
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Trygve Nerland

Radio tracking of sheep - Developing
MAVLink enabled devices, MAVLink
control and the basis for MAVLink
enabled autonomous UAVs

Master’s thesis in Master of Science in Informatics
Supervisor: Svein-Olaf Hvasshovd

June 2021

M
as

te
r’s

 th
es

is

Trygve Nerland

Radio tracking of sheep - Developing
MAVLink enabled devices, MAVLink
control and the basis for MAVLink
enabled autonomous UAVs

Master’s thesis in Master of Science in Informatics
Supervisor: Svein-Olaf Hvasshovd
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Radio tracking of sheep - Developing
MAVLink enabled devices, MAVLink
control and the basis for MAVLink

enabled autonomous UAVs

Trygve Nerland

June, 2021

2

Abstract

This is one out of three papers covering different parts of the same system. Our
objective was to develop a system for locating animals with the use of unmanned
areal vehicles(UAV) and radio communication technology. With the plan to use low
cost and lightweight radio transceivers. The main focus of this paper is on the UAV
and integrating the other components together.

We will take a look at the technologies used in our system. The relevant theory
and science will be summarized. The relevant regulations is also be examined.
Existing and alternative solutions will be explored. Different UAV systems will be
compared.

The system architecture and the function of each component is explained and
also how everything fits together into a fully functioning system. The reasoning
behind why we chose to build a custom UAV and the process of getting it into a
flight worthy state. Our tests, how they were conducted, the goals and any problems
encountered during them will be explained.

The data from our tests will be gathered, visualized and analyzed. This analysis
is going to have the main focus on the UAV, the distance measurements and the
system as a whole. Using the results of the analysis to set our expectations, tweak
the system or plan our path forward.

We will discuss the results of our analysis and examine the viability of our system.
A comparison of our system with the existing solutions will be done.

We managed to create a system for surveying large areas autonomously and
locating animals within them. This system could locate the animals with great
accuracy, possibly with an average error of 15m. The system utilizing a custom
built UAV and cheep radio transceivers. We could with minimal user input find
animals and estimate their location. Our system does not provide any features
except locating the animals, unlike other available systems with many new features.
This combined with possible regulatory problems might cause our system to not be
a viable competitor to existing solutions.

3

Sammendrag

Denne masteroppgaven er en av tre oppgaver som dekker det samme systemet. Hver
av disse oppgavene har fokus p̊a forskjellige deler av dette systemet. Oppgaven v̊ar
var å lage et system for å lokalisere sauer som ute p̊a beite ved bruk av droner og
radio teknologi. Her var planen å bruke små, lette og billige radio sendere. Denne
masteroppgaven kommer til å fokusere p̊a dronedelen av systemet og integrasjonen
mellom resten av komponentene.

Vi kommer til å se nærmere p̊a teknologiene som blir brukt i dette systemet.
Relevant teori og kunnskap vil bli oppsummert. Relevante lovverk blir ogs̊a g̊att
igjennom. Vi ser ogs̊a p̊a eksisterende løsninger som har blir utviklet for å løse
den samme problemstillingen. Detaljert kunnskap om forskjellige typer droner og
oppbygningen av de blir g̊ar igjennom.

Systemarkitekturen blir g̊att igjennom og funksjonen til hver del i systemet blir
forklart. Det blir ogs̊a forklart hvordan alle delene av systemet passer sammen
og lager et fullt fungerende system. Her blir valgene v̊are av drone begrunnet og
hvordan vi bygde en spesialbygd drone for dette systemet. Vi viser hvordan vi
gjennomførte testene v̊are. Og vi forklarer m̊alet med de. Problemene vi støtte p̊a
underveis og løsningene p̊a de blir ogs̊a g̊att igjennom.

All data fra testene v̊are ble samlet, analysert og visualisert der det ga mening
å gjøre dette. Denne analysen hadde hovedfokuset p̊a dronen, avstandsm̊alingene
og hvordan systemet fungerte som en helhet. Resultantene fra analysen ble brukt
til å sette v̊are forventninger framover, gjøre justeringer p̊a systemet eller planlegge
videre utvikling.

I diskusjonen vi ser p̊a resultatene fra analysen i sin helhet og vi ser ogs̊a p̊a
praktikaliteten til systemet. En sammenligning av systemet v̊art blir gjort med
andre systemer som er laget for til å spore dyr.

Vi greide å lage et system som kan finne igjen dyr i store utendørsomr̊ader.
Dette systemet er nesten helt automatisert ved hjelp av autopilot funksjonen til
drona og v̊are egenutviklede applikasjoner. Systemet kunne lokalisere dyr med stor
nøyaktighet, muligens med et gjennomsnittlig avvik p̊a 15m. Dette systemer bruker
en drone som er bygd spesifikt for dette formålet og billige radio sendere og mot-
takere. Systemer v̊ar gir ikke noe ny funksjonalitet borsett fra enklere lokalisering av
dyr. Andre systemer som blir brukt for å lokalisere dyr gir mye ekstra funksjonalitet
i tillegg. Dette kombinert med mulige begrensninger pga. regelverk kan begrense
nytten av systemet v̊art sammenlignet med eksisterende systemer.

4

Foreword

At the end of summer when the grazing period ends, it’s a large task for farmers
to gather up all the animals and take them back from their grazing lands. Giving
farmers better and more efficient tools can result in a significant reduction in the
time and manpower needed for tasks like this. This study aims to determine if it’s
viable to automate the search for these animals using UAVs and radio technology.
The animal we are focusing on in this paper is sheep and the radios in use is low-Cost
energy-Efficient Bluetooth Transceivers.

We choose this project because it seemed interesting working with drones and
other physical devices in a practical setting. The possibility of creating a system
that could save farmers a lot of time and labour seemed intriguing.

Acknowledgements

We wish to thank Gard Steinsvik and Grzegorz Swiderski for their work on their
related projects. Thanks to Nordic Semiconductors for providing us with nRF52833
development kits. We also wish to thank Svein-Olaf Hvasshovd for guidance and
wisdom throughout the project.

Contents 5

Contents

List of Figures 8

List of Tables 10

1 Introduction 12
1.1 Original Task description . 12
1.2 Software Base . 13

1.2.1 Python . 13
1.2.2 ArduPilot . 13
1.2.3 SheepRTT . 13
1.2.4 Radio Sheep GCS . 13

2 Theory 14
2.1 Existing solutions . 14

2.1.1 Traditional/regular . 14
2.1.2 GPS collars . 14

2.2 Bluetooth Low Energy . 15
2.2.1 Long-Range Mode . 15
2.2.2 nRF52833 development kit . 16
2.2.3 MINEW MS88SF23 . 16

2.3 Distance estimation and localization techniques 17
2.3.1 Triangulation . 17
2.3.2 Multilateriation . 17
2.3.3 RSSI distance estimation . 18
2.3.4 RTT distance estimation . 18

2.4 UAV . 19
2.4.1 Firmware alternatives . 19
2.4.2 Ground Control Station . 19
2.4.3 Simulated Vehicle (SITL) . 22
2.4.4 Types of UAVs . 22
2.4.5 UAV components . 23
2.4.6 Flight modes . 24

2.5 Global navigation satellite systems 25
2.5.1 Accuracy . 25
2.5.2 Dangers and signal jamming 25

2.6 Extended Kalman Filter . 26
2.7 Regulations of drone use in Norway 26
2.8 MAVLink . 27

2.8.1 System and component IDs 27
2.8.2 Dialects . 28

6 Contents

2.8.3 MAVLink 1 vs MAVLink 2 . 29

2.8.4 Serialization . 30

2.8.5 Routing . 32

2.8.6 Microservices . 33

2.8.7 Security Threats . 34

2.9 Signal attrition . 34

2.9.1 Free-space path loss . 34

2.9.2 Near-Ground Path Loss at 2.4 GHz 34

2.9.3 Path loss through vegetation and animals 34

2.10 Signal interference . 35

3 Method 36

3.1 System Architecture . 36

3.1.1 SheepRTT . 37

3.1.2 UAV . 38

3.1.3 Radio Sheep GCS . 38

3.2 SheepRTT . 39

3.2.1 Central and peripheral boards 39

3.2.2 RTT distance measurements 39

3.2.3 RTT Implementations . 40

3.2.4 System design . 40

3.2.5 MAVLink Implementation . 41

3.2.6 Moving from development kit to smaller module 46

3.3 UAV . 50

3.3.1 Drone components . 51

3.3.2 Radio transmitter . 56

3.3.3 Assembly . 56

3.3.4 Configuration and calibration 58

3.4 MAVLink communication . 58

3.4.1 Dialect modifications . 58

3.4.2 Radio Sheep GCS & Node-MAVLink: implementing missing
features . 59

3.4.3 SheepRTT MAVLink implementation 59

3.5 Practical tests . 59

3.5.1 Range test . 59

3.5.2 Antenna orientation and signal strength test with obstacle . . 60

3.5.3 Range and signal strength tests with different antennas and
antenna orientations . 62

3.5.4 Manual flight test with drone 64

3.5.5 Autonomous flight test . 65

3.5.6 Small scale full system test . 66

3.5.7 Large scale full system test . 68

3.5.8 Range and signal strength test with module on drone 69

3.5.9 Optimal speed, power consumption and range 70

3.5.10 General problems and considerations 71

Contents 7

4 Analysis 73
4.1 Practical tests . 73

4.1.1 Range test . 73
4.1.2 Antenna orientation and signal strength test with obstacle . . 74
4.1.3 Range and signal strength tests with different antennas and

antenna orientations . 74
4.1.4 Manual flight test . 76
4.1.5 Autonomous flight test . 76
4.1.6 Small scale full system test . 76
4.1.7 Large scale full system test . 76
4.1.8 Range and signal strength test with module on drone 79
4.1.9 Optimal speed, power consumption and range 80
4.1.10 Theoretical prototype tag . 82

5 Discussion 83
5.1 SheepRTT range and accuracy . 83
5.2 System MAVLink integration . 83
5.3 Full system performance . 83
5.4 UAV flight speed, range and efficiency 83
5.5 Comparison to existing solutions . 84
5.6 Possible regulatory obstacles . 85

6 Conclusion 86
6.1 Further Work . 87

Bibliography 88

8 List of Figures

List of Figures

2.1 nRF52833 Development kit. 16
2.2 MINEW MS88SF23 . 17
2.3 Triangulation illustration. 17
2.4 Multilateriation illustration . 18
2.5 Mission Planner . 20
2.6 QGroundControl . 20
2.7 DJI GS PRO . 21
2.8 Radio Sheep GCS . 21
2.9 MAVproxy . 22
2.10 ArduPilot SITL Simulator structure [4]. 22
2.11 MAVLink 1 serialized packet format. [17] 30
2.12 MAVLink 2 serialized packet format. [17] 30
2.13 MAVLink 2 message signing. [12] . 31
2.14 RF attenuation in sea water. [35] . 35

3.1 The main components of the system. 36
3.2 GCS and SheepRTT sub-components 37
3.3 Overview of system. 37
3.4 Overview of Radio Sheep GCS. [44] 39
3.5 RTT distance measurement sequence diagram. 40
3.6 RTT distance measurement upload sequence diagram 40
3.7 SheepRTT module MAVLink communication. 42
3.8 Overview of MAVLink components, with simulators and development

components. Note: nRF = SheepRTT 46
3.9 The UAV with a development kit connected over UART 47
3.10 The wiring for the MS88SF23 module. 48
3.11 nRF module (MINEW MS88SF23) with connection headers and an-

tenna attached. 48
3.12 Custom cables for the MINEW MS88SF23 module. 49
3.13 The drone with a MINEW module connected over UART 49
3.14 Version 2 of nRF MS88SF23 module wiring. 50
3.15 Our UAV . 51
3.16 Sony VTC6 3S with a XT30 connector and JST balance charge con-

nector. A spot wielder was used to assemble the lithium-ion battery
pack. 54

3.17 3D printed GPS mount for Matek M8Q-5883. For 20x20mm mount. . 55
3.18 Design for mounting the SheepRTT module. 55
3.19 Custom 3D printed mount for SheepRTT module. 55
3.20 FrSky Taranis X9 Lite radio transmitter 56
3.21 Yaapu FrSky Telemetry Script screen. [52] 56

List of Figures 9

3.22 Development kit held manually at a height of 70cm. Connected to
the computer for logging the results. 60

3.23 Locations used for each measurement. 60
3.24 Point 0 is where it was measured from, Point 1 is at 35 meters dis-

tance. Point 2 is at 130 meters distance. 61
3.25 Different orientations of the development kit used during this test. . . 62
3.26 External 2.4GHz antenna with U.FL connector. Gain: 2.5dBi 63
3.27 Antenna configurations and indication of the direction of the opposing

antenna. 63
3.28 Planned long range test path. Starting at the Bekken parking lot and

going in the direction of Dragvoll. Visualized in Google Earth Pro. . 64
3.29 First manual flight test. Visualized in Google Earth Pro. 64
3.30 UAV used in this test. 64
3.31 Autonomous flight test flight path. 65
3.32 Flight path in 3D. Visualized in Google Earth Pro. 66
3.33 Altitude graph and flight path. 66
3.34 Small scale system test flight path. 67
3.35 Flight path in 3D showing when the geofence failsafe was triggered.

Visualized in Google Earth Pro. 68
3.36 Altitude graph and event timeline around the Geofence failsafe trig-

gering. 68
3.37 Large scale system test flight path. 69
3.38 Flight path for long range testing. Starting near Stokkan and heading

in the direction of the Bekken parking lot. Visualized in Google Earth
Pro. 70

3.39 Optimal speed test flight path. At the fields between Dragvoll and
Stokkan. Visualized in Mission Planner. 71

4.1 Location estimations compared to the real locations. Using all mea-
surements and the intersection method. 78

4.2 RTT distance measurements visualized, red is the measurements for
one specific tag. The center of each circle is the position of the drone
when measuring the distance and the radius is the measured distance. 79

4.3 RTT distance measurement compared to GPS distance for SheepRTT
implementation #1. 80

4.4 Histogram of the error distribution for SheepRTT implementation #1. 80
4.5 RTT distance measurement compared to GPS distance for SheepRTT

implementation #2. 80
4.6 Histogram of the error distribution for SheepRTT implementation #2. 80
4.7 UAV estimated range at different speeds. 82
4.8 UAV estimated flight time at different speeds. 82
4.9 UAV energy consumption at different speeds. 82
4.10 UAV energy consumption per km . 82

10 List of Tables

List of Tables

2.1 UAV main components and their functions 23
2.2 Flight modes . 24
2.3 MAVLink Message: GLOBAL POSITION INT 29

3.1 MAVLink Message: SHEEP RTT DATA 43
3.2 MAVLink Message: SHEEP RTT ACK 43
3.3 Encapsulation overhead . 44
3.4 Our UAV components . 52
3.5 Auxiliary and system specific components and their functions. 52
3.6 Considered battery alternatives . 54

4.1 Range test results . 73
4.2 Range test 2 results . 74
4.3 Short range antenna configuration test results. 75
4.4 Long range antenna configuration test results. 76
4.5 Number of RTT distance measurements per tag. 77
4.6 Large scale full system location estimation accuracy comparison . . . 78
4.7 UAV speed/power consumption and estimated range and flight times. 81

List of Tables 11

Abbreviations

BEC Battery eliminator circuit. In this case it’s a constant voltage
power supply powering onboard electronics.

BLE Bluetooth Low Energy

BVLOS Beyond visual line of sight

EKF Extended Kalman Filter

ESC Electronic Speed Controller, drives and controls the drone’s mo-
tors using power from the battery

FC Flight controller, the brain of the drone

GCS Ground Control Station

GNSS Global navigation satellite system

GPIO General-purpose input/output

GPS Global Positioning System

INS Inertial Navigation System

MAC Media Access Control

MAVLink Micro Air Vehicle Link

MTOM Maximum take-off mass

RTL Return to Launch

SITL Software in the Loop

SoC System on a chip

UART Universal asynchronous receiver-transmitter

UAV Unmanned aerial vehicle

12 Chapter 1. Introduction

Chapter 1

Introduction

At the end of summer when the grazing period ends, it’s a large task to gather all
the animals from their grazing lands. This is a long and tiresome process involv-
ing scouring both forests and mountains looking for the animals. A more efficient
method to find all the animals would save a lot of time and manpower.

There is already some solutions to this problem being tested commercially by
different companies. The solutions usually involves a collar containing a GPS re-
ceiver, mobile network communications equipment and a battery, this type of units
are expensive, heavy, cumbersome and can not be used by younger and growing
animals.

We are going to look into an alternative solution with a very different approach.
This involves equipping animals with a tags containing a very small Bluetooth LE
chip and a battery. A drone would also be equipped with a Bluetooth LE chip
to communicate with the tag, retrieving information from it and calculating the
distance between the tag and the drone. By using GPS data from the drone and
the distance measurements can determine an approximate position for the animal.
The small size also makes it possible to use this tag on younger animals.

In this report, we will first describe the relevant theory, and then detail the path
we took in order to reach a solution. Finally, we will reflect on the results and
compare them to existing solutions.

1.1 Original Task description

Our task was to develop a system capable of locating animals using a UAV and
radio technology. The use of cheep radio transceivers for distance measuring opens
up new possibilities to develop lightweight and cheap animal tracking. By combing
the two technologies we can provide low cost animal localization without the need
to have cell phone or satellite connectivity built into each tag.

Chapter 1. Introduction 13

1.2 Software Base

1.2.1 Python

We used the Python programming language[50] version 3.7.5 in this project. The
major software libraries are listed below:

Library Version Description

pymavlink 2.4.14 Python MAVLink interface and utilities. (Custom fork [37])
matplotlib 3.3.4 Comprehensive library for creating visualizations in Python.

1.2.2 ArduPilot

In this project we used the ArduPilot open source autopilot software for both the
flight controller and the SITL. We used version V4.1.0-dev of ArduPilot in this
system. This was compiled on Linux(Ubuntu 18.04) from source code available on
GitHub [2].

1.2.3 SheepRTT

The SheepRTT modules have software operating them. More information abou this
in [45].

1.2.4 Radio Sheep GCS

Radio Sheep GCS is a ground control station for managing drone operations with
sheep searching related purposes. [43] More information about this software is found
in [44].

14 Chapter 2. Theory

Chapter 2

Theory

In this chapter we will look at existing and alternative solutions. We will look at
technologies we could use to build our system. Also we will go through the basis for
UAVs and all relevant systems around them. The regulations around UAV usage in
Norway will also be examined as this is very relevant for us. Relevant theory and
science will also be mentioned here.

2.1 Existing solutions

We gathered information about existing solutions for the same problem we are trying
to solve. We choose to take a look at the regular way to locate and gather sheep
and two systems based around GPS collars.

2.1.1 Traditional/regular

The traditional way to gather animals from the grazing areas is to manually search
for them. To help this manual search the animals is outfitted with bells. The bells
make sound every time the animals move, and this sound can be heard and used to
locate animals many hundred meters away. This process quite takes a quite lot of
time, especially when covering large areas. We found bell collars for sheep available
for 84 NOK before sales taxes.

2.1.2 GPS collars

A technology that have gotten popular the last few years is GPS collars. The some
GPS collars are specially made for tracking the movement of farm animals. These
GPS collars use cellphone networks or satellite communication to report the animal’s
movement at regular intervals. This means you can keep track of the animals the
whole season without manually visiting them. Many of these collars can also be
used as virtual fence or geofence to keep animals in the desired area. The virtual
fences uses audio warnings and electric shocks to prevent animals from leaving the
desired area.

A downside of the GPS collars is the size of the units themselves. The larger
units are also not optimal for use with smaller animals.

We took a closer look at GPS collar already commercially available. We chose
to focus on the products from Nofence and findmy. Data from the manufactures

Chapter 2. Theory 15

themselves were used in this comparison. We focused on making a comparison of
connectivity, battery life and costs.

Nofence

The collar from Nofence requires cell phone connectivity to report location or make
changes to geofence settings. [38] On newer models 2G or LTE CAT M-1 can be
used for connectivity. The battery life is on average around three weeks, but can
vary between one week and three months depending on the use. Configuration and
monitoring can be done through a mobile phone app. The form factor is similar
to a normal collar with a bell, but a little bit larger. This system is commercially
available.

The unit cost per GPS collar is 1850 NOK before sales taxes. [39] In addition to
the upfront cost the collar requires an active subscription from Nofence. The cost
of this subscription varies depending on the total number of animals and the length
of the grazing season. Based on this factors the cost can be between 6 NOK and
1.5 NOK per animal per day.

findmy

The collar from findmy does not require cell phone connectivity, it instead uses
satellite communication to exchange data. [28] The battery life estimated to last
two to three seasons if the grazing season lasts half a year. The form factor is similar
to a normal collar with a bell, but a little bit larger. This system also features a
system to alert the user when the animals get in potentially stressfull or dangerous
situations. This system is commercially available.

The unit cost per GPS collar is 1849 NOK before sales taxes. In addition to this
the collar requires an active subscription from findmy. The cost of this subscription
is 229 NOK per year.

2.2 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a wireless technology developed by the Bluetooth
Special Interest Group (SIG). [30] It’s designed as a low-power technology to con-
trol and monitor devices ranging everything from consumer devices to medical or
industrial devices. It was integrated as a subset of the Bluetooth 4.0 specification
in 2009. The main focus of this technology is to increase battery life on small low
power devices designed for operating on batteries for long periods of time. The other
focuses of this technology is low cost for the hardware itself. Because the technology
is based on Bluetooth there is support for it on most modern devices supporting
Bluetooth.

2.2.1 Long-Range Mode

With the introduction of Bluetooth 5.0 an optional feature known as long-range
mode or Coded PHY were introduced. This mode allows longer range at the cost
of speed. Both the original mode and the long-range mode use a sending rate of
1Mbps, but with long-range mode each bit is sent two or eighth times instead of

16 Chapter 2. Theory

one time. Sending each byte multiple times increases the chance of it being received
by the other device. But this also reduces the bandwidth to 500Kbps or 125Kbps
depending on how many times each bit it retransmitted. This could increase the
maximum range a BLE device can communicate at to 1km or more. Because of the
reduced bandwidth when using this mode the radio itself needs to be active for a
longer amount of time compared to the original mode, thus increasing the energy
consumption. As this feature is optional it’s important to make sure both devices
you’re trying to connect together support this feature.

2.2.2 nRF52833 development kit

Nordic Semiconductors have given us access to five nRF52833 development kits. It’s
easy to connect the development kit to a computer by using a micro-USB cable. The
development kit have a built in JTAG/SW interface for programming the built in
nRF52833 chip and also the possibility of programming an external nRF chip. The
use of 2.54mm headers on the board makes it easy to connect anything to the GPIO
pins for testing. The development kit includes an integrated antenna and an U.FL
connector for attaching an external antenna.

Figure 2.1: nRF52833 Development kit.
Source: https://www.nordicsemi.com/Products/
Low-power-short-range-wireless/nRF52833

2.2.3 MINEW MS88SF23

We also bought three MINEW MS88SF23, which is a Bluetooth LE module based
on the nRF52840 SoC. The nRF52840 is very similar to the nRF52833, but features
double the amount of RAM and flash storage. It’s a small form factor module, ideal
for use where weight and size are constrained. It measures 23 x 17 x 2 mm and have
a weight of approximately 1g. The module have 28 soldering pads along the sides
for power, GPIO, debug and programming interface and USB. The placement of
soldering points along the side makes it easier to solder by hand compared to many
comparable modules. It also features an U.FL connector for an external antenna.

https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52833
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52833

Chapter 2. Theory 17

Figure 2.2: MINEW MS88SF23

2.3 Distance estimation and localization techniques

When we want to estimate the position of a target we can use different radio localiza-
tion techniques. A common one you probably have already heard of is triangulation,
but there is also alternatives like multilateriation.

2.3.1 Triangulation

Triangulation is a technique for de-
termining where a new location is by
forming a triangle using known loca-
tions. The first step is to determine
the direction the signal from the tar-
get, also known as the angle of ar-
rival(AoA). Then from the known lo-
cations we draw a line or a cone in that
direction and where they intersect we
can estimate the new location to be.

Figure 2.3: Triangulation illustration.

2.3.2 Multilateriation

Multilateriation is a technique for determining where a new location is by measuring
the distance between a number of known locations. After we have the distances, we
can draw a circle around each known location with the radius being the distance to
the new location. Where the circles intersect we can estimate the new location to
be. If we have too few distance measurements the circles can intersect at multiple
points, but only one of the points is the real location. An example of this problem
is shown in figure 2.4. The solution to this problem is to gather more distance
measurements from different locations.

18 Chapter 2. Theory

Figure 2.4: Multilateriation illustration

Particle filter

This is a method for using the distance measurements to estimate a new location.
The particle filter method used in this paper is based on the Monte Carlo Localiza-
tion. More information about the implementation of this localization technique is
found in [44].

2.3.3 RSSI distance estimation

RSSI or Received Signal Strength Indicator can be used as an indicator of how
far away something is. Usually a signal gets weaker the further away you go and
stronger the closer you are. By measuring the signal strength we can estimate the
distance between the radio sender and the receiver. However the signal strength
can be influenced by many factors like destructive and constructive interference,
obstructions, signal reflections and the antenna orientations. It can be hard to
detect or compensate for these factors. Because of this the signal strength can vary
a lot between measurements and be unreliable.

2.3.4 RTT distance estimation

In a similar way RADAR estimate distance by measuring the time it takes for
a reflected signal to return we can measure the time it takes to get a reply to our
radio message. We measure the Round Trip Time(RTT) as the time from us sending
out a message and until the Time of Arrival(ToA) for the reply. By knowing the
signal propagation speed and the RTT we can calculate a distance estimate.

This distance estimation technique requires the target to actively answer to pings
from the sender. Variations in the signal strength would not affect the estimated
distance. As long as the signal is strong enough to be received we can get a measure-
ment. It requires the searcher to have accurate high resolution clock to measure the
delay between sending and receiving. The radio signal can get reflected of a surface
and thus take a longer alternative path, this reflected signal could use longer time
to reach the searcher and make it appear to be further away. It’s also important to
factor in processing time and delays at each end.

As determined by Nyholm in [40], using a RTT based distance estimation is more
accurate than RSSI based distance estimation.

Chapter 2. Theory 19

2.4 UAV

2.4.1 Firmware alternatives

There is a wide selection of both open source and closed source UAV firmwares. We
have considered a few of them and compared them below. A more comprehensive
and in depth survey of open source firmwares is available at [26].

ArduPilot

ArduPilot is a advanced, powerful and reliable open source software system. [46]
It’s also very diverse and it can control almost any type of vehicle including but
not exclusive to airplanes, multi-rotors, helicopters, boats, submarines and ground
vehicles. There is built in support for MAVLink. It also have autonomous flight
capabilities.

Betaflight

Betaflight was the experimental fork of Cleanflight with a focus on flight perfor-
mance, leading-edge feature additions and supporting a wide range of flight con-
trollers. [23] It can control both multi-rotor and airplane UAVs. Mostly used on
racing UAVs and does not have autonomous flight capabilities. It does not have
autonomous flight capabilities.

INAV

A fork of Cleanflight with a very heavy focus on GPS and autonomous flight capa-
bilities. [31]

PX4

PX4 is an open source flight control software for drones and other unmanned vehi-
cles. [25] The project provides a flexible set of tools for drone developers to share
technologies to create tailored solutions for drone applications. PX4 provides a stan-
dard to deliver drone hardware support and software stack, allowing an ecosystem
to build and maintain hardware and software in a scalable way.

DJI

DJI is the company with the largest marked share in the drone marked. [6] DJI
drones have autonomous flight capabilities and support control through the DJI
SDK. The firmware on the drones is proprietary and closed source. It does not
support control over MAVLink.

2.4.2 Ground Control Station

A Ground Control Station(GCS) is a piece of software designed to communicate
with with the drone, showing operating information, configuring the parameters of
the drone itself or planning autonomous flight missions.

20 Chapter 2. Theory

Mission Planner

Mission planner is a open source GCS made for ArduPilot, it can be used to configure
everything on the UAV and help with setup of both hardware and software. There is
also possibility to monitor the drone and change parameters in flight. It also contains
an advanced log analyzer for both manual and automatic analysis. A powerful
autonomous flight planning tool that can fetch maps and terrain information from
multiple sources like Google maps or Bing Maps. Windows is required to run this
software. It communicates with the drone over MAVLink.

Figure 2.5: Mission Planner

QGroundControl

QGroundControl support full flight control and autonomous mission planning for
any MAVLink enabled drone. This means it would work with drone firmwares like
PX4, ArduPilot, INAV and many more. The software is open source. QGroundCon-
trol runs on all major desktop and mobile operation systems including Windows,
Linux, OS X, Android and iOS.

Figure 2.6: QGroundControl

DJI GS PRO

DJI have made a GCS for use with DJI drones. It’s closed source and requires an
iPad to run. The app itself is free but requires an expensive payments to unlocking
more advanced features.

Chapter 2. Theory 21

Figure 2.7: DJI GS PRO

Radio Sheep GCS

The Sheep GCS is our custom made GCS for this our system. It is developed with
Typescript and Electron. It can fetch map and terrain data from Kartverket. This
data can then be used to plan autonomous flight missions. It can also receive, process
and visualize data from our SheepRTT module on the UAV. It communicates with
the drone over MAVLink.

Figure 2.8: Radio Sheep GCS

MAVproxy

MAVproxy is a GCS for MAVLink based systems. [49] There is both a command line
interface and a graphical interface. The original focus of MAVproxy was to handle
multiple MAVLink links and have since evolved into a fully functioning GCS. One
of the most powerful features in MAVproxy is the ability to route messages between
multiple links. It can do this over many different protocols like UDP, TCP and serial
connections. MAVproxy runs on Windows, Linux, OS X and some other operating
systems.

22 Chapter 2. Theory

(a) MAVproxy GUI in linux (b) MAVproxy CLI

Figure 2.9: MAVproxy

2.4.3 Simulated Vehicle (SITL)

A simulated vehicle or Software In The Loop (SITL) allows you to simulate a full
UAV running the same software as a real UAV would. [4] The ArduPilot SITL
simulator is built from the same code that runs on the drone. This allows you to
run any version of the ArduPilot autopilot software without any physical hardware.
It’s running as a native executable on a computer, built using a ordinary C++
compiler. It can run natively on both the Linux and Windows operating system. A
physics engine is also included to simulate the physics of the simulated UAV.

This makes testing and developing the communication with the UAV much faster
and less risky. There is no risk of damage to the UAV while testing. Also we
don’t need to have the physical UAV available, so everyone can work on it anytime,
anywhere.

Figure 2.10: ArduPilot SITL Simulator structure [4].

2.4.4 Types of UAVs

UAVs come in multiple shapes and forms. The main types are multi-rotor, fixed-
wing and hybrid-wing, with their marked share in that order. [32] Different types
of drones have their own strengths and weaknesses and some are better suited for

Chapter 2. Theory 23

certain kinds of tasks then others. [24] Below we go through the main types of
drones listed above.

Multi-rotor

Multi-rotor is the kind of drone you usually think about when when drones are
mentioned. This type of drone consist of a central body containing most electronics
and usually four or six arms extending out horizontally with a motor and propeller
on each of them. The advantages of this type of drone is easy control, takeoff and
landings. High mobility in all directions and the ability to hover stationary is also
some very large advantages. The main disadvantage multi-rotors that the UAV need
to spend a lot of energy just to keep itself from falling out of the sky. [24]

Fixed-wing

A fixed-wing drone is more similar to a small airplane. This type of drone have
fixed wings and usually one forward or backward facing propeller and flight control
surfaces controlled by servos. The main advantages of this drone type is very good
flight endurance resulting in long range and high flight time and can therefore cover
large areas in one flight. The disadvantages is that landing and takeoff requires a
suitable area and it cannot keep itself flying below a minimum speed. Autonomous
takeoff and landing may require more sensors and be harder to do than on multi-
rotor drones. [24]

Hybrid-wing

A hybrid-wing drone tries to combines the advantages of multi-rotor and fixed-wing
drones. There are many different solutions for hybrid-wing drones with their own
advantages and disadvantages, a survey comparing them can be found in the cited
paper. [42]

2.4.5 UAV components

For the UAV we can either use a prebuilt and commercially available UAV or build
our own tailored to this project. In both cases the UAV requires a set of standard
components. With the exception of the GPS all other listed components are required
for the UAV to fly.

Table 2.1: UAV main components and their functions

Part Description

Flight Controller The “brain” or main computer of the UAV.
ESC Electronic Speed Controller, controls motor speed.

Motor Converts electrical energy into mechanical energy. Makes propeller spin.
Propeller Converts rotational power to trust.

Radio receiver Communicates wirelessly with the radio transmitter.
GPS/compass Used to find UAV position and orientation.

Frame Holds everything together.
Battery Provides electrical energy to the UAV.

24 Chapter 2. Theory

2.4.6 Flight modes

Modern UAVs have multiple flight modes available for use. The many different
flight modes are each suited to different usages and situations. The flight modes
range from the normal radio transmitter controls you expect to find on a drone to
GPS assisted modes or autonomous flight. There is even a flight mode for doing
automated flip mid air. The selection of flight modes are either done through a
switch on a radio transmitter, mission commands or over MAVLink from a GCS or
companion computer. [1]

Table 2.2: Flight modes

Flight mode GPS
required

Description

Stabilize No Self-levels the roll and pitch axis. Full control by
the user. May be hard to control for beginners.

Alt Hold
Altitude Hold

No Holds the current altitude, usually using a barom-
eter combined with an accelerometer. The UAV
self-levels when the controls are released.

This mode is much easier to control than the
Stabilize mode, here the user can change the
altitude by moving the throttle and move in any
direction by tilting the UAV. Altitude control and
horizontal control are independent of each other. If
the user let go of the control the UAV would come
to a stop and hold that position.

Loiter Yes Same as Altitude hold, but also uses GPS data to
hold the current position.

This is even easier than Alt Hold mode. The
use of GPS data nearly eliminates any drifting
while the drone tries to hold a position. This mode
is also less susceptible to wind affecting the UAV.

Land Optional Tries to perform a landing by slowly reducing the
altitude until the drone reaches ground level. Usu-
ally triggered by a fault condition like low battery
or the signal from the radio transmitter is lost.

RTL
Return to launch

Yes Goes to a predetermined altitude and then returns
to the takeoff location.

Auto Yes Autonomously executes a predefined mission stored
on the flight controller. A mission may include
takeoff, landing, waypoints and other mission com-
mands. No user input required in this mode.

The relevant flight modes for use in our system. Flight mode names and
descriptions from ArduPilot. [1] [34]

Chapter 2. Theory 25

Failsafes

When a major problem is detected by the UAV a failsafe is triggerd. This could be
from the battery running low, UAV is breaking the configured geofence boundaries
or the contact with the radio transmitter controller is lost. Which mode it goes into
can depend on what failsafe was triggered. The goal of a failsafe is to avoid loosing
or damaging the UAV when something does wrong. The pilot can take back control
after a failsafe have been triggered if they wish. The most common failsafe modes
are RTL or land, the first one causes the drone to fly back to it’s launch site and
the other causes it to slowly descend until it makes contact with the ground.

2.5 Global navigation satellite systems

A GNSS is a system using satellites to provide positioning all around the globe. [21]
Each satellite transmitts a highly accurate time signal. By using the time signal from
multiple satellite a receiver can then estimate its location. The minimum number of
satellites required to get a positional fix is four, this means you need line of sight to
at least four different satellites to find your location. Each GNSS consist of between
24 to 30 satellites in different orbits around the earth. The systems also consist
of a operational control segment on the ground for monitoring, maintenance and
corrections.

Today there is four GNSS in operation. The oldest of these systems is GPS(Global
Positioning System), it has been operated by the United States of America since
1978. It was originally only intended for military use but were later opened up
for civilian use. GLONASS was formerly operated by the Soviet Union and is now
operated by Russia, it have been operating since 1982 and is being used for both
military and civilian purposes. The BeiDou system have been operated by China
since 2000 and is used for both civilian and military purposes. The Galileo system
have been operated by the European Union since 2016.

2.5.1 Accuracy

The accuracy of GNSS positioning usually varies from a level of 30 m to 50 cm. [27]
The higher levels of accuracy requires more work and increased time and processing.
With a good signal reception the GPS system can achieve an absolute error of 2m
in the east/west and and north/south directions and 6m in the vertical direction
when used for real time navigation.

Using GPS together with another GNSS systems can increase its accuracy. Many
GNSS receivers support using both GPS and GLONASS at the same time for in-
creased accuracy. [36] Many newer receivers also support Galileo and BeiDou. Using
all of these GNSS together can reduce the time required to get a position fix by al-
most 70% and increase the accuracy by around 25% compared to only using a GPS
receiver.

2.5.2 Dangers and signal jamming

Today many systems depends on GNSS, everything from navigation systems on
board aerial and nautical vessels to mobile phones and drones. As systems become

26 Chapter 2. Theory

more and more dependent on GNSS the potential danger and damages from any
disruption of these systems are increasing too. [29] A system that is primarily
dependent on GNSS could encounter potentially catastrophic failure if it were to
fail or become unreliable. As all wireless systems are vulnerable to radio jamming.
When a radio transmitter starts sending garbage on the same frequency as the GNSS
it could end up overpowering the signal form the GNSS. There have been cases all
around the world where small jammers caused issues for GNSS. There have also
been episodes where the GPS signal in large areas in northern Norway experienced
signal jamming.

2.6 Extended Kalman Filter

The Extended Kalman filter(EKF) is a nonlinear version of the Kalman filter. [41]
[48] It’s a tool that can be used to solve estimation problems like combining and
filtering data from multiple sensors. A very suitable use for EKF is in UAVs. Here
the data from GNSS, accelerometers, gyroscopes, barometers need to be combined
into stable and reliable position and velocity estimates. [33] The EKF does this by
running continuous cycles of prediction and filtering. A big advantage of the EKF
over simpler alternatives is it’s ability to detect sensors with significant deviations
and become less influenced by data from the unreliable sensor.

2.7 Regulations of drone use in Norway

The regulations regarding drone use in Norway falls under Luftfartstilsynet. As of
1. of January 2021 Norway adopted the drone usage regulations of the European
Union. [22] Because this change is happening during the writing of this thesis we
will only focus on the new regulations as they will be relevant in the future. Different
types of drones usage falls under different categories, those are elaborated on below.

Open

The open is where most low risk and leisure drone activity happens. The main
points of the category is:

• The drone must weigh less than 25 kg.

• The pilot needs to maintain visual line of sight (VLOS) with the drone.

• The drone must always fly within 120 meters from the closest point of the
earth.

• No carriage of dangerous goods.

• No dropping of items.

• The drone must be marked with the operators registration number if it’s
equipped with a camera or the weight is 250g or above.

• Pilots of drones with a weight of 250g or above need to complete a basic online
exam.

Chapter 2. Theory 27

The open category consist of three subcategories, A1, A2 and A3. A1 is for smaller
drones with a weight up to 900g and allows you to fly over uninvolved people but
not over crowds. A2 is for small medium drones with a weight up 4kg and allows
you to fly as close as 30m to uninvolved people to fly close to people or 5m if the
drone is operating in a low speed mode of max 3m/s. A3 is for larger drones with
a weight up to 25kg and requires you to fly far from uninvolved people and at least
150m away from residential, commercial, industrial or recreational areas.

Specific

The specific category is for riskier operations that do not in the open category. To
operate in this category you need an operational authorisation from the National
Aviation Authority where they are registered, unless the operation is covered by a
Standard Scenario. In this category beyond visual line of sight (BVLOS) can be
conducted if specific requirements are met.

Certified

The certified category is for operations with the highest level of risk. Passenger
transport and autonomous cargo carrying drones fall into this category. Because of
the high risk involved the drone need to be certified. Also the operator need an air
operator approval. The person piloting the drone need a pilot licence.

2.8 MAVLink

MAVLink is a very lightweight messaging protocol for primarily communicating
between a GCS and unmanned vehicles. [7] But also other MAVLink enabled devices
can be used. MAVLink follows a modern hybrid publish-subscribe and point-to-
point design pattern, data streams are sent or published while configuration sub-
protocols such as the mission protocol or parameter protocol are point-to-point with
retransmission.

MAVLink as a binary protocol that can run over anything like physical wires,
radio transmitters, mobile networks, satellite links or traditional IP networks.

2.8.1 System and component IDs

All MAVLink networks consist of devices with a system ID and one or more compo-
nent IDs. [16] Every message sent contain the sender’s system and component ID and
some types of messages also contain the intended recipient. When there is a intended
recipient the message contains the fields target system and target component. A
message can also be intended for multiple recipients using broadcasts. You can read
more about how this works in subsection 2.8.5.

Both the system ID and the component ID allow 256 unique values, this is
because each ID is represented using 8 bits or one byte. Out of the possible 256
values, the ID 0 is reserved for broadcasts.

28 Chapter 2. Theory

System ID

The unmanned vehicles usually have default system ID of 1. [16] If more unmanned
vehicles are added to the MAVLink network, their system ID should increment to a
unique unused value. GCS systems usually use the high end of possible system IDs,
like 255. If multiple GCS systems are used in a MAVLink network each of them
should have their own unique system ID.

Component ID

Component IDs are used for the different types and instances of onboard hardware
or software on a unmanned vehicle. This might be autopilot, cameras, servos, GPS
systems, avoidance systems etc. [10]. A components must use the appropriate com-
ponent ID in their source address when sending messages, eg. the autopilot related
messages are sent under the autopilot component ID while a MAVLink enabled cam-
era sends messages under a camera component ID. Components can also use IDs
to determine if they are the intended recipient of an incoming message. [16] The
complete list of appropriate component IDs is available in the cited source.

2.8.2 Dialects

A MAVLink dialect is a set of messages, enums and commands that can be used
for communication between MAVLink enabled devices. The dialect can contain
both protocol and vendor-specific messages, enums and commands. The standard
dialect is common.xml, it contains the “universal” messages used to control the drone
and retrieve telemetry data. The ardupilotmega.xml dialect is an extension of the
common.xml dialect that adds support for many ArduPilot specific messages and
other MAVLink enabled devices like gimbals, cameras, rangefinders and more. A
dialect is defined in a dialect XML file that can easily be modified by hand and then
compiled to MAVLink libraries using mavgen from pymavlink. Pymavlink supports
a wide range of programming languages, but only the C and Python languages are
officially supported. [9] [11]

Messages

MAVLink uses message definitions to decide how to encode and decode the content
of sent and received messages. The message definitions are from the configured
MAVLink dialect. Only the messages found in the definitions can be understood
and no new messages can be added at runtime. Each message definition have their
own unique id, this is used to identify what message is being received and how to
decode the payload. MAVLink 1 can support up to 256 unique message definitions,
while MAVLink 2 can support up to 16 million unique message definitions. A list
of all official message definitions can be found at [13]. An example of a message is
shown in Table 2.3.

Chapter 2. Theory 29

Table 2.3: MAVLink Message: GLOBAL POSITION INT

Field Name Data type Units Description
time boot ms unit32 t ms Timestamp (time since system boot).
lat int32 t degE7 Latitude (WGS84, EGM96 ellipsoid)
lon int32 t degE7 Longitude (WGS84, EGM96 ellipsoid)
alt int32 t mm Altitude (MSL). Positive for up.
relative alt int32 t mm Altitude above ground(from takeoff) Positive for up.
vx int16 t cm/s Ground X Speed (Latitude, positive north)
vy int16 t cm/s Ground Y Speed (Longitude, positive east)
vx int16 t cm/s Ground Z Speed (Altitude, positive down)
hdg unit16 t cdeg Vehicle heading (yaw angle), 0.0..359.99 degrees.

This message provides a filtered global position (e.g. fused GPS and
accelerometers). It is designed as scaled integer message since the resolution of

float is not sufficient and consistent. The degE7 format gives an accuracy of 1.1cm.
[13]

Enums

Enums are a data type used to represent a group of constants. Constants being
permanent unchangeable variables. Usage of enums makes code easier to read and
understand and reduces the chance of typos. An example of how useful enums are
for improving code readability is instead of remembering that a 16-bit signed integer
have the data type value 4, you can instead just write MAV PARAM TYPE INT16
or for a 32-bit floating point number you can write MAV PARAM TYPE REAL32
instead of 9. [13]

Commands

Commands are as the name suggests defined commands that can be issued to a
MAVLink enable vehicles. [47] This includes setting waypoints, mission parameters
like changing the flight speed or starting missions. Each command can have up
to 7 parameters. There is two types of commands, the ones that can be executed
imminently and the long running commands that takes time to complete.

2.8.3 MAVLink 1 vs MAVLink 2

The change from MAVLink 1 to MAVLink 2 expands the capabilities of the protocol.
[19] [18] One of the largest changes is the use of 24 bit message IDs, this allows the
use of over 16 million unique messages in a dialect, up from 256 with MAVLink 1.
Another addition was the support for packet signing, this can be used to ensure
the message was sent by a trusted system. The support message extensions was
also added, this allows adding new optional fields to the message definitions without
breaking binary compatibility for receivers. Compatibility and incompatibility flags
was also added, the flags are used to indicate how incoming packets should be
handled. Packets with a unsupported can still be handled in the standard way,
while a packets must be dropped if the incompatibility flags are not supported.

30 Chapter 2. Theory

2.8.4 Serialization

Even if the way to store MAVLink message in memory can vary greatly from sys-
tem to system the MAVLink message sent over the wire(serialized) is strictly de-
fined. There is two different formats for this, MAVLink v1 and MAVLink v2. The
MAVLink v2 format have additional features over MAVLink v1, we will go into more
details about this in subsection 2.8.3.

Figure 2.11: MAVLink 1 serialized packet format. [17]

Figure 2.12: MAVLink 2 serialized packet format. [17]

Magic byte(STX)

Every MAVLink frame starts with a magic byte, this is 0xFE(254) for MAVLink 1
packets and 0xFD(253) for MAVLlink 2 packets. This is also known as a Protocol-
specific start-of-text (STX). This is used to detect the beginning of a MAVLink
frame.

Length

This is the length of the payload. This is used for parsing the message. When
MAVLink 2 is used this is the length of the payload after zero truncation.

Incompatibility and compatibility flags

MAVLink v2 also have one byte for incompatibility and one byte compatibility flags
following the payload length [17]. If a receiver does not understand any incompat-
ibility flag, it is required to drop the MAVLink packet. The compatibility flag can
be used to indicate a packet should get a higher priority than other packets. It’s not
required for the receiver to understand any compatibility flag as the packet itself is
not affected.

Packet sequence number

The packet sequence number increments for every sent message from sent from the
specific component. This goes up to 255 and then loops back to 0. By checking if
any sequence numbers are skipped on the receiver we can the detect packet loss on
the MAVLink connection.

Chapter 2. Theory 31

System id

The system id of a MAVLink message is used to identify the sender of the message.
This is the same system id as described in subsubsection 2.8.1.

Component id

The component id of a MAVLink message is used to identify the sender of the
message. This is the same component id as described in subsubsection 2.8.1.

Message id

This is the same message id as described in subsubsection 2.8.2.

Payload

The payload contains the message fields defined by the message definition. A field
can have one of the following data types: uint64 t, int64 t, double, uint32 t, int32 t,
float, uint16 t, int16 t, uint8 t, int8 t or char. During transmission the message
fields are reordered by the data type size, with larger data types at the beginning
of the payload [17]. A field can either be a single value or an array. When using
MAVLink 2 optional fields called extension fields can also be included at the end
of a message. On MAVLink 2 zero truncation is done, this involves removing all
tailing zeros from the payload, this shortens the packet itself.

Checksum

The checksum is a two byte value that is computed using CRC-16/MCRF4XX from
the content of the message. The sender computes it and adds it to the end of the
message when sending. The receiver also computes this value after decoding the
content of the message. If the received checksum does not match the computed
checksum the content of message is most likely corrupted and therefore disregarded.

Signature

By attaching a signature to every message we can verify that the received messages
are from a trusted source. [12] This is only possible on MAVLink 2.

Figure 2.13: MAVLink 2 message signing. [12]

The signature consist of three separate parts, the link ID, the timestamp and the
signature. The link ID identifies over which link the MAVLink message was sent.
This is only significant for multi-link MAVLink systems. The timestamp is the time
since 1st January 2015 in 10th of ms. The signature is the first 48 bits of a SHA-256
hash of the entire packet. There is also a incompatibility flag set on every signed
packet, indicating receivers not supporting signing most drop that packet. [12]

32 Chapter 2. Theory

Number encoding

All numbers are encoded starting with the least significant byte and ending with
the most significant byte. A benefit of encoding numbers in this way is that we can
truncate the tailing zeros of potentially large numbers. An example of this is if the
message ends with a U INT32 containing the number 12, only the least significant
byte of the number is being used, the three remaining bytes only consisting of zeros.

2.8.5 Routing

MAVLink network typically consists of the drone itself and the GCS, but a MAVLink
network can be made of many systems all connected together, each system with one
or more components [16]. The network is connected by links between different com-
ponents, much like a modern computer network. As a modern computer networks,
MAVLink networks also have routing protocols and rules to determine where to send
a packet. When having multiple components in a MAVLink network there is a need
to determine where each message should be sent, this is done by a set of routing
rules.

Rules used to determine if a packet should be forwarded:

• Not forwarding packages it does not understand(not in the component’s mes-
sage definition.)

• Some MAVLink messages contain the fields target system and target component,
if this is the case forward the message on a link leading to the target.t this is
used to indicate an intended receiver for the message.

• A broadcast message where the target system field is 0 or not included should
be forwarded on every link(except the link it was received from if re-transmitting).

There is also rules that determine if a receiver should process a message:

• If the message is a broadcast message.

• If the target system field matches the receiver’s system id and target component
field is broadcast, matches the receivers component id or the component id in
the target component field is unknown.

Some MAVLink messages contain the fields target system and target component,
this is used to indicate an intended receiver for the message. There is also a need to
keep track of links to figure where to find another system or component.

An example of routing is when the autopilot have a link to the GCS and another
link to an on board computer. A message from the GCS is not sent directly to
the on board computer and vice versa, but instead routed through the autopilot
component.

Chapter 2. Theory 33

2.8.6 Microservices

Microservices are higher level protocols running over the MAVLink network using
MAVLink messages. [15] The most important and relevant microservices used in
our system is elaborated on below. A major point of the protocols is the built in
retransmission of messages that can be lost over a unstable link.

Heartbeat Protocol

The heartbeat protocol is used advertise the existence of a component to the MAVLink
network. [14] All components broadcast their heartbeat regularly and looks out for
heartbeats from other components or systems. The heartbeat contains the system
id, component id, vehicle type, flight stack, component type, flight mode, and sys-
tem status of the sender component. It’s also used to determine which links and
components are healthy and used for routing. A heartbeat is usually broadcasted at
1 Hz. A heartbeat should only be broadcast if the component does not have major
problem.

Mission Protocol

The mission protocol allows a GCS to upload, download and clear flight plans on the
autopilot. This is critical for setting up autonomous flight missions. The protocol
also sends notifications when the current mission item changes, eg. the UAV reaches
a waypoint.

Parameter Protocol

The parameter protocol is used for both retrieving and setting parameters on a
MAVLink component. A parameter can be everything from the max acceleration of
the unmanned vehicle to how it should read the battery voltage. The protocol allows
to both read a specific parameter or all parameters from a component. Parameter
names can be up to 16 characters. Values can be 8, 16, 32 and 64-bit signed and
unsigned integers, and 32 and 64-bit floating point numbers. [15]

Command Protocol

The command protocol guarantees the delivery of MAVLink commands to a MAVLink
enabled vehicle. This is done by using acknowledgements and retransmission when
no response is received. It supports both commands that can be executed immi-
nently and long running commands. Each command can have up to 7 parameters.
The result from the execution of the command is sent in return. The progress of long
running commands can be tracked or the long running command can be cancelled.

There are two types of MAVLink command messages, COMMAND INT and
COMMAND LONG, in the former parameter 5 and 6 is a scaled integer and allows
higher precision when using commands containing coordinates. The rest of the
parameters are floats.

34 Chapter 2. Theory

2.8.7 Security Threats

The MAVLink protocol have multiple security issues, this is not a focus or very
relevant for our research and we wont discuss it in detail. You can read more about
this topic in [34, p. 8].

2.9 Signal attrition

The strength of a wireless signal is most often measured in dBmW, this is a loga-
rithmic scale where the reference value is one mili watt. One of the reasons for using
a logarithmic scale it that it makes the calculations much simpler you stupidly large
or small numbers.

2.9.1 Free-space path loss

Free-space path loss is signal attrition in air without any obstacles. [51] The formula
for calculating the free-space path loss is given as

LFS = 100 + 20log10(d) (2.1)

with d as the distance between the transmitter and the receiver. An easier way to
calculate this to remember a doubling of distance equals to a reduction in signal
strength of 6dB.

2.9.2 Near-Ground Path Loss at 2.4 GHz

When a radio signal travels close to the ground it behaves differently compared to
when traveling in free-space. [51] The signal can get reflected of the ground may
partially cancel out the line of sight signal through destructive interference. This
makes calculating the path loss a lot more complicated. The plane earth model can
be used to calculate the path loss near the ground and it is given as

LPE = 40log10(d)− 20log10(ht)− 20log10(hr) (2.2)

With d as the distance in meters, ht as the height of the transmitter and hr as
the height of the receiver in meters. An easier way to calculate this to remember
a doubling of distance equals to a reduction in signal strength of about 12dB. As
shown by [51] this model is not always as accurate and my vary based on the terrain
and other factors.

2.9.3 Path loss through vegetation and animals

There is also path loss when the signal is passing through anything on the path
between the transmitter and the receiver. In our case the most relevant obstacles
would be vegetation or the animals them self. Radio signals at 2.4GHz are easily
absorbed by water and turned into heat in a process called dielectric heating, this is
the same process happening in your microwave at home. Animals and plants are the
main obstacles we could encounter with our system. As they consist mostly of water
the graph in Figure 2.14 could be a close enough approximation for calculating the
path loss through this type of obstacles.

Chapter 2. Theory 35

Figure 2.14: RF attenuation in sea water. [35]

2.10 Signal interference

Wireless communication have always had the issue where it could be affected by
other radio signals. This happens when another radio transmits on the same fre-
quency simultaneously. The amount of interference depends on how strong the
signals are compared to each other. If the other signal is strong enough it could
overpower the desired signal and cause enough interference that we can’t decode it
anymore.

The 2.4GHz spectrum is used by a lot of different devices. After the Federal
Communications Commission decision in 1985 to open up the ISM band for unli-
censed use the number of devices utilizing the band have exploded. [20] It’s now used
by everything from WiFi and Bluetooth to microwave ovens and wireless controllers.

36 Chapter 3. Method

Chapter 3

Method

In this chapter we will look at how the system functions and the system architecture.
We will go though the separate components of system and explain their function.
Then we will show how everything fits together as a whole. We will explain the
challenges and solutions we found while designing this system. The reasoning for
our choice of UAV and its components will also be here.

We will also explain how our testing was conducted, what we wanted to achieve
with the tests and any problems we encountered.

3.1 System Architecture

Our system consist of the GCS, the UAV and SheepRTT modules. Each of these
components consist of multiple sub component in either software or hardware. Our
main focus now will be on the UAV and the MAVLink communication but we will
also discuss the other components being interacted with. The system architecture
is shown in the figures below. The system requires the GCS, UAV and SheepRTT
modules all working together to locate the animals.

The same system architecture description is also found in [44] and [45].

Figure 3.1: The main components of the system.

Chapter 3. Method 37

(a) GCS sub-components (b) SheepRTT sub-components

Figure 3.2: GCS and SheepRTT sub-components

Figure 3.3: Overview of system.

3.1.1 SheepRTT

The SheepRTT system provides distance measurements between the UAV and the
tags worn by the animals. It consists of two different types of modules, each with
different a purpose and function. One of the two types are the central module,
located on the UAV. And the other is the peripheral modules located on the animals.
When a central module is in the range of a peripheral module it can calculate the
distance the peripheral module by measuring RTT. The distance measurement is
then saved together with positional data and can later be used to determine the

38 Chapter 3. Method

position of a tag or peripheral module. The positional data is provided by the GPS
on the UAV.

The main focuses of this solution is providing small size, low weight and long
battery life to the tags worn by the animals.

3.1.2 UAV

The purpose of the UAV is to act as a platform to transport the SheepRTT central
module. The UAV also provides a communication channel for the SheepRTT module
to connect with the GCS. The UAV also provides GPS data to the module. We will
look closer at the UAV later in this chapter.

3.1.3 Radio Sheep GCS

Radio Sheep GCS is the piece of software the user will interact with. [44] It’s used to
control the rest of our system and it’s an integral part of it. It does everything from
flight planning to calculating the positions of the SheepRTT tags. When opening
the software the user is greeted with a map and connection options for the UAV.

Connecting to UAV

The UAV creates it’s own WiFi network for MAVLink communication. To connect
to this network you simply connect to it as you would with any other WiFi network.
After this the GCS can connect to a UDP port on the UAV to establish communi-
cation. Radio Sheep GCS will handle all the communication with the UAV and the
nRF module.

Area survey planning

When Radio Sheep GCS is connected, the UAV’s position will be shown on the map.
Radio Sheep GCS allows us to select an area of the map to search for animals and will
plan an efficient flight plan to cover this area. Flight height and other parameters
for the flight plan can also be tweaked. When the user is satisfied with the flight
plan it can be uploaded to the UAV with the click of a button, then the UAV is
ready to take off. With the click of another button it will take off autonomously
and fly the planned path, while searching for SheepRTT tags. After this the UAV
will return and land automatically.

Terrain data is used when planning the flight path, this allows us to fly over
uneven terrain with a somewhat constant height above ground.

Measurement visualization and position estimation

When the UAV have returned and the MAVLink connection have been reestablished
the SheepRTT module aboard the UAV will upload all the RTT distance measure-
ments to Radio Sheep GCS. The distance measurements can then be visualized on
the map and used to calculate the position of each tag or animal. An example
of a visualization of the distance measurements is Figure 4.2. An example of the
calculated tag positions is Table 4.6.

Chapter 3. Method 39

Figure 3.4: Overview of Radio Sheep GCS. [44]

3.2 SheepRTT

The SheepRTT modules is the central part of our system. The SheepRTT modules
performs the actual distance measurement and exchange them with other parts of
the system.

3.2.1 Central and peripheral boards

The system consist of two different RTT modules. The first is a nRF module known
as a tag or a peripheral module, this advertises it’s existence at regular intervals and
responds to initiation of RTT distance measurements. The second is a nRF module
programmed to listen for advertisements from the peripheral modules and initiate a
RTT distance measurement when found. The second module will be referenced as
the central module.

3.2.2 RTT distance measurements

A short explanation of RTT distance measuring with can be found in subsec-
tion 2.3.4. The details about our RTT distance measurements is covered in Grzegorz
report [45]. A sequence diagram of a RTT distance measurement is shown in Fig-
ure 3.5.

40 Chapter 3. Method

Figure 3.5: RTT distance measure-
ment sequence diagram.

Figure 3.6: RTT distance measure-
ment upload sequence diagram

3.2.3 RTT Implementations

We have developed two different implementations with their own strengths and
weaknesses. The implementations are not compatible with each other. This means
implementation #1 can’t connect to implementation 2# for RTT distance measure-
ments. There is no difference between the implementations on the MAVLink side.
To change between the different implementations the SheepRTT module is flashed
with the desired implementation.

#1 - BLE based

Our first implementation utilizes BLE protocol. This makes the implementation
connection-oriented. Compared to our other implementation this have a higher
power consumption and lower accuracy. The use of BLE makes this implementation
compatible with BLE-enabled customer devices like mobile phones and laptops.

#2 - Connectionless

This implementation is provides lower power consumption and higher accuracy. This
in turn gives better battery life on the tags and more accurate distance measure-
ments. It is not compatible with BLE customer devices.

3.2.4 System design

Early development

In the beginning our plan was to program the storage of RTT distance measurements
as a software module in ArduPilot itself. This software module in ArduPilot would
communicate with the SheepRTT module over UART and also communicate with
the GCS over MAVLink. The SheepRTT module would just output RTT distance
measurements to the UAV. This would have the SheepRTT module acting the same

Chapter 3. Method 41

way as a normal sensor like a temperature sensor or a barometer. During our work
we encountered many downsides with this solution, mainly the large effort required
to integrate this into the ArduPilot codebase. This would also require a custom
data format to communicate between ArduPilot and the SheepRTT module. But
the biggest problem would be the need to compile our new software module and
flash ArduPilot to any UAV in order for it to function with our system.

New MAVLink focused design

Working on implementing the first design we found a new solution. This new so-
lution would be easier to implement and more robust. The big changes from the
previous design was to implement MAVLink communication directly on the Sheep-
RTT module. By designing the system this way the recompilation of ArduPilot
would no longer necessary and no custom data format between ArduPilot and the
SheepRTT module would be required. This would also make our system compatible
with any ArduPilot powered UAV without making any modifications to it. With
this design the flight controller would route MAVLink messages between the GCS
and the SheepRTT module. Another major advantage from this design was the
ability to store multiple distance measurements in the SheepRTT module while the
connection to the GCS was unavailable and then send all the measurements once
communication was reestablished.

3.2.5 MAVLink Implementation

The communication between the different components in the system is vital to ev-
erything functioning. This communication happens over the MAVLink messaging
protocol. Here the module requests and receives and the required data, transmits
all distance measurements and the module’s parameters can be updated.

The supported features for the MAVLink implementation on the SheepRTT module:

• Transmit RTT distance measurements to GCS.

• Retrieve GPS information from the UAV in real time.

• Ability to tweak RTT module parameters.

• Support for the MAVLink Heartbeat protocol.

42 Chapter 3. Method

MAVLink communication sequence diagrams

(a) Sequence diagram for setting a param-
eter on the SheepRTT module.

(b) Sequence diagram for getting a param-
eter from the SheepRTT module.

(c) Sequence diagram for getting all param-
eters from the SheepRTT module.

(d) Sequence diagram for the SheepRTT
module requesting GPS data from the
drone autopilot.

(e) Sequence diagram for the Sheep-
RTT module sending SheepRTT
data to the GCS.

Figure 3.7: SheepRTT module MAVLink communication.

MAVLink dialects

For the purpose of transmitting the RTT distance measurement data from the Sheep-
RTT module we decided to add two custom MAVLink messages. The most orderly
way to accomplish it to add a new MAVLink dialect with our MAVLink messages.
We named our new dialect sheeprtt and added our custom messages here. To
combine this dialect with the ardupilotmega dialect used by ArduPilot we created

Chapter 3. Method 43

a new dialect named ardupilotmega sheeprtt, this dialect inherited everything
from the ardupilotmega and sheeprtt dialect. With this we could easily generate
MAVLink libraries for any programming language supported by MAVLink’s library
generator.

Added MAVLink Messages

We added two new messages, a message for RTT distance measurement itself and a
message for acknowledging the reception of this distance measurement. The former is
sent from the SheepRTT module to the GCS. The format of this message is partially
based on the position format in MAVLink Message: GLOBAL POSITION INT.
The other message is sent by the GCS to the SheepRTT module to acknowledge the
reception of a RTT distance measurement.

Table 3.1: MAVLink Message: SHEEP RTT DATA

Field Name Data type Units Description
seq uint32 t Sequential sample id (from power on).
timestamp uint32 t ms Time since module power on.
lat int32 t degE7 Latitude (WGS84, EGM96 ellipsoid)
lon int32 t degE7 Longitude (WGS84, EGM96 ellipsoid)
alt int32 t mm Altitude (MSL). Positive for up.
dis uint16 t m Distance between the drone and the tag.
tid uint16 t Identifier for the tag.
rssi int8 t dBmW Signal strength.

Message for transmitting SheepRTT distance measurements. Contains the position
of the drone when the measurement was taken, the distance to the tag, the tag’s

id, RSSI(signal strength), timestamp and Sequential sample id.

Table 3.2: MAVLink Message: SHEEP RTT ACK

Field Name Data type Units Description
seq uint32 t Sequential sample id (from power on).

Message used to acknowledge the reception of SHEEP RTT DATA packets at the
GCS. This is sent from the GCS to the module. Allows the module to free up

memory by not keeping already received measurements.

MAVLink Data encapsulation

The MAVLink routing used by ArduPilot does not forward MAVLink messages it
does not understand. [3] This means our newly added MAVLink messages wont be
forwarded by the flight controller to the GCS or other components in the MAVLink
network. One way remedy this problem is to recompile the ArduPilot software with
our sheeprtt MAVLink dialect added.

Another way to solve this problem is by encapsulating our messages in generic
data messages. The messages DATA16, DATA32, DATA64 and DATA96 are able to
hold up to 16, 32, 64 or 96 bytes of binary data. Because those messages are part of
the ardupilotmega MAVLink dialect, any component supporting this dialect will

44 Chapter 3. Method

also support forwarding our encapsulated messages without any additional configu-
ration. [8] We choose the DATA64 message to encapsulate our SHEEP RTT DATA
message and the DATA16 message for our SHEEP RTT ACK message. DATA64
and DATA16 was chosen because they are the smallest data messages that can fit
our messages.

Encapsulation introduces overhead when transferring data. The following over-
head calculations assume the use of MAVLink 2 with zero truncation. This overhead
comes from the additional header, checksum and the other fields in a DATA mes-
sage. The overhead for using encapsulation is 14 bytes (10B MAVLink header, 2B
checksum, 1B payload.type, 1B payload.length) per packet on MAVLink 2. If the
DATA packets are sent over MAVLink 1 the amount of data changes. Because there
is no zero truncation in MAVLink 1 the SHEEP RTT DATA increase in size. The
total overhead for using encapsulation is a 65% assuming one SHEEP RTT DATA
and SHEEP RTT ACK is sent per distance measurement on MAVLink 2.

Table 3.3: Encapsulation overhead

Message Native MAVLink 1 MAVLink 2

size
Encapsulated

size
Overhead

Encapsulated
size

Overhead

SHEEP RTT DATA 33 bytes 74 bytes 124.24% 47 bytes 42.42%
SHEEP RTT ACK 16 bytes 26 bytes 62.50% 30 bytes 87.50%
Average 93.37% 64.96%

Encapsulation makes it possible to use the SheepRTT module with any ArduPilot
drone, avoiding the hassle of doing modifications to UAV except attaching the nRF
module to any MAVLink or MAVLink 2 enabled UART port.

SheepRTT module power up sequence

When the module powers up it starts sending out a MAVLink heartbeat. This is
while listening and waiting for a heartbeat from the UAV. This is defined as an au-
topilot component with same system id as the module. When a heartbeat from the
UAV is received the module would start sending REQUEST DATA STREAM mes-
sages containing stream id MAV DATA STREAM POSITION to the UAV. When
this is received by the the UAV it would start sending GLOBAL POSITION INT
message to the SheepRTT module at regular intervals. This GLOBAL POSITION INT
contains information about the current time and position and also information about
the movement of the UAV. The content of this message is detailed in Table 2.3. This
is important as the SheepRTT module depends on positional data from the UAV to
save the distance measurements with accurate position data.

We needed to find a simple and robust way to upload the RTT distance mea-
surements from the module to the GCS. At the GCS the measurements could be
analyzed the position of the tags could be estimated. To make our data formats
more consistent with already existing formats we chose to base our messages on
the already existing GLOBAL POSITION INT message, keeping the latitude, lon-
gitude and altitude field and their format. We then added our own data from the
distance measurements, containing the estimated distance between the UAV and

Chapter 3. Method 45

the tag. The identifier of the tag and the RSSI was also included. Furthermore we
added a Sequence field to keep track of what messages have been received by the
GCS. When the GCS receives a SHEEP RTT DATA message it will respond with
a SHEEP RTT ACK message containing the same sequence number. The exact
message format in the SHEEP RTT DATA message can be found in Table 3.1.

Module actions after power on:

1. Start sending out heartbeats.

2. Wait until a heartbeat is received from the autopilot.

3. Request the drone to send it GPS data at regular intervals.

4. Wait until a valid GPS position is received.

5. Wait until the heartbeats from the drone indicates it’s armed(active).

6. Start taking measurements and save them to RAM.

7. Start sending the oldest saved measurement to the GCS at regular intervals.

8. When an acknowledge message is received for the measurement it’s deleted
from RAM and the next measurement gets transmitted.

MAVLink: Planning, testing and component simulation

Before we started integrating MAVLink into our GCS and SheepRTT module we
simulated all the components of our system working together. We did this to learn
more about using MAVLink and to find the optimal solution. We utilized Python
and the pymavlink library to simulate each component with simplified internal logic
but with the full MAVLink implementation. The flexibility and ease of programming
with Python made this prototyping process much faster.

Only the SheepRTT module had all of it’s functions implemented in the sim-
ulator. While the simulator for the GCS and UAV did only implement the basic
functions required to test communication with the SheepRTT module. All simu-
lated components implemented the Heartbeat protocol. The GCS simulator had
the functionally receive RTT distance measurements, acknowledge them and vi-
sualize them. The UAV simulator can move around and respond to requests to
share its position with other components. The position is shared by sending “re-
quest data stream position” messages after a request for them is received. While the
simulator for the SheepRTT module implemented all the functionally to simulate
the real module, even simulating RTT distance measurements to virtual tags.

The use of pymavlink and flexible command line parameters allowed us to connect
the simulators in whatever way we wanted. This could be to another simulator, the
ArduPilot SITL or the real UAV. This flexibility allowed us to test any part of our
system with a combination of simulated and real components. With this setup there
was no need to have the of the other components available when developing on GCS
or SheepRTT module.

The simulator for the SheepRTT module was used as a blueprint when imple-
menting MAVLink on the real SheepRTT module. We also made a test suite for

46 Chapter 3. Method

the SheepRTT module and it’s simulator. This test suite was used to ensure all
components were functioning as intended and make sure any update did not break
anything.

Figure 3.8: Overview of MAVLink components, with simulators and development
components. Note: nRF = SheepRTT

3.2.6 Moving from development kit to smaller module

The Nordic Semiconductors nRF52833 development kit have a large size and high
weight weight compared to our UAV. The weight of the development kit is 50g and
this would be a large portion of our weight limit of our 250g for the UAV. A size
comparison between the development kit and the UAV can be seen in Figure 3.9.
We decided early that it would be more practical with a smaller module fulfilling the
same role as the development kit. After researching multiple alternatives we opted
for the MINEW MS88SF23 module. The deciding factors was the small size, low
weight, low price and more accessible soldering points compared to other available
modules.

There was number of challenges when moving from the development kit to a
smaller module. The largest of the challenges was the need to for an external
programmer for the MINEW module. Luckily we could use the development kit as
an external programmer for the module.

Chapter 3. Method 47

Figure 3.9: The UAV with a development kit connected over UART
nRF52833 Development kit connected to the drone, powered by the drone and

communicating over MAVLink over UART.

Wiring and diagrams

We used official documentation for both the development kit and the MINEW mod-
ule to figure out the required wiring. Both the wiring required to connect them to
the UAV and the wiring for programming the MINEW module. This can be found
in Figure 3.10. The module gets powered by the 3.3V BEC on the flight controller.
Connecting 3.3V to both the VCC and VDDH pin causes the nRF52840 to go into
something called Normal Voltage mode instead of opposed to High Voltage mode.
The Normal Voltage mode disables an internal voltage regulator and reduces the
power consumption. The UART RX and TX from them module is connected to the
UART TX and RX on the flight controller through the logic level converter. This
was done because the flight controller uses a 5V logic voltage, while nRF52833 uses
a 3.3V logic voltage.

The wiring for connecting the MINEW module to an external programmer is
using the Cortex 10-pin debug connector at the programmer end and a custom
connector for interfacing with the module. As the Cortex Debug connector does
not provide power we needed to supply 3.3V from another source. The Serial Wire
Debug (SWD) interface was used for programming the module and required the
bi-directional data pin SWDIO and a clock with the SWDCLK pin. Also the reset
pin RST were required for resetting the module and getting it into a programmable
mode.

48 Chapter 3. Method

(a) The wiring for the MS88SF23
module when connected to the
drone.

(b) The wiring for the MS88SF23
module when programming or de-
bugging.

Figure 3.10: The wiring for the MS88SF23 module.

We decided to use male and female header connectors for connecting our cable
to the module. This allowed us to connect and disconnect it easily. This decision
allowed us to quickly change between connecting it to the UAV or an external
programmer when making changes to the software on the module.

The module had a pitch of 1.1mm between each pin, meaning the distance each
soldering point was 1.1mm. We did not have access to male and female header
connectors with a pitch of 1.1mm. We instead decided to use headers with a pitch
of 1.27mm as this was close enough for this particular use.

Figure 3.11: nRF module (MINEW MS88SF23) with connection headers and an-
tenna attached.

Chapter 3. Method 49

(a) Custom cable between MINEW
MS88SF23 module and the drone. Pro-
viding power and UART communica-
tion.

(b) Custom cable between MINEW
MS88SF23 module and external pro-
grammer. For programming or debug-
ging.

Figure 3.12: Custom cables for the MINEW MS88SF23 module.

Figure 3.13: The drone with a MINEW module connected over UART

Troubles during testing and upgraded wiring configuration.

During our testing we encountered a problem where the ESP8266 module would
sometimes stop working during flights. This prevented us from connecting the UAV
to the GCS over WiFi. This problem appeared after installing the nRF module
on the drone, but it happened fairly infrequent and could be solved with a power
cycling of the drone. This problem became more severe and frequent when running
longer tests as it would stop us from completing our tests.

50 Chapter 3. Method

We suspected the problem could be the power delivery from the 3.3v BEC. The
3.3V BEC was shared between the nRF module and the ESP8266. The maximum
current the BEC can supply is 200mA and we suspected both devices combined
could exceed this and cause the voltage from the BEC to drop to a level that caused
problems with the electronics, resetting the nRF module and sometimes causing the
ESP8266 to hang in a failed state.

To negate this problem we decided to power the nRF module from the 5V BEC
instead of the 3.3V BEC. This would reduce the load on the 3.3V BEC. The 5V
BEC can supply 1A, this is more than the 200mA from the 3.3V BEC. Also the 5V
is only shared with the combined GPS receiver and magnetometer.

Further testing revealed this change did not remedy the problem and the changes
were unnecessary.

(a) The wiring for the MS88SF23
module when connected to the
drone.

(b) The wiring for the MS88SF23
module when programming or de-
bugging.

Figure 3.14: Version 2 of nRF MS88SF23 module wiring.

3.3 UAV

Immediately after we started working on our master thesis we started to look into
the requirements for the UAV to use in our system. We decided a set of require-
ments that was used when looking for a suitable UAV. One of our requirements was
the possibility of running open source software. Another constraint was to keep the
MTOM (Maximum take-off mass) under 250g, this includes the weight of the UAV,
the batteries and our hardware. This weight constraint was introduced because any
UAV heavier than this requires registration and certification for the pilot flying it.
The possibility to use MAVLink for communication is also a requirement. This is
because MAVLink is a flexible, well supported and open source protocol for com-
munication with unmanned vehicles. If possible the UAV would also have a flight
time of at least 30 minutes.

Chapter 3. Method 51

• Open source

• Weight under 250g

• MAVLink support

• Flight time of 30 mins

As we could not find any UAV on the marked fulfilling our requirements we
chose to build a our own UAV to use as a platform for our system. We decided
a lightweight multi-rotor quadcopter with a focus on maximizing flight endurance.
Was the optimal choice for test as this allowed us to easily control it and hover when
necessary. We choose to use ArduPilot as it’s well tested piece of software with a
large ecosystem and good community support.

Figure 3.15: Our UAV

3.3.1 Drone components

This section contains the parts of the UAV and a description of them. The reasoning
for the component decision.

A short description of each component and it function is found in Table 2.1.

52 Chapter 3. Method

Table 3.4: Our UAV components

Part Type Part Weight

Flight Controller Holybro Kakute F7 Mini V2 6g
ESC T-MOTOR CINEMATIC F30A 4IN1 BLHELI 32 5g

Motors 4x FLYWOO ROBO RB 1204 ULTRALITE 5150KV 4x 5g
Propellers 4x Gemfan Hurricane 4024 2-Blade 4x 1.5g

Radio receiver FrSky Archer M+ ACCESS 1g
GPS/compass Matek M8Q-5883 7g

Frame Custom carbon fibre frame 12g
Battery Sony/Murata VTC6 18650 3000mAh 3S 33.3Wh 148g

Telemetry/MAVLink ESP8266-01 2g
Logic level converter 4 channel Logic level converter 1g

RTT module MS88SF23(nRF52840) 2g
Misc Wires cables and other fastening hardware 22g
Total - 232g

Table 3.5: Auxiliary and system specific components and their functions.

Part Type Description

Telemetry/MAVLink Provides a connection to a GCS/MAVLink network.

Logic level converter Convert the signal voltage between components.

BLE RTT Module Perform RTT distance measurements over BLE.

Flight controller

The flight controller we chose to use was the Kakute F7 Mini V2. The reasons for
this choice was:

+ Well tested and good documenta-
tion.

+ Low weight.

+ Small footprint.

+ Six UART ports.

+ Built in 5v 1A BEC and 3v3 200mA BEC to power on-board devices.

+ Supports the ArduPilot, PX4 and Inav firmwares.

− Only the V1 and V2 boards are supported. The V3 board changed microp-
orcessor type and is no longer capable of running ArduPilot. [5]

− The V2 revision is hard to find.

− A little bit more expensive than other flight controllers.

Chapter 3. Method 53

ESC

We decided to use the T-MOTOR CINEMATIC F30A ESC for our UAV. Our
reasons for choosing it was the low weight and it would work well with our S3
battery configuration. In retrospect this may not been the best choice as it required
rewiring of the JST cable going between the ESC and the flight controller.

Motors

The ROBO 1204 motors from Flywoo was chosen for our UAV. It was chosen because
of they are lightweight and the availability of performance charts. The performance
charts contained data about thrust generation and energy consumption with differ-
ent propellers, voltages and throttle levels. The sweet spot for efficiency appeared
to be near the planned total weight of the UAV. Efficiency is defined as the radio
between generated thrust and energy consumption.

Propellers

For our propellers we decided to have multiple options. We went for a set of Gemfan
Hurricane 4024 2-blade propellers and a set of Gemfan 2540 flash 3-blade propellers.
The Gemfan 4024 was chosen because of their high efficiency while the 2540 was
chosen because it was one of the best performing propellers on the ROBO 1204
motor’s performance chart. We also had a backup set of each of them in case the
propellers suffered any physical damage.

Radio receiver

The FrSky Archer M+ ACCESS were chosen because of it’s low cost and weight
combined with decent range. It supports the FrSky ACCESS protocol. Despite
being called a radio receiver it’s actually a radio transceiver and it’s capable of
sending telemetry data from the UAV.

GPS/compass

The Matek M8Q-5883 is a combined GNSS and compass module. It supports GPS,
GLONASS and Galileo. It was chosen because it’s a well tested component and it
delivers good accuracy at a low price. It’s also confirmed to be working well with
ArduPilot.

Frame

The frame is the main structure of the UAV. All other components are fastened
to this. We chose to use a carbon fibre frame designed by the user brad112358 on
the ArduPilot forum. Our reasons for choosing this design was the low weight and
low drag. This frame weights 12g and have a thickness of 4mm. It’s designed for
propeller sizes up to 4 inches.

Battery

Choosing the right battery for the UAV is very important as it’s one of the main
factors determining the UAV flight endurance. It exists are two relevant battery

54 Chapter 3. Method

technologies, lithium-ion and lithium-polymer. Lithium-ion batteries usually have
higher energy density per gram but lower max discharge current. Lithium-ion bat-
teries also have a hard metal shell protecting them from damage and reducing the
chance of a punctured battery compared to lithium polymer. While it’s easy to
find lithium polymer batteries targeted for use with UAVs, it’s much harder to
find lithium-ion batteries for this purpose. Unless you can find somewhere to buy
preassembled lithium-ion battery packs, you need spot wielder to assemble them.

We have considered one lithium polymer battery, Gens Ace 3s and two lithium-
ion batteries, the Sony VTC6 and the Samsung 35E. The UAV hovering is estimated
to require 5-6A while wind or the UAV moving around would increase the power
consumption. This would bring the Samsung 35E close to it’s limits as the maximum
continuous discharge current is 8A. This left only the Sony VTC6 and the Gens Ace
3s, here the Sony VTC6 was chosen because of the much larger energy capacity.

Table 3.6: Considered battery alternatives

Model Nominal
Capacity

Nominal
voltage

Energy Weight Discharge Current
(maximum Continuous)

Gens Ace 3s 1800mAh 11.1V 20Wh 150g 81A
Sony VTC6 3S 3000mAh 11.1V 33.3Wh 148g 15A
Samsung 35E 3S 3500mAh 11.1V 38.9Wh 154g 8A

Figure 3.16: Sony VTC6 3S with a XT30 connector and JST balance charge con-
nector. A spot wielder was used to assemble the lithium-ion battery pack.

Telemetry/MAVLink

The ESP8266-01 was chosen as the telemetry radio for connecting the UAV
to a computer using WiFi. Allowing MAVLink communication between the GCS
software and the UAV.

+ Extremely cheep.

+ Easy to connect from computer
or other device.

+ Lightweight.

+ Well tested.

− needs 3.3V and a 3.3V signal level
converter.

− Relatively low range.

Chapter 3. Method 55

GPS mount

Keeping the GPS and magnetome-
ter away from the rest of the electronics
is important to reduce interference and
increase the accuracy of the sensors.

Our first GPS mount consisted of
nylon standoffs, these proved to be very
fragile and had a high chance of break-
ing under uncontrolled landings. This
was later replaced with a custom de-
signed and 3D printed GPS mount.
The mount consist of four parts that
snap together and does not require any
adhesives. The base connects with
threaded holes using 4 M2 screws to a
20x20mm mount. It’s easy to disassem-
ble for transport.

(a) GPS mount
parts.

(b) GPS mount
in use.

Figure 3.17: 3D printed GPS mount
for Matek M8Q-5883. For 20x20mm
mount.

SheepRTT module mount

We also designed a custom mount
for our SheepRTT module. This mount
would clip on to the carbon fiber frame
of the UAV and would also be secured
with a zip tie. The mount would safely
keep the SheepRTT module in place
while in the air. By mounting the
SheepRTT module way from the other
component on one of the arms it would
suffer less interference and give the an-
tenna better coverage.

Figure 3.18: Design for mounting the
SheepRTT module.

Figure 3.19: Custom 3D printed mount
for SheepRTT module.

56 Chapter 3. Method

3.3.2 Radio transmitter

The radio transmitter takes input
from the pilot and transmits them to
the radio receiver on the UAV. This al-
lows the pilot to steer the UAV and
also do other actions like arming the
it, changing the flight mode or starting
autonomous missions. We chose to use
the FrSky Taranis X9 Lite radio trans-
mitter as this was the cheapest com-
patible radio transmitter fulfilling our
requirements.

Despise its name this radio trans-
mitter is in reality a radio transceiver
and it’s capable of receiving telemetry
data from the radio reciver on the UAV.
This telemetry data is in the FrSky
passthrough format.

The radio transmitter is running
the open source OpenTX firmware.
This is accompanied with the Yappu
telemetry script for displaying teleme-

try data and OpenTX sound for audio
alerts and notifications.

Figure 3.20: FrSky Taranis X9 Lite ra-
dio transmitter

Yaapu FrSky Telemetry Script

The Yaapu FrSky Telemetry Script
a LUA script for displaying telemetry
data on a radio transmitter screen. [52]
It receives FrSky passthrough teleme-
try data from the radio reciver on the
UAV. Here the pilot can see the impor-
tant telemetry data from the UAV, ex-
amples of this is the battery level, er-
ror messages, GPS information, RSSI,
height above ground and current head-
ing of the UAV.

The Yaapu FrSky Telemetry Script
requires the FrSky radio transmitter to

use a recent version of the OpenTX
firmware.

Figure 3.21: Yaapu FrSky Telemetry
Script screen. [52]

3.3.3 Assembly

After we received all parts for the UAV we could start assembling them. The process
adding for each component is detailed below.

Chapter 3. Method 57

Flight controller

Before doing any assembly we flashed
the flight controller with ArduCopter,
the multi-rotor version of ArduPilot.
After this we tested the flight controller
by connecting it to a computer running
Mission Planner. Here we could verify
the flight controller was working as in-
tended.

ESC

The next step was to connect the ESC
to the flight controller. This proved to
require some effort as the pin-out at the
flight controller end was different from
the pin-out on the ESC. Using docu-
mentation from both manufacturer we
rewired the DST connector in a suit-
able way for connecting these two com-
ponents.

Radio receiver

The radio receiver was connected to 5v
and a UART port on the flight con-
troller. After this the receiver power
up. We had problems binding the re-
ceiver to our radio transmitter. This
was solved by updating the firmware on
both the transmitter and receiver. The
UART port in use was then configured
for SPORT.

Battery

The battery was connected to the bat-
tery pads on the ESC. The ESC dis-
tributed power from this to the flight
controller over the DST cable. A XT30
connector was used on the cable be-
tween the ESC and the battery. The
ESC also contains voltage and current
sensors to monitor our battery.

GPS/compass

The GPS module was connect to 5v,
I2C and UART port configured for

GPS on the flight controller.

Frame

The ESC and the flight controller was
mounted on the frame using nylon M2
standoff screws. Later vibration damp-
ening was added between the UAV and
the flight controller. This was done
to stop the vibrations from the frame
reaching the accelerometer on the flight
controller.

Motors

A motor was mounted on each arm of
the frame using M2 screws. Then the
three wires from each motor was sol-
dered to the motor connection pads on
the ESC. Some of the wires needed to
be reordered to ensure each motor was
spinning in the correct direction.

Propellers

The propellers was pushed down on the
shaft of each motor and then secured
with M2 screws.

Logic level converter

The high voltage reference pin on logic
level converter was connected to 5v on
the flight controller and the low volt-
age reference pin to 3.3v. Both RX
and TX of two different UART ports
was connected to the signal pins on the
high voltage side. The PCB for the
logic level converter was mounted on
the frame with a zip tie.

MAVLink telemetry

The ESP8266 ESP-01 was flashed
with the ArduPilot specific version of
MAVESP8266. The ESP was then con-
nected to the flight controller through
the logic level converter. This was done
because the ESP module can only han-
dle 3.3v signals.

58 Chapter 3. Method

RTT module

The RTT module was connected to the
flight controller through the logic level
converter. This was done because the
ESP module can only handle 3.3v sig-

nals. To make further changes to the
RTT module easier we decided to use
a header and removable jumper wires
between the module and the logic level
converter.

3.3.4 Configuration and calibration

Some of our components required further configuration or calibration.

Flight controller

The accelerometer built into the flight
controller required a calibration, this
was done using the setup guide in Mis-
sion planner.

On our first flight we noticed strong
oscillations in the UAV. This was
caused by the UAV overcompensating
when trying to stabilize itself. The was
corrected by tuning down the p-gain
parameter on the UAV.

ESC

To get the ESC working we needed to
use one of the supported protocols to
communicate with it. We choose to use
the DSHOT300 protocol as this started
working immediately after configuring
it through Mission planner.

Radio receiver

At first we set up the SPORT pro-
tocol between the radio receiver and
the flight controller. We could not get
the receiver to transmit telemetry data
back to the radio transmitter. This

was solved by updating ArduPilot to
4.1 and using FPORT protocol between
the flight controller and the radio re-
ceiver.

Battery

The correct parameters for the battery
was changed in ArduPilot. The pa-
rameters involved the expected battery
voltage and capacity.

GPS/compass

The compass required a calibration be-
fore it could be used. The setup guide
in Mission planner was used.

Motors

The motors required the correct con-
figuration and ordering in ArduPilot.
If the motor ordering was not correct
the UAV would flip over right after
takeoff. Incorrect ordering would cause
this because the location of motors on
the frame did not correspond to the
expected and configured locations for
ArduPilot.

3.4 MAVLink communication

Ensuring the MAVLink communication between all components in our system went
smoothly required a bit of work. More details about this below.

3.4.1 Dialect modifications

For sending the SheepRTT distance measurements we needed to add two messages
to the MAVLink protocol. More information about this in subsubsection 3.2.5.

Chapter 3. Method 59

3.4.2 Radio Sheep GCS & Node-MAVLink: implementing
missing features

Radio Sheep GCS was implemented as an Electron app. This added the requirement
to have a MAVLink packer and parser for Typescript.

The existing node-mavlink module was missing many features required to work
fully with our system. This was the support for arrays and strings sent as char
arrays. To remedy this problem we made a lot of changes in the node-mavlink libary
where we added for arrays, strings sent as char arrays, zero truncation, support for
extension fields, more tests and the ability to parse multiple incoming packets at
once. This required some changes to the pymavlink libary too, this was the addition
of the array length property when generating files for use with Typescript.

3.4.3 SheepRTT MAVLink implementation

More information about the SheepRTT MAVLink implementation can be found in
subsection 3.2.5.

3.5 Practical tests

The following tests were performed to set our expectations and determine the capa-
bilities of the system. We used the results to detect possible problems and tune the
system for a more optimal performance.

Some of the tests below were in reality the same test performed multiple times
or multiple similar test all summarized together. They are described as one test for
more coherent writing and to contain less repetitions.

3.5.1 Range test

The with our first test the plan was measure packet loss, signal strength and distance
estimation at different distances. We determined to do our testing in the southern
parts of Høyskoleparken as it gave us direct line of sight up to around 240m. In
Figure 3.23 the test location is shown with markings indicate where we would stand
during the test. The marking with the number zero is where the stationary central
board would be located, this can be seen in Figure 3.22. The other markings indicate
where the peripheral board would be located for each measurement, with a higher
number indicating further away. The computer would run JLinkRTTViewer allowing
it to show and save the debug terminal output from the board. The log of the debug
terminal output could later be analysed.

The settings for this test was a packet count of 500, this means 500 RTT distance
measurements was performed per measurement shown. Both board were manually
held at a height of 70cm.

60 Chapter 3. Method

Figure 3.22: Development kit held manually at a height of 70cm. Connected to the
computer for logging the results.

Figure 3.23: Locations used for each measurement.

3.5.2 Antenna orientation and signal strength test with ob-
stacle

Our next test had the goal of determining how antenna orientation and obstacles
impacted the signal strength. The obstacle was a 5 litre storage container filled with

Chapter 3. Method 61

water, this simulates a sheep head blocking the path between the two boards. A
storage container filled with water was chosen because most animals consist primarily
of water and it would be a close enough substitute for our test. The storage container
have a width of 12cm, meaning the signal have to travel through the container or
be reflected around it by the environment. measure path loss from 12cm of water
between sender and receiver. Simulate the sheep body blocking the signal.

Measurements were originally planned to be done at 35m and 225m with both
boards at a height of 70cm above the ground. The 225m distance was later changed
to 133m as we had trouble getting any measurements at 225m with a water container
blocking the path. The test was repeated with all antenna orientations in Figure 3.25
both with and without the water can in between. The distance between the water
can and the board was 5cm.

Figure 3.24: Point 0 is where it was measured from, Point 1 is at 35 meters distance.
Point 2 is at 130 meters distance.

62 Chapter 3. Method

(a) Up, antenna
pointing towards
the “UAV”

(b) Left, antenna
pointing towards
the “UAV”.

(c) Right, antenna
pointing towards
the “UAV”.

(d) Down ,antenna
pointing towards
the “UAV”.

(e) Up, antenna
pointing away from
the “UAV”.

(f) Towards the
“UAV”, antenna
pointing upwards.

(g) Towards the
“UAV”, antenna
pointing left.

Figure 3.25: Different orientations of the development kit used during this test.

3.5.3 Range and signal strength tests with different anten-
nas and antenna orientations

The antenna is one of the most important parts of a wireless system and its perfor-
mance will affect the performance of the entire system. We decided to investigate the
performance of different antenna configurations and orientations. The development
kits included a U.FL connector for connecting an external antenna, and bypassing
the internal antenna. We choose to use the external antenna pictured in Figure 3.26.
We choose to do this test in two parts, one short range test investigating a multitude
of different antenna configurations and a longer range test with the best performing
antenna configurations from the short range test.

Chapter 3. Method 63

Figure 3.26: External 2.4GHz antenna with U.FL connector. Gain: 2.5dBi

Short range

The short range test were preformed indoors with a distance of 2.5m between the
central and peripheral board. All antenna configurations in Figure 3.27 was used
on both the central and peripheral radio. The results was averaged over three
measurements.

(a) External, antenna along the edge of
the board.

(b) External,
antenna per-
pendicular to
the edge of the
board.

(c) External, antenna perpen-
dicular to the edge of the
board, oriented vertically.

(d) Internal, antenna side of the
board pointing towards receiving an-
tenna.

(e) Internal, antenna side of the board pointing
towards receiving antenna, oriented vertically.

Figure 3.27: Antenna configurations and indication of the direction of the opposing
antenna.

64 Chapter 3. Method

Long range

The long range signal strength tests were performed with the antenna configurations
shown in Figure 3.27b and Figure 3.27c. The goal of this test was to determine the
maximum range of our system. We planned to measure the RSSI at ranges from 0m
to 800m in intervals of 50m. The test were performed near Dragvoll in Trondheim,
starting at the parking lot near Bekken. This site was chosen because it provided
a long stretch with continuous line of sight. The results were averaged over three
measurements.

Figure 3.28: Planned long range test path. Starting at the Bekken parking lot and
going in the direction of Dragvoll. Visualized in Google Earth Pro.

3.5.4 Manual flight test with drone

Our next objective was to have a functioning and flight worthy UAV platform for
our remaining tests. This test consisted of manually flying the UAV in loither mode
using the FrSky Taranis X9 Lite. The motors on the UAV got armed and throttle
increased to 60%, this caused the drone to take off and gain altitude. When the
UAV reached a height of a few meters the throttle was reduced to 50%, causing it
to hoover perfectly in the same position. ArduPilot uses GPS data fused with other
sensor data using EKF to achieve this. The UAV was then flown around a bit until
it landed again at the same spot it took off from.

Figure 3.29: First manual flight test. Visual-
ized in Google Earth Pro. Figure 3.30: UAV used in this test.

Chapter 3. Method 65

3.5.5 Autonomous flight test

We performed the autonomous flight test learn more about the autopilot or au-
tonomous flight features in ArduPilot. And also observe them in action. We decided
to do this before running any tests with Radio Sheep GCS. This was to know more
about how the drone would behave with a mature and well tested GCS. This test
was performed by creating a flight plan in Mission Planner and then uploading it
to the UAV. The UAV was then armed and manually flown to a height of around
5m in loither mode. The flight mode on the UAV was then changed to auto mode
where it imminently started executing the flight plan that was uploaded Mission
Planner. The UAV passed within 2m to all waypoints in the flight plan in correct
order. When the last waypoint was reached the UAV started hovering there until it
was landed manually.

(a) Flight path and flight plan shown in
Mission Planner.

(b) Flight path in 3D. Visualized in
Google Earth Pro.

Figure 3.31: Autonomous flight test flight path.

Problems

During one of our autonomous flight tests the UAV started climbing extremely fast
to an altitude much higher than was it was supposed to. The altitude graph on
Figure 3.33 shows how rapid this climb was, reaching speeds of 8m/s vertically,
climbing 40m in 5 seconds. When it reached an altitude of 95m the UAV stabilized
itself and triggered the geofence failsafe. This failsafe changed the flight mode to
RTL and the UAV come back down and it tried to get back and land in the exact
same spot it took of from. During this process it stopped descending at a height of
around 10m, and it then started drifting towards some trees and crashed into them.
This can be seen on Figure 3.32 where the black wall is the supposed path and the
other is the path of the UAV ending in some trees.

66 Chapter 3. Method

Figure 3.32: Flight path
in 3D. Visualized in Google
Earth Pro.

Figure 3.33: Altitude graph and flight path.

We later found that vibrations from the UAV caused the accelerometer to clip.
This means the accelerometer was exposed to acceleration much higher than the
maximum value it could measure. This in turn triggered the vibration failsafe mak-
ing the UAV ascend rapidly to avoid crashing into the ground while the UAV tried
to recover from this. When it recovered the UAV started to return to launch.

This problem could be mitigated by reducing the vibrations the accelerometer
was subjected to. The easiest way to reduce this vibrations was to install bet-
ter vibration dampening around the flight controller where the accelerometer was
installed.

The other problem where the UAV started drifting was found to be human error.
It was uncovered that while in RTL mode the pilot could take control manually and
stop the RTL sequence by adjusting the throttle. This caused the UAV to start
drifting without the pilot’s knowledge. This problem can be mitigated by having
better knowledge about the system in use.

3.5.6 Small scale full system test

The full system test is supposed to have the GCS, UAV and SheepRTT modules
all working together to locate the animals. We started the Radio Sheep GCS and
connected to the UAV, this allowed us to select an area to search and the GCS
made an effective flight plan to cover this area. When our flight plan was ready it
was uploaded to the UAV over MAVLink and the UAV was given the command to
arm the motors and execute the flight plan. The UAV then took off autonomously,
followed the planned path, then came back and landed. When connection was
reestablished Radio Sheep GCS retrieved all the measurements from the SheepRTT
module by communication over MAVLink.

Chapter 3. Method 67

(a) Flight path and flight plan shown in
Mission Planner.

(b) Flight path in 3D. Visualized in
Google Earth Pro.

Figure 3.34: Small scale system test flight path.

Problems

When executing our first autonomous flight plan by Radio Sheep GCS we encoun-
tered a problem where the UAV would rapidly climb right after takeoff. This lasted
until the geofence height limit of 35m was reached, and a geofence failsafe was trig-
gered. This failsafe made the UAV RTL and the UAV came back down and landed
in the exact same spot it took of from. This also proves how important Ardupilot’s
geofence system, the failsafe handling and RTL is to prevent failures.

After downloading the flight plan from the UAV to Mission Planner we found
that the altitude for each way point in the flight plan was given in relative height
instead of absolute height. The launch site was around 160m above sea level and gave
the waypoints height of 170m above ground instead of 10m. A quick modification to
Radio Sheep GCS were we changed it from relative height to absolute height fixed
this issue.

68 Chapter 3. Method

Figure 3.35: Flight path
in 3D showing when the
geofence failsafe was trig-
gered. Visualized in
Google Earth Pro.

Figure 3.36: Altitude graph and event timeline around
the Geofence failsafe triggering.

3.5.7 Large scale full system test

This test is the same as the small scale test, but with newer versions of our software
and a new and larger test area. The new test area is the fields between Dragvoll and
Stokkan in Trondheim. This area was chosen because the large open fields would
provide clear line of sight and the walking paths along the fields would make moving
around easier.

The test needed to be repeated several times because of technical difficulties.
Most of them being problems with the ESP8266, preventing us from connecting to
the UAV and retrieving data from the SheepRTT module. More information about
this in subsubsection 3.5.7.

Chapter 3. Method 69

(a) Flight path and flight
plan shown in Mission Plan-
ner.

(b) Flight path in 3D. Visualized in Google Earth Pro.

Figure 3.37: Large scale system test flight path.

where dm is the distance measured between the nRF module on the UAV and
the tag, h is the height difference between the UAV and the tag. d is the measured
distance with compensation for the flight height of the UAV.

Problems

Our main problem were troubles with the ESP8266 not working after long flights,
leaving us unable to retrieve data from the SheepRTT module. Because of this
problem we decided to connect the GCS to the UAV over USB. Connecting to
the drone over USB provides us a serial port to communicate with the UAV. As
Radio Sheep GCS does not support this we used mavproxy route MAVLink packages
between the serial port and the UDP port.

Our other problem was two bad soldering joints between the SheepRTT module
and the connector leading to the UAV. One of there soldering joints were the RX
pin on the nRF module, leaving it unable to receive any MAVLink messages. The
other soldering joint was connecting VCC pin to 3.3V, this caused the module to
only be powered by the VDDH pin. When powered only by the VDDH pin it go into
High voltage mode and use an internal regulator for the incoming power, leading to
increased power consumption.

3.5.8 Range and signal strength test with module on drone

The goal of this test was to gather data about the accuracy over longer distances
and maximum range. This data could then be used to tweak our implementations
for optimal performance and provide information about the system’s capabilities.

70 Chapter 3. Method

For this test the location of the central and peripheral board was switched
around. This was done to provide additional debug information about each RTT
measurement. The SheepRTT module on the UAV was programmed as peripheral
board. The SheepRTT module located at the starting location was mounted at a
height of 1m and programmed as a central SheepRTT module and connected to a
computer to log the additional debug information. In this configuration a RTT dis-
tance measurement was done every 7.5ms. When everything was ready we started
UAV with an autonomous flight plan as shown in Figure 3.38.

As the peripheral board is only meant to be located by the central board it did
not posses any ability to locate itself by using the GPS on the UAV. Because of
this we extracted the GPS data from the flight log and matched this to the debug
data from the central board using timestamps. After the test we could compare
the measurements from the central board with the GPS data from the UAV. This
allowed us to calculate the real distance, measured distance and the inaccuracy of
the measured distance. the RTT measurements.

This test was repeated multiple times with two different parameters. The first
parameter was the implementation in use. And the second parameter was the trans-
mit power setting on the central board.

Figure 3.38: Flight path for long range testing. Starting near Stokkan and heading
in the direction of the Bekken parking lot. Visualized in Google Earth Pro.

Problems

During our first test of implementation #2 we did not get any measurement at
distances over 400m. Our data showed the strength signal was not the problem.
We tracked this down to the radio of the SheepRTT peripheral board not staying
awake long enough after the while waiting for a response form the central board.
Increasing the waiting time fixed our issue.

3.5.9 Optimal speed, power consumption and range

The goal of this test was to determine the optimal speed to archive the longest range
possible. With this data we could also estimate the maximum flight time and range.

We tested the UAV hovering and traveling with different speeds, all the way up
to the legal speed limit for our UAV. This included speeds of 2.5m/s, 5m/s, 7.5m/s,
10m/s, 15m/s and 19m/s. Any wind at the test site would impact the results. This
is because as having tailwind or headwind would decrease or increase the power
consumption respectably. To reduce the impact the wind would have on our tests
we did two runs, one going with the direction of the wind and one in the opposite
direction and then taking the average of this.

Chapter 3. Method 71

In our case this was north to south and south to north. The test itself was
performed at the fields between Dragvoll and Stokkan on a day with little wind.
The flight plan was aligned to wind direction at the test site.

The speed the UAV was traveling at was measured by the on board GPS module.
Both voltage and current was measured by the ESC. All of this data was saved to
the flight log on the flight controller and later analyzed.

Figure 3.39: Optimal speed test flight path. At the fields between Dragvoll and
Stokkan. Visualized in Mission Planner.

3.5.10 General problems and considerations

Bluetooth CRC and battery problem

While preparing for the last few tests we started having a new problem where we
didn’t get any measurements and upon further inspection we would get the mes-
sage “malformed” very consistently in the debug console on the central SheepRTT
module. A “Scanning...” message followed by a “malformed” message indicates
Bluetooth CRC error. This could indicate a problem with the SheepRTT modules
and could be caused by low battery voltage. The battery voltage was measured to be
3.01V, witch should be within the normal parameters for the module. Plugging in a
powered USB cable for a brief moment fixes it temporarily and allows measurements
until the module is turned off for a few minutes. Changing the batteries fixed the
problem. The problem was most likely caused by voltage sag when drawing current
from a near depleted battery.

72 Chapter 3. Method

Development kit unstable micro USB connection

During some of our tests we had problems with the development kit disconnecting
from the computer in the middle of the test, this forced us to repeat a few of the
tests multiple times. This was most likely caused by small movements loosening the
micro USB cable from connector on the development kit.

Sources of interference

The Bluetooth LE modules we are using for testing are utilizing frequencies at
2.4GHz. In our system the Bluetooth channel 50 at the frequency 2453MHz is used.
There is a large number of devices utilizing the 2.4GHz band, causing interference
and loss of range. This is more of an issue when testing more urban areas and would
be less of a problem for real world scenarios, far away from the cities. The most
relevant sources if interference is by own own equipment on the drone, followed by
personal devices and then by wireless devices like WiFi routers near the test site.
Near our test site there is residential buildings and a large university buildings.
Interference from these sources is hard to do anything about and should be taken
into consideration, especially at long ranges. To limit interference from personal
devices we turned of WiFi and Bluetooth on our mobile phones during testing.

On the drone itself there is three sources of interference, the wireless receiver for
controlling the drone, the ESP8266 used for MAVLink communication and then the
drone electronics itself. The wireless receiver uses the FrSky ACCESS protocol to
both receive controller inputs and send telemetry data back. The FrSky ACCESS
protocol operates at around 2.4GHz, it’s a proprietary protocol so we don’t have any
details about specific frequencies used by it. The ESP8266 is acting as a wireless
access point and have been configured to use the WiFi channel 1. This channel is
at 2412MHz and should not overlap with the frequencies used by the Bluetooth LE
modules. The power electronics on the drone could also generate interference as this
handles currents of around 5 to 15 Ampere just a few centimeters away from the
module. The interference from the electronic components have not been measured.

Chapter 4. Analysis 73

Chapter 4

Analysis

The analysis have a focus on the UAV, the SheepRTT distance measurements and
our system as a whole. Analysis and solutions for smaller problems regarding the
flights themselves are kept in section 3.5.

4.1 Practical tests

This section contains the analysis of data from our practical tests.

4.1.1 Range test

The purpose of this test was to determine the accuracy of the RTT distance es-
timations, the signal strength and packet loss at longer distances. As we can see
from Table 4.1 the distance estimations from the RTT measurements are close to
the distance measured by GPS and would be good enough for our purpose. The loss
of signal strength and the increased packet loss around measure point 3 could come
from the proximity to residential buildings, the nearby parking lot or that it was
the lowest points in the terrain. At measure point 4 and 5 you can see the signal
strength and the packet loss improving again even if the distance between the cen-
tral board and the peripheral board increases, this could be because the measuring
points where higher up in the terrain and thus having a better line of sight. The
uncertainly of the GPS data is +-3.2m.

Table 4.1: Range test results

Measure Measured distance (m) RSSI Packet loss
point GPS nRF52833 Difference (dBmW)

0 0 0 0 17 0%
1 32.8 35.0 2.2 61 0.0%
2 72.7 83.0 10.3 69 0.6%
3 133.3 136.3 3.0 84 68.0%
4 168.8 175.5 6.7 69 2.4%
5 221.2 227.5 6.3 73 0.0%

Mean 5.7

74 Chapter 4. Analysis

4.1.2 Antenna orientation and signal strength test with ob-
stacle

The purpose of this test was to determine how obstacles and different antenna
orientations would affect the effective range of our system. We planed to run this
test at distances of 35m and 225m, but we faced problems during the test at 225m
with a water container as an obstacle and we decided to reduce the distance to 133m
and continue the test.

By analyzing our results we found that when the water container blocked the
path, the signal strength were reduced by between 4dBm and 7dBm. This is with
the signal traveling through 12cm of water. This data corresponds with the expected
path loss based on the path loss of a signal going through seawater as shown in the
grapth in Figure 2.14.

Table 4.2: Range test 2 results

Position
(direction the top side
Of the devkit is facing)

Signal, RSSI (dBmW)

Figure 3.25 35m 133m Average
With water
container

W/o water
container

With water
container

W/o water
container

(position)

Up (antenna pointing towards �drone�) -74.1 -62.6 -73.3 -71.9 -70.5
Left (antenna pointing towards �drone�) -73.4 -72.3 -79.7 -82.2 -76.9
Right (antenna pointing towards �drone�) -80.3 -74.6 -81.0 -76.5 -78.1
Down (antenna pointing towards �drone�) -73.2 -61.8 -75.3 -68.6 -69.7
Up (antenna pointing away from �drone�) -77.5 -67.4 -73.2 -69.4 -71.9
Towards �drone� (antenna pointing upwards) -74.4 -61.0 -80.5 -74.1 -72.5
Towards �drone� (antenna pointing left) -69.4 -69.9 -86.4 -80.4 -76.5
Average (distance/water container) -74.6 -67.1 -78.5 -74.7

4.1.3 Range and signal strength tests with different anten-
nas and antenna orientations

The purpose of this test was do determine if there was any difference between using
the integrated antenna or an external antenna and also figure out what antenna
configuration could give us the best range. This test was split into two different test
with the later one building on the results from the first.

Close range

As we can see from the result on Table 4.3 the use of the “External, antenna perpen-
dicular to the edge of the board.” configuration on both boards and the “External,
antenna perpendicular to the edge of the board, oriented vertically.” combined with
“Internal, antenna side of the board pointing towards receiving antenna, oriented
vertically.” configuration had the best signal strength, -40.2dBmW and -40.1dBmW
respectively. The difference in signal strength between some of the best perform-
ing configurations and the worst performing configurations were 16.4dBmW, this
difference could in worst case reduce the range to 1

6
compared to the best perform-

ing configuration one according to the free-space model. If we used the plane-earth
model this is reduced to 2

5
. The results from this test were very important for planing

future tests.

Chapter 4. Analysis 75

Table 4.3: Short range antenna configuration test results.

Signal, RSSI (dBmW)

Antenna configuration
↓Central/Peripheral→

External, antenna
along the edge
of the board.

External, antenna
perpendicular to the
edge of the board.

External, antenna
perpendicular to the
edge of the board,
oriented vertically.

Internal, antenna
side of the board
pointing towards

receiving antenna.

Internal, antenna
side of the board
pointing towards

receiving antenna,
oriented vertically.

External, antenna along
the edge of the board.

-54.1 -46.4 -53.3 -52.2 -50.1

External, antenna
perpendicular to the
edge of the board.

-46.9 -40.2 -51.7 -45.2 -55.2

External, antenna
perpendicular to the
edge of the board,
oriented vertically.

-53.9 -46.1 -43.4 -56.5 -47.0

Internal, antenna
side of the board
pointing towards

receiving antenna.

-53.6 -46.0 -50.7 -52.0 -55.4

Internal, antenna
side of the board
pointing towards

receiving antenna,
oriented vertically.

-52.0 -51.8 -40.1 -51.8 -46.8

Long range

During this test we noticed the path loss affecting our signal were much higher
than expected. It was decreasing at 10dB per doubling of the distance instead of
the expected 6dB. This resulted in a much weaker signal and shorter range. At a
distance of 250m we could no longer initiate a RTT distance measurement even if
we could sometimes detect the advertisement packet from the peripheral board.

We also noticed when cars were passing on the road, and blocking the path
between the central and peripheral board it would impact the measurement by
either making the signal weaker or blocking it completely at longer ranges. This
factor was not considered when choosing a location to run this test.

Even if we didn’t get the test results we expected, the results appeared to be
consistent with a very close to 10dB weaker signal per doubling of the distance.
This got us into reading about near-ground path loss and this paper Wang et al.
[51], exploring this type of path loss. This much higher path loss could be from
near-ground path loss as the signal would travel very close to the ground. This
could have caused destructive interference resulting in the loss of signal strength.
Neither the free-path model or the plane earth model fits our data very well. Our
results are somewhere in between those two models. In the paper by Wang et al.
[51] they experienced the same results and their proposed models could be used as
a better approximation when performing low altitude signal strength tests.

76 Chapter 4. Analysis

Table 4.4: Long range antenna configuration test results.

Signal, RSSI (dBmW)

Antenna configuration

Distance ↓

External, antenna
perpendicular to the
edge of the board.

External, antenna
perpendicular to the
edge of the board,
oriented vertically.

0m -35.4 -38.4
50m -72 -67
100m -81 -77
150m -86 -83
200m -90 -86.5
250m – –

4.1.4 Manual flight test

We encountered no problems during this flight test. The UAV obeyed the pilots
commands perfectly. As this test did not include the SheepRTT module, there is
not a lot to analyze.

4.1.5 Autonomous flight test

We encountered no major problems during this flight test. The UAV took off au-
tonomously and then followed the planned flight path perfectly before coming back
and landing by itself. As this test did not include the SheepRTT module there is
not a lot of data to analyze.

4.1.6 Small scale full system test

During the flight the SheepRTT module gathered RTT distance measurements.
When connection to Radio Sheep GCS was reestablished the distance measure-
ments was uploaded. The distance measurements was coupled with the correct GPS
data. As all components of the system functioned as intended, this was a successful
test. We could continue our work with the knowledge that our system functioned
as intended.

4.1.7 Large scale full system test

When test flight was finished and all the RTT distance measurements was uploaded
to Radio Sheep GCS we could start analysing them. The analysis of the RTT
distance measurement done by a combination of Radio Sheep GCS and manual work.
We received 1032 distance measurements in total. Of there 91 of the measurements
did not contain a distance, only indicating the tag was in the proximity. So far
the location estimation methods in radio Sheep GCS does not make use of these 91
measurements. We are then left with 941 usable RTT distance measurements with
accompanying GPS locations.

Chapter 4. Analysis 77

Table 4.5: Number of RTT distance measurements per tag.

Tag Measurements
Usable Unusable Total

1 171 39 210
2 270 13 283
3 245 20 265
4 255 19 274

Total 941 91 1032

Prepossessing

The 941 distance measurements was then further processed into four different datasets.
Each dataset was processed in another way. One of the dataset contained all RTT
distance measurements without any modifications. Another dataset used only dis-
tance measurements with a distance under 100m. While another one used the high
difference compensation explained below. And the last dataset was a combination
of both the preprocessing steps.

When the UAV was right above the tag the distance measured was around 20m
instead of 0m. This is because of the height difference between the UAV and the
tags. We needed to find a way compensate for the height difference. This would
also be useful for adapting the distance measurements to a two dimensional map
and for calculating the tag position. We need to separate the vertical and horizontal
distance vectors between the UAV and the tag. If we assume the ground is flat or the
height difference between the UAV and the tag is constant we can use Equation 4.1
as an approximation to compensate for the height difference.

d =

{√
d2m − h2, if dm ≥ 0

0, if dm < 0
(4.1)

where dm is the distance measured between the nRF module on the UAV and
the tag, h is the height difference between the UAV and the tag. d is the measured
distance with compensation for the flight height of the UAV.

The last preprocessing step was to split each of the four datasets into 10 smaller
datasets. The reason for doing this is that during testing the frequency of SheepRTT
distance measurements was set to 10 times the normal frequency. And by splitting
up the dataset we reduce the number of samples to a realistic amount and we also
have multiple pseudo tests to average out.

Results and accuracy

Results from analyzing the accuracy of the full SheepRTT system is shown in Ta-
ble 4.6. Here “Max 100m” means we remove all distance measurements with a dis-
tance over 100m. “w/ height difference compensation” means we used Equation 4.1
to compensate for the height difference between the UAV and the tag.

78 Chapter 4. Analysis

Table 4.6: Large scale full system location estimation accuracy comparison

Data used Method
Particle Intersection

Average distance error(m) Average uncertainty(m) Average distance error(m) Average uncertainty(m)
All 163.4 390.8 15.9 39.3
All, w/ height
difference compensation

163.4 387.9 14.4 46.2

Max 100m 37.0 147.8 19.2 34.6
Max 100m, w/ height
Difference compensation

37.8 143.2 18.8 35.3

Here we can see the best performing method is the intersection method using all
measurements and with compensation for the height difference. As we can see the
particle method struggles with the higher amount of measurements when using all
measurements.

Figure 4.1: Location estimations compared to the real locations. Using all measure-
ments and the intersection method.

Chapter 4. Analysis 79

(a) Distance measurements for tag
1.

(b) Distance measurements for tag
2.

(c) Distance measurements for tag
3.

(d) Distance measurements for tag
4.

Figure 4.2: RTT distance measurements visualized, red is the measurements for one
specific tag. The center of each circle is the position of the drone when measuring
the distance and the radius is the measured distance.

4.1.8 Range and signal strength test with module on drone

The goal of this test was to determine the maximum range for the SheepRTT and
to gather more information about the accuracy of the system.

For the analysis the distance measurements was provided by a detailed debug
log from the central board, and this was then compared to the GPS data from the
UAV. This was used to generate the figures below. Note that the shown figures is
only a subset of the results. More about this results can be found in [45].

As we can see from the figures the accuracy improves significantly with imple-
mentation #2. This combined with a lower power consumption makes this look like
the superior implementation.

The range of both implementations should be the same. The reason we can see
a maximum range difference between Figure 4.3 and Figure 4.6 is the use of a lower
transmit power during that particular test of implementation #2.

80 Chapter 4. Analysis

Figure 4.3: RTT distance measurement
compared to GPS distance for Sheep-
RTT implementation #1.

Figure 4.4: Histogram of the error dis-
tribution for SheepRTT implementation
#1.

Figure 4.5: RTT distance measurement
compared to GPS distance for Sheep-
RTT implementation #2.

Figure 4.6: Histogram of the error dis-
tribution for SheepRTT implementation
#2.

4.1.9 Optimal speed, power consumption and range

After the testing was finished we analyzed the flight log in Mission Planner and
extracted the recorded speed, battery voltage and battery current. This was further
processed to get the data in Table 4.7.

As you can see the power consumption falls sightly as the speed increases until we
reach 7.5m/s, this could be from oscillations in the UAV, changing wind conditions or
inaccuracies from the voltage and current sensors. All these values are very close to
each other and could be within the margin of error. After this the power consumption
starts to rise again as the speed continues to increase. This can be seen better on
Figure 4.8. The important takeaway from this is that the energy consumption stays
roughly the same for speeds up to 10m/s. Almost all of the energy used by the UAV
is expended keeping it in the air, while only a small portion of the energy is used to
move in the desired direction. When flying at speeds over 10m/s the increased air
resistance begins to impact the energy consumption.

With these results we can find the optimal speed for the UAV to maximize range
or flight time. The estimated range at different speeds is plotted in Figure 4.7. From
this we find that the equilibrium point where increasing speed does not increase
range is over 19m/s. This is because the increasing air resistance is not high enough
to lead to a decreased range. The reason we did test at higher speeds is the legal
speed limit of 19m/s for our UAV. Therefore to maximize range we should fly the

Chapter 4. Analysis 81

Table 4.7: UAV speed/power consumption and estimated range and flight times.

Speed Power consumption(w) Wh Range(km) Flight time

(m/s)
Heading

south
Heading

north
Avg /km

w/ 33.3wh
battery

(min)

0 59.5 33.58
2.5 59.2 54.6 56.9 6.32 5.27 35.11

5 53.6 55.2 54.4 3.02 11.02 36.73
7.5 49.5 56.7 53.1 1.97 16.93 37.63
10 50.0 61.3 55.7 1.55 21.54 35.90
15 59.9 79.0 69.5 1.29 25.89 28.77
19 64.2 83.2 73.7 1.08 30.91 27.11

UAV at the highest speed possible. The estimated range at a speed of 19m/s with
the 33.3Wh battery is almost 31km.

The wind speed during the testing was 2-4m/s and was blowing from north to
south. The weather information was fetched from yr.no.

82 Chapter 4. Analysis

0 2.5 5 7.5 10 15 19

5

10

15

20

25

30

35

Speed [m/s]

E
st

im
at

ed
ra

n
ge

[k
m

]

Estimated range of the UAV while flying at different speeds.

Estimated range

Figure 4.7: UAV estimated range at
different speeds.

0 2.5 5 7.5 10 15 19
20

25

30

35

40

25

Speed [m/s]

E
st

im
at

ed
fl
ig

h
t

ti
m

e
[m

in
]

Estimated flight time of the UAV while flying at different speeds.

Estimated flight time

Figure 4.8: UAV estimated flight time
at different speeds.

0 2.5 5 7.5 10 15 19
45

50

55

60

65

70

75

80

Speed [m/s]

E
n
er

gy
co

n
su

m
p
ti

on
[W

]

Estimated flight time of the UAV while flying at different speeds.

Energy consumption

Figure 4.9: UAV energy consumption
at different speeds.

0 2.5 5 7.5 10 15 19
0

1

2

3

4

5

6

7

8

Speed [m/s]

E
n
er

gy
co

n
su

m
p
ti

on
[W

h
/k

m
]

Estimated flight time of the UAV while flying at different speeds.

Energy consumption

Figure 4.10: UAV energy consumption
per km

4.1.10 Theoretical prototype tag

By using the data we have gathered while developing this system we can make a
rudimentary design for a smaller prototype tag. Designing a smaller SheepRTT
peripheral module or tag was not within the original scope of the project. By doing
this we could estimate some of the properties our system could have as it gets closer
to a finished product.

If we combined a MINEW MS88SF23 module, an antenna and a CR2032 battery
with a battery holder we could have a small prototype tag. This would have a weight
under 10g, a size around 20x25x12mm excluding the antenna and a total cost under
100 NOK. The estimated battery life of this prototype could be between 46 weeks
and 67 weeks when using implementation #2 of SheepRTT. [45]

Chapter 5. Discussion 83

Chapter 5

Discussion

This chapter is discussing the results from our analysis and looks at viability of our
system.

We are going to compare our system to other alternative solutions and weighing
up the pros and cons. We are also going to look at the possibilities and challenges
our system could face in the future.

5.1 SheepRTT range and accuracy

During our testing we gathered data about the range and accuracy of the SheepRTT
system. We found the system could find tags at a distance of at least 1.2km and
measure the distance with a uncertainty under 50m. For more information see [45].

5.2 System MAVLink integration

The integration of MAVLink into the SheepRTT module itself allows plug and play
functionally with ArduPilot based UAV. This could be expanded with some com-
patibility modifications to include all MAVLink based UAVs.

5.3 Full system performance

Our full system tests shows promising results for locating animals. The system
estimated the position of the tags within 15m on average. This is more than good
enough for our needs. The tag locations would only be used as guidance when
gathering the animals from the grazing area.

5.4 UAV flight speed, range and efficiency

One of our objectives was to find the maximum range of our UAV. To find this me
measured the efficiency of the UAV flying at different speeds. We found that the
optimal speed to maximise range was 19m/s. With this speed we could achieve a
range of up to 30km.

84 Chapter 5. Discussion

5.5 Comparison to existing solutions

We are going to compare the traditional way of gathering, the GPS collars and our
system with the theoretical prototype tags.

Ease of use

The traditional way can be done by anyone able to traverse the terrain and recognize
the sound of the bells. Both the solution from Nofence and findmy offers a mobile
phone app for configuration and monitoring. Our system can be operated through
Radio Sheep GCS.

Connectivity

The traditional way requires no connectivity. The GPS collar from Nofence requires
2G or LTE CAT M-1 connectivity in the grazing area. While the GPS collar from
findmy connects a satellite network and should work anywhere. Our system does
not require any connectivity in the grazing area but Radio Sheep GCS requires an
internet connection to fetch maps and terrain data.

Battery life

The traditional way requires no batteries at all. The average battery life for the
GPS collar from Nofence is 3 weeks. The average battery life for the GPS collar
from findmy is about two to three seasons. The estimated battery life of our system
is between 46 weeks and 67 weeks with a CR2032 battery.

Costs

The cost of the bell collars is 84 NOK. The cost of the GPS collars from Nofence and
findmy is around 1850 NOK per unit. There is also a need for an active subscription
from the manufacturer to use the GPS collars. The estimated cost of a prototype tag
for our system is around 100 NOK, but our system also requires a UAV to function.

Form factor

The form factor of the collars is the collar itself with a big rectangular cube hanging
under the animals head. For our system the size is a small package of 20x25x12mm
and a weight of around 10g.

Geofence and other capabilities

The traditional way limit the areas where the animals could go was to set up fences
or use natural barriers. Nofence allows the user to set up allowed or disallowed areas
for the animals, the collar gives the animal audio warnings or electric shocks when
nearing the border of these areas. The system from findmy will give the user alerts
if the animal is outside its allowed area. Our system does not provide any geofence
functionality.

The system from findmy also features notifications when the animals get into
potentially dangerous situations.

Chapter 5. Discussion 85

System maturity

The traditional bell collar is well tested and have been in use for many centuries.
The systems by Nofence and findmy have been commercially available for a few
years. They have been field tested performed satisfactory in real world conditions.
Our system have only been tested at larger scale a few times and the system is not
ready for commercial use.

Summary

The traditional way is the simplest and cheapest, but it requires a lot of labour.
Our system have around the same unit cost as the bell collar, but we also requires
a UAV to function. The systems from Nofence and findmy allows tracking of the
animals remotely all season, but they are also much more expensive and both of
them requires an active subscription. Nofence have built in “herding” functionally
but also much shorter battery life than our system or the system from findmy. Our
system does not have any kind of geofence functionality. The other systems are
already available commercially.

Our system is not a replacement of any of the other system, but functions more
as a auxiliary tool for the traditional way to gather up the animals. It’s more like
tool to locate the areas where the animals reside. It does not provide any new
features unlike the systems from Nofence and findmy.

5.6 Possible regulatory obstacles

Our system is well suited for use cases where the UAV could operate autonomously
to survey large areas and spend a long time beyond visual line of sight(BVLOS). In
Norway and the European Union any UAV operating BVLOS is categorized in the
specific category. This means it could require operational authorisation from the
National Aviation Authority. This could be a huge limitation for adoption of our
system. Also the speed limit of 19m/s is not a major problem but it could increase
the time required to survey an area.

86 Chapter 6. Conclusion

Chapter 6

Conclusion

When we started working on this master thesis we got a task to solve, locating ani-
mals with the use of UAVs and radio technology. The task was split into three parts,
each focusing on a separate component of the full system. One part was focused
on detecting and finding the animals using radio technology. Another part focused
on developing a UAV platform for this system and then integrating it with the rest
of the system. And the last part was focused on developing a GCS application to
control this system and process the data generated. This paper focuses on the UAV
platform and integration with the rest of the system.

Even if our main focus here was the UAV and integration we could not ignore the
other components of the system. Therefore discussion about the other components
is included and how the system functions as a whole.

The UAV platform we decided to use in our system was a multi-rotor quadcopter
running the ArduPilot software. This UAV was capable of autonomous flight, a
requirement to allow automated surveying of areas. This means the UAV could
execute given a flight plan without any input from a pilot. From our testing we
estimate the UAV could have a range of 30km and capable of holding speeds of
19m/s.

Our tests of the SheepRTT modules shows they can measure distances up to
least 1.2km with an uncertainty of ±50m. The uncertainty does not increase with
distance. By doing multiple RTT distance measurements and averaging them we
can reduce this uncertainty. The SheepRTT module can then be used with the rest
of our system, the UAV and GCS to survey an area and locate animals within it.
With the full system surveying an area we should be able to locate animals fairly
high accuracy. In the testing of our system it managed to locate the tags with a
high accuracy, only being off by 15m on average.

Compared to already existing solutions our system provides geolocation with a
very lightweight and low cost unit. The major downside of your system is the need
fly a SheepRTT equipped UAV nearby to locate the tags. The tags do not posses
any ability to do this on their own. Our system does not provide any geofence
capabilities as is provided by some GPS collars. Another feature of most GPS
collars is the ability to check the animals’ location at any time.

Our system is based around the UAV flying autonomous flights and surveying
remote areas. The areas could be far away and beyond visual line of sight. The
regulatory requirement for operating a UAV beyond visual line of sight(BVLOS)
could pose a big challenge for our system and could limit it’s practical use.

Our system should be compatible with any ArduPilot based UAV. Compatibility

Chapter 6. Conclusion 87

can later be expanded to include all MAVLink based UAVs with some modifications.
Compared to other solutions this system adds extra complexity with the addition

of the UAV and does not provide any new features. This combined with the possible
regulatory obstacles could make the whole system less practical. The knowledge
gained may be useful for developing future solutions to other problems. Examples
being the SheepRTT system being used to measure distances and the knowledge
about MAVLink being used to develop other MAVLink enabled devices.

6.1 Further Work

Further work can be done to expand the capabilities of this system. The UAV
platform used by this system can be changed to one with a longer range, possibly
using fixed or hybrid wing designs. Also a better MAVLink connection between the
UAV and the GCS. Better stability and longer range would make large scale tests
and real world scenarios much more practical.

Modifying the system to allow multiple SheepRTT modules on a UAV could
increase the flexibility of the system.

Adding support the UAVs running the PX4 and other MAVLink based firmware
would require fairly little work and would increase the number of UAVs compatible
with our system.

Developing the planned prototype tag a smaller design for the tag with integrated
batteries would be a big step forward as this would make testing with real life animals
much easier.

We also need to look deeper into the regulatory obstacles and determine if this
system can be viable under the current regulations.

88 Bibliography

Bibliography

[1] Ardupilot copter: Flight modes. https://ardupilot.org/copter/docs/

flight-modes.html, . Accessed: 2021-03-12.

[2] Github - ardupilot. https://github.com/ArduPilot/ardupilot, . Accessed:
2020-11-29.

[3] Mavlink routing in ardupilot. https://ardupilot.org/dev/docs/

mavlink-routing-in-ardupilot.html, . Accessed: 2021-02-03.

[4] Ardupilot - sitl simulator (software in the loop). https://ardupilot.org/

dev/docs/sitl-simulator-software-in-the-loop.html, . Accessed: 2021-
02-14.

[5] Holybro kakute f7 mini. https://ardupilot.org/plane/docs/

common-holybro-kakutef7mini.html, . Accessed: 2020-09-29.

[6] Drone manufacturer market shares: Dji leads
the way in the us. https://droneii.com/

drone-manufacturer-market-shares-dji-leads-the-way-in-the-us.
Accessed: 2021-01-06.

[7] Mavlink developer guide. https://mavlink.io/en/, . Accessed: 2021-02-06.

[8] Dialect: Ardupilotmega. https://mavlink.io/en/messages/

ardupilotmega.html, . Accessed: 2021-02-03.

[9] Mavlink dialects. https://mavlink.io/en/messages/, . Accessed: 2021-02-
05.

[10] Mavlink messages: Mav component. https://mavlink.io/en/messages/

common.html#MAV_COMPONENT, . Accessed: 2021-03-01.

[11] Mavlink: Using pymavlink libraries (mavgen). https://mavlink.io/en/

mavgen_python/, . Accessed: 2021-03-05.

[12] Mavlink: Message signing (authentication). https://mavlink.io/en/guide/

message_signing.html, . Accessed: 2021-03-22.

[13] Mavlink common message set. https://mavlink.io/en/messages/common.

html, . Accessed: 2021-01-16.

[14] Mavlink microservice: Heartbeat. https://mavlink.io/en/services/

heartbeat.html, . Accessed: 2021-04-15.

https://ardupilot.org/copter/docs/flight-modes.html
https://ardupilot.org/copter/docs/flight-modes.html
https://github.com/ArduPilot/ardupilot
https://ardupilot.org/dev/docs/mavlink-routing-in-ardupilot.html
https://ardupilot.org/dev/docs/mavlink-routing-in-ardupilot.html
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://ardupilot.org/plane/docs/common-holybro-kakutef7mini.html
https://ardupilot.org/plane/docs/common-holybro-kakutef7mini.html
https://droneii.com/drone-manufacturer-market-shares-dji-leads-the-way-in-the-us
https://droneii.com/drone-manufacturer-market-shares-dji-leads-the-way-in-the-us
https://mavlink.io/en/
https://mavlink.io/en/messages/ardupilotmega.html
https://mavlink.io/en/messages/ardupilotmega.html
https://mavlink.io/en/messages/
https://mavlink.io/en/messages/common.html#MAV_COMPONENT
https://mavlink.io/en/messages/common.html#MAV_COMPONENT
https://mavlink.io/en/mavgen_python/
https://mavlink.io/en/mavgen_python/
https://mavlink.io/en/guide/message_signing.html
https://mavlink.io/en/guide/message_signing.html
https://mavlink.io/en/messages/common.html
https://mavlink.io/en/messages/common.html
https://mavlink.io/en/services/heartbeat.html
https://mavlink.io/en/services/heartbeat.html

Bibliography 89

[15] Mavlink messages: Microservices. https://mavlink.io/en/services/, . Ac-
cessed: 2021-03-06.

[16] Mavlink routing. https://mavlink.io/en/guide/routing.html, . Accessed:
2021-03-01.

[17] Packet serialization. https://mavlink.io/en/guide/serialization.html, .
Accessed: 2021-02-03.

[18] Mavlink 2. https://mavlink.io/en/guide/mavlink_2.html, . Accessed:
2021-02-03.

[19] Mavlink versions. https://mavlink.io/en/guide/mavlink_version.html, .
Accessed: 2021-02-03.

[20] Federal communications commission record: Before the federal communica-
tions commission washington, d.c. 20554. https://docs.fcc.gov/public/

attachments/FCC-94-213A1.pdf, 1994. Accessed: 2021-05-12.

[21] Current and planned global and regional navigation satellite systems
and satellite-based augmentations systems. https://www.unoosa.org/pdf/

publications/icg_ebook.pdf, 06 2010. Accessed: 2021-05-13.

[22] European Union Aviation Safety Agency. Easy access rules for unmanned
aircraft (regulations (eu) 2019/947 and (eu) 2019/945). 2020-12-03. https://

www.easa.europa.eu/sites/default/files/dfu/Easy%20Access%20Rules%

20for%20Unmanned%20Aircraft%20Systems%20November%202020.pdf.

[23] Team Betaflight. Betaflight about. https://betaflight.com/. Accessed:
2020-10-18.

[24] Marinus Boon, A. Drijfhout, and Solomon Tesfamichael. Comparison of a
fixed-wing and multi-rotor uav for environmental mapping applications: A
case study. ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XLII-2/W6:47–54, 08 2017. doi:
10.5194/isprs-archives-XLII-2-W6-47-2017.

[25] Dronecode. Software overview: Px4 autopilot. https://px4.io/software/

software-overview/. Accessed: 2020-10-18.

[26] Emad Samuel Malki Ebeid, Martin Skriver, Kristian Terkildsen, Kjeld Jensen,
and Ulrik Schultz. A survey of open-source uav flight controllers and flight
simulators. Microprocessors and Microsystems, 61, 05 2018. doi: 10.1016/j.
micpro.2018.05.002.

[27] Bernd Eissfeller, GERALD AMERES, Victoria Kropp, and DANIEL SAN-
ROMA. Performance of gps, glonass and galileo. 01 2007.

[28] findmy. findmy. https://www.findmy.no/.

[29] Oeystein Glomsvoll and Lukasz Bonenberg. Gnss jamming resilience for close
to shore navigation in the northern sea. Journal of Navigation, -1, 06 2016. doi:
10.1017/S0373463316000473.

https://mavlink.io/en/services/
https://mavlink.io/en/guide/routing.html
https://mavlink.io/en/guide/serialization.html
https://mavlink.io/en/guide/mavlink_2.html
https://mavlink.io/en/guide/mavlink_version.html
https://docs.fcc.gov/public/attachments/FCC-94-213A1.pdf
https://docs.fcc.gov/public/attachments/FCC-94-213A1.pdf
https://www.unoosa.org/pdf/publications/icg_ebook.pdf
https://www.unoosa.org/pdf/publications/icg_ebook.pdf
https://www.easa.europa.eu/sites/default/files/dfu/Easy%20Access%20Rules%20for%20Unmanned%20Aircraft%20Systems%20November%202020.pdf
https://www.easa.europa.eu/sites/default/files/dfu/Easy%20Access%20Rules%20for%20Unmanned%20Aircraft%20Systems%20November%202020.pdf
https://www.easa.europa.eu/sites/default/files/dfu/Easy%20Access%20Rules%20for%20Unmanned%20Aircraft%20Systems%20November%202020.pdf
https://betaflight.com/
https://px4.io/software/software-overview/
https://px4.io/software/software-overview/

90 Bibliography

[30] Carles Gomez, Joaquim Oller Bosch, and Josep Paradells. Overview and eval-
uation of bluetooth low energy: An emerging low-power wireless technology.
Sensors (Basel, Switzerland), 12:11734–53, 12 2012. doi: 10.3390/s120911734.

[31] iNavFlight. iNAV wiki. https://github.com/iNavFlight/inav/wiki. Ac-
cessed: 2020-10-21.

[32] Fortune Business Insights. Small drone market size, share & covid-19 im-
pact analysis, by type (fixed wing, rotary wing, and hybrid wing), by end-
use (military & defense, consumer, and commercial & civil), by maximum
take-off weight (less than 5 kg, 5-25 kg, and above 25-150 kg), and re-
gional forecast, 2020-2027. https://www.fortunebusinessinsights.com/

small-drones-market-102227, 11 2020. Accessed: 2021-02-25.

[33] Pedro L Jimenes, Jorge A Silva, and Juan S Hernandez. Experimental valida-
tion of unmanned aerial vehicles to tune pid controllers in open source autopi-
lots. In European Conference For Aeronautics And Space Sciences (Eucass),
2017.

[34] Anis Koubaa, Azza Allouch, Maram Alajlan, Yasir Javed, Abdelfettah Bel-
ghith, and Mohamed Khalgui. Micro air vehicle link (mavlink) in a nutshell: A
survey. IEEE Access, PP:1–1, 06 2019. doi: 10.1109/ACCESS.2019.2924410.

[35] Marco Lanzagorta. Underwater communications. Synthesis Lectures on Com-
munications, 5(2):1–129, 2012. doi: 10.2200/S00409ED1V01Y201203COM006.
URL https://doi.org/10.2200/S00409ED1V01Y201203COM006.

[36] Xingxing Li, Maorong Ge, Xiaolei Dai, Xiaodong Ren, Mathias Fritsche, Jens
Wickert, and H. Schuh. Accuracy and reliability of multi-gnss real-time precise
positioning: Gps, glonass, beidou, and galileo. Journal of Geodesy, 89, 03 2015.
doi: 10.1007/s00190-015-0802-8.

[37] Trygve Nerland. Github: trygve55/pymavlink.
https://github.com/trygve55/pymavlink.

[38] Nofence. Nofence. https://www.nofence.no/, .

[39] Supernode Nofence. Nofence: Regn ut hva nofence vil koste for akkurat ditt
behov. https://nofence.supernode.no/sheep.html, .

[40] Henrik Nyholm. Localizing sheep using a bluetooth low energy enabled un-
manned aerial vehicle for round-trip time of arrival-based multilateriation. Mas-
ter’s thesis, NTNU: Norwegian University of Science and Technology, 07 2020.

[41] Maria Ribeiro and Isabel Ribeiro. Kalman and extended kalman filters: Con-
cept, derivation and properties. 04 2004.

[42] Adnan Saeed, Ahmad Bani Younes, Chenxiao Cai, and Guowei Cai. A survey
of hybrid unmanned aerial vehicles. Progress in Aerospace Sciences, 03 2018.
doi: 10.1016/j.paerosci.2018.03.007.

[43] Gard Steinsvik. Github: Gardsteinsvik/radio-sheep-gcs.
https://github.com/GardSteinsvik/radio-sheep-gcs.

https://github.com/iNavFlight/inav/wiki
https://www.fortunebusinessinsights.com/small-drones-market-102227
https://www.fortunebusinessinsights.com/small-drones-market-102227
https://doi.org/10.2200/S00409ED1V01Y201203COM006

Bibliography 91

[44] Gard Steinsvik. Radio-tracking of sheep — ground control station. Master’s
thesis, NTNU: Norwegian University of Science and Technology, 06 2021.

[45] Grzegorz Swiderski. Radio tracking of sheep: Low-cost energy-efficient coarse
distance estimation using bluetooth low energy transceivers. Master’s thesis,
NTNU: Norwegian University of Science and Technology, 06 2021.

[46] ArduPilot Dev Team. ArduPilot about. https://ardupilot.org/index.php/
about, . Accessed: 2020-10-16.

[47] ArduPilot Dev Team. ArduPilot command protocol. https://mavlink.io/

en/services/command.html, . Accessed: 2021-05-20.

[48] ArduPilot Dev Team. ArduPilot extended kalman
filter (ekf). https://ardupilot.org/copter/docs/

common-apm-navigation-extended-kalman-filter-overview.html, .
Accessed: 2021-04-18.

[49] ArduPilot Dev Team. ArduPilot mavproxy. https://ardupilot.org/

mavproxy/, . Accessed: 2021-05-28.

[50] G. van Rossum. Python tutorial. Technical Report CS-R9526, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam, May 1995.

[51] Daihua Wang, Linli Song, Xiangshan Kong, and Zhijie Zhang. Near-ground
path loss measurements and modeling for wireless sensor networks at 2.4 ghz.
International Journal of Distributed Sensor Networks, 2012, 08 2012. doi: 10.
1155/2012/969712.

[52] yappu. Yaapu Frsky Telemetry Script wiki. https://github.com/yaapu/

FrskyTelemetryScript/wiki. Accessed: 2021-05-27.

https://ardupilot.org/index.php/about
https://ardupilot.org/index.php/about
https://mavlink.io/en/services/command.html
https://mavlink.io/en/services/command.html
https://ardupilot.org/copter/docs/common-apm-navigation-extended-kalman-filter-overview.html
https://ardupilot.org/copter/docs/common-apm-navigation-extended-kalman-filter-overview.html
https://ardupilot.org/mavproxy/
https://ardupilot.org/mavproxy/
https://github.com/yaapu/FrskyTelemetryScript/wiki
https://github.com/yaapu/FrskyTelemetryScript/wiki

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Trygve Nerland

Radio tracking of sheep - Developing
MAVLink enabled devices, MAVLink
control and the basis for MAVLink
enabled autonomous UAVs

Master’s thesis in Master of Science in Informatics
Supervisor: Svein-Olaf Hvasshovd

June 2021

M
as

te
r’s

 th
es

is

	List of Figures
	List of Tables
	Introduction
	Original Task description
	Software Base
	Python
	ArduPilot
	SheepRTT
	Radio Sheep GCS

	Theory
	Existing solutions
	Traditional/regular
	GPS collars

	Bluetooth Low Energy
	Long-Range Mode
	nRF52833 development kit
	MINEW MS88SF23

	Distance estimation and localization techniques
	Triangulation
	Multilateriation
	RSSI distance estimation
	RTT distance estimation

	UAV
	Firmware alternatives
	Ground Control Station
	Simulated Vehicle (SITL)
	Types of UAVs
	UAV components
	Flight modes

	Global navigation satellite systems
	Accuracy
	Dangers and signal jamming

	Extended Kalman Filter
	Regulations of drone use in Norway
	MAVLink
	System and component IDs
	Dialects
	MAVLink 1 vs MAVLink 2
	Serialization
	Routing
	Microservices
	Security Threats

	Signal attrition
	Free-space path loss
	Near-Ground Path Loss at 2.4 GHz
	Path loss through vegetation and animals

	Signal interference

	Method
	System Architecture
	SheepRTT
	UAV
	Radio Sheep GCS

	SheepRTT
	Central and peripheral boards
	RTT distance measurements
	RTT Implementations
	System design
	MAVLink Implementation
	Moving from development kit to smaller module

	UAV
	Drone components
	Radio transmitter
	Assembly
	Configuration and calibration

	MAVLink communication
	Dialect modifications
	Radio Sheep GCS & Node-MAVLink: implementing missing features
	SheepRTT MAVLink implementation

	Practical tests
	Range test
	Antenna orientation and signal strength test with obstacle
	Range and signal strength tests with different antennas and antenna orientations
	Manual flight test with drone
	Autonomous flight test
	Small scale full system test
	Large scale full system test
	Range and signal strength test with module on drone
	Optimal speed, power consumption and range
	General problems and considerations

	Analysis
	Practical tests
	Range test
	Antenna orientation and signal strength test with obstacle
	Range and signal strength tests with different antennas and antenna orientations
	Manual flight test
	Autonomous flight test
	Small scale full system test
	Large scale full system test
	Range and signal strength test with module on drone
	Optimal speed, power consumption and range
	Theoretical prototype tag

	Discussion
	SheepRTT range and accuracy
	System MAVLink integration
	Full system performance
	UAV flight speed, range and efficiency
	Comparison to existing solutions
	Possible regulatory obstacles

	Conclusion
	Further Work

	Bibliography

