
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Aanesland, Elvemo Sebastian
Tolnes, Andreas

Development of a system for
retrieving vessel data for SINTEF
Ocean

Retrieval of time series data

Bachelor’s project in Software Engineering
Supervisor: Alexander Holt

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Aanesland, Elvemo Sebastian
Tolnes, Andreas

Development of a system for retrieving
vessel data for SINTEF Ocean

Retrieval of time series data

Bachelor’s project in Software Engineering
Supervisor: Alexander Holt
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

This bachelor thesis was completed during the winter and spring of 2021 for

NTNU in collaboration with SINTEF Ocean and follows a standard structure

set by NTNU.

As more companies and nation states realize that the ocean is a treasure trove

of data and unexploited resources, the need to collect and transfer vast amounts

of data far from developed telecommunication infrastructure will be increasing

in the next couple of decades. This was what led to interest into how to ef-

ficiently provide data services while in areas with connectivity and bandwidth

issues. As new needs for stored data expands, the need to use it even in remote

areas such as the arctic, which is becoming more and more relevant for global

players for each passing year, go with it. In the future this need could expand

from the oceans and frontiers of our planet, to that of the solar system and

beyond. Knowing more about how to optimize this now could save time and

resources where they are lacking the most in the future. The team also appre-

ciates how this look into compression and transfer efficiency in systems could

help better areas often overlooked by corporate interests as they are not user

heavy. Whether this be a backwater in terms of infrastructure and wealth, or

an area sparsely populated, the users need for data transmission won’t change

based on their location.

We wish to thank our contacts at SINTEF for their support and their enthusi-

asm in supporting our research. NTNU, and our councillor Alexander Holt in

helping us keeping our research on track and focused. We would also like to

thank our fellow student Odd-Erik Frantzen for his help in the early stages of

the project with planning and writing up documentation.

Sebastian A. Elvemo:

——————————————————

Andreas Tolnes:

——————————————————

i

Problem Statement

Below is a translation of information taken from the original problem statement

provided to NTNU by SINTEF[1]:

SINTEF Marine Data center collects data from various sources, including data

logged from vessels. This data could be valuable for research and for shipping

companies. We require a solution which provides such data through an API.

Tasks:

-Set up server functionality via Flask or similar.

-Functionality which allows for reading NetCDF files.

-Create functionality for creating data-sets with lower time resolutions.

-Create an API for easy access of data and metadata.

Possible additions:

-Create functionality for pre-processing and filter data.

-Handle data across multiple vessels.

-Access control functionality.

SINTEF can set up a service for testing actual data, and provide data sets

for testing purposes.

ii

Abstract

Large amounts of data is logged on sensors each year which SINTEF receives.

But no system that SINTEF currently has can fulfill the task of storing, analyz-

ing and and retrieving this data efficiently. This means that currently the data

is of little value, as a technician would have to dig in the stored files themselves

to extract the data they want. The data is often spread over multiple files,

which is labour intensive and time could be spent better elsewhere.

To solve this, a system for handling uploads of NetCDF data and queries for

this data was designed. Thus, whenever needed, the uploaded data could be

accessed by a user of the system. Since the amount of data being logged by

SINTEF could be enormous, a priority was placed on efficiency.

The chosen solution is a FastAPI server connected to an Influx database. The

API then allows for querying against this database to get the data required. The

application is written in Python and designed as a REST API with inspirations

from GraphQL. To improve the efficiency of the queries, multiple compression

techniques were added, including reformatting the response, using lower data

resolutions, GZip, and more. As the size of the data transferred scales up-

wards, the gains from implementing such solutions will result in larger returns

on performance and perceived speed. The application can eliminate 98% of su-

perfluous data transferred through the compression methods used.

This report goes in detail through technology choices and methodology, as well

as detailing the results of the project split into categories for easier reading.

iii

Table of Contents

Preface i

Problem Statement ii

Summary iii

Definitions and Acronyms viii

1 Introduction and relevance 1

1.1 Background . 1

1.2 Research Question . 1

1.3 Goals . 2

1.4 Report Structure . 2

2 Theory 3

2.1 Previous research . 3

2.1.1 Automating data pipelines for analysis of wave data . . . 3

2.2 Compression . 3

2.2.1 Caching . 3

2.2.2 Lossless Compression . 4

2.2.3 Resolution Scaling . 4

2.2.4 Response Time Analysis 4

2.3 Networking . 5

2.3.1 Bandwidth . 5

2.3.2 Packets . 5

2.3.3 Packet Loss . 5

2.3.4 Query . 6

2.3.5 Response . 6

2.4 System Architecture . 6

2.4.1 Agile Development . 6

2.4.2 Collaboration Tools . 6

2.4.3 Version Control . 6

3 Technology and method 7

3.1 Technology . 7

3.1.1 Discord . 7

3.1.2 FastAPI . 7

iv

3.1.3 Git . 8

3.1.4 InfluxDB . 9

3.1.5 Server-side caching . 9

3.1.6 Jira . 10

3.1.7 LaTeX . 10

3.1.8 Microsoft Teams . 11

3.1.9 Python . 11

3.1.10 REST . 12

3.2 Method . 13

3.2.1 Development Team Roles 13

3.2.2 Kanban . 13

3.2.3 Response data structure 14

3.2.4 Gzip . 14

3.2.5 Delta encoding . 15

3.2.6 Delta-of-delta encoding 15

3.2.7 Caching . 16

4 Results 17

4.1 Scientific Results . 17

4.1.1 Gzip . 17

4.1.2 ISO vs Unix epoch . 18

4.1.3 Response data structure 20

4.1.4 Delta and Delta-delta encoding 24

4.1.5 Base case vs best case . 25

4.2 Engineering Results . 26

4.2.1 Goals . 26

4.2.2 User Needs . 27

4.3 Administrative Results . 28

4.3.1 Project Handbook . 28

4.3.2 Time Management . 28

4.3.3 Development Process . 29

5 Discussion 30

5.1 Design Choices . 30

5.1.1 Database solution . 30

5.1.2 Programming languages 30

5.1.3 Flask and FastAPI vs Django 31

v

5.1.4 REST vs GraphQL . 31

5.2 Scientific Results . 32

5.2.1 Encoding . 32

5.2.2 Compression . 32

5.2.3 Summary . 32

5.3 Engineering Results . 33

5.3.1 Goals . 33

5.3.2 User Needs . 34

5.4 Administrative Results . 35

5.4.1 Time Management . 35

5.4.2 Development Process . 36

5.5 Teamwork . 36

6 Conclusion and Analysis 37

6.1 Future work . 38

7 References 39

8 Attachments 42

Problem Statement . 56

vi

List of Figures

List of Figures vii

1 Using RTA to find the bottleneck in response efficiency. 4

2 An example of a networking packet 5

3 Showing branching and merging in git[18] 8

4 Issue tracking on the project as shown in Jira 10

5 Example makeup of a REST URL.[28] 12

6 Percentage reduction between Gzipped and non-Gzipped requests. 17

7 Percentage reduction from responses using ISO vs Unix epoch

without GZip. 18

8 Percentage reduction from responses using ISO vs Unix epoch

with GZip. 19

9 List format vs key-value format reduction with GZip 22

10 List format vs key-value format reduction without GZip 23

11 Delta vs Delta-delta vs No encoding 24

12 Reduction from base case to best case. 25

13 Showing total hours spent for the different team members over

time. 28

14 Showing time allocation based on activity. 35

vii

Definitions and Acronyms

Backend the part of software used by the frontend to store data,

run calculations and acquire data.

CRC Cyclic Redundancy Check is a type of error checking

where the number of bytes is checked against received

data to make sure no data has been lost.

DBMS Database management system.

Devops Development Operations, issue-tracking, planning, etc.

Frontend the part of software which displays information to the user.

Git Branch parallel sub-repository that allows for testing and alternate

development.

HTTP Etag Hash that enables cache verification to the web server letting

the server refrain from sending the full response to the client.

InfluxQL Influx Query Language, used by InfluxDB and is built on a

modified version of SQL.

Kanban an agile development method focusing on small teams

and flexibility.

Mbps Megabytes per second, a transfer speed descriptor.

NDA Non-disclosure agreement.

NetCDF file-type used to store sensor data with timestamps.

NTNU Norwegian University of Science and Technology.

Packet Header contains control data for the packet such as source and

recipient.

Packet Trailer contains data signifying the end of the packet and error

checking such as CRC.

Python a multi-purpose, high-level programming language.

REST Representational state transfer, an architectural style in

software used to create hierarchical web services.

RTA Response time analysis, a method for finding bottlenecks in

database query time.

Scrum an early agile development method focusing on teams with

clear leadership structure and development sprints.

SQL Structured Query Language, a programming language for

handling database operations in relational databases

Unix epoch Amount of seconds since 1st of January 1970.

Used in Unix systems to denote date and time.

viii

1 Introduction and relevance

1.1 Background

In the modern day the amount of data transferred over networks has never been

higher. And with the trend showing no signs of slowing down, some industries

already face issues with poor network infrastructure where they operate. Among

these industries are maritime and space-based industries.[2]

Maritime industries have multiple needs for data transferred from networks,

be they navigational for their computer systems, sensor data uploaded to stor-

age, or other communication systems.

The possibility then to lower the amount of data sent over these struggling net-

works should be of the highest priority, especially given that this information

can be life-saving. Because of this, looking into such possibilities is the purpose

of the research done in this thesis alongside the creation of an application to fit

the needs given by SINTEF in their problem statement.

1.2 Research Question

To pinpoint the exact focus for the the thesis, the following research question

was chosen:

”How can a system more efficiently provide data from large data-sets over low

bandwidths”

To give some insight on this in a succinct way, reducing the resolution of the

data, data-restructuring, and compression will be at the forefront of the devel-

opment approach of the project.

1

1.3 Goals

Bullet-pointed below are the goals as found in the vision document for the

project. These goals describe expected results in terms of features of the fin-

ished product.[3]

• Create an API which can be used to obtain ship data in a usable form.

• Implement a GraphQL solution for requests up against a database.

• Deal with authentication and security of access of data.

1.4 Report Structure

The thesis report will be split into sections detailing different aspects of the

project. Firstly, an overview of relevant theory for the thesis will be covered.

This will be followed by a description of the technology used, and the method

used to collect data on which to base the conclusions. Thirdly, a discussion of

the results found will be detailed along with possible improvements that or flaws

in the project. This will be followed by a conclusion and an analysis of further

research that could expand upon the findings.

2

2 Theory

The main focus of this thesis is on lowering the amount of data requirement to

be transmitted, and as such, terminology related to compression and networking

is included below. Included is also theory related to specific tools and methods

used during the development of the application. The section will start with a

look into previous research done in related fields.

2.1 Previous research

2.1.1 Automating data pipelines for analysis of wave data

This bachelor thesis from NTNU written in 2019 was also concerning streamlin-

ing data analysis pipelines using caching, REST, and a database. The system

they created also used NetCDF data for the research. The database in ques-

tion was not a time-series database, but was instead a standardized relational

database built on SQL, and other than caching, nothing was done to reformat

the response or otherwise compress the output as that was outside the scope of

their thesis.

The research done here however does clearly show that many different sec-

tors can benefit from streamlining their data storage, and analysis systems. In

addition, it allows for comparison in terms of systems created for storing and

analyzing NetCDF data. [4]

2.2 Compression

2.2.1 Caching

Within computing, caching details a storing method for data that is general

and might be requested multiple times in the future. This is done in a way that

another request for this information can be rerouted, skipping the entire need

for another query against the database. This is useful for data that is transient,

or might otherwise be asked for multiple times without the data changing in

any way between these requests.[5]

3

2.2.2 Lossless Compression

Whenever data is compressed through a method so that it can be reconstructed

back into the original data sequence, this is called lossless compression. Most

of the compression methods used in this thesis are lossless. [6]

2.2.3 Resolution Scaling

Another method of compression is lowering the resolution of the data. In a

time-series, this would mean aggregating multiple points into one, making the

data less precise, but depending on the scale of the data, the amount of loss

would differ. An example of this would be to scale a time-series from records of

every second, to every third second.

2.2.4 Response Time Analysis

RTA is a method of evaluating database query efficiency, by looking for where

the biggest bottlenecks in querying happens, which then makes it easier to focus

on these parts to get the greatest rewards early on when developing solutions,

before moving on to smaller bottlenecks once the large ones have been resolved.

A diagram showing an example of discovering the bottleneck to work on next,

is shown below: [7]

Figure 1: Using RTA to find the bottleneck in response efficiency.

4

2.3 Networking

2.3.1 Bandwidth

The maximum data transfer rate of an internet connection is called the band-

width of that connection. Bandwidth is measured in Mbps, and although it is

used to describe transfer speed, in reality it describes the amount of data that

can be transferred at any one time, as travel-time of the data itself tends to be

negligible due to the speed of fiber-optic communication systems. [8]

2.3.2 Packets

Whenever data is transmitted online, it is done so through sending collections of

bytes called packets. The entire packet is made up of a series of bytes, with the

header starting it, followed by the payload, and ending with the trailer. Packet

bytes are split into two parts, the control information, and the payload. The

control information consists of directions for delivering the data, including the

recipient address, source, and error codes. This information is usually found

in either the header, or trailer of the message. The payload consists of the

information that the packet is delivering.[9]

Figure 2: An example of a networking packet

2.3.3 Packet Loss

When accessing a network or the internet, packets will be transferred. These

packets can fail to reach their destination and this is called packet loss. When-

ever this happens, the receiver of the data will have to be resent the information,

and if this happens frequently it will manifest as the system hanging while it

waits for the data.[10]

5

2.3.4 Query

Whenever a user requests data to be sent from a database this will be done

through sending in a query to this database. The query will differ depending

on the Query Language of the DBMS, the most common being SQL. Based on

the instructions in the query, the database will then respond by sending out a

response, which is sent back to the user.[11]

2.3.5 Response

The data sent back from a database after having received a query. This data

will usually be organized into rows and columns, with all the data from the

relevant tables and fields required by the query.

2.4 System Architecture

2.4.1 Agile Development

This describes a method of development where the goal is to be able to quickly

respond to change. Agile development therefore puts priority on frequent client

interactions and rapid deployment and iterations during development. Another

big departure from previous waterfall style development methods is taking focus

away from superfluous paperwork, only creating the most needed such as a vision

document or a domain diagram.[12]

2.4.2 Collaboration Tools

Tools that serve to aid communication and cooperative work are called col-

laboration tools. These can include programs that allow for file-sharing, video

conferences, conference calls, cooperative writing of documents and more. Ex-

amples of collaboration tools include software as disparate as Zoom, Overleaf,

Discord, and Google documents.[13]

2.4.3 Version Control

Version control systems allow multiple developers to work alongside each other

without them risking overwriting the work done by others while keeping records

of all changes made to the project. This is done through maintenance of a

central repository of files, which can only be updated upon the system granting

the user access.[14]

6

3 Technology and method

This chapter will go over the technology and method used during the develop-

ment of the project. This will be broken down into a subsection going over the

technology, followed by a section going over the development methods used.

3.1 Technology

3.1.1 Discord

Discord is a collaboration tool offering both audio/video calls, and private

servers with a combination of audio channels, and text and image channels.[15]

Discord was the main method of communication within the team during the

project. Whereas most of the communication with SINTEF was done through

email or Microsoft Teams.

3.1.2 FastAPI

FastAPI is a micro framework for developing web applications. Micro in this

case meaning that it does not contain its own database abstraction layer, or any

components that might be better handled by other third-party libraries. In this

way, FastAPI is created to be useful as a base framework to build upon, while

being very flexible in the way that this is done.[16]

FastAPI was chosen early on as the framework to use for the project. This came

about as it seemed highly malleable, and because of the various development

approaches that would be tested out for this project, this was on the forefront

of the list of requirements the team considered in choosing a framework.

7

3.1.3 Git

Git is an open-source version control system, designed for software developments

of all sizes. A useful feature of Git is branching out different ’sub-repositories’,

where the developers can work independently from updates in the central repos-

itory, and then later attempt to merge it back into the main branch. Branching

out from the central ’master’ branch, and only merging back finished or polished

releases is standard practice and something that was followed during develop-

ment.[17]

Figure 3: Showing branching and merging in git[18]

Bitbucket is a repository-hosting service run by Atlassian. It offers an easy to

use UI overview of the repository, as well as options for CI, integration with

other software such as Jira and Trello, and strong cloud security.[19]

In the early stages of the project a git repository was set up, using a private

Bitbucket repository. This was owned by SINTEF, which meant that through

all stages of development, SINTEF had access to the project to prepare for

meetings or to ask questions. Development of features were also worked on in

branch offshoots of the /dev branch of the project repository, which were only

added to the /dev branch after having been reviewed by another member in

the development team. As such other developers were kept in the loop about

what had been worked on recently, as well as giving an extra layer of protection

against buggy implementations making it into the /dev branch.

8

3.1.4 InfluxDB

InfluxDB is a an open-source database system specializing in handling time

series data. It uses a modified query language built upon the SQL, named In-

fluxQL.

The data analyzed in the project were logs of different sensors from watercraft.

Such data falls under the category of time-series data as it is logged periodically

based on time. Usually such data would be simple to store, as sensors log a

consistent number of points over a certain time span creating a series. But the

removal and addition of sensors could happen at any time on a vessel, so the

need for something that could dynamically handle such scenarios was of upmost

importance. InfluxDB was suggested as a fitting candidate, given that it’s mea-

surement system is dynamic, and would allow for ease of inputting new data

between already existing time-series data in the database. [20]

3.1.5 Server-side caching

The choice how to cache server-side data was a relatively simple one. The

requirements were ease of use and the ability to store and retrieve data quickly.

Since these are rather basic requirements, the choice became between Redis and

memcached. As memcached is the simpler of the two with a straightforward

Python library to interface with, and easy setup through Docker, it became a

suitable choice for this use case.[21]

9

3.1.6 Jira

Jira is a collaboration tool that covers issue tracking on projects. It is owned

and developed by Atlassian, which means it integrates well with the rest of their

software suite such as Bitbucket. [22]

Figure 4: Issue tracking on the project as shown in Jira

In the very beginning of the project, the development team used Azure, but

finding that SINTEF had existing Jira infrastructure set up integrated to their

Bitbucket services, the project got moved over to Jira and Bitbucket. During

development, issue tracking on Jira was used for big developments, using the

issue tracking, which was divided into a front-end and back-end compartment

as the team was also working in tandem, albeit separately, from another team

developing a UI for the application.

3.1.7 LaTeX

A typesetting system used for writing documents with a high academic stan-

dard. Overleaf is an online collaboration tool for writing LaTeX documents in

a team.[23]

LaTeX and Overleaf were used by the team in creating this thesis paper in

an organized way while working physically apart from each other.

10

3.1.8 Microsoft Teams

Teams is a collaboration tool focusing on providing video conferencing to pro-

fessional and academic settings. The service also offers a chat feature within

groups called ’teams’, where files can also be shared.[24]

Teams was used to share files with SINTEF, particularly documentation such

as NDA’s. It was also used to communicate with SINTEF about meetings, but

since they had an internal version of the application, that made it harder to use

appropriately. In the end, most of the communication ended up happening over

email.

3.1.9 Python

A high-level interpreted general-purpose programming language. It is multi-

paradigm-ed, and has thousands of modules to build on its framework. It fits

well for projects both small and large in scope.[25]

Early on in the planning stage the team was contemplating whether to use

Python or C#, and went for Python as it had better integrations with previous

tools used by SINTEF, had more use to them for further development, and its

modularity served well for interfacing with InfluxDB.[26]

11

3.1.10 REST

REST is an architectural style for web services, which uses a layered system for

collecting data. To be considered RESTful, a service must fulfill the following:

1. Client and server separation.

2. The service must be considered stateless.

3. The service must be cache-able.

4. The service must have a uniform interface.

5. The service must be layered.

A signature feature of REST is that it uses URL input to send requests to

the server, an example is shown below:[27]

Figure 5: Example makeup of a REST URL.[28]

Initially during development, GraphQL was chosen rather than REST due to the

system being more ideal for creating precise requests. But issues apparent with

the GraphQL schema system for the intended purpose was discovered during

development. The development team then pivoted to using a modified version

of REST.[29]

12

3.2 Method

3.2.1 Development Team Roles

Early on during development the team established main fields of development.

The team was using Kanban however, so there were no hard splits in team

members only working on one aspect, but rather a system where one person

had the main responsibility of one development branch. Meanwhile the others

assisted where necessary with expounding on the frameworks. As development

went further along, this became less and less relevant, and toward the end there

was no such split at all. All documentation such as the vision document was

done together in collaboration in the introductory stages of the project.

Sebastian did the main work early on doing NetCDF imports into InfluxDB,

and upload improvements and testing.

Andreas set up the flask and Influxdb systems, as well as testing with GraphQL.

During meetings Andreas also kept records, and that was one role that stayed

throughout the project.

Odd-Erik did a basic framework of authentication systems before he left the

project.

3.2.2 Kanban

Kanban is an agile development method focusing on transparency and maximiz-

ing inter-team communication to increase productivity. During the development

process, issues are tracked and moved along a Kanban-board showing their state

of development.[30]

During the development process the team used Kanban to develop the prod-

uct, finding the issue-board useful to track issues still needing to be done, and

to track the progress of the other members of the team. The Kanban board was

on Jira, and most of the communication given the shutdowns due to Covid was

done through Discord, and Teams.

13

3.2.3 Response data structure

One way to serve data is forwarding the raw query object from the database.

In some instances this might lead to the data being formatted in a character

heavy format, such as key-value pairs. Time series lend themselves useful to be

represented as a list of points at a given time, where the first entry of the list

contains metadata, and the subsequent entries only contain the actual data the

client requested.

If a character heavy format is used, there can be significant gains to be made

by restructuring the data before serving it across the web.

3.2.4 Gzip

Gzip is the most widely supported compression algorithm for HTTP content

across the web with built in functionality in most modern web browsers and

server frameworks. The most common version is the GNU Project’s LZ77 com-

pression, and compresses the content type of the request. It obtains a good

balance between extra processing for client and server, and reduction in pack-

age sizes.[31]

As Gzip is implemented in a large majority of modern web browsers and web frame-

works, this is decisively the easiest measure available to reduce package sizes. Since

Gzip is built into most web frameworks, it is very likely to be available to most API

developers and API consumers. As such it is highly relevant to test.

14

3.2.5 Delta encoding

Delta encoding, or delta compression, is a method for transmitting or storing sequential

data in the form of differences between subsequent data points, also known as data

differencing. In the context of time series, delta encoding performs greatly when

applied to repetitive data such as time stamps and continuous data streams that

changes over time. This works by keeping the difference between the previous and

current value if the two values are subsequent, thus removing the need to store the

actual value.

For example a given series of bytes 6, 2, 4, 2, 2, 3. This can be represented as 6, -4, 2,

0, 0, 1. This reduces the variance which allows the use of fewer bits to represent the

same data.

If the data or time stamps can be encoded efficiently, then relative changes can be

transferred instead of absolute values, as much of the interest of time series data are

changes recorded from one value to another. And if the absolute values are needed,

these can be easily reconstructed from the relative.

3.2.6 Delta-of-delta encoding

Delta-of-delta encoding (or delta-delta encoding) is delta encoding applied twice to

the given data. This method removes even more redundant information by storing

the difference of the previous difference. Time stamps is a prime candidate for this

method, as normally one would record data at a given interval, and as long as that

interval is largely consistent, then that data is superfluous.

For example a given series simplified Unix epoch timestamps 16015, 16016, 16017,

16018, 16020. This series of timestamps can be represented with 16015, 1, 0, 0, 1.

Assuming the recorded timestamp is consistent, the representation can be made up of

smaller integer numbers.

15

3.2.7 Caching

A cache is a middle layer between the server requesting data, and the database serving

the data. The cache is usually smaller in size than the database, but a lot faster or

closer to the server to access the data stored on the cache quicker than the database.

When data is requested several times by the server, it can choose to store some of the

data on the cache before it sends it out to the client. Next time the client asks for

the same data again, the server can ask the cache for the same data back, which then

enables a quicker response time.

As time series data in essence is immutable, caching of parameterized queries is an

excellent way of improving the query time of the API. The client is very likely to request

the same data multiple times for different display or analysis purposes. Creating a hash

of the query that includes all parameters, ensures that every unique query has it’s own

hash and can be referenced in the cache. As the database or the web server might

apply several heavy aggregations or mutations to the result before sending it out to

the client, the subsequent calls to the expensive query can reduce the call time by

several factors.

By also offering the same or a different hash based on the same parameters as an

HTTP Etag, the client can choose to cache the data on the client machine, effectively

reducing the call to a simple exchange of header information between the server and

client.[32]

16

4 Results

This chapter will go over the findings of the project and will be broken up into sections.

The first subsection will cover scientific results, the second will cover the engineering

results, and the last the administrative results.

4.1 Scientific Results

Below are the scientific results of the project; the results dealing with answering the

research question outlined in the first chapter of the thesis. The results are broken

down into subsections covering the various methods for clarity.

4.1.1 Gzip

Figure 6: Percentage reduction between Gzipped and non-Gzipped requests.

As observed by the graph above, GZip is incredibly efficient and can easily reduce the

package size of repetitive data such as time series by over 90 % without loss. As such

it fulfills the necessary prerequisites for being called lossless compression.

17

4.1.2 ISO vs Unix epoch

Another way of reducing package size is to use Unix epochs instead of ISO for time

stamps, as epochs can be represented with integers (Or decimals for higher resolution).

Unlike ISO which is represented by a string that includes the traditional symbols

humans use to distinguish different time sections such as years and months, and hours

and minutes, epochs are made to be read by machines and don’t need superfluous

characters to distinguish units of time. Changing from ISO to Unix epoch proved

itself necessary in order to implement other encoding techniques, but converting from

ISO to epoch does have value in and of itself.

Figure 7: Percentage reduction from responses using ISO vs Unix epoch without

GZip.

18

Figure 8: Percentage reduction from responses using ISO vs Unix epoch with

GZip.

When paired with Gzip, the package size reduction almost more than doubles com-

pared to the package that hasn’t been zipped. This is a recurring effect when combining

different encoding techniques and compression algorithms that are based on the slid-

ing window protocol.[33] As epochs contains more repeating characters for each time

stamp than the ISO format, the algorithm will have more compression potential.

19

4.1.3 Response data structure

With InfluxDB as the database, a raw unaltered response from a query containing

three different data points, would look like the following piece of example code:

Listing 1: Time series as key-value pairs (207 Bytes)

1 {

2 "measurement": {

3 "data1": {

4 "2020 -10 -01 T00 :37:04": 123.5,

5 "2020 -10 -01 T00 :37:05": 124.4

6 },

7 "data2": {

8 "2020 -10 -01 T00 :37:04": 12345.2,

9 "2020 -10 -01 T00 :37:05": 2368.6

10 },

11 "data3": {

12 "2020 -10 -01 T00 :37:04": 10.2,

13 "2020 -10 -01 T00 :37:05": 10.1

14 }

15 }

16 }

In this example, each data point is represented as a key-value pair in a bigger parent

dictionary. The values of each time stamp is accessed by using the time stamp as the

key for each of the data points. For this particular response the size is 207 Bytes for

3 x 2 rows of floating point data.

If the same data were to be conveyed in a list format, where the actual wanted values

are contained in sub-lists in a parent list, the amount of bytes transferred can be

reduced drastically.

20

Listing 2: Time series as list of points (129 Bytes)

1 {

2 "result": [

3 [

4 "timestamp",

5 "data1",

6 "data2",

7 "data3"

8],

9 [

10 "2020 -10 -01 T00 :37:04",

11 123.5,

12 12345.2,

13 10.2

14],

15 [

16 "2020 -10 -01 T00 :37:05",

17 120.4,

18 2368.6,

19 10.1

20]

21]

22 }

The overall data was reduced from 207 bytes to 129 bytes, a total reduction of 78

bytes, or 37.68 % of the total data transmitted. This shows a very clear improvement

as no non-duplicate data was lost during the transmission of the newer format. This

means that the method satisfies the conditions for lossless compression.

With larger data sets, the difference starts to become significantly more noticeable.

21

Figure 9: List format vs key-value format reduction with GZip

When run through a script that called the end point for an increasing amount of data,

from 1 000 to 20 000 rows incremented by 1 000 for each request, a reduction up to

56.25 % was observed, with an average of 54.45%.

22

Figure 10: List format vs key-value format reduction without GZip

If Gzip compression is not applied, the difference between the key-value format and

list format is even greater, with an average of 62.64%. This is probably because the

contents of the reformatted package contains less repetitive data that can be com-

pressed by GZip, which then lowers the observed yield from having a more efficient

response format and GZip compression applied at the same time.

23

4.1.4 Delta and Delta-delta encoding

Delta encoding of the time stamps demonstrates a clear improvement of the package

size with a consistent reduction of just shy of 16.5%. As delta encoding is simple to

implement and requires very little processing, it shows itself to be a viable measure to

take when trying to reduce the total load transferred.

Figure 11: Delta vs Delta-delta vs No encoding

Delta-of-delta encoding is almost as simple as delta encoding, but in theory should

yield greater gains when used on values with higher variance or when data is recorded

sparsely. As time stamps usually is recorded at a consistent interval, the variance of

the difference between each time stamp is close to, if not, flat out zero. When the

data set is comprised of measurements taken each second, the extra encoding makes

little difference. If the sampled data is recorded every hour, delta-delta encoding gave

a reduction of 0.46% from standard delta encoding.

24

4.1.5 Base case vs best case

When the base case object representation from the database is used as the final re-

sponse format, lots of redundant data is included in the response. The best case

scenario uses a more efficient list format, Gzip compression, Unix epoch for times-

tamps, and Delta-of-Delta encoding. When pitched against each other, the observed

reduction reached a max of 98.4% with an average of 98.23%.

Figure 12: Reduction from base case to best case.

25

4.2 Engineering Results

Below the results compared to the goals and requirements set in the vision docu-

ment for the project will be outlined, with special focus on the most relevant during

development coming first.

4.2.1 Goals

• Create an API which can be used to obtain ship data in a usable form

The web-application created can both serve data, and data can be added to it, both

fulfilling the requirements set up in the vision document. When data is to be uploaded,

the data should be in the form of a NetCDF file, which can be read and uploaded to

the database. Queries made against the system can be made for single, multiple, or

all fields. The time-scope specifications for the queries are also malleable. Multiple

compression methods also make the serving of data less network intensive.

• Implement a GraphQL solution for requests up against a database.

During development this was switched to a REST implementation, and as such the

goal is fulfilled partly, although not by a GraphQL implementation. Rather a pseudo-

GraphQL solution that uses POST requests with a body that contains the fields to

be fetched, similarly to GraphQL. The solution is still mostly based on basic REST

principles.

• Deal with authentication and security of access of data

Because of the time constraints due to the sudden absence of one of the team-members,

this goal was not fulfilled in a satisfying manner. In the final product, no authentica-

tion system, nor way of isolating sensitive data from other users exists.

26

4.2.2 User Needs

• Access data from NetCDF files

Done through the netcdf handler.py script in the application. The netcdf to dataframe

function accepts a file, which is then made into a dataframe and uploaded to the

database.

• Reorganize Data

Data requested is represented in the UI created alongside the request, and reorgani-

zation of the data can be done by requesting specific data and make that into new

dataframes.

• Return relevant data

Queries can be sent to the application through the interface created, and it will return

the relevant data to the user.

• Access control

Access control was planned, but not completed due to an unforeseen absence in the

team late in development.

• Indepth security

Like access control, the focus on this was scrapped when it became apparent that the

scope was bigger than could be reasonably accomplished after the departure of one of

the team-members.

• Aggregation and calculation of sensitive data

Lowering the resolution of the data requested allows for aggregation and calculation of

said interpolated results. On the security side nothing was finished, given the reasons

stated above.

• Fast responses

Multiple compression and aggregation techniques are employed to provide faster re-

sponses. Among them, the response is made more efficient before it is sent to the

user.

27

4.3 Administrative Results

This subsection will go over the administrative results, which are a subset of results

related to time and overall project management.

4.3.1 Project Handbook

Gannt Diagram

In the planning phases of the project a Gannt Diagram for development, breaking the

project up into weeks was set up. Although not highly specific, it provided an outline

for what would be acceptable progress during the project. Although the development

did not include design sprints as found in Scrum, the diagram helped the team keep an

overall gauge of progress. Multiple deviations were eventually made from the Gannt-

Diagram, mainly dealing with authentication and security.[34]

4.3.2 Time Management

Figure 13: Showing total hours spent for the different team members over time.

From the chart above the hours spent working on the project can be seen over the

weeks the project was active. For a more detailed analysis of the individual days and

weeks, this can be found in the project handbook.

28

4.3.3 Development Process

Throughout the development, the team used Kanban as the development methodol-

ogy, using Jira and the as an issue-tracker. The team also used the Gannt Diagram

as a gauge of how development was going on a larger scale.

Git branching helped the individual developers work separately and test features with-

out impeding the progress of others, and a system of needing approval of another

team-member before merging back into the main development branch helped make

sure that no sudden bugs emerged during development.

Daily descriptors of the work done that day was also written with the time-sheet sub-

mitted, making it easier to compare the actual results to the planned results. Weekly

notes on what was completed that week was also made, and all of this documentation

is put in the project handbook in the attachment section of the thesis.

29

5 Discussion

This chapter will discuss the findings in the results chapter and go over possible changes

that could be done to achieve better results.

5.1 Design Choices

This subsection will cover alternative design choices, and their possible benefits over

the chosen technologies.

5.1.1 Database solution

Postgres with the TimescaleDB plugin was an alternative that enables normal rela-

tional tables in Postgres to coexist with a specialized time series tables on the same

instance. As the need for traditional relational databases are not present, and the

advantages of a schema-free dedicated time series database, made InfluxDB a natural

choice for this use case, and remains the better option for other projects like it.

5.1.2 Programming languages

There were two main choices discussed early during the planning, Python and C#.

They both have robust libraries and frameworks for web API development and are

fairly easy to work with given large amounts of troubleshooting sites and wide use.

C# with its good relationship between performance, development speed and access

to third- and first- party libraries is a good choice for any web API and is a strong

contender.

Python as a popular data processing platform with multiple open-source libraries is a

fitting candidate for this kind of API as well. Even though Python is a less performant

language, it still manages to keep up with heavy loads as demonstrated with its use in

popular websites like Instagram.[35] Python with its data processing capabilities and

quick development speed, as well as all parties involved being more familiar with the

language and surrounding libraries, made it a natural choice for this project.

30

5.1.3 Flask and FastAPI vs Django

The two most popular web server frameworks for Python, are Flask and Django. Flask

is lightweight and extension based, while Django is a full-stack aimed at delivering web-

sites.[36]

Since Flask is very flexible and enforces little-to-no rules, it suits itself well to ex-

perimentation and creativity, rather than Django that is strict in how it wants the

application to behave. Another new library that is a contender for Flask’s position, is

FastAPI by Sebastián Ramı́rez. It shares very similar syntax with Flask, and its main

selling point being its ease-of-use when it comes to asynchronous operations, better

performance, and self-documentation with the usage of strong typing and models.

As performant requests was a priority in this case, FastAPI was chosen for its similar-

ity with Flask, with the extra performance and features that can improve the result

of processing queries.

5.1.4 REST vs GraphQL

GraphQL at the onset of the project seemed like a natural choice, as the user can pick

and choose what kind of data it wants, which falls in line with the need for smaller

responses. As neither the database solution, nor GraphQL is in widespread use, there

are currently no good libraries available to help with the mapping of models and the

contents of the database. And the uncertain nature of the data, means that models

and access methods would have to be generated dynamically, which proved itself to

be unnecessarily complicated, creating a performance hit.

It was then decided to use a basic REST architecture as the base of the project, and

then develop a more ad-hoc GraphQL solution that suited the projects needs more.

Similarly to GraphQL, the main way of fetching data is to send a POST request with

a body that specifies which data the user wants extracted.

Other more standard REST-endpoints are made available to document what is avail-

able on the database in place of GraphQL’s schema system.

31

5.2 Scientific Results

Within this subsection an analysis of the results gathered to answer the research

question will be contained.

5.2.1 Encoding

Delta encoding of time stamps showed a clear improvement over having now encoding

at all, while being easy to implement the encoding server side, and decoding client

side. Delta-of-delta is not much more complicated to implement, but didn’t yield

noticeable improvement. This is because of the consistency of the data used. It might

play a bigger role if the data is inconsistently recorded and when combined with other

encoding or compression methods such as simple-8b or run-length encoding which can

encode repeated binary values. This was not experimented or tested with in this paper.

5.2.2 Compression

This paper experimented mostly with the standard Gzip implementation built into

most web frameworks today. The result showed a drastic reduction in package size

with minimal processing time.It was also observed that other methods of compression

or encoding impacts the efficiency of Gzip. But this is mostly due to other methods

reducing the amount of repetitive data, as such since Gzip is a lossless compression

algorithm, it has a higher percentage of unique data patterns to conserve. Rather

than lots of repetitive data that can be compressed away. Removing repetitious data

was also experimented with. In one method rows containing only a timestamp change,

without any other field change would be removed from the data. In this way the

timestamps would only show the times data was changing. The system created for

this however did not work as expected and was cut due to it using processing time,

but it did not remove any rows in data experimented with given the very large number

of fields in the data. The chance that all of them would remain static apart from the

timestamp was so small that this did not yield much in terms of results.

5.2.3 Summary

All of the methods that were experimented on in this paper except Delta-delta en-

coding, showed a clear reduction of package size when applied to a real world data

set. As such, when trying to compress data using RTA, the focus should be in the

future on implementing all the methods with the biggest changes first. When all of

the tested methods were applied at once, the observed reduction reached up to 98.4%,

with an average of 98.23%. Easily implemented, the gains to be made when done so,

are significant with very little overhead from processing on the server.

32

5.3 Engineering Results

This subsection will be evaluating certain results dealing with the vision document

goals and user needs.

5.3.1 Goals

• Create an API which can be used to obtain ship data in a usable form

During the development, this goal was found to be too vague to be very useful in

guiding development decision other than the most rudimentary choices of features.

A possible way of improving it would be to more clearly convey what a usable form

would entail, and more precise language dealing with functionality than ’obtain ship

data’.

• Implement a GraphQL solution for requests up against a database.

Many difficulties were faced by the team throughout the development, particularly

dealing with the GraphQL schemas and how to accurately fetch the data needed in

a way that wouldn’t result in many unnecessary database requests, and piecing the

results together to one cohesive HTTP response.

• Deal with authentication and security of access of data

An important aspect to the lack of a security and authentication system is of course an

ethical one. If software cannot ensure the privacy and security of information handed

over to it, the chances for the loss and theft of this information is increased.

If the team had known from the beginning that a member would drop out half-way

through the project, the focus on security and authentication would have been dropped

completely. This would have come to pass as SINTEF had informed the team during

a preliminary meeting that if security and authentication features were to be imple-

mented, they needed to be implemented well.[26] Otherwise they could be dropped

entirely, and be the focus of future development by SINTEF after the end of the

project instead. As such, when faced with the decision of what to cut, the security

features were chosen.

Implementing a system for web-tokens and using that for authentication would be a

natural implementation that could be done later on, which, along with a login system

on the front-end could allow the system to easily interpret which users were allowed

what data.

33

5.3.2 User Needs

• Aggregation and calculation of sensitive data

The need for isolating sensitive data in particular was not met, as this would be a part

of the authentication service that was cut to save on time after the departure of Odd-

Erik Frantzen. This would have been a valuable addition because of ethical concerns

considering the security of private corporate information, but as the application will

not be going live until further work on these systems is done, the team feels certain

that this issue will be resolved in a satisfying manner.

• Reorganize Data

More work could have been done to merge the application with the front-end devel-

opment, thereby creating a better user experience when uploading and querying for

data. As that is outside of the scope of the development however, and as time was of

limited supply, this was cut to focus on more pressing features.

• Fast responses

High focus was put on this need as it served both the creation of the application and

the answering of the research question for the thesis. As such, this is the need best

satisfied by the end product.

34

5.4 Administrative Results

An analysis of the results dealing with the project handbook, development method,

and time-budgeting will be contained in this subsection.

5.4.1 Time Management

Figure 14: Showing time allocation based on activity.

The figure above shows the time allocation spent on various branches of development

during the project from data seen in the project handbook attachment in the report.

From this, some facts are striking.

As can be seen in figure 13, development started slowly, ramping up in the second half

of March, around day 45. This is due to other intensive courses the team-members

were working on simultaneously which ended in March. The graph therefore shows a

steady workflow after that point, with deviations, but holding a general trend-line to

the target hours worked.

Compared to initial time budgeting in the vision document, more time was allocated

in the end to documentation and planning. The planning part can however be seen as

time given to development, atleast in part, as the research into compression algorithms

and technology to be used for development takes up the majority of that section if

analyzed closer.

35

5.4.2 Development Process

Using Kanban presented many issues, the majority of them due to lack of previous

experience with the process in the team. Issue tracking became too vague and included

issues with too large of a scope early in the development. This made multiple devel-

opers cover the same functionality in different fashions as they fell under the topic of

the larger issue. The time spent on this work could have been better spent at polish,

or implementing features that were in the end cut from the product to save on time

after the departure of one team-member.

In addition, Jira was not integrated well into the schedule of some team members,

ending up with making the issue-tracking only useful to outside parties wanting over-

sight of development, rather than internally. This can be clearly seen in the time used

for devops in the project handbook or in figure 14

5.5 Teamwork

The different team-members had varying degrees of skill with both Python and the

various disciplines like networking and compression. Because of this, teamwork and

the ability to communicate clearly was very important, and for the most part the

team-work was steady and productive.

A major set-back came when just a month away from the project being delivered,

the team received notice that Odd-Erik had pulled out of the project due to personal

reasons. As he had been in charge of setting up authentication for the project, the

remaining team-members decided to skip out on those features completely because of

the time-crunch now placed on getting the other features done by the deadline.

Otherwise, disputes were solved through discussion and reasoned argument, and if

this project was to be done again, more focus should have been placed on making sure

that all team-members were more aware of personal issues right when they happened,

rather than finding out later on. This would be especially helpful as the longer it

takes to discover an issue, an exponential amount of time is needed to fix the defects

stemming from it.[37]

36

6 Conclusion and Analysis

The research question covered throughout this thesis was:

”How can a system more efficiently provide data from large data-sets over low band-

widths”

Throughout the development, the biggest issue relating to answering the research

question has been the staggering amount of different compression algorithms, tech-

niques and different tools that were possible to integrate into the application. To deal

with this, it was decided early on to focus on breaking the tools and methods into

categories, and trying only the best fit within each category on the application, as the

time constraints would otherwise ensure that the project would not be completed in

a satisfactory manner.

With that stated however, the results clearly show that with restructuring and oth-

erwise compressing the result before sending it back to the user, 98.23% of the data

can be eliminated on average, ensuring that vital communication services, and sensor

transmissions in places with limited telecommunication infrastructure can continue.

As such, the performance of such systems can be improved in the inverse of this per-

centage, as transfer speeds are limited by poor bandwidth.

The web-application created for the purpose of researching this topic is fully func-

tional and all code is currently in a repository run by SINTEF, which will use it to

further develop it.

37

6.1 Future work

The completed API, although successful at its intended purpose has many possible

additions that would be beneficial to reach an optimal satisfaction of the user needs

described in the vision document.

The first important addition would be a better front-end service both for visualizing

the data fetched from the server, as well as creating a more user friendly environ-

ment. This was being developed by another team as a project for NTNU, and as such

combining it with the API would be a natural next step in the evolution of the product.

Additionally, security and authentication services are also a natural next step, as

combining it up with a better front-end would lend it well to create a log-in system,

which would be vital in maintaining customer confidence through ensuring the privacy

of their vessel data from other users.

Looking further into removing data from fields that doesn’t change between times-

tamps would also be a possible next step if the compression should be further im-

proved. Such a solution should remove data from fields when they haven’t changed

from the previous timestamp, ensuring lossless compression.

Other methods of binary compression or encoding can further reduce the package

size when used in conjunction with methods tested in this paper. Examples of meth-

ods to further test is simple-8b or XOR-based compression for floating point numbers.

The methods tested in this paper can also be applied to more data fields if the data is

known to be integers or floating point numbers, and might reduce the size even more.

38

7 References

[1] Problem Statement, Attachment A.

[2] How much data is generated each day? (Last Visited: May 19, 2016).

url: https://www.weforum.org/agenda/2019/04/how-much-data-is-

generated-each-day-cf4bddf29f/.

[3] Vision Document, see ZIP file with attachments.

[4] Magnus Conrad Gjelseth-Borgen Trym Vegard; Hyll. E39 Fjordkryssing:

Automatisering av data-pipeline for analyse av bølgedata. 2019.

[5] Caching Overview. (Last Visited: May 19, 2016). url: https://aws.

amazon.com/caching/.

[6] Lossless Compression: An Overview. (Last Visited: May 19, 2016). url:

https://cs.stanford.edu/people/eroberts/courses/soco/projects/

data-compression/lossless/index.htm.

[7] Response Time Analysis: How to Improve Database Performance by Mea-

suring User Experience. (Last Visited: May 19, 2016). url: https://

logicalread.com/response-time-analysis/#.YJNRELUzZPY.

[8] Bandwidth. (Last Visited: May 19, 2016). url: https://techterms.com/

definition/bandwidth.

[9] What is a packet? (Last Visited: May 19, 2016). url: https://computer.

howstuffworks.com/question525.htm.

[10] What is Packet Loss? (Last Visited: May 19, 2016). url: https://www.

forcepoint.com/cyber-edu/packet-loss.

[11] Database Queries. (Last Visited: May 19, 2016). url: https://teachcomputerscience.

com/database-queries/.

[12] Agile 101. (Last Visited: May 19, 2016). url: https://www.agilealliance.

org/agile101/.

[13] Michael; Page Carie L. Lomas Cyprien; Burke. Collaboration Tools. 2008.

[14] What is Version Control? (Last Visited: May 19, 2016). url: https:

//www.perforce.com/blog/vcs/what-is-version-control.

[15] Discord. (Last Visited: May 19, 2016). url: https://discord.com/.

[16] FastAPI. (Last Visited: May 19, 2016). url: https://fastapi.tiangolo.

com/.

39

https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://aws.amazon.com/caching/
https://aws.amazon.com/caching/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossless/index.htm
https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossless/index.htm
https://logicalread.com/response-time-analysis/#.YJNRELUzZPY
https://logicalread.com/response-time-analysis/#.YJNRELUzZPY
https://techterms.com/definition/bandwidth
https://techterms.com/definition/bandwidth
https://computer.howstuffworks.com/question525.htm
https://computer.howstuffworks.com/question525.htm
https://www.forcepoint.com/cyber-edu/packet-loss
https://www.forcepoint.com/cyber-edu/packet-loss
https://teachcomputerscience.com/database-queries/
https://teachcomputerscience.com/database-queries/
https://www.agilealliance.org/agile101/
https://www.agilealliance.org/agile101/
https://www.perforce.com/blog/vcs/what-is-version-control
https://www.perforce.com/blog/vcs/what-is-version-control
https://discord.com/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/

[17] Git. (Last Visited: May 19, 2016). url: https://git-scm.com/.

[18] Branching figure git page. (Last Visited: May 19, 2016). url: https :

//git-scm.com/about.

[19] Bitbucket. (Last Visited: May 19, 2016). url: https://bitbucket.org/.

[20] InfluxDATA. (Last Visited: May 19, 2016). url: https://www.influxdata.

com/.

[21] What is Memcached? (Last Visited: May 19, 2016). url: https : / /

memcached.org/.

[22] Jira. (Last Visited: May 19, 2016). url: https://www.atlassian.com/

software/jira.

[23] The LaTeX Project. (Last Visited: May 19, 2016). url: https://www.

latex-project.org/.

[24] Microsoft Teams. (Last Visited: May 19, 2016). url: https : / / www .

microsoft.com/en-us/microsoft-teams/group-chat-software.

[25] Python. (Last Visited: May 19, 2016). url: https://www.python.org/

about/.

[26] Meeting with SINTEF 01.18.2021, see project handbook.

[27] What is REST. (Last Visited: May 19, 2016). url: https://restfulapi.

net/.

[28] REST example url. (Last Visited: May 19, 2016). url: https://frontend.

turing.edu/lessons/module-3/rest-architecture-and-urls.html.

[29] 4 reasons why you should use GraphQL over REST APIs. (Last Visited:

May 19, 2016). url: https://dev.to/blessingartcreator/stop-

using-rest-for-apis-53n.

[30] Kanban: What is it? (Last Visited: May 19, 2016). url: https://www.

atlassian.com/agile/kanban.

[31] Compression Tests: Results. (Last Visited: May 19, 2016). url: https://

web.archive.org/web/20120321182910/http://www.vervestudios.

co/projects/compression-tests/results.

[32] FastAPI. (Last Visited: May 19, 2016). url: https://datatracker.

ietf.org/doc/html/rfc7232#section-2.3.

40

https://git-scm.com/
https://git-scm.com/about
https://git-scm.com/about
https://bitbucket.org/
https://www.influxdata.com/
https://www.influxdata.com/
https://memcached.org/
https://memcached.org/
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://www.latex-project.org/
https://www.latex-project.org/
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.python.org/about/
https://www.python.org/about/
https://restfulapi.net/
https://restfulapi.net/
https://frontend.turing.edu/lessons/module-3/rest-architecture-and-urls.html
https://frontend.turing.edu/lessons/module-3/rest-architecture-and-urls.html
https://dev.to/blessingartcreator/stop-using-rest-for-apis-53n
https://dev.to/blessingartcreator/stop-using-rest-for-apis-53n
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban
https://web.archive.org/web/20120321182910/http://www.vervestudios.co/projects/compression-tests/results
https://web.archive.org/web/20120321182910/http://www.vervestudios.co/projects/compression-tests/results
https://web.archive.org/web/20120321182910/http://www.vervestudios.co/projects/compression-tests/results
https://datatracker.ietf.org/doc/html/rfc7232#section-2.3
https://datatracker.ietf.org/doc/html/rfc7232#section-2.3

[33] Philip Bille et al. “Lempel-Ziv Compression in a Sliding Window”. In: 28th

Annual Symposium on Combinatorial Pattern Matching (CPM 2017). Ed.

by Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter. Vol. 78.

Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-

many: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 15:1–15:11.

isbn: 978-3-95977-039-2. doi: 10.4230/LIPIcs.CPM.2017.15. url: http:

//drops.dagstuhl.de/opus/volltexte/2017/7331.

[34] Gannt Diagram, see project handbook in attachments.

[35] What Powers Instagram: Hundreds of Instances, Dozens of Technologies.

(Last Visited: May 19, 2016). url: https://instagram-engineering.

com/what-powers-instagram-hundreds-of-instances-dozens-of-

technologies-adf2e22da2ad.

[36] Why Django?

[37] Maurice Dawson et al. “Integrating Software Assurance into the Software

Development Life Cycle (SDLC)”. In: Journal of Information Systems

Technology and Planning 3 (Jan. 2010), pp. 49–53.

41

https://doi.org/10.4230/LIPIcs.CPM.2017.15
http://drops.dagstuhl.de/opus/volltexte/2017/7331
http://drops.dagstuhl.de/opus/volltexte/2017/7331
https://instagram-engineering.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies-adf2e22da2ad
https://instagram-engineering.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies-adf2e22da2ad
https://instagram-engineering.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies-adf2e22da2ad

8 Attachments

A - Problem Statement (Norwegian)

B - Vision Document

C - Requirement Specification Document

D - System Documentation

42

Arbeidstittel: SINTEF Marine Datasenter: API for fartøydata

Hensikten med oppgaven:
SINTEF Marine Datasenter samler data fra mange kilder, deriblant data som logges fra fartøy. Disse dataene kan være
av verdi for rederi og for forskning. Vi ønsker utviklet en løsning som gjør slike data tilgjengelig via en egnet API.

Kort beskrivelse av oppgaveforslag:
Oppgaver:

Sette opp basis server funksjonalitet vha eksempelvis Flask.
Lage funksjonalitet for lesing av data fra NetCDF filer.
Lage funksjonalitet for å etablere datasett med lavere tidsoppløsning.
Lage API for å gjøre tilgjengelig data og metadata.
Opsjoner:
Lage funksjonalitet for å filtrere og evt preprosessere data.
Håndtering av data på tvers av mange fartøy.
Håndtering av tilgangskontroll (anta at autentisering er gjort).
SINTEF kan sette opp en egen tjeneste for testing mot virkelige data, samt stille data til rådighet for testing.
Oppgaven kan med fordel utføres av en gruppe og i kombinasjon med en eller flere av oppgavene "SINTEF Marine
Datasenter: Etablere InfluxDB som lager av loggedata", "SINTEF Marine Datasenter: Innloggingsløsning", "SINTEF
Marine Datasenter: Utvikle nettportal" og "SINTEF Marine Datasenter: Utvikle tjeneste for rederi basert på egne
fartøydata".

Oppgaven passer for (kryss av de(t) som
passer og skriv evt. en kommentar til
oss):

- Bacheloroppgave
- Masteroppgave

Kan oppgavestiller stille arbeidsplass med
nødvendig utstyr og programvare:

Fysisk arbeidsplass avhengig av COVI-19.

Oppgaven passer best for, antall
studenter:

- 1
- 2
- 3
- 4

Opplysninger om oppgavestiller

Er du fra bedrift/virksomhet eller er du
student med en egendefinert/selvlaget
oppgave?

- Bedrift/virksomhet

Navn på bedrift/organisasjon/student: SINTEF Ocean

Addresse Brattørkaia 17C

Postnummer 7010

Poststed Trondheim

Navn på kontaktperson/veileder: Karl-Johan Reite

Telefon: 99705393

Epost: karlr@sintef.no

Ship data API for SINTEF

Vision Document
Project number 57

Version 1.1

Sebastian Aanesland Elvemo
Andreas Tolnes

2021

1

Revision History

Date Version Description Author
19/01/21 1.0 Creation and drafting Elvemo, Frantzen, Tolnes
05/05/21 1.1 Minor changes, revisions Elvemo, Tolnes

2

Table of contents

1 Introduction 4

2 Summary of problem and product 4

2.1 Problem statement . 4

2.2 Product statement . 4

3 Project goals 5

3.1 Result goals . 5

3.2 Process goals . 5

4 User Descriptions 5

4.1 Stakeholders summary . 5

4.2 User Summary . 5

4.3 User Environment . 5

4.4 User Needs . 6

5 Product Overview 6

5.1 Products role for users . 6

5.2 Assumption and Dependencies 6

5.3 Risk analysis . 6

5.4 Cost, pricing and benefits . 6

6 Product Features 7

6.1 Features . 7

7 Requirements 7

7.1 Operational requirements . 7

7.2 Technical requirements . 7

7.3 Process requirements . 8

7.4 Usability requirements . 8

3

1 Introduction

This document describes a project created for SINTEF Ocean as part of the

subject ”TDAT3001” at NTNU.

The project entails the creation of a web server API for use by SINTEF to make

previously collected maritime data easily malleable for research purposes. The

data is currently stored in NetCDF files, and the project will entail creating a

product which can read and sort the data within these files, and give the users

the data requested.

2 Summary of problem and product

2.1 Problem statement

Problem Maritime data collected isn’t easily
accessible

Involves Researchers and data-analysts
Resulting in The data cannot be used for research

without manual parsing
A better system will result in Easier access to data for analysis and

visualization.

Problem Maritime data cannot easily be put
into datasets.

Involves Researchers and data-analysts.
Resulting in Sorting data takes a lot of time.

A better system will result in Time saved compiling datasets.

2.2 Product statement

For SINTEF
Who need to process and serve maritime data,

from many sources at various resolutions
Our product is a web server
Which will provide an API for fetching data, and

do the processing and handling needed
As opposed to the current lack of accessibility to this data,

which leads to SINTEF not exploiting this
data to its full potential

Our product will make any future uses of this data easier

4

3 Project goals

3.1 Result goals

• Create an API which can be used to obtain ship data in a usable form.

• Implement a GraphQL solution for requests up against a database.

• Deal with authentication and security of access of data

3.2 Process goals

The end result of the project will result in a well documented path of devel-

opment, where all major and minor decisions are documented in a bachelors

thesis. Project members will also have increased competency in lean develop-

ment, development of APIs, and handling new technologies.

4 User Descriptions

4.1 Stakeholders summary

Name Description Requirements
Student team 57 Members developing the product Planning, developing and documenting

the development of the product.
Sintef Ocean The client for the project. Set development requirements and

set product specifications.
NTNU Supervising the Project Set academic standards for the project,

advise during development.
Front-end Student team creating related front-end might use our API,
Developers pending communication

4.2 User Summary

Name Description Role
Developers Internal SINTEF developers Will further develop and use the API

for data visualization and/or analysis.
Data Analysts Workers within SINTEF that Use the system for acquiring data.

need parsed data

4.3 User Environment

The system will be deployed online, and as such will be available on a computer

with an internet connection.

5

4.4 User Needs

Need Priority Related to Proposed solution

Access data from NetCDF files HIGH Sysdev Server handles parsing/interpretation

& analysis

Reorganize Data HIGH Analysis Server can create views for data, and

manage data.

Return relevant data HIGH Sysdev Server can be queried for specific data

Access control HIGH Authentication Create an authentication system

using web-tokens.

Indepth security LOW Authentication Full infosec inspection.

Aggregation and calculation MEDIUM Analysis Create system for back-end calculations

of sensitive data to maintain the security of sensitive data.

Fast responses MEDIUM Sysdev Caching of data, summaries

5 Product Overview

5.1 Products role for users

Will allow access to data through a GraphQL endpoint, allowing easier, faster,

more centralized usage of data, with some level of access control.

5.2 Assumption and Dependencies

Time series database hosted in a Linux environment by SINTEF. Project pe-

riod is between week 2 and 20, and the budgeted amount of hours for the entire

project is 500 hours, but many of these are used on the thesis and other univer-

sity work.

5.3 Risk analysis

Number Risk Probability (0-10) Severity (0-10)
1 Serious Illness like Covid 3 8
2 Problems arising from 8 3

using new technologies
3 Issues arising from the 4 7

NetCDF data formatting

5.4 Cost, pricing and benefits

The development team consists of three members, who all have a max budgeted

amount of hours for this project. Below is a general overview of the best and

6

worst case hours spent on product development for SINTEF for the completion

of this project:

Hours per person Total Hours
Best Case: 300 900
Average: 350 1050

Worst Case: 400 1200

6 Product Features

6.1 Features

• Serve data from a GraphQL endpoint

• Limit data access based on authentication

• Read NetCDF files

• Read databases

• Compile data into a less fine-grained resolution before serving

If time allows:

• Filter and pre-process data

• Treat data across many vessels

• Add authentication and authorization

• Add robust security

• Cache data for speed of response and efficiency

7 Requirements

7.1 Operational requirements

The service must be hosted in a linux environment, preferably using Docker.

7.2 Technical requirements

• Read NetCDF files

• Use GraphQL or Rest implementation

• Use Python

7

7.3 Process requirements

Frequent meetings between product owner and project group will be held to

ensure that the product will be delivered to the product owner’s satisfaction.

Kanban will be employed as the projects primary project management system

hosted on Microsoft Azure.

7.4 Usability requirements

An important requirement of this project is that the finished product be easily

iterated upon by outside developers and be integrated into a front-end solution

created by another development team. As such, during development, extra care

will be taken to avoid pitfalls for later developers such as messy code.

8

Software Requirements Specification
Ship data API for SINTEF

Version <1.0>

Table of Contents

Contents

1. Summary 3

2. User Stories 3

2.1 Reading and Uploading data 3

2.1.1 Decipher NetCDF files 3

2.1.2 Upload 3

2.2 Setting up a query 3

2.2.1 Timescale 3

2.2.2 Fields 3

2.2.3 Changing resolution 3

2.3 Querying for data 3

2.3.1 General Query 3

2.4 User Information 4

2.4.1 Error reporting 4

3. Architecture model 4

Software Requirements Specification

1. Summary

This document is written as a part of the official documentation for a bachelor
thesis project at NTNU during 2021. This documentation will specify the
requirements for the finished application for ship data retrieval which will be

delivered to SINTEF Ocean at the end of the development cycle. The application
has a system for uploads of NetCDF file data, and methods for querying against a
time-series database to retrieve the uploaded data. A frontend solution is also

being developed separately from this project, but a simple UI will be delivered
with the project.

2. User Stories

2.1 Reading and Uploading data

2.1.1 Decipher NetCDF files

As a User

I want to Read NetCDF files

So that My data can then be uploaded to the database.

2.1.2 Upload

As a User

I want to Upload to the database

So that My data is stored for easy access.

2.2 Setting up a query

2.2.1 Timescale

As a User

I want to Query within a given timeframe

So that I only get the data relevant to me.

2.2.2 Fields

As a User

I want to Query within specific fields

So that I only get the data relevant to me.

2.2.3 Changing resolution

As a User

I want to Change the resolution of the query

So that I get aggregated data over large timescales

quicker.

2.3 Querying for data

2.3.1 General Query

As a User

I want to Get specific information from the database.

So that I can use that data for research and analysis.

2.4 User Information

2.4.1 Error reporting

As a User

I want to Know if and why a query has failed.

So that I’m not wasting time making mistakes and

waiting.

3. Architecture model

Figure 1: Figure showing a simplified architecture model, with the separately designed front-end in red.

System documentation

May 19, 2021

Table of Contents

1 Structure 1

1.1 Data files . 1

1.2 Application flow . 1

1.3 Code standard . 2

1.4 Dependencies . 3

1.5 Security . 3

2 Server 4

2.1 REST API . 4

2.1.1 Route description . 4

2.2 Environment . 4

2.3 Database . 4

2.4 Cache . 4

3 Mock clients 5

3.1 OpenAPI . 5

3.2 Postman . 6

Installation 7

2

List of Figures

1 Simple chart of the flow of the application 2

2 OpenAPI POST example. 5

3 Postman example query with headers. 6

3

1 Structure

As Python and FastAPI is limitless in which way to structure the application,

a lot of freedom is granted to the developers. The system is structured with

separation of concern in mind, with influences from object oriented programming

practices such as dependency injection.

Source folder structure description.

/database Contains connection creation to cache and database

/models Different models for responses and requests as well as

database and cache interfaces

/routers Contains all routes that the API provides, as well as

the header handling logic.

/services Files handling the data fetching and formatting so

it can be directly consumed by the routers

1.1 Data files

Data files are imported from time series saved in NetCDF files provided by

SINTEF Ocean. The importing of data can be independent of the running

system. For development purposes NetCDF files can be placed in the /netcdf

folder in the root directory, and send a POST request to any of the seeding

endpoints to import the data to InfluxDB. Data files are not provided as part

of the repository.

1.2 Application flow

Sections and modules are split according to the separation of concern principle,

and each handle a specific task unique to themselves. Dependency injection is

implemented in the database and cache providers to enable easier mocking for

testing pipelines.

1

Figure 1: Simple chart of the flow of the application

1.3 Code standard

The code base follows the standardized PEP 8 style guide common for Python

projects.

2

1.4 Dependencies

The dependencies constitute mostly of public libraries that interface with the dif-

ferent systems that the server communicates with and uses, such as the database,

cache, and reading of NetCDF files. Dependencies are managed by the package

and dependency manager Poetry.

• FastAPI

• Uvicorn

• Numpy

• Pandas

• Influxdb

• xarray

• netCDF4

• pydantic

• pymemcache

• python-dotenv

1.5 Security

Due to the flexibility requirements of the system to handle a number of unknown

data types and several optional parameters, the query is highly dynamic based

around the parameters from the client. This can pose a security risk in the form

of SQL injections if not handled properly. To mitigate this risk all fields that

the client requests are cross checked with the available fields on the database

to make sure that no foreign or unexpected input is allowed. Frequent use and

strict enforcement of different types of enumerators, primitives and complex

data types ensures that all parameters in the query are checked and validated

in one way or another before being queried to the database.

3

2 Server

2.1 REST API

2.1.1 Route description

/index GET Shows a list of available endpoints.

/docs GET OpenAPI documentation through swagger interface.

/redoc GET Redoc representation of the API documentation.

/vessels/values POST Returns a list of values with corresponding

time stamps filtered by given parameters.

/vessels/aggregates POST Returns a list of aggregated values with corresponding

time stamps filtered by given parameters.

/vessels/aggregates GET Returns a list of fields that are available on the server

2.2 Environment

Environment variables can be set by creating a .env file in the root direc-

tory. The file should contain database credentials as well as where to access

the database and cache. See installation guide for further details.

2.3 Database

As InfluxDB is a dynamic database, no database structure or schema is needed

and different columns of different data types can be added at any time without

breaking the system. When compared to relational databases, the time stamp

is always the primary key and tags can be added as something akin to foreign

keys.

2.4 Cache

In memory cache memcached is available at port 11211, and is handled by

cache.py which is called upon by any of the service modules that need it. It

takes in JSON compliant data structures and stores them as bytes. When the

data is fetched again it needs to be converted from binary to the original JSON

structure.

4

3 Mock clients

Since no real client is consuming the API as of the moment of writing, requests

needs to be made through specialized software for analyzing and testing APIs

such as Postman or curl. Alternatively, interactive OpenAPI documentation

can be used to test and explore each endpoint.

3.1 OpenAPI

With OpenAPI it is possible to see what parameters are obligatory to the request

and what is optional, as well as example values for each. Real queries can be

made through OpenAPI and is one of the easiest ways of getting to know what

can and can’t be done with the API.

Figure 2: OpenAPI POST example.

5

3.2 Postman

Postman is a specialized software for API development and includes several

advanced feature sets. Queries made through Postman can be customized to

a larger extent than through the OpenAPI documentation, with easy header

manipulation and advanced HTTP settings to test different scenarios and con-

figurations. Response time and size are broken down to make bottleneck analysis

swift and easy.

Figure 3: Postman example query with headers.

6

SINTEF API

How to run for development with Docker (Recommended)

Windows note: Docker might not work with Windows 10 Home. Try using a Linux based distro or upgrade to Windows 10 Pro/Education/Enterprise

1. Make sure Docker and docker-compose is installed and working on your system.

2. Create a .env file in the root directory with the following example contents for Docker development. Replace with your own credentials if necessary.

HOST=db

PORT=8086

USERNAME=root

PASSWORD=root

DATABASE=wow

CACHE_HOST=cache

CACHE_PORT=11211

3. Run docker-compose up -d --build to build and launch web API, cache, influxdb and Grafana containers.

--build flag can be omitted after first run unless changes are made to docker files or python dependencies.

Containers should now be accessible at: - Web API: localhost:5000 - memcached: localhost:11211 - InfluxDB: localhost:8086 - Grafana: localhost:3000

API documentation is available at localhost:5000/docs or localhost:5000/redoc

Stop containers

Use docker-compose down to stop running containers

Grafana

You can access Grafana to inspect data in the database by accessing localhost:3000 . If you're prompted for credentials, enter standard credentials
admin/admin .

If a data source is not already configured, you can configure it yourself with the following settings in Configuration -> Data Sources -> Add data source : -
HTTP - URL: http://db:8086/ - Access: Server(default) - Basic auth: On - Basic Auth Details - User: root - Password: root - InfluxDB Details - Database:
wow - User: root - Password: root - HTTP Method: GET (Optional)

Run API outside of Docker (Not recommended)

1. Install InfluxDB and get it running on your computer.
2. Change the IP in src/database/database_connector.py to localhost:8086 (Or desired IP).
3. Install python dependencies with Poetry poetry install .
4. Enter virtual environment with poetry shell OR run directly with poetry run uvicorn --host 0.0.0.0 --port 5000 --root-path . src.app:app

--reload .
5. If you entered a new shell, use uvicorn --host 0.0.0.0 --port 5000 --root-path . src.app:app --reload to run the server locally outside of

docker.

Web server should now be accessible from localhost:5000

Importing test data

For development purposes, two endpoints for importing data found in ./netcdf are available. See localhost:5000/docs . These are not meant for production and
are subject to change/removal at any time. Data is not included in repository.

Who to contact?

Andreas Tolnes andrtoln@stud.ntnu.no

Sebastian Aanesland Elvemo sebastel@stud.ntnu.no

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Aanesland, Elvemo Sebastian
Tolnes, Andreas

Development of a system for
retrieving vessel data for SINTEF
Ocean

Retrieval of time series data

Bachelor’s project in Software Engineering
Supervisor: Alexander Holt

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Preface
	Problem Statement
	Summary
	Definitions and Acronyms
	Introduction and relevance
	Background
	Research Question
	Goals
	Report Structure

	Theory
	Previous research
	Automating data pipelines for analysis of wave data

	Compression
	Caching
	Lossless Compression
	Resolution Scaling
	Response Time Analysis

	Networking
	Bandwidth
	Packets
	Packet Loss
	Query
	Response

	System Architecture
	Agile Development
	Collaboration Tools
	Version Control

	Technology and method
	Technology
	Discord
	FastAPI
	Git
	InfluxDB
	Server-side caching
	Jira
	LaTeX
	Microsoft Teams
	Python
	REST

	Method
	Development Team Roles
	Kanban
	Response data structure
	Gzip
	Delta encoding
	Delta-of-delta encoding
	Caching

	Results
	Scientific Results
	Gzip
	ISO vs Unix epoch
	Response data structure
	Delta and Delta-delta encoding
	Base case vs best case

	Engineering Results
	Goals
	User Needs

	Administrative Results
	Project Handbook
	Time Management
	Development Process

	Discussion
	Design Choices
	Database solution
	Programming languages
	Flask and FastAPI vs Django
	REST vs GraphQL

	Scientific Results
	Encoding
	Compression
	Summary

	Engineering Results
	Goals
	User Needs

	Administrative Results
	Time Management
	Development Process

	Teamwork

	Conclusion and Analysis
	Future work

	References
	Attachments
	Problem Statement

