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i

Abstract

Neural networks (NNs) have shown high predictive performance, however, with
shortcomings. Firstly, the reasons behind the classifications are not fully under-
stood. Several explanation methods have been developed, but they do not provide
mechanisms for users to interact with the explanations. Explanations are social,
meaning they are a transfer of knowledge through interactions. Nonetheless, cur-
rent explanation methods contribute only to one-way communication. Secondly,
NNs tend to be overconfident, providing unreasonable uncertainty estimates on
out-of-distribution observations. We overcome these difficulties by training a
Bayesian convolutional neural network (CNN) that uses explanation feedback.
After training, the model presents explanations of training sample classifications
to an annotator. Based on the provided information, the annotator can accept
or reject the explanations by providing feedback. Our proposed method utilizes
this feedback for fine-tuning to correct the model such that the explanations and
classifications improve. We use existing CNN architectures to demonstrate the
method’s effectiveness on one toy dataset (decoy MNIST) and two real-world
datasets (Dogs vs. Cats and ISIC skin cancer). The experiments indicate that
few annotated explanations and fine-tuning epochs are needed to improve the
model and predictive performance, making the model more trustworthy and un-
derstandable.
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Sammendrag

Nevrale nettverk (NNs) har vist høy prediktiv ytelse, men med mangler. For
det første er ikke årsakene bak klassifiseringene fullstendig forst̊att. Flere fork-
laringsmetoder er utviklet, men de har ikke mekanismer for brukere å samhandle
med forklaringene. Forklaringer er sosiale, noe som betyr at de er en overføring
av kunnskap gjennom interaksjoner. Likevel bidrar n̊aværende forklaringsme-
toder bare til enveiskommunikasjon. For det andre har NN-er en tendens til å
være for selvsikre, og gir urimelige usikkerhetsestimater p̊a observasjoner som
ikke kommer fra samme distribusjon. Vi overvinner disse vanskelighetene ved
å trene et Bayesiansk Konvolusjonell nevrale nettverk (CNN) som bruker fork-
laringstilbakemeldinger. Etter trening presenterer modellen forklaringer p̊a klas-
sifiseringer av treningseksempler til en orakel. Basert p̊a gitt informasjon kan
orakelet godta eller avvise forklaringene ved å gi tilbakemelding. Den foresl̊atte
metoden v̊ar bruker denne tilbakemeldingen til finjustering for å korrigere mod-
ellen slik at forklaringene og klassifiseringene forbedres. Vi bruker eksisterende
CNN-arkitekturer for å demonstrere metodens effektivitet p̊a ett leketøydatasett
(decoy MNIST) og to ekte datasett (Dogs vs. Cats og ISIC skin cancer). Eksper-
imentene indikerer at f̊a tilbakemeldinger- og finjusteringsepoker er nødvendig for
å forbedre modellen og prediktiv ytelse, noe som gjør modellen mer p̊alitelig og
forst̊aelig.
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Chapter 1

Introduction

The following chapter outlines the background and motivation for this master’s
thesis. Based on the background and motivation, we will concretize our goal for
this thesis and divide it into research questions. We will end the chapter with an
overview of this thesis’s contribution and its structure. Appendix 3 can be read
as a condensed version of this thesis’s core contributions for those with sufficient
background knowledge.

1.1 Background and Motivation

Machine learning (ML) is a branch of artificial intelligence (AI) consisting of
methods that automatically learns from data to perform a predefined task us-
ing a performance measure to guide the learning process [Mitchell, 1997]. ML
has many applications and is widely used, from commerce [Tintarev and Mas-
thoff, 2011] to more critical applications, such as credit risk assessment [Hand
and Henley, 1997] and medical diagnosis [Kononenko, 2001]. The influence ML
has on economical and societal decision-making has been increasing, and more of
the decisions previously taken by humans alone are now a joint task of human
and machines, and some just machines [Makridakis, 2017; Furman and Seamans,
2018]. In recent years, ML has leaped forward in performance. In some games
such as Go, Chess, Shogi, and Atari, the performance has even surpassed hu-
mans [Mnih et al., 2013]. Many of these accomplishments are due to the recent
development in deep learning (DL) [LeCun et al., 2015].

Despite these accomplishments, there are still obstacles that make the adoption
of ML on a wider scale difficult [Chui and Malhotra, 2018; Patel et al., 2008].

1
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One of the problems that make the adaptation difficult is the explainability of ML
models. Interpretability or explainability refers to a model’s ability to explain
its decision-making process in a human-understandable way [Doshi-Velez and
Kim, 2017]. Explainability is important to prove many desired properties with
ML models such as fairness and safety, and induce trust. In some cases the
interpretability of ML model is even a legal requirement [Goodman and Flaxman,
2017]. Different metrics, such as accuracy, recall, and precision, can verify a
model’s predictive performance. However, it can neither prove nor guarantee
that the models are fair, reliable, or safe in practice. Not only that, research has
shown that people are often reluctant in algorithmic decision making without
them verifying [Dawes, 1979; Dietvorst et al., 2015; Binns et al., 2018].

DL models are known to have high predictive performance but suffer from low
explainability [Gunning and Aha, 2019]. Much research has gone into making
DL models interpretable. One approach focuses on developing interpretable ML
models that are inherently interpretable because of their simplicity [Letham et al.,
2015]. This approach circumvents the difficulty of explaining DL models by re-
placing them with less expressive models. Thus, trading predictive performance
for explainability. Another approach try to interpret existing DL models by in-
troducing a method that works with the existing models [Selvaraju et al., 2020a;
Ribeiro et al., 2016a; Shrikumar et al., 2019; Simonyan et al., 2014] without
modifying them. Methods that take on this approach are referred to as post-hoc
methods [Murdoch et al., 2019; Lipton, 2018]. These methods try to explain DL
models’ predictions by looking at the importance of individual features (e.g., pix-
els for image data and words for textual data). Hence, avoiding the compromise
between predictive performance and explainability.

Related to interpretability, there is the issue with DL models’ robustness. DL
models are bad at quantifying uncertainty and tend to provide overconfident pre-
dictions [Lakshminarayanan et al., 2017]. An overconfident model can be danger-
ous, especially in more critical applications such as autonomous cars and medical
applications. Furthermore, it has been shown that an overconfident model can
be perceived as offensive [Amodei et al., 2016]. Although explainability methods
can provide insight into model overconfidence, there is still a need for techniques
to resolve overconfidence. One way to resolve overconfidence is to use proba-
bilistic techniques to explicitly incorporate uncertainty; both Bayesian [MacKay,
1992; Neal, 1996; Maddox et al., 2019; Blundell et al., 2015; Louizos and Welling,
2017] and non-Bayesian [Malinin and Gales, 2018; Lakshminarayanan et al., 2017;
Osband et al., 2016] approaches are investigated in the literature.

There has been much literature on explaining DL models. However, there has
been little work on using classification explanations beyond understanding the
models’ reasoning process for decision making. We define the use of explanations
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as ways to utilize the information provided through those explanations to improve
a model’s classification abilities. More specifically, a user gets asked to evaluate
classification explanations. Based on the explanations, the user might agree or
disagree with the model. If the user disagrees, it can provide an alternative
explanation. This alternative explanation is added to the dataset as additional
data the model gets trained with during a fine-tuning phase to correct the model’s
understanding of the problem.

In this thesis, we want to develop a method that uses classification explanations
to correct a model if the practitioner thinks the explanations are wrong. More-
over, we want the model to quantify the uncertainty since robustness, trust, and
safety are closely related. For that reason, we propose a novel model correction
method that is compatible with Bayesian inference and its principled approach
to uncertainty quantification. Model correction refers to methods that employ
classification explanations to improve the models’ explanations and predictive
performance. After training, a Bayesian CNN presents explanations of training
sample classifications and explanations to a human annotator. The annotator
can accept or reject the explanations by giving feedback as additional evidence.
This feedback is used during fine-tuning to correct the model such that the ex-
planations and predictive performance improve.

1.2 Goals and Research Questions

In this section, we outline the goal of this master’s thesis. Furthermore, we
will concretized this goal into three more specific research questions. Our goal,
motivated by the issues in Section 1.1 is

Goal Increase the robustness and explainability of NNs through model interac-
tion, correction and Bayesian inference for uncertainty quantification.

In order to develop new ML methods, the research field must first be mapped.
This thesis takes on research from two fields, Bayesian DL and explainable arti-
ficial intelligence (XAI). Thus, our first research question is:

Research question 1. What is the state-of-the-art methods within Bayesian
Deep Learning and Explainable AI?

The second research question we investigate in this thesis concerns the possibility
of correcting models using their classification explanations. There has been much
research on explaining the decision-making process of NNs. Would it be possible
to extend the use of these explanations to understand the NNs and improve their
classification abilities? This leads us to our second research question.
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Research question 2. Can a user interact with a NN using its classification
explanations to correct the model and improve its classification abilities?

Provided a positive answer to whether we can use the classification explanations
to improve NNs. Could we take a step further and use this method with Bayesian
inference? Thus, not only resulting in a model that provides correct explanations
but also robust predictions. Our third research question is the following:

Research question 3. Can the model correction method be combined with Bayesian
inference to obtain a robust and explainable NN model?

1.3 Contributions

This section gives an brief overview of the contributions of this thesis. A more
elaborated overview of the contributions are given in Section 7.2. The contribu-
tions are as follows:

1. An interactive framework to probe a human annotator for feedback on
classification explanations (see Figure 4.1). This framework augments the
“standard” ML pipeline with two steps

Explain and Provide Feedback. During this step, a model asks a hu-
man annotator for feedback on classification explanations, similar to
active learning (AL).

Fine-tune. Takes the feedback gathered from the previous step and fine-
tunes the model to correct it.

2. A Bayesian framework utilizing explanation feedback to correct a model.
The application of Bayesian inference results in a mathematically grounded
objective function.

3. Experimental results on one toy dataset and two real-world datasets that
demonstrate the method’s effectiveness. This indicates that few annotated
explanations and fine-tuning epochs are required to improve explanations
justifying the classifications and the predictive performance.

1.4 Thesis Structure

The rest of the thesis is structured as follows.

Chapter 2 Background Theory. We will in Chapter 2 outline the necessary
background materials needed to understand the rest of this thesis. The
background section starts with describing NNs in Section 2.1 and CNN in
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Section 2.2. After finishing the theory concerning NNs, Section 2.3 moves
to the topic of XAI. Section 2.4 outlines the classification explanations
methods that are used throughout this thesis. The last part of this chapter,
Section 2.5 reviews Bayesian inference and one approach to estimate the
posterior distribution, namely, variational inference (VI).

Apart from providing background knowledge, this chapter also gives the
reader an overview of some of the state-of-the-art methods within Bayesian
DL and XAI. Thus, this chapter tries to answer Research question 1.

Chapter 3 Framework. Chapter 3 outlines the programming libraries and the
computational frameworks used to realize this thesis. Also, this chapter
gives a brief introduction to automatic differentiation (AD) which is the
generalization of backpropagation.

Chapter 4 Active Feedback. Chapter 4 introduces the model correction method
that is linked to Research question 2. Moreover, this chapter proposes a
framework to interact with a ML model to generate explanation feedback
for the model correction method.

Chapter 5 Bayesian model correction framework. Chapter 5 extends the
model correction method proposed in Chapter 4 to be compatible with
Bayesian NNs. This chapter is related to Research question 3 that asks
whether or not the model correction method can be used with Bayesian
inference.

Chapter 6 Experiments and Results. Chapter 6 provides the experimental
setup with the necessary information to reproduce the experiments. More-
over, this chapter outlines the results of the experiments that indicate pos-
itive answers to both Research questions 2 and 3.

Chapter 7 Evaluation and Conclusion. Chapter 7 concludes this thesis with
an evaluation, discussion, and future work. Furthermore, this chapter elab-
orates on the contributions that were briefly introduced in this chapter.
The evaluation discusses the experimental results from Chapter 6. The dis-
cussion reviews the advantages and the shortcomings of this work. Finally,
future work considers some of the possible future directions for this work.

Appendices. The appendices contain the mathematical notation and abbrevia-
tions used throughout this thesis. Moreover, they provide a distilled version
of this thesis as an article. The article contains all of the core contributions
of this thesis.
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Chapter 2

Background Theory

This chapter aims to provide the reader with sufficient background material to
understand the rest of the thesis. The material provided in this chapter is suitable
for those who need a quick recap. Not every detail will be outlined in this chapter,
and the readers that require a more in-depth explanation are asked to consult
the reference material.

2.1 Neural Network

This section outlines the core concepts of NNs. It starts with a brief introduction
to supervised ML, and then slowly builds up the theory around NNs. From
how a NN makes prediction/classification to how the learning process works.
Notice that although the main focus is on NNs, we will always give a general ML
description before narrowing the content onto NNs.

2.1.1 Supervised Learning

ML is collection methods and techniques that enable computers to improve their
performance automatically with experience. The improvement or learning hap-
pens with an experience tailored to a specific task. It is said that models learn
when their performance (it is assumed that a performance measure exists) in-
creases at a given task using the experience [Mitchell, 1997]. ML is used in a
wide variety of applications, such as translation and spam filtering [Guzella and
Caminhas, 2009; Bahdanau et al., 2016]. The methods differ in how they work,
how the experience is structured, and what tasks they are intended to solve [Jor-
dan and Mitchell, 2015]. The learning is often divided into supervised learning,

7
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unsupervised learning, and reinforcement learning. However, the methods can
also have other types of divisions. In this thesis, we are mainly going to deal
with supervised learning.

In a supervised learning setting, we have data D = {(x(i),y(i))}ni=1 or D =
(X,Y ) in matrix form. We assume that the data has the following relation,
y(i) = f(x(i))+ε. ε is the random error term or measurement noise, independent
of x(i) and has mean zero that covers all the unobserved covariates that influence
y(i). Using the data, the goal is to approximate the unknown function f(x(i))
that describes the relationship between the covariates x(i) and the response y(i)

for samples in our data, but also samples not seen. In other words, the data
serves as a proxy for the function f we wish to find. We want to find the function
either for prediction/classification or inference. This can be done by finding a

function f̂(x(i);θ) ≈ f(x(i)) (we will write f̂(x(i);θ) as f̂θ from now on to lighten
notation) that is parameterized by θ (not all ML models are parameterized by
some θ, but for now let us assume this is true).

The goal is to choose a model that represents the approximating function f̂θ
and find its parameter θ∗ that minimizes the “difference” (how the difference is
measured or defined will be dealt in Section 2.1.3) between the real function f and

the approximating function f̂θ using the data D. By using the data D, we assume
that the empirical distribution p̂data defined by D to a certain degree represents
the data generating distribution pdata “well” enough. Finding the parameter θ∗

that minimizes the “difference” is done by applying an optimization algorithm
specific to the model representing f̂θ, guided by some performance measure L
which measures this “difference” between the functions using the experience or
data D. A NN is an example of a model that can represent f̂θ. However, it can
also be some other type of ML model.

The empirical data D used to train the model is often divided into different parts.
It is usually divided into training data Dtrain, validation data Dvalid, and test data
Dtest. Here, Dtrain is used to teach the model to solve the given task. Besides the
parameters θ that the model derives from training, it also has hyperparameters
that are parameters set before the learning process. Dvalid is used to tune these
hyperparameters so that the model can perform better at the given task. When
tuning and training are done, Dtest is used to verify the model’s final performance.
It is not allowed to tune or train the model after Dtest has been applied. Dtest

can be seen as a proxy measure for how well the model will perform after it is
deployed in production.
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Figure 2.1: A FNN, where the circles represent neurons and a collection of neurons
on the same level, are named a layer. The depicted network is also sometimes
called a single-layer perceptron. Also, the figure provides the different terms used
for different layers in a FNN.

2.1.2 Feedforward Neural Network

A NN can be seen as a function approximator f̂θ able to approximate some
function f . The term NN encompasses a large variety of network architectures
or learning methods. In this section, we will describe the most widely used FNN,
or often called a multi(single)layer perceptron.

If we take a closer look, a NN is a network of nodes with directed edges connected
in a structured way, as seen in Figure 2.1. In a NN, nodes are called neurons and
edges connections. As seen in the figure, we have special nodes 1 called the bias
node. The bias is a neuron that is constant with trainable weight. It serves the
same purpose as the intercept in a regression model. The bias node provides the
NN with flexibility and allows the output of the neurons to differ from 0 (before
the activation function is applied) when all the inputs are 0. Only being able to
produce 0 when all the inputs are 0 might yield an inferior fit.
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A neuron can be seen in Figure 2.2, where we have n inputs into the neuron and a
bias neuron. Each input xi is multiplied with the corresponding weight wi. All of
these values are summed together after the multiplications, s = wb0 +

∑n
i=0 wixi.

The weights w are the parameters θ described in Section 2.1.1 which implies that
the goal is to find w∗ that minimizes the “difference”. The sum s passes through
an activation function ϕ(z), such as the Sigmoid function or rectified linear unit
(ReLU) function to get ŷ = ϕ(s). The output y of the activation function is
passed on to a new neuron in the network that its edge directs to. If the neuron
belongs to the last layer of the network, the activation value ŷ is the output of
the network. It is important to note that the activation functions used for the
output layer and the hidden layers are, in most cases, different. It is most common
to use a nonlinear activation function for the hidden layers. However, a linear
activation function ϕ(z) = z can be used. The activation function of the output
layer depends on the task the NN tries to solve. For regression problems, the
linear activation function is used, while for classification problems the Sigmoid
activation function is used, or softmax activation function when the number of
classes k > 2.

x0

x1

x2

xn

1

w0

w1

w2

wn

wb0

s = wb0 +
∑n
i=0 wixi ŷ = ϕ(s) ŷ

Figure 2.2: A single neuron with n input and the activation function ϕ(x). The
figure depicts how the input gets processed and turned into output in a single
neuron.

Nonlinear activation functions (shown in Figure 2.3) are used since they enable
a NN to learn nonlinear relationships between the input and output space. If all
layers have linear activation functions, the resulting network will be linear since
the sum of linear functions is still a linear function. No matter how wide or deep
the network is, it will still not capture nonlinear relationships in the data. The
“Universal approximation theorem” states that a FNN with a single hidden layer
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Figure 2.3: Commonly used activation functions, Sigmoid σ(z), hyperbolic tan-
gent tanh(z), rectified linear unit ReLU(z) and scaled exponential linear unit
SELU(z) [Klambauer et al., 2017]

containing a finite number of neurons can approximate continuous functions on
compact subsets Rn. One of the first versions of this theorem was proved by
Cybenko [1989] for the Sigmoid activation function. Later Hornik [1991] showed
that the theorem does not depend on a specific activation function, but rather
the architecture of the NN itself.

A neuron can be seen as a collection of weights that enable learning for a NN.
As neurons tie together weights, layers tie together neurons. Therefore, next, we
have layers that are a collection of nodes. In the most commonly known type
of NN, FNN, neurons in the same layer are not interconnected. Instead, layers
are stacked together. Each neuron in one layer is connected to all of the neurons
in the next layer. The connections are directed edges, which means the signal
only flows one way. This can be seen in Figure 2.1. The layers have dedicated
names; the first layer of a network is called the input layer, and the last, output
layer. Every layer in between the input and output layers is called the hidden
layers.

Assuming a NN has learned the relationship between the input and output space.
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It can make prediction/classification or inference by propagating signals from
input space to output space. More specifically, let us illustrate this with a single
hidden layer FNN, like the one seen in Figure 2.1.

Assume that we have the following setup:

Prediction

1. Input nodes: xi for i = 1, .., n, or as a vector x.

2. Hidden layer nodes: ai for i = 1, ..,m, or as a vector a.

The hidden layer has the activation function ϕh such that the output of the
hidden layer becomes

aj(x) = ϕh(wb0j +

n∑

i=1

wijxi), j = 1, ...,m, (2.1)

where wij is the weight from input node xi to hidden node aj , and wb0j is
the bias term for the hidden node aj .

3. Output nodes: ŷi for i = 1, .., c, or as a vector ŷ. Depending on the task
the network is aimed to solve, c can range from 1 to a finite large number
in Z+.

The output layer have the activation function ϕo such that the output of
the output layer becomes

ŷj(x) = ϕo(wb1j +

m∑

i=1

wijai), j = 1, ..., c, (2.2)

where wij is the connection from hidden node ai to output node yj , and
wb1j is the bias term for the output node ŷj .

This implies that the result for output node yj is

ŷj(x) = ϕo(wb1j +

m∑

i=1

wijai) = ϕo(wb1j +

m∑

i=1

wij(ϕh(wb0i +

n∑

l=1

wlixl))), (2.3)

when the equation is expanded to the input. Equation (2.3) presents how a
NN works during a forward pass. ŷ is our predicted result based on the input
x that has been propagated through the network, in this case, inputted into
Equation (2.3) and calculated. With a larger network, the basic calculations are
still the same; however, more tedious.
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2.1.3 Learning

Having defined a model f̂θ, we need a performance measure L in order to guide the
model during learning (also known as training). L is an objective function that

takes the data and the model L(f̂θ,D) and quantifies how “well” f̂θ approximates
the relationship between the covariates x and the responses y measured using
the data D. Notice that the objective function provided not only gets affected by
the model chosen but also by how “well” the empirical distribution p̂data defined
by data D approximates the data generating distribution pdata.

An optimization algorithm can be applied after defining an objective function,
for example, gradient descent for NNs. The algorithm tries to minimize (it can
be maximizing too, depending on how the function is defined) L by adjusting the

parameters θ in f̂θ. Gradient descent is an optimization algorithm that tries to
minimize a function iteratively by moving in the direction of the steepest descent
defined by the negative gradient. For NN, the weights w are the parameters θ
we want to adjust. The loss function is minimized by adjusting the weights. As
a consequence of how the algorithm works, the loss function we choose must be
differentiable. Gradient descent works quite straightforward for a NN without
hidden layers. For deeper networks, backpropagation is needed. We will first
tackle gradient descent before moving on to the more general process, namely,
backpropagation.

Loss function

In the context of NN, the term loss function is used to describe the objective
function. The loss function measures the error between the true response and
the prediction/classification for a single sample. When we aggregate the loss over
several data points, the term cost function is often used (we will use the terms
loss and cost interchangeably). The choice of loss function depends on the task
and other factors. To explain how a loss function is, we will take a closer look
at the mean squared error (MSE) loss function used for prediction tasks. The
MSE loss function is given in Equation (2.4) where we have n predictions (we
assume that the samples are independent and identically distributed (i.i.d.)). y is

the ground truths, and ŷ is the predictions the model f̂θ makes. MSE computes
the square of the difference between yi and ŷi for all n samples averaged (2 in
denominator is added to make derivation more convenient). Since MSE takes
the square, the error will always be non-negative. Another consequence of the
square is that it gives more weight to larger differences/distances. Because MSE
measures the distance between vy and ŷ, there needs to be a natural ordering
between the response values. In classification, a natural ordering of the classes
often does not exists. Therefore MSE loss can not be used for classification (not
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true for binary) and is mainly used for prediction.

MSE(y, ŷ) =
1

2n

n∑

i=1

(y(i) − ŷ(i))2. (2.4)

For classification tasks, CE loss function is applied (it is also known as the neg-
ative log-likelihood, negative since we want it to be minimization). The loss
function can be seen in Equation (2.5) where we assume that there are C classes,

ŷ
(i)
c is the output from the Sigmoid output node for binary classification and

softmax for classification where C > 2, and y
(i)
c is the observed one-hot encoding

for class c.

CE(y, ŷ) = − 1

n

n∑

i=1

1

C

C∑

c=1

y(i)
c log ŷ(i)

c . (2.5)

By using a function like Equation (2.4) or Equation (2.5), the optimization algo-
rithm is getting feedback. The loss provides information on how the parameters
should be adjusted for each iteration.

Gradient descent

Now that we have a rough idea of how things work let us illustrate these concepts
by outlining the gradient descent algorithm. Assume that we have a loss function
L(y, ŷ), for example, Equation (2.4). Further, assume that we have a model

f̂w parameterized with weights w, and a training set Dtrain = {(x(i), y(i))}ni=1.
Making these assumptions, we can derive the gradient descent algorithm that is
shown in Algorithm 1. If we, for example, have a network like the one displayed
in Figure 2.4 (assuming binary classification C = 2, we get that the gradient for
the weight using the chain rule from calculus is:

∂L(y, ŷ;w)

∂w
=

∂s

∂w

∂ŷ

∂s

∂L
∂ŷ

=
∂(wx+ b)

∂w

∂φ(s)

∂s

∂[y log ŷ + (1− y) log(1− ŷ)]

∂ŷ

= x · ŷ(1− ŷ) · (y
ŷ

+
y − 1

1− ŷ ).
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As we can see, for a single neuron, the derivation is quite simple. However, this
holds for networks with hidden layers and multiple neurons each layer too, which
we will go into detail in Section 2.1.3.

x

b

w s = wx+ b ŷ = φ(s) = 1
1+e−s ŷ

y

L(y, ŷ) =y log ŷ+

(1− y) log(1− ŷ)

Figure 2.4: A single neuron with a single input and the Sigmoid activation func-
tion. The binary CE loss function is used to compare the prediction and the true
response. This figure illustrates how the gradient of weights can be computed
using the gradient descent algorithm.

Algorithm 1 describes what is known as SGD since we make updates to the
weights w after only a single sample. It is called mini-batch SGD if we instead
calculate the loss over several samples, but not the whole dataset. The other
extreme of calculating the loss over the whole training set before making an
update is called batch SGD.

When we calculate the loss over a small number of samples, the parameters are
updated more often, making the training process faster. Besides, having noisy
updates can make the model avoid local minimums. However, the noise can also
be disadvantageous since it can make the error oscillate. On the other hand,
having a large mini-batch size gives a more stable error gradient. Nevertheless,
having a more stable error can also make it easier for the training procedure to
get stuck at a local minimum.

When it comes to hardware aspects of learning, having too small batches can
underutilize the tensor operations done efficiently in one go with large batches.
On the other hand, having too large a batch size can also be disadvantageous
since we need to load more data into the computer memory at once that might
not be available. Overall, all batch sizes have pros and cons, and the choice
depends on the task and resources available.
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Algorithm 1 Stochastic gradient descent (SGD)

1. Let t = 0 and the initial values for the weights be w(0) (initialized randomly
drawn from some distribution).

2. Until finding a optimum (might not be the global minimum) or reaching
some criteria (number of epochs), repeat this step:
(a) For sample i in 1, ..., n:

(b) i. Calculate the prediction ŷ(i) = f̂w(t)(x(i)). This step is known as
the forward pass.

ii. Calculate the loss function L(y(i), ŷ(i);w(t)).
iii. Find the gradient (direction) in the p-dimensional space of the

weights, and evaluate this at the current weight values:

∇L(y(i), ŷ(i);w(t)). (2.6)

This step is known as the backward pass.
iv. Update the weights using a given step length (learning rate) λ in

the direction of the negative of the gradient of the loss function:

w(t+1) = w(t) − λ · ∇L(y(i), ŷ(i);w(t)). (2.7)

v. Increment t = t+ 1.
3. The final values of the weights in the p-dimensional space w(final) are our

parameter estimates w∗.

Backpropagation

The differentiation of the loss function for a NN with a single neuron is quite
straightforward. However, adding more layers and neurons make things a bit
more complicated. Finding the analytical expression for ∇L is not tricky, but
the numerical evaluation is not cheap. Therefore, backpropagation is introduced,
which essentially is a way to calculate the gradient for any weight in a multi-
layer perceptron using the chain rule from calculus, making the calculations less
expensive. The term backpropagation and its use were first announced by Rumel-
hart et al. [1986]. Backpropagation was later popularized and closer studied by
Rumelhart and McClelland [1987]. However, the technique was rediscovered sev-
eral times by different researchers independently from each other.

A NN can be seen as a computational graph like the one seen in Figure 2.5.
Computational graphs are an important part of backpropagation and are a way to
graphically display mathematical functions as nodes and edges in a graph. Nodes
in a computations graph represent variables and operations such as addition,
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Figure 2.5: Computational graph

subtraction, multiplication, and division. Edges show how the computation is
applied. In general, this means that if we want the gradient of a node in the
graph with respect to some other node further down the graph. We only need
to multiply the gradients along that path. To illustrate this, let us look at an
example using the graph displayed in Figure 2.5. The edges on the graph already
show the partial derivative of the node that the edge goes to with respect to the
node where the edge comes from. Nevertheless, the question remains, how the
partial derivative can be calculated if intermediate nodes are along the path. If
we, for example, want the partial derivative of ∂z

∂h , how can it be calculated? As

we said, this can be done by multiplying the edges along path, for ∂z
∂h the answer

is ∂z
∂h = ∂z

∂f
∂f
∂g

∂g
∂h which is just the path between the nodes. More formally, we

are traversing the graph in reverse topological order and applying the chain rule.
Even though our example uses a tree, the algorithm can be applied to arbitrary
computational (directed and acyclic) graphs. Furthermore, the algorithm is not
limited to scalar values and applies to tensors too.

Since a NN is a computational graph, we can calculate the partial derivative of
the loss for any arbitrary weight by following the edges along the path. That is
essentially how backpropagation works and how the updates of weights can be
done. Because the paths share partial derivatives, backpropagation lends itself
to dynamic programming, making the computations more efficient.

2.1.4 Generalization

We have already mentioned that our model f̂θ will not be exactly as the true
function f due to some noise ε. The loss provides us with more details that can
be analyzed and decomposed to get a better understanding of where the error
stems from. The concepts we outline in the section apply to prediction but can
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be transferred to a classification setting with some modifications.

Let us assume we have a model f̂θ trained on the training data Dtrain using
Equation (2.4) as our loss function. Furthermore, assume that we want to use
our model to predict a new unseen test observation (x(0), y(0)). Now, we want
to find the expected value of the error between the predicted response and the
true response E[y(0) − f̂θ(x(0))]2. Using the fact that y(0) = f(x(0)) + ε, we
can decompose the expected value into three different terms as seen in Equa-
tion (2.8).

E[y(0) − f̂θ(x(0))]2

=E[(y(0))2 + f̂θ(x(0))2 − 2y(0)f̂θ(x(0))]

=E[(y(0))2] + E[f̂θ(x(0))2]− E[2y(0)f̂θ(x(0))]

=Var[y(0)] + E[y(0)]2 + Var[f̂θ(x(0))] + E[f̂θ(x(0))]2

− 2E[y(0)]E[f̂θ(x(0))]

=Var[y(0)] + f(x(0))2 + Var[f̂θ(x(0))] + E[f̂θ(x(0))]2

− 2f(x(0))E[f̂θ(x(0))]

=Var(ε) + Var[f̂θ(x(0))] + (f(x(0))− E[f̂θ(x(0))])2

=Var(ε) + Var[f̂θ(x(0))] + (Bias[f̂θ(x(0))])2.

(2.8)

Equation (2.8) displays the decomposition known as the bias-variance trade-off.
Let us take a close look at Equation (2.8).

Var(ε) = σ can not be reduced regardless of changing the model or tuning its
parameters. The term stems from measurement error, and can not be
reduced unless we have measurements without error. Hence this error is
beyond our control even if the true f(x(0)) is known.

Var(f̂θ(x(0))) is the expected deviation around the mean at x(0). In other words,
the variance of the prediction at x(0). In ML, when there is too much
variance, we say that the model is overfitting the data. That means the
model actually is modelling the random noise rather than the relationship
between the covariates and the response.

(Bias[f̂θ(x(0))])2 measures how much the prediction differs from the true mean.
In ML, when there is too much bias, we say that the model is underfitting
the data. Since the model is not able to model the relevant relationships
between the covariates and the response.
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Figure 2.6: Bias-variance trade-off

Equation (2.8) is called the bias-variance trade-off since when we try to decrease
the bias, the variance increases, and the same applies when we try to decrease
the variance. Nevertheless, the increase and decrease rates are not necessarily the
same. Hence, the goal is to find the minimum of the sum of these quantities and
not their individual minimum. Figure 2.6 illustrate these concepts, and as we can
see, the goal is to find the optimal balance implying that we want to minimize the
sum of the quantities. Figure 2.6 clearly illustrates which components the total
error consists of and that no matter what the model complexity is, the irreducible
error can not be reduced by the selected model. In the same figure, we can see
that the x-axis is denoted model complexity. In terms of NN, model complexity
mostly equates to the number of hidden layers and the number of neurons in
each layer. Nevertheless, there are other components of a NN that also influence
its model complexity. Note that the behavior between the variance and squared
bias displayed in Figure 2.6 holds in general. However, the slopes of the curves
displayed are just an example. The slops can look a lot different from what is
shown in the figure.

Generalization for neural network

A NN learns iteratively, thus, the term model complexity applies in a different way
for a NN than other types of ML models. When we talk about model complexity
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for NN, we need to consider both the architecture and how many optimization
steps the learning algorithm takes. For each step the learning algorithm takes,
the weights change, and so does the function it represents. At the initialization,
the weights are often initialized to small values, so the approximate function is
more “linear”. As we start to train, the approximate function gets less “linear”
because the weights are updated to fit the data. Hence, Figure 2.7 provides a
better meaning of the bias-variance trade-off for a NN than Figure 2.6.

For a NN, we can look at the bias-variance trade-off from a training perspective,
what it means to overfit and underfit. Figure 2.7 illustrates these concepts in
terms of the data D and the number of training iterations. When a NN fits the
data, it should fit the data better for each iteration of training, and the training
loss should decrease. However, if the training loss decreases but the test loss starts
to increase, we know the model is starting to overfit the training data. On the
other hand, if the training process stopped, and the training and test loss is still
decreasing, the model is underfitting. Since if we continue to train, the loss can
be significantly decreased. Another type of underfitting is when the training and
test error converge, but we know it should be significantly lower. At that point,
we have a model not expressive enough to capture the underlying relationship in
the data, which is also underfitting. Overall, the goal is to minimize the training
error without the test error increasing.

Generalization Techniques

We have already seen in Figure 2.6 that the main component to achieve model
generalization is to adjust model complexity. In this section, we are going to look
at techniques that can help combat overfitting. Fixing underfitting is usually
easier than fixing overfitting in a NN. If the model underfits, we can fix that by
adding more hidden units or the number of layers for a NN since it gives the
network more flexibility to capture nonlinearities in the data. Overfitting, on the
other hand, is harder since restricting the number of hidden units and the number
of layers hurts the expressiveness of the model. By restricting expressiveness, the
model might not be able to model interesting latent relationships in the data.
From statistics, we know that as the amount of data increases, the influence of
the prior we have on the model diminishes. In other words, one way to combat
overfitting is to increase the amount of training data. However, getting more
data can be expensive or not possible. Hence, there are numerous techniques to
fight overfitting. We will briefly go through some of the most widely adopted
techniques. Notice that the list is not exhaustive.

Early Stopping comes in several variants in terms of stopping criteria in case
the loss does not decrease [Prechelt, 2012]. The goal of early stopping is
to avoid overfitting. It is done by monitoring the validation loss during
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Figure 2.7: Bias-variance trade-off in terms of the data D and number of training
iteration.

training, as shown in Figure 2.7 (The figure displays test loss, but during
training of a NN, validation samples are used, not test samples). Early
training allows the network to train as long as the validation error decreases.
However, if, for example, the validation error does not improve for three
iterations, the training procedure is stopped. In the beginning, the NN
starts with small weights, thus represents a more “linear” function. As the
training goes on, the approximate function gets less linear since the weights
are updated to fit the data. Hence, early stopping tries to stop the training
procedure before the approximating function becomes too complex.

Parameter Norm Penalty adds a new term to the loss function that penalizes
the model for the weight sizes [Tibshirani, 1996; Hoerl and Kennard, 1970].
Smaller weights provide a less complex approximate function, and thus
prevents overfitting. On the other hand, if the weights get too constrained,
the model will underfit as we have already discussed. Hence the amount
of penalty is a hyperparameter. Two of the most known variants are L1

and L2 regularization. L2 penalty is also known as weight decay, which
is analogous to ridge regression for linear models. It adds the square of
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the magnitude of the weights to the loss function. This means that larger
weights are given a higher loss. This is the MSE loss with L2 penalty added
(in this example there is only a single weight),

1

n

n∑

i=1

(y(i) − ŷ(i))2 + λw2. (2.9)

From a statistical point of view, having Gaussian priors in a Bayesian NN
is equivalent to using a “normal” NN with L2 regularizers. Similarly, using
Laplacean priors in a Bayesian NN is equivalent to applying L1 regularizers
in a “normal” NN. To prove this for the Gaussian prior case. Assume that
we have the data set D. Furthermore, assume that the input and output
have the following relationship

y(i) = wx(i) + ε for i = 1, ..., n

ε ∼ N (0, σ2)
(2.10)

where we want to infer the parameter w. From a probabilistic perspective,
Equation (2.10) provides the Gaussian likelihood,

n∏

i=1

N (y(i)|wx(i), σ2). (2.11)

We can regularize the parameter w in Equation (2.11) by imposing a Gaus-
sian prior N (w|0, λ−1), where λ is a strictly positive scalar. As a result of
combining the prior and the likelihood, we get,

n∏

i=1

N (y(i)|wx(i), σ2)N (w|0, λ−1). (2.12)

If we take the natural logarithm of Equation (2.12), we get:

n∑

i=1

1

σ2
(y(i) − wx(i))2 − λw2 + constant. (2.13)

By looking at Equation (2.13), it should be quite clear why L2 penalty is
equivalent to applying Gaussian prior, since L2 penalty equals MSE +λw2.
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A similar approach can be used to demonstrate the relation between L1

regularization and Laplacean prior.

Data Augmentation tries to synthesize more training data without access to
the underlying data generation process pdata. This can be done, for exam-
ple, by duplicating the data and add noise to the duplicates so that we get
new “samples”. By having more data, it becomes harder to overfit [Shorten
and Khoshgoftaar, 2019].

Dropout is a regularization technique for a NN by Srivastava et al. [2014]. Dur-
ing training, each neuron in a network has some probability p to be turned
off (known as the dropout rate) following a Bernoulli distribution. It makes
it harder for neurons to collaborate and overfit the training data since there
is always a chance for them to be dropped. During testing, on the other
hand, none of the neurons will be turned off. However, the output of the
neurons will be scaled down by the dropout rate because none of the neu-
rons will be turned off, and so the values get bigger.

Ensemble training trains several copies of the same model with different datasets
and different initializations and combines their predictions [Opitz and Maclin,
1999; Freund and Schapire, 1996; Breiman, 1996]. Dropout can be seen as
a form of ensemble training since only a subnetwork is used for the forward
pass during training. However, using several networks and taking their av-
erage for prediction or maximum voting for classification is not common
because training several networks requires a lot of computational resources.
Combining several networks can make the prediction/classification better
if we can make several training sets that are not fully correlated.

We can show this by observing the variance of the mean. Assume that we
have n samples of the random variable x that are identically distributed,
each with mean µ and variance σ2, and that the variables have a positive
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correlation ρ, Cov(x(i), x(j)) = ρσ2, i 6= j. The average variance is:

Var(x̄) = Var(
1

n

n∑

i=1

x(i))

=

n∑

i=1

1

n2
Var(x(i)) + 2

n∑

i=2

i−1∑

j=1

1

n2
Cov(x(i), x(j))

=
1

n
σ2 + 2

n(n− 1)

2

1

n2
ρσ2

=
1

n
σ2 + ρσ2 − 1

n
ρσ2

= ρσ2 +
1− ρ
n

σ2

=
1− (1− n)ρ

n
σ2.

(2.14)

As we can see, as long as the correlation between the networks is not perfect, we
get reduced variance, and that is why ensemble learning can be used to combat
overfitting.

2.1.5 Techniques to improve neural network

This section outlines techniques that we have not examined yet to improve a NN.
The methods we show are mainly those used in this thesis. As such, this section
is not an exhaustive list of techniques to improve NNs.

Batch normalization

Batch normalization (often called batch norm) is a technique that normalizes the
output of a layer in a NN. Batch norm can be used for any layer in a NN, and
not limited to the input layer. Assume that we have a mini batch B of size m.
The empirical mean and variance of the batch is thus

µB =
1

m

m∑

i=1

x(i)

σ2
m =

1

m

∑
(x(i) − µB)2.

The normalized x(i) is

x̂(i) =
x(i) − µB√
σ2
m + ε

, (2.15)
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where ε is a small constant added for numerical stability. The output x̂(i) has
mean zero and unit variance. Notice that if x(i) is a vector, each dimension is
normalized separately.

Ioffe and Szegedy [2015] proposed this technique to reduce the covariate shift,
but it has many other benefits. The original authors define the covariate shift as
a shift in the distribution of network activations in each layer caused by a change
in the network parameters during training. This behavior is unwanted since each
successive layer need to adjust to a new distribution each time. The covariate
shift is especially true for deeper networks where the shift can be significant in
deep layers with minor changes in shallow layers. The training process is sped up
and more reliable by removing this unwanted behavior since the layers will not
receive activations of arbitrary distributions.

Batch norm uses the mean and variance of a mini-batch to normalize the output.
Thus, there will be noise added. This noise makes it harder for the network to
overfit the dataset and more robust to different weight initialization schemes and
learning rates. Thus, the networks using batch norm can have a higher learning
rate without exploding and vanishing gradients.

Active learning

Sssume that we have a dataset that is labeled. However, we also have more data
from the same distribution but unlabeled. For example, there are many tweets,
but the amount of tweets that have been labeled for sentiment is much less. If
we train a model and the performance of our model is not satisfactory, and we
have a lot of unlabeled data. One way to improve the model is to use AL.

AL is a framework to increase a model’s performance by intelligently getting
more training data. AL tries to do this by choosing which unlabeled data sample
to label instead of randomly labeling more data. AL tries to ask an “oracle” to
label samples that it thinks will have a significant impact on the training of the
model (Figure 2.8 illustrates this concept). AL is valuable and vital since get-
ting labeled samples is time-consuming, very difficult, and expensive, depending
on the task to be solved. Although human labor can be cheap relative to the
reward in some situations, it is not valid for all data types. Some types of data
might require experts. For example, annotating disease and gene mentions for
biomedical information extraction often requires PhD-level biologists.

In AL the process of selecting observations to label is called sampling. There have
been developed numerous sampling strategies for AL. We are not going to go into
details on different sampling strategies in this thesis. Nevertheless, Figure 2.9
displays why AL is useful and that the sampling strategy chosen matter.
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Figure 2.8: Pool-based active learning cycle.

Source: Settles [2012]

Figure 2.9: Learning curves for text classification: baseball vs. hockey. Curves
plot classification accuracy as a function of the number of documents queried
for two selection strategies: uncertainty sampling (AL) and random sampling
(passive learning). We can see that the AL approach is superior here because its
learning curve dominates random sampling.

Source: Settles [2012]
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2.2 Convolutional Neural Network

A CNN is a class of neural networks with unique layers called convolutional layers.
Convolutional layers consist of kernels that are tensors of weights. CNNs are
famous and high performing in the field of computer vision, and the considerable
success in this field can largely be attributed to CNNs [Krizhevsky et al., 2012].
However, CNNs are not limited to computer vision but can also be applied to, for
example, natural language processing (NLP) [dos Santos and Gatti, 2014]. The
reason CNNs are good at image processing is due to their ability to craft good
and useful features automatically. Before CNNs entered the stage, features were
handcrafted, both time-consuming, laborious, and subjective. Whereas CNNs
only need the computational resources to compute the features and find feature
extractors that no one would have thought of. The idea of using convolution
to detect features in, for example, images is not new. Nevertheless, coming
up with useful kernels is hard. The feature extraction process automated also
increases the number of feature extractors used since finding them is just training
a network.

2.2.1 Properties

The main difference between convolutional layers in CNN and dense layers in
FNN is the patterns they learn. Dense layers try to find global patterns in the
data, whereas convolutional layers try to find local patterns. Having layers that
learn local patterns gives CNN two interesting properties, translation invariance
and spatial hierarchy of patterns that we will briefly go over:

Translation invariance. When dense layers learn a pattern in the data, the
location matters since which neuron activates matters. Remember that
every input neuron is connected to every neuron in the layer after the input
layer with its weight in a dense layer. Thus different transformations are
applied at every location. Convolutional layers, on the other hand, apply
the same transformation at every location, which makes the neurons, not
location-sensitive [LeCun, 2012; Jaderberg et al., 2015; Gens and Domingos,
2014]. Thus, if we want to classify images of cats, it does not matter where
in the image the cats appear.

Spatial hierarchy of patterns. This property is fairly natural to us humans
since the visual world is spatially hierarchical. Figure 2.10 displays what
this property essentially means. We see that each layer of the network
extracts and combines the feature to a higher level of abstraction [Mahen-
dran and Vedaldi, 2016; Bengio et al., 2013; Zeiler and Fergus, 2013]. This
hierarchy of patterns also applies to NLP, where we have phonemes that
combine into morphemes, which in turn combines into words and continues.
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Figure 2.10: Spatial hierarchy of patterns. The network is fed an image of a cat
and extracts its features. The first convolutional layer tries to find local features,
and the layers coming after combines the features extracted into more and more
abstract features.

Source: Chollet [2018]

A NN having local connections reduces the number of parameters that need to
be learned during training. This implies it will be faster to train the network
and harder to overfit. As we have seen from Section 2.1.4, as the number of
learnable parameters (model complexity) decreases, so does the chance for over-
fitting.

2.2.2 Components

In this section, we will look at the different building blocks that make up a CNN.
Not all of the components are necessary, but they are commonly used in a CNN.
When we go over the different examples in this section, we will use 2-dimensional
tensors. However, the operations described in this section can be applied to
arbitrary-dimensional tensors. Note that when we refer to the tensors inputted
and outputted from the different layers in a CNN, we refer to them as feature
maps.
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Convolution

The two dimensional convolution operation (convolution is not limited to two
dimensional) in a CNN is defined as

O(l, j) = (I ∗K)(l, j) =

M∑

m=1

N∑

n=1

I(l +m, j + n)K(m,n), (2.16)

where we assume that the kernel is of size M × N . The final feature map O
is computed by sliding the kernel over L · J number of windows assuming that
the final feature map is of size L× J and use stride s = 1. The notion of stride
used in CNN deals with the distance the kernel is moved between two successive
windows. Using stride of, for example, s = 2 downsamples the feature map by a
factor of 2. Although stride can be used to downsample feature maps, it is most
common to use pooling (discussed in section 2.2.2) to downsample the feature
maps. If we do not want the output feature map to be downsampled, padding
can be used. Padding is adding the input feature map with a border of 0s to
increase its size. The width of the padding can be controlled, and it is common
to pad either input and output feature maps such they have the same size, or to
use no padding at all.

Before moving on, let us look at an example of how the convolution operation
works in practice. Figure 2.11 illustrates Equation (2.17):

O(l, j) = (I ∗K)(l, j) =

M∑

m=1

N∑

n=1

I(l +m, j + n)K(m,n)

O(1, 4) = (I ∗K)(1, 4) =

3∑

m=1

3∑

n=1

I(1 +m, 4 + n)K(m,n)

= 1 · 1 + 0 · 0 + 0 · 1 + 1 · 0 + 1 · 1 + 0 · 0 + 1 · 1 + 1 · 0 + 1 · 1
= 4.

(2.17)

The stride s = 1 in this example, after sliding the windows over I and doing
the same operation as shown in Equation (2.17) at every location. We get the
resulting feature map O of size 5 × 5. Notice that only a single kernel is used
for this example. Moreover, that the number of output feature maps equals
the number of kernels and is independent of the number of input feature maps.
In conclusion, the convolution layers are essentially a stack of kernels K with
trainable weights that are convolved over the input feature map(s) I.
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Figure 2.11: How the convolution operation works. Here we have a 7× 7 input I
and a single 3× 3 kernel K. O is the resulting output after applying the kernel
with stride s = 1.

Pooling

The pooling operation is similar to convolution because we slide a window over
a feature map. Instead of taking the convolution operation, pooling often takes
the max or average operation over the window. That means there is no kernel
applied to the window. Instead, we take the max or average operation over
all the values in the window. The output will be a single value (or a tensor,
depending on the dimensions) similar to the convolution operation. Figure 2.12
displays an example of how pooling, or more specifically, max-pooling, works on
a feature map. The pooling operation is essentially used to downsample feature
maps. Feature maps are downsampled to reduce the number of parameters,
making it harder to overfit. Besides, downsampling makes it possible for each
successive convolutional layer to get a broader view of the initial feature map.
The kernel covers a more significant proportion of the input feature map for each
layer. Hence, the successive layers can combine and build more abstract and
complicated features [Le and Borji, 2018; Luo et al., 2017].

As we already know, a larger stride can be used to downsample. However, pooling
has proven to be better, especially max-pooling [Scherer et al., 2010]. Feature
maps tend to encode the presence of a concept over the different tiles. If we
use max-pooling, the resulting feature map will look for the maximal presence
of concepts that the kernels extract. If average-pooling is used, then the average
presence is encoded, which has been proven to be less valuable than maximal
presence. We know that another alternative is to use a larger stride to downsam-
ple, but that approach produces sparse feature maps. Both sparse feature maps
and average-pooling can miss or weaken the information concerning feature pres-
ence. Therefore, it is most common to use max-pooling to downsample feature
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maps. On the other hand, using a larger stride for downsampling can also be
advantageous since the network can learn specific downsampling strategies that
can be handy in some situations. It has been shown, for example, in variational
autoencoders (VAEs) or generative adversarial networks (GANs) that getting rid
of the pooling layer is essential for training good generative models.

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 1 1 0 0

0 1 1 0 0 0

1 1 0 0 0 0

I

1 1 0

0 1 1

1 1 0

O

max(1, 0, 1, 1,)
= 1

Figure 2.12: How the max-pooling operation works. Here we have a 6× 6 input
feature map I and the output feature map 3 × 3 O. O is the resulting output
after applying the max-pooling operation over windows of size 2× 2 with stride
s = 2.

2.2.3 Tying the building blocks together

Now that we have looked at the different operations of a CNN, it is time to fit all
the components together. Since the convolutional layers utilize spatial hierarchy
of patterns, the convolutional layers are often stacked along with other types of
layers. Nevertheless, a CNN can contain dense layers as long as convolutional
layers are included. Figure 2.13 displays what a CNN architecture can look like
when the different building blocks are fit together. The typical setup is first to
use a convolutional layer, then an activation function is added, as in dense layers.
After the activation function comes the pooling layer that reduces the size of the
feature map. These three types of layers are often considered as one “unit” that
are stacked together, as shown in Section 2.2. The activation function serves the
same purpose in a CNN as it does for dense layers. After those “units” comes the
dense layer(s) which is/are not mandatory, but often improves the result. Since
the convolutional layers have extracted useful features, dense layers can be used
to extract global relationships without being affected by the locality of objects.
As always, the network ends with an output layer that has an activation function
and number of neurons depending on the task to be solved. Although we have
stated in which order the building blocks are usually used, other combinations
are also possible and can sometimes be even better.

As we progress down the layers in a CNN, it is common that the number of feature
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Input image
l = 0

Convolutional layer
with non-linearity

l = 1

Pooling layer
l = 2

Convolutional layer
with non-linearity

l = 3

Pooling layer
l = 4

Dense layer
with non-linearity

= 5
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Figure 2.13: The architecture of the original convolutional neural network, as in-
troduced by LeCun et al. [1989], alternates between convolutional layers, includ-
ing hyperbolic tangent activation function and pooling layers. In this illustration,
the convolutional layers already include non-linearities. The feature maps of the
final pooling layer are fed into the actual classifier consisting of an arbitrary num-
ber of fully connected layers. The output layer usually uses softmax activation
function if number of classes C > 2, else the sigmoid activation function is used.

maps increases and their size decrease. As the feature maps’ size decreases, each
map contains a larger portion of the input [Araujo et al., 2019; Luo et al., 2017].
In other words, more information is stored in each feature map. Moreover, as each
feature map contains a feature, the increasing number of feature maps implies
more features are constructed.

2.3 Explainable Artificial Intelligence

XAI is a collection of techniques and methods that aim to make ML models in-
terpretable for humans. Realizing the usefulness and need for interpretability,
the field of XAI is gaining much momentum. Researchers use the term XAI for
a broad range of methods that produce a wide range of different outputs. Thus,
the term interpretability is not concise in its meaning. This section opens with
an attempt to give the term interpretability a more concise meaning and motiva-
tion for why it is needed. We will look at the different aspects of interpretation
methods like properties and how they can be divided and evaluated. The sec-
tion ends with a closer look at some specific interpretation methods used in this
thesis.
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2.3.1 Definition

There is no widespread agreement as to what interpretability means in the con-
text of ML. Furthermore, terms like interpretability and explainability are often
used interchangeably in the literature. According to the Cambridge Dictionary,
interpret means “to decide what the intended meaning of something is”. The
Cambridge Dictionary definition is a general definition of the word interpret, not
anchored to a specific context. In this section, we will look at what interpretabil-
ity means in the context of ML.

Many research articles are trying to define the term interpretability. Doshi-Velez
and Kim [2017] define interpretability as “the ability to explain or to present in
understandable terms to a human”. However, they agree that a formal definition
of interpretability is still missing. Another definition by Murdoch et al. [2019]
says that interpretability or more specifically, interpretable ML as “the use of
ML models for the extraction of relevant knowledge about domain relationships
contained in data”. They define knowledge as relevant if it provides insight for a
specific audience into a chosen domain problem. Miller [2019] builds his definition
upon Biran and Cotton [2017]’s definition of interpretability that states “the
degree to which an observer can understand the cause of a decision”.

Lipton [2018] does not give a single definition of interpretability. According to
him, interpretability is not a monolithic concept but reflects several distinct ideas.
Hence a single closed definition of interpretability can not be given. There are also
other definitions of interpretability from other research fields, such as psychology
by Lombrozo [2006]. She states that “explanations are... the currency in which
we exchanged beliefs”.

As we can see, there is no unanimous agreement upon what interpretability is.
However, we still have a vague idea of what interpretability means. Like the
literature, we will also use the different terms of interpretability, such as explain-
ability, interchangeably throughout this thesis.

2.3.2 Motivation

There is a need for XAI since complex models are black-boxes (as displayed in
Figure 2.14) where we do not understand the model’s internal reasoning process.
Black-box in this context is a term used for models that do not reveal anything
about its internal reasoning process in a way that a human can understand.
Having an interpretable ML model in itself is essential to detect the failures,
thereby improving the model [Hoiem et al., 2012]. Currently, with black-box
models, the only insight the user gets is through evaluation metrics. The metrics
are helpful but do not provide the user with an explanation. In this section,



34 CHAPTER 2. BACKGROUND THEORY

Figure 2.14: Typically, when ML models are evaluated, only the output ŷ and
ground truth y are needed. However, to understand a black-box model, some
explainability method is needed to increase our understanding of the model.

Source: Lipton [2018]

we are going to look at the motivations for explanations for ML models. There
is a need for interpretable ML that comes from the demand of satisfying other
essential criteria of ML models. These criteria are fairness, privacy, robustness,
trust, and so on. In this section, we are going to take a closer look at these
criteria.

According to Doshi-Velez and Kim [2017] the need for interpretability comes
from incompleteness in the problem formalization. The incompleteness can be
thought of as goals we want the model to satisfy but is hard or impossible to
quantify in numbers. If we have explainable models, gaps that come from not
satisfying these goals and their effect become visible to us, making us aware of
the models’ flaws. Lipton [2018] says that the need for interpretability comes
from a mismatch between the real world cost in a deployment setting and the
cost from the formal objective of supervised learning (such as the MSE loss for
prediction). He implies that the metrics that can be produced automatically
do not fully reflect the goals we want the model to fulfill. Both these papers
imply that we want to optimize the ML models for an objective that can not be
quantified using metrics. We need interpretable ML models to ensure that we
can somehow fulfill those objectives to some extent, or at least be aware of what
is missing.

Some of the criteria we may want the ML model to fulfill through interpretability
are:

Scientific understanding. As we have said earlier, we create ML systems for
prediction/classification or gaining insights into the data. Interpretable
ML models can help us with that. By explaining a prediction, we humans
can gain knowledge by converting the explanation into knowledge. Even
if the classification/prediction is useful, it does not help us expand our
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understanding of the data, which is often desired.

Trust and safety. For most tasks, testing a system for all possible scenarios is
impossible. It would be impossible to list all cases where the system might
fail. Even if it is possible, the resources needed to verify all the outputs
would not be possible. Hence, interpretable systems are needed to gain
the trust of the system users. In order to gain trust, the model can, for
example, explain where it is making mistakes in the input space, instead of
only providing metrics that measure which observation was given correct
classification. Having good metrics certainly gives users confidence but can
not ensure how the model performs in a real-world scenario.

Fairness and ethics. If the data the model is trained on contains some unde-
sired biases, the model will likely learn those biases. However, we do not
know what kind of biases the model has learned, and we probably do not
want it deployed without knowing that. Even if we could encode against
biases, the notion of fairness is often too abstract to be fully encoded. As-
suming that we can list all biases before training is unreasonable.

Mismatched objectives. What we want the model to learn might not be pos-
sible to formalize as pairs of covariates and response. Instead, we train our
model to optimize for a proxy function that does not entirely cover our ob-
jective. If we have explanations, we can use those to help the model learn
our original objective. Alternatively, at least verify the trade-off that the
model has made after training.

Trade-offs between objectives. We might want to optimize the model for sev-
eral criteria that we have encoded into the model. However, seeing how the
model trades off the criteria globally or for each observation might be essen-
tial to know since it is impossible to satisfy them. By seeing the trade-off,
we can have better evaluations of the model, whether it satisfies our needs
or not, and is the trade-off acceptable to the user.

This list of criteria is not exhaustive. However, we have tried to condense our
findings in the literature to these criteria that we find essential.

2.3.3 Properties of interpretation methods

XAI methods can be characterized with certain properties [Robnik-Šikonja and
Bohanec, 2018; Murdoch et al., 2019]. The list of properties presented in the
literature is often massive, and differs between different research articles. This
section introduces those most common properties and summarizes them in a
concise manner.
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Accuracy. According to Murdoch et al. [2019], accuracy can be divided into
predictive and descriptive accuracy. Predictive accuracy is the accuracy
provided through the training of the model. If the predictive accuracy is
not high, it is reasonable to expect that the extracted explanations will not
be used. Also, the extracted relationships will not be very accurate. Notice
that when the word predictive accuracy is used, it is expected to reflect
the model’s overall performance. If the training and test data are skewed,
and the model performs badly, the predictive accuracy should reflect that
fact. Predictive accuracy should be a measure of accuracy that reflects the
model’s weaknesses.

The authors define descriptive accuracy as “the degree to which an in-
terpretation method objectively captures the relationships learned by ML
models”. We want the interpretation method we use to be faithful to the
relationship the model learns. However, that is often not the case. As some
very flexible models can learn highly non-linear functions, it is difficult to
extract and explain the learned relationship.

Ideally, we want both predictive and descriptive accuracy to be high, but it
is often not possible. As the flexibility of a model is increased, the predictive
accuracy should increase. However, it also becomes more challenging to
explain the learned relationship. This is related to the bias-variance trade-
off that we described in Section 2.1.4.

Relevancy. An interpretation is “relevant” if it provides insight for a particular
audience into a chosen domain problem [Murdoch et al., 2019]. The expla-
nation extracted does not necessarily need to be understood by the general
public. It depends on who is going to use the explanation. If the aim is
scientific understanding or improving the ML model, the explanation does
not need to be understood by everybody and can contain scientific terms.
On the other hand, if the model is used to evaluate if someone can get a
loan in a bank, the explanation must be easily understood by the general
public. In conclusion, the relevancy of an interpretation method should
match the user group of the model.

Stability. As we have talked about the trust of the ML models in Section 2.3.2,
there is also a need for trust in the explanation methods. This property
is highly related to the accuracy, but we are making it a separate point to
emphasize its importance. If an explanation changes significantly because
of small perturbations of a sample, it is probably not a good idea to trust
the explanation method. Hence, when an explanation method is evalu-
ated, stability is essential. However, it does not mean that the explanation
method is not useful because it can be stable in other parts of the input
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space. Thus it might not provide value in a certain area of the input space,
but can still be useful in other parts of the input space.

2.3.4 Taxonomy of interpretability

There is an agreement in the literature [Lipton, 2018; Murdoch et al., 2019;
Ribeiro et al., 2016a; Molnar, 2020] that there are two types of interpretability.
The first type is often known as model-specific interpretability, which assumes
that the model itself is interpretable without any further intervention. The other
type is known as post-hoc interpretability that assumes that interpretability can
be achieved by using methods and techniques to probe the model after training.
Since post-hoc methods are applied after training, they are often model agnostic,
meaning that they are not tailored to a specific model type.

Model-specific interpretability

Model-specific interpretability is about models that are readily interpretable. The
models often encode the relationship learned or learn in a way that is easy for
the user of the model to understand. The models are constructed in a specific
way that increases the descriptive accuracy. However, the increase in descriptive
accuracy often comes with a cost in terms of predictive accuracy due to model
flexibility. We are now going to take a look at different ways model-specific
interpretability is achieved. Note that this division is not exclusive, and a lot of
the ML models employ several of these methods.

Modularity: One way to obtain interpretable models is to use models that
can be decomposed. That is, the prediction process can be divided and
studied separately. This form of interpretability assumes that every module
admits an intuitive explanation. One way, for example, is to look at the
features separately in a generalized additive model [Hastie and Tibshirani,
1990], or have conditional independence in a probabilistic model that can
be studied separately [Pearl, 1985; Koller and Friedman, 2009]. In DL, the
attention mechanism [Kim and Canny, 2017] provides insight into a NN’s
inner working. This notion of interpretability assumes that independent
structures exist in the model and the data. In this type of interpretability,
the practitioner should be careful not to overinterpret independence that
not necessarily exist.

Simulatability: This form of model-specific interpretability assumes that a hu-
man (the group of people the explanation is intended for) can understand
the whole prediction process without looking at the modules separately.
While the term simulatability might be ambiguous, we know that the hu-
man cognition limits the coverage of the term as it is intended for a human
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to do the simulation. This type of interpretability places a considerable con-
straint on model flexibility to achieve interpretability since contemplating
an entire model at once is not an easy feat. This type of interpretability is
only possible with data that has few features, and the underlying relation-
ship is simple. List of rules [Letham et al., 2015; Friedman and Popescu,
2008] and decision trees [Breiman et al., 1984] are often cited as simulat-
able methods [Murdoch et al., 2019] due to hierarchical decision-making
and simplicity. However, this is only true for a list with a small number of
rules and decision trees with limited depth.

Sparsity: This form of interpretability assumes that the model is interpretable
because it is sparse, achieved by limiting the number of non-zero param-
eters. This type of interpretability assumes that a sparse set of features
can summarize the underlying relationship, hopefully without a consider-
able drop in predictive performance. The sparse set of features should be
intuitive and represent concepts that can easily be related to the model’s
output.

Sparsity is often achieved by penalizing the loss function for the coefficient’s
magnitude, such as Least absolute shrinkage and selection operator [Tibshi-
rani, 1996] and sparse encoding [Olshausen and Field, 1997]. There are also
feature selection methods like Akaike information criterion [Akaike, 1974]
and Bayesian information criterion [Schwarz, 1978] that select a sparse set
of features in order for the model to generalize, which in turn increases the
interpretability. These methods rely on that a sparse set of feature can
model the problem without a significant drop on predictive accuracy.

Feature engineering: Another way to achieve model-specific interpretability is
to engineer a small set of intuitive features that covers the original features
“well enough”. Another way to achieve model-specific interpretability is to
engineer a small set of intuitive features that covers the original features
“well enough”. This can be done by domain experts or using dimension
reduction techniques like principal components analysis [Wold et al., 1987].
That said, all these methods still assume that the ML model can describe
the relationship between the features and response, and achieve good pre-
dictive accuracy. Otherwise, having interpretable features would not help
much in understanding the model.

Although there are several ways to classify model-specific interpretability as we
have seen. They all place some constraints that most likely will decrease the
predictive accuracy. Some problems might need very flexible models that this
kind of interpretability can be hard to achieve. Thus there has been much research
on post-hoc interpretability that we are going to look at now.
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Post-hoc interpretability

Post-hoc interpretability is another way to obtain explanations from ML models.
These methods do not place constraints on the ML models. As a result of that,
the predictive accuracy is fixed. However, the explanations produced pay the
price in the form of not giving an exact reflection of the model’s inner working
[Adebayo et al., 2020] (the degree varies). Nevertheless, they are still useful,
especially in situations where the data is highly non-linear and requires models
with high model complexity. The explanations the post-hoc methods provide
often fall into one of two categories, namely global and local explanations. A
local explanation tries to explain a single prediction without considering other
observations in the data except for neighboring observations. While on the other
hand, a global explanation tries to explain the underlying relationships in the data
that should be valid for a large population. As this division exists in post-hoc
interpretability, we will look at different types of post-hoc explanation methods
from these two perspectives.

Global interpretation: These methods provide explanations and relationships
in the data that holds for a large population, but it can also be adapted to
a subpopulation.

Feature importance and interaction: These types of methods try to
extract the importance or how much contribution each feature pro-
vide in the prediction of the different classes. However, this is a hard
task, because there is nearly always interactions between features, and
looking at individual features can be misleading. These types of meth-
ods can be designed to be applicable to all types of models [Altmann
et al., 2010]. In some cases like Random Forest [Breiman, 2001], this
kind of measure can be directly accessed without any additional tools.
In addition to feature importance, there are methods to extract feature
interactions [Tsang et al., 2018; Kumbier et al., 2018].

Statistical feature importance: If we can make assumptions about the
underlying data generation process that is reasonable, we can con-
struct a confidence interval and do hypothesis testing. This can help
us determine which features are statistically significant, and is consid-
ered a form of global interpretation.

Visualization: These methods try to visualize the inner workings of a
model and are mostly applied to NNs. For a CNN, for example, re-
searchers have tried to visualize the feature maps [Zeiler and Fergus,
2013; Olah et al., 2017], to figure out what the model has learned.
For recurrent networks, researchers have tried to visualize the state
vectors [Karpathy et al., 2015] to understand the model.
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Local interpretation: While global interpretation tries to find contributions
and relationships that hold for a large population, local interpretation fo-
cuses on a single prediction and neighboring observations. This type of
interpretation is useful when the practitioner is interested in individual ob-
servations and not essential relationships in a population.

Feature importance: Like in the global setting, our goal is to find an im-
portance score for each feature. However, in this case, the importance
score only needs to be valid locally. An example of this kind of method
is the local interpretable model-agnostic explanations [Ribeiro et al.,
2016b] that provides an explanation that holds for the given sample,
and observations that are close to the given sample. It estimates fea-
ture importance by fitting a linear model in a limited space in the
input space where the given sample is located.

Example based explanation: This approach justifies a prediction by pro-
viding observations that the model thinks are similar and are given the
same prediction [Caruana et al., 1999]. The similarity can be measured
by comparing the observation features using a distance measure like
euclidean distance. Another approach is, for example, to use the hid-
den layer activation of a NN when the samples are fed to the network
to measure the similarity of observations.

2.3.5 Evaluation of interpretability

Evaluating interpretability methods is hard and not clear [Murdoch et al., 2019;
Doshi-Velez and Kim, 2017]. Researchers have cherry-picked samples from their
experiments to support their claims, but it has been proven that, for example,
visual assessments of the attention maps can be misleading [Adebayo et al., 2020].
The community has not yet settled on standard evaluation protocols. However,
there are some promising works [Lipton, 2018; Gilpin et al., 2019; Doshi-Velez and
Kim, 2017] ongoing. There is still a need for evaluation methods for descriptive
accuracy and relevancy since claims need to be evaluated, and the evaluation
should match the claimed contribution. Doshi-Velez and Kim [2017] propose a
taxonomy for the evaluation of interpretability that is divided into three segments,
application-grounded, human-grounded, and functionally-grounded evaluation.

Application-grounded Evaluation evaluates the interpretability of a system
by conducting experiments within a real application with domain experts.
It requires that the system is grounded in a real application with a specific
user group in mind. However, using domain experts increases the cost in
terms of time and resources, which is not always feasible. In addition, the
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Figure 2.15: Taxonomy of evaluation approaches for interpretability

Source: adapted from Doshi-Velez and Kim [2017]

application-grounded evaluation is not an easy evaluation metric [Antunes
et al., 2008]. However, the system is tested on a real scenario with real
users, which provides strong evidence of its usefulness.

Human-grounded Evaluation is like an application-grounded evaluation in
the sense it uses human subjects. However, trained experts can be expensive
and not always possible, thus using not trained people is an alternative.
These subjects will provide less accurate evaluation, nevertheless still useful
since we still get to test a general notion of interpretability. Having cheaper
labor enables us to have a more substantial amount of subjects, thus getting
more feedback. The tasks used in this kind of evaluation is often simplified
to accommodate that the test subjects are not experts in the application
domain. This type of evaluation can be evaluated using multiple-choice
questions instead of open-ended questions that will be easier for the subjects
to answer.

Functionally-grounded Evaluation does evaluation without human subjects
using proxy tasks. We might want to test the system before it is done and
mature enough to see the progress. Thus this type of evaluation provides
a cheap way to assess the progress. Choosing a proxy task is no easy
feat, but after it has been chosen, the evaluation mainly equates to an
optimization problem. This type of evaluation is not as accurate as the
application-grounded, nevertheless, it still provides value, and can be done
automatically.

The evaluation of interpretability remains an open problem. However, knowing
this is still important when we want to demonstrate new methods. This provides
us with a more rigid framework for evaluating new interpretability methods and
support our claims.
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2.4 Explanation methods

In the sections to come, we are going to look at explanation methods that are
used in this thesis. Most of the examples used to present these methods are
images. However, these methods can be applied to other types of data. All of
these methods provide local explanations and are tailored specifically towards
NNs.

Before we continue, we will give a general description of how the methods work
and how they are classified. These methods produce an explanation by high-
lighting “important” features on an input observation. More specifically, assume
that we have a NN that takes in the input x = (x1, ..., xn) ∈ Rn and produces
the output y = (y1, ..., yc) where c is the number of output neurons. Given a
specific target neuron yj , the goal of an attention method is to determine the

contribution rj = (rj1, ..., r
j
n) ∈ Rn of each input feature xi to the output yj . r

j

is what we are going to call the attention map in this thesis, which has the same
size as the input x. For classification, we usually want to find the contribution
of the inputs to a neuron associated with a class of interest.

If we were to classify the methods that fall under this description according to
the taxonomy given in Section 2.3.4, these would be post-hoc interpretability.
However, since they use the gradients of the models, they are not strictly model-
agnostic. The explanations are valid only for single samples, the interpretability
methods are considered local interpretations.

There is two main ways to obtain rj using methods that are specific to a NN,
perturbation-based [Zeiler and Fergus, 2014; Zintgraf et al., 2017; Zhou and Troy-
anskaya, 2015] or backpropagation-based [Bach et al., 2015; Simonyan et al., 2014;
Springenberg et al., 2015; Shrikumar et al., 2019; Zeiler and Fergus, 2014; Sun-
dararajan et al., 2017; Shrikumar et al., 2017].

Perturbation-based methods make changes to input in order to measure feature
importance. They do it by systematically making changes to the input, do a
forward pass for each modification, and measure the difference in the output
for each change. These methods can estimate the importance of the area that
has been masked, removed, or altered. The downsides of these methods are the
computational resources needed for the forward passes for each modification, and
the feature “importance” measured is very sensitive to how big the occluded area
is [Ancona et al., 2019].

On the other hand, the backpropagation-based methods are much more efficient
since only one pass is needed. The importance signal is backpropagated from the
neuron of interest to the input space. It is similar to the gradient calculation
during training. However, this calculation is applied after training to interpret
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the model, not updating its parameters. Also, it is called backpropagation based
methods since not every method in this category uses the gradient to obtain fea-
ture importance. Nevertheless, they all work in a backpropagation fashion.

2.4.1 Gradient-weighted Class Activation Mapping

Grad-CAM [Selvaraju et al., 2020a] is a method used to interpret CNNs that
builds upon class activation mapping (CAM) method by Zhou et al. [2015a].
CAM is used to identify discriminative regions in an image for explaining the
classification for a limited number of CNN architectures. In essence, CAM trades-
off predictive accuracy for descriptive accuracy. Grad-CAM, on the other hand,
generalizes CAM so it can by applied to any CNN architecture without any
modifications to the model or requiring retraining. Thus avoiding the trade-off
between the predictive and descriptive accuracy.

Grad-CAM assumes that deeper representations in a CNN capture higher-level
visual concepts. Furthermore, it assumes that the feature maps retain spatial
information. Both of these properties are important for Grad-CAM to obtain
good results, and are discussed in Section 2.2.1. Grad-CAM is mainly used in
the last convolution layer since it assumes that this layer trades-off best when
it comes to high-level semantic and spatial information [Selvaraju et al., 2020a].
It uses the gradient in the last convolutional layer to explain a CNN’s decision
making. Grad-CAM explains the decision making by producing an attention map
that the authors call a class-discriminative localization map LcGrad-CAM ∈ RU×V
of width U and height V for any class c. An example of a class-discriminative
localization map can be seen in Figure 2.16b.

Since the final attention map is a 2-dimensional matrix, and the last convolu-
tional layer nearly always consists of more than 1 feature map, the feature maps
must first be combined. Grad-CAM combines the feature maps by doing a linear
combination of the feature maps. Therefore, the first step is to find the impor-
tance of each feature map k, denoted Ak, for class c. It starts by computing
the gradient of the score for class c, yc (before softmax), with respect to the
feature map activation Ak of a convolutional layer. That is, we want to find the
gradients ∂yc

∂Ak
i,j

for all i, j. The reason we do not want to involve the softmax

function is due to that softmax normalizes with respect to all classes. The result
is that the gradient of the probability after softmax contains not only the class
of interest but also the other classes. However, we only want to know how the
model reasons for a specific class. ∂yc

∂Ak
i,j

are global-averaged-pooled (works best

based on the empirical findings [Selvaraju et al., 2020a]) over all the gradients to
find αck, the importance of feature map k for class c. If we assume that the shape
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of the feature maps is U × V with a size Z, the importance αck is:

αck =
1

Z

U∑

i

V∑

j

∂yc
∂Ak

i,j

.

The localization map for class c is obtained by taking ReLU of the weighted sum
of the N feature maps:

LcGrad-CAM = ReLU(

K∑

k

αckA
k).

The shape of the localization map is the same as the shape of each feature map.
The application of ReLU is not necessary, but this is how the original paper
presents Grad-CAM. ReLU is used since the authors wanted only the area that
positively influenced the classification of class c. In other words, the area that
should be increased to increase the class score yc. The authors hypothesized that
the negative contributions belong to other classes, and by excluding them, we are
only focusing on a single class. Note that the yc does not need to be the class
score of class c, it can be any differentiable activation.

(a) Image of a “boxer dog”
and a “tiger cat”

(b) Grad-CAM localization
map of “tiger cat”

(c) Guided Grad-CAM lo-
calization map of “tiger
cat”

Figure 2.16: Results of Grad-CAM and Guided Grad-CAM

Source: Selvaraju et al. [2020a]

The main advantage of Grad-CAM is that its explanations are based on concepts
that are easier to reason with. On the other hand, the size of the localization
map can be too coarse based on the CNN architecture and the input size. In
order to fix the size of the localization map issue, the authors proposed Guided



2.4. EXPLANATION METHODS 45

Grad-CAM. It is called Guided since originally in the paper, they used the back-
propagation method called Guided Backpropagation [Springenberg et al., 2015].
Guided Backpropagation is a gradient-based method that combines the work
of Simonyan et al. [2014] and Zeiler and Fergus [2014] together. Guided Grad-
CAM is obtained by taking the attention map of any pixel-based backpropagation
method (in the paper, they used Guided Backpropagation) and elementwise mul-
tiply it with an upsampled version of the localization map (the authors used
bilinear interpolation). According to the authors, by doing this, they obtain an
explanation that is both high-resolution and class-discriminative, such as the one
seen in Figure 2.16c. In Figure 2.16b, we get an explanation that points at the cat
(class-discriminative). On the other hand, Figure 2.16c points at the cat (class-
discriminative) and justifies the decision by highlighting the stripes, pointy eyes,
and ears of the cat (high-resolution).

2.4.2 Using explanations to improve the model

We have so far look at some methods to explain a NN by pointing out important
input features that contribute to and highly affect the prediction of individual
samples. In this section, we will look at some previous works that use the expla-
nations to improve the model generalization and performance. There has been
much work on the extraction of explanations from models. However, the amount
of research on using the extracted explanation to improve the model has not been
much. The number of research articles published on this topic is only a handful
[Rieger et al., 2020; Mitsuhara et al., 2019; Burns et al., 2019; Wu et al., 2017;
Ross et al., 2017; Erion et al., 2020] to the best of our knowledge.

Drucker and Cun [1992] showed that penalizing the input gradient can improve
the model’s generalization abilities. Their motivation for doing this is that small
perturbations in the input space should not change the output components. By
regularizing the input gradient, they make sure that small changes in the input
will not significantly affect the output. Thus, making the network weights smaller
and keeping the neurons’ output longer in the linear region. Ross et al. [2017]
suggest penalizing the input gradient to correct wrong explanations (adding do-
main knowledge). By correcting explanations, it will make the model generalize
and perform better. Ross et al. [2017] do this by adding a penalty to the loss
function that penalizes the input gradient at certain regions that the user specifies
as unimportant or wrong explanation.

Let us now go into details of how Ross et al. [2017] does it. Assume that we
have a binary matrix A ∈ {0, 1}N×D where 1 indicates that the feature d is
irrelevant for the prediction. Further, assume that we have our data X and the
classification Ŷ that is obtained by forward passing X. The goal is to minimize
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∂Xd

Ŷ
for ds that is irrelevant for the classification. Assume that we uses the CE

loss function with N samples and C classes, thus by adding this new term, the
loss function becomes:

L(Y , Ŷ ) =− 1

N

N∑

i=1

1

C

C∑

c=1

Y (i)
c log Ŷ (i)

c

︸ ︷︷ ︸
Right answer

+ λ1

∑

j

θ2
j

︸ ︷︷ ︸
Regularization

+ λ2
1

N

N∑

i=1

1

D

D∑

d=1

(A
(i)
d

∂

∂X
(i)
d

C∑

c=1

log Ŷ (i)
c )2

︸ ︷︷ ︸
Right reasons

.

What the “right reasons” term does is to discourage large input gradient in regions
marked by A. Also, the authors use the gradient of log probability because it
works best based on empirical findings. In the original paper, the input gradient’s
suppression is over all classes as they assume that a feature d is irrelevant for all
of the classes. However, the input gradient can be suppressed separately for
different classes, giving a finer feedback matrix. The main problem, as we see it,
is to specify the annotation matrix A beforehand. Also, it works on a pixel-level
that can make the feedback process harder for the domain expert since annotating
too many or too few pixels can, in the worst case, have a big impact.

In the same paper, the authors propose a method to automatically finding mul-
tiple plausible annotation matrices without human intervention, since it is not
always possible, and the “right reason” might not be known beforehand. Let us il-
lustrate the algorithm to get a better idea of how it works. By using Algorithm 2,

Algorithm 2 Find another explanation

1. Set the annotation matrix A(0) = 0.
2. For i in (0 to as long as the performance does not drop significantly and

the annotation matrices change):
(a) Train a model Mi using the annotation matrix A(i)

(b) If the model performance is not impacted significantly negatively keep
A(i) as one explanation (except for i = 0).

(c) SetA(i+1) = 1 where the input gradient I ∈ RN×D ofMi is I
maxd I

> c
for some constant c.

3. Return A(1), ... as possible annotation matrices.

a domain expert can obtain annotation matrices it can choose from instead of
trying to figure out by itself. All of the resulting models using the annotation
matrices are accurate, but based on different reasons. The number of annotation
matrices produced provides a measure of redundancy in the dataset.
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Other related works are, one by Erion et al. [2020] that suggest enforcing priors
(not as in Bayesian statistics) over the explanation in the model to make the
model behave more intuitively. They propose three different priors, 1) on image
data, encourage the model to produce piece-wise smooth attention maps, that its,
neighboring pixels should have similar attributions, 2) on gene expression data,
encourage the model to treat functionally related genes similarly, and 3) on health
care data, encourage the model to produce sparse attribution maps. They mainly
add a term to the loss functions that measure how well the model enforces the
prior selected (assuming that there is a differentiable function that can measure
this prior). They call their method for attribution priors and suggest this as a way
to encode meaningful domain knowledge. Another is by Mitsuhara et al. [2019]
that suggest having domain experts to edit attention maps extracted from the
model that they think is wrong. After obtaining human-edited attention maps,
they fine-tune the model to minimize the difference between the edited attention
maps and the one extracted from the model. This is done by adding a penalty to
the loss function that measures the difference between the attention maps. The
biggest issue, as we see it is asking an expert giving the correct explanation from
scratch. Doing that is difficult and limits the network’s possibility of finding new
interesting explanations that the experts might not have thought about.

2.5 Bayesian inference

Consider a probabilistic model P (D|w), the prior distribution P (w) that encodes
the prior knowledge about the parameter w and the evidence

D = {(X(i),y(i))}ni=1 (2.18)

with n i.i.d. samples. We want to compute the posterior distribution

P (w|D) =
P (D|w)P (w)

P (D)
(2.19)

using Bayes rule. P (D) =
∫
P (D,θ)dθ is the marginal likelihood. To solve it,

we need to marginalize over θ which is typically intractable. This can be solved
analytically, but only for simple models. For example, a model with discrete
parameters θ where the integral becomes a sum, the integral is simple enough, or
when we have distributions from the exponential family. Even in some situations,
when the integral is analytically solvable, the computational cost might be too
high.

The posterior can be approximated several ways. One way is to frame the problem
of finding the posterior as an optimization problem. To do this, we need to find
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Figure 2.17: Minimizing the dissimilarity between q(θ;λ) and P (θ|D) using some
measure D.

a variational distribution q(θ;λ) parameterized by λ that is an approximation
of the true posterior distribution P (θ|D) ≈ q(θ;λ). q(θ;λ) is selected to belong
to a family of distributions of simpler form than the true posterior that makes
the calculations tractable, and is as close to the true posterior as possible. The
optimal λ is found by minimizing the dissimilarity between P (θ|D) and q(θ;λ)
with respect to some dissimilarity measure D(q‖P ). This minimization process
is illustrated in Figure 2.17.

2.5.1 Kullback–Leibler divergence

The most common measure of dissimilarity between distributions for variational
Bayes is the Kullback–Leibler (KL) divergence [Kullback and Leibler, 1951]. KL
divergence is a measure that makes the minimization tractable. KL-divergence
is defined as

DKL(P1‖P2) =

∫

θ

P1(θ) log
P1(θ)

P2(θ)
dθ, (2.20)

that measures the dissimilarity between the distributions P1(·) and P2(·), and
has the following properties

• DKL(P1‖P2) ≥ 0.

• DKL(P1‖P2) = 0 ⇐⇒ ∀θP1(θ) = P2(θ).
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• KL divergence is not symmetric: DKL(P1‖P2) 6= DKL(P1‖P2).

• KL divergence does not satisfy the triangle inequalityDKL(P1, P2) 6 DKL(P1‖P3)+
DKL(P3‖P2). For example, assume Ω = {0, 1}, P1(0) = 1

2 , P3(0) =
1
4 , P2(0) = 1

10 . We get that DKL(P1‖P2) 6 DKL(P1‖P3)+DKL(P3‖P2) =⇒
0.51 6 0.24 which is not true.

We can see that for P1(x) = 0, we have P1(x) log P1(x)
P2(x) = 0, but for

lim
P2(x)→0

P1(x) log
P1(x)

P2(x)
→∞, if P1(x) > 0.

This implies that the support of P1(·) has to be within the support of P2(·), if
not the divergence goes to ∞. In other less precise words, when choosing the
approximate distribution P1(·), we want P1(·) to be (proportionally) small when
P2(·) is small. This also implies that P1(·) minimizing the divergence to P2(·)
will in general have smaller variance.

2.5.2 Exponential family

The exponential family is a parametric set of probability density functions and
mass functions that can be expressed as

f(x|θ) = h(x)c(θ)e
∑k

i=1 wi(θ)ti(x), (2.21)

where h(x) ≥ 0, t1(x), ..., tk(x) are real-valued functions of the observation x
(which cannot depend on x), c(θ) ≥ 0 and w1(θ), ..., wk(θ) are real-valued func-
tions of parameter θ (which cannot depend on x).

The advantage of the exponential family is that it makes algebraic manipulation
easier and identical for many distributions. Some continuous distributions that
are part of the family are Normal, Gamma, and Beta. For discrete distributions,
we have Binomial, Poisson, and Negative binomial.

Another important property with the exponential family representation is the
conjugate distributions. If when the prior P (θ) is multiplied by the likelihood
P (x|θ) and divided by the evidence P (D), the resulting posterior distribution
P (θ|D) is in the same family of distributions as the prior, then we have a con-
jugate prior. In general, if the posterior distribution and prior are in the same
probability distribution family, they are called conjugate distributions, and the
prior is called a conjugate prior for the likelihood.
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2.5.3 Variational approximation

Now that we have some background, we can continue with the derivation of find-
ing λ so that the divergence between the variational distribution q(θ;λ) and the
true posterior P (θ|D) is minimized minλDKL(q(θ;λ)‖P (θ|D)). First, we need
to specify a family of densities over the latent variables such that q(θ;λ) ∈ Q,
where each q(θ;λ) is a candidate approximation to the exact conditional. It is
important to notice that the order of distribution measured is important because
KL divergence is not symmetric. Distribution q(θ;λ) is chosen as the first ar-
gument, since integration over q(θ;λ) is tractable (we choose the distribution).
If the unknown posterior P (θ|D) was chosen as the first argument. The deriva-
tion would be harder because it involves point-wise evaluation of P (θ|D). This
formulation gives us the objective

LKL(λ) =

∫
q(θ;λ) log

q(θ;λ)

P (θ|D)
dθ, (2.22)

that can not be computed directly, since it depends on logP (θ|D). The Equa-
tion (2.22) can be re-written as

LKL(λ) =

∫
q(θ;λ) log

q(θ;λ)P (D)

P (θ|D)P (D)
dθ

=

∫
q(θ;λ) log

q(θ;λ)P (D)

p(θ,D)
dθ,

(2.23)

that is still hard to compute, yet easier than the original formulation since we no
longer have to deal with the posterior distribution. Equation (2.22) can further
be written as

LKL(λ) =

∫
q(θ;λ) log

q(θ;λ)

P (θ,D)
dθ + logP (D)

= DKL(q(θ;λ)‖P (θ,D)) + logP (D)

= Eq(θ;λ)[q(θ;λ)]− Eq(θ;λ)[logP (θ,D)] + logP (D)

= H(q(θ;λ))− Eq(θ;λ)[logP (θ,D)] + logP (D).

(2.24)

The first term is called negative expected log-density, while the second is the
negative entropy of the approximation. Even though we no longer have to deal
with the posterior distribution, we still have evidence logP (D), which is hard to
compute and is the reason why we appeal to approximate inference in the first
place.
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We, therefore, need to rewrite the objective, and it can be done as follows

logP (D) = LKL(λ)−DKL(q(θ;λ)‖P (θ,D))

= LKL(λ)−
∫
q(θ;λ) log

q(θ;λ)

P (θ,D)
dθ

= LKL(λ)−
∫
q(θ;λ) log

q(θ;λ)

P (D|θ)P (θ)
dθ

= LKL(λ)−
∫
q(θ;λ) log

q(θ;λ)

P (θ)
dθ +

∫
q(θ;λ) logP (D|θ)dθ

log p(D) = Eq(θ;λ)[logP (D|θ)]−DKL(q(θ;λ)‖p(θ)) + LKL(λ).

(2.25)

Now, the left side of Equation (2.25) consist of evidence logP (D) which is a
constant, and LKL(λ) which is always positive. We can see that maximizing
Eq(θ;λ)[logP (D|θ)]−DKL(q(θ;λ)‖P (θ)) is the same as minimizing LKL(λ). We
therefore get a new objective that is (to be maximized)

LELBO(λ) = Eq(θ;λ)[logP (D|θ)]−DKL(q(θ;λ)‖P (θ)). (2.26)

The first term in Equation (2.26) is the expected log-likelihood, and the second
term is the divergence between the approximation and the prior. We see that the
first term encourages q(θ;λ) to place its mass on θ that explains the observed
data. While the second term q(θ;λ) wants to place mass on densities close to
the prior. Hence, the objective trades between likelihood and prior. The data
amount weights the trade-off. Thus, having more data places more mass on the
likelihood term. We can see that logP (D) ≥ LELBO(λ) for any q(θ;λ), because
DKL(q(θ;λ)‖P (θ)) ≥ 0 shown by Kullback and Leibler [1951].

The new objective is called evidence lower bound (ELBO) and contains only
expectations of known parts of the model over the approximation. However to
be able to compute the expectations, we need to assume that q(θ;λ) is simple
enough. This new objective tries to balance a trade-off between satisfying the
simplicity of the prior P (θ), and the complexity of the data D as mentioned.
Hence, the maximizing variational distribution is

q∗(θ;λ) = arg max
q∗∈Q

LELBO. (2.27)

2.5.4 Mean-field approximation

In the section above, we mentioned that we need to assume that q(θ;λ) is simple
enough. One way is to assume that q(θ;λ) can be factorized into a product
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of lower-dimensional terms, which is called the mean-field approximation. The
approximated posterior can then be written as

q(θ;λ) =

N∏

i=1

q(θi;λi), (2.28)

where we assume that the dimension is N and that each λi can be a vector.

Assuming mean-field approximation the first term Eq(θ;λ)[logP (D|θ)] in Equa-
tion (2.26) can be expressed as

Eq(θ;λ)[logP (D|θ)] =

∫
q(θ;λ)P (D|θ)dθ

=

∫ N∏

i=1

q(θi;λi) logP (D|θi)dθ

=

∫
...

∫ N∏

i=1

q(θi;λi) logP (D|θi)dθ1 .... dθN

=

∫
q(θn;λn)Eq−n

[logP (D|θ)]dθn.

While the second term DKL(q(θ;λ)‖P (θ)) can written as

DKL(q(θ;λ)‖P (θ)) =

∫
q(θ;λ) log

q(θ;λ)

P (θ)
dθ

=

∫ N∏

i=1

q(θi;λi) log
q(θi;λi)

P (θi)
dθ

=

∫
...

∫ N∏

i=1

q(θi;λi) log
q(θi;λi)

P (θi)
dθ1 .... dθN

=

∫
q(θn;λn)Eq−n

[log
q(θ;λ)

P (θ)
]dθn.
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Knowing this, we can then rewrite the equation Equation (2.26) as

LELBO(λ) =

∫
q(θn;λn)Eq−n [logP (D|θ)]dθn −

∫
q(θn;λn)Eq−n [log

q(θ;λ)

P (θ)
]dθn

=

∫
q(θn;λn)Eq−n

[log
P (θ,D)

q(θ;λ)
]dθn

=

∫
q(θn;λn)Eq−n

[logP (θ,D)]dθn −
∫
q(θn;λn)Eq−n

[log q(θ;λ)]dθn

=

∫
q(θn;λn)Eq−n

[logP (θ,D)]dθn −
∫
q(θn;λn) log q(θn;λn)dθn

− Eq−n
[log q(θ−n;λ−n)]

(2.29)

Lagrange multipliers

Lagrange Multipliers is used to solve constrained extreme-value problem
where the variables of the function to be optimized must satisfy one or more
constraint equations or inequalities. A technique for optimizing a function
f(x, y) subject to the equality constraint g(x, y) = 0 is based on the following
theorem from Adams and Essex [2013]:

Theorem 2.2.1 (The Methods of Lagrange Multipliers). Suppose the f and
g have continuous first partial derivatives near the point P0 = (x0, y0) on the
curve C with equation g(x, y) = 0. Suppose also that, when restricted to points
on C, the function f(x, y) has a local maximum or minimum value at P0.
Finally, suppose that

• P0 is not an endpoint of C, and

• ∇g(P0) 6= 0.

Then there exists a number Λ0 such that (x0, y0,Λ0) is a critical point of the
Lagrange function.

L(x, y,Λ) = f(x, y) + Λg(x, y)

The theorem doesn’t guarantee that a solution exists, but if it does exist,
solving the Lagrange function ∇L(x, y,Λ) = f(x, y) + Λg(x, y) = 0 will give
us maximum or minimum of f(x, y) constrained to g(x, y) = 0. The intuition is
based on that f(x, y) will be minimized or maximized when it is perpendicular
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to the constraint g(x, y) = 0, which implies that the ∇g(x, y) is proportional
to ∇f(x, y) at that moment when they are perpendicular.

2.5.5 Coordinate ascent

Coordinate ascent is a optimization algorithm used to solve extreme-value prob-
lem for a multivariable function f(x) where x ∈ RN . The idea is that the
multivariable function can be minimized by minimizing it along one direction
xi at a time, keeping all of the other variables x−i fixed. This is done for all
dimensions, N . Solving univariable optimization problems in a loop is easier, but
it only converges to a local optimum for non-convex objectives.

Having Equation (2.29), we can use Lagrange multipliers and coordinate ascent
to optimize Equation (2.29) for each q(θn;λn) separately. We need Lagrange
multipliers because q(θn;λn) is a probability distribution, hence

∫
q(θn;λn)dθn =

1 must be satisfied. Setting the constraint
∫
q(θn;λn)dθn = 1, the Lagrangian of

the optimization problem for a term n becomes

LELBO(n) =

∫
q(θn;λn)Eq−n

[logP (θ,D)]dθn −
∫
q(θn;λn) log q(θn;λn)dθn

+ Λ(

∫
q(θn;λn)dθn − 1).

(2.30)

Equation (2.30) can be optimized by solving ∇q(θn;λn),ΛLELBO(n) = 0. By doing
that, we get

q(θn;λn) ∝ eEq−n
[logP (θ,D)]. (2.31)

Having everything that underlies coordinate ascent variational inference (CAVI).
We can now outline the CAVI algorithm where we iterate through the variational
factors q(θn;λn), and updating them using equation Equation (2.31).

Algorithm 3 Coordinate ascent variational inference

• While the LELBO(λ) has not converged
– For i ∈ {1, ..., n}
∗ Set qi(θi;λi) ∝ eEq−n

[logP (θ,D)]

∗ Compute LELBO(λ)

• Return q(θ;λ) =
∏N
i=1 qi(θi;λi)



2.5. BAYESIAN INFERENCE 55

2.5.6 Bayes by Backprop

Bayes by Backprop (BBB) [Blundell et al., 2015] introduces a backpropagation-
compatible algorithm for learning posterior distribution on the weights of a NN
using variational inference. The goal is to find an approximate posterior distri-
bution q(w;θ) parameterized θ close to the true posterior P (w|D) since exact
inference is intractable. The first step is to choose the form of the approximate
posterior, expressive enough to be close to the true posterior. Next, we find θ that
minimizes the KL-divergence between the approximate and true posterior

θ∗ = arg min
θ

DKL(q(w;θ)‖P (w|D))

= arg min
θ

∫
q(w;θ) log

q(w;θ)

P (w|D)
dw

= arg min
θ

∫
q(w;θ) log

q(w;θ)P (D)

P (D|w)P (w)
dw

(P (D) can be omitted since it is constant and independent from θ)

= arg min
θ

∫
q(w;θ) log

q(w;θ)

P (w)
dw −

∫
q(w;θ) logP (D|w)dw

= arg min
θ

DKL(q(w;θ)‖P (w))− Ew∼q(w;θ)[logP (D|w)].

This gives us the ELBO that we write as

F(D,θ) = DKL(q(w;θ)‖P (w))︸ ︷︷ ︸
Complexity

−Ew∼q(w;θ)[logP (D|w)]
︸ ︷︷ ︸

Likelihood

=

∫
q(w;θ) log q(w;θ)dw −

∫
q(w;θ) logP (w)dw − Ew∼q(w;θ)[logP (D|w)]

= Ew∼q(w;θ)[log q(w;θ)− P (w)− logP (D|w)].

(2.32)

Equation (2.32), on one hand, tries to satisfy the simplicity of the prior termed
the complexity cost. On the other hand, the likelihood cost that tries to satisfy
the complexity of the data D. To minimize Equation (2.32), gradient descent and
various approximations are used, since it is computationally infeasible to optimize
it naively. If gradient descent is used to minimize Equation (2.32), it must be
possible to differentiate Equation (2.32). To differentiate Equation (2.32) the
reparameterization trick is used, which essentially expresses the derivative of an
expectation as the expectation of a derivative.
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The reparameterization trick

Consider a function f with derivative in w and that we want to compute

∇θEw∼q(w;θ)[f(w,θ)] = ∇θ
∫
q(w;θ)f(w,θ)dw

=

∫
∇θq(w;θ)f(w,θ)dw

=

∫
f(w,θ)∇θq(w;θ)dw +

∫
q(w;θ)∇θf(w,θ)dw

=

∫
f(w,θ)∇θq(w;θ)dw

︸ ︷︷ ︸
Can not be computed

+Ew∼q(w;θ)[∇θf(w,θ)].

However, we can not solve the integral analytically in general. To solve this,
we rewrite the random vector w as w = g(ε,θ), where ε ∼ q(ε) and g(ε,θ) is
a deterministic function. This gives us

∇θEw∼q(w;θ)[f(w,θ)] = ∇θEε∼q(ε)[f(g(ε;θ),θ)]

=

∫
q(ε)∇θf(g(ε;θ),θ)dw

= Eε∼q(ε)[∇θf(g(ε;θ),θ)]

= Eε∼q(ε)[
∂f(g(ε;θ),θ)

∂g(ε;θ)

∂g(ε;θ)

∂θ
+
∂f(g(ε;θ),θ)

∂θ
],

which is something we can solve.

To calculate Equation (2.32), Blundell et al. [2015] approximate it by drawing
Monte Carlo samples from the variational posterior q(w;θ) and using the repa-
rameterization trick on w. Thus, we get

w = g(ε,θ)

F(D,θ) ≈ 1

n

n∑

i=1

log q(w)− P (w)− logP (D|w).
(2.33)

2.5.7 Local Reparameterization Trick

Equation (2.33) provides an objective that can be optimized using gradient de-
scent. However, to increase sampling performance, Kingma et al. [2015] propose
to sample an intermediate variable g(·) rather than the weights w that they
coined the local reparameterization trick (LRT). By sampling an intermediate
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variable with lower dimension, less random noise needs to be sample. It is called
local since the reparameterization is applied on a intermediate variable instead
of directly on the weights.

Let us now consider a simplified problem where the intermediate variable is the
activation. For simplicity, we are only going to consider a single layer l and ignore
the bias term. b is the output of the previous layer l − 1 of size 1 × 100 which
is fixed. W is the weights of layer l of size 100 × 100. Thus, the activation for
layer l is a = bW of size 1 × 100. Let q(wi,j ;θ) = N (µi,j , σi,j), which implies
that q(aj |b) = N (µ̂j , σ̂j) where

µ̂j =
∑

i

biµi,j

σ̂j =

√∑

i=1

b2iσ
2
i,j .

Hence, if we sample activation rather than weight, Equation (2.33) can be rewrit-
ten as

F(D,θ) = DKL(q(w|θ)‖P (w))− Ea∼q(a|b)[logP (D|a)]

≈ DKL(q(w;θ)‖P (w))−
n∑

i=1

logP (D|a(i))

≈ DKL(q(w;θ)‖P (w))︸ ︷︷ ︸
Complexity cost

−
n∑

i=1

logP (y|x,w,a(i)).

(2.34)

The complexity cost in Equation (2.34) needs to be solved analytically since we
can no longer draw Monte Carlo (MC) samples from q(wi,j ;θ) to estimate the KL
divergence. This restricts us to only Gaussian prior opposed to Equation (2.33)
that allows for non-Gaussian prior and non-Gaussian approximate posterior. The
derivation of the complexity cost for the Gaussian case can be found in the
appendix of Kingma and Welling [2014].
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Chapter 3

Frameworks

This chapter provides an overview of the frameworks used to make the research
possible and used in the experiments.

3.1 Frameworks

Making DL models is not easy. However, it has never been easier than now due
to various DL frameworks. The DL libraries often rely on graphics processing
unit (GPU)-accelerated libraries to offer high-performance multi-GPU acceler-
ated training. They all have the built-in features needed to make DL models,
thus making DL available to the masses. This section gives an overview of the
tools and frameworks used in implementing the models, which not only consists
of DL frameworks.

Before moving on, we will give a high-level overview of DL frameworks. There are
various DL frameworks, and they are implemented differently. However, certain
traits are common for all of them. We will describe those properties before moving
on to a more detailed look at a specific one used in this thesis.

AD [Rall, 1981]. AD is a set of ways or techniques to evaluate the derivative
of a function that is essential for backpropagation. We will go more into
detail on how AD works in Section 3.1.1.

Hardware integration. DL frameworks provide automatic utilization of avail-
able hardware to train NNs. The hardware for each user differs. It can be
hard to set up, especially if the user, for example, has more than one GPU.

59
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However, most DL frameworks offer automatic setup, which has made DL
research much easier to do.

DL building blocks. Some components like regularizers and optimizers are
standard for all DL models. Offering these components out of the box
makes it easier for the user and less time needed to implement models.

Computation graphs. NNs can be represented as plain tensors. Nevertheless,
DL frameworks offer to represent them as computation graphs. It makes
them more manageable to look at and enables AD since backpropagation
is implemented using computation graphs.

3.1.1 PyTorch

PyTorch [Paszke et al., 2019] is a scientific computing package targeted at two
groups of audiences, those who want to use NumPy [Walt et al., 2011] (which
adds array and matrix along with a large collection of high-level mathematical
functions support for Python) on GPU and those who want to do deep learning
research. PyTorch is essentially NumPy on GPU plus AD, and also allows con-
verting from and to NumPy arrays seamlessly. However, this simple definition of
PyTorch does not justify how vast and complex the technology is. It includes fea-
tures such as different activation functions, optimizer, and early stopping schemes
that make DL convenient.

Automatic Differentiation

Before continuing, let us take a detour and look at AD. What lies at the core of
AD is the chain rule that allows the decomposition of differentials. AD can be
done in two ways, forward accumulation or reverse accumulation, which specifies
how the chain rule should be traversed. Consider the following example:

y = z(f(g(h(x)))) = z(f(g(h(wo)))) = z(f(g(w1))) = z(f(w2)) = z(w3)

w0 = x

w1 = h(w0)

w2 = g(w1)

w3 = f(w2)

w4 = z(w3) = y

(3.1)

We can calculate dy
dx in Equation (3.1) by applying the chain rule that gives:
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dy

dx
=
dw4

dw3

dw3

dw2

dw2

dw1

dw1

dw0

=
dy

dw3

dw3

dw2

dw2

dw1

dw1

x
.

(3.2)

Forward accumulation would have solved Equation (3.2) in the following way:

dwi
dw0

=
dwi
dwi−1

dwi−1

dw0
for i = 2, 3, 4. (3.3)

While reverse accumulation would have solved Equation (3.2) in the following
way:

dw4

dwi
=

dw4

dwi+1

dwi+1

dwi
for i = 0, 1, 2. (3.4)

Using Equation (3.3), the solution to Equation (3.1) is as follows:

dy

dx
=
dw4

dw0
=
dw4

dw0
(
dw3

dw2
(
dw2

dw1

dw1

dw0
)). (3.5)

If Equation (3.4) is used instead to solve Equation (3.1), the solution would be
as follows:

dy

dx
=
dw4

dw0
= ((

dw4

dw3

dw3

dw2
)
dw2

dw1
)
dw1

dw0
. (3.6)

AD is used to do backpropagation in a NN, described in Section 2.1.3.

PyTorch does the AD with reverse accumulation which makes it possible to
change the way the network behaves arbitrarily with zero lag or overhead.

Components

PyTorch consists of several packages that make up the DL framework. We will
take a look at three of the most important packages of PyTorch used to make a
NN.

torch.Tensor represents tensors in PyTorch that can store, for example, weights
and biases, and is similar to numpy.ndarray. torch.Tensor has the at-
tribute .requires_grad that can be set to True for tensors requiring gra-
dients. The method .backward() can be invoked to have all the gradients
computed automatically. torch.Tensor along with torch.autograd.Function

(keeps track of how tensors are computed) build up the computational graph
in PyTorch. the torch.autograd.Function object is stored in a tensor’s
.grad_fn attribute.
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torch.autograd provides AD for all differentiable operations on tensors, and is
central to all NNs made using PyTorch. torch.autograd.Function men-
tioned earlier is part of autograd that provides methods like .backward()

in addition to keeping track of operations.

torch.nn is the package that contains everything needed to construct a NN,
such as activation functions and regularizers like Dropout. One of the most
essential sub-module of torch.nn is nn.Module that contains layers, and a
method forward(method) that returns the output. nn.Module represents
a NN in PyTorch, and can contain nn.Module inside of itself making it
easier for practitioners to organize their NNs into multiple modules. Hence,
nn.Module is a way to organize low-level building blocks such as tensors
into a NN.

Besides these packages, PyTorch offer, for example, torch.optim.Optimizer

that contains many different optimizers such as Adam [Kingma and Ba, 2017]
that can be used to train a NN.

Pretrained models

PyTorch offers pre-trained models that can be handy since the computational
power needed to train large models are not always available, or the user might
want to do transfer learning. Having pre-trained models can be handy, and it
also provides a mean to see how the state-of-the-art models performs on our
tasks.

3.1.2 PyTorch Lightning

PyTorch Lightning [Falcon and .al, 2019] is a way to organize PyTorch code,
making it faster and easier to develop and train models. According to the de-
velopers, it can be thought of as a style guide for PyTorch code. It decouples
the science code from the engineering code, which means that PyTorch Lightning
takes care of the training code while the user can focus on their models and al-
gorithms. Lightning removes all the boilerplate code making it easier to develop
new algorithms and models.

PyTorch Lightning comes with additional facilities that make it easier to do ML
research and keeping the experiments reproducible. Also, it interoperates with
other frameworks made for PyTorch. PyTorch Lightning is created for researchers
and Ph.D. students working in AI. The interface is simple, thus suitable for model
developers and newcomers.
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3.1.3 Captum

Captum [Kokhlikyan et al., 2020] (“comprehension” in Latin) is a framework
built on PyTorch that consists of various interpretability methods for models
made with PyTorch. It contains state-of-the-art interpretation methods that
make it easier for researchers and developers to understand their models better.
For ML researchers, it will be more accessible to benchmark and use different
explanation methods in their research. While for model developers, it will be
easier to troubleshoot and improve their models. Captum also comes with visu-
alization tools, making it easier to understand the explanations since even with
tools like Captum, explanations can be hard to understand without proper visu-
alization. The visualization tools work for both images, text, and other types of
features.

The intended audience for Captum is model developers that try to improve their
models and researchers that are working on XAI. In addition, it can be used by
people who use trained models that want to deliver better explanations to their
users.

The algorithms Captum implements are separated into three groups, primary
attribution, layer attribution, and neuron attribution, and are increasing contin-
uously. They define these three different groups as:

Primary attribution evaluates contribution of each input feature to the output
of a model.

Layer attribution evaluates contribution of each neuron in a given layer to the
output of the model.

Neuron attribution evaluates contribution of each input feature on the acti-
vation of a particular hidden neuron.

3.1.4 TensorBoard

TensorBoard is TensorFlow’s [Abadi et al., 2016] visualization toolkit that con-
sists of web applications that provides tracking and visualization of ML experi-
mentation. TensorBoard can track metrics like loss and accuracy, visualize the
model graph, view histograms of weights, biases, or other tensors as they change
over time. TensorBoard is a part of the TensorFlow ecosystem and can be used
for PyTorch. Since TensorBoard runs like a website, it can be deployed as a
website and be shared with others.
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Chapter 4

Active Feedback

4 Fine-tune 5 Evaluate and Deploy
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1 1 1 1
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Figure 4.1: A “standard” ML pipeline with steps for annotating explanations
and correcting a model. During Step 3, a model explains training sample clas-
sifications to a human annotator who gives feedback on those explanations. A
feedback F (i) for a sample i is a matrix of the same width and height as the

sample. If a feature k, j is irrelevant F
(i)
k,j = 1, otherwise F

(i)
k,j = 0. In Step 4, a

model is fine-tuned with training data and feedback. The goal is to improve the
reasons behind the classifications (explanation in Step 3 vs. Step 5) and predictive
performance.

During the 20th century, there was a horse named Clever Hans was claimed to
have performed arithmetic and other intellectual tasks. It was later revealed that
the horse observed its trainer and responded to the trainer’s involuntary cues in
the body language. The trainer was not aware that he provided the horse with
hints causing it to display intelligent behavior. This behavior is today referred
to as the Clever Hans effect [Pfungst, 1911]. A NN could be focusing on spurious
features and display the Clever Hans effect. If that is the case, the effect could
potentially be revealed through explanation methods. New research has started
to explore the possibility of providing feedback on classification explanations to a
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NN to prevent or remove the Clever Hans effect rather than just revealing it [Ross
et al., 2017; Teso and Kersting, 2019; Erion et al., 2020; Rieger et al., 2020]. This
feedback will be referred to as either feedback or explanation feedback in case
of ambiguity. The primary approach has been using the gradients in the input
space to act on explanations [Ross et al., 2017; Erion et al., 2020] to correct a
model.

Explanations are social, meaning they are a transfer of knowledge through inter-
actions or conversations [Miller, 2019]. Many model correction methods work as
one-way communication where annotations of irrelevant features need to be pro-
vided before training. However, defining such knowledge about the data before
training does not satisfy the explanations’ social aspect. Additionally, defining
such knowledge without considering what the model will learn through train-
ing can be challenging, making model correction methods hard to use in prac-
tice.

In this section, we propose a new ML pipeline, active feedback (AF). AF augments
a “standard” ML pipeline with two additional steps. These steps try to improve
classification explanations given by a model and its predictive performance by
adding a human annotator into the loop. Additionally, taking a step towards
making explanations in ML social. AF works by having a trained model explain
some of its classifications using a backpropagation-based explanation method. An
annotator provides the model with feedback on these classification explanations
if needed. A feedback of a sample i is a matrix F (i) ∈ {0, 1}w×h (same width
and height as input sample i) provided by a human annotator. If a feature k, j

is irrelevant F
(i)
k,j = 1, otherwise F

(i)
k,j = 0. For Step 4, the model is corrected

using fine-tuning1 with the feedback provided by the annotator and the training
dataset. Like AL, AF queries a user for more information. However, unlike AL,
AF does not ask for labels, but feedback on classification explanations. The AF
pipeline can be seen in Figure 4.1.

Step 3 of AF works by having an annotator by hand select pixels when dealing
with images. However, having a method to select regions can assist a user with
constructing feedback. We provide the user with such a method. Our method
provides the user with possible feedback (see Figure 4.2 (right); each color is a
possible feedback). The regions are divided into “concepts”. Throughout the
literature, the term concept is used to express more meaningful units to humans
than individual pixels [Ancona et al., 2019; Zhou et al., 2018; Kim et al., 2018].
These concepts can be used as feedback in our model correction method. The
model correction method extends the work of Ross et al. [2017], which proposes

1Fine-tuning is a form of transfer learning where we change the weights of a pre-trained
model by continuing the backpropagation.
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a new loss that can use classification explanations to regularize a model. Un-
like Ross et al. [2017], we use the loss with transfer learning and do not expect
explanation feedback without a trained model.

To summarize this chapter

1. Section 4.1 details the AF pipeline. AF is a “standard” ML pipeline ex-
tended with two additional steps. These two steps consists of, gather feed-
back from a human annotator and to correct a model using explanation
feedback.

2. Section 4.2 proposes a feedback selection method to assist human annota-
tors with the construction of explanation feedback.

3. Section 4.3 outlines how the loss function introduced in Ross et al. [2017]
can be used for fine-tuning with explanation feedback to correct a model.

4.1 Pipeline

This section outlines AF pipeline in greater details (see Figure 4.1). AF extends
a “standard” ML training procedure with three steps: explain, provide feedback,
and finetune. Step 1, 2 and 5 are part of “standard” ML training and evaluation
operations. Step 3 and 4 are the steps introduced by AF. The steps in AF pipeline
are as follows:

1. Train. This step consists of training a DL model on a training dataset.

2. Evaluate and iterate. Using a validation dataset, the trained model is eval-
uated. Optionally, the trained model can be tuned using the validation
during this step.

3. Explain and provide feedback. The model explains classifications of sam-
ples from the training dataset. The goal of this step is for a user to verify
if a model makes classifications based on a “reasonable” explanation.

The user can after inspecting an explanation, give feedback on it. The
feedback is used to correct the model in case of incorrect patterns learned.
The user can manually highlight regions it does not want the model to
focus on. However, since this is the most time-consuming part, we want to
provide the user with possible feedback. Using our region selection method,
the user is provided with possible regions that it can select as feedback to
the model (see Figure 4.2). This is described more in Section 4.2.2.

4. Fine-tune The model is fine-tuned with user-provided feedback and the orig-
inal training dataset. In this step, the model correction algorithm is used
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to fine-tune the model. An in-depth outline of the procedure is given in
Section 4.3.

5. Evaluate and deploy The test dataset is applied to see if the model per-
forms satisfactorily to be deployed in real use. Figure 4.1 depicts how an
explanation changes when a model is corrected/improved. The explanation
shows that the model focuses much less on background information when
being told that it is irrelevant through feedback on classification explana-
tion.

4.2 Feedback selection method

Previous research has shown that pixel-based explanations do not increase human
trust and understanding in the model [Poursabzi-Sangdeh et al., 2019; Kim et al.,
2018]. Also, there is evidence that regions are easier to understand than pixel-
based [Sundararajan et al., 2019]. Furthermore, we know that referring to the
cause is more effective than looking at exact numbers [Miller, 2019]. Hence,
we conjecture that providing the user with possible regions beforehand eases
providing the model with feedback.

This section presents a feedback selection algorithm that can optionally be used
during Step 3 of the AF pipeline to reduce human labor. We want to provide
an annotator with possible feedback, in this case, continuous regions, instead of
manually highlighting pixels. The method is built on top of attribution maps pro-
duced using a backpropagation-based method. Hence, providing the annotator
with regions encompassing high attribution.

4.2.1 How the feedback selection method works

We are now going to outline the method by dividing it into six steps:

1. Construct the underlying attribution maps.

2. Select the sign of attributions.

3. Threshold the attribution maps.

4. Combine attribution maps.

5. Find and select segments.

6. Merge regions using semantic segmentation (Optional).
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Figure 4.2: A VGG-19 model with batch normalization, trained on the ImageNet
dataset. The image fed into the classifier (left) and the segmentation map of
the classification (right). The segmentation map displays a continuous region
that is important to the classifier. The region is further divided into smaller
segments to separate concepts within the region. Each color matches a concept,
here with orange indicating the background and green highlighting the airplane.
This sample is classified as “airliner” with a softmax output of 0.7.

1. Construct the underlying attribution maps

Consider an input sample Xw×h×c and a CNN model fθ(X) = ŷc parametrized
by θ. ŷc of ŷ is the logit of class c that an annotator selects as interesting.

The method starts with a sample X (Figure 4.2 (left)), and calculates V = ∇Xyc
(Figure 4.4c) which is the logit gradient of class c with respect to the input. Grad-
CAM (see Section 2.4.1) is employed to find attribution map U0 for the last con-
volutional layer (forward direction) (Figure 4.4b). Since the attribution map U0

is produced using a convolutional layer, it need to be interpolated before element-
wise product with V. The function interpolate(X1,X2) interpolates X1 to X2’s
size using bilinear interpolation. Bilinear interpolation is used throughout the
literature to upsample the activation maps to input size [Selvaraju et al., 2020a;
Bau et al., 2020; Zhou et al., 2015b; Long et al., 2014]. Hence, we get:

V = ∇Xyc (4.1)

U0 = LycGrad-CAM(X) (4.2)

U = interpolate(U0,V) (4.3)



70 CHAPTER 4. ACTIVE FEEDBACK

For Grad-CAM, the ReLU2 function is not applied in order to retain the negative
attribution.

2. Select the sign of attributions

(a) Negative attribution (b) Absolute attribution. The region is
divided into smaller segments to sepa-
rate concepts within the region (differ-
ent color).

Figure 4.3: Negative and absolute attribution

The second part consists of selecting to either focus on the positive, negative,
or absolute value of the attribution. Figure 4.2 displays regions that attributes
positively to the class “airliner”. However, in some situations it might be desirable
or necessary to look at what negatively effects the model too (for the “airliner”,
Figure 4.3a), since negative attribution can also cause overfitting. For example,
if the model learns that removing a chair from a picture of a cat increases the
probability for the class “cat”. We can say that the model has learned a wrong
negative relationship. This negative relationship should not exists if there is no
class “chair”. If there was a class “chair”, it would make sense since it “absorbs”
some of the softmax output. The method also offers to display the absolute value
of the attribution for convenience so that the user can see all regions affecting the
model (for the “airliner”, Figure 4.3b). However, the understanding of negative
attribution is not as clear as positive attribution. Hence, in most cases only
positive attribution is needed.

2In the original implementation, the ReLU function is used on the output attribution map
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If the user selects to focus on the positive attribution:

V = V � 1V>0

U = U� 1U>0,

the negative attribution:

V = Vabs � 1V<0

U = Uabs � 1U<0,

or the absolute attribution:

V = Vabs

U = Uabs.

3. Threshold the attribution maps

We want the attribution of a constrained region, hence, the attribution maps
need to be thresholded where the smallest attribution values are removed. We
do this with both attribution maps V and U.

θ′1 = arg min
θ1

V � 1V>θ1 (4.4)

s.t.
|| vec(V � 1V>θ1)||1
|| vec(V)||1

≤ λ1. (4.5)

Thus, we get V = V � 1V>θ′1 . And likewise,

θ′2 = arg min
θ2

U� 1U>θ2 (4.6)

s.t.
|| vec(U� 1U>θ2)||1
|| vec(U)||1

≤ λ1, (4.7)

U = U� 1U>θ′2 . λ1 ∈ [0, 1] is a parameter.

4. Combine attribution maps

U can be too coarse depending on the NN architecture. While V can be too
spread out making it hard to construct a continuous region. Hence, we combine
V and U into a single attribution map W (Figure 4.4h)

W = V �U,

to gain the benefit of both sizes. Humans tend to reason using higher-level
abstract “concepts” [Rosch, 2002]. We know that the last convolutional layer
represents high-level “concepts” [Zeiler and Fergus, 2014; Zhou et al., 2015b;
Bau et al., 2020]. Thus, by including information from the last convolutional
layer may make the attribution map align better with human intuition.
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Figure 4.4: Attribution maps using Saliency and Grad-CAM. (a) The original
image fed to the model. (b) Attribution map of the deepest convolutional layer.
(c) Attribution map of the input. (d) Attribution map (b) after thresholding
using λ = 0.2. (e) Attribution map (c) after thresholding using λ = 0.2. (g)
Attribution map (b) element-wise multiplied with (c) and then thresholding with
λ = 0.2. (h) Attribution map (d) element-wise multiplied with (e).

5. Find and select segments

The definition of “good” segmentation of depends on the application. We tried
four different segmentation algorithms Felzenszwalb’s efficient graph based seg-
mentation [Felzenszwalb and Huttenlocher, 2004], Quickshift image segmentation
[Vedaldi and Soatto, 2008], Compact watershed segmentation of gradient images
[Neubert and Protzel, 2014] and SLIC [Achanta et al., 2012]. Based on the empir-
ical results with these algorithms for our application, we found that SLIC worked
satisfactory at most examples. Therefore, SLIC is used to segment the images.
SLIC is an simple algorithm that uses color similarity and proximity of pixels
in the image plane to cluster pixels into superpixels3 using k-means clustering
[Lloyd, 1982].

3A term used for a group of pixels with similar color and other low-level properties
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(a) SLIC applied om Figure 4.2 (left)
with n segments = 120.

(b) Chosen segments using the attribu-
tion map W in figure 4.4 and Si in Fig-
ure 4.5a.

Figure 4.5: Segmentation using SLIC and chosen segments

Following on, we segment X into segments using SLIC (Figure 4.5a). Since the
quality of the segmentation depends on a parameter “number of segments” given
to SLIC, we segment X with n different values for the parameter “number of
segments”. Therefore, we get S1 ∈ {0, .., t1}m×n, ...,Sn ∈ {0, .., tn}m×n. For
each Si, we select tj ∈ Si � 1W>0:

Mi = Si ∈ Si � 1W>0 i = 1, ..n,

Finally, we want to select the M1, ...,Mn that covers the smallest area (Fig-
ure 4.3b):

j∗ = arg min
j

|| vec(Mj)||0, for j = 1, ..., n,

L = Mj∗

6. Merge regions using semantic segmentation (Optional)

To further improve the quality of the attribution map, a segmentation network
can be used to segment X into C (Figure 4.6 (left)). The segments in L are
merged if they fall within in the same bounding box in C. Hence, the number
of segments in L can be reduced (Figure 4.2 (right) after merge vs. Figure 4.5b
before merge).



74 CHAPTER 4. ACTIVE FEEDBACK

Figure 4.6 (left) is not used as an explanation, since an explanation is not the same
as object detection. An explanation should highlight where the model “looks”
to make its classification [Dabkowski and Gal, 2017], which does not necessary
imply the whole object.

Figure 4.6: (left) Bounding box using a semantic segmentation network on Fig-
ure 4.2 (left). (right) Merging segments in Figure 4.3b that occupy the same
bounding box.

The final attribution map L (Figure 4.2 (right)) consists of continuous regions
that is further divided into smaller segments if the region consists of more than
one concept. Each segment should consist of one concept that is meaningful
and important to the model on its own. To fulfill the meaningfulness property
[Ghorbani et al., 2019] for concepts, we use the SLIC algorithm and optionally a
semantic segmentation network to further improve the quality of the segments.
Since the segments chosen overlap with the thresholded attribution map, it should
be clear that the segments highlight important areas for the model. However, it
requires that the underlying attribution method is faithful to the model.

4.2.2 Representing feedback

We propose to present a collection of the possible feedback to the user using
the segmentation map our feedback selection method produces. The feedback
are represented as continuous regions that represent concepts in the input space.
These feedback encompass regions with high attribution that will likely affect the
model’s decision boundary. Examples of this can be seen in Figure 4.2 where each
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color represent a possible feedback. The feedback the user selects for a sample
forms a binary matrix used in the fine-tuning process.

4.3 Incorporating Feedback

This section describes Step 4 of the pipeline outlined in Section 4.1, namely how to
correct a model with explanation feedback provided by a human annotator.

Assume that we have a sample X(i) with the one-hot encoding of the label y(i).
The softmax classification output f(X(i)) = ŷ(i) is obtained by forward passing

X(i). The explanation feedback that an annotator provides for the sample i is
represented as a binary matrix F (i) ∈ {0, 1}w×h (same height and width as the

sample). F
(i)
k,j = 1 indicates that a feature k, j is irrelevant for the class of interest,

otherwise F
(i)
k,j = 0. For samples without explanation feedback, F (i) = 0. We

want to minimize
H = F (i) ⊗∇(i)

X (ŷ(i)
c ) (4.8)

to incorporate the explanation feedback. ⊗ signifies broadcasting and an element-
wise product. Equation (4.8) signifies the attribution of features that the anno-
tator thinks are irrelevant for a given class c. Given Equation (4.8), we have the
attributions we want to minimize, thus introducing the new loss

L∗(y(i), ŷ(i)) = L(y(i), ŷ(i)) +
λ2

w × h× c
N∑

i

|| vec(H)||1. (4.9)

Equation (4.9) penalizes the attribution that the annotator specified as irrelevant.
Additionally, it minimizes L(y(i), ŷ(i)) that represents any additional loss terms
used to train the model. λ2 is a parameter that controls the importance of the
feedback penalty. The loss for the training dataset is the mean of the individual
losses

LTot =
1

n

n∑

i=1

L∗(y(i), ŷ(i)), (4.10)

assuming that the samples in the dataset are i.i.d.. Given a feedback F (i), the
training set and the loss function given in Equation (4.9), we incorporate the
feedback into the model by fine-tuning. Fine-tuning is Step 5 of the pipeline
outlined in Section 4.1. Our experimental results show that the model does not
need to be trained from scratch. This method can be used together with any
existing regularization techniques. Also, it does not restrict the model during
training since it is applied during fine-tuning. Another advantage of the method
is that the annotator is not overwhelmed with possible feedback to provide the
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model beforehand. Instead, the method provides some reasons that the user can
select after the fact.



Chapter 5

Bayesian model correction
framework

Humans’ trust in models is affected by a model’s confidence in its predictive
performance [Zhang et al., 2020]. NNs are bad at quantifying uncertainty and
tend to produce overconfident classifications [Lakshminarayanan et al., 2017]. An
overconfident model can be perceived as dangerous or offensive [Amodei et al.,
2016]. The model can be seen as trying to gain false trust that will backlash
against the model if it makes a wrong decision. Consequently, being overconfident
can reduce trust in the model rather than increase it. Providing reasonable
explanations induce trust [Ribeiro et al., 2016b], but explanations generated by
these aforementioned explanation methods only capture local behaviors, meaning
an explanation applies only in the vicinity of a sample. This does not give
insight into how a model will perform on out-of-distribution samples. Hence,
to resolve model overconfidence, the model must capture aleatoric and epistemic
uncertainty [Lakshminarayanan et al., 2017]. There are several ways to capture
epistemic uncertainty; one way is to frame the NNs within a Bayesian framework
that applies inference on the model’s weights [MacKay, 1992; Blundell et al.,
2015].

Model correction and Bayesian inference contribute to robustness and trust in the
model. However, they are difficult to use together because most model correction
methods modify the objective function. The modifications do not necessarily
follow probability calculus and can introduce elements with unknown distribu-
tions.

77
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For a model to have the correct explanation, classification and model confidence,
this work bridges the gap between model correction and Bayesian inference. Ad-
ditionally, it takes a step towards making explanations in ML social. We present
a Bayesian framework that uses explanation feedback. After training, a Bayesian
CNN presents explanations of training sample classifications to a human anno-
tator. The annotator can accept or reject the explanations by giving feedback as
additional evidence. Feedback is represented as a matrix with the same width
and height as a sample specifying which attribution regions to reject. This feed-
back is used during fine-tuning to correct the model such that the explanations
and predictive performance improve.

In a Bayesian framework, finding the maximum likelihood estimate of the weights
is replaced by finding the approximate posterior distribution of the weights clos-
est to the true posterior using variational inference. Variational inference is used
since exact inference is not tractable. Finding the approximate posterior distri-
bution can be achieved by minimizing Kullback–Leibler (KL) divergence between
the approximate posterior and the true posterior of the weights using, for exam-
ple, Bayes by Backprop (BBB) (see Section 2.5.6). BBB uses gradient descent to
optimize the ELBO for determine the the approximate posterior of the weights
closest to the true posterior distribution.

5.1 Preliminary

Consider a probabilistic model P (e|w), the prior distribution P (w) that encodes
the prior knowledge about the parameter w and the evidence

e = {(X(i),y(i))}ni=1 (5.1)

with n i.i.d. samples. We want to compute the posterior distribution

P (w|e) =
P (e|w)P (w)

P (e)
(5.2)

using Bayes rule. However, exact Bayesian inference is intractable, so Markov
Chain Monte Carlo (MCMC) algorithms or VI are used to approximate the
weights’ posterior distribution. BBB [Blundell et al., 2015] is a VI and backpropagation-
compatible method for learning weight distributions. BBB uses the reparametriza-
tion trick [Kingma and Welling, 2014] to calculate a MC estimator of the ELBO
and uses Gaussian variational distributions. To compute the MC estimator of
ELBO, samples are drawn from the weights, which is computationally expensive.
To reduce the number of samples needed, the LRT [Kingma et al., 2015] was pro-
posed. LRT considers uncertainty at the activation level (before any nonlinear
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activation function) by computing the activations before drawing samples. This
significantly reduces the number of samples drawn and makes it computationally
cheaper.

Example 1 (LRT for a fully connected layer). Let layer l be a fully connected
layer with weights Wm×r where qλ(Wi,j) = N (µWi,j , σ

2
Wi,j

) ∀Wi,j ∈ W and

biases Bt×r where qλ(Bi,j) = N (µBi,j
, σ2
Bi,j

) ∀Bi,j ∈ B. Given an input Zt×m,
the activation of layer l is U = ZW +B of size t× r where

qλ(Ui,j |Z) = N (γi,j , δi,j) ∀Ui,j ∈ U (5.3)

γi,j =

m∑

k=1

Zi,kµWk,j
+ µBi,j , δi,j =

m∑

k=1

Z2
i,kσ

2
Wk,j

+ σ2
Bi,j

. (5.4)

A new weight matrix is sampled for every training sample to reduce estimator
variance, which has a computational complexity of O(tmr). By sampling activa-
tions rather than weights, the computational complexity is reduced to O(tr).

Example 2 (LRT for a convolutional layer). Let layer l be a convolutional layer

with a convolutional filter Ww′×h′×c̄ where qλ(vec(W)) = N (vec(M),diag(vec(V2)))

is a fully factorized Gaussian. Given an input Zw̄×h̄×c̄, the activation of layer l
is U = Z ∗W of size ŵ × ĥ where

qλ(vec(U)|Z) = N (µU ,σ
2
U ) (5.5)

µU = vec(Z ∗M), σ2
U = diag(vec(Z2 ∗ V2)) (5.6)

is treated as a fully factorized Gaussian. We define vec(·) as a vectorization
function, (·)2 as an element-wise operator, ∗ as a convolution operator and diag(·)
as a diagonal matrix.

5.2 Variational Inference and Explanation Feed-
back

Sections 5.2.1 and 5.2.2 outline the objective function used in the fine-tuning
phase and how feedback is induced into a model by adding additional evidence
to e.
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5.2.1 Add Explanation Feedback to Evidence

We want to compute the posterior distribution P (w|e) of the weights of a NN.
The evaluation involves computation of intractable integrals. Therefore, approx-
imation techniques are used. VI is one of the most widely used and defines a
variational distribution qλ(w) that is used to approximate the posterior distri-
bution by minimizing the KL divergence DKL(qλ(w)‖P (w|e)). Minimizing the
KL divergence is equivalent to maximizing the ELBO

LELBO = Eqλ(w)[logP (e|w)]
︸ ︷︷ ︸

Likelihood

−DKL(qλ(w)‖P (w))︸ ︷︷ ︸
Complexity

. (5.7)

Let X(i)w×h×c be an observation with the label y(i), a feedback of the sample
i is a matrix F (i) ∈ {0, 1}w×h given by a human annotator. If a feature k, j is

irrelevant F
(i)
k,j = 1, otherwise F

(i)
k,j = 0. Furthermore, let f be a Bayesian CNN

that takes X(i) as input and outputs the logit vector f(X(i)) = ŷ(i).

Consider input gradients ∇X(i)

∑
j ŷ

(i)
j of the observation X(i) that can be used

as an explanation that specifies feature attributions.

H(i) = F (i) ⊗ (∇X(i)

∑

j

ŷ
(i)
j ) (5.8)

is the attributions on irrelevant features that we want to minimize. ⊗ signifies
broadcasting and an element-wise product. To include explanation feedback, we
add additional evidence to e

egrad = e ∪ {H(i) = 0}ni=1 (5.9)

where we set H(i) = 0 to constrain attributions on irrelevant features, which is
similar to previous work [Ross et al., 2017].

However, the distribution of the input gradients is unknown and it is hard to
find analytically. Not knowing the distribution makes us unable to calculate the
likelihood in Equation (5.7) with egrad as evidence. One way to solve this issue is
to look at some quantity with known distribution instead of the input gradients.
Although weight distributions are known, it is not trivial to map feedback given
in the input space to the parameter space. Therefore, we use the LRT to consider
the activation distributions and map the feedback to activation space. Examples 1
and 2 describe how to obtain activation distributions.

In the next section, we show how considering the uncertainty at the activation
level enables us to approximate the evidence egrad with an alternative formulation
for which the likelihood can be expressed analytically.
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We use CNNs since the activations in convolutional layers retain spatial infor-
mation. The spatial information is needed to map feedback defined in the input
space to corresponding activations. An additional advantage of using activations
rather than input gradients is reduced computational complexity since second-
order partial derivatives are not needed.

5.2.2 Methodology

This section details how to add feedback to e using activations rather than input
gradients. We do this by describing how to map the feedback from input to
activation space. Moreover, we describe how to compute Equation (5.7) with the
new evidence eact (to be defined in Equation (5.13)); something we could not do
with egrad.

Consider the same setup as in Section 5.2.1. Let A(i) ∈ Ru×v×d (u ≤ w, v ≤ h) be
feature maps (before any nonlinear activation function) of the last convolutional

layer (forward direction) obtained by forward passing X(i). The last convolutional
layer is used since it contains the highest abstraction level of features [Zeiler and
Fergus, 2013; Zhou et al., 2015b; Selvaraju et al., 2019].

Map Feedback from Input to Activation Space

The feedback will be mapped to the activation space to include it in the evidence
e. We do this in two steps:

1. downsample the feedback to the width and height of the feature maps A(i)

and

2. find activations in A(i) spatially overlapping with the feedback and affecting
the classification.

We downsample the feedback F (i) to the width and height of A(i) by computing

J (i) = AdaptiveMaxPool(F (i), (u, v)). (5.10)

The function AdaptiveMaxPool(Z,o) takes a matrix Z and uses max-pooling to
transform it to size o = (o1, o2). This operation is similar to how Grad-CAM
interpolates attribution maps to the input space to visualize explanations. Next,
we find entries in J (i) that overlap with A(i) by calculating

G(i) = A(i) ⊗ J (i). (5.11)

CNNs often use rectified linear unit and max-pooling, implying that classifications
are only affected by a subset of the activations. Therefore, activations not used
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in the classification will be excluded by computing

L(i) = G(i) � 1
(∇

A(i)

∑
j ŷ

(i)
j )6=0

(5.12)

to zero out entries in G(i) that do not affect the classification. L(i) is a tensor
representing the activations that affect the classification and overlap with all

indices k, j where J
(i)
k,j = 1. The goal is to find the random variables where

values in L(i) 6= 0 are drawn from. We will refer to those activations as a
(i)
F . The

remaining activations in the network will be denoted a
(i)
Fc . We substitute input

gradients with activations and add feedback to e by defining

eact = e ∪ {a(i)
F = 0}ni=1 (5.13)

The process of finding a
(i)
F incurs an extra forward pass.

Compute the ELBO with Additional Evidence

In this section, we show how to compute the ELBO with eact. We follow
Kingma et al. [2015] and consider uncertainty at the level of activations. This
implies that the expectation in Equation (5.7) will be computed with respect to

qλ(a
(i)
Fc ,a

(i)
F |X(i)) rather than qλ(w). qλ(a

(i)
Fc |X(i),a

(i)
F = 0) will be written as

qλ(a
(i)
Fc) for short. LELBO(X(1), ...,X(n)) =

∑n
i=1 L

(i)
ELBO(X(i)) since the samples

are i.i.d. We can reformulate Equation (5.7) as a loss function using activations
and the evidence eact for a single sample i as

L(i)
LRT =

1

n
DKL(qλ(w)‖P (w))− E

qλ(a
(i)
Fc )

[logP (e
(i)
act|a(i)

Fc)]. (5.14)

Expanding e
(i)
act in the log probability in Equation (5.14) gives

log(e
(i)
act|a(i)

Fc) = logP (y(i),a
(i)
F = 0|X(i),a

(i)
Fc)

= logP (y(i)|a(i)
F = 0,a

(i)
Fc) + logP (a

(i)
F = 0|X(i),a

(i)
Fc)

(5.15)

where a
(i)
Fc and a

(i)
F are treated as fully factorized Gaussians. To compute Equa-

tion (5.14), we follow the result of BBB and approximate the negative log-
likelihood by applying MC sampling. When both qλ(w) and P (w) are fully fac-
torized Gaussians, the complexity term can be calculated in closed form [Kingma
and Welling, 2014]. Equation (5.14) is an objective function that uses the evi-
dence eact to incorporate feedback from an annotator and is theoretically justified
from a probabilistic perspective, making it mathematically grounded. Moreover,
we do not need a hyperparameter that deals with feedback penalty; instead, the
objective function trades-off between complexity and data.
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Example 3 (How to approximate Equation (5.14)). Consider w ∈ Rj, where the
prior P (w) = N (0, I) and the approximate posterior qλ(w) = N (µ, diag(σ2))
are both fully factorized Gaussians. Hence, Equation (5.14) can be approximated
as

L(i)
LRT ≈

1

2n

j∑

i=1

(µ2
i + σ2

i − 1− log σ2
i )

− 1

m

m∑

t=1

[logP (y(i)|a(i,t)
F = 0,a

(i,t)
Fc ) + logP (a

(i,t)
F = 0|X(i),a

(i,t)
Fc )].

(5.16)

m is the number of MC samples.

To summarize, feedback defined in the input space by an annotator is mapped to
the activations. The feedback is included by adding it as additional evidence to
e. During Step 2, the model is trained with e as the evidence and Equation (5.7)
as the objective function. As for Step 4, to fine-tune the model, Equation (5.14)
is used as the objective function with eact as the evidence.
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Chapter 6

Experiments and Results

In this chapter, we outline the experiments from planning to execution. Sec-
tion 6.1 describes the planned experiments and the questions those experiments
should answer, which is the Research questions 2 and 3. Section 6.2 provides
an overview of the experimental setup in order for others to recreate the exper-
iments. Finally, Section 6.3 shows the experimental results of the experiments
outlined in Section 6.1.

6.1 Experimental Plan

In this section, we will outline the planned experiments that will be carried out
in Section 6.3. Three datasets, decoy MNIST, Dogs vs. Cats, and International
Skin Imaging Collaboration (ISIC) skin cancer, will be used to demonstrate the
effectiveness of the method introduced in Chapter 4 and Chapter 5. Chapter 4
describes a method to correct NNs based on explanation feedback provided by a
human annotator. Furthermore, in the same chapter, we propose a pipeline for
the feedback process. Chapter 5 extends the idea of using explanation feedback
to correct a model to include Bayesian NNs. To show the proposed method’s
effectiveness, we will combine the pipeline outlined in Section 4.1 and model
correction method described in Chapter 5 and do the experiments.

There are two questions that the experiments should answer:

Model correction. The first part of the experiment is to see whether it is possi-
ble to correct a model by having an annotator provide explanation feedback.
Apart from whether the method works, an important aspect is how much

85
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feedback is needed to correct a model. For the method to be effective, the
number of explanation feedback needed must be “small” compared to the
dataset size. This is especially true for this method as it requires human in-
tervention. Hence, one of the questions the experiment should answer is the
effectiveness of the presented model correction method. The effectiveness
embodies the model performance and the size of the feedback set.

Model correction with Bayesian NNs. Given that the first part provides a
positive answer. In the second part of the experiment, we want to see if it
is possible to extend the work in Section 4.3 to Bayesian NNs (introduced
in Chapter 5). In the Bayesian setting, we want to find the posterior dis-
tribution of the parameters in a model. This requires a new method to
induce explanation feedback into a model without invalidating the princi-
pled method of finding the posterior distribution.

6.2 Experimental Setup

This section gives an overview of the datasets and model architectures used in
the experiments described later in this chapter. Furthermore, we describe the
model architectures used to generate the results presented in Chapter 4. The
purpose of this section is to give the reader a sufficient amount of information to
recreate the experiments done in Section 6.3.

6.2.1 Dataset

This section outlines the datasets used in the experiments described in this chap-
ter. Moreover, it presents the explanation feedback used for the datasets to
simulate the feedback process by a human annotator.

Decoy MNIST

The MNIST [Lecun et al., 1998] dataset consists of 28 × 28 grayscale images of
digits. The training set has 60000 samples, and the test set has 10000 samples.
We divided the training dataset into 54000 samples for training and 6000 samples
for validation during the experiments. The dataset has 10 classes, the digits
0, 1, . . . , 9. The decoy MNIST is inspired by Ross et al. [2017]. However, our
dataset has some modifications compared to the one found in Ross et al. [2017].
Every sample has a 4× 4 square in each corner (see Figure 6.1). In the training
data, the decoys’ colors correspond with the label of the digit y, (255−25y), and
in the validation and test data, the colors are randomly drawn. The decoys on
the training dataset are robust since it appears on every sample without noise.
This makes it hard for classifiers to learn the non-decoy features. We modified
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Training dataset Validation/test dataset

Figure 6.1: Decoy MNIST dataset

the dataset since when the decoy rule is not apparent, the CNNs models do not
overfit. As these decoys are synthetically induced, we know the ground truth

feedback. Thus, the feedback F
(i)
k,j = 1 when index k, j overlaps with a white

patch.

Dogs vs. Cats

The Dogs vs. Cats [Kaggle, 2014] dataset consists of RGB images of dogs and
cats (see Figure 6.2). The images are of different sizes, but is scaled to 227×227.
The dataset has a training set of 25000 samples. The test set consists of 12500
samples, but does not have labels. Thus, the training set is divided into 90%
training, 5% validation and 5% test. For the construction of feedback, a pre-
trained DeepLabV3 ResNet101 [Chen et al., 2017] semantic segmentation network
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Dogs Cats

Figure 6.2: Dogs vs. Cats dataset

was used. F
(i)
k,j = 1 when index k, j does not overlap with an animal.

6.2.2 ISIC dataset

The version of the ISIC skin cancer data by Rieger et al. [2020] that we used
has 21654 samples where 2284 are malignant (label 1) and 19370 are benign
(label 0). Of those benign samples, 48% (9209 samples) have colorful patches
(see Figure 6.3). Feedback for samples in this dataset are regions that contain
those colorful patches because they are irrelevant for the classifications.
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Benign with patch Benign Malignant

Figure 6.3: International Skin Imaging Collaboration (ISIC) dataset. In this
dataset, there are two classes, benign and malignant. However, some of the
samples in the benign class have colorful patches (column 1).

6.2.3 Models

In this section, we outline the NN architectures we used in the experiments.

LeNet

LeNet [LeCun et al., 1989] is a CNN architecture and one of the earliest of its
kind. The architecture consists of 5 layers, 3 convolutional layers, each followed
by a pooling layer except for the last convolutional layer. The last two layers
in this architecture are fully connected layers. The architecture can be seen in
Figure 6.4.

AlexNet

For some of the experiments, we used a pre-trained CNN AlexNet [Krizhevsky
et al., 2012] trained on the ImageNet dataset [Russakovsky et al., 2015] as our
model. AlexNet is what made CNNs famous, known for the ImageNet Large
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Figure 6.4: LeNet architecture

Scale Visual Recognition Challenge (ILSVRC) 2012 which it won by a large mar-
gin (15.3% vs 26.2% (second place) error rates). The AlexNet architecture con-
sists of 5 convolutional layers with overlapping max-pooling layers and two fully
connected layers, as seen in Figure 6.5. ReLU activation is applied after every
convolution and fully connected layers. The overlapping max-pooling is applied
in the first, second, and fifth convolution layer after the ReLU activation. For the
fully connected layers, dropout is applied with a dropout rate of 0.5. The original
AlexNet architecture had local response normalization (LRN) [Krizhevsky et al.,
2012] after ReLU activations, but before max-pooling in the first and second con-
volutional layer. It was showed later that LRN does not improve the performance
on the ImagNet dataset but leads to increased memory and computation time
[Simonyan and Zisserman, 2015].

For the experiment used to demonstrate the method outline in Chapter 5, we
removed the dropout layers and added batch normalization after every layer. We
did it since it gave us more stable training.

VGG16

VGG16 [Simonyan and Zisserman, 2015] is one of the most famous model ar-
chitectures submitted to ILSVRC 2014. The model achieves 92.7% top-5 test
accuracy in the ImageNet dataset. The model significantly outperforms the pre-
vious generation of models in the ILSVRC 2012 and ILSVRC 2013 competitions.
It improves AlexNet by replacing large convolutional filters with smaller 3 × 3
filters that are stacked. The model uses ReLU activation after every layer and
uses max-pooling after stacks of convolutional layers. In the fully connected lay-
ers, dropout with a dropout rate of 0.5 is applied. We used a pre-trained VGG16
trained on the ImageNet dataset by PyTorch [Paszke et al., 2019] to demonstrate
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Figure 6.5: AlexNet architecture for the ImageNet dataset

the feedback selection method presented in Section 4.2.

Figure 6.6: VGG16 architecture for the ImageNet dataset

6.2.4 Hyperparameters

This section gives an overview of the hyperparameters used to train the models.
Table 6.1 shows the hyperparameters that are commonly used for all experiments.
If a parameter is not listed, the default value from PyTorch is used.
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Hyperparameter Value

Learning rate 0.001
Batch size size 256

Table 6.1: Hyperparameters used in the experiments. Same hyperparameters
were used for all experiments

6.3 Experimental Results

In this section, we present the experimental results on the datasets presented
in Section 6.2.1 in the following order, Section 6.3.1 presents Decoy MNIST,
Section 6.3.2 presents Dogs vs. Cats and Section 6.3.3 presents ISIC. The results
show the effectiveness of the method presented in Chapter 5. The method in
Chapter 4 is a subset of the final method presented in Chapter 5. Thus, the
results apply to the method from Chapter 4 too. The method from Chapter 5 is
used with the pipeline presented in Chapter 4.

6.3.1 Decoy MNIST dataset

To observe how much of the original predictive performance is recovered through
model correction, the model was trained with MNIST (7 epochs) and decoy
MNIST. The model trained without decoys has 98.7% accuracy. After adding
decoys, the accuracy drops down to 68.8%. By fine-tuning the model with feed-
back, the difference between the original accuracy is reduced to 2.6%. The decoy
rule has no randomness, which makes it more difficult to recover the original ac-
curacy. Most previous works have feedback on all training samples. In contrast,
this approach has feedback on only 0.3% of the training data, making it more
appealing.

Figure 6.8 and Table 6.4 show that the model focuses less on the decoys after
fine-tuning on feedback. Thus, confirming that the reason the accuracy increases
is because of less focus on decoys after fine-tuning. Figure 6.7 indicates that fine-
tuning increases the accuracy of all classes. However, the model still struggles
more with classes 8 and 9, same as without feedback.
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Attribute No feedback Feedback Without decoy

Epochs 1 15 7
Feedback data size - 0.003 (162) -

Table 6.2: Training statistics. For model with feedback, the epoch is number
of finetuning epochs. The feedback data size is the percentage of the training
dataset size.

Metric No feedback Feedback No decoy

Accuracy 0.688 0.961 0.987
F1 0.688 0.961 0.987
Precision 0.688 0.961 0.987
Recall 0.688 0.961 0.987

Table 6.3: Metrics of test dataset. The F1, precision and recall scores are cal-
culated using macro average since micro average will yield the same result as
accuracy.

Explanation method No feedback Feedback

Saliency 0.040 0.026
DeepLIFT 0.025 0.018
Occlusion 0.156 0.082
Grad-CAM 0.071 0.026

Table 6.4: Attributions overlapping with irrelevant features averaged over all
samples in the test dataset with annotated explanation. The attribution overlap
score is bounded [0, 1] and a lower score is better because it implies less attention
is focused on irrelevant features. For Occlusion, a sliding window of size 3 × 3
was used.
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Figure 6.7: MNIST dataset confusion matrix on test dataset.
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Image No feedback Feedback

Figure 6.8: Samples from the training dataset. Column 2 and 3 display heatmaps
of the samples in column 1. A darker color implies a higher attribution. The
model focuses on both the decoys and digits before feedback. After feedback,
only the digits are used for classifications.
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6.3.2 Dogs vs. Cats dataset

Dogs vs. Cats is the only dataset without any apparent irrelevant features re-
peating in several samples. Therefore, only a slight improvement in the model’s
predictive performance can be seen in Table 6.6 and Figure 6.9. Furthermore,
more feedback data is needed to affect the model as shown in Table 6.5. After
fine-tuning with feedback, attributions overlap more with the animals (see Fig-
ure 6.10 and Table 6.7). Interestingly, explaining not to focus on background
information results in the model focusing on the animals’ faces instead of the
whole body.

No feedback Feedback

Epochs 765 16
Feedback data size - 0.045 (1012)

Table 6.5: Training statistics. For model with feedback, the epoch is number
of finetuning epochs. The feedback data size is the percentage of the training
dataset size.

Metric No feedback Feedback

Accuracy 0.886 0.894
F1 0.887 0.896
Precision 0.918 0.923
Recall 0.857 0.870

Table 6.6: Metrics of test dataset

Explanation method No feedback Feedback

Saliency 0.396 0.384
DeepLIFT 0.405 0.407
Occlusion 0.441 0.379
Grad-CAM 0.393 0.380

Table 6.7: Attributions overlapping with irrelevant features averaged over all
samples in the test dataset with annotated explanation. The attribution overlap
score is bounded [0, 1] and a lower score is better because it implies less attention
is focused on irrelevant features. For Occlusion, a sliding window of size 23× 23
was used.
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Figure 6.9: Dogs vs. cats dataset confusion matrix on test dataset.
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Image No feedback Feedback

Figure 6.10: Samples from the test dataset. After feedback, the model becomes
sharper and focuses more on the animals than the background.
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6.3.3 ISIC dataset

The models were tested both with and without patches to observe the patches’
effect. Table 6.9 and Figure 6.11 show that with patch data, the model without
feedback has better accuracy than the model fine-tuned with feedback. However,
without patch data, the model fine-tuned with feedback has better accuracy.
Moreover, it is more trustworthy based on the explanations (Figure 6.12).

Before feedback, the model uses patches to “cheat” on benign samples. When
patches are removed, the model without feedback has the same number of false
positives and true negatives, classifying benign samples randomly. In contrast,
the model fine-tuned with feedback does not do that. Figure 6.12 demonstrates
that the model with feedback focuses much less on the patches. Table 6.10
displays the same result quantitatively. Also, the positions of the patches appear
not to matter.

Figure 6.11 indicates that the model without feedback predicts random on benign
samples when patches are included. Moreover, the confusion matrix demonstrates
that without feedback, the model is better on malignant samples. We conjecture
that it might be because it uses the information that the malignant samples do
not contain a patch.

No feedback Feedback

Epochs 997 1
Feedback data size - 0.015 (292)

Table 6.8: Training statistics. For model with feedback, the epoch is number
of finetuning epochs. The feedback data size is the percentage of the training
dataset size.

Patch
Precision Recall F1 Accuracy

NF F NF F NF F NF F

Yes 0.280 0.320 0.904 0.798 0.427 0.457 0.815 0.799

No 0.289 0.335 0.904 0.798 0.437 0.472 0.702 0.721

Table 6.9: Performance metrics of the model trained with no feedback (NF) and
feedback (F). The dataset is tested with and without patch data and accuracy is
computed with macro average recall, also known as balanced accuracy.
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Explanation method No feedback Feedback

Saliency 0.154 0.111
DeepLIFT 0.145 0.124
Grad-CAM 0.221 0.071
Occlusion 0.250 0.148

Table 6.10: Attributions overlapping with irrelevant features averaged over all
samples in the test dataset with annotated explanation. The attribution overlap
score is bounded [0, 1] and a lower score is better because it implies less attention
is focused on irrelevant features. For Occlusion, a sliding window of size 23× 23
was used.
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Figure 6.11: ISIC confusion matrix on test data. First row without spurious
features, and second with.
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Image No feedback Feedback

Figure 6.12: Samples from the test dataset with spurious features. Before feed-
back, the model uses irrelevant patches and moles to classify samples. After
feedback, it uses only moles on these samples.



Chapter 7

Evaluation and
Conclusion

This chapter evaluates and discusses our proposed method and its experimental
results presented in Chapter 6. Furthermore, the section details the contributions
made in this thesis and presents an overview of future work directions.

7.1 Evaluation and Discussion

This thesis presents a Bayesian framework that uses explanation feedback to
correct a model so that classification explanations and predictive performance
improve, making the model more trustworthy and understandable. The effec-
tiveness of the proposed approach is shown on one toy dataset (see Section 6.3.1)
and two real-world datasets (see Sections 6.3.2 and 6.3.3). The results indi-
cate that focus on dataset biases are reduced, and the features representing the
data’s true underlying relationship are targeted more distinctly. The proposed
method, therefore, pays less attention to irrelevant features. Furthermore, only
a few annotated explanations and fine-tuning epochs are needed to observe this
effect. We will in this section evaluate and discuss the experimental results from
Section 6.3.

The model trained on the decoy MNIST dataset shows that providing explanation
feedback and fine-tuning the model corrects it. We can observed the improvement
in the different metrics shown in Tables 6.3 and 6.4 and the confusion matrix
in Figure 6.7. Moreover, the improvement is qualitatively seen in Figure 6.8.

103
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The change is expected since the decoys are syntactically added. However, we
can notice that the predictive performance is lower than on the model trained
on MNIST even after model correction. We conjecture that it is due to the
robustness of the decoys. Thus, it is hard for the model to ignore these features
even after fine-tuning. Nevertheless, these results indicate positive answers on
Research questions 2 and 3.

The Dogs vs. Cats dataset has no obvious spurious features the model can over-
fit on. As a result, the model performs well without model correction as seen
in Table 6.6 and Figure 6.9. After the model is fine-tuned with feedback, the
predictive performance does not change much, which is as expected. However,
qualitatively, it is possible to see changes in Figure 6.10. We observe that the
model’s focus is more tightly bounded. Furthermore, this can quantitatively be
observed in Table 6.7. Unlike the decoy MNIST dataset, it is neither easy to ver-
ify nor conclude that explanation feedback has any positive effect on the model
trained on this dataset.

The ISIC skin cancer dataset is similar to the decoy MNIST dataset since they
contain spurious features. Table 6.9 and Figure 6.11 display metrics that shows
model correction improves the model trained on this dataset. Especially notice-
able is when we test the model without samples that contain spurious features.
When samples with spurious features are excluded, the uncorrected model clas-
sifies benign samples randomly. The corrected model, on the other hand, does
not exhibit this behavior. Qualitatively shown in Figure 6.12, we can notice
that most of the attribution on spurious features is removed by model correc-
tion. Furthermore, a similar outcome can be reached by looking at Table 6.10.
Even though the improvement is not as huge as on the decoy MNIST dataset,
we can conclude that model correction works and positively affects the model’s
classification abilities.

The overall results indicate that model correction has a positive effect on a
model’s classification abilities. Only a few explanation feedback is needed dur-
ing fine-tuning to improve a model’s classification abilities even with a random
sampling strategy. The improvement does not generalize well to the Dog vs.
Cat dataset, as that dataset has no apparent spurious features like the other
datasets.

On the downside, we have no good quantification of the actual change in ex-
planations, except for the explanation overlap metrics found in Tables 6.4, 6.7
and 6.10. Those numerical values are lacking since we have no comparison with
other model correction methods. Without comparison with other methods, we
have no intuition about what constitutes good values. Moreover, our experimen-
tal results lack a human-centric evaluation. An explanation may serve different
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purposes, such as raising trust in a model or assisting a user in decision making
[Chander et al., 2018]. Furthermore, explanations may have different stakeholders
and not just ML researchers and domain experts [Ras et al., 2018]. How “good”
an explanation also depends on factors such as user satisfaction and trust assess-
ment [Miller, 2019]. Hence, the evaluation should include not only algorithmic
validation but also human-centric validation, which is lacking.

7.2 Contributions

We propose a pipeline and a Bayesian framework using explanation feedback.
The pipeline makes it possible for users to interact with a model after training
to create explanation feedback. The users create feedback based on the model’s
explanations of training sample classifications. Our Bayesian framework uses
this feedback to correct the model so that explanations and predictive perfor-
mance improve, making the model more trustworthy and understandable. The
contributions made can be summarized as:

1. A pipeline that provides feedback to a model after training (see Figure 4.1).
This avoids imposing restrictions on the model during the training phase
and results in knowledge transfer being interactive and model specific.

2. A Bayesian framework utilizing explanation feedback to correct a model.
The application of Bayesian inference results in a mathematically grounded
objective function.

3. Experimental results, on one toy dataset and two real-world datasets, that
demonstrate the method’s effectiveness. This indicates that only a few
annotated explanations and fine-tuning epochs are required to improve ex-
planations justifying the classifications and the predictive performance.

7.3 Future Work

We see several opportunities for future works. This section describes those pos-
sibilities:

Extending beyond CNN architectures. Model correction methods require
access to the loss gradient. However, we do not know the analytic form of
the gradient’s distribution. Hence, we cannot use the gradient itself as a
target for our analysis. As a result, we proposed a new model correction
method that exploits locality information in feature maps in a CNN. An
exciting and unexplored direction is to extend our methods to other NN
architectures.
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Richer feedback semantics. Rejecting attribution regions is the only supported
feedback semantic for our model correction method. However, a user might
want the model to concentrate on specific regions with low attribution. Al-
ternative feedback semantics have been explored [Selvaraju et al., 2019].
However, this is an emerging field, and much has yet to be researched. We
see this as an essential future direction in order for humans to communicate
with NNs.

Beyond image data. In this thesis, the focus of model correction has been on
image data. Nevertheless, model correction can also be helpful in other
research fields, such as NLP. Model correction methods can be applied
to fix models that are, for example, gender-biased. Therefore, a possible
future direction for this work is textual data. There are already some works
on model correction for textual data that can be of interest to those who
want to explore this path [Liu and Avci, 2019; Selvaraju et al., 2020b;
Lertvittayakumjorn et al., 2020].

Sampling strategies. In this thesis, we used random sampling to find samples
to query for annotation. It is known that random sampling gives the worst-
case performance, and other clever strategies can be used [Settles, 2012].
Our method makes model correction compatible with Bayesian methods.
Thus, we can explore interesting Bayesian active learning strategies [Kirsch
et al., 2019; Gal et al., 2017; Tran et al., 2019] to select samples for anno-
tation.



Appendices

1 Mathematical notation

The following notation system is adapted from Goodfellow et al. [2016].

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

A A tensor

In Identity matrix with n rows and n columns

diag(a) A square, diagonal matrix with diagonal entries given
by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable
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Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the elements of
A that are not in B

Indexing

ai Element i of vector a, with indexing starting at 1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

ai Element i of the random vector a

Linear Algebra Operations

A�B Element-wise (Hadamard) product of A and B

A⊗B Broadcasting and element-wise (Hadamard) product
of A and B
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Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives of y with respect to X∫
f(x)dx Definite integral over the entire domain of x

∫

S
f(x)dx Definite integral with respect to x over the set S

Probability and Information Theory

a⊥b The random variables a and b are independent

a⊥b | c They are conditionally independent given c

P (a) A probability distribution

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

H(x) Shannon entropy of the random variable x

DKL(P‖Q) Kullback-Leibler divergence of P and Q

N (x;µ,Σ) Gaussian distribution over x with mean µ and covari-
ance Σ
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Functions

f : A→ B The function f with domain A and range B

f(x;θ) A function of x parametrized by θ. (Sometimes we
write f(x) and omit the argument θ to lighten nota-
tion)

log x Natural logarithm of x

||x||p Lp norm of x

||x|| L2 norm of x

x+ Positive part of x, i.e., max(0, x)

1condition is 1 if the condition is true, 0 otherwise

Xabs Element-wise absolute value of X

Sometimes we use a function f whose argument is a scalar but apply it to a
vector, matrix, or tensor: f(x), f(X), or f(X). This denotes the application of
f to the array element-wise. For example, if C = σ(X), then Ci,j,k = σ(Xi,j,k) for
all valid values of i, j and k.

Datasets and Distributions

pdata The data generating distribution

p̂data The empirical distribution defined by the training set

X A set of training examples

x(i) The i-th example (input) from a dataset

y(i) or y(i) The target associated with x(i) for supervised learning

X The m×n matrix with input example x(i) in row Xi,:

2 Acronyms

AD automatic differentiation. 5, 59–62

AF active feedback. 66–68

AI artificial intelligence. 1, 3, 62

AL active learning. ix, 4, 25, 26, 66

BBB Bayes by Backprop. 55, 78, 82
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CAM class activation mapping. 43

CAVI coordinate ascent variational inference. 54

CE cross entropy. ix, 14, 15, 46

CNN convolutional neural network. i, 3, 4, 27–29, 31, 39, 43, 44, 69, 78, 80, 81,
87, 89, 105

DeepLIFT deep learning important features. 93, 96, 100

DL deep learning. 1–3, 5, 37, 59–61, 67

ELBO evidence lower bound. 51, 54, 55, 78, 80, 82

F feedback. xiii, 99

FNN feedforward neural network. ix, 9–12, 27

GPU graphics processing unit. 59, 60

Grad-CAM gradient-weighted class activation mapping. x, xi, 43–45, 69, 70,
72, 81, 93, 96, 100

i.i.d. independent and identically distributed. 13, 47, 75, 78, 82

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 89, 90

ISIC International Skin Imaging Collaboration. i, xi, 85, 88, 89, 92, 104

KL Kullback–Leibler. 48–50, 57, 78, 80

LRN local response normalization. 90

LRT local reparameterization trick. 56, 78–80, 82, 83

MC Monte Carlo. 57, 78, 82, 83

MCMC Markov Chain Monte Carlo. 78

ML machine learning. x, 1–5, 7, 8, 18, 19, 32–34, 36–39, 62, 63, 65–67, 78, 105

MNIST Modified National Institute of Standards and Technology. i, xi, 85–87,
92, 94, 103, 104
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MSE mean squared error. 13, 14, 22, 34

NF no feedback. xiii, 99

NLP natural language processing. 27, 106

NN neural network. i, 3–5, 7–13, 16, 17, 19–24, 28, 37, 39, 40, 42, 45, 55, 59–62,
65, 66, 71, 77, 80, 85, 86, 89, 105, 106

OOD out-of-distribution. i, 77

ReLU rectified linear unit. 10, 11, 44, 70, 81, 90

SGD stochastic gradient descent. 15, 16

SLIC simple linear iterative clustering. xi, 72–74

VI variational inference. 5, 78, 80

XAI explainable artificial intelligence. 3, 5, 32, 33, 35, 63
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ABSTRACT

Neural networks (NNs) have shown high predictive performance, however, with shortcomings. Firstly,
the reasons behind the classifications are not fully understood. Several explanation methods have
been developed, but they do not provide mechanisms for users to interact with the explanations.
Explanations are social, meaning they are a transfer of knowledge through interactions. Nonetheless,
current explanation methods contribute only to one-way communication. Secondly, NNs tend to
be overconfident, providing unreasonable uncertainty estimates on out-of-distribution observations.
We overcome these difficulties by training a Bayesian convolutional neural network (CNN) that
uses explanation feedback. After training, the model presents explanations of training sample
classifications to an annotator. Based on the provided information, the annotator can accept or reject
the explanations by providing feedback. Our proposed method utilizes this feedback for fine-tuning
to correct the model such that the explanations and classifications improve. We use existing CNN
architectures to demonstrate the method’s effectiveness on one toy dataset (decoy MNIST) and two
real-world datasets (Dogs vs. Cats and ISIC skin cancer). The experiments indicate that few annotated
explanations and fine-tuning epochs are needed to improve the model and predictive performance,
making the model more trustworthy and understandable.

Keywords Explainable/Interpretable Machine Learning · Bayesian Inference · Deep Learning

1 Introduction

During the 20th century, a horse named Clever Hans was claimed to have performed arithmetic and other intellectual
tasks. However, it was later revealed that the horse responded to the trainer’s involuntary body language cues. The
trainer was unaware that he provided the horse with hints causing it to display intelligent behavior. This behavior is
today referred to as the Clever Hans effect [Pfungst, 1911].

NNs have displayed high predictive performance in many application areas in recent years, but they can focus on
irrelevant features, thereby displaying the Clever Hans effect. We define irrelevant features as features not encoding the
data’s true underlying relationship. To make NNs and other machine learning (ML) methods interpretable and detect
such behavior, several methods for explaining classifications have been developed, specifically for NNs [Zeiler and
Fergus, 2013, Simonyan et al., 2014, Selvaraju et al., 2020, Shrikumar et al., 2019] and other model-agnostic methods
[Ribeiro et al., 2016]. However, these explanation methods do not offer a way to act on the explanations and remove the
Clever Hans effect. As a result, new research has started to explore the possibility of leveraging explanations to remove
or prevent the effect [Ross et al., 2017, Erion et al., 2020, Rieger et al., 2020, Teso and Kersting, 2019, Selvaraju et al.,
2019]. We will refer to these methods as model correction methods.

Explanations are social, meaning they are a transfer of knowledge through interactions or conversations [Miller, 2019].
Many model correction methods work as one-way communication where annotations of irrelevant features need to
be provided before training. However, defining such knowledge about the data before training does not satisfy the
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Figure 1: A “standard” ML pipeline with steps for annotating explanations and correcting a model. During Step 3,
a model explains training sample classifications to a human annotator who gives feedback on those explanations. A
feedback F (i) for a sample i is a matrix of the same width and height as the image. If a feature k, j is irrelevant
F

(i)
k,j = 1, otherwise F (i)

k,j = 0. In Step 4, a model is fine-tuned with training data and feedback. The goal is to improve
the reasons behind the classifications (explanation in Step 3 vs. Step 5) and predictive performance.

explanations’ social aspect. Additionally, defining such knowledge without considering what the model will learn
through training can be challenging, making model correction methods hard to use in practice.

Humans’ trust in models is affected by a model’s confidence in its predictive performance [Zhang et al., 2020]. NNs
are bad at quantifying uncertainty and tend to produce overconfident classifications [Lakshminarayanan et al., 2017].
An overconfident model can be dangerous or offensive [Amodei et al., 2016]. The model can be seen as trying to
gain false trust that will backlash against the model if it makes a wrong decision. Consequently, being overconfident
can reduce trust in the model rather than increase it. Providing reasonable explanations induce trust [Ribeiro et al.,
2016], but explanations generated by these aforementioned explanation methods only capture local behaviors, meaning
an explanation applies only in the vicinity of a sample. This does not give insight into how a model will perform on
out-of-distribution samples. Hence, to resolve model overconfidence, the model must capture aleatoric and epistemic
uncertainty [Lakshminarayanan et al., 2017]. There are several ways to capture epistemic uncertainty; one way is to
frame the NNs within a Bayesian framework that applies inference on the model’s weights [MacKay, 1992, Blundell
et al., 2015].

Model correction and Bayesian inference contribute to robustness and trust in the model. However, they are difficult
to use together because most model correction methods modify the objective function. The modifications do not
necessarily follow probability calculus and can introduce elements with unknown distributions.

For a model to have the correct explanation, classification and model confidence, this work bridges the gap between
model correction and Bayesian inference. Additionally, it takes a step towards making explanations in ML social. We
present a Bayesian framework that uses explanation feedback. After training, a Bayesian CNN presents explanations
of training sample classifications to a human annotator. The annotator can accept or reject the explanations by giving
feedback as additional evidence. Feedback is represented as a matrix with the same width and height as a sample
specifying which attribution regions to reject. This feedback is used during fine-tuning to correct the model such that
the explanations and predictive performance improve.

Our main contributions are: (1) A pipeline that provides feedback to a model after training (see Figure 1). This
avoids imposing restrictions on the model during the training phase and results in knowledge transfer being interactive
and model specific. (2) A Bayesian framework utilizing explanation feedback to correct a model, resulting in a
mathematically grounded objective function from a probabilistic view. (3) Experimental results, on one toy dataset and
two real-world datasets, that demonstrate the method’s effectiveness. This indicates that few annotated explanations and
fine-tuning epochs are required to improve explanations justifying the classifications and the predictive performance.

2 Related Works

Explanation Methods. Several explanation methods have been developed during the past years. These explanation
methods can be divided into model-specific vs. model-agnostic and global vs. local scope [Lipton, 2017]. This work
builds upon methods that create model-specific local explanations for NNs [Zeiler and Fergus, 2013, Simonyan et al.,
2014, Selvaraju et al., 2020, Shrikumar et al., 2019, Sundararajan et al., 2017]. These model-specific local explanation
methods produce importance scores assigned to individual features, e.g., pixels for image data or words for textual data.
We will refer to the importance scores as feature attributions or attributions for short.

2
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Model Correction Methods. The first work in this area is “Right for the Right Reasons” (RRR) [Ross et al., 2017]
that regularize input gradients to suppress irrelevant features in the input space. Similarly, Erion et al. [2020] use
Expected Gradients (a modified version of Integrated Gradients [Sundararajan et al., 2017]) to regularize explanations.
Used in a similar fashion as RRR, contextual decomposition explanation penalization [Rieger et al., 2020] can regularize
feature importance and feature interaction. To encourage NNs to focus on the same input regions as humans, Human
Importance-aware Network Tuning (HINT) [Selvaraju et al., 2019] uses gradients in the last convolutional layer (forward
direction). HINT encourages NNs to focus on certain regions instead of suppressing attributions. Similar to active
learning, but for explanations, Teso and Kersting [2019] proposed using data augmentation to actively correct a model.

Bayesian Inference. Consider a probabilistic model P (e|w), the prior distribution P (w) that encodes the prior
knowledge about the parameter w and the evidence

e = {(X(i),y(i))}ni=1 (1)

with n independent and identically distributed (i.i.d.) samples. We want to compute the posterior distribution

P (w|e) = P (e|w)P (w)

P (e)
(2)

using Bayes rule. However, exact Bayesian inference is intractable, so Markov Chain Monte Carlo (MCMC) algorithms
or variational inference (VI) are used to approximate the weights’ posterior distribution. Although VI is more scalable
than MCMC methods, MCMC methods have an asymptotic guarantee that VI methods do not have. Bayes by Backprop
(BBB) [Blundell et al., 2015] is a VI and backpropagation-compatible method for learning weight distributions. BBB
uses the reparametrization trick [Kingma and Welling, 2014] to calculate a Monte Carlo (MC) estimator of the evidence
lower bound (ELBO) and uses Gaussian variational distributions. To compute the MC estimator of ELBO, samples
are drawn from the weights, which is computationally expensive. To reduce the number of samples needed, the local
reparameterization trick (LRT) [Kingma et al., 2015] was proposed. LRT considers uncertainty at the activation level
(before any nonlinear activation function) by computing the activations before drawing samples. This significantly
reduces the number of samples drawn and makes it computationally cheaper.

Example 1 (LRT for a fully connected layer) Let layer l be a fully connected layer with weights Wm×r where
qλ(Wi,j) = N (µWi,j

, σ2
Wi,j

) ∀Wi,j ∈W and biasesBt×r where qλ(Bi,j) = N (µBi,j
, σ2

Bi,j
) ∀Bi,j ∈ B. Given an

input Zt×m, the activation of layer l is U = ZW +B of size t× r where

qλ(Ui,j |Z) = N (γi,j , δi,j) ∀Ui,j ∈ U (3)

γi,j =
m∑

k=1

Zi,kµWk,j
+ µBi,j

, δi,j =
m∑

k=1

Z2
i,kσ

2
Wk,j

+ σ2
Bi,j

. (4)

A new weight matrix is sampled for every training sample to reduce estimator variance, which has a computational
complexity of O(tmr). By sampling activations rather than weights, the computational complexity is reduced to O(tr).

Example 2 (LRT for a convolutional layer) Let layer l be a convolutional layer with a convolutional filter Ww′×h′×c̄

where qλ(vec(W)) = N (vec(M),diag(vec(V2))) is a fully factorized Gaussian. Given an input Zw̄×h̄×c̄, the activation
of layer l is U = Z ∗W of size ŵ × ĥ where

qλ(vec(U)|Z) = N (µU ,σ
2
U ) (5)

µU = vec(Z ∗M), σ2
U = diag(vec(Z2 ∗ V2)) (6)

is treated as a fully factorized Gaussian. We define vec(·) as a vectorization function, (·)2 as an element-wise operator,
∗ as a convolution operator and diag(·) as a diagonal matrix.

3 Variational Inference and Explanation Feedback

Section 3.1 outlines the pipeline to construct feedback and correct a model (Step 3 and 4 in Figure 1). Sections 3.2
and 3.3 outline the objective function used in the fine-tuning phase and how feedback is induced into a model by adding
additional evidence to e.

3
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3.1 Feedback Pipeline

There might be prior knowledge available about a dataset, e.g., digits are centered in the Modified National Institute of
Standards and Technology (MNIST) [LeCun et al., 1989] dataset. In this case, we can make a model focus on the center
and ignore the edges during training. However, this kind of knowledge might not be needed and can unnecessarily
regularize the model. Moreover, constructing such knowledge without knowing what the model will learn through
training can be difficult. If irrelevant features were known before training, training data could be preprocessed instead
of introducing a new technique. We propose a pipeline where, unlike most previous work, the model asks for feedback
after training. By asking for feedback after training, we can define knowledge specifically targeted at the model.

The pipeline adds two additional steps to a “standard” ML pipeline (Step 3 and 4 in Figure 1). During Step 3, a
human annotator provides explanation feedback on training sample classifications. For explanation-generation, any
saliency-based methods can be used, e.g., Gradient-weighted Class Activation Mapping (Grad-CAM) [Selvaraju et al.,
2020]. To determine samples for annotation, active learning sampling strategies can be used. However, it is not obvious
how to measure explanations’ informativeness, so we leave this issue for future work. During the experiments, samples
are annotated uniformly at random because the goal of our analysis is a proof of concept and not a fully specified
pipeline.

As for Step 4, a model is fine-tuned using feedback and training data. The evidence and the objective function used for
fine-tuning will be described in the coming sections.

3.2 Add Explanation Feedback to Evidence

We want to compute the posterior distribution P (w|e) of the weights of a NN. The evaluation involves computation of
intractable integrals. Therefore, approximation techniques are used. VI is one of the most widely used and defines a
variational distribution qλ(w) that is used to approximate the posterior distribution by minimizing the Kullback–Leibler
(KL) divergence DKL(qλ(w)‖P (w|e)). Minimizing the KL divergence is equivalent to maximizing the ELBO

LELBO = Eqλ(w)[logP (e|w)]
︸ ︷︷ ︸

Likelihood

−DKL(qλ(w)‖P (w))︸ ︷︷ ︸
Complexity

. (7)

Let X(i)w×h×c be an observation with the label y(i), a feedback of the sample i is a matrix F (i) ∈ {0, 1}w×h given by
a human annotator. If a feature k, j is irrelevant F (i)

k,j = 1, otherwise F (i)
k,j = 0. Furthermore, let f be a Bayesian CNN

that takes X(i) as input and outputs the logit vector f(X(i)) = ŷ(i).

Consider input gradients ∇X(i)

∑
j ŷ

(i)
j of the observation X(i) that can be used as an explanation that specifies feature

attributions.
H(i) = F (i) ⊗ (∇X(i)

∑

j

ŷ
(i)
j ) (8)

is the attributions on irrelevant features that we want to minimize. ⊗ signifies broadcasting and an element-wise product.
To include explanation feedback, we add additional evidence to e

egrad = e ∪ {H(i) = 0}ni=1 (9)

where we set H(i) = 0 to constrain attributions on irrelevant features, which is similar to previous work [Ross et al.,
2017].

However, the distribution of the input gradients is unknown and it is hard to find analytically. Not knowing the
distribution makes us unable to calculate the likelihood in Equation (7) with egrad as evidence. One way to solve this
issue is to look at some quantity with known distribution instead of the input gradients. Although weight distributions
are known, it is not trivial to map feedback given in the input space to the parameter space. Therefore, we use the LRT
to consider the activation distributions and map the feedback to activation space. Examples 1 and 2 describe how to
obtain activation distributions.

In the next section, we show how considering the uncertainty at the activation level enables us to approximate the
evidence egrad with an alternative formulation for which the likelihood can be expressed analytically.

We use CNNs since the activations in convolutional layers retain spatial information. The spatial information is needed
to map feedback defined in the input space to corresponding activations. An additional advantage of using activations
rather than input gradients is reduced computational complexity since second-order partial derivatives are not needed.

4
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3.3 Methodology

This section details how to add feedback to e using activations rather than input gradients. We do this by describing
how to map the feedback from input to activation space. Moreover, we describe how to compute Equation (7) with the
new evidence eact (to be defined in Equation (13)); something we could not do with egrad.

Consider the same setup as in Section 3.2. Let A(i) ∈ Ru×v×d (u ≤ w, v ≤ h) be feature maps (before any nonlinear
activation function) of the last convolutional layer (forward direction) obtained by forward passing X(i). The last
convolutional layer is used since it contains the highest abstraction level of features [Zeiler and Fergus, 2013, Zhou
et al., 2015, Selvaraju et al., 2019].

3.3.1 Map Feedback from Input to Activation Space

The feedback will be mapped to the activation space to include it in the evidence e. We do this in two steps:
(1) downsample the feedback to the width and height of the feature maps A(i) and (2) find activations in A(i) spatially
overlapping with the feedback and affecting the classification.

We downsample the feedback F (i) to the width and height of A(i) by computing

J (i) = AdaptiveMaxPool(F (i), (u, v)). (10)
The function AdaptiveMaxPool(Z,o) takes a matrix Z and uses max-pooling to transform it to size o = (o1, o2). This
operation is similar to how Grad-CAM interpolates attribution maps to the input space to visualize explanations. Next,
we find entries in J (i) that overlap with A(i) by calculating

G(i) = A(i) ⊗ J (i). (11)
CNNs often use rectified linear unit and max-pooling, implying that classifications are only affected by a subset of the
activations. Therefore, activations not used in the classification will be excluded by computing

L(i) = G(i) � 1
(∇A(i)

∑
j ŷ

(i)
j )6=0

(12)

to zero out entries in G(i) that do not affect the classification. L(i) is a tensor representing the activations that affect the
classification and overlap with all indices k, j where J (i)

k,j = 1. The goal is to find the random variables where values in

L(i) 6= 0 are drawn from. We will refer to those activations as a(i)
F . The remaining activations in the network will be

denoted a(i)
Fc . We substitute input gradients with activations and add feedback to e by defining

eact = e ∪ {a(i)
F = 0}ni=1 (13)

The process of finding a(i)
F incurs an extra forward pass.

3.3.2 Compute the ELBO with Additional Evidence

In this section, we show how to compute the ELBO with eact. We follow Kingma et al. [2015] and consider
uncertainty at the level of activations. This implies that the expectation in Equation (7) will be computed with
respect to qλ(a

(i)
Fc ,a

(i)
F |X(i)) rather than qλ(w). qλ(a

(i)
Fc |X(i),a

(i)
F = 0) will be written as qλ(a

(i)
Fc) for short.

LELBO(X(1), ...,X(n)) =
∑n

i=1 L
(i)
ELBO(X

(i)) since the samples are i.i.d. We can reformulate Equation (7) as a loss
function using activations and the evidence eact for a single sample i as

L(i)
LRT =

1

n
DKL(qλ(w)‖P (w))− E

qλ(a
(i)
Fc )

[logP (e
(i)
act |a(i)

Fc)]. (14)

Expanding e(i)
act in the log probability in Equation (14) gives

log(e
(i)
act |a(i)

Fc) = logP (y(i),a
(i)
F = 0|X(i),a

(i)
Fc)

= logP (y(i)|a(i)
F = 0,a

(i)
Fc) + logP (a

(i)
F = 0|X(i),a

(i)
Fc)

(15)

where a(i)
Fc and a(i)

F are treated as fully factorized Gaussians. To compute Equation (14), we follow the result of
BBB and approximate the negative log-likelihood by applying MC sampling. When both qλ(w) and P (w) are fully
factorized Gaussians, the complexity term can be calculated in closed form [Kingma and Welling, 2014]. Equation (14)
is an objective function that uses the evidence eact to incorporate feedback from an annotator and is theoretically justified
from a probabilistic perspective, making it mathematically grounded. Moreover, we do not need a hyperparameter that
deals with feedback penalty; instead, the objective function trades-off between complexity and data.
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Dataset Precision Recall F1 Accuracy

NF F NF F NF F NF F

Decoy MNIST 0.725 0.970 0.725 0.970 0.725 0.970 0.725 0.970
Dogs vs. Cats 0.918 0.923 0.857 0.870 0.887 0.896 0.886 0.894
Skin cancer 0.280 0.320 0.904 0.798 0.427 0.457 0.815 0.799

Skin cancer NP 0.289 0.335 0.904 0.798 0.437 0.472 0.702 0.721
Table 1: Performance metrics of the model trained with no feedback (NF) and feedback (F). For decoy MNIST, all of
the metrics are calculated using micro average. The skin cancer dataset is tested with and without patch data (NP) and
accuracy is computed with macro average recall, also known as balanced accuracy.

Example 3 (How to approximate Equation (14)) Consider w ∈ Rj , where the prior P (w) = N (0, I) and the
approximate posterior qλ(w) = N (µ, diag(σ2)) are both fully factorized Gaussians. Hence, Equation (14) can be
approximated as

L(i)
LRT ≈

1

2n

j∑

i=1

(µ2
i + σ2

i − 1− log σ2
i )

− 1

m

m∑

t=1

[logP (y(i)|a(i,t)
F = 0,a

(i,t)
Fc ) + logP (a

(i,t)
F = 0|X(i),a

(i,t)
Fc )].

(16)

m is the number of MC samples.

To summarize, feedback defined in the input space by an annotator is mapped to the activations. The feedback is
included by adding it as additional evidence to e. During Step 2, the model is trained with e as the evidence and
Equation (7) as the objective function. As for Step 4, to fine-tune the model, Equation (14) is used as the objective
function with eact as the evidence.

4 Experiments and Results

The goal of our experiments is to display the effect of our proposed pipeline and model correction method. We
demonstrate our work on one toy dataset, decoy MNIST [Ross et al., 2017] and two real-world datasets, Dogs vs. Cats
[Kaggle, 2014] and The International Skin Imaging Collaboration (ISIC) skin cancer [Codella et al., 2019].

The LeNet [Lecun et al., 1998] architecture was used for decoy MNIST. LeNet models were trained for 100 epochs
with early stopping. The AlexNet [Krizhevsky et al., 2012] architecture with batch normalization [Ioffe and Szegedy,
2015], but without dropout was used for Dogs vs. Cats and ISIC skin cancer. AlexNet models were trained for 1000
epochs with early stopping. Both LeNet and AlexNet models were saved at the best validation F1 score. All models
were trained with a batch size of 256. The Adam optimizer [Kingma and Ba, 2017] with a learning rate of 0.001 and a
prior P (w) = N (0, 0.12I) were used. Samples to annotate with feedback were chosen uniformly at random, as stated
in Section 3.1.

To quantify attribution changes before and after feedback, attributions overlapping with irrelevant features were
computed using four methods (see Table 2): Saliency [Simonyan et al., 2014], Deep Learning Important FeaTures
(DeepLIFT) [Shrikumar et al., 2019], Grad-CAM and Occlusion [Zeiler and Fergus, 2013]. Consider an attribution

mask T(i)w×h×v (v is the number of channels that depends on the method and the model) of sample i for one of
the attribution methods. k is the number of samples in the test dataset with annotated explanation (not used in the
fine-tuning process). The attribution overlap in Table 2 is computed as

1

k

k∑

i=1

|| vec(F (i) ⊗ T(i))||1
|| vec(T(i))||1

(17)

where || · ||1 is the `1 norm operator. The effect of fine-tuning with feedback for a few samples from the test datasets
(not used in the fine-tuning process) can be seen in Figure 2.
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Original image No feedback Feedback

(a) Decoy MNIST. The model focuses
on both the decoys and digits before
feedback. After feedback, only the dig-
its are used for classifications.

Original image No feedback Feedback

(b) Dogs vs. Cats. After feedback, the
model becomes sharper and focuses
more on the animals than the back-
ground.

Original image No feedback Feedback

(c) ISIC skin cancer. Before feedback,
the model uses irrelevant patches and
moles to classify samples. After feed-
back, it uses only moles on these sam-
ples.

Figure 2: Explanations before and after fine-tuning with feedback visualized on samples from test datasets. DeepLIFT
was used for decoy MNIST and Grad-CAM for both Dogs vs. Cats and ISIC skin cancer to visualize explanations.

Dataset Saliency DeepLIFT Grad-CAM Occlusion

NF F NF F NF F NF F

Decoy MNIST 0.080 0.031 0.078 0.019 0.063 0.025 0.181 0.050
Dogs vs. Cats 0.396 0.384 0.405 0.407 0.441 0.379 0.393 0.380
Skin cancer 0.154 0.111 0.145 0.124 0.221 0.071 0.250 0.148

Table 2: Attributions overlapping with irrelevant features averaged over all samples in the test dataset with annotated
explanation, as described in Section 4. The attribution overlap score is bounded [0, 1] and a lower score is better
because it implies less attention is focused on irrelevant features. For Occlusion, a sliding window of size 3× 3 was
used for decoy MNIST and 23× 23 for the other two datasets.

4.1 Decoy MNIST

The MNIST dataset consists of 28× 28 grayscale images of digits. The training data has 60000 samples and the test
data has 10000 samples. There are ten classes: 0, 1, ..., 9. Decoy MNIST is a modified version of MNIST where
every sample in the dataset has a 4× 4 square in each corner (see Figure 2a). In the training data, the decoys’ colors
correspond with the label of the digit y, (255− 25y) and in the test data, the colors are randomly drawn. This decoy rule
is a modified version of the one found in Ross et al. [2017], where only one corner has a decoy and is drawn randomly.
The training data was divided into 90% (54000 samples) for training and 10% (6000 samples) for validation. The model
was trained for 1 epoch without feedback and fine-tuned for 17 epochs. 0.4% (189 samples) of the training samples
were annotated with feedback.

To observe how much of the original predictive performance is recovered through model correction, the model was
trained with MNIST (7 epochs) and decoy MNIST. The model trained without decoys has 98.7% accuracy. After
adding decoys, the accuracy drops down to 72.5%. By fine-tuning the model with feedback, the difference between the
original accuracy is reduced to 1.7%. The decoy rule has no randomness, which makes it more difficult to recover the
original accuracy. Most previous works have feedback on all training samples. In contrast, this approach has feedback
on only 0.4% of the training data, making it more appealing.

Figure 2a and Table 2 show that without feedback, the model focuses on the decoys. After fine-tuning with feedback,
the attributions on the decoys are significantly reduced.
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4.2 Dogs vs. Cats

The Dogs vs. Cats dataset consists of RGB images of dogs (label 0) and cats (label 1) (see Figure 2b). All images in the
dataset are scaled to 227× 227. It has training data of 25000 samples and test data of 12500 samples, but the latter does
not have labels. Thus, only the training data is used and divided as follows: 90% (22500 samples) training, 5% (2500
samples) validation and 5% (2500 samples) test. For the construction of feedback, a pretrained DeepLabV3 ResNet101
[Chen et al., 2017] semantic segmentation network was used. F (i)

k,j = 1 when index k, j does not overlap with an
animal. This tells the model to not focus on background information. The model was trained for 765 epochs without
feedback and fine-tuned for 16 epochs. 4.5% (1012 samples) of the training samples were annotated with feedback.

Dogs vs. Cats is the only dataset without any apparent irrelevant features repeating in several samples. Therefore, only
a slight improvement in the model’s predictive performance can be seen in Table 1. Furthermore, more feedback data is
needed to affect the model. After fine-tuning with feedback, attributions overlap more with the animals (see Figure 2b
and Table 2). Interestingly, explaining not to focus on background information results in the model focusing on the
animals’ faces instead of the whole body.

4.3 ISIC Skin Cancer

The version of the ISIC skin cancer dataset by Rieger et al. [2020] that we used has 21654 samples where 2284 are
malignant (label 1) and 19370 are benign (label 0). Of those benign samples, 48% (9209 samples) have colorful patches
(see Figure 2c). Feedback for samples in this dataset are regions that contain those colorful patches because they
are irrelevant for the classifications. The dataset was divided into 90% (19488 samples) training, 5% (1083 samples)
validation, and 5% (1083 samples) test. The model was trained for 997 epochs without feedback and fine-tuned for 1
epoch. 1.5% (292 samples) of the training samples were annotated with feedback.

The models were tested both with and without patches to observe the patches’ effect. Table 1 shows that with patch data,
the model without feedback has better accuracy than the model fine-tuned with feedback. However, without patch data,
the model fine-tuned with feedback has better accuracy. Moreover, it is more trustworthy based on the explanations
(Figure 2c).

Before feedback, the model uses patches to “cheat” on benign samples. When patches are removed, the model without
feedback has the same number of false positives and true negatives, classifying benign samples randomly. In contrast,
the model fine-tuned with feedback does not do that. Figure 2c demonstrates that the model with feedback focuses
much less on the patches. Table 2 displays the same result quantitatively. Also, the positions of the patches appear not
to matter.

5 Conclusion and Future Works

We propose a pipeline and a Bayesian framework using explanation feedback. The pipeline makes it possible for users to
interact with a model after training to create explanation feedback (summarized in Figure 1). The users create feedback
based on the model’s explanations of training sample classifications. Our Bayesian framework uses this feedback to
correct the model so that explanations and predictive performance improve, making the model more trustworthy and
understandable. The effectiveness of the proposed approach is shown on one toy dataset and two real-world datasets.
The results indicate that focus on dataset biases are minimized, and the features representing the data’s true underlying
relationship are targeted more distinctly. Thus, paying less attention to irrelevant features. Furthermore, few annotated
explanations and fine-tuning epochs are needed to observe this effect.

We see several opportunities for future works, including: (1) sampling strategies for finding samples to ask for annotation,
(2) extending beyond CNN architectures and (3) richer feedback semantics; currently, only rejection of attribution
regions are supported.
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