternative to ReLU-based
multilayer perceptrons: SIRENs. These are coordinate-based representation networks whose
nonlinearities are periodic, based around sinusoidal functions. SIRENs can accurately learn and
represent the first and second order derivatives of the target signal, and its inductive biases can
be tuned with a hyperparameter. They show that only supervising certain boundary conditions,
such as gradients or the divergence of gradients in limited areas in a 3D field, is sufficient to
converge on a full field. They demonstrate this for signed distance fields, generalized as a
Eikonal boundary value problem.4

4.4 Fall Project by the Author
We wrote a specialization thesis (Sundt 2020) over the leading fall semester to establish the
feasibility of this master thesis, and it features some promising preliminary findings: DeepSDF-
like network architectures have the capacity to learn not only 3D shapes in one canonical pose,
but shapes over a continuous space of orientations. Furthermore they proved able to embed
more than one category of objects at a time. We adapted and reprised parts of the fall project
here for the sake of making this master thesis more self-contained.

3Radiance fields map 3D spatial coordinates along with two sphere coordinates indicating viewing direction
to linear RGB colors: R3 × R2 → R3. It is a simplification of the electromagnetic field where qualities humans
can not perceive are omitted, such as details in wavelengths and polarization. NeRF additionally regress a
density σ such that their network effectively models a ray tracer for a camera with a fixed roll.

4The eikonal equation is a partial differential equation ‖∇xu(x)‖2 = 1
f(x) where ∇ is the vector differential

operator, ‖ · ‖2 is the Euclidean norm and u(x) = 0 along a well-behaved boundary. Fixing f = 1 results in a
signed distance function.

Chapter 5

Methodology

We present in this chapter our single-view shape completion approach and methodology. Our
approach is based on our investigations in chapter 4, adapted to fit our research goals within
the GentleMAN project.

Section 5.1 introduces the task and outlines our overall approach.
Section 5.2 describes how data for network training and evaluation is prepared.
Section 5.3 contains our proposed network architecture.
Section 5.4 presents how we train our networks.
Section 5.5 explains how and why shape completion works.
Section 5.6 covers the nonlinearities, loss functions and parameters we experiment with.
Section 5.7 defines metrics used in our evaluation.

5.1 Overall Approach and Motivation
Our goal is single-view 3D shape completion of objects for use in robotic manipulation. Given
a depth image of an object, our aim is to reconstruct a full 3D mesh with correct pose that
captures the overall structure of the object including the parts hidden from view. Our proposed
processing pipeline to achieve this is rather involved. It deals with: processing depth images,
classifying and segmenting the objects in the images, extracting signed distance points, and
completing the shape of the object from learned shape priors.

We base our approach on the new and emerging field of implicit representation learning via
neural fields, whose popularity was primarily triggered by Park et al. (2019) and Mildenhall et
al. (2020). Neural fields (sec. 2.3.10) regress a target signal continuously over the input domain,
in our case implicit surfaces in 3D Euclidean space (sec. 2.1.5). This powerful data-driven
paradigm enables representation of more complex shapes without discretization errors and
uses significantly less memory than previous state-of-the-art methods based on explicit shape
representations. Neural fields enables arbitrary 3D shape reconstruction resolution with any
mesh topology, of any genera, while guaranteeing the resulting meshes to be non-degenerate.
Our field of interest is the signed distance field (SDF): a continuous 3D field whose 0-level set
describe the surface of an object.

The path to shape completion from learned shape priors starts with shape representation
learning and reconstruction. We train neural networks to predict the SDF value when given a
spatial query coordinate. One can reconstruct 3D meshes from these neural fields using the
marching cubes algorithm. We aim to make our networks learn an extensive latent space of
shape priors. The goal is to embed the shapes in the latent space in such a way that one can
search it for shapes conforming to single-view observations via gradient decent.

27

CHAPTER 5. METHODOLOGY 28

To construct this space of implicit surfaces we model a latent space decoder network Φ and
have it approximate their signed distance functions:

Φθ(x | zi) ≈ SDFi(x) : i ∈ Ω, x ∈ R3 (5.1)

where Φ is a neural network with θ weights, x is a spatial query coordinate, Ω is a collection of
shape priors, zi is a vector into the latent space of shapes pointing at shape i, and SDFi(·) is
the ground truth signed distance function for shape i.

We train the network as an auto-decoder, optimizing both θ and {zi}i∈Ω on fully formed SDF
fields. To shape complete we fix θ and optimize a new ẑ on partial single-view data. For this to
work we seek to learn meaningful relations between the priors shapes, such that shapes whose
near side conform to a single-view observation are also likely to have meaningful far sides.

Accurate surface normals can be computed as the spatial derivative ∇xΦ, which we can calculate
analytically due to the differentiable nature of neural networks. As such it is possible to supervise
this derivative during training by backpropagating its computation graph. We experiment with
supervising Φ with a target SDF gradient in addition to the base SDF signal. This demonstrates
how powerful of a paradigm neural fields really are.

Related works train and evaluate separate networks for each object category, for example one
for chairs, one for airplanes, and one for tables. We by contrast embed a wide variety of 3D
shapes into a single shared latent space. To this end we explore the construction of these
networks in addition to how to best supervise their training. We experiment (sec. 5.6) with
both positional encoding and with periodic nonlinearities.

The objects we perform shape completion on do not only come in various shapes and sizes,
but also in various orientations. Related works perform pose estimation separately from shape
reconstruction, but we experiment with expanding the latent space of shapes to additionally
encode their pose. This has the benefit of both regularizing the latent space, and enables
searching for conforming shapes of any orientation. As such it bypasses the need to train
on separate datasets of single-view observations such as FAT or ShapeNet renderings, which
generalize poorly to new scenes with different backgrounds.

Our scope

Discover Z through
gradient decent

(Sec 5.3 and 5.5)

(Sec 5.2.3)

(Sec 5.5)

Captures
image of
objects

Isolates the
object chosen
by the agent

RGB-D
sensor

Agent

Process and
unproject to
3D points

Depth
image

Panoptic
segmentation

+ isolation

RGB
image

Object of
Interest

Center cloud
and sample

signed
distances

from object

Single-View
Point Cloud

SDF decoder
network

SDF
points

Shape code

Code Loss

Object
Mask

Draw initial
latent vector

Object
Class

Inital
value

Figure 5.1: Our envisioned real-world single-view 3D shape completion pipeline, based
on searching through a latent space for the shape that best conforms to the single-view
observation data. This graph illustrates the flow of data from a RGB-D camera to the
iterative optimization of a shape code (blue), which we use to reconstruct the full shape
at the end. We limit our focus to shape completion (orange cluster, dotted border), and
assume accurate class and segmentation data of single objects. We need the segmentation
mask to extract signed distances from the single-view data (purple), to supervise the
decoder network (green). We assume an abstract external "agent" isolates a single object
segment for us to shape complete.

CHAPTER 5. METHODOLOGY 29

We limit our focus in this thesis to shape completion, and assume access to accurately classified
and segmented point clouds or RGB-D data of single objects. This information is not trivially
accessible in-the-wild however, and must be inferred with either a panoptic segmentation
network, or with hand-crafted domain specific algorithms.1 As such we evaluate our work on
the segmented and registered RGB-D images in the YCB dataset. To extract point cloud we
implement rudimentary RGB-D processing for this data ourself.2 We illustrate how our model
fits in a real-world inference pipeline in figure 5.1.

5.2 Data Preparation
We train and evaluate our learning model with objects from YCB dataset. It provides 600
RGB-D images for each object, and up to three 3D mesh models. We cover here how we process
and extract signed distances (SDF) from this data to feed our learning model. We sample
full-view SDF point clouds from the 3D models to train our networks. We perform shape
completion on single-view SDF clouds, extracted from either the real-world RGB-D images, or
from synthetic scans created by rendering the mesh models.

5.2.1 3D Model Pre-Processing and Normalization
The YCB dataset contains many models that are either largely distorted or corrupt. Some of
the models fall outside of our intended scope, either being too thin or consisting of multiple
smaller objects. As such we only use a subset of the YCB models, enumerated in supplementary
table A.2, to avoid unreliable data and to improve knowledge discovery.

YCB provides up to three meshes per object: two from the BigBIRD scanner and one from the
Google scanner. BigBIRD produces low-quality meshes reconstructed with volumetric range
image integration (TSDF) and with Poisson reconstruction. The former is more detailed but
open, while the latter has less detail but is watertight. The Google scanner provides watertight
meshes of much higher quality, but these have not been aligned with the BigBIRD RGB-D
images. The Google models do at times not even match the YCB objects at all. These two
issues do not pose any problems for shape learning, but can pose a problem for evaluation. We
primarily train with the more accurate and well formed Google scanner meshes, falling back to
using the BigBIRD Poisson meshes if a Google mesh is not provided.

We scale and translate the 3D meshes of YCB to a common frame of reference. This
is to simplify our embedded latent space of shape priors, promoting feature extraction
and knowledge discovery. ReLU-based MLPs networks perform better when their target
signal is limited to a fixed range (Sitzmann, Martel, et al. 2020). We follow Chen and
Zhang (2019) and translate our training shapes such that their axis-aligned bounding
box centroid is zero, and scale them such that their most distant vertex touch the unit
sphere. This fits the shapes within what we from here on call the reconstruction volume: a
box with extents [−1,−1,−1]T to [1, 1, 1]T . Formally, the vertices V of a mesh are normalized as:

Vnormalized =
{

v− vcentroid

cscale

}
v∈V

vcentroid = 1
2

maxv∈V (xv) + minv∈V (xv)
maxv∈V (yv) + minv∈V (yv)
maxv∈V (zv) + minv∈V (zv)


cscale = maxv∈V ‖v− vcentroid‖2

(5.2)

where xv, yv, zv are the x y and z coordinates of v ∈ R3, and ‖ · ‖2 is the 2-norm magnitude.
1We expect of-the-shelf convolutional solutions such as Mask R-CNN (He et al. 2018; Wu et al. 2019) or

Torch-Points3D (Chaton et al. 2020) to perform adequately.
2In our targeted robotic lab environment we instead process live depth sensor data from more accurate depth

cameras using the Intel RealSense framework, likely to yield far fewer artifacts.

CHAPTER 5. METHODOLOGY 30

5.2.2 Sampling Full-View SDF Clouds
To train our networks we sample SDF points from 3D models with a strategy based on the
Monte Carlo technique proposed by Park et al. (2019). They sample a set of (x, y) pairs from
3D meshes, where y = SDF(x). They sample points around the mesh using two strategies:

Uniform points are sampled uniformly within a sphere enclosing the object.
Near-surface points are sampled along the visible surface of the object.

These two strategies combined result in a distribution of points that bias surface details near
the zero-crossing, while still ensuring the rest of the signed distance field is well behaved. A
full-view point cloud of the visible surface is prepared as follows:

• Fit the 3D mesh model inside the unit sphere. (sec. 5.2.1)
• Render the surface from 100 virtual cameras into depth and normal buffers.
• Unproject the 100 scans into point clouds using their inverse MVP transforms.
• Combine the 100 registered clouds into a single surface point cloud.

To compute a SDF value (y) for a given x coordinate, we:

• Find the 11 nearest surface points to x by searching a KD-Tree.
• Set |y| to the distance of the nearest neighbor.
• Determine the sign of y by a majority vote, using the dot product on the 11 nearest

normal vectors and their direction to x x.

We expand their procedure to also compute the spatial SDF gradients, which we denote ∇xy.
If the absolute SDF value is below a threshold value3, then we use the nearest normal vector in
the surface point cloud to determine the direction of the SDF gradient. This is to prevent noisy
near-surface SDF gradients. If the point is outside of the this threshold then we instead use
the direction to the nearest point in the surface point cloud to determine the SDF gradient
direction. The magnitude of the SDF gradient is always 1.

Park et al. (2019) only sample uniform points within the unit sphere. We instead sample within
a sphere with radius

√
3, to ensure the whole reconstruction volume is valid for marching cubes

to traverse regardless how we rotate the shape.

5.2.3 Sampling Single-View SDF Clouds
For shape completion we search via optimization for the shape latent vector that best conforms
to the single-view observation data. How do we supervise this optimization? We know two
things about the underlying shape from a single-view depth observation: where the visible
surface is and where there is free-space.

We propose a novel strategy inspired by Chabra et al. (2020) for sampling SDF clouds from
single-view depth scans, segmented into hits and misses. Scan rays hitting the surface of the
object are counted as hits, the other rays are classified as misses. We unproject (sec. 2.2.3)
these depth observations into point clouds, keeping track of which points are hits, which are
misses and where the camera is in relation. From here on we refer to these as hit+miss clouds.

In figure 5.2 we illustrate an example scene. We first center and scale the single-view hit+miss
cloud such that the hit points fit within the unit sphere. Near-surface SDF samples can then
be sampled directly from the hit points by perturbing them with N (0, 0.00252) along their
estimated normal vector. The SDF value becomes the distance displaced. Uniform samples can
be generated by sampling random points along the scan rays, or put differently: in the visible
free-space. The SDF value is set by the distance to the nearest hit point.

3The threshold value we use is 3 times the 3D 2-norm standard deviation of the distribution (N (0, σ2)) used
to draw the near-surface samples: 3

√
3σ2. This captures 99.8% of the near-surface samples in addition to stray

uniform samples near the surface boundary.

CHAPTER 5. METHODOLOGY 31

Shape
Camera

Occluder

Rays

Shadow

Miss

Figure 5.2: A diagram of scan rays cast from a camera into a scene with our shape
of interest and an occluding object. Scan rays hitting the visible surface of the shape
(bold) are counted as hits. Rays hitting the either the background or other objects are
counted as misses. We sample uniform SDF samples within the volume covered by scan
rays. Near-surface SDF samples are generated along the bold surface.

We ensure the visible surface is sampled uniformly, as to not inadvertently bias the areas closer
to the camera. We set the probability of selecting a specific hit point proportional to the
distance to its nearest hit point neighbor, squared. With this strategy the chance of sampling
from a given hit point is proportional to the surface area it “covers”.

We can not sample along the scan rays uniformly either: they vary in length, and the volumetric
cross section “covered” by each ray increases the further they trace into the scene. The
probability of picking a particular scan ray is set proportional to its length. We then model
the scan ray as a pyramid and use inverse transform sampling to sample a point along it. The
probability distribution function is f(x) = cx2 sin(φ), where c ensures

∫ 1
0 fdx = 1 and φ is

the pyramid slope. We compute the cumulative probability distribution, solve for c, and find
the inverse of the cumulative distribution function. Almost all the terms cancel out, assuming
φ > 0. This leaves us with the sampler: F−1(x) = 3

√
x for x ∈ U(0, 1). We reject uniform

samples generated outside of a sphere fitted around the hit points with some overhead.

5.2.4 Processing RGB-D Images
We need real-world single-view sensor data to evaluate our shape completion approach. For
this purpose we extract hit+miss point clouds (sec. 5.2.3) from the segmented RGB-D depth
images provided by the YCB dataset.

Depth sensors tend to yield imprecise measurements near sharp edges. We filter as recommended
by Singh et al. (2014) the imprecise depth measurements using depth discontinuity filtering. We
compute a mask of the all depth pixels whose gradients (computed with a 7× 7 kernel) exceed
a threshold. This mask is then further dilated4 and used to filter the unwanted depth pixels.

Using the calibration data provided by YCB we correct the depth maps for lens distortion then
unproject the pixels into point clouds in camera space. We then segment the points into hits
and misses using the provided RGB segmentation masks. As the mask are taken from the color
camera perspective we first perform depth-to-color registration using the provided calibration
data. Then we transform the point clouds to the scanner turntable coordinate system, shared
with the BigBIRD meshes. Finally we filter hits outside of a cylinder enclosing the turntable,
along with hits at or below the ground plane. Specifics are covered in chapter 2.2.3.

4Dilation is a morphological operation. Dilation expands the shapes in a binary image using some kernel, in
our case a 7× 7 square.

CHAPTER 5. METHODOLOGY 32

5.3 Learning Architecture

Stage 1 Stage 2
NeRF

512
ReLU

512
ReLU

FC

⊕

shape

pose

xyz

n+m+3

512
ReLU

256
ReLU

FC

⊕

pose

m

512
ReLU

512
ReLU

FC

512
ReLU

FC

512
ReLU

FC FC

512
ReLU

FC

512
ReLU

FC

512
ReLU

FC FC
sdf

1

FC

shape

pose

xyz

n+m+3

FC

Figure 5.3: The structure of our neural signed distance field decoder, inspired by
DeepSDF and NeRF. It models a probabilistic decoder over a space of shapes. This
variant is 512 neurons wide, use ReLU nonlinearities, and is two stages deep with a final
NeRF stage. Our latent vectors consists of a shape and pose component. Skip connections
concatenate the network input onto the activations of preceding stages. FC is short for
Fully Connected.

We train our artificial neural networks with full-view 3D models, but are limited to partial
single-view observations at test time for shape completion. For this reason we went ahead
with an auto-decoder architecture, as auto-encoders expect the test input to be similar to the
training input. This recently proven framework gives us additional freedom to shape the layout
of our latent space and tweak the shape completion process.

We model our network Φ with learnable parameters θ and {zi}i∈Ω as a probabilistic decoder
(sec. 2.3.12) such that Φθ(x | zi) approximates the signed distance function SDFi(x) : x ∈ R3

for all shapes i ∈ Ω. The goal is for Φ to embed the shape priors in Ω in such a way that it can
be used to inform the shape completion process.

The objects in Ω are normalized (sec. 5.2.1) to fit within the reconstruction volume of Φ: a box
with extents [−1,−1,−1]T to [1, 1, 1]T . We refer to the pose of the shapes in Ω as the canonical
pose.

It is customary in deep learning to include skip connections to enable deeper architectures
to make better use of low-level relations between the input and output throughout the whole
network. Occupancy Networks (Mescheder et al. 2019) use a residual architecture whose skip
connections are based on addition, whereas DeepSDF (Park et al. 2019) use a densely connected
architecture with concatenation-based skip connections. We base our work on the latter due to
its lower size and complexity yet comparable performance.

We construct Φ as a deep multilayer perceptron (MLP) with nonlinearities subject to experi-
mentation, and concatenate the input (query coordinates and latent code) onto the activation of
every fifth layer. These 5-layer blocks are from here on referred to as stages. We split the latent
vector z into a shape and a pose component, to enable pose estimation. As in NeRF (Mildenhall
et al. 2020) we additionally concatenate the orientation code alone (zpose, see sec. 5.4.1) to the
last stage and reduce it with two fully-connected layers: the first layer halves the width and
final layer reduces the width to one, regressing the final prediction. The final skip connection
enables the network to scale its shapes without scaling the magnitude of their SDF gradients.
A two-stage ReLU variant of our network architecture 512 neurons wide is illustrated in fig. 5.3.

We cover how we train these networks and the nonlinearities we use in the following sections.

CHAPTER 5. METHODOLOGY 33

5.4 Training
We train our SDF decoders Φ as auto-decoders (sec. 2.3.11): we maintain a database of latent
vectors zi for each shape i ∈ Ω and optimize these vectors along with the hidden network
parameters θ. We train to find the latent vectors and network weights that minimizes the loss
computed across the training data:

arg min
θ, {zi}i∈Ω

∑
i∈Ω

∑
(xj ,yj)∈Xi

L (Φθ(xj | zi), yj) (5.3)

where Xi is the set of ground truth training examples for shape i ∈ Ω, and L is an objective
function subject to experimentation.

The training set consists of n pairs of 3D query coordinates x, corresponding ground truth SDF
values y, and their spatial gradients ∇xy:

Xi := {(xj , yj ,∇xjyj)}nj=0 : yj = SDFi(xj) (5.4)

For the sake of brevity we express L as L(y, yGT) where y is the predicted SDF value and yGT
is the target ground truth. L also have access to the ∇xy and ∇xyGT values, which we express
as an operation instead as pre-computed values provided as input.

5.4.1 Augmenting for Pose Estimation
Here we cover our primary contribution, which is to expand the latent space to encode the
orientation of a shape in addition to the shape itself. This serves to enable shape completion on
single-view observation data that does not conform to the canonical pose. Making the networks
learn and perform the pose transformation internally serves to make pose estimation during
shape completion draw more influence from the knowledge embedded in the networks

We decompose the latent space vector z into (zshape, zpose). zpose is further composed of a
translation t ∈ R3, a scale s ∈ R and a 6D rotation bx,by ∈ R3 such that zpose = (t, s,bx,by).

During training we augment each example j drawn from Xi (eq. 5.4) with a random spatial
transformation based primarily on the normal distribution N , and fix zpose to match the
augmentation. This forces the network to learn their relation, decomposing the shapes from
their orientation. We sample t from N (0, 0.52I3), sample s from N (1, 0.42), and sample bx,by
from a uniform distribution on the rotation group SO(3). We the augment the training example
j by:

x′j = sRxj + t
y′j = syj

∇xjy
′
j = R ∇xjyj

(5.5)

where ′ marks the new augmented values, xj is the query coordinate, yj is its corresponding
SDF value, R is the rotation matrix corresponding to (bx,by) as defined in equation 2.10, and
∇ is the vector differential operator.

This formulation results in the canonical pose becoming [0, 0, 0, 1, 1, 0, 0, 0, 1, 0]T , or put differ-
ently: the identity zpose transform.

We chose the 6D representation of rotation due to it being continuous (Zhou et al. 2019), it being
easy to normalize between optimization passes, and it making the orientation transformation
into a linear relation to regress. Linear relations are perfect for ReLU-based architectures to
learn.

CHAPTER 5. METHODOLOGY 34

5.4.2 Shaping the Latent Space of Shapes
In this section we constrain and regularize the latent space with various techniques. This is to
incentivize the networks to draw meaningful connections between the different shapes, and to
make it transition between shapes in a uniform fashion, enabling single-view shape completion
via search.

We assume, as Chabra et al. (2020) and Park et al. (2019) did, the prior distribution over
p(zshape) to be a zero-mean multivariate-Gaussian with a isotropic variance σ2I:

p(zshape) ∼ N (0n, σ2In) = N




0
0
...
0

,


σ2 0 · · · 0
0 σ2 · · · 0
...

...
. . . 0

0 0 0 σ2


 (5.6)

where N is the normal distribution, the vector 0n is of size n, and the identity matrix In is of
size n×n. We want to constrain the shape feature standard deviance σ to emerge as small as
possible. To this end we use their cost function Lcodereg to constrain the whole auto-decoder
database of latent vectors {zi}i∈Ω:

Lcodereg = 1
|Ω|
∑
i∈Ω
‖zshape
i ‖2 (5.7)

This is cost function benefits shape completion for various reasons: (1) It concentrates the
embedded shapes near the latent space origin. (2) It helps form a smooth manifold between
the origin and each shape, as the latent vectors are punished regardless of whether they are a
part of the current training batch or not. This in turn forces the networks to form an opposing
“outward” attraction towards the correct location in latent space that counterbalances Lcodereg.
(3) It punishes latent features with no significant impact on the reconstructed shape, making
room for the networks to efficiently allocate each shape feature in a meaningful fashion. (1) and
(3) boosts knowledge discovery, while (2) smooths the latent space and makes it more uniform.

The Lcodereg cost must be balanced with a hyperparameter coefficient λ1 to not overwhelm the
SDF reconstruction loss. We additionally schedule it to start at 0% and work its way up to
100% linearly during the first 150 training epochs. This is to not immediately squash down all
the codes to 0 before the network has even had the chance to learn any meaningful shapes.

At the start of training we initialize the latent vectors with rather small random values sampled
near zero. This is to prevent latent codes for similar shapes from diverging. We draw each
latent space shape vector from N (0n, 0.0012In) where n is the width of zshape, resulting in an
average initial 2-norm magnitude of 0.001

√
n for each shape code.

We use the dropout regularization technique (sec. 2.3.4.2) to further smooth the latent space.
Dropout trades reconstruction quality for a more uniform latent space, and must for this reason
be used sparingly. We do not use data augmentation techniques such as noise injection, as it is
shown to be detrimental to coordinate-based representation networks such as ours that need
to learn high-frequency relations and patterns on low dimensional inputs (Tancik et al. 2020;
Mildenhall et al. 2020).

It is common to have fewer dimensions in the latent space than the number of items in the
training set, which in our case is |Ω| = 83 objects. This is to create an information bottleneck
forcing the network to compress their representation using their structural similarities. Otherwise
the network could learn an orthogonal set of codes for each object, or put differently: a one-hot
encoding. We experiment with a smaller number of dimensions in our latent space than most
other related works have. This also serves to make our latent space even more compact, such
that shape completion via latent vector optimization becomes less likely to “fall off the manifold”
as Hao et al. (2020) put it.

CHAPTER 5. METHODOLOGY 35

5.4.3 Training Order
Related works use a simple training scheme where they train on one shape at a time throughout
an epoch, going through the dataset in a serial fashion. We instead draw batches from multiple
shapes chosen at random. This is to prevent the latent vectors optimized earlier in an epoch
from “drifting” by the end of the epoch, becoming “outdated” with regards to the network
weights.

We split the |Xi| = 250 000 SDF samples for each shape i ∈ Ω (eq. 5.4) into a train and
validation part, with 70% and 30% of the samples respectably. Our novel contribution is to
further divide these into sub-batches of 12500 samples. We construct an index listing all the
sub-batches for all shapes along with which shape the sub-batch came from, and shuffle it at the
start of every training epoch. This randomized index is then used to construct larger batches
consisting of n sub-batches, with n depending on the amount of memory available. The total
batch size thus equal 12500n. Our method enables us train on up to n different objects per
batch along with the correct latent vectors per training example.

5.5 Shape Completion Method
At shape completion time, we apply the network in reverse. We fix the hidden network
parameters θ and then search for the latent vector ẑ that best conforms to the single-view
observations data. We optimize ẑ with stochastic gradient decent to minimize a loss function L:

argmin
ẑ

∑
(x,y)∈X

L(Φθ(x | ẑ), y) (5.8)

where Φ is our SDF decoder network, and X is the set of observed single-view 3D points x and
corresponding SDF measurements y we complete the shape of.

We assume the same prior distribution over ẑshape as in equation 5.6. This formulation (proposed
by Park et al. 2019) applies to any number of SDF samples (x, y) ∈ X of arbitrary distributions,
as we optimize ẑ separately for each SDF sample. As such it can handle any form of partial
observation, and is not limited to single-views. This makes this shape completion method
extendable to registered multi-view and online5 shape completion.

We initialize ẑ = (ẑshape, ẑpose) such that ẑpose has zero translation, a scale of 1, and a random
rotation. ẑshape can be drawn near zero, but if the class or category of the object is known
then one can initialize ẑshape near where that class clusters in latent space. We include the cost
function Lcodereg (eq. 5.7) in our loss, scaled with a hyperparameter, to ensure that ẑshape stays
within the bounds of our compact latent space.

The 6D representation of rotation we use in ẑpose is very resistant to becoming malformed. This
makes it fit not only as an inference target, its intended use case, but also as an optimization
target. We normalize the rotation vector between every optimization step to not break any
“assumptions” learned by the network, having only seen their canonical form.

To get the correct pose we first transform the samples in X to fit within the reconstruction
volume, then apply the inverse transformation on the reconstructed shape.

We cover the different search strategies we experiment with during our evaluation.

5An online algorithm can process input data in the order the input is fed to the algorithm, without having
the entire input available when starting. Often used to process live streaming sensor data.

CHAPTER 5. METHODOLOGY 36

5.6 Experimental Setup
We explore in this thesis with different network sizes, nonlinearities, and objective functions.

We experiment with the novel SIREN architecture (Sitzmann, Martel, et al. 2020), alongside
a baseline multilayer perceptron (MLP) with ReLU-based nonlinearities. SIRENs are fully
connected MLPs with sinusoidal nonlinearities whose harmonic and inductive characteristics are
tuned by a hyperparameter ω0. We construct both of these networks with varying number of
stages, where each stage feed into the next stage concatenated with the input query coordinates
and the latent vector via a skip connection.

Following Mildenhall et al. (2020) we experiment with using positional encoding (PE, defined
in sec. 2.3.4.3). Tancik et al. (2020) show that using a Fourier mapping (a generalization of
positional encoding) on the network inputs results in an increased bias to learn high-frequency
components of the target signal.6 We apply the positional encoding γn on the query coordinates
x and on the orientation part of the latent space vector zpose (defined in sec. 5.4.1). We apply
γ8 separately on each of the three coordinate values in x and the translation in zpose, and apply
γ4 on each of the 6D rotation coordinate values in zpose.

We investigate using different loss functions for training our networks and performing shape
completion. We experiment with both L1 and L2 variants of the truncated SDF loss function
LTSDF proposed by Park et al. (2019) and the weighted loss function LDISN proposed by Xu
et al. (2019), defined below in equation 5.9 and visualized in figure 5.4. These loss functions
penalize the network when its SDF prediction deviates from the actual SDF value. LTSDF
allows the network to “cheat” further away from the surface boundary by only accurately
approximating a reduced SDF range, whereas LDISN biases the zero-crossing with a weight. We
additionally experiment with objective functions that constrain the analytical SDF gradient
of the network: the loss function Lsim and the cost function Lnorm proposed by Sitzmann,
Martel, et al. (2020). Lsim constrains the orientation of the spatial SDF derivative while Lnorm
constrains the magnitude. Lnorm constrains a property of the signed distance field that is
independent of the shape, acting as regularization, and limits our shape completion search to
valid fields only.

LTSDF(y, yGT) = Linner(clamp(y,−δ1, δ1), clamp(yGT,−δ1, δ1))

LDISN(y, yGT) =
{
m1Linner(y, yGT) if yGT < δ2

m2Linner(y, yGT) otherwise
LL1(y, yGT) = |y − yGT|
LL2(y, yGT) = (y − yGT)2

Lsim(y, yGT) = 1− 〈∇xy,∇xyGT〉

= 1− ∇xy · ∇xyGT

max(‖∇xy‖2 · ‖∇xyGT‖2, ε)
= 1− cosφyyGT

Lnorm(y) = ‖∇xy‖2 − 1

(5.9)

where GT is short for “ground truth”, Linner is a nested loss function subject to experimentation,
δ1, δ2,m1,m2 are hyperparameters with m1 > m2, clamp(x, a, b) clamps x between a and b
inclusive, | · | is the absolute value, 〈·, ·〉 is the cosine similarity between two vectors (expanded
in the following equality), ε = 10−8 prevents divisions by zero, ‖ · ‖2 is the Euclidean norm,
∇x is the vector differential operator with respect to x, and · is the inner product. The third
equality of Lsim follows from the Euclidean dot product formula, where φab is the angle between
the gradients of a and b.

6The same mapping is already inherent to SIRENs, but across the whole network and not just on the inputs.

CHAPTER 5. METHODOLOGY 37

LTSDF and LDISN were in their original papers based on L1 regression, due to L2 loss “amounting
to assuming Gaussian noise on the SDF values” (Park et al. 2019). Put differently: Linner = LL1.
We investigate their L2 counterparts to see if they aid with shape completion on noisy data.

We combine all the loss functions defined in equation 5.9 into a combined loss function, which
computes the mean loss over the training batch. Combined with the previously covered code
cost (Lcodereg in eq. 5.7) we derive the following loss function where each term is scaled with
their own λ hyperparameter:

Lcombined = λ1Lcodereg + 1
|Y |

∑
(y,yGT)∈Y

[
λ2LTSDF(y, yGT)

+λ3LDISN(y, yGT)
+λ4LDISN,TSDF(y, yGT)
+λ5Lsim(y, yGT)
+λ6Lnorm(y)

]
(5.10)

where Y contains the predicted and ground truth (GT) SDF value pairs for a single training
batch, and La,b denotes that a encloses the nested loss b. λ2, λ3 and λ4 are mutually exclusive.

The composition of LTSDF and LDISN into LDISN,TSDF is one of our novel contributions. Also
novel is training SIRENs with LTSDF and LDISN. Lastly, training networks with positional
encoding over a continuous space of orientations has not been done before.

If LTSDF is active then we can not have any expectations of what the networks do outside
of the truncation range ±δ1. As such for each prediction y we fix Lsim and Lnorm to 0 when
(|yGT| > δ1) ∧ (λ2 6= 0 ∨ λ4 6= 0).

We use a shorthand notation when discussing the combined loss in equation 5.10 going
forward. As an example: “LDISN,L1+sim” means that λ3 and λ5 are non-zero, and that LDISN
encloses LL1. λ1 is independent of these shorthands. If Lsim is mentioned then it is scaled with
λ5 = 0.04. If Lnorm is mentioned then it is scaled with λ6 = 0.015. λ2, λ3, λ4 are set to 1 if
mentioned. When discussing network architectures, “ReLU-PE ∇” means that the network is
constructed with ReLU nonlinearities, that it uses positional encoding (PE), and is supervised
with Lsim (∇). We train SIRENs with both 3D (Euler) and 6D rotation, and denote them as
such.

We expect the SIRENs to deal quite well with direct gradient supervision. The derivative of
a SIREN is yet another SIREN after all. On the other hand, SIRENs have yet to be used to
directly decode latent vectors. As SIREN can’t “turn off” neurons as ReLU does, we expect
SIRENs to either fail entirely or to draw even more connections between the shapes than ReLU.

Figure 5.4: How the truncated (TSDF) and weighted (DISN) loss functions deviate from
a baseline linear loss when we fix the prediction to zero. Truncating the signed distance
reduces the range which needs to be accurately approximated. Biasing the zero-crossing
with a large weight promotes learning more intricate surface details.

CHAPTER 5. METHODOLOGY 38

5.7 Evaluation Metrics
Following prior work we measure the accuracy of the SDF predictions against a separate
validation dataset while training our networks, using the following two metrics:

Mean Squares Error (MSE), which measures of the quality of estimators. It is the mean
of all the prediction errors, squared. MSE scores are always positive, with lower scores
being better. The MSE of n predictions is given by:

MSE = 1
n

n∑
i=1

(
yi − yGT

i

)2 (5.11)

where yi is the i’th predicted SDF value, and yGT
i is the i’th ground truth.

Peak signal-to-noise ratio (PSNR), which is a widely adopted metric measuring the
quality of signals. It computes the ratio between the peak signal power and the typi-
cal error. Higher ratios are better. Expressed in the logarithmic decibel scale it is given by:

PSNR = 10 ∗ log10

(
maxni=0 y

2
i

MSE

)
(5.12)

where yi is the i’th predicted SDF value, and MSE is defined in equation 5.11.

We track both the SDF and TSDF MSE and PSNR. The TSDF variants are computed with
truncated SDF values. We also compute for each SDF prediction the corresponding spatial
gradient using backpropagation, and score these as well. We track their 2-norm magnitude
(their Euclidean length) and their cosine similarity:

Cosine similarity is a metric for comparing the orientation of two vectors independent of
their magnitude. We use it to both constrain (Lsim) and score SDF gradients during
training. Scores range in [−1, 1], higher being better. Zero indicates the vectors are
orthogonal, positive scores means the vectors have a similar orientation while negative
scores indicate they are opposed. We compute the cosine similarity as:

〈∇xy,∇xy〉 = ∇xy · ∇xyGT

max(‖∇xy‖2 · ‖∇xyGT‖2, ε)
(5.13)

where ∇xy is the predicted SDF gradient, and ∇xyGT is the ground truth gradient.

We track both the SDF and the TSDF 2-norm magnitude and cosine similarity. The TSDF
variants are computed using only the gradients whose ground truth signed distance lies within
the truncation threshold (±δ1). These validation metrics is during training our “window” into
the generalizable performance of our networks.

After the training, we score the shapes reconstructed from known latent vectors. For each shape
i ∈ Ω we reconstruct a mesh Mi with marching cubes, then uniformly sample points along its
surface and store them in Ui. Corresponding points are sampled from the ground truth mesh
in Vi. We then compute, following prior work, these reconstruction metrics:

Chamfer Distance (CD) is a metric for scoring the difference between two point clouds,
known as the average case metric. Lower scores are better. It is given by:

CD = 1
|Ui|

∑
u∈Ui

min
v∈Vi
‖u− v‖22

+ 1
|Vi|

∑
v∈Vi

min
u∈Ui

‖v− u‖22
(5.14)

where | · | is the number of items in a set.

CHAPTER 5. METHODOLOGY 39

Earth Mover’s Distance (EMD), also known as the Wasserstein distance, is an optimal
transport metric for scoring the difference between two distributions. Lower scores are
better. EMD is commonly known as the best case metric when applied to point clouds. It
favors the inferred points to be distributed in a similar fashion to the ground truth points.
As such it can not be “cheated” as one can with the Chamfer Distance, as a one-to-one
correspondence between the points is constructed. The earth mover’s distance is given by:

EMD = min
φ:Ui→Vi

∑
u∈Ui

‖u− φ(u)‖2 (5.15)

where φ : Ui → Vi is a bijection (a one-to-one matching) from Ui to Vi.

Xu et al. (2019) claim the CD and EMD metrics mostly penalize the overall shape, leaving out
smaller details. To address this we include the following two metrics:

Mesh Cosine Similarity (COS) is a metric for scoring the orientation of the normal vectors
in a generated mesh. Higher scores are better. For each ground truth surface point in V :
find the closest face F in the inferred mesh Mi and compute the cosine similarity between
their normal vectors. The average mesh cosine similarity is thus given by:

COS = 1
|Vi|

∑
v∈Vi

n̂v · n̂arg minF∈Mi‖v−F‖2
(5.16)

where n̂x is the normal vector of x.

F-Score is a metric for scoring binary classifiers, or put differently: scoring positive and
negative measurements. It is concerned with detecting false positives and false negatives,
i.e. the correctness of the classification. We compute the precision7 and recall8 over all
the surface points in Ui and Vi. Tatarchenko et al. (2019) demonstrates that the F-score
is a comprehensive evaluation of the amount of correctly reconstructed surface area, when
we define a point in Ui or Vi to be positive if its distance to the nearest point in the other
set is less than a threshold value c ∈ R>0. We compute the precision and recall as defined
in equation 5.17 below, and combine them into a Fβ measure, where β ∈ R≥0 puts more
emphasis on one or the other. β = 1 results in their harmonic mean. The score ranges
from 0 to 1, with 1 indicating a perfect precision and recall.

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

precision =
∣∣ True

Positive

∣∣∣∣ True
Positive

∣∣+
∣∣ False

Positive

∣∣ = |{u | u ∈ Ui,minv∈Vi ‖u− v‖22 < c}|
|Ui|

recall =
∣∣ True

Positive

∣∣∣∣ True
Positive

∣∣+
∣∣ False

Negative

∣∣ = |{v | v ∈ Vi,minu∈Ui ‖u− v‖22 < c}|
|Vi|

(5.17)

7Precision is the proportion of positive identifications that is actually correct, also referred to as the true
positive rate or sensitivity.

8Recall is the proportion of actual positives identified correctly, also referred to as positive predictive value.

Chapter 6

Evaluation

We present in this chapter our evaluation of major experiments. We only provide for the sake of
brevity a broad description of the minor experiments, due to the sheer size of our experimental
setup. We start of with implementation details of our model described in chapter 5 pertinent to
our evaluation, and move on to our experiments training them. We then inspect and compare
3D meshes reconstructed from known latent vectors between competing models, then evaluate
how their learned knowledge transfer over to shape completion in a single-view context. We
encourage digital readers to use a dual-page view1, as this chapter feature many large floating
figures that cover entire pages.

Section 6.1 starts of with data preparation results.
Section 6.2 broadly covers the training of our models.
Section 6.3 evaluates the quality of 3D meshes reconstructed from known shape codes.
Section 6.4 explores the characteristics of the latent spaces formed by competing models.
Section 6.5 evaluates the shape completion ability of our model from a single-view.

6.1 Data Preparation
This section covers the preparation of training and evaluation data as outlined in chapter
5.2. We sampled full-view SDF clouds with from 3D meshes for use in training, and sampled
single-view SDF clouds from both synthetic scans and RGB-D images for use in single-view
evaluation. We based our processing pipeline on the publicly available mesh_to_sdf library
made available by Kleineberg, Fey, and Weichert (2020).

Some of the BigBIRD meshes featured incorrect face normals and windings. We tried fixing
these automatically2 but it did not work for all objects. 001_chips_can is particularly affected,
having inverted normals on its head. As such we omit back-face culling when scanning meshes,
but the illumination in some of the figures presented in this thesis are still affected.

6.1.1 Sampling SDF Gradients
The mesh_to_sdf library implements the full-view SDF sampling strategy proposed by Park
et al. (2019). We use it to sample 250 000 points from each object in the YCB dataset, 92%
near-surface and 8% uniformly. We extended mesh_to_sdf to additionally compute the spatial
gradients of the SDF values, and merged these contributions upstream for others to benefit
from.

1Dual-page view with this page on the right (odd pages left).
2Using https://trimsh.org/trimesh.repair.html#trimesh.repair.fix_normals

40

CHAPTER 6. EVALUATION 41

We computed the spatial gradients for uniformly sampled SDF points using the direction to the
nearest surface point scanned by the 3D virtual cameras. The spatial gradients for near-surface
samples however could not use this strategy as it proved too noisy. For this reason we instead
fix the near-surface SDF gradients to the normal vector of corresponding mesh face of the
nearest scanned surface point. We showcase a resulting SDF cloud and its spatial gradients in
figure 6.1.

(a) SDF cloud. Blue is positive, red is negative. (b) Gradient cloud. Blue vectors are uniform,
orange are near-surface.

Figure 6.1: A full-view SDF cloud of the 001_chips_can YCB object. Our training
dataset consists of clouds like these, where 92% of the points are sampled near-surface
and 8% are sampled uniformly within a sphere with radius

√
3. Here we show a coarse

cloud with radius
√

2: (a) has 1200 uniform and 3500 near-surface SDF samples. (b) has
600 uniform and 600 near-surface vectors.

6.1.2 Single-View Point Clouds
We create single-view SDF clouds from both synthetic scans and from real-world RGB-D images
provided by the YCB dataset.

The synthetic scans are created by rendering the high quality Google scanner models provided
by YCB to 600 × 600 depth buffers from random viewpoints. These depth maps are then
unprojected back into point clouds in model space using the inverse MVP transform. We
compute both hit and miss points form these depth maps, with the depth of the missing points
fixed to the far clipping plane. We showcase the steps of producing a synthetic single-view
hit+miss cloud in figure 6.2a-c. We implemented the single-view SDF sampling procedure
outlined in section 5.2.3 and apply it to a synthetic hit+miss cloud in figure 6.2d.

We process3 the real-world single-view RGB-D depth observations to hit+miss point clouds as
described in section 5.2.4. Figure 6.3 showcases raw RGB-D data and resulting hit+miss clouds
and SDF clouds for five equidistant turntable angles. We can not post-process the single-view
point clouds using the same techniques as the BigBIRD scanner use, as its techniques only
work on full-view clouds combined from many single-view clouds. Due to this we observe
some erroneous points around the fringes of the objects, even after the application of depth
discontinuity filtering.

3We implemented rudimentary image processing ourselves, including lens distortion correction, depth map
filtering and the unprojection into 3D point clouds. This is normally handled by the Intel RealSense framework
in our targeted lab environment, but it is not trivial to use on YCB data.

CHAPTER 6. EVALUATION 42

(a) Google mesh (b) Depth buffer (c) Hit+miss cloud (d) SDF cloud

Figure 6.2: The process of generating a synthetic single-view point cloud from a 3D
mesh. The 035_power_drill mesh (a) is here rasterized to a depth buffer (b) where
orange is near the camera. The buffer is unprojected into model space as a hit+miss point
cloud (c) where blue points are hits, orange are misses, and green is the camera position.
The hit+miss cloud is used to sample a SDF cloud (d) where blue points are positive and
red are negative. Note how the near-surface samples in (d) are distributed more uniformly
than the hit points in (c).

(a) Mask (b) Color (c) Depth (d) Filtered depth (e) Miss

(f) 213° Hit (g) 285° Hit (h) 357° Hit (i) 69° Hit (j) 141° Hit

(k) 213° SDF (l) 285° SDF (m) 357° SDF (n) 69° SDF (o) 141° SDF

Figure 6.3: A segmentation mask (a), color image (b) and depth image (c) of the YCB
object 001_chips_can taken from the NP3 BigBIRD perspective. Note how the color and
depth images have slightly different camera perspectives. (d) shows the results of applying
discontinuity filtering to (c). (f-j) show hit point clouds produced from these images for
various turntable rotations, aligned to the checkerboard. (e) visualize all the miss points
merged into a single cloud. In (k-o) we showcase single-view SDF clouds sampled from
the corresponding hit+miss point clouds, where blue points are positive and red negative.

CHAPTER 6. EVALUATION 43

6.2 Training
This section covers how we trained our networks and how certain findings influenced our
design decisions along the way. Finally we present the SDF MSE and PSNR validation metrics
measured after the last training epoch, for the most promising architectures.

We implemented our neural network in PyTorch and trained using the PyTorch-Lightning
framework. The network and its trainer can be configured to use the various nonlinearities and
loss functions covered in section 5.6.

We used Adam optimization with β1 = 0.9 and β2 = 0.999 decay rates. We varied the learning
rate η a lot throughout our experimentation, which we cover in the following subsection.
We landed on a final learning rate of ηL1 = 5 × 10−5 for the L1-based loss functions and
ηL2 = 5× 10−4 for L2. We fixed the hyperparameters defined in eq. 5.9 to the values used in
their original papers: δ1 = 0.1, δ2 = 0.01, m1 = 4, and m2 = 1.

We trained ReLU-based MLPs with a 10% dropout rate, and used 16-bit floating point precision
for both ReLU and SIREN. The reduced precision enabled us to fit larger batches of training
data in memory, optimizing over larger subset of objects for each step. We briefly experimented
with a stochastic weight averaging training schedule4, but its implementation in PyTorch
Lightning promptly broke upstream while we were experimenting with it, making us abandon
it for this thesis.

6.2.1 Discoveries, Optimization and Re-Design
We discovered early on that L2-based reconstruction loss started converging much earlier than
L1 did. We showcase validation data logged during training, smoothed with exponential moving
average (EMA), in figure 6.4. Seeing this we based much of our earlier experimentation on
L2. L2 had trouble figuring out the relation between zpose and the augmented SDF samples.
The training shapes were approximated correctly near the origin, but got warped near the
peripheries. This resulted in boxes and cylinders becoming noticeably concave or convex.
The networks trained with L2 loss did not become any more or less robust to sensory noise.
Seeing this we switched to primarily using L1 loss. We briefly experimented speeding up initial
convergence with a L2→L1 schedule triggered by reaching a target validation MSE threshold.
This midway change of loss proved unstable, causing the networks to immediately diverge once
hitting the trigger. We instead got L1 to converge earlier by using weight normalization, a
slower learning rate, and by reducing the initial magnitude of the latent vectors.

We saw on multiple occasions the SDF MSE and PSNR scores worsening while the mean SDF
gradient cosine similarity scores continued to rise, even when training without SDF gradient
supervision. This prevents us from using a early-stopping strategy, as no single validation
metric alone conclusively indicates overfitting. Finding better metrics to observe the validation
performance of SDF decoders could greatly benefit future research.

We initially trained on one object at a time in a serial fashion like Park et al. (2019). We saw
an increased rate of convergence when we switched to our own training order covered in section
5.4.3.

We trained with and without 6D rotation encoding, otherwise falling back to Euler angles. We
found that 6D rotation was a major improvement for ReLU-based networks, whereas SIRENs
performed measurably worse with it. We tried additionally feeding in the cross product between
the two halves of the 6D rotation vectors, effectively resulting in the full 3× 3 rotation matrix.
Both ReLU and SIREN converged faster with the cross products, now not having to regress
them themselves.

4Stochastic Weight Averaging approximates fast geometric ensembling at a fraction of the computational cost.
It averages learned parameters between multiple short runs with a cyclical learning rate, making it adjacent to
meta-learning.

CHAPTER 6. EVALUATION 44

(a) L1 loss (b) L2 loss

(c) L2 changed to L1 when SDF MSE=0.001 (d) L2 changed to L1 when SDF MSE=0.0001

Figure 6.4: ReLU-based networks with one and two stages, trained with both L1 and
L2 variants of LDISN. We plot the SDF PSNR measured across the validation dataset,
smoothed with α=0.8 EMA. L2 (b) loss began converging earlier than L1 (a) did. A
L2→L1 schedule (c-d) proved unstable and difficult to tune. H denotes when the loss
changed. Note how (a) is smoother than (b-d).

16-bit floating point precision initially proved unstable on the deeper ReLU networks. We
mitigated this with weight normalization, improving the performance of ReLU-based networks
constructed with two or more stages. Weight normalization improving the performance of
SIRENs however is not a “given”. SIRENs expect the weights of the fully connected layers to be
drawn from a uniform distribution parametrized with ω0, an assumption weight normalization
may break. Deep SIRENs have been shown to not suffer from either vanishing nor exploding
gradients, so we thought the lack of weight normalization would not pose a problem. Yet
we observed that SIRENs got more unstable the more stages we added, and thus we briefly
experimented with adding weight normalization. We show in figure 6.5 how weight normalization
drastically improved the performance of SIRENs with one and two stages. Exactly why that
is has yet to our knowledge to be formally proved, and may become the subject of a separate
paper.

We initially trained with 64 features wide latent vectors, fewer features than training shapes.
(Supplementary table A.2 list the 83 shapes.) 64 features proved insufficient for ReLU-based
MLPs to embed all the shapes. Most of the shapes got squashed into lathed5 approximations,
for instance simplifying boxes into cylinders. A dataset with more similar shapes may not have
had the same problem. Seeing this we worked our way up using larger latent vectors, stopping
at vectors 128 features wide. Consequently we later must verify that the learned codes are not
all orthogonal.

Initially we did not properly scale the signed distance values when augmenting with random
orientations as defined in equation 5.5. The original DeepSDF architecture proved well able to
learn these ill-formed fields. These fields not being valid however would have cause problems
further down the line. Once we started scaling the SDF properly the networks would suddenly
not converge anymore. This is when we introduced the final NeRF stage into our architecture
as visualized in figure 5.3, solving the problem.

All experiment using Lnorm diverged immediately. As we always paired Lsim and Lnorm together
5Lathed shapes are symmetrical about an axis of rotation. These are the shapes a real lathe produce. Lathing

may be partial.

CHAPTER 6. EVALUATION 45

(a) 1 stage, no weight normalization (b) 1 stage, with weight normalization

(c) 2 stages, no weight normalization (d) 2 stages, with weight normalization

Figure 6.5: SIRENs (ω0=25) with one and two stages, trained both with and without
weight normalization. We plot the TSDF PSNR measured across the validation dataset,
smoothed with α=0.8 EMA. Observe how (b) and (d) trained with weight normalization
converged more steadily, and had yet to plateau after 600 epochs. Red dots and crosses
show NaNs, the latter indicating the network never recovered. SIRENs seem to produce
and recover from regressing NaNs quite often, a characteristic not observed with ReLU.

we figured both were broken. A great while later did we discover what the problem was. All
our network converged on a mean SDF gradient magnitude around 0.1. (1 is expected.) Lsim
thankfully worked quite well when used alone. We checked for mistakes in how we generated
SDF training samples or how we calculated the SDF gradients, but found none. For this reason
we had to stop using Lnorm entirely. This is a shame, as it would have been a great tool to
regularize the latent space in areas where the shape is not known, as it constrains an invariant
property of signed distance field that is independent of the shape.

We trained initially with a Lcodereg cost of λ1 = 0.012 as proposed by Park et al. (2019). The
resulting latent spaces were uneven and proved difficult to search efficiently. Observing this we
bumped λ1 up to 0.042, which yielded a more compact shape manifold. With this change the
SIRENs saw an increase in shape completion performance, the reason for which is visible in
figure 6.8c.

6.2.2 Finding the Best Combination
We trained in total 821 networks on the GPGPU compute cluster by Själander et al. (2019).
The majority of our efforts was here spent tweaking hyperparameters and ensuring the net-
works produced sound looking output. We started of small, incrementally training larger and
larger networks. We use a final hidden width of 512 neurons, same as most other related
works. We compare the 8 following objective functions: LL1, LL1+sim, LTSDF,L1, LTSDF,L1+sim,
LDISN,L1, LDISN,L1+sim, LDISN,TSDF,L1, and LDISN,TSDF,L1+sim. The building blocks for these
loss functions are defined in equation 5.9.

The measured SDF MSE and PSNR plateaued early when we trained LReLU MLPs with only
64 shape features with LDISN,L1 loss, a problem LTSDF,L1 did not exhibit. LDISN,L1+sim resulted
in more accurate gradients, at the cost of an increased signed distance error. We believe LDISN
allocated more latent features to describe the full SDF range instead of focusing on details near
the zero boundary. Interestingly LDISN,L1 outperformed LTSDF,L1 when we used 128 latent
features. Combining the two LDISN,TSDF,L1 quickly learned the finer surface details, achieving

CHAPTER 6. EVALUATION 46

a higher PSNR despite a higher MSE. LDISN,TSDF,L1+sim performed better than LDISN,TSDF,L1,
being improved by SDF gradient supervision. LDISN,L1+sim resulted in better SDF gradients
than LDISN,TSDF,L1+sim, but performed worse when compared against LDISN,L1 in terms of
MSE and PSNR.

Positional encoding (PE) helped deeper networks convergence initially, at the cost of a lower
final accuracy. We show this behavior in figure 6.6. The deeper networks responded better to
PE, likely as a result of their higher capacity for rote memorization. We experimented with
multiple values of n in γn ranging from 4 to 12, but could do not determine any n as being
more optimal. PE did not respond well to SDF gradient supervision, likely not utilizing the
positionally encoded features at all.

(a) No encoding (b) Positional encoding

Figure 6.6: ReLU-based networks without weight normalization, trained both with and
without positional encoding (PE). We plot the SDF PSNR measured across the validation
dataset, smoothed with α=0.8 EMA. PE seems to aid the deeper networks learn, while
slowing down the more shallow ones. The red crosses are NaNs, showcasing how networks
may suddenly diverge without weight normalization.

SIRENs proved highly volatile to train and required SDF gradient supervision to perform well at
all. Without gradient supervision they spent on average 300 epochs before starting to converge.
With even basic LL1+sim loss however they suddenly converged right away. We observed that
SIRENs regressed well oriented SDF gradients almost immediately, then spent around 30 epochs
before the TSDF PSNR started to climb. This indicates that the SIRENs found the curvature
of the distance field early, but needed time to move the isosurface towards 0 and even out
the field. Curiously, the SIRENs we trained with LDISN,L1+sim would not converge until after
at least 350 epochs had passed. Pressed for time we did not investigate why. LTSDF,L1+sim
converged as normal and is not affected this problem. LDISN,TSDF,L1+sim again achieved the
highest SDF PSNR measurements despite a worse MSE. LL1+sim and LTSDF,L1+sim had the
better MSE scores and SDF gradients orientations.

We experimented with various values of ω0 in SIREN networks, ranging from 15 up to 45.
(Sitzmann, Martel, et al. 2020 recommend ω0 = 30.) We found no major differences within the
range 25± 5, and thus we fixed it to 25.

We switched from ReLU to LReLU along the way, to avoid the “dying ReLU” problem. We did
not have time to extensively measure the difference in performance between ReLU and LReLU
however, nor any of the other related nonlinearities such as SiLU.

Overall we observed the following trends: Including Lsim made the networks converge earlier
and at a more steady pace. With it the variation between training runs was greatly reduced. It
improved the mean SDF cosine similarity by about 13% after reaching 600 epochs, diminishing
to a 6% lead after 1500 epochs. On LReLU, Lsim outperformed not using gradient supervision
until about 350 epochs, after which LTSDF and LDISN overtook their Lsim counterparts in
terms of SDF MSE and PSNR. The inclusion of Lsim increased the total magnitude of the loss,
making the Lcodereg cost less effective.

We trained LReLU MLPs and SIRENs of various depths, comparing networks constructed with
one, two, and three stages, capped of with a final NeRF stage. We concluded that LReLU

CHAPTER 6. EVALUATION 47

MLPs perform best with 2 stages, likely suffering from vanishing gradients when constructed
with more. Deeper networks likely have a greater capacity to learn complex shapes, but could
not do so within the 1500 epochs we trained for. SIRENs performed best when constructed
with only a single stage, getting more unstable the more stages we added. This we attribute to
SIRENs possibly not responding well to the skip connections between each stage. Future works
should explore different SIREN architectures than ones based on DeepSDF and NeRF.

6.2.3 The Final Training Batch
Here we train our final batch of networks for 1500 epochs, using the settings and hyperparameters
we established as being optimal in the previous two sections. We present in table 6.1 below the
final SDF MSE, PSNR and mean field gradient cosine similarities measured across the validation
dataset. The LReLU MLPs were reaching their plateau, while the SIRENs were converging at
a steady rate when we terminated the training. Network #4 diverged and predicted NaNs6

midway in. We tried in vain to train it multiple times.

Table 6.1: The final SDF MSE(×107), PSNR and mean 〈∇x〉 (gradient cosine similarity)
measurements for a batch of networks trained for 1500 epochs. Bold highlights the best
scores in each group. The networks were trained with weight normalization, 0.042Lcodereg,
and zshape vectors 128 features wide. PE is positional encoding, n is the number of network
stages not counting the final NeRF stage. These metrics are defined in chapter 5.7, and
graphed over time in supplementary figure A.3.

Type n Training loss SDF
MSE↓

SDF
PSNR↑

TSDF
MSE↓

TSDF
PSNR↑

TSDF
〈∇x〉↑

1 LReLU-PE 2 LTSDF,L1 - - 824 27.5 0.603
2 LReLU-PE 2 LDISN,L1 4025 43.4 354 30.8 0.734
3 LReLU-PE 2 LDISN,TSDF,L1 - - 3578 30.9 0.600
4 LReLU-PE 2 LTSDF,L1+sim - - NaN NaN NaN
5 LReLU-PE 2 LDISN,L1+sim 10932 39.1 431 29.9 0.868
6 LReLU-PE 2 LDISN,TSDF,L1+sim - - 1400 35.3 0.846
7 LReLU 2 LTSDF,L1 - - 267 32.4 0.817
8 LReLU 2 LDISN,L1 5810 41.8 263 32.1 0.821
9 LReLU 2 LDISN,TSDF,L1 - - 432 39.6 0.839

10 LReLU 2 LTSDF,L1+sim - - 377 30.7 0.855
11 LReLU 2 LDISN,L1+sim 7457 40.8 358 30.9 0.880
12 LReLU 2 LDISN,TSDF,L1+sim - - 601 37.9 0.897
13 SIREN 3D 1 LL1+sim 906 50.4 249 32.7 0.944
14 SIREN 3D 1 LTSDF,L1+sim - - 317 31.5 0.961
15 SIREN 3D 1 LDISN,L1+sim 904 50.3 277 32.1 0.943
16 SIREN 3D 1 LDISN,TSDF,L1+sim - - 357 40.8 0.956
17 SIREN 6D 1 LL1+sim 544 52.6 171 34.3 0.962
18 SIREN 6D 1 LTSDF,L1+sim - - 287 32.1 0.965
19 SIREN 6D 1 LDISN,L1+sim 1044 49.6 302 31.7 0.945
20 SIREN 6D 1 LDISN,TSDF,L1+sim - - 544 39.4 0.958

This table indicates that the SIRENs performed better in general than the LReLU MLPs, but
the validation metrics disagree on which loss function was the best.

We could not at this stage determine whether the SDF MSE or PSNR was the better metric,
6Not a Number (NaN): Invalid floating point operations, such as divisions by zero, may in certain systems

produce NaN values instead of halting the computation.

CHAPTER 6. EVALUATION 48

not having measured the quality of reconstructed meshes. We believe however none of them are
a good metric alone: LDISN,TSDF produced by far the best PSNR scores, but this came with
the cost of an increased MSE. We saw this behavior in both LReLU and SIREN. An increased
MSE should in theory lower the PSNR score, meaning that something has to compensate. This
hints at there being some sort of trade-off in play, making the PSNR not conclusively indicate
higher reconstruction quality or generalization.

LReLU: The LReLU MLPs did not for our applications benefit from positional encoding (PE).
PE have worked wonders for related works featuring canonical-only poses, but it did not work
over a continuum of different orientations. We attribute their subpar performance to how
transforming positionally encoded query coordinates to a different orientation is a very hard
problem to solve, even for machines. Applying the rotation of a 6D vector to raw coordinates
on the other hand is just a simple linear relation, perfect for non-PE LReLU MLPs to learn.
The LReLU-PE MLPs likely resorted to a great deal of rote memorization, generalizing poorly
to new unseen shapes.

For non-PE LReLU we observe that LDISN outperformed LTSDF on nearly every validation
metric, even achieving the lowest MSE within the TSDF range. We expected LTSDF to produce
more accurate field gradients than LDISN, though this proved not to be the case. LDISN,TSDF
produced even more accurate field gradients than LDISN did however, indicating both are
benefitial.

Lsim trades an increased SDF error for more accurate field gradients. Whether this is beneficial
for the quality of the reconstructed shapes or not determines whether Lsim should be used.
We note that Lsim made the networks converge at a much faster rate initially, and in a more
steady manner with less variation between training runs. This makes Lsim an attractive loss
function for finding meta-learned initializations for few-shot optimization, applicable to the
work of Tancik et al. (2021).

SIREN: The SIRENs produced the best measurements across the board, exhibiting by far the
most accurate field gradients. This is despite being half the size of the LReLU MLPs. Seeing
this we expect SIRENs to produce the best shape reconstructions.

SIRENs initially converged at a faster rate when trained with 6D rotation input (and cross
products) instead of traditional Euler angles, but their performance evened out as the training
progressed. 6D rotation working this well is beneficial for shape completion, as Euler angles are
susceptible to gimbal lock. The SIRENs seemed in terms of MSE and PSNR to perform better
with basic LL1,sim loss compared to LTSDF,L1+sim and LDISN,L1+sim. The two SIRENs trained
with LDISN,L1+sim spent around 400 epochs idle before converging at all, but then suddenly
caught up to the truncated SIRENs over the following 900 epochs. The fact that network #15
surpassed #14 at all in terms of TSDF MSE is so far an anomaly, as we have not seen this
happen in any of the earlier experiments.

6.2.4 Training Time
The two-stage LReLU MLPs without SDF gradient supervision each spent on average six-and-
a-half hours training 1500 epochs on a Nvidia V100. With SDF gradient supervision, that time
jumped up to 11 hours. LReLU MLPs with positional encoding each spent around ten hours
without gradient supervision, and 17 hours with it. Single-stage SIRENs training with SDF
gradient supervision each spent on average 8 hours.

CHAPTER 6. EVALUATION 49

6.3 Evaluation of Reconstructed Shapes
Here we evaluate the quality of 3D meshes reconstructed from known latent vectors. We
report in table 6.2 various metrics scoring the distance between reconstructed shapes and their
corresponding ground truth meshes:

Table 6.2: The mean and m̃edian CD(×104), EMD(×107) and COS, defined in chapter
5.7, for each network in table 6.1. CD and EMD measure distances inside the unit-scale
reconstruction volume. Bold highlights the best scores in each group, and the three best
performing networks. Network #7 is comparable to DeepSDF. We further explore the
those marked * from here on, chosen by their median performance.

Type Training loss CD↓ C̃D↓ EMD↓ ẼMD↓ COS↑ C̃OS↑
1 LReLU-PE LTSDF,L1 9.816 6.084 3.279 1.828 0.484 0.447
2 LReLU-PE* LDISN,L1 16.846 1.571 4.860 0.574 0.534 0.630
3 LReLU-PE LDISN,TSDF,L1 9.194 5.151 2.758 1.840 0.566 0.634
4 LReLU-PE LTSDF,L1+sim - - - - - -
5 LReLU-PE* LDISN,L1+sim 21.892 1.949 6.331 0.851 0.575 0.743
6 LReLU-PE LDISN,TSDF,L1+sim 14.582 3.552 4.619 1.526 0.571 0.679
7 LReLU LTSDF,L1 9.369 0.967 2.491 0.534 0.623 0.690
8 LReLU LDISN,L1 8.364 0.747 2.466 0.245 0.608 0.665
9 LReLU* LDISN,TSDF,L1 9.844 0.574 2.594 0.351 0.623 0.702
10 LReLU LTSDF,L1+sim 8.856 3.959 2.453 0.977 0.711 0.763
11 LReLU LDISN,L1+sim 11.744 0.473 3.943 0.213 0.623 0.772
12 LReLU* LDISN,TSDF,L1+sim 4.638 0.378 1.881 0.127 0.670 0.791
13 SIREN 3D LL1+sim 0.138 0.067 0.126 0.015 0.779 0.838
14 SIREN 3D* LTSDF,L1+sim 3.296 0.058 1.404 0.014 0.771 0.846
15 SIREN 3D LDISN,L1+sim 1.470 0.224 0.615 0.117 0.739 0.821
16 SIREN 3D LDISN,TSDF,L1+sim 0.256 0.087 0.245 0.026 0.774 0.842
17 SIREN 6D LL1+sim 3.997 0.312 1.693 0.208 0.676 0.809
18 SIREN 6D* LTSDF,L1+sim 0.103 0.065 0.064 0.016 0.790 0.851
19 SIREN 6D LDISN,L1+sim 0.891 0.103 0.616 0.030 0.755 0.827
20 SIREN 6D LDISN,TSDF,L1+sim 2.519 0.121 1.439 0.064 0.728 0.812

The LReLU MLPs without positional encoding outperformed the ones with it. The SIRENs
performed better than all of the LReLU MLPs. Many of the SIRENs (#14, #17 and #20) have
mean scores that suffers from outliers. We attribute this to how volatile the SIRENs behaved
during training. If we had terminated the training just an epoch earlier then we would likely see
radically different mean scores. It is likely that SIRENs may benefit from a scheduled learning
rate that decrease towards the end of training. Between the 3D and 6D SIRENs there were
no significant difference in performance, aside from the aforementioned random outliers. This
shows how well the periodic activation of SIRENs deal with Euler angles discontinuities. Even
so, the properties of 6D rotation vectors are more beneficial for shape completion.

The SDF MSE and PSNR scores indicated that LReLU MLPs trained with SDF gradient
supervision would perform worse than those trained without. This has now been flipped on
it head, as we find just the opposite to be true! As such we conclude that SDF MSE and
TSDF scores do not accurately reflect the final reconstruction quality. The training metric that
best hints at the final shape reconstruction performance appear to be the mean SDF gradient
similarity. This metric alone however does not account for where the 0-level set is.

Going by median performance, we determine that the LReLU MLPs performed best with
LDISN,TSDF,L1+sim, and that the SIRENs performed best when trained with LTSDF,L1+sim.

CHAPTER 6. EVALUATION 50

SIRENs clearly came out on top between the two. We mark the median winner networks with
a * and examine primarily these networks going forward, for the sake of brevity. We further
report in table 6.3 F-scores for the median winners, along with the best SDF MSE and PSNR
scoring SIRENs.

Table 6.3: The mean F1-score defined in chapter 5.7 (higher is better), for varying
thresholds as a % of reconstruction volume side length. We include networks from table
6.2 marked *, as well as the best TSDF MSE and PSNR scoring SIRENs. Bold highlights
the best scores in each group. ∇ indicate the network was supervised with Lsim.

Type 0.1% 0.2% 0.3% 0.5% 0.7% 1% 3% 5% 10% 20%
2 LReLU-PE* 0.016 0.077 0.166 0.331 0.437 0.53 0.74 0.81 0.90 0.98
5 LReLU-PE ∇* 0.013 0.058 0.126 0.265 0.373 0.50 0.78 0.83 0.89 0.96
9 LReLU* 0.026 0.135 0.292 0.534 0.647 0.73 0.87 0.91 0.96 1.00
12 LReLU ∇* 0.028 0.138 0.295 0.564 0.708 0.81 0.93 0.95 0.98 1.00
13 SIREN 3D ∇ 0.047 0.246 0.500 0.821 0.922 0.97 1.00 1.00 1.00 1.00
14 SIREN 3D ∇* 0.063 0.290 0.561 0.872 0.939 0.96 0.97 0.98 0.99 1.00
16 SIREN 3D ∇ 0.050 0.218 0.432 0.777 0.918 0.96 0.99 1.00 1.00 1.00
17 SIREN 6D ∇ 0.018 0.107 0.258 0.572 0.732 0.82 0.94 0.97 0.99 1.00
18 SIREN 6D ∇* 0.047 0.241 0.501 0.848 0.952 0.99 1.00 1.00 1.00 1.00
20 SIREN 6D ∇ 0.032 0.161 0.357 0.711 0.849 0.91 0.96 0.98 0.99 1.00

These F-scores show how Lsim improves the reconstruction quality for LReLU, while making
LReLU-PE perform worse. Xu et al. (2019) measure a 0.943 F-score at 5% with their dual-
network ReLU architecture. This score is comparable to network #12, which is smaller than
theirs and embeds orientation in addition to the shape. Network #14 and #18 meanwhile reach
the same score at 0.7%. To put the 0.7% threshold in perspective: it is on average a bit over 2
millimeter for the YCB objects. 5% is near 15 millimeters.

We render in figure 6.7 a handful of shapes reconstructed by the 6 networks marked with a
* in table 6.2. The simpler shapes look good in general. The LReLU MLPs seem to struggle
with the more intricate shapes, and fails to reconstruct most of the tools and Lego pieces. The
SIREN reconstructions on the other hand are all accurate and look great.

LReLU-PE: The positional encoding (PE) reproduced noisy surfaces with substantial undula-
tions or ripples, likely resulting from the high-frequency encoding. The ripples disappeared when
supervised with Lsim, but the accuracy suffered as a result. Due to their subpar performance on
all metrics we set LReLU-PE aside and focus primarily on LReLU and SIREN going forward.

LReLU: Notice how the well the lip around the lid of the master chefs can was reproduced.
We find that the networks learned rotationally invariant relations and patterns on the shapes,
which we attribute to the orientation augmentations. These augmentations proved however
to have been a bit harsh, as most of the reconstructions have a rounded quality to them.
The LReLU with only 64 shape features showcased further emphasize this effect, primarily
producing lathed approximations. SDF gradient supervision (Lsim) alleviated this issue, properly
constraining surface normals near corners and edges. Lsim resulted in a well-formed banana
and a recognizable airplane. None of the LReLUs managed to to reconstruct the hammer or
any of the other hand tools.

SIREN: One of the outlier errors tanking the mean scores for network #14 in table 6.2 can be
seen on its banana reconstruction. It was able to reconstruct the banana, but the surrounding
volume seem to not have been sufficiently constrained. These random outliers issues are not
limited to those trained with LTSDF, indicating that a wider truncation range (larger δ1) would
not solve this issue.

CHAPTER 6. EVALUATION 51

(a) 3D reconstructions from known latent vectors

Figure 6.7: A handful of YCB objects reconstructed by the 6 networks in table 6.2 and
6.3 tagged with a *, along with a smaller LReLU network with only 64 shape dimensions.
We showcase the ground truth mesh alongside reconstructions from the learned latent
vectors. PE denotes positional encoding, while ∇ indicates supervision with SDF gradients.
The meshes were constructed with marching cubes in a 1233 voxel grid. We note that the
SIRENs are only half as the size of the LReLU MLPs, showcasing their superior efficiency.
This figure does not showcase single-view completions.

CHAPTER 6. EVALUATION 52

6.3.1 Evaluation Metric Details
To compute the metrics we reconstructed a mesh with marching cubes for each object, then we
sampled 32768 points uniformly along both the reconstructed and ground truth surface meshes.
We marched in a 2563 grid spanning [-1.05, 1.05] along the x, y and z axes. We opted to sample
that many points, as the modest number of 2048 used by Xu et al. (2019) and Kleineberg, Fey,
and Weichert (2020) resulted in relatively large distances between even ground truth meshes
compared against themselves. The SIREN reconstructions strayed well into this noise floor,
prompting for a larger sample population. EMD got too expensive to compute with this many
points however, as the search for the optimal bijection did not scale well. Luckily this metric is
in deep learning commonly approximated with various distributed approximation schemes. We
opted to use Sinkhorn Divergence with a blur of 0, implemented in CUDA by Fey and Lenssen
(2019).

The mesh cosine similarity metric (COS) proved too expensive to compute for the fine-grained
meshes we marched, as there simply were too many polygons to search though. We tried
speeding up the search by sectioning the faces by volume into R-trees, but this quickly
consumed all the available memory. We instead simplified the metric by reusing the surface
points sampled earlier for the CD, EMD and F1 metrics: for each ground truth point we
located the nearest predicted point and compared those. This works because as we kept track
of the face indices used to sample every surface point. To derive the normal vector n̂ of a
sampled point we converted the point to three barycentric coordinates b1, b2, b3 between the
three face vertices, and used them to interpolate between the corresponding three vertex normals:

n̂point = n̂1b1 + n̂2b2 + n̂3b3
‖n̂1b1 + n̂2b2 + n̂3b3‖2

(6.1)

6.4 Examination of the Latent Space of Shapes
Here we examine how the different networks constructed their latent spaces for the training
shapes enumerated in supplementary table A.2. We largely observed the LReLU MLPs converge
on similar looking latent spaces. The inclusion of SDF gradient supervision or positional
encoding made here little to no difference. The SIRENs also converged on similar latent spaces,
but distinct from LReLU.

6.4.1 Latent Space Saturation
We present in figure 6.8 a height map of all the zshape codes learned by three networks: #12 and
#18 in table 6.2, along with a SIREN trained with a low Lcodereg presented here to illustrate a
trait. We additionally report the per-feature standard deviation. These visualizations show us
whether the latent spaces are saturated or not: columns with low variation are features the
networks have not assigned any meaning to, and have as a result been clamped down to 0 by
Lcodereg.

LReLU MLPs with 128 feature wide latent vectors got packed with information spread in a
uniform fashion (fig. 6.8a). This is the distribution we were aiming for in equation 5.6, as shown
in supplementary figure A.1a. When we tried training LReLU MLPs with 256 shape features
(as proposed by Park et al. (2019)) we found that most of the features went unused. Any
number lower than 128 resulted in an increased shape reconstruction error. This indicates that
128 features is a sweet-spot for LReLU over our dataset, and that they are unable to embed
more shapes.

SIRENs (network #18) left many of the features unused (fig. 6.8b), and show signs of having
the capacity to embed many more shapes. This hints at their ability to compress the training
shapes down into fewer features than the LReLU MLPs were able to. We attribute this to
how ReLU-based MLPs are more biased towards learning low-frequency components, whereas
SIRENs work with a wider frequency spectrum as tuned by ω0. The second SIREN we showcased

CHAPTER 6. EVALUATION 53

(a) LReLU (#12) (b) SIREN (#18) (c) Relaxed SIREN

Figure 6.8: Raw known zshape codes along with the standard deviation of each feature,
learned by network #12 and #18 in table 6.2, and a third SIREN. The two first networks are
representative for most LReLU MLPs and SIRENs. (a) and (b) trained with 0.042Lcodereg,
while (c) only used 0.012. Observe how all features in (a) vary uniformly, while a sizeable
number in (b) go unused. SIRENs produce at times stray features not seen in LReLU,
visible here as bright or dark spots. We attribute these to the periodicity of SIRENs,
believing they have nudged themselves in a neighboring phase. This appears to have
happened to a whole object (row) in (b): the banana. Figure 6.9 explore these latent
vectors in further detail. Supplementary table A.2 map the objects IDs.

(fig. 6.8c) used more shape features, making each of them alone have a smaller impact on the
shape. Its height map reveals prominent vertical lines, indicating that its latent space is not
zero-centered. These characteristics came as a result of it not being constrained by Lcodereg to
the same degree.

6.4.2 Knowledge Discovery
We explore these three sets of learned shape vectors in greater detail in figure 6.9. In it we
project the high-dimensional latent vectors down onto a 2D plane using T-distributed Stochastic
Neighbor Embedding (t-SNE). An inherent structure may emerge if we color the projected
vectors by their class or category. We additionally compute a cosine similarity matrix between
all vector pairs to see how they correlate with each other and whether the network learned
an orthogonal set of codes or not. If the matrix resembles the identity then the codes are all
orthogonal, indicating that the network likely do not generalize well to unseen shapes.

Starting with LReLU, we observe that the objects in the ball and cup classes have each been
grouped together closely. This is apparent on both the t-SNE projection and in the similarity
matrix. Both graphs show that some of the fruits have been found similar to the ball class
as well. The cans and boxes are somewhat related to each other, but have become spread far
apart across the latent space. We attribute this to how poorly aligned the training shapes are
to one another, and how few instances of each class there are. The tool class, a class exhibiting
a lot of variation due to the specialized nature of tools, has created a plateau in the similarity
matrix. This indicates that the network has found shared features in their design, likely their
lower volume or perhaps their slim and elongated shape.

The SIRENs too managed to cluster and draw meaningful connections between similar objects.
This is apparent in the t-SNE projection which indicates that the SIREN managed to group
the object classes much like how the LReLU MLPs were able to. The similarity matrix feature
many of the same clusters as for LReLU, but the amount of correlation is here a lot more
prominent. This indicates that SIRENs have different inductive biases during shape completion.
The second SIREN was also able to group the objects quite well. If however we assume its
distribution is instead centered around the geometric mean as opposed to the origin, then it
produces a similarity matrix closely resembling the identity (this is not the case for sufficiently

CHAPTER 6. EVALUATION 54

(a) LReLU (#12) - t-SNE (b) Cosine similarity (c) Vector magnitudes

(d) SIREN (#18) - t-SNE (e) Cosine similarity (f) Vector magnitudes

(g) "Relaxed SIREN" - t-SNE (h) Zero-centered (i) Magnitudes (j) Mean-centered

Figure 6.9: Three visualizations for the raw latent codes shown in figure 6.8. Each
row explores a separate network. The t-SNE scatter plots illustrate the layout of and
relation between the classes and how they cluster, distribute, and interlink in latent
space. The similarity matrices show how similar each latent vector pair are, assuming
a zero-centered spherical distribution: 0 indicates orthogonality while non-zero values
are correlated: positive scores are similar while negative are dissimilar. As the “relaxed”
SIREN is likely not zero-centered, we additionally report a similarity matrix centered
around the geometric mean vector, revealing a near-orthogonal set. However, (g) still
indicates the object classes cluster as in (a) and (d). Finally we present the Euclidean
magnitude of each known shape vector, colored by object class. These magnitudes proved
instrumental in tuning single-view vector optimization. Supplementary table A.2 map the
object IDs.

CHAPTER 6. EVALUATION 55

constrained SIRENs). The reduced Lcodereg seem to in this case to have allowed that SIREN to
overfit on the training shapes, making it likely not able to generalize to new unseen shapes.
This is thankfully not the case for any of the SIRENs showcased in table 6.2 which trained with
sufficient Lcodereg.

6.4.3 Latent Space Smoothness
To be able to traverse the latent space via optimization towards a target shape, it is important
that the latent space is continuous, that the shapes transition smoothly between one another,
and that most latent vectors produce meaningful shapes. Otherwise it is less likely that a search
for conforming shapes can perform well.

The SIREN latent space distribution is not spherical like the prior assumed in section 5.4.2. The
shape features extracted by SIRENs are a lot more dependent with one another than the ones
regressed by the LReLU MLPs. This can be seen in supplementary figure A.1, not included
here for brevity. The figure shows that there is a considerable amount of correlation between
many of the shape features, a lot more than for LReLU MLPs. Luckily the Bayesian inference
analysis by Park et al. (2019) still hold water under these circumstances, indicating that shape
completion should work. However, as the SIREN latent spaces are not spherical they are more
likely to feature holes, sharp edges, or cluster shapes into separate neighborhoods. Noisy data
may bridge or “short-circuit” parts of the manifold that would otherwise in t-SNE projections
be well-separated. As such we can not conclude from the t-SNE plots alone whether the SIREN
latent spaces are uniform.

We evaluate uniformity by traversing through latent space. In figure 6.10 we linearly interpolate
between known shape vectors and render in-between reconstructions. Observe how uniform the
spherical LReLU space is. It only has trouble when transitioning from a drill lying on its side to
an upright bleach bottle, a transition even humans find difficult to imagine. The shapes blend
smoothly from one to the other, indicating that the reconstructions are very pliable. SIRENs
on the other hand pack their shapes closer together. When SIREN #14 traversed from the
cracker box to the marker it passed by the colored wood block, then the foam brick, then the
073-e Lego piece, then the 073-c piece, before reaching the marker. Some of the more distant
shapes seem to be separated into distinct neighborhoods, causing the interpolation to leave
the shape manifold and reconstruct abnormal shapes. This is apparent in the interpolation
from the drill to the bleach cleanser by SIREN #18, indicating that there are holes and edges
in SIREN spaces. However, SIRENs interpolate smoothly when staying inside of well formed
neighborhoods, arguable better than what LReLU does. This is demonstrated by the SIRENs
showcased in figure 6.10, which both passed by the bleach bottle when interpolating from the
chips can to the mustard bottle, staying more rigid and “true” to the training shapes. Linear
interpolation alone can not tell the full tale however, as it performs better on convex manifolds
than for concave ones.

We conclude that the LReLU MLPs produced the most uniform latent spaces. However, LReLU
seem to reconstruct shapes as the sum of many simple and independent features, whereas
SIREN regress complex spaces of less pliable shapes that stay more true to the YCB objects.
We attribute this to how ReLU-based MLPs have a bias to learn low-frequency patterns, while
SIRENs learn more complex patterns as tuned by ω0.

Altogether we find that both LReLU and SIREN is able to generalize structural commonalities
between the training shapes. The LReLU MLPs appear to have become saturated with even the
few shapes provided by YCB, indicating they won’t scale well to richer datasets. The SIRENs
showed early signs of overfitting when we interpolated through latent space, indicating a lack of
training data. Still the SIRENs feature an impressive ability to extract and compress high-level
relations from the shapes, which we attribute to the impressive ability of auto-decoders to
generalize.

CHAPTER 6. EVALUATION 56

(a) LReLU (network #12)

(b) SIREN (network #14)

(c) SIREN (network #18)

Figure 6.10: Linear interpolations in latent space between pairs of known shapes,
by network #12, #14 and #18 in table 6.2. Inspecting the appearance of in-between
reconstructions may aid our understanding of the latent space distribution. LReLU latent
spaces appears highly uniform, although it seems to struggle with poorly aligned shapes.
The SIRENs behave well between closely related shapes, but do at time leave the manifold.
We note that the banana in network #18 is a major outlier, apparent in fig. 6.9f. The
meshes were marched in a 1283 grid in the spatial range [−1.1, 1.1] with marching cubes.
For each (a, b) pair of objects we mix the codes z from left to right as (1− c)za + czb for
c ∈ { i10}

10
i=0.

CHAPTER 6. EVALUATION 57

6.5 Single-View Shape Completion
We perform shape completion by searching through latent space with stochastic gradient
decent. With fixed network weights θ we search for a latent vector ẑ = (ẑshape, ẑpose) that
minimize the loss across the single-view observation. We again used Adam optimization,
this time with a scheduled learning rate η as a function of the number of optimization steps taken:

η = max
(
ηstart · c

current step
total steps , ηmin

)
(6.2)

making it so the learning rate start at ηstart and work its way down to c · ηstart, optionally
clamped up to ηmin.

This works for ẑshape, but this learning rate is insufficient for ẑpose due to its much larger
magnitude. To address this we decompose ẑ into its shape and three orientation components
(ẑshape, ẑt, ẑs, ẑrot), and optimize each with separate learning rates. Between each optimization
step we normalize the 6D rotation vector ẑrot.

Tuning the learning rates proved quite tricky, as there were non-trivial amounts of variation in
how the different networks responded. Consequently we can not compare all the networks in
table 6.2 in a fair quantitative manner. We investigate different optimization strategies using
synthetic scans in the two following subsections, followed by a subsection where we perform
shape completion on real-world data. To this end, we introduce the following terms:

Global centroid: A centroid is the geometric mean between points, i.e. a axis-wise mean.
When discussing LReLU MLPs we fix the global centroid to the origin.7 For SIRENs we
compute the global centroid from the known codes for all objects in Ω as:

z̄shape = 1
|Ω|
∑
i∈Ω

zshape
i (6.3)

Mean magnitude: While optimizing a latent vector we track how far away from the global
centroid it is, as there is an expected magnitude we aim for. (This is apparent by the
low variance featured in fig. 6.9c.) We found that ẑshape breaks loose from the shape
manifold and “shoots away” from the global centroid if the learning rate is too aggressive.
As such we aim for a mean magnitude defined as:

µ‖z‖ = 1
|Ω|
∑
i∈Ω
‖zshape
i − z̄shape‖2 (6.4)

Class centroid: The centroid between all the known latent vectors for a class of object. The
classes and its members are enumerated in supplementary table A.2. We compute the
centroid of a class as:

z̄shape
class = 1

|Ωclass|
∑

i∈Ωclass

zshape
i (6.5)

Class variance/deviation: We define the deviation σclass for a class of objects as the
standard deviation of the Euclidean distance from the class centroid to each of class
member:

σclass =
√

1
|Ωclass| − 1

∑
i∈Ωclass

‖zshape
i − z̄shape

class ‖22 (6.6)

The class deviation loosely indicates the volume in latent space that the class members
cover. The variance is the class deviation squared.

7We verified on all trained LReLU MLPs that the geometric mean is near-zero.

CHAPTER 6. EVALUATION 58

6.5.1 A Naive Approach
In this section we search the latent space to find shapes that simply conform to the single-
view data. The data is scaled and centered such that near-surface samples fit within the
reconstruction volume. We initialize ẑshape near the global centroid, set its translation ẑt to
[0, 0, 0]T , its scale ẑs to 1, and draw a random rotation uniformly within SO(3) for ẑrot.

Gentle search: From this starting position we search with a “gentle” learning rate in the
ballpark of ηstart = 3×10−4, c = 2× 10−1, and ηmin = 1×10−4 for 600 optimization steps. We
determined these rates by observing how close ‖ẑshape − z̄shape‖2 got to the mean magnitude
µ‖z‖. The optimal learning rates varied from network to network.

To determine the orientation learning rates we rendered animations of the path traversed while
searching, marching a mesh between every optimization step. Armed with these animations
we could spot how different learning rates were either insufficient or overshot their target. We
found it best to optimize the translation and scaling with a 50η learning rate, 6D rotation
vectors with 500η, and Euler angles with 50η. To keep the translation from “shooting off” we
constrained it by adding 0.001‖ẑt‖22 to the loss, still allowing it to move somewhat freely within
the bounds of the reconstruction volume.

We discovered that shape completion required Lcodereg, as ẑshape otherwise expands past the
manifold. This is a property of how we trained the networks, as they had to learn an outward
attraction to counterbalance the code magnitude cost.

The randomly drawn initial orientation caused at times the shape completion to fail. To combat
this we optimized a batch of multiple vectors, each initialized with different orientations. We
then select a winner from this batch scored by some metric. Although we have established
that neither the TSDF MSE nor the PSNR metrics are optimal, we still determine the batch
winner with TSDF PSNR. This worked great for SIREN, but not for LReLU as it resulted in
picking “shrunken” shapes. We experimented briefly with alternative metrics, and found one
that worked better: Intersection over Union (IoU), which scores the similarity between two sets
as |A∩B||A∪B| . We defined A as the set of points with negative ground truth SDF values, and B as
the points predicted negative. With this IoU only scores the amount of correctly conforming
near-surface points instead of the quality of the whole field.

We showcase some naive single-view shape completions via “gentle” search in figure 6.11. The
SIRENs were able to draw from its shape embeddings and conform to the observation data quite
well, whereas the LReLU MLPs had trouble searching efficiently. We frequently observed that
many of the shape features barely moved during optimization, while the SIRENs optimized all
features with ease. We attribute this to how ReLU-based neurons become inactive, a problem
we hoped to alleviate when switching to leaky ReLU over standard ReLU.

The LReLU MLPs do not seem to guarantee that all latent codes produce well-formed fields
(where ‖∇xSDF‖2 is constant). They construct their fields as the sum of many simple latent
parameters, which makes it possible to combine them ways that form into uneven distance
fields. We believe this is the reason the TSDF PSNR metric performs poorly for LReLU. We
had intended to constrain our shape completion with Lnorm to fix this, but could not do so
as it was broken. The SIRENs construct more well-formed distance fields from its “high-level”
shape embeddings, and were for this reason not as affected this issue.

Aggressive search: We investigated, in an attempt to make LReLU MLPs perform better,
a more “aggressive” search strategy. We limited the search volume to the surface of a
hypersphere whose radius equal the mean magnitude, paired with a much higher learning
rate. This we achieved by normalizing the latent vector ẑ into ẑ′ between each optimization step:

ẑ′shape = ẑshape
µ‖z‖

‖ẑshape‖2
= ẑshape

1
‖ẑshape‖2

∑
i∈Ω ‖z

shape
i ‖2
|Ω| (6.7)

CHAPTER 6. EVALUATION 59

(a) Pear SDF (b) SIREN (#18)
best TSDF PSNR

(c) SIREN (#18)
best IoU

(d) LReLU (#12)
best TSDF PSNR

(e) LReLU (#12)
best IoU

(f) Can SDF (g) SIREN (#18)
best TSDF PSNR

(h) SIREN (#18)
best IoU

(i) LReLU (#12)
best TSDF PSNR

(j) LReLU (#12)
best IoU

(k) Cup SDF (l) SIREN (#18)
best TSDF PSNR

(m) SIREN (#18)
best IoU

(n) LReLU (#12)
best TSDF PSNR

(o) LReLU (#12)
best IoU

Figure 6.11: Naive single-view shape completions with “gentle” search from the global
centroid on synthetic data. Leftmost column is the single-view SDF target, with blue and
red being positive and negative, and green being the camera position. LReLU spent five
minutes searching 25 codes for 600 steps and scoring the winner, while SIREN spent one
minute searching ten. We present here winning shapes determined with both TSDF PSNR
and IoU. LReLU struggled to conform to the single-view data, while SIREN performed
well once it found a nearby shape: It found the pear correctly. For the chips can it matched
the side of a lego piece. For the cup it likely matched the master chefs can. All ground
truth shapes are rendered in supplementary figure A.2. Network numbers refer to rows in
table 6.2.

(a) Pear SDF (b) LReLU (#9)
best TSDF PSNR

(c) LReLU (#9)
best IoU

(d) LReLU (#12)
best TSDF PSNR

(e) LReLU (#12)
best IoU

Figure 6.12: Single-view shape completions with “aggressive” search, constrained by
equation 6.7. Here we show the two best completions out of 25 optimization attempts,
determined by TSDF PSNR and IoU. It took five minutes to search 25 codes for 600 steps.
Network numbers refer to rows in table 6.2.

CHAPTER 6. EVALUATION 60

We optimized with a learning rate of ηstart = 1×100, c = 2.5× 10−3, and ηmin = 2×10−4 for
600 optimization steps, only normalizing ẑ for the first 300. Although intense, it does not leave
the manifold. With such an intense base learning rate we now optimized the translation, scale
and Euler angles with a learning rate of 0.1η, and 6D rotations with 10η.

This “aggressive” search approach helped cover more of the LReLU latent space, but it still
only conforms to the single-view observations to a limited degree. We present some LReLU
MLP shape completion using this search approach on a pear in figure 6.12. It was able to find
shapes that conform to the single-view observation, but these shapes can not be described as
anything meaningful.

Figure 6.9c indicates that the latent spaces are not perfectly spherical like we assumed the
prior distribution to be. There is a non-trivial amount of variation in magnitude between the
different object classes. Seeing this we tried normalizing the shape codes to a weighted mean
magnitude, weighted by how similar each known code {zi}i∈Ω are to ẑ:

ẑ′shape = ẑshape
1

‖ẑshape‖2

∑
i∈Ω ‖z

shape
i ‖2φni∑

i∈Ω φ
n
i

φi = max(〈ẑ, zi〉, ε)
(6.8)

where 〈·, ·〉 is the cosine similarity, ‖ · ‖2 is the Euclidean norm, n is a “sharpness” factor, and
ε = 1× 10−8 make the equation fall back to eq. 6.7 if no known code share any similarities. In
supplementary figure A.5 we illustrate in 2D how the hypersurface covered by this equation
conforms to the magnitude of known codes.

We present a few LReLU shape completions using this weighted clamping scheme in figure 6.13.
Now the TSDF PSNR score again become the better metric, but it still performs worse than
what the SIRENs did via simple “gentle” search. The “aggressive” search approach is not
applicable to SIREN latent spaces.

(a) Pear SDF (b) LReLU (#9)
best TSDF PSNR

(c) LReLU (#9)
best IoU

(d) LReLU (#12)
best TSDF PSNR

(e) LReLU (#12)
best IoU

Figure 6.13: Single-view shape completions with “aggressive” search, constrained by
equation 6.8 with n = 10. The shapes do not conform as well as in figure 6.12, but the
reconstructed fields are now valid SDF fields, making PSNR the better judge. It took five
minutes to search 25 codes for 600 steps. Network numbers refer to rows in table 6.2.

These two naive search strategies were able to find somewhat conforming shapes, but whether
the far side is correct or not is a long shot. Lathed shapes showcased thus far are simple targets,
but more complex shapes fail with this approach. We see two failure states: (1) Failure to find
a conforming shape. (2) Failure to infer the unseen parts of the shape. LReLU MLPs struggles
with both when searching naively, while SIRENs primarily struggle with the latter. To address
the latter shortcoming we propose a class-aware approach in the following section.

CHAPTER 6. EVALUATION 61

6.5.2 A Class-Aware Approach

(a) #2 (b) #5 (c) #9 (d) #12 (e) #14 (f) #18

Figure 6.14: Shapes at the global centroid reconstructed by the networks marked *
and numbered in table 6.2. These are the “starting shapes” for a naive search approach.
They’re different for each network, as they have not been constrained to a shape beneficial
for single-view shape completion, other than what Lcodereg managed to carve.

Naive search starts near the global centroid, with no knowledge about the underlying object
other than what parts are visible. We show what the reconstructed global centroid looks like
for 6 networks in figure 6.14. Some networks created a global centroid shape resembling a
cross between a cube and a cup, while others produce no particularly meaningful shape at
all. Training with Lcodereg did make it so the path from the global centroid to each shape is
a somewhat smooth one, but what path to take at all is still up in the air. How can a naive
search tell the difference between a can and a mug, if the handle is not visible? For example,
had the network in figure 6.11l been guided with information indicating that the target ought
to have been hollow, then it could have made it so.

An object classifier can help. Our approach so far make no use of the single-view color data: we
have only used the depth information to constrain the SDF field. A classifier network can from
the color data infer which category of object we are shape completing. With this information it
is possible to “shortcut” the search and make it less holistic. In figure 6.15 we render what the
shape at each class centroid looks like, reconstructed with both a LReLU MLP and a SIREN.
Not only are these starting points closer to their target shape, but also considerably closer in
latent space.

(a) can (b) box (c) fruit (d) tool (e) ball (f) cup (g) plane (h) lego (i) other

Figure 6.15: The shape at each class centroid. First row is a LReLU (#12) and the
second is a SIREN (#18) from table 6.2. These are the “starting shapes” for class-aware
search approaches. It differs for each network, but these are a lot more guided by the
embedded shapes than the global centroids shown in figure 6.14 are. Note: the airplane
class is in figure 6.16 shown to have a large error.

Our class-aware search strategy is based on the “gentle” search approach outlined in the previous
section, but now with an even more “gentle” learning rate. We now draw the initial ẑshape near
the class centroid instead of the global centroid. The initial translation ẑt and scale ẑs are still
set to [0, 0, 0]T and 1, and the rotation ẑrot is drawn at random.

CHAPTER 6. EVALUATION 62

To measure at how well such a class-aware approach might work, we present the magnitude of
each class centroid along with the class deviations in figure 6.16. The magnitude of each class
centroid indicate how much the class prediction bias the search away from the global centroid.
Classes with a low variance is expected to traverse less through latent space than those with
high variance. A good dataset should seek to maximize the magnitude of each class centroid
and minimize the class variances. This can be achieved by properly aligning each object to
minimize the distance between them, and by dividing them into more descriptive categories.

(a) LReLU (#12) (b) SIREN (#14) (c) SIREN (#18) (d) SIREN (#18), sans
banana

Figure 6.16: Bar plots of the Euclidean distance between the global centroid and the
class centroids, for network #12, #14 and #18 in table 6.2. These plots hint at how well a
classifier may aid shape completion for each object class. The error bars measure the class
deviation, with the upper bound calculated from the codes further away from the global
centroid than the class centroid, and the lower bound by those closer. The blue line and
span measure the mean code magnitude and its standard deviation. In (d) we show the
same network as in (c), with the outlier code for 011_banana removed. Supplementary
figure A.2 render all the training shapes in matching category colors.

We showcase some class-aware single-view shape completion in figure 6.17. In it we selected
the best TSDF PSNR scoring shape our of 25 attempts for LReLU MLPs, and out of three
attempts with SIRENs. Apparent is how much better the SIRENs performed, succeeding on
many of the objects. In fig. 6.17w it failed to find the drill from the tool centroid, getting
stuck in a local minimum where it fits a clamp to the observation data. If the SIREN had
more attempts then it may have found a better scoring solution. We found SIRENs in general
to succeed on many of the shapes, aside the more complex ones such as the cutlery seen in
supplementary figure A.2. It performs well in general on the more “volumetric” objects.

We optimized the shapes using the same loss function the networks were trained with, excluding
Lsim. This proves that networks trained with SDF gradient supervision do not not require it at
test time. We did not find Lsim to particularity benefit the shape completions at this stage,
and chose to leave it out as its exclusion drastically reduces the computation time.

We visualize in figure 6.18 “animations” from searching through latent space for five of the shape
completions shown in figure 6.17, with a play-by-play description of what we see. The LReLU
MLPs in general seem to have too many simple shape parameters, and are as a consequence
less able to optimize on a “higher” more meaningful level. They prefer to morph the current
shape instead of reorienting it. SIRENs on the other hand are likely not able to perform as well
on new unseen shapes. This issue may be remedied with a larger dataset of training shapes,
with more variations of each object class, giving the SIRENs more priors to draw from.

A problem both networks have in common, is that the initial guess of a zero translation, a scale
of 1 and a random rotation is more often than not wrong. Our method could be further aided
by not only a classifier network inferring the object category, but also by a pose estimation
network that predicts an initial pose.

CHAPTER 6. EVALUATION 63

(a) Pear SDF (b) SIREN (#18) (c) SIREN (#14) (d) LReLU (#12) (e) LReLU (#12)

(f) Can SDF (g) SIREN #(18) (h) SIREN #(14) (i) LReLU (#12) (j) LReLU (#12)

(k) Cup SDF (l) SIREN #(18) (m) SIREN (#14) (n) LReLU (#12) (o) LReLU (#12)

(p) Clamp SDF (q) SIREN (#18) (r) SIREN (#14) (s) LReLU (#12) (t) LReLU (#12)

(u) Drill SDF (v) SIREN (#18) (w) SIREN (#14) (x) LReLU (#12) (y) LReLU (#12)

Figure 6.17: Class-aware single-view shape completions with “gentle” search from the
class centroid on synthetic data. Leftmost column is the single-view SDF target, with
blue and red being positive and negative. We tested the LReLU network twice for each
shape. LReLU spent five minutes searching 25 codes for 600 steps and scoring the winner
with TSDF PSNR, while the SIRENs spent 18 seconds searching three. SIREN completed
most of the shapes accurately. We explore in figure 6.18 the shape completions shown
with red grids (g, i, m, r and v) in further detail. All ground truth shapes are rendered
in supplementary figure A.2. Network numbers refer to rows in table 6.2.

CHAPTER 6. EVALUATION 64

(a) SIREN (#18) chips can from can centroid (b) LReLU (#12) chips can from can centroid

(c) SIREN (#14) cup from cup centroid

(d) SIREN (#14) clamp from tool centroid

(e) SIREN (#18) drill from tool centroid

Figure 6.18: “Animations” of intermediate shapes while searching through latent space
for the shape completions in figs. 6.17g, 6.17i, 6.17m, 6.17r, 6.17v. (a-d) is from a different
camera perspective, while (e) has a matching camera. These animations cover the first
200 out of 600 optimizations steps. Only changes to the shape and rotation are obvious,
as the change in scale and translation is difficult to convey in a grid. (a) started at a
box-like class centroid, but still managed to reorient and adapt its shape. (b) initially
moved away from the can class towards one of the airplane parts, backtracking once it
was oriented correctly. (c) started at a class centroid with a very low shape error, then
drifted away while reorienting itself. Once the pose matched it solved the shape again. (d)
initially matched with a clamp in the wrong orientation, but elected to change its shape
to a different clamp instead of rotating the one it had already found. (There are clamps
in two different orientations in our dataset, see fig A.2.) (e) started of initially matching
a clamp. While reorienting the clamp it matched with the drill, but upside-down. From
here it tried to “morph” that upside-down drill to the best of its ability.

CHAPTER 6. EVALUATION 65

6.5.3 Real-World Data and Occlusions
How well do our method perform on real-world sensor data? How well can it handle different
occlusion states? To answer these questions we consider the three occlusion states Jalal and
Singh (2012) find common in real-world data: (1) Self occlusion, where one part of the object
occludes itself. (2) Inter-object occlusion, where two objects occlude each other. (3) Background
occlusion, where a structure in the scene occludes the object. Assuming access to accurate
object segmentation masks we can reduce (2) and (3) to simple occlusion.

To illustrate a shortcoming with our setup we explore two occlusion scenarios. One scenario
occludes the observed surface data without drastically changing how it is gets centered and
scaled to fit inside the reconstruction volume, while the other scenario do affect it. We denote
each:

Slice: Occludes a slice of the depth map, leaving the bonding box unscathed.
Barrier: Occludes half of the depth map, reducing the bonding box.

We present in figure 6.20a-d shape completions from real-world YCB data augmented with
both occlusion scenarios, by a 6D SIREN using LTSDF,L1. In e we perturb the depth map with
values drawn from a Gaussian distribution to see how resilient our approach is to high-frequency
noise.

Our model deals quite well with missing data, and is for the most part resilient to the “slice”
scenario. The SIREN thought however that the surface of the chips can was flat after we sliced
it, showcasing one issue with real-world data: depth discontinuity filtering tends to remove
data around the edges, which results in a shrunken silhouette. As a result the chips can was
completed as a box (the centroid, see fig. 6.15a) instead of as a cylinder, due to the rounded
front side largely being hidden. The “slice” augmentation simply passed the breaking point. We
note that shape completing the same data with Lsim fixed this instance, but this may not apply
to all cases. The bleach bottle, which started at the same class centroid, was not completed as a
box when we sliced it. This is likely due to how the tip of the bottle conveys more information
about the underlying shape than the top of the chips can does.

(a) NP1 (b) NP2 (c) NP3 (d) NP4 (e) NP5

Figure 6.19: The YCB 001_chips_can at 285◦ for all BigBIRD depth camera perspec-
tives NP1 - NP5 shown in figure 3.2a. We fit the near-surface SDF samples (blue and red)
within the green sphere. The orange axis-aligned cube is the reconstruction volume we
traverse with marching cubes. Note how the walls of the chips can disappear as the 3D
camera moves towards to the zenith: depth cameras often fail to measure steep surfaces.
Shape completion on NP4 and NP5 scans fail for this reason, as they lack any indication
of how long the can ought be.

The “barrier” scenario consequently trips up our model. We illustrate in figure 6.19 why:
in our setup, the placement of the reconstruction volume is what conveys most “contextual”
information. Our model is not aware of any ground plane, nor the direction of gravity, nor any
other information one can extract from the scene and use to infer a shape. The model is able
to see the top of the chips can from the more elevated camera perspectives (d-e), but has no
indication of how far down it is to the surface which the can stands on. The NP4 perspective
exemplifies a problem with real-world depth sensor data: depth sensor often fail to register

CHAPTER 6. EVALUATION 66

(a) Chips can (from can centroid) (b) Peach (from fruit centroid)

(c) Clamp (from tool centroid) (d) Bleach cleanser (from can centroid)

(e) Cup subject to noise (from cup centroid)

Figure 6.20: Shape completion on real-world SDF clouds extracted from YCB RGB-D
images, by network #18 (a 6D SIREN) in table 6.2. The first row in each subfigure display
the single-view SDF clouds used to supervise the search. We display the best TSDF PSNR
scoring shape out of ten, which took one minute to optimize for 600 steps and score. In
(a-d) we augment the depth maps with occlusions: in one we slice of the mid-section
and in the other we cut away half with a barrier. The latter augmentation affects how
the SDF cloud is fitted within the reconstruction volume, further illustrated in figure
6.19. In (e) we inject into each depth pixel noise on drawn from N (0, σ2). The “Global
Centroid” completion in (e) started searching from the global centroid, while all the other
completions started at their respective class centroid. All RGB-D images are taken from
the NP2 camera angle, shown in figure 3.2a.

CHAPTER 6. EVALUATION 67

steep surfaces, in this case the walls of the chips can when viewed from above.

Our models is quite resilient to high-frequency noise. It was largely able to infer the orientation
of the cup, despite a sample uncertainty with a standard deviation of 5mm. The defining shape
of the cup were however lost with noise at this scale. We expect SIRENs trained on richer
datasets to fare much better in a test like this. In reality, high-frequency noise such as this is
not to be expected. Supplementary table A.1 enumerates common pre-processing techniques
applied to depth maps, which are all designed to mitigate high-frequency noise. Low-frequency
artifacts such as dents are still a major issue, and must be dealt with while pre-processing the
depth data.

6.5.4 Non-Truncated Single-View Shape Completion
So far we have only discussed single-view shape completion where we search through the latent
space with the truncated loss function LTSDF,L1. This is because LL1 and LDISN,L1 are affected
by an issue with how we extract signed distances from single-views as defined in section 5.2.3.
We illustrate and describe the problem in figure 6.21:

Shape
Camera

SDF
sample

Ray

SDF
value
radius

Miss

Figure 6.21: A diagram based on figure 5.2 of a scan ray cast from a camera into
a scene with our shape of interest. The uniform single-view SDF points are sampled
within the free-space covered by scan rays traced from the camera into the scene. We
compute the SDF value (radius of dotted sphere) for each of these uniform points (blue
dot) as the distance to the nearest hit point, that is, the visible surface of our object of
interest (bold). Uniform points sampled far behind the shape end up with rather large
SDF values, which end up “carving out” hidden parts of the object obscured by its own
shadow. Non-truncated loss functions (like LDISN,L1 and LL1 from eq. 5.9) struggle with
single-view shape completion for this reason. Their L2 variants are even more affected.
LTSDF mitigates this issue by clipping how much uniform points contribute to the loss,
making it nearly unaffected.

SIRENs originally trained with LL1 and LDISN,L1 were able to perform shape completion just
as well as what we have showcased thus far when we replaced their loss function with LTSDF,L1
or LDISN,TSDF,L1.

Chapter 7

Discussion

All in all our approach to single-view shape completion is promising. Here we briefly discuss
some aspects our evaluation revealed, and how it fared.

7.1 Pose Estimation and Local Minima
Our approach to pose estimation is based on the same premise as the works of Liu et al. (2019)
and Mildenhall et al. (2020), where pose estimation is achieved by iteratively optimizing the
pose until the reconstruction match the target pose. This pose estimation method is prone to
getting stuck in local minima. This happened for us in fig. 6.17v where the drill was completed
upside down, and in figure 6.20d which completed the bleach bottle faced the wrong way around.

Fortunately we optimize both the pose and the shape at the same time. The shape completion
animation in figure 6.18d shows us something interesting: The network matched with a clamp
in the wrong orientation at first, but elected changed its shape to a different clamp instead
of rotating the first one. This indicates that our method can avoid getting stuck if the shape
space is enriched with copies of the same shape in multiple poses. This is trivial to do with
data augmentation.

7.2 Learning Shapes by Learning to Pose Estimate
To account for observations not conforming to the canonical pose we initially planned to
just use a transformation matrix to transform the input coordinates being fed into the SDF
decoder. It is possible to optimize the parameters of such a matrix along with the shape
code during shape completion. We instead chose to make the networks learn to perform
this orientation transformation internally, by optimizing shapes over a continuous space of
orientations (sec. 5.4.1). This was to to make shape completion draw more influence from the
priors embedded in the network when optimizing the pose.

This novel augmentation strategy seem to have had a regularizing side effect. It encouraged the
networks to extract shape features that are rotationally invariant. These features are easier for
the networks to learn in a rotating context, as they have more degrees of freedom.

The LReLU MLP with 64 shape features in figure 6.7 showcase the effects of this, as it learned
primarily lathed approximations of the training shapes. LReLU MLPs with sufficient learning
capacity fared quite well with this intensive regularization. It did not reduce the rate of
convergence all that much while training. Thanks to Lsim it not degrade the reconstruction
quality either, making it remain competitive to related works, as we note in the paragraph
below table 6.3.

68

CHAPTER 7. DISCUSSION 69

This makes our novel orientation augmentation scheme (sec. 5.4.1) a good contribution to the
study of 3D shape representation learning and feature extraction, even when pose estimation is
not needed.

7.3 Transfer of Knowledge
The auto-decoder architecture we used exhibited an impressive capacity for knowledge discovery.
Both the LReLU and SIREN decoders managed to embed a wide selection of objects in a shared
latent space, grouping them by their structural similarities in a reproducible fashion. But how
did this knowledge of prior shapes that the networks learned during training transfer over to a
single-view context?

The LReLU networks learned very uniform latent spaces. It did so by extracting many simple
shape features from the training data, which it adds back up again to reconstruct the shapes.
This makes LReLU shape reconstructions very pliable. That however is a problem for shape
completion which relies on inductive biases to account for missing data. The rotationally
invariant shape features did help however. The LReLU MLPs were largely for this reason only
able to shape complete lathed shapes, such as the chips can.

The SIRENs converged on latent spaces less regular than what LReLU did, but its reconstructions
stay more true to the training data, leading to stronger inductive biases. The SIRENs used
their shape embeddings efficiently to inform the shape completion process, showing that what
it learned during training can transfer over to a single-view context.

7.4 Setbacks
Our approach shows much promise, but we did not quite manage to make it reach its full
potential. This we primarily attribute to two issues that came up during our evaluation:

Issue 1: The small size of the YCB object dataset, and how its 3D models are not aligned
with one another. This led to less uniform latent spaces as it prevented our networks from
extracting shape features shared between the different objects. This is apparent in figure 6.15
by how most of the class centroid shapes were pretty nondescript. None of the tool objects
(see supplementary figure A.2) are aligned, preventing the networks from learning that their
structure are in fact are similar. The boxes and Lego pieces are also misaligned, hindering the
networks from learning a shared understanding of what a box is. As such they mixed the boxes
and the cylinders, apparent in figs. 6.9a, 6.9d. Although YCB is a good benchmark for shape
completion and visual servoing, it proved inadequate as a shape learning curriculum.

Issue 2: How all our networks learned a signed distance field (SDF) whose mean gradient
magnitude equaled 0.1, instead of the expected constant value of 1. The magnitudes seem to
diminish the closer we move to the surface, implying that the issue might lie with how the
near-surface SDF training examples are generated. This issue caused one of the latent space
regularization schemes we intended to use (Lnorm in eq. 5.9) to not work at all. This is a
shame, as we had hoped to use it to constrain a property of the signed distance field which is
independent of the underlying shape, enabling us to smooth the space in areas not covered by
the database of known latent vectors maintained by the auto-decoder trainer. Tracking down
this issue cost us a lot of time, and we yet to uncover exactly what the root cause is.

CHAPTER 7. DISCUSSION 70

7.5 Meeting our Research Goals
Here we revisit our research goals T1 through T5 stated in section 1.3:

T1 Investigate previous state-of-the-art single-view shape completion approaches.

Our investigation spanned the related works covered in chapter 4. We reviewed many different
single-view shape completion techniques, highlighting their strengths and weaknesses.

T2 Define and design a deep learning model for single-view shape completion.

We defined our learning model in chapter 5, and elaborated on our single-view search strategies
while evaluating them in in section 6.5.

T3 Implement and train this model with the YCB object dataset.

We implemented our learning model in PyTorch and trained on the NTNU IDUN/EPIC GPGPU
computing cluster by Själander et al. (2019). We trained in total 821 networks on the YCB
object dataset while tuning its performance against the validation metrics, the journey of which
is broadly covered in section 6.2. We presented the final 20 networks trained in table 6.1, which
we then proceeded to evaluate.

T4 Evaluate and discuss the results for 3D single-view shape completion.

We evaluated the quality of shapes reconstructed from known latent vectors in section 6.3,
and examined how the shapes are represented in latent space in section 6.4. We evaluated
the ability of our networks to perform single-view shape completion using both synthetic and
real-world depth sensor data in section 6.5. Our best model completed credible shapes with
accurate camera space poses. We discussed aspects of our learning model revealed during our
evaluation here in chapter 7.

T5 Outline future work.

We indicate future directions for improving on our approach in section 8.2.

Chapter 8

Conclusion & Future Work

8.1 Conclusion
We trained both LReLU and SIREN based signed distance field (SDF) auto-decoders to represent
the YCB dataset in latent space. Supervising the networks with SDF gradients reduced the
variation between training runs, and produced more accurate shape reconstructions. Including
multiple objects in each training batch improved the rate of convergence. LReLU performed
better with a weighted and truncated loss, while SIREN performed better with a just truncated
loss. Both LReLU and SIREN grouped the shapes in latent space by their structural similarities
in a reproducible fashion, drawing meaningful connections between them. The reconstitution
quality of SIREN outperformed LReLU in every metric, despite SIREN being half their size.

We showed that these SDF decoders can embed a wide variety of shapes over a continuous
space of orientations. We augmented the networks to learn to reconstruct the shapes in any
orientation, to enable pose estimation influenced by the embedded shapes. The networks also
extracted a few rotationally invariant shape features as a result. This transferred over to
single-view shape completion quite well.

We showed that a single-view shape completion approach based on searching through latent
space for shapes conforming to depth observations is viable in a real-world setting. LReLU
struggled to aid the search, but SIREN inferred hidden parts of the shapes from its shape
embeddings to an impressive degree, making it resistant to missing data. When we used the
object class to inform the search, it was able infer shapes with credible far sides.

Based on the findings in this thesis, we conclude that our approach presented here contains
multiple novel contributions to the study of 3D implicit shape representation learning, and
is promising for robotic single-view 3D shape completion of objects during the manipulation
phase.

71

CHAPTER 8. CONCLUSION & FUTURE WORK 72

8.2 Future work
Here we propose recommendations and indicate future directions to bring higher robustness to
the approach we presented.

First of all, regarding the datasets used in this work: although the YCB object dataset is a good
benchmark, it is an inadequate learning curriculum. We propose training with richer datasets
containing more geometric primitives such as boxes, cones, tori, and cylinders, and with more
members in each category. The dataset should also be be augmented to with multiple poses, to
avoid the networks getting stuck in local minima. The training shapes should also be aligned,
either done so automatically or by hand. One could explore minimizing the optimal transport
distance between uniformly sampled surface points, or aligning the principal inertia vectors of
the shapes. Instead of centering shapes by their axis-aligned bounding boxes (which is easily
dominated by outlier protrusions) we instead propose using a more meaningful center such as
the mass center, or the Wasserstein barycenter for the surface points.

Searching the latent space could be further enhanced. Additional networks could be used to
predict the most probable pose, center and scale to start searching from. The search itself
could be further tuned to not be as gentle as ours, thus requiring fewer optimization steps. The
scheduled learning rate for the pose and for the shape do not have to be tied together. Instead
of manually tuning the shape completion hyperparameters for each network like we did, they
could be automatically discovered using Bayesian optimization.

Shape completion does not have to be done on a static RGB-D image. Humans continually
adjust their prediction based on visual feedback when manipulating shapes. As such we propose
expanding the shape completion search to work on live-streaming sensor data as an online
algorithm.

Instead of supervising the single-view shape completion search with explicit SDF targets,
which we showed was problematic in section 6.5.4, one could use a cost function inspired by
the boundary value problem formulations of Sitzmann, Martel, et al. (2020): constrain the
near-surface points to explicit SDF targets like we do, but constrain the uniform points sampled
within the visible free-space to simply be positive.

The latent spaces could be better formed and constrained during training. We propose to: (1)
Constrain the global centroid to a shape more beneficial to shape completion. This may enable
class-unaware search. (2) Perturb the latent vectors during training with noise. This may widen
and join the shape neighborhoods in latent space, and make it more uniform. (3) Experiment
with constraining invariant field properties on random latent vectors. One such property is the
spatial SDF gradient magnitude. We did not manage to do this due to a setback discussed in
section 7.4. (4) Experiment with alternative network architectures. Several papers pushing the
field forward have been released in 2021 alone, concurrent with this thesis. Most promising is
the work of Mehta et al. (2021), who propose a way to condition SIRENs to generalize better
to never-before seen targets, by first feeding the latent vectors through a separate modulator
network. Each hidden modulator layer is then multiplied onto a corresponding SIREN layer.
We found their paper only 16 days after submission, but still too late to incorporate their
findings into our learning model.

We suggest experimenting with convolutional techniques for enhancing the RGB-D sensor data,
to clean up discontinuities and holes, and superscale it. This should enable shape completion
on more challenging objects from less reliable data. We suggest looking into works such as
MSG-Net by Hui, Loy, and Xiaoou Tang (2016) and ClearGrasp by Sajjan et al. (2019). The
latter enables shape completion on objects whose visual properties classically elude depth
sensors, such as transparency.

Bibliography

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. “Layer Normalization.”
http://arxiv.org/abs/1607.06450.

Calli, B., A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. 2015. “The Ycb
Object and Model Set: Towards Common Benchmarks for Manipulation Research.” In 2015
International Conference on Advanced Robotics (Icar), 510–17. https://doi.org/10.1109/IC
AR.2015.7251504.

Calli, B., A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar. 2015. “Benchmarking
in Manipulation Research: Using the Yale-Cmu-Berkeley Object and Model Set.” IEEE
Robotics Automation Magazine 22 (3): 36–52. https://doi.org/10.1109/MRA.2015.2448951.

Chabra, Rohan, Jan Eric Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove,
and Richard Newcombe. 2020. “Deep Local Shapes: Learning Local Sdf Priors for Detailed
3D Reconstruction.” http://arxiv.org/abs/2003.10983.

Chang, Angel X., Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo
Li, Silvio Savarese, et al. 2015. “ShapeNet: An Information-Rich 3D Model Reposi-
tory.” arXiv:1512.03012 [cs.GR]. Stanford University — Princeton University — Toyota
Technological Institute at Chicago.

Chaton, Thomas, Chaulet Nicolas, Sofiane Horache, and Loic Landrieu. 2020. “Torch-Points3d:
A Modular Multi-Task Frameworkfor Reproducible Deep Learning on 3D Point Clouds.” In
2020 International Conference on 3D Vision (3DV). IEEE. https://github.com/nicolas-
chaulet/torch-points3d.

Chen, Zhiqin, and Hao Zhang. 2019. “Learning Implicit Fields for Generative Shape Modeling.”
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Dai, Angela, Charles Ruizhongtai Qi, and Matthias Nießner. 2017. “Shape Completion Using
3D-Encoder-Predictor Cnns and Shape Synthesis.” http://arxiv.org/abs/1612.00101.

Falcon, et al., WA. 2019. “PyTorch Lightning.” GitHub. https://github.com/PyTorchLightnin
g/pytorch-lightning.

Fan, Haoqiang, Hao Su, and Leonidas Guibas. 2016. “A Point Set Generation Network for 3D
Object Reconstruction from a Single Image.” http://arxiv.org/abs/1612.00603.

Fey, Matthias, and Jan E. Lenssen. 2019. “Fast Graph Representation Learning with PyTorch
Geometric.” In ICLR Workshop on Representation Learning on Graphs and Manifolds.

Girdhar, Rohit, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. 2016. “Learning a
Predictable and Generative Vector Representation for Objects.” http://arxiv.org/abs/1603
.08637.

Groueix, Thibault, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu Aubry.
2018. “AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation.” http:
//arxiv.org/abs/1802.05384.

73

http://arxiv.org/abs/1607.06450
https://doi.org/10.1109/ICAR.2015.7251504
https://doi.org/10.1109/ICAR.2015.7251504
https://doi.org/10.1109/MRA.2015.2448951
http://arxiv.org/abs/2003.10983
https://github.com/nicolas-chaulet/torch-points3d
https://github.com/nicolas-chaulet/torch-points3d
http://arxiv.org/abs/1612.00101
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
http://arxiv.org/abs/1612.00603
http://arxiv.org/abs/1603.08637
http://arxiv.org/abs/1603.08637
http://arxiv.org/abs/1802.05384
http://arxiv.org/abs/1802.05384

Han, Xiaoguang, Zhen Li, Haibin Huang, Evangelos Kalogerakis, and Yizhou Yu. 2017. “High-
Resolution Shape Completion Using Deep Neural Networks for Global Structure and Local
Geometry Inference.” http://arxiv.org/abs/1709.07599.

Häne, Christian, Shubham Tulsiani, and Jitendra Malik. 2017. “Hierarchical Surface Prediction
for 3D Object Reconstruction.” http://arxiv.org/abs/1704.00710.

Hanocka, Rana, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or.
2019. “MeshCNN: A Network with an Edge.” ACM Transactions on Graphics (TOG) 38
(4): 90:1–90:12.

Hao, Zekun, Hadar Averbuch-Elor, Noah Snavely, and Serge Belongie. 2020. “DualSDF:
Semantic Shape Manipulation Using a Two-Level Representation,” 7631–41.

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2018. “Mask R-Cnn.”
http://arxiv.org/abs/1703.06870.

He, Tong, John Collomosse, Hailin Jin, and Stefano Soatto. 2020. “Geo-Pifu: Geometry and
Pixel Aligned Implicit Functions for Single-View Human Reconstruction.” http://arxiv.org/
abs/2006.08072.

Hoang, Long, Suk-Hwan Lee, Oh-Heum Kwon, and Ki-Ryong Kwon. 2019. “A Deep Learning
Method for 3D Object Classification Using the Wave Kernel Signature and a Center Point
of the 3D-Triangle Mesh.” Electronics 8 (10). https://doi.org/10.3390/electronics8101196.

Hui, Tak-Wai, Chen Change Loy, and and Xiaoou Tang. 2016. “Depth Map Super-Resolution
by Deep Multi-Scale Guidance.” In Proceedings of European Conference on Computer Vision
(Eccv), 353–69. http://mmlab.ie.cuhk.edu.hk/projects/guidance_SR_depth.html.

Jalal, Anand, and Vrijendra Singh. 2012. “The State-of-the-Art in Visual Object Tracking.”
Informatica (Slovenia) 36 (January): 227–48.

Kazhdan, Michael, and Hugues Hoppe. 2013. “Screened Poisson Surface Reconstruction.” ACM
Trans. Graph. 32 (3). https://doi.org/10.1145/2487228.2487237.

Kingma, Diederik P., and Jimmy Ba. 2017. “Adam: A Method for Stochastic Optimization.”
http://arxiv.org/abs/1412.6980.

Kingma, Diederik P., and Max Welling. 2019. “An Introduction to Variational Autoencoders.”
Foundations and Trends® in Machine Learning 12 (4): 307–92. https://doi.org/10.1561/22
00000056.

Kleineberg, Marian, Matthias Fey, and Frank Weichert. 2020. “Adversarial Generation of
Continuous Implicit Shape Representations.” http://arxiv.org/abs/2002.00349.

Littwin, Gidi, and Lior Wolf. 2019. “Deep Meta Functionals for Shape Representation.”
http://arxiv.org/abs/1908.06277.

Liu, Shichen, Tianye Li, Weikai Chen, and Hao Li. 2019. “Soft Rasterizer: A Differentiable
Renderer for Image-Based 3D Reasoning.” The IEEE International Conference on Computer
Vision (ICCV), October.

Maaten, Laurens van der, and Geoffrey Hinton. 2008. “Visualizing Data Using T-Sne.” Journal
of Machine Learning Research 9 (86): 2579–2605. http://jmlr.org/papers/v9/vandermaate
n08a.html.

Mehta, Ishit, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and
Manmohan Chandraker. 2021. “Modulated Periodic Activations for Generalizable Local
Functional Representations.” http://arxiv.org/abs/2104.03960.

Mescheder, Lars, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
2019. “Occupancy Networks: Learning 3D Reconstruction in Function Space.” In Proceedings
Ieee Conf. On Computer Vision and Pattern Recognition (Cvpr).

74

http://arxiv.org/abs/1709.07599
http://arxiv.org/abs/1704.00710
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/2006.08072
http://arxiv.org/abs/2006.08072
https://doi.org/10.3390/electronics8101196
http://mmlab.ie.cuhk.edu.hk/projects/guidance_SR_depth.html
https://doi.org/10.1145/2487228.2487237
http://arxiv.org/abs/1412.6980
https://doi.org/10.1561/2200000056
https://doi.org/10.1561/2200000056
http://arxiv.org/abs/2002.00349
http://arxiv.org/abs/1908.06277
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/2104.03960

Micikevicius, Paulius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, et al. 2018. “Mixed Precision Training.” http://arxiv.org/abs/1710.03740.

Mildenhall, Ben, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. 2020. “NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis.” http://arxiv.org/abs/2003.08934.

Niu, Chengjie, Jun Li, and Kai Xu. 2018. “Im2Struct: Recovering 3D Shape Structure from a
Single Rgb Image.” http://arxiv.org/abs/1804.05469.

Park, Jeong Joon, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
2019. “DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation.”
In The Ieee Conference on Computer Vision and Pattern Recognition (Cvpr).

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, et al. 2019. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library.” In Advances in Neural Information Processing Systems 32, edited by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, 8024–35.
Curran Associates, Inc. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf.

Pedersen, Ole-Magnus, Ekrem Misimi, and François Chaumette. 2020. “Grasping Unknown
Objects by Coupling Deep Reinforcement Learning, Generative Adversarial Networks,
and Visual Servoing.” In ICRA 2020 - IEEE International Conference on Robotics and
Automation, 1–8. Paris, France: IEEE. https://hal.inria.fr/hal-02495837.

Pontes, Jhony K., Chen Kong, Sridha Sridharan, Simon Lucey, Anders Eriksson, and Clinton
Fookes. 2017. “Image2Mesh: A Learning Framework for Single Image 3D Reconstruction.”
arXiv:1711.10669.

Qi, Charles R., Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017. “PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation.” http://arxiv.org/abs/1612.00593.

Qi, Charles R., Li Yi, Hao Su, and Leonidas J. Guibas. 2017. “PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space.” http://arxiv.org/abs/1706.02413.

Saito, Shunsuke, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and
Hao Li. 2019. “PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human
Digitization.” http://arxiv.org/abs/1905.05172.

Saito, Shunsuke, Tomas Simon, Jason Saragih, and Hanbyul Joo. 2020. “PIFuHD: Multi-
Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization.” http:
//arxiv.org/abs/2004.00452.

Sajjan, Shreeyak S., Matthew Moore, Mike Pan, Ganesh Nagaraja, Johnny Lee, Andy Zeng,
and Shuran Song. 2019. “ClearGrasp: 3D Shape Estimation of Transparent Objects for
Manipulation.” http://arxiv.org/abs/1910.02550.

Salimans, Tim, and Diederik P. Kingma. 2016. “Weight Normalization: A Simple Reparameter-
ization to Accelerate Training of Deep Neural Networks.” http://arxiv.org/abs/1602.07868.

Sarmad, Muhammad, Hyunjoo Jenny Lee, and Young Min Kim. 2019. “RL-Gan-Net: A
Reinforcement Learning Agent Controlled Gan Network for Real-Time Point Cloud Shape
Completion.” http://arxiv.org/abs/1904.12304.

Singh, Arjun, James Sha, Karthik Narayan, Tudor Achim, and Pieter Abbeel. 2014. “BigBIRD:
A Large-Scale 3D Database of Object Instances.” In, 509–16. https://doi.org/10.1109/IC
RA.2014.6906903.

Sitzmann, Vincent, Eric R. Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. 2020.
“MetaSDF: Meta-Learning Signed Distance Functions.” In ArXiv.

75

http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/2003.08934
http://arxiv.org/abs/1804.05469
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://hal.inria.fr/hal-02495837
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1905.05172
http://arxiv.org/abs/2004.00452
http://arxiv.org/abs/2004.00452
http://arxiv.org/abs/1910.02550
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1904.12304
https://doi.org/10.1109/ICRA.2014.6906903
https://doi.org/10.1109/ICRA.2014.6906903

Sitzmann, Vincent, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. 2020. “Implicit Neural Representations with Periodic Activation Functions.” In
Proc. NeurIPS.

Själander, Magnus, Magnus Jahre, Gunnar Tufte, and Nico Reissmann. 2019. “EPIC:
An Energy-Efficient, High-Performance GPGPU Computing Research Infrastructure.”
arXiv:1912.05848 [Cs], December. http://arxiv.org/abs/1912.05848.

Smith, Edward, Scott Fujimoto, Adriana Romero, and David Meger. 2019. “GEOMetrics:
Exploiting Geometric Structure for Graph-Encoded Objects.” In Proceedings of the 36th
International Conference on Machine Learning, edited by Kamalika Chaudhuri and Ruslan
Salakhutdinov, 97:5866–76. Proceedings of Machine Learning Research. Long Beach,
California, USA: PMLR. http://proceedings.mlr.press/v97/smith19a.html.

Stutz, David, and Andreas Geiger. 2018. “Learning 3D Shape Completion from Laser Scan Data
with Weak Supervision.” In IEEE Conference on Computer Vision and Pattern Recognition
(Cvpr). IEEE Computer Society.

Sundt, Peder Bergebakken. 2020. “Single View 3D Reconstruction for Robotic Grasping of 3D
Objects.” NTNU, Specialization Thesis.

Tancik, Matthew, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan, Jonathan
T. Barron, and Ren Ng. 2021. “Learned Initializations for Optimizing Coordinate-Based
Neural Representations.” In CVPR.

Tancik, Matthew, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. 2020. “Fourier
Features Let Networks Learn High Frequency Functions in Low Dimensional Domains.”
http://arxiv.org/abs/2006.10739.

Tatarchenko, Maxim, Alexey Dosovitskiy, and Thomas Brox. 2017. “Octree Generating
Networks: Efficient Convolutional Architectures for High-Resolution 3D Outputs.” http:
//arxiv.org/abs/1703.09438.

Tatarchenko, Maxim, Stephan R. Richter, René Ranftl, Zhuwen Li, Vladlen Koltun, and
Thomas Brox. 2019. “What Do Single-View 3D Reconstruction Networks Learn?” http:
//arxiv.org/abs/1905.03678.

Tran, Dustin. 2016. “Probabilistic Decoder.” Edwardlib. 2016. http://edwardlib.org/tutorials/
decoder.

Tremblay, Jonathan, Thang To, and Stan Birchfield. 2018. “Falling Things: A Synthetic
Dataset for 3D Object Detection and Pose Estimation.” http://arxiv.org/abs/1804.06534.

Tulsiani, Shubham, Tinghui Zhou, Alexei A. Efros, and Jitendra Malik. 2017. “Multi-View
Supervision for Single-View Reconstruction via Differentiable Ray Consistency.” http:
//arxiv.org/abs/1704.06254.

Wang, Nanyang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. 2018.
“Pixel2Mesh: Generating 3D Mesh Models from Single Rgb Images.” http://arxiv.org/abs/
1804.01654.

Wang, Peng-Shuai, Chun-Yu Sun, Yang Liu, and Xin Tong. 2019. “Adaptive O-Cnn.” ACM
Transactions on Graphics 37 (6): 1–11. https://doi.org/10.1145/3272127.3275050.

Wang, Weiyue, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 2019. “3DN: 3D
Deformation Network.” In CVPR.

Wen, Chao, Yinda Zhang, Zhuwen Li, and Yanwei Fu. 2019. “Pixel2Mesh++: Multi-View 3D
Mesh Generation via Deformation.” http://arxiv.org/abs/1908.01491.

76

http://arxiv.org/abs/1912.05848
http://proceedings.mlr.press/v97/smith19a.html
http://arxiv.org/abs/2006.10739
http://arxiv.org/abs/1703.09438
http://arxiv.org/abs/1703.09438
http://arxiv.org/abs/1905.03678
http://arxiv.org/abs/1905.03678
http://edwardlib.org/tutorials/decoder
http://edwardlib.org/tutorials/decoder
http://arxiv.org/abs/1804.06534
http://arxiv.org/abs/1704.06254
http://arxiv.org/abs/1704.06254
http://arxiv.org/abs/1804.01654
http://arxiv.org/abs/1804.01654
https://doi.org/10.1145/3272127.3275050
http://arxiv.org/abs/1908.01491

Wu, Jiajun, Yifan Wang, Tianfan Xue, Xingyuan Sun, William T Freeman, and Joshua
B Tenenbaum. 2017. “MarrNet: 3D Shape Reconstruction via 2.5D Sketches.” http:
//arxiv.org/abs/1711.03129.

Wu, Jiajun, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T. Freeman, and
Joshua B. Tenenbaum. 2018. “Learning Shape Priors for Single-View 3D Completion and
Reconstruction.” http://arxiv.org/abs/1809.05068.

Wu, Yuxin, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. 2019.
“Detectron2.” https://github.com/facebookresearch/detectron2.

Xu, Qiangeng, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 2019.
“DISN: Deep Implicit Surface Network for High-Quality Single-View 3D Reconstruction.” In
Advances in Neural Information Processing Systems 32, edited by H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, 492–502. Curran Associates, Inc.
http://papers.nips.cc/paper/8340-disn-deep-implicit-surface-network-for-high-quality-
single-view-3d-reconstruction.pdf.

Yan, Xinchen, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. 2017. “Perspective
Transformer Nets: Learning Single-View 3D Object Reconstruction Without 3D Supervision.”
http://arxiv.org/abs/1612.00814.

Yang, Guandao, Yin Cui, Serge Belongie, and Bharath Hariharan. 2018. “Learning Single-
View 3D Reconstruction with Limited Pose Supervision.” In The European Conference on
Computer Vision (Eccv).

Yen-Chen, Lin, Andy Zeng, Shuran Song, Phillip Isola, and Tsung-Yi Lin. 2020. “Learning to
See Before Learning to Act: Visual Pre-Training for Manipulation.” In IEEE International
Conference on Robotics and Automation (Icra). https://yenchenlin.me/vision2action/.

Zeng, Andy, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao, and Thomas
Funkhouser. 2017. “3DMatch: Learning Local Geometric Descriptors from Rgb-d Recon-
structions.” http://arxiv.org/abs/1603.08182.

Zhou, Yi, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li Hao. 2019. “On the Continuity of
Rotation Representations in Neural Networks.” In The Ieee Conference on Computer Vision
and Pattern Recognition (Cvpr).

Zhu, Rui, Hamed Kiani Galoogahi, Chaoyang Wang, and Simon Lucey. 2017. “Rethinking
Reprojection: Closing the Loop for Pose-Aware Shapereconstruction from a Single Image.”
http://arxiv.org/abs/1707.04682.

Zou, Chuhang, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 2017. “3D-Prnn:
Generating Shape Primitives with Recurrent Neural Networks.” http://arxiv.org/abs/1708
.01648.

77

http://arxiv.org/abs/1711.03129
http://arxiv.org/abs/1711.03129
http://arxiv.org/abs/1809.05068
https://github.com/facebookresearch/detectron2
http://papers.nips.cc/paper/8340-disn-deep-implicit-surface-network-for-high-quality-single-view-3d-reconstruction.pdf
http://papers.nips.cc/paper/8340-disn-deep-implicit-surface-network-for-high-quality-single-view-3d-reconstruction.pdf
http://arxiv.org/abs/1612.00814
https://yenchenlin.me/vision2action/
http://arxiv.org/abs/1603.08182
http://arxiv.org/abs/1707.04682
http://arxiv.org/abs/1708.01648
http://arxiv.org/abs/1708.01648

Appendix A

Supplementary

Here we report information and provide explanations deemed excessive for the main thesis.

Table A.1: The post-processing filters applied by default to the depth image stream in Intel RealSense
Viewer in order. In general they filter out high-frequency noise and increase the dynamic sensor range.

Filter name On by
default?

Description

1 Decimation Filter X 2× 2 to 8× 8 median-pooling.
2 HDR Merge X Fuses two consecutive depth images captured at different

exposures.
3 Filter by Sequence ID - Only use every N frame.
4 Threshold Filter X Clips data outside a min and max distance.
5 Depth to Disparity X Transforms to disparity space (1/dDistance)
6 Spatial Filter X Edge-Preserving 1D filter applied both horizontally and

vertically.
7 Temporal Filter X Manipulation based on previous frames. Effectively increases

exposure time.
8 Hole Filling Filter - Rectifies missing data based on neighboring data.
9 Disparity To Depth X Transforms back to distance space (1/dDisparity)

(a) LReLU (#12) (b) SIREN (#18) (c) "Relaxed SIREN"

Figure A.1: Pearson product-moment correlation matrices for the three sets of learned shape features
exhibited in figure 6.8. It measures the linear dependence between features. The # numbers refer to the
rows in table 6.2.

78

Table A.2: Our whitelist of objects in the YCB object and dataset used to train our shape completion
network, along with the class labels we assigned to them. We present a render of each object in figure A.2.
We filtered many of the objects due to either distortions or poor alignment.

Name Class # Name Class
1 001_chips_can � can 43 057_racquetball � ball
2 002_master_chef_can � can 44 058_golf_ball � ball
3 003_cracker_box � box 45 059_chain � other
4 004_sugar_box � box 46 061_foam_brick � box
5 005_tomato_soup_can � can 47 062_dice � box
6 006_mustard_bottle � can 48 065-a_cups � cup
7 007_tuna_fish_can � can 49 065-b_cups � cup
8 008_pudding_box � box 50 065-c_cups � cup
9 009_gelatin_box � box 51 065-d_cups � cup
10 010_potted_meat_can � can 52 065-e_cups � cup
11 011_banana � fruit 53 065-f_cups � cup
12 012_strawberry � fruit 54 065-g_cups � cup
13 013_apple � fruit 55 065-h_cups � cup
14 014_lemon � fruit 56 065-i_cups � cup
15 015_peach � fruit 57 065-j_cups � cup
16 016_pear � fruit 58 070-a_colored_wood_blocks � other
17 017_orange � fruit 59 071_nine_hole_peg_test � other
18 018_plum � fruit 60 072-a_toy_airplane � airplane
19 019_pitcher_base � other 61 072-b_toy_airplane � airplane
20 021_bleach_cleanser � can 62 072-c_toy_airplane � airplane
21 024_bowl � other 63 072-d_toy_airplane � airplane
22 026_sponge � other 64 072-e_toy_airplane � airplane
23 029_plate � other 65 072-f_toy_airplane � airplane
24 030_fork � tool 66 072-h_toy_airplane � airplane
25 031_spoon � tool 67 072-i_toy_airplane � airplane
26 032_knife � tool 68 072-j_toy_airplane � airplane
27 033_spatula � tool 69 072-k_toy_airplane � airplane
28 035_power_drill � tool 70 073-b_lego_duplo � lego
29 036_wood_block � box 71 073-c_lego_duplo � lego
30 037_scissors � tool 72 073-d_lego_duplo � lego
31 040_large_marker � tool 73 073-e_lego_duplo � lego
32 042_adjustable_wrench � tool 74 073-f_lego_duplo � lego
33 043_phillips_screwdriver � tool 75 073-g_lego_duplo � lego
34 044_flat_screwdriver � tool 76 073-h_lego_duplo � lego
35 048_hammer � tool 77 073-i_lego_duplo � lego
36 050_medium_clamp � tool 78 073-j_lego_duplo � lego
37 051_large_clamp � tool 79 073-k_lego_duplo � lego
38 052_extra_large_clamp � tool 80 073-l_lego_duplo � lego
39 053_mini_soccer_ball � ball 81 073-m_lego_duplo � lego
40 054_softball � ball 82 076_timer � other
41 055_baseball � ball 83 077_rubiks_cube � box
42 056_tennis_ball � ball

79

Figure A.2: The 3D YCB meshes we trained our networks with, rendered in their canonical pose. We
use the Google scanner meshes if available, falling back to BigBIRD Poisson reconstructions otherwise.
The meshes are colored according to our assigned classes, using the same colors as other figures. Apparent
here is how few of the objects have been aligned to one another, leading to poor knowledge discovery.

80

(a) LReLU: TSDF MSE (b) SIREN: TSDF MSE

(c) LReLU: TSDF PSNR (d) SIREN: TSDF PSNR

(e) LReLU: TSDF gradient cosine similarity (f) SIREN: TSDF gradient cosine similarity

(g) LReLU: TSDF gradient magnitude (h) SIREN: TSDF gradient magnitude

(i) LReLU: code magnitude (j) SIREN: code magnitude

Figure A.3: All training metrics measured across the validation dataset during training, smoothed with
α=0.8 EMA. We show the networks without positional encoding in table 6.1. There are two runs for every
loss function: LReLUs trained with and without gradient supervision, while the SIRENs trained with both
3D (Euler) and 6D rotation vectors (expanded with a cross product). Red dots and crosses are NaNs, the
latter indicating the network never recovered. SIRENs seem to produce and recover from regressing NaNs
quite often, a characteristic not observed with LReLU.

81

Global centroid

Class
centroid

Known shape code

Mean magnitude

Figure A.4: A visual explanation in 2D of how some of some of class centroids reported in figure 6.16
may have such a low magnitude despite how all its members each have a magnitude near the global mean.
This issue is more pronounced in higher dimensions.

Figure A.5: A 2D visualization of the hull we tried normalizing the LReLU shape codes to during
"aggressive" shape completion search. The distance from the global centroid to the hypersurface is
determined by the magnitude of similar known latent vectors.

82

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Peder Bergebakken Sundt

Single-View 3D Shape Completion
for Robotic Grasping of Objects
via Deep Neural Fields

Master’s thesis in Computer Science
Supervisor: Ekrem Misimi, Sintef OCEAN
Co-supervisor: Theoharis Theoharis, IDI

June 2021

M
as

te
r’s

 th
es

is

	Introduction
	Background and Motivation
	Problem Formulation
	Research Goals
	Structure of the Thesis

	Theoretical Background
	3D Shape Representations
	Object Topology
	Point Cloud Representations
	Mesh based Representations
	Voxel based Representations
	Implicit Surface based Representations

	Transformations and Processing
	Affine Transformations
	The Model-View-Projection Matrix
	Unprojecting RGB-D Images to Point Clouds
	6D Continuous Representation of Rotation

	Machine learning
	Artificial Neural Networks
	Transfer Functions
	Activation Functions
	Supervised Training
	Deep Learning
	Representation Learning and Latent Spaces
	Convolutional Neural Networks (CNN)
	Generative Adversarial Networks (GAN)
	Auto-Encoders (AE)
	Neural Fields and Deep Implicit Surfaces
	Auto-Decoders (AD)
	Probabilistic Decoders
	Shape Reconstruction and Completion
	Pose Estimation and Registration
	Classification and Segmentation

	Technical Background
	Data- and Object Sets
	ShapeNet
	YCB and the BigBIRD Scanner
	Falling Things (FAT)

	Platforms
	PyTorch and CUDA
	PyTorch Lightning and Slurm
	Intel RealSense

	System Setup

	Related Works
	Visual Servoing and Robotic Manipulation
	Object Detection and Classification
	3D Shape Completion
	Implicit Representation Learning

	Fall Project by the Author

	Methodology
	Overall Approach and Motivation
	Data Preparation
	3D Model Pre-Processing and Normalization
	Sampling Full-View SDF Clouds
	Sampling Single-View SDF Clouds
	Processing RGB-D Images

	Learning Architecture
	Training
	Augmenting for Pose Estimation
	Shaping the Latent Space of Shapes
	Training Order

	Shape Completion Method
	Experimental Setup
	Evaluation Metrics

	Evaluation
	Data Preparation
	Sampling SDF Gradients
	Single-View Point Clouds

	Training
	Discoveries, Optimization and Re-Design
	Finding the Best Combination
	The Final Training Batch
	Training Time

	Evaluation of Reconstructed Shapes
	Evaluation Metric Details

	Examination of the Latent Space of Shapes
	Latent Space Saturation
	Knowledge Discovery
	Latent Space Smoothness

	Single-View Shape Completion
	A Naive Approach
	A Class-Aware Approach
	Real-World Data and Occlusions
	Non-Truncated Single-View Shape Completion

	Discussion
	Pose Estimation and Local Minima
	Learning Shapes by Learning to Pose Estimate
	Transfer of Knowledge
	Setbacks
	Meeting our Research Goals

	Conclusion & Future Work
	Conclusion
	Future work

	Bibliography
	Supplementary

