
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Abdi Bako
Amr Hamcho
Mustafa Abdullah
Shamil Saidovich Khumparov

Assetfront Repair

Bachelor’s project in Engineering - Computer Science
Supervisor: Seyed Ali Amirshah

May 2021Ba
ch

el
or

’s
pr

oj
ec

t

Abdi Bako
Amr Hamcho
Mustafa Abdullah
Shamil Saidovich Khumparov

Assetfront Repair

Bachelor’s project in Engineering - Computer Science
Supervisor: Seyed Ali Amirshah
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Sammendrag av Bacheloroppgaven

Tittel: Assetfront Repair

Dato: 20.05.2021

Deltakere: Abdi Bako
Amr Hamcho
Mustafa Abdullah
Shamil Saidovitch Khumparov

Veileder: Seyed Ali Amirshahi

Oppdragsgiver: Headit AS

Kontaktpersoner: Ronny Kristiansen
Dag Blakstad

Nøkkelord: Angular, API, Assetfront, Headit, Scrum, TypeScript
Antall sider: 48
Antall vedlegg: 12
Tilgjengelighet: Open

Sammendrag:
Digitalisering er en viktig prosess for behandling, lagring og utveksling av data, ettersom den gjør
det mulig å f̊a tilgang til og overføre data effektivt. Som medfører til å forbedre effektiviteten og
konsistensen. Assetfront Repair vil være et delsystem for Assetfront, der mekanikere og ingeniører
kan sende tekniske rapporter ang̊aende kjøretøy. Assetfront Repair vil bidra til å lette arbeidet til
de som utfører vedlikehold og inspeksjoner p̊a maskiner som er koblet til Assetfront. Applikasjonen
løser to funksjoner. For det første, vil applikasjonen effektivisere prosessen med å registrere servicer
og/eller inspeksjoner for et kjøretøy. For det andre digitaliserer applikasjonen prosessen med å
registrere en teknisk tilstandsrapport (TTR). Dagens løsninger er b̊ade ressurs og tidkrevende.
Assetfront ønsket en web-applikasjon med responsiv design for forskjellige enheter. Assetfront
Repair har et forbedringsrom som vil bli diskutert senere i rapporten.

1

Summary of Graduate Project

Title: Assetfront Repair

Date: 20.05.2021

Authors: Abdi Bako
Amr Hamcho
Mustafa Abdullah
Shamil Saidovitch Khumparov

Supervisor: Seyed Ali Amirshahi

Employer: Headit AS

Contact Persons: Ronny Kristiansen
Dag Blakstad

Keywords: Angular, API, Assetfront, Headit, Scrum, TypeScript
Pages: 48
Attachments: 12
Availability: Open

Abstract:
Digitization is an important process for processing, storing and exchanging data, as it allows data to
be accessed and transmitted efficiently. Which results in improving the efficiency and consistency.
Assetfront Repair will be a subsystem of Assetfront, in which mechanics and engineers can submit
technical reports regarding vehicles. Assetfront Repair will help to facilitate the work of those
who perform maintenance and inspections on machines connected to Assetfront. The application
resolves two functions. Firstly, the application streamlines the process of registering services or
inspections for vehicles. Secondly, the application digitizes the process of registering a Technical
Condition Report (TCR). Today’s solutions are both resource and time consuming. Assetfront
wanted a web-application with a responsive design to be accessed from different devices. Assetfront
Repair has a room for improvement that will be discussed later on in the report.

2

Preface

This bachelor thesis is written in the spring of 2021 by Mustafa Abdullah, Abdi Bako, Amr Ham-
cho, Shamil Saidovitsj Khumparov, students at Norwegian University of Science and Technology
(NTNU) in Gjøvik, department of Computer Technology and Informatics. We would like to thank
Headit AS, and in particular Dag Blakstad, Ronny Kristiansen, and Geir Harald Bjerkemo for an
exciting assignment, and for providing support and feedback throughout the project.

We would like to thank our supervisor Seyed Ali Amirshahi who has provided us with valuable
guidance throughout the project.

Lastly, we would like to thank the staff of NTNU for assisting us with challenges throughout
this project.

3

Contents

List of Figures iv

List of Tables v

1 Introduction 1

1.1 Background . 1

1.2 Project Description . 1

1.3 Target Audience . 2

1.4 Responsibilities and Roles . 2

2 Requirement Specification 4

2.1 Functional Requirements . 4

2.2 Non-functional Requirements . 5

2.2.1 Non-functional Product Requirements . 5

2.2.2 Non-functional Organizational Requirements 7

2.3 Use cases . 7

2.4 Misuse cases . 12

2.5 Risk Analysis . 14

3 Software Development Methods 17

3.1 Considered models . 17

3.1.1 Extreme Programming (XP) . 17

3.1.2 Kanban . 17

3.2 Scrum . 18

3.2.1 Daily Scrum meeting . 18

3.2.2 Meetings with Supervisor . 18

3.2.3 Milestones . 18

3.3 Development Process . 18

3.3.1 Scrum as development method . 19

i

3.3.2 Pair Programming . 19

3.3.3 Trello . 19

4 Technologies, Design, and Implementation 21

4.1 Technology Assessment . 21

4.1.1 Technologies and Tools . 21

4.1.2 Choice of Technology . 22

4.1.3 Git . 22

4.2 Design . 23

4.2.1 System Design . 23

4.2.2 Object-oriented design . 24

4.2.3 Prototyping . 25

4.2.4 Components . 26

4.2.5 services . 27

4.2.6 GUI and UI Design . 28

4.2.7 S3 file-system Design . 29

4.3 Implementation . 30

4.3.1 System Overview . 30

4.3.2 Connecting to API . 32

4.3.3 service overview . 34

4.3.4 Component Overview . 37

5 Deployment and Testing 42

5.1 Deployment . 42

5.1.1 Amazon Deployment . 42

5.1.2 Docker . 42

5.2 Testing . 43

5.2.1 Static Testing . 43

5.2.2 Manual Testing . 44

5.2.3 User Testing . 44

6 Discussion and Conclusion 45

6.1 Development Method and Process . 45

6.1.1 Team Cooperation . 45

6.1.2 Meetings with The Company and Product Owner 46

6.2 Development . 46

ii

6.2.1 Security . 46

6.2.2 Application Design . 46

6.2.3 User Test . 47

6.3 Future work . 47

6.4 Conclusion . 48

Bibliography 49

Appendices A1

A Pre-project plan A1

B Survey questionnaire A13

C REST API Documentation A17

D Technologies and Tools A21

E Project assignment A22

F Project agreement A25

G Today’s TCR A29

H TCR JSON A47

I TCR PDF A49

J Assetfront on an Iphone 6 A55

K Implementation of TCR A58

L Meetings with The Company and Product Owner A60

iii

List of Figures

1.1 Overall system operation. 2

1.2 Organization of the development team. 3

2.1 Functional Requirements in Assetfront Repair. 4

2.2 Use case diagram for upload functionalities. 8

2.3 Use case diagram for download functionalities. 8

2.4 Severity and likelihood for risk assessment. 15

3.1 Trello board. 20

4.1 Development with branches. 23

4.2 Overall system model. 23

4.3 Simplified system model. 24

4.4 Detailed system model. 24

4.5 Class diagram that represents the important classes and interfaces. 25

4.6 System mockups. 26

4.7 HTML structure. 27

4.8 An example of services and components interaction. 27

4.9 Phone vs PC . 28

4.10 Simple and informative design. 29

4.11 S3 Hierarchical file system. 30

4.12 Sequence diagram showing how send TCR works. 31

4.13 Sequence diagram showing how send service or inspection work. 32

4.14 Sequence diagram showing how download TCR work. 32

4.15 Error message due to wrong VIN . 38

4.16 Confirmation dialog window . 38

4.17 TCR overview. 40

6.1 Overall system model with Keycloak implementation. 48

iv

List of Tables

2.1 Non-functional Performance requirements. 5

2.2 Non-functional Scalability requirements. 5

2.3 Non-functional Usability requirements. 6

2.4 Non-functional Maintainability and Manageability requirements. 6

2.5 Non-functional Portability Requirements. 6

2.6 UX requirements. 7

2.7 Non-functional Deployment requirements. 7

2.8 Detailed use case – Attach file/s. 9

2.9 Detailed use case – Lookup VIN. 10

2.10 Detailed use case – Send Service/Inspection. 11

2.11 Detailed use case – Send TCR. 12

2.12 Stride threat model acronyms [38]. 13

2.13 Misuse case - Data forgery. 13

2.14 Misuse case - QR-code manipulation. 13

2.15 Misuse case - Amazon S3 bucket key hijacking. 14

2.16 Misuse case - Files with malicious content. 14

2.17 Product risks. 15

2.18 Business risks. 16

4.1 List of the Services with its dependencies. 35

4.2 List of the components with its description and dependencies 37

v

Listings

4.1 Media queries example. 28
4.2 Interceptor Service. 33
4.3 Registration of Interceptor as a multi-provider. 33
4.4 getVehicleData method. 33
4.5 Method showing how to convert Observable to Promise. 34
4.6 Method to generate PDF for TCR. 36
4.8 Get last modified folder. 40
5.1 Dockerfile Angular . 43
5.2 docker-compose.yml file . 43
K.1 TCR Component . A58

vi

Chapter 1

Introduction

1.1 Background

In this project, we aim to develop a new application for Headit AS1, which is an IT service-
provider firm for businesses of different sizes. They wish to develop a product for a company
called Assetfront2, which works alongside other companies to ease the maintenance and sale of
machinery and vehicles. In this project, we aim on behalf of Headit AS to develop a solution that
will facilitate the work of those who perform maintenance and inspections on vehicles associated
to Assetfront. Also, to streamline this process with the intention that users outside of Assetfront
will be able to utilize it as well. The solution used today to perform the desired functions (Service,
Inspection, and Technical Condition Report (TCR)) needs to be optimized. Assetfront acquires
functionalities to add a Service and an Inspection. However, the current system is outdated and
only available for authenticated Assetfront users. Furthermore, Assetfront’s current approach to
handle TCRs is not digitized. The users have to fill out a Portable Document Format (PDF) file
by hand, which will be scanned afterward to the system (see Appendix G). It is desired that the
system digitizes this process, where a user can easily complete a TCR and submit it, as well as
retrieving a previously submitted TCR.

Thus, the idea of a web application was born, where the users could easily search for a vehicle,
and then fill out a desired report where he or she could send in a form (Service, Inspection, and
TCR) or view older forms of the aforementioned vehicle.

N.B.: We will hereon refer to Headit AS as “the company”, and Assetfront as “the product
owner”.

1.2 Project Description

Assetfront Repair is a web application that aims to be a platform for workshops, service centers,
and certified agencies to update their designated Digital Machine Cards (DMC). The goal of the
application will be to facilitate the recording of documentation issued by mechanics and engineers
at Assetfront, and their partners. Our project revolves around easing the search for a vehicle
using its Vehicle Identification Number(VIN), this will allow the user to choose the desired form to
submit (Service, Inspection,and TCR). After the submission, the form will be uploaded to a cloud
storage, alongside the attached files. Then, the user will be able to download the form as a PDF
file right after submission. The form can also be retrieved later on by a user with the specified
VIN, if needed. As shown in (Figure 1.1), the user starts by visiting the website using smartphones
or computers (1 in Figure 1.1). Then the user can look up a vehicle by providing its VIN. This
identifier is then sent to an Application Programming Interface (API), to check whether the vehicle

1https://headit.no/
2https://assetfront.com/

1

exists (represented in part (1) in Figure 1.1). This is done in form of an API request. In case the
given VIN does not exist, the API will send back an API response[40] where the front-end of the
application will display an error message. If the vehicle is found (represented in part (3) in Figure
1.1), the user will be redirected to a page where he or she can fill out three different types of forms.
After the submission of a form, it will be sent to a cloud storage (represented in part (4) in Figure
1.1) in form of a PDF file alongside any attachments. These reports can later on be obtained by
users with access to the VIN-number (represented in part (5) in Figure 1.1)(represented in part
(6) in Figure 1.1). To summarise, the system will:

• Search for a vehicle by VIN and view vehicles information.

• Send a Service and an Inspection along with attachments.

• Send a TCR.

• Download previous Service, Inspection, and TCR forms.

• Utilize Amazon cloud and deployment services.

Figure 1.1: Overall system operation.

1.3 Target Audience

Assetfront Repair is a web application that can be used in a company environment to mainly digitize
paper-based reports. As well as, save important files in a reliable and scalable online storage. Hence,
firms that are seeking to streamline their business process are classified as secondary audience.
However, the target users of the application is Assetfront team. Assetfront is an international firm
that has users from different Scandinavian countries. In terms of report audience, we expect the
reader of this report to have a background/knowledge in software development.

1.4 Responsibilities and Roles

All team members have the same professional background from computer science engineering pro-
gram. Even though all the members have taken the same subjects, each one has different aspect in
software development they like to work on, this formed a good basis for working on such a project.
By voting in the group, we agreed to choose Khumparov as our project leader (see Figure 1.2). We

2

voted in the group on how things should be done and resolved. The choice of Khumparov as group
leader was made based on his communication skills. Abdullah was responsible for documenting
within the group, of which were from the meetings with the company, product owner or supervisor.

Since the team and the project was relatively small, we chose to only work as developers. There-
fore, all team members have been involved in most of the project, but each team member has the
main aspect they focused on.

Figure 1.2: Organization of the development team.

Product Owner: Geir Bjerkemo, chairman of the board of Assetfront, used to assist with help
when there was uncertainty about the functionality of the application.

Scrum Master: Ronny Kristiansen is an employee at Headit AS and is Scrum master in this
project. As a scrum master, he must make sure that the sprints are completed, and that the group
had fulfilled certain tasks that need to be done.

Technical support: Dag Blakstad is an employee at Headit AS. He was responsible for technical
support. Dag provided technical help when the group needed it. He was also present during status
meetings for assistance with technical issues.

Supervisor: Seyed Ali Amirshahi was our supervisor. He provided supervision and feedback
throughout the project.

Project leader: Shamil Khumparov was responsible for communication with the company and
product owner, arranging meetings.

Development team: The developer team that worked on Assetfront Repair were Abdi Bako,
Amr Hamcho, Mustafa Abdullah, and Shamil Khumparov

3

Chapter 2

Requirement Specification

In this chapter, we will discuss both functional and non-functional requirements. As well as look
into the use cases and misuse cases. The last part of this chapter is dedicated to the results of our
risk analysis of the project.

2.1 Functional Requirements

The functional requirements in Assetfront Repair describe what the system is capable of doing.
Mainly from the user’s point of view, in addition to which functionalities would the user expect to
perform.

The requirements that our team had decided to take into consideration and base the decisions
upon, are provided by the assignment description. The team has managed to state the main
requirements of the desired product after multiple meetings with the company and product owner.
The main functions the application must be capable pf doing are:

Figure 2.1: Functional Requirements in Assetfront Repair.

4

To achieve the functionalities mentioned above, the user must be able to

• Attached files from the used device.

• Use the device’s camera to capture an image and use it as an attachment.

• Browse through data registered about a vehicle.

2.2 Non-functional Requirements

The non-functional requirements in Assetfront Repair describe how the system works and points
out its different aspects. As well as how it performs certain functions. The team has decided to
split the non-functional requirements into two categories.

2.2.1 Non-functional Product Requirements

The core principles of the desired product were performance, maintainability and manageability,
scalability, portability, and usability. For a better overview, we have divided the Non-functional
Product Requirements into tables, see Table 2.1, 2.2, 2.3, 2.4, and 2.5.

In Table 2.2 scalability requirements are listed. These requirements were constructed according
to the following approach (Assetfront Repair must be capable of handling a growing number of
concurrent users. As well as standing ups and downs of traffic).

Moreover, Table 2.4 contains maintainability and manageability requirements. These require-
ments were constructed according to the following approach (Assetfront Repair must be capable
of being monitored by its administrators easily, especially the file history). This will be done by
saving all the related files in an Amazon S3 bucket, which will allow the administrators to manage
the file logs easily. Furthermore, the application component structure must be well-organized for
further modifications.

Table 2.1: Non-functional Performance requirements.

Performance
NFR.1.1 Load time Assetfront Repair should be capable of delivering under two

second page load time. Taking into consideration the tech-
niques used in the development process to optimize the load
time.

NFR.1.2 Responsiveness Assetfront Repair should be capable of delivering high re-
sponsiveness. This will be done by avoiding waiting and
indicating that the request is received before its done pro-
cessing. Along with an informative user interface to keep
the user informed.

Table 2.2: Non-functional Scalability requirements.

Scalability
NFR.2.1 Project Structure Assetfront Repair must be developed using the standard

structure of the Angular application.
NFR.2.2 CSS Encapsulation

and Styling
Assetfront Repair must use CSS encapsulation[2] by styling
each component and create a reusable code.

NFR.2.3 Reactive program-
ming RXJS

Assetfront Repair must use RxJS (Reactive Extensions for
JavaScript)[46] library. In order to handle async tasks prop-
erly, watch for changes in our application and run code ac-
cordingly. This is done through the observer pattern1.

5

Table 2.3: Non-functional Usability requirements.

Usability
NFR.3.1 Efficiency Assetfront Repair must be efficient for the frequent user.
NFR.3.2 Ease of remember-

ing
Assetfront Repair must be easy to remember for the fre-
quent user.

NFR.3.3 Ease of learning Assetfront Repair must be for both novices and users with
experience from similar systems.

NFR.3.4 User testing Assetfront Repair must be tested by users whum have not
seen the application beforehand. The test users should be
employees at the company that the product is developed
for.

Table 2.4: Non-functional Maintainability and Manageability requirements.

Maintainability and Manageability
NFR.4.1 App components Assetfront Repair must be developed through building up

an organized component structure, and separating presen-
tational from container components[8]. The component
structure must be taken into consideration throughout the
development phase since reusable components are essential
for maintainable applications.

Table 2.5: Non-functional Portability Requirements.

Portability
NFR.5.1 Browser require-

ments
Assetfront Repair must be portable. Meaning that moving
from one browser to another browser does not create any
problem.

To assure a successful project performance, the company and our team have selected suitable
front-end development tools. As our task is to create a front-end application, we would ensure a
good user experience that includes efficiency and speed. This would be done by using proper tools
and methodologies for front-end development. The technologies used in the project are listed in
Section 4 and Appendix D.

The front-end requirements were unclear at the beginning of the project. The team had to design
prototypes and present them to the product owner and the company (see Section 4.2.3). After
that, the prototypes would be adjusted according to the product owner’s wishes. This process
wouldrun through the development part as well. The product owner attended some of the scrum
meetings (as described in Section 3.2) and added requirements and feedback. In the development
phase, the front-end requirements were decided to be:

• The code must be reusable for future modifications.

• Optimize the application’s speed and performance.

• The development must be according to User Experience (UX) requirements (see Table 2.6).

We have created a list of requirements to fulfil and achieve the best possible results in regards to
UX. The requirements in the following list are inspired by the Doctoral thesis “Laws of Interface
Design”[23], and the book “Sketching user experience”[18].

6

Table 2.6: UX requirements.

UX requirements
NFR.6.1 Responsiveness The interface must be responsive on different screen sizes.
NFR.6.2 Familiarity The design must be user-friendly in terms of that the user

familiarizes with the design quickly.
NFR.6.3 Colors (UX) The combination of colors to use in the application should

be Palette[39]. For that, we have used an online tool to
help us to choose the list of colors2.

NRF.6.4 Style The components must be styled using Angular Material3,
which is a tool for material design in Angular.

2.2.2 Non-functional Organizational Requirements

In this Section, we will take a look at the deployment requirements. This will ensure transferring
the application to the company. Further, the company will maintain the code and integrate it with
their existing web application (see Table 2.7).

Table 2.7: Non-functional Deployment requirements.

Deployment
NFR.7.1 Container deploy-

ment
Assetfront Repair must be deployed using Docker container.

NFR.7.2 Cloud storage Assetfront Repair must use Amazon S3 bucket for saving
all files and data provided by the user.

2.3 Use cases

To show the core functionalities of the system, and present its usage from a perspective of different
user types, a use case diagram was created seen from the user perspective. The diagram in
Figure 2.2 shows the use cases for the part of the system where the user sends out either a Service,
Inspection, or a TCR. These functionalities involve uploading files to the cloud storage the company
is using. Furthermore, the diagram in Figure 2.3 points out the part of the application where the
user downloads previously sent files. To analyze the use cases mentioned in Figure 2.2 further,
detailed use case tables were created. The main actor of the system is the user. Another user of
the application is the admin who is mainly responsible for monitoring the system and managing
the cloud storage in terms of configuring and access rights.

7

Figure 2.2: Use case diagram for upload functionalities.

Figure 2.3: Use case diagram for download functionalities.

8

Table 2.8: Detailed use case – Attach file/s.

Name: Attach file/s
Actor: Application users
Description: The user gets the option of attaching a file or more to Service or Inspec-

tion (see “Send Service/Inspection” use case in Figure 2.2)
Flow of Events:
Basic Flow: This use case begins when a user clicks on attach a file:

• The system offers the user to either browse the device and choose
a file, or take a picture using the device’s camera.

• The system filters out the files that the user can attach. Only files
with extensions PDF, JPEG, and PNG appear to the user.

• The name of the file/s chosen would then appear to the user on
the browser.

• The system uploads the chosen file/s to the Amazon S3 bucket
when the entire form is completed.

• Use Case ends.

Alternative Flows:

1. Attaching an illegal format. The system displays an informative
error message.

2. Unless the user attaches a legal file format, the file/s will not be
uploaded to Amazon S3 bucket.

Post Conditions:

1. Success: The file/s are added to the system and saved in Amazon
S3 bucket as a PDF and JSON file.

2. Failure: The file/s are not added to the system.

9

Table 2.9: Detailed use case – Lookup VIN.

Name: Lookup VIN
Actor: Application user
Goal: Searching for a registered vehicle
Description: The user gets access to the system by looking up a vehicle by using VIN

to get access to the different functionalities of the application (Service,
Inspection, TCR).

Flow of Events:
Basic Flow: This use case starts when the user is not verified to the system and goes

to the start page:

• The system prompts the user for inserting a valid VIN.

• The user enters a VIN.

• The system validates the inserted data by traversing through the
API provided by the company and makes sure it is valid.

• The user is validated and redirected to the home page of the vehicle.

• Use Case ends.

Alternative Flows: In case the user inserted an invalid VIN, the following occurs:

1. The system displays an informative error message.

2. The system prompts the user to re-enter valid information.

3. The Basic Flow continues where the user inserts new information.

Post Conditions:

1. Success: Success the user is validated, and home page will be
displayed.

2. The user is unable to access the rest of the applications function-
alities.

10

Table 2.10: Detailed use case – Send Service/Inspection.

Name: Send Service/Inspection
Actor: Application user
Goal: Sending a form regarding the vehicle’s Service/Inspection
Description: The user gets access to the desired form by choosing either Service or

Inspection from the home page.
Flow of Events:
Basic Flow: This use case begins when a user accesses the “send a service/ Send an

Inspection” feature/s of the system:

• The system asks the user to insert the necessary data (service/in-
spection date, hours, cost, inspection state, Service comment,and
user’s details).

• The system gives the user the option to attach a file(PDF, PNG
and JPEG).

• The system checks that the data inserted is of a correct type. For
instance, the hours used in service must be of number type.

• A pop-up is displayed to show a summary of data inserted, along
with the option to download the data as a PDF file.

• The system uploads the PDF file along with the files attached to
Amazon S3 bucket.

• Use Case ends.

Alternative Flows:

1. Invalid information entered: The system displays an “Invalid
data error” and asks the user to enter valid information

2. Cancel button: In case the user clicks on the cancel button, the
system will redirect him or her to the home page.

Post Conditions:

1. Success: The Service/Inspection is added to the system and saved
in Amazon S3 bucket along with the files attached.

2. Failure: The Service/Inspection is not added to the system.

11

Table 2.11: Detailed use case – Send TCR.

Name: Send TCR
Actor: Application user
Description: The user gets access to the desired form by choosing either clicking on

the TCR link in the sub-header or clicking on the button on the home
page.

Flow of Events:
Basic Flow: This use case begins when a user accesses the TCR feature of the system:

• The system asks the user to fill up a multiple answer form, made
of a JSON file received from the company API.

• The system checks whether all questions are answered since it is
mandatory.

• The system generates and sends a PDF and JSON file to the Ama-
zon S3 bucket on the user hitting the submit button.

• A pop-up is displayed to show a summary of the data input of the
user, alongside giving the user the option to download a PDF file.

• Use Case ends.

Alternative Flows:

1. Not answering any of the multiple-choice question form:
The system disables the “Continue” button and does not let the
user proceed.

2. Cancel button: In case the user clicks on the cancel button, the
system will redirect him or her to the home page.

Post Conditions:

1. Success: The TCR is added to the system and saved in Amazon
S3 bucket along with the JSON file.

2. The TCR is not added to the system.

2.4 Misuse cases

This section points out some potential misuse cases of the application with the STRIDE threat
model. STRIDE is a thread identification and classification model[48]. Acronyms of STRIDE is
explained below in Table 2.12.Tables 2.13, 2.14, 2.15, 2.14, and 2.16 show the misuse cases that
we identified in the application. These misuse cases in the Tables (2.13 - 2.16) falls at least into
one of the categories of STRIDE. For example, Table 2.13 can fall under a few categories such
as Spoofing, Repudiation and Tampering. Table 2.12 is an example of a misuse case, which falls
under the category of Spoofing, Repudiation and Tampering where any user with access to VIN,
can claim to be another user and input a report, or claim not to have submitted a report after
submission. All the Tables (2.13 - 2.16) have a row where the letters of STRIDE category are used.

12

Table 2.12: Stride threat model acronyms [38].

Threat Threat property
S-Spoofing Masquerading as another user
T-Tampering Unauthorized manipulation of data
R-Repudiation Denial of performing an action
I-Information disclosure Exposure of data to unauthorized parties
D-Denial of Service (DoS) Denying legitimate users by overloading resources of the application
E-Elevation of Privilege (EoP) Unprivileged users gains unauthorized privileges

Table 2.13: Misuse case - Data forgery.

Name: Data forgery
STRIDE
categories:

STR

Actor: Attacker/User
Goal: Submission of incorrect data
Description: The user might be tempted to submit incorrect data out of

mistake. This however can be abused by an attacker since
the VIN number can be obtained by other means, such
as Assetfront Retrade4(Subsystem of Assetfront). Which
will result in someone with malicious intent to overload the
storage capacity.

Table 2.14: Misuse case - QR-code manipulation.

Name: QR-code manipulation
STRIDE
categories:

STRD

Actor: Attacker
Goal: To manipulate the data contained in the QR-code in the

PDF file that will be saved to the client’s machine and
Amazon S3 bucket

Description: This can lead to QR-codes with malicious code hidden in-
side its contents, getting saved and executed on user’s de-
vices.

13

Table 2.15: Misuse case - Amazon S3 bucket key hijacking.

Name: Amazon S3 bucket key hijacking
STRIDE
categories:

STD

Actor: Attacker
Goal: To get access keys of the Amazon S3 bucket
Description: Access keys to the Amazon S3 bucket can get stolen from

the front end of the application since, which can be used by
attacker or attackers to overload the saving capacity of the
Amazon S3 bucket, which can result in higher data storage
cost.

Table 2.16: Misuse case - Files with malicious content.

Name: Files with malicious content
STRIDE
categories:

TI

Actor: Attacker
Goal: Infecting client machines with malicious files uploaded to

the Amazon S3 bucket
Description: Files that contain malicious content can be uploaded and

hidden inside legitimate files to be later on downloaded by
other users.

2.5 Risk Analysis

The team had analyzed the different types of risks that might occur, this was done in the project
plan (see Appendix A). However, we decided to look at a wider range of risk scenarios and study
the likelihood and severity of each of them. The risk analysis was inspired by an essay called
“Methods of Risk Analysis and Management”[24]. Also, an article called ‘Project Risks vs. Busi-
ness Risks‘[52], which sheds the light on various risk scenarios. The categories studied are listed
below:

• Product risk analysis : In Table 2.17, the team had identified high, medium, and low risks
that might affect both the quality of the product and the ability to meet the requirements
in Section 2. The analysis is inspired by a paper called “Risk management in the product
development process”[1].

• Business Risk analysis): This category involves the organizational risks that might occur.
The risks in Table 2.18 will mainly affect the business environment, which in our case is the
development team.

Figure 2.4 shows the color-coding of the risk assessment, taking into consideration likelihood and
severity factors.

14

Figure 2.4: Severity and likelihood for risk assessment.

Product risks
ID Description Mitigation
R1.1 The team is unable

to finish all the re-
quirements in the
product

Since most of the team members are not familiar with the
technologies used in this project, the likelihood that the
team spends a long time on certain tasks is relatively high.
Therefore, the team members had to familiarize with most
of the tools before the development phase starts.

R1.2 The requirements
change drastically
in the development
phase

The requirements change might occur due to changes in the
product owner’s requirements. However, there must be an
agreement between the team and the company in case this
scenario occurs. As a severe change in the requirements
might have high impact.

R1.3 The final product
does not match the
requirements

This risk might occur in case of limited interaction with the
product owner, which will result in that our product and
the product envisioned are significantly different. In order
to avoid this risk scenario, the team will schedule frequent
meetings with the product owner to show the progress.

R1.4 The final design
is not responsive
on different screen
sizes

The application will be used from various devices(Desktop,
laptop, Mobil-phones, and tablets). Therefore, it is impor-
tant to maintain a responsive design to ensure a smooth
user interaction with the application. This risk is likely to
happen due to a lack of knowledge in web application de-
sign among the team members. Therefore, the team had
decided to use the “Mobile first” approach[37].

R1.5 The libraries to be
used in the project
are incompatible or
deprecated.

This risk can be avoided by researching libraries needed for
development. As some libraries might be deprecated, the
team has to look for alternative libraries.

Table 2.17: Product risks.

15

Business risks
ID Description Mitigation
R1.6 The company and

product owner
add unachievable
requirements

Taking into consideration that the requirements were un-
clear in the beginning. Therefore, the team had agreed with
the company that new requirements are optional to fulfill.

R1.7 Communication
risks among team
members

The team must ensure effective communication. Commu-
nicating any delays or shifts in deadline to deliver sprints
on time.

R1.8 Loss of interest in
the project by a
team member

Team members will ensure that all developers are interested
in the project. In case of lack in contribution,the issue will
be discussed with the supervisor.

R1.9 The absence of
one or many team
members due to
illness or-personal
issues

The team members will be informed of the development
progress. The group had agreed on daily meetings, which
will provide the members with an overview of the workflow.
In that case, the impact of an urgent absence of a team
member will be limited.

R2.0 Lack of motivation
among one or more
team members
which can have
negative effect on
his performance

Team members will collaborate to learn technologies and
tools used in the project. Ensuring that nobody falls be-
hind.

Table 2.18: Business risks.

16

Chapter 3

Software Development Methods

The purpose of this chapter is to address the various aspects of the development process in this
project, which will last from January to May. The choice of the development method would majorly
affect the work in terms of how problems were approached, prioritized, and eventually solved. The
development method Scrum was recommended to be used in this project by the company. However,
we realized that pure Scrum development method was not the optimal approach, due to the lack of
clarity in the project’s definition. This was caused by the fact that the requirements were slightly
flexible, and the development team was engaged in defining some of the requirements. As a result
of that, we chose to look into a combination of different development models to find a more suitable
fit for our project, that could eventually be discussed with the company. The team conducted an
assessment on various development models and their benefits.

3.1 Considered models

Based on the chapter description, the team researched a variation of development models to decide
the most suitable model for the project. This final decision must be further discussed with the
company.

3.1.1 Extreme Programming (XP)

XP is an agile development model with multiple values. First, XP encourages code refactoring.
Also, it has a short development cycle, which results in continuous feedback and interaction with
the product owner. Moreover, XP considers the customer to be an integral part of the team.
Furthermore, XP relies on two main techniques, pair programming, and test driven development
[13].

Since the team consists of four developers, pair programming would be an effective technique
to be implemented. The code will be reviewed twice through the development, this increases code
quality and allows knowledge sharing among team members.

3.1.2 Kanban

Kanban is a Lean development method[43] for improving the development process. This method
has been studied due to its benefits in visualizing and managing the workflow through a tool
called ”virtual Kanban board”. Tasks could be added to the board and classified into categories
(like Work-In-Progress (WIP), to do, done, etc..). The study of Kanban method was inspired by
an article called “Usage of Kanban methodology at software development teams”[30]. Applying
Kanban in our project could be effective for managing the workflow due to its ability to

17

• Split the work into pieces, write each item on a card, and put it on the wall.

• Use named columns to illustrate where each item is in the workflow.

3.2 Scrum

Scrum is an agile framework for incremental product development, which is widely used in software
development. The core of Scrum is iterations, which are repeated until all the product require-
ments have been met. The product owner defined the functional requirements which would be
added into an artifact called “Product Backlog”. The workload would be divided into iterations
called “sprints”. The duration of a sprint depended on the complexity of the iteration. In our
case, the length of the iteration would be between 1 and 4 weeks according to the company’s
recommendations.

Scrum is the development method we agreed upon in the end. It is a good fit for the projects
size and content. Furthermore, some concepts from other development methods could be present.
For instance, pair programming technique can be introduced at a certain point in development.

3.2.1 Daily Scrum meeting

The team planned to run daily scrum meetings. The meetings content were regarding the status
of each member in terms of what we were working on the previous day, how far we had come with
the tasks, and what we were planning to work on. These daily scrum meetings helped us to keep
the team members up to date on the current state of the product. Keeping group members up to
date would mitigate the probability of some risks arising. For instance, if a group member has to
be absent for a certain amount of time, as mentioned in risk R1.9 in Table 2.18.

3.2.2 Meetings with Supervisor

Throughout the project, we had weekly meetings with our supervisor. The supervisor meeting
were mainly about the work progress, and the state of the development. Similarly to the scrum
meetings, the project progress was presented to the supervisor, and his feedback was noted and
added to the upcoming sprint.

3.2.3 Milestones

During the project planning phase, we set up some milestones for the development of the project
(see Appendix A). In order for the group to deliver submissions in time, these milestones must
have been met.

• 15th of February: The group must be finished with the design (mock-ups and project
architecture).

• 15th of April: The group must be finished with the first version of the code.

• 1st of May: The group must be finished with the testing.

• 10th of May: Code delivery.

3.3 Development Process

In this Section, we aim to give an overview of how the development process affected the project.

18

3.3.1 Scrum as development method

After sprints delivery, the team presented the sprints to the company and the product owner.
Then, the features of the next sprint were planned based on the feedback received. If there were
any new wishes or changes in existing requirements, we assessed how high on the priority list these
were set. There were difficulties in getting these meetings to be exactly the same day of the week
or planned period due to external factors, such as one or more members having a meeting on other
subjects, or the company not having the opportunity. This was tackled in a good way, in that
we used to arrange a meeting one or two days ahead so that all parties had the opportunity to
participate in these meetings.

3.3.2 Pair Programming

As mentioned in Section 3.1, pair programming is a way to improve the quality of the code. It is a
process that engages two developers in writing a piece of code. Pair Programming was an effective
way to share knowledge among team members. The team decided to introduce this element in our
project and combine it with Scrum.

3.3.3 Trello

Trello1 was used to keep control of work tasks. “Trello is a collaboration tool that organizes a
project into boards. In one glance, Trello states what is being worked on, who is working on what,
and where something is in a process”[53]. In our board, we included the four steps system. In
Figure 3.1 it is at the front the four different steps that were implemented in our organization
board.

• To do: In this board column, things are set up to be done after the meetings with the
company and product owner, or when the team agrees that something else could be added
here.

• Doing: This column contains the ongoing tasks.

• Finish: When a task was completed, and it was approved by others in the group, it was put
on this board column.

• Put on hold: This column includes the tasks that had to be continued later, due to lack of
resources.

1https://trello.com/

19

Figure 3.1: Trello board.

20

Chapter 4

Technologies, Design, and
Implementation

This chapter will discuss multiple aspects of the development phase. Firstly, we will conduct a
technology assessment and list the various technologies used in the project. Next, we will discuss
the project’s prototyping and the process used to achieve it. In addition, we will explicate the
design of the various subsystems along with implementation.

4.1 Technology Assessment

4.1.1 Technologies and Tools

Before starting the development phase of the project, technologies and tools were examined. The
examination helped to find suitable and available tools to be used throughout the development.
Next, we discuss some of the specific technologies within our application. A list of all technologies
and tools is shown in Appendix D.

Angular

Angular1 is a platform and framework for building single-page client applications using HTML
and TypeScript2. Angular is written in TypeScript[7].

API

API is an interface that allows the interaction between two application or mixed hardware-
software intermediaries[31] and[26].

REST

Representational State Transfer (REST) is a software architectural style for distributed hyper-
media systems, that is used for creating web-services[54].

Swagger

Swagger is an Interface Description Language (IDL)[56] which allows the user to represent the
structure of an API in order for it to be readable by a machine[51].

Amazon S3

According to Amazon documentation, Amazon S3 is a storage for the Internet, that has a simple

1http://angular.io/
2https://www.typescriptlang.org/

21

web services interface that you can use to store and retrieve any amount of data[15].

Docker

According to Docker documentation, Docker is an open platform which helps developers to
develop and run applications. Docker enables the user to separate the desired application the
infrastructure which expedites software delivery[19].

4.1.2 Choice of Technology

The technologies used in the project were mainly compared to the project specifications. Before
starting with the development, Angular was recommended to be used as a front-end development
framework, because today’s Assetfront solution is using the same framework and this results is
a smooth transition of Assetfront Repair. Next, Spring Boot3 was recommended as a back-end
framework. However, the requirements have changed as we started with the development phase. It
was decided that only a front-end application would be sufficient for this project. The technology
assessment was done with a tendency towards a front-end framework. In general, developing
web applications is simpler with using a suitable framework as they tend to have various built-in
functions to be used in the development process.

The reason behind choosing Angular is that it helps with creating interactive and dynamic appli-
cations that have single page features, Single Page Applications (SPAs). Moreover, Angular has a
proper community support. They also host Angular conferences with the presence of international
IT- companies for new developments in technology[4].

Amazon S3 was selected as a cloud storage resource for project files. It provides an environment
to send requests to create buckets, store and retrieve data as objects. It is a suitable platform for
our project as the service is highly durable and available. Amazon S3 was used for the application
deployment as well. Amazon offers a free service to deploy static website files. Finally, we used
HTML, CSS, and TypeScript. These technologies were required to accomplish the development of
the application. As well as displaying the data and interacting with the users.

4.1.3 Git

Git is a control version system used for parallel programming between multiple developers. Git
helped keeping a backup of code that was created and supported sorting through code developers
have had developed at the same time. This was to minimize the amount of merge conflicts, even
though we used Trello (see Section 3.3.3) to avoid any collisions with other team members, it
was inevitable to happen. To further mitigate merge conflicts and/or functionality conflicts, we
adapted a feature development workflow called “feature branch workflow”[12].

The aim of this development method is to create branches for each time a new functionality is
to be developed. Thereafter, this branch would be deleted after merging with main development
branch. The technical terminology of this merging process is called a “pull request”. The pull
request has to be approved by other developers before merging. Developers whom rejected a pull
request had to do so with a message including the reason behind the rejection. In this project,
we decided to create a “DEV” branch, where we merged to after completing the development of
a function. This was to simulate different teams working on the same application 4.1. Thus, we
did not merge with “Master branch” before introducing the final version of the code. As a result
of that, the company could simply clone the code and continue the development process.

3https://spring.io/projects/spring-boot

22

Figure 4.1: Development with branches.

4.2 Design

4.2.1 System Design

The team created a model for the system according to the project requirement. First, the generic
approach to illustrate the entire system that our application would be apart of, is shown in Figure
4.2.

Figure 4.2: Overall system model.

Then, the main focus was set towards the interaction between Assetfront Repair, Assetfront
API, api-service and Amazon S3 bucket. Since the company provided us with a ready-made API
(API documentation is found in Appendix C). The system was designed to handle API- requests,
and provide the user with an interactive Graphical User Interface (GUI), which would result in
communicating with the storage cloud Amazon S3 bucket. This led to a simplified model of the
system from an external perspective (see Figure 4.3). Furthermore, the system components in
Assetfront Repair were analyzed to include the file upload restrictions, invalid API requests, and
the interaction with Amazon S3 bucket (see Figure 4.4).

23

Figure 4.3: Simplified system model.

Figure 4.4: Detailed system model.

The natural approach was to display some data from the API in case of valid API-requests for
the user to make sure that it is the right vehicle. Then the user gets access to the system where
he or she could proceed to use the different functionalities. Furthermore, in case the user wishes
to send a Service and/or an Inspection, and add attachments to it. The system will generated a
PDF file with the user’s input. Also, it uploads the PDF and its attachments to an Amazon S3
bucket. On the other hand, in case the user wishes to fill up a TCR. Then, the system would
generate a PDF file along with a JSON file that Assetfront can request data from in form of API
request. The JSON file would be used in further development to display the user’s input in other
Assetfront subsystems. Both files will be uploaded to the same Amazon S3 bucket. The file-system
in the Amazon S3 bucket is structured according to the way the data will be retrieved later, it is
explained further in Amazon S3 file-system design Section 4.2.7.

4.2.2 Object-oriented design

An important aspect of any design is the relationship between objects and interfaces in the system.
Object-oriented design is mainly concerned of specifying the details of classes and objects. However,

24

the interface details should be avoided in such a diagram according to ”Software Engineering” book
by Ian Sommerville[50]. Figure 4.5 represents the important classes and interfaces in the system
in term if development.

Figure 4.5: Class diagram that represents the important classes and interfaces.

4.2.3 Prototyping

Prototyping is an important process of creating in ital models of a desired product to test a
certain design[16]. The team decided on creating mock-ups in the planning phase to visualize
the requirements before the development phase started. According to an article written by an
interaction design online school called “Interaction Design Foundation”, under the title “Mock-
ups”[28]. Mock-ups are used mainly to collect feedback from product owner about design in
the planning phase. As the requirements in Table 2.3 are clear, the mock-ups design had to
accommodate to those requirements. This has led to the mock-ups shown in Figure 4.6. The
mock-ups helped us to recognize the mistaken requirements.

25

(a) Insert VIN welcome page (b) Add TCR

(c) Add inspection (d) Fill up a TCR attribute

Figure 4.6: System mockups.

4.2.4 Components

According to the Angular documentation[9], components are the main building units of an Angular
application. They mainly consist of three parts:

• HTML: An HTML template that is typically used to render the specified component. How-
ever, it is possible to create a complex structure, which is known as “nested components”[49].
In the beginning of the planning phase, the team felt they needed to design an overview of
the structure of HTML template, as shown in Figure 4.7. It represents the layout of HTML
templates. This was needed to acquire insight of the overall HTML structure of the appli-
cation. The blue color encoded on some of the components in Figure 4.7 indicate that the
HTML template of those components would be displayed in the body of App component
once the button was clicked.

• TypeScript: A TypeScript file that contains one or multiple classes that define the be-
havior of the component. TypeScript component classes were decorated with @Component
decorator.

• CSS: Every component requires a CSS selector. The selector’s role is to instantiate the
component whenever the tag <“Selector”>appears in the HTML template. Also, the com-
ponent’s style usually is specified in its own CSS file. The name of the file must be inserted
in selectedUrl decorator of the component[10].

26

Figure 4.7: HTML structure.

4.2.5 services

An Angular service is an Injectable[11] class that contains functions, methods and variables to
pass to other services and components. A service does not have the same structure as component
and it does not require HTML and CSS templates. The main function is to pass data through
the application. A service can be used in a service/component by dependency injection design
pattern. Figure 4.8 is an example that illustrates the relationship between components and services
in Assetfront Repair. Detailed implementation of component and services is discussed further in
Section 4.3.

N.B.: An Angular service can be mistaken with the Service functionality in our application.
Therefore, we decided to use Service with a capital letter to refer to the service functionality.

Figure 4.8: An example of services and components interaction.

27

4.2.6 GUI and UI Design

As mentioned in the non-functional requirements Section 2.2, the application’s overall design must
fulfil the requirements. The list below illustrates how the team had approached the various re-
quirements:

Responsive design

The home page of the application is shown in Figure 4.9. The screen sizes used in this figure
are: 750 x 1334 Pixels mobile phone and 1920 x 1080 Pixels portable Personal Computer (PC).
The key elements to adopt this approach in our application were media queries (illustrated in code
Listing 4.1), dynamic resizing in CSS, and a flexible grid layout. The approaches were inspired by
an article under the title of “Responsive Web Design”[32].

Figure 4.9: Phone vs PC

1

2 @media screen and (max -width: 320px) {

3 #navigation{

4 #logo{

5 height: 3rem;

6 }

7 }

8 }

9 @media screen and (min -width: 769px) {

10 #navigation{

11 #logo{

12 height: 5rem;

13 margin -left: 2rem;

14 }

15 }

16 }

Listing 4.1: Media queries example.

Familiarity

The application will be a part of an already existing web application called Assetfront4. The
target audience are mainly the users of Assetfront. Thus, it is important the application’s design
was inspired from the Assetfront design.

Simple and informative The main approach in this category was to maintain a clean, yet
informative layout. The element displayed to the user had to have a specific useful purpose, as

4https://assetfront.com/

28

well as we ensured that all the fields are self explanatory (illustrated in Figure 4.10).

Figure 4.10: Simple and informative design.

4.2.7 S3 file-system Design

In today’s solution, Assetfront runs in Amazon web Service (AWS), and uses its services. Assetfront
stores application related files in an S3 bucket. Therefore, the team decided on utilizing the same
tool for Assetfront-Repair as well. When a user sends a Service or an Inspection, a PDF will be
generated. The PDF contains a summary of the filled form. As well as a QR-code that could be
scanned in later in the application. PDF and QR-code functions are explained in Section 4.3.3.
The PDF and attachments - if the user wishes to attach files to the form - will be uploaded to S3.
Then, the user can download the most recent PDF form for Service, Inspection, and/or TCR, as
shown in (3-in-Figure-4.10). Every vehicle in Assetfront has an unique resourceId, which it will
be identified by. The approach to store files in S3 was hierarchical file system, where the data
can be accessed starting from a root file and traversing downward thought the levels of hierarchy,
as illustrated in Figure 4.11. The root folder in the hierarchy is asset-repair which is the bucket
name. 1 -in- Figure 4.11 show three different resourceId. Since it is not possible to attach files to
a TCR, the Attached-files folder 4 -in- Figure 4.11 will contain a JSON file instead, see Section
4.3.3 for an explanation of the JSON file’s functions.

29

Figure 4.11: S3 Hierarchical file system.

4.3 Implementation

After a thorough discussion among the team and the company about the importance of a back-end
solution in Assetfront Repair, we reached the conclusion that developing a back-end for this appli-
cation is an unnecessary use of time and resources. The main reason behind this argumentation is
that we already have been provided an API, where we retrieve all the data needed to be processed
by the application.

Consequently, Assetfront Repair is solely a front-end application and is mainly written with
Angular version 9[20]. Using a component-based system makes it relatively easy to achieve loose
coupling and high cohesion[22], which helps to build scalable and manageable system.

4.3.1 System Overview

Send and Download a form

The process of submitting and downloading a form involves four different entities (user, application,
API, and Amazon S3 bucket). The sequence diagrams shown in Figures 4.12, 4.13, and 4.14
illustrate the interaction between the system entities. Since the system does not have a login
functionality, the main page starts with the user entering VIN. If the user entered the correct VIN,
he or she will be redirected to the home page where he or she would get the opportunity to fill
and send new forms, or download previously uploaded forms. Otherwise, the user will get an error
message.

If the user wishes to send a TCR (Figure 4.12), he or she will be prompted to fill out the

30

TCR form and user details. In case something went wrong, the user will be notified. Otherwise,
the application will generate PDF and JSON files from the user input and TCR definition (the
functionalities are presented in Section 4.3.3). Finally, it uploads the files to the Amazon S3 bucket.

On the other hand, sending of Service and Inspection works differently. What distinguishes
sending Service and Inspection from sending TCR is that the former allows the user to upload
file/s. Additionally, the system gives mobile users the possibility to take a picture and upload it.
Moreover, to mitigate the risk of uploading malicious files, the system restricts the file extension to
only PDF, PNG, JPEG. Consequently, if the user tries to upload files with a forbidden extension,
the user will get an error message. Otherwise, the file along with the generated PDF file will
be uploaded to the Amazon S3 bucket. Subsequently, the user will get a successful affirmation
message. Besides filling out and uploading forms, the user will get the opportunity to download
previously uploaded files. The possibility to download files is restricted only to the last uploaded
folder. The details of the Amazon S3 file structure is presented in Section 4.2.7. As illustrated in
Figure 4.14, if the user wishes to download a TCR, the system will send a request to Amazon S3
bucket to get a list of objects in the specified folder. If the TCR folder is empty, the user will be
notified accordingly. Otherwise, the list of files in the last uploaded folder will be displayed to the
user. Eventually, the file/s that the user selected will be downloaded. N.B.: Amazon S3 uptime
is 99.99% according to AWS documentation[3], which makes it unlikely for server related problems
to occur.

Figure 4.12: Sequence diagram showing how send TCR works.

31

Figure 4.13: Sequence diagram showing how send service or inspection work.

Figure 4.14: Sequence diagram showing how download TCR work.

4.3.2 Connecting to API

Assetfront Repair is entirely dependent on Assetfront API. The application is connected to the
API using Interceptors. Interceptors are built-in tools for handling HTTP requests globally[6].

32

They allow developers to catch incoming or outgoing HTTP requests using the HttpClient5.

The “AppHttpInterceptor” class in Listing 4.2 implements the HttpInterceptor interface and
overrides the intercept method. The intercept method takes HttpRequest6 and HttpHandler7 as
parameters and returns an Observable, which is HttpEvent8.

The aforementioned method sets the HttpRequest header’s content type to application/JSON.
As shown in Listing 4.3, the interceptor is registered as a multi-provider in the “app module”. It
is because there can be multiple interceptors running within an application.

1 intercept(req: HttpRequest <Asset >, next: HttpHandler): Observable <HttpEvent

<any >> {

2 req = req.clone({ headers: req.headers.set('content -type', 'application
/JSON') });

3 return next.handle(req)

4 .pipe(

5 ... // error handling is intentionally omitted

6 })

7);

8 }

Listing 4.2: Interceptor Service.

1 providers: [VehiclesService ,

2 {

3 provide: HTTP_INTERCEPTORS ,

4 useClass: AppHttpInterceptor ,

5 multi: true

6 }

Listing 4.3: Registration of Interceptor as a multi-provider.

The “VehicleService” service invokes an interceptor by making an HttpRequest using the Http-
Client service. This is done by injecting HttpClient into the VehicleService (this is illustrated
Listing 4.2).

Then, the method “getVehicleData(vin)” takes a vehicle’s VIN as a parameter, and returns an
Observable9 HttpResponse. The passed parameter is added to the API Uniform Resource Locator
(URL) to retrieve a desired vehicle’s data (the method is presented in Listing 4.4).

1 getVehicleData(vin: string): Observable <HttpResponse <any >> {

2 const url = 'https ://test -assetlookup.dev.assetfront.com/asset/lookup/'
+ vin;

3 return this.httpClient.get(url , {observe: 'response '});
4 }

Listing 4.4: getVehicleData method.

Promise vs. Observable

Promises deal with one asynchronous event at a time, while Observable handle a sequence of
asynchronous events over a period of time [5]. First, we attempted to use Observable to handle
Httprequest, since “get(URL)” returns Observable as well. “get(URL)” is a bult-in method in
Http class that returns HttpResponse in form of an Observable of HttpClient.

Nonetheless, we found out that Observable was not the right choice for our application. This
is due to some components needing to access data before it is rendered. As a result of that, the
Observable was converted into Promise using the “toPromise()” method [45], the code is presented
in (Listing 4.5).

5https://angular.io/api/common/http/HttpClient
6https://angular.io/api/common/http/HttpRequest
7https://angular.io/api/common/http/HttpHandler
8https://angular.io/api/common/http/HttpEvent
9https://angular.io/guide/observables

33

1 setSerialNo(value){

2 const promise = new Promise ((resolve , reject) => {

3 this.request.getVehicleData(value)

4 .toPromise ()

5 .then(resp => {

6 if(resp.status === 200){

7 this.assetDetails = resp.body;

8 resolve ();

9 }

10 })

11 .catch((error) => {console.log(error); reject(error);});

12 });

13 return promise;

14 }

Listing 4.5: Method showing how to convert Observable to Promise.

4.3.3 service overview

As stated in Section 4.2.5, services are significant classes that help to share data between compo-
nents. Accordingly, Assetfront Repair uses services to share data between its components. The
application has seven services that provide data to the components and other services, these ser-
vices are listed in Table 4.1).

These services needed to be injectable to pass data over to the desired components or other
services (see Section 4.2.5). This is achieved by importing injectable form @angular/core and
using the @injectable() decorator, as presented in Listing 4.2.

34

Table 4.1: List of the Services with its dependencies.

Service Description Dependencies Passes data to
AppHttpInterceptor Intercepts HttpRequest None AppModule

ApiRequestService

Changes
an observable
to promise and
assingn httpResponse
body to
assetDetails.

VehiclesService
SearchComponent
HomeComponent

FileServiceService

Responsible for
setting
Amazon
S3 bucket.

None

TCRComponent
InspectionComponent

ServiceComponent,
HomeService.

HomeService

Provides
a functionality
to upload files
to Amazon S3
bucket, and
download files.

ApiRequestService
FileServiceService
FileSaverService.

HomeComponent
ServiceComponent
InspectionComponent.

InputDataTransferService
Tranfers user details
data between the
desired components.

PDFService
VehiclesService

PersonalDataComponent
ServiceComponent
InspectionComponent
DialogServiceComponent.

PDFService

Provide
a functioanality
to genaraten and
dwonload PDF
functionality.

None
ServiceComponent
InspectionComponent
DialogServiceComponent.

TCRService
Sets and gets
the newly filled
TCR.

None PersonalDataComponent

VehiclesService
Implements API
request for
a particular vehicle.

HttpClient
ApiRequestservice
PDFservice
HomeComponent

PDF file generation

The application generates a PDF file from the user input in each Service, Inspection, and TCR. In
the case of a TCR, the application also generates a PDF file from the newly filled TCR’s JSON file.
Moreover, the PDFService class (see Table 4.1) handles the functionality of a PDF file generation.
The class makes use of jsPDF[21] open-library to generate the needed file. As the structure of the
PDF file content is highly dependent on the form to be filled out, it was necessary to have a specific
method that deals with all three forms separately. However, it is truly only the TCR generation
that stands out from Service and Inspection.

PDF generation for newly filled TCR

The generated PDF file is a combination of the TCR definition for a particular vehicle (repre-
sented in (d) component in Figure 4.2), personal details of the user, and a QR-code (see Section
4.3.3). Appendix I shows a sample of the PDF file in a random vehicle.

The code in Listing 4.6 presents the method “PlaceForm()”that is responsible for generating
the PDF file. This method takes a TCR as a JSON file (see Appendix H) and personal details as
parameters. Furthermore, it loops through the JSON file and adds data to the PDF file accordingly,
as described in Section 4.3.4. TCR JSON file has a nested data structure that cannot be extracted

35

with a single loop (see Appendix H). Consequently, the method uses triple nested for-loops to
generate the desired PDF file.

1 PlaceForm(json: any , Company , Name , Date , Email , PhoneNR){

2 this.Person(Company , Name , Date , Email , PhoneNR):

3 // Loops through each TCR[] and adds its name to the PDF

4 for (let tcri = 0; tcri < json.length; tcri ++){

5 tcrName = json[tcri].name;

6 //Write to the file

7 this.doc.text(tcrName , this.FormStartX - 2 ,this.PdfStartY += 4.5);

8 // Loops through each checkpoint [] and add its name to the PDF

9 for(let cpi = 0; cpi < json[tcri]. checkpoint.length; cpi ++){

10 this.PageLimit (240);

11 CheckpointName = json[tcri]. checkpoint[cpi].name ;

12 this.doc.text(CheckpointName , this.FormStartX , this.PdfStartY +=

4.5);

13 // Loops through options []

14 for(let opi = 0; opi < json[tcri]. checkpoint[cpi]. options.length;

opi++){

15 this.optionHolder[opi] = json[tcri]. checkpoint[cpi]. options[opi].

description;

16 if (opi === json[tcri]. checkpoint[cpi].value) {

17 this.SmallRectangle(true , xNow - 20, this.PdfStartY += 3); //

Filled

18 this.doc.text(this.optionHolder[opi], xNow - 7, this.PdfStartY

+= 3.5);

19 } else {

20 this.SmallRectangle(false , xNow - 20, this.PdfStartY += 3); //

Hollow

21 this.doc.text(this.optionHolder[opi], xNow - 7, this.PdfStartY

+= 3.5);

22 }

23 }

24 }

25 }

26 return this.doc.output('arraybuffer '); // Returns file object

27 }

Listing 4.6: Method to generate PDF for TCR.

QR-Code

QR-code and its scanner play a significant role in speeding up the process of looking up vehicles in
Assetfront Repair. The QR-Code is a part of each generated PDF for every vehicle. The scanner
reads and puts the value of the VIN directly to the search input field and starts the searching
process by bypassing the button click. It eases the process of searching for a vehicle by its VIN,
which is up to seventeen long characters (digits and capital letters). Entering those characters
into the input field is a bit time-consuming, especially while sending forms for multiple vehicles.
However, these advantages introduce security issues into the application (see Section 2.14).

Neither QR-Code nor scanner was in the requirement in this project at the beginning. Neverthe-
less, after discussing the pros and cons of QR-code with the company, the latter concluded that the
advantages weigh. QR-Code generation takes place in the HTML templates of ServiceComponent,
InspectionComponent, or PersonalDataComponent (see Table 4.2). Each of these components will
generate a QR-Code from VIN that the user used to search for a particular vehicle. Then the
PDFService class retrieves it from canvas and converts it to a Base64[36]. Finally, the Base64
string is added to the PDF of the wanted form. For generating QR-Code, the “ngx-qrcode”[41]
open-source library is used. Similarly, the QR-Code scanner is implemented in SearchComponent
using an open-source library called “Zxing”[42].

36

4.3.4 Component Overview

Although Assetfront Repair consists of 15 components that work togather to achieve the required
functionalities. Only the essential components will be discussed in this Section. Table 4.2 presents
an overview of component names, description, and dependencies.

Table 4.2: List of the components with its description and dependencies

Component Name Description Dependecies

About
Page to display information
about assetfront Repair.

None

App Root component. None

Contact-Us
Page to displays contact information
of assetfront.

None

Dialog-Window
Dialogue window
to prompt user to verify vehicle.

ApiRequestService
MatDialogRef
Router, VehiclesService

Fallback Page to displays 404 Error message. None
Footer Application footer. None

Header
Application’s Navar consisting links
that redirects to search,
About and contact-us components.

None

Home
Main page to download and send TCR,
Inspection and Service.

ApiRequestService
VehiclesService
HomeService

Inspection
Page where a user sends
Inspection form or attachment.

ApiRequestService
FileServiceService
FormBuilder
PDFService, HomeService
InputDataTransferService
MatDialog
RouterVehiclesService

User-Detail
Page to collect a TCR
user information.

ApiRequestService
FileServiceService
FormBuilder
HomeService
InputDataTransferService
MatDialog, PDFService
Router,TcrService
VehiclesService

Search The application’s search page.
ApiRequestService
MatDialog
VehiclesService

Service
Page where a user sends Service
form or attachment.

ApiRequestService
FileServiceService
FormBuilder
HomeService
InputDataTransferService
MatDialog, PDFService
Router

TCR
Page to Fill out TCR and upload it to
Amazon S3 bucket in both
JSON and PDF format.

ApiRequestService
ChangeDetectorRef
FormBuilder
Router, TcrService

TCR-Dialog
Dialogue window that gives user an opportunity
to download the newly filled
TCR in PDF format.

MatDialog

37

Search Component

This component is responsible for accepting user’s input. The user is given the possibility to
either scan a QR-code or enter a value into the input field. Once the user enters a VIN and
clicks the search button, the “setSerialNo()” method triggers, which calls the method “apiRe-
quest.setSerialNo(value)”. The latter method sets the VIN to the parameter “value”, the code is
presented in Listing 4.7. If the entered value is a valid VIN, a confirmation dialog window will
appear and prompt the user to verify the vehicle (see Figure 4.16). Otherwise, an error message
would be displayed on the browser (see Figure 4.15). Based on the response, the user would be
either redirected to the home page (shown in 3 Figure 4.10), or back to the search page(shown in
1 Figure 4.10).

Figure 4.15: Error message due to wrong VIN

Figure 4.16: Confirmation dialog window

28 setSerialNo(value: string) {

29 const regExpr = new RegExp (/^[A-Za -z0 -9]/);

38

30 if (value.match(regExpr)) {

31 try {

32 this.request.setSerialNo(value).then (() => {

33 if (this.request.assetDetails.length > 0) {

34 this.openDialog ();

35 }

36 else {

37 this.errorMessage = 'Invalid VIN(Vehicle Identification Number)';
38 }

39 });

40 } catch (error){

41 }

42 }

43 }

Listing 4.7: Method to set Serial Number

TCR Component

As briefly stated in Table 4.2, the TCR component is where a mechanic fills and sends a new TCR
form, after examining a vehicle. Each vehicle has its own TCR definition, see Appendix C. During
an HTTP request, the apiRequest service retrieves the TCR definition from Assetfront database
through Assetfront API (see Figure 4.2), and passes it to the TCR component by injection. The
data retrieved is of a type JSON file. Every vehicle has at least one TCR, and a TCR itself has at
least one checkpoint. Again, checkpoint itself has at least one option see Appendix C.

TCR:

ID

Name

Checkpoint

Checkpoint:

Id

Name

Value

Option

Option:

Id

Value

Description

To avoid unnecessary use of time and resources, barely relevant data to a mechanic should be
rendered on the browser. Thus, the data to be displayed on the browser is: TCR name - checkpoint
name - checkpoint value - options description. What distinguishes an unfilled TCR from the newly
filled one is that the unfilled TCR’s checkpoint value is -1, which means that the TCR is untouched.
In Appendix H, a filled TCR JSON file is shown. The value of checkpoint is 0, which means that
the user chose the first option.

Whenever a mechanic browses through the TCR page, he or she will get an untouched TCR
regardless of the previous status. That is due to the application getting data from an API, and
the application was not given the privileges to communicate with the database. However, it is
uploaded to an Amazon S3 bucket in both JSON and PDF format, which allows other Assetfront
subsystems like the Assetfront Retrade to retrieve the data from the JSON file when needed (see
Appendix H and I).

To make the TCR user-friendly, a combination of “mat-accordion”, “mat-expansion panel”[34],
and “mat-card”[33] was used. Displaying this element in HTML template is done through for-
loops. It is mainly dependent on the length of a particular TCR and its checkpoint. Likewise,

39

Angular nested ngFor directive10 were used in the component’s template to get and render the
desired data on the browser (as presented in Figure 4.17). The implementation of this method is
included in Appendinx K.

(a) Checkpoint options. (b) Checkpoints.

Figure 4.17: TCR overview.

Home Component

The Home Component is where the user gets the opportunity to download previously uploaded
Service, Inspection or TCR. Additionally, the user can be redirected to the desired components from
home page. The logic of downloading a file from Amazon S3 bucket is handled in “HomeService”
class, where it is injected in to Home component. This will allow the component to get access to
the necessary data to download the desired form. The download buttons (in 3 Figure 4.10) triggers
the download method, which calls “home.getListObjects” method (presented in Listing 4.8). The
“home.getListObjects method” takes a folder as a parameter which is either Service, Inspection,
or TCR, and pushes the last modified files of the desired folder to a global variable “fileArray”.
However, retrieval of objects, and sorting the retrieved objects in a certain folder can be resource-
intensive over time. Therefore, the file structure of the Amazon S3 bucket is manipulated. This is
done by introducing a sub-folder that must be incremented during uploading the file (see Section
4.2.7).

1

2 getListObject(folder){

3 this.resourceId = this.apiRequest.getAssetDetails ()[0]. resourceId;

4

5 this.fileService.getS3Bucket ().listObjectsV2(params , (err , data) => {

6 if (err){

7 console.log(err);

8 this.lastModified = '';
9 }

10 else {

11 this.commonPrefix = data.CommonPrefixes.length;

10https://angular.io/api/common/NgForOf

40

12 this.data = data;

13 if (this.commonPrefix > 0) {

14 this.lastModified = data.CommonPrefixes[this.commonPrefix - 1].

Prefix + 'Report ' + '/';
15 }

16 this.fileService.getS3Bucket ().listObjectsV2(paramsForList , ((

error , data) => {

17 if (error) {

18 console.log(error);

19 } else {

20 for (let i = 0; i < data.Contents.length; i++){

21 this.arrayOfFiles[i] = data.Contents[i].Key.split(this.

lastModified)[1];}

22 }

23 }));

24 }

25 });

26 }

Listing 4.8: Get last modified folder.

41

Chapter 5

Deployment and Testing

In this chapter, we will discuss both deployment and testing phases of Assetfront Repair. The
team used “Automate static website deployment to Amazon S3”[14], which is a tool provided by
Amazon Web Services (AWS1) to deploy static web-applications (see Section 5.1.1). In addition,
the company required us to dockerize the application for convenient future deployment.

The second part of the chapter describes the testing procedure. First, static testing was con-
ducted early in the development phase. Then, the team ran manual testing throughout the devel-
opment phase. Finally, the team conducted user tests with the participation of multiple employees
who will use the application once it is deployed to an actual production environment. User testing
is an important step, where we ensured that the users did not experience any major bugs in the
system, as well as the responsive design and simplicity elements were present.

5.1 Deployment

5.1.1 Amazon Deployment

To store the applications content (HTML, CSS, TypeScipt, images, and text files), Amazon S3
service was used. Amazon S3 allows storing data in form of objects. It is also used to host static
websites and client-side scripts2.

5.1.2 Docker

Docker is a containerisation platform that gives the ability to deploy and run applications by using
containers. Containers are isolated work-spaces that provide all tools that a software needs to run.
Docker containers help developers to run a piece of code written in a local system in any computing
environment. We have used Docker Command Line Interface (CLI3) to run Docker commands.
For instance, creating and running docker images4 as containers[44].

According to the official web page of Docker[19], Docker is written in the Go programming
language, and utilizes multiple features of Linux kernel to provide its functionalities. Moreover, it
uses a technology called “namespaces” to provide Docker containers. As Docker creates a set of
“namespaces” for a certain container once it starts running.

In order to run an application using Docker, a Docker file must be created. This file is a text file
that contains multiple commands to build a Docker image. Initially, we have created Docker files

1https://aws.amazon.com/
2https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteHosting.html
3https://docs.docker.com/engine/reference/commandline/cli/
4https://docs.docker.com/engine/reference/commandline/images/

42

for both front-end and back-end. In that case, a Docker Compose5 was needed to define and run
multiple containers. However, the requirements changed early in the development phase, where
the company decided that a back-end solution was not needed. Therefore, back-end Docker file
and Docker Compose were not used in the project. Nonetheless, since the files were created, we
decided to leave them in the project structure for future development.

Docker Front-end

Listing 5.1 shows the implementation of front-end Docker file. The Docker file uses Node image from
Docker Hub6 to download needed dependencies. Additionally, the Docker file uses the command
RUN to download Node Package Manager (npm7) and Angular CLI. Finally, EXPOSE command
informs Docker that the container listens at the specified network port, which in our application
is 4200.

1 FROM node :12

2 RUN mkdir -p /app/frontend

3 WORKDIR /app/frontend

4 COPY package.json /app/frontend

5 RUN npm install -g @angular/cli

6 RUN npm install

7 COPY . /app/frontend

8 CMD ["npm", "start"]

9 EXPOSE 4200

Listing 5.1: Dockerfile Angular

Docker Compose

As mentioned above, Docker Compose defines and runs multiple containers in the application.
Compose uses a YAML[57] file to manage and configure the application’s services, Listing 5.2
illustrates the configuration of Angular service in our application.

1 version: "3"

2

3 services:

4 angular -app:

5 build:

6 context: .

7 dockerfile: ./ frontend/Dockerfile

8 stdin_open: true

9 ports:

10 - 4200:4200

11 volumes:

12 - ./ frontend/src:/app/frontend/src

13 command: npm run start

14 restart: always

Listing 5.2: docker-compose.yml file

5.2 Testing

5.2.1 Static Testing

Early in the development phase, static testing was conducted to examine various aspects in the
project. Static testing was applied for an early detection of defects before other types of testing

5https://docs.docker.com/compose/
6https://hub.docker.com//node/
7https://www.npmjs.com/

43

were applied. The team started with testing the requirement specifications, this led to an analysis
of functional and non-functional requirements in the sprint review meetings, with the presence
of the Scrum master. Then, the API provided by the company was analysed along with API
documentation (see Appendix C), this was done by using tools to visualize the data in the API,
and ensuring that it was sufficient for the development needs [51]. Moreover, the team created an
overview of the libraries needs to develop the project. In case of deprecated or incomplete libraries,
the team had to find alternatives. Finally, as mentioned in Section 4.1.1, WebStorm was selected
to be used for development, this tool analyses the code and detects problematic code in a given
file. This tool helped us during the development phase to keep the code clean and efficient [25].

5.2.2 Manual Testing

It is a type of software testing that runs without using automated tools. Manual testing was
ran constantly during the development. Developers were assigned specific tasks, and they had to
merge the code of the feature they implemented into the branch all the developers interact with
DEV through pull requests (see Section 4.1). Before a pull request is sent, the code needed to be
manually tested and code bugs needed to be fixed. Similarly, when the code is merged with DEV
branch and further into the developers machines. The process might cause merge conflicts, that
needed to be spotted and fixed as well through manual testing.

5.2.3 User Testing

Since the project evolved around making an application to be used in production in Assetfront,
it was a high priority to meet the product owner’s requirements. Therefore, the team planned to
conduct user test, and invite several employees of Assetfront to test the application. To fulfill this
step, the team developed a set of survey questionnaire, where the main features of the application
were listed and formulated into survey questions. The survey consists of two parts. First part
consisted of “to what extent do you agree with the following statement”, the answers to these
questions ranged from “Strongly disagree” to “Strongly agree”. This allowed us to capture the
users opinion on certain features, and motivated us to improve it. Speaking of which, the features
that were included in user testing were both GUI and functionalities related. The second part of
the survey consisted of open-ended questions, where a participant could add a feedback, provide
an opinion, and write features he or she liked and did not like. The survey was written throughout
the development phase, and was modified accordingly. The survey questionnaire along with the
results were presented in Appendix B.

44

Chapter 6

Discussion and Conclusion

As we have accomplished our goal and looked into the various aspects of the development phase,
this chapter will focus on our reflection of the entire process. We will start with discussing the
development methods and its aspects. Then, we will shed the light on the development phase and
what went into it that could have been done differently, or improved. Likewise, the user test results
were studied to determine to what extent the goals have been met. Furthermore, we will conclude
with future work section, which will discuss possibilities for future development of the application.

6.1 Development Method and Process

Scrum development model was suitable for our project. The team members managed to hold daily
scrum meetings and meet scrum sprints deadlines. In the beginning, the team had planned to
have a meeting with the company and product owner weekly. However, as it turned out, the team
did not need weekly meeting, instead we had meetings by the delivery of each sprint which was
between 1 to 4 weeks, unless it was necessary. Furthermore, two team members had to be absent
for a short period of time due to illness and/or personal problem. Hence, this was not a major
problem since this case was studied in the risk analysis process. The mitigation of this case was
that the team had to ensure that all team members are on the same page in terms of knowing the
various aspects in the code and design. As mentioned in the business risk analysis Table 2.18. We
have managed to overcome this obstacle successfully.

Later on and towards the end, the daily scrum meeting were reduced, since the main focus was
to work on the thesis report. However, we managed to meet the deadlines that were set in the
planning phase.

Ultimately, as some of the requirements were unclear in the beginning and changed throughout
the development, it was challenging to define the sprints scope. Yet, the team managed to clarify
the requirements and get on the track shortly.

6.1.1 Team Cooperation

The team members were used to working with physical attendance from previous course-projects.
Therefore, being unable to have physical meetings was challenging. The team has members and
relatives whom are under Covid-19 risk group, for that reason it was chosen not to take risks with
physical meetings, and this may have affected the workflow. Although the group had daily scrum
meetings digitally, it became more challenging to collaborate than physical meetings. Therefore,
difficult challenges became more time-consuming. However, this challenge benefited us to develop
experience in that regard.

45

6.1.2 Meetings with The Company and Product Owner

The team had 14 meetings with the company and the product owner throughout the project.
There have been various topics at these meetings ranging from functionality, design and technical
assistance. The first meeting between the company and the product owner took place on the 11th of
November, where we got to introduce ourselves and get to know the client better. At this stage, the
company presented the assignment abstractly. Most meetings were attended by everyone involved
in the project, the company, the product owner and the development team, see Appendix L. Once
all parties were present, the team held presentations were the company and product owner were
updated with the current project status. The final meeting with the company was held on the 10th

of May, where the final code was explained and handed over for future development.

6.2 Development

6.2.1 Security

The application lacks quite a bit in terms of security as shown in Section 2.4. The group members
wanted from the beginning to implement login functionality. However, this was not implemented
due to the company arguing that the information handled by the application is public and can
be obtained by other sales and auction pages such as Assetfront Retrade. The other reason for
the rejection of the proposal was that they thought it was outside the scope of the project. This
opinion changed in the final stages of the development phase, when the company encouraged us
to implement a login system, mainly to automate user data submission and to mitigate some of
the misuse cases of the application to a certain degree (as described in Section 2.4). However, this
functionality was not implemented due to the short notice. Although a login system would have
lessened the likelihood of anyone abusing the weaknesses in the application. Although it would
not have solved all the issues. Misuse cases -like the manipulation of the QR-code on the PDF file-
would have been mitigated by having a back-end solution to the application for the construction
of the PDF files. While this would have been smart to implement from the beginning, reasons for
not developing a back-end solutions were mentioned in Section 4.3. Additionally, the PDF file and
QR-code generation were not in the scope of the project.

6.2.2 Application Design

Most of the group members had not directly worked with web application development. Thus, we
were motivated to take an online course in Angular [55]. This was done in the planning phase, and
it is documented in Gantt diagram (see Appendix A). The time spent was just enough to put us
into the basics of the various tools.

The design of the final product was not determined at the start. Therefore, the company decided
to engage the team in this process. In the planning phase, the team had to create prototypes for
the product, and it was presented to the company and product owner 4.2.3. The company agreed
on the most part of the prototypes. Nevertheless, they provided constructive feedback design-wise.
As the API was not provided in the beginning of the planning phase, the structure of the TCR was
misinterpreted. The team overcame this challenge as soon as the API was provided and visualized
by Swagger [51]. Later in the development phase, the design aspects evolved gradually into the
current product.

When it comes to tools used in the design of the application, the team assessed various tools and
decided to use the most suitable ones. Tools and technologies are presented in Section 4.1.1 and
Appendix D. Early in the design process, the team used Bootstrap as a CSS framework to design
various components. Since there was a room for improvement in the design, we have combined
Bootstrap with Angular Material. This was inspired by the course taken earlier in the planning
phase. A combination of these technologies helped to achieve the desired design and functionalities.
Similarly, we used Cascading Style Sheets (CSS) as a tool for styling HTML templates early in

46

the design process, this also changed to Syntactically Awesome Style Sheets (SASS) later on, as
we found out that SASS is more efficient and easier to maintain since it uses nested syntax[35].

6.2.3 User Test

The User test was conducted to checkout if the goal of making the application user-friendly while
being able to run on different machines and browsers. While creating the questions for the user
test, our goal was to make questions that would not manipulate the answers of the testers. This was
done by asking direct questions while giving the user the option to choose from a range of answers
anonymously. Later on, the users could express their opinions about the application freely. The
users were from different countries (Denmark, Finland, Norway and Sweden) and it was interesting
to watch these diverse users try to use the application without any guidance, although we were
watching them live.

The opinion of the test users were to be taken highly, since these users were experienced with
filling out Service, Inspection, and TCR forms. After getting some feedback from the test users,
we tried to address the issues that they brought up. For the most part, the test users were happy
with the application. Main issues that was raised was that the TCR filling form had a lock on it
that made the user fill out the whole thing before letting the user submit the report. The other
issue was that it was not clear when the QR-code scanner was finished reading. Both of these
issues were addressed swiftly after the user tests. Forcing the user to fill out the report issue was
fixed by removing the lock on the submit button, while the scanner issue was taken care of by
bypassing the search button right after the scanner finds a value.

6.3 Future work

Even though the team had managed to implement the requirements mentioned in Chapter 2, there
is still a room for improvement. The currently developed application lacks the factor of security
as it is not need for nowadays use. However, this factor can make the application more complete.
Moreover, the application can have an extra feature where the user can register an account that
consists of his or her personal data. In the current solution, the user must enter personal data
every time a form is filled. With the intention of creating an ideal application, the team though
of implementing these features in the planning phase. However, this was outside of the scope
of the assignment. One way to implement the aforementioned functionalities is to use Keycloak
which is an open source software to permit access management and add authentication to secure
applications [29]. Future implementation of Keycloak requires that the overall system model to
change accordingly. Thus, only authenticated users will be able to access the system and utilize
its operations. As represented in Figure 6.1, the new component added to the system (e in Figure
6.1) will be responsible for the user-authentication factor.

47

Figure 6.1: Overall system model with Keycloak implementation.

6.4 Conclusion

The objective of the project was to deliver a web-based solution to modernize the creation and
storage of documentation created for different type of vehicles. The desired product was a front-end
application that has a responsive design and reliable performance. In the end, the development
team managed to meet all of the requirements set by the company and product owner, this was
clearly stated at the last meeting with the company and the product owner, where the project’s
source-code was delivered and presented. As it was mentioned in the introduction, the primary
audience of Assetfront Repair is Assetfront employees, who do not necessarily have an IT back-
ground. Therefore, the application was built to be practical for users with no technical background.
Consequently, the team managed to develop an user-friendly application, according to user test
results (see Appendix D).

Conclusively, we believe that this project has been a great learning opportunity. As it helped us
to acquire experience in multiple fields like: web application development, programming, design,
communication, and software development. Although we faced obstacles throughout the project,
we managed to overcome them. We believe this is an important skill to bring into our professional
lives.

48

Bibliography

[1] Dr. A.V. RISK MANAGEMENT IN PRODUCT DEVELOPMENT PROCESS. url: https:
//www.daaam.info/Downloads/Pdfs/proceedings/proceedings 2012/0225 Susterovaatal.pdf
(visited on 05/04/2021).

[2] ABRAHAM. View encapsulation. url: https://angular.io/guide/view-encapsulation (visited
on 05/03/2021).

[3] Amazon. General S3 FAQs. url: https://aws.amazon.com/s3/faqs/vg (visited on 05/11/2021).

[4] Angular. Angular Events. url: https://angular.io/events (visited on 04/28/2021).

[5] Angular. comparing-observables. url: https://angular.io/guide/comparing-observables (visited
on 05/14/2021).

[6] Angular. intercepting-requests-and-responses. url: https://angular.io/guide/http#intercepting-
requests-and-responses (visited on 05/14/2021).

[7] angular. What is angular? url: https://angular.io/ (visited on 03/21/2021).

[8] angular-university.io. Angular Architecture - Container vs Presentational Components Com-
mon Design Pitfalls. url: https://blog.angular-university.io/angular-component-design-how-
to - avoid - custom - event - bubbling - and - extraneous - properties - in - the - local - component - tree/
(visited on 05/05/2021).

[9] angular.io. Angular Components Overview. url: https : / / angular . io / guide / component -
overview (visited on 05/05/2021).

[10] angular.io. Component. url: https://angular.io/api/core/Component (visited on 05/09/2021).

[11] angular.io. Dependency injection in Angular. url: https : / / www . pluralsight . com / guides /
understanding-the-purpose-nested-components (visited on 05/09/2021).

[12] atlassian.com. Git Feature Branch Workflow. url: https://www.atlassian.com/git/tutorials/
comparing-workflows/feature-branch-workflow (visited on 05/18/2021).

[13] AUSFCA-edu. Extreme Programming. url: https://www.cs.usfca.edu/∼parrt/course/601/
lectures/xp.html (visited on 05/18/2021).

[14] AWS. Automate static website deployment to Amazon S3. url: https://docs.aws.amazon.com/
prescriptive-guidance/latest/patterns/automate-static-website-deployment-to-amazon-s3.html
(visited on 05/11/2021).

[15] AWS. What is Amazon S3? url: https://docs.aws.amazon.com/AmazonS3/latest/userguide/
Welcome.html (visited on 03/21/2021).

[16] Amy Hackney Blackwell and Elizabeth Manar. Prototype. url: https://go.gale.com/ps/
i . do ? p = SCIC & u = dclib main & v = 2 . 1 & it = r & id = GALE % 7CENKDZQ347975681 & asid =
1620273600000∼6a20b37f (visited on 05/05/2021).

[17] Bootstrap. getting-started. url: https : / / getbootstrap . com / docs / 5 . 0 / getting - started /
introduction/ (visited on 05/12/2021).

[18] William Buxton. Sketching user experience : getting the design right and the right design.
San Francisco, Calif.: San Francisco, CA : Morgan Kaufmann, 2007.

[19] Docker documentation. Docker overview. url: https://docs.docker.com/get-started/overview/
(visited on 03/21/2021).

49

https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2012/0225_Susterovaatal.pdf
https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2012/0225_Susterovaatal.pdf
https://angular.io/guide/view-encapsulation
https://aws.amazon.com/s3/faqs/vg
https://angular.io/events
https://angular.io/guide/comparing-observables
https://angular.io/guide/http#intercepting-requests-and-responses
https://angular.io/guide/http#intercepting-requests-and-responses
https://angular.io/
https://blog.angular-university.io/angular-component-design-how-to-avoid-custom-event-bubbling-and-extraneous-properties-in-the-local-component-tree/
https://blog.angular-university.io/angular-component-design-how-to-avoid-custom-event-bubbling-and-extraneous-properties-in-the-local-component-tree/
https://angular.io/guide/component-overview
https://angular.io/guide/component-overview
https://angular.io/api/core/Component
https://www.pluralsight.com/guides/understanding-the-purpose-nested-components
https://www.pluralsight.com/guides/understanding-the-purpose-nested-components
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.cs.usfca.edu/~parrt/course/601/lectures/xp.html
https://www.cs.usfca.edu/~parrt/course/601/lectures/xp.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/automate-static-website-deployment-to-amazon-s3.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/automate-static-website-deployment-to-amazon-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://go.gale.com/ps/i.do?p=SCIC&u=dclib_main&v=2.1&it=r&id=GALE%7CENKDZQ347975681&asid=1620273600000~6a20b37f
https://go.gale.com/ps/i.do?p=SCIC&u=dclib_main&v=2.1&it=r&id=GALE%7CENKDZQ347975681&asid=1620273600000~6a20b37f
https://go.gale.com/ps/i.do?p=SCIC&u=dclib_main&v=2.1&it=r&id=GALE%7CENKDZQ347975681&asid=1620273600000~6a20b37f
https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://docs.docker.com/get-started/overview/

[20] Angular guide. what-is-angular. url: https://angular.io/guide/what-is-angular.

[21] James Hall. A library to generate PDFs in JavaScript. url: https : / / www . npmjs . com /
package/jspdf (visited on 05/17/2021).

[22] Wilhelm Hasselbring. Component-based software engineering. World Scientific Publishing
Company, 2002.

[23] https://angular.io/. Arthur Abraham’s Humane User Interface talk, 2 November 2004. url:
https://web.archive.org/web/20120326125547/http://chandlerproject.org/Journal/HumaneUserInterface20041102
(visited on 05/03/2021).

[24] https://rxjs.dev/. Methods of Risk Analysis. url: https : / / www . ukessays . com / essays /
statistics/risk-analysis-methods.php (visited on 05/03/2021).

[25] https://www.jetbrains.com/. Run inspections. url: https://www.jetbrains.com/help/webstorm/
running-inspections.html (visited on 05/12/2021).

[26] hubspire.com. What is an API? url: https : / / www . hubspire . com / resources / general /
application-programming-interface/ (visited on 05/03/2021).

[27] IETF. The JavaScript Object Notation (JSON) Data Interchange Format. url: https : / /
datatracker.ietf.org/doc/html/rfc8259 (visited on 05/12/2021).

[28] Interaction-design.org. Mock-ups. url: https://www.interaction-design.org/literature/book/
the-glossary-of-human-computer-interaction/mock-ups (visited on 05/05/2021).

[29] keycloak.org. getting-started. url: https://www.keycloak.org/ (visited on 05/15/2021).

[30] Nevenka Kirovska and Saso Koceski. “Usage of Kanban methodology at software development
teams”. In: Journal of applied economics and business 3.3 (2015), pp. 25–34.

[31] Kin Lane. Intro to APIs: History of APIs. url: https://blog.postman.com/intro- to- apis-
history-of-apis/ (visited on 03/21/2021).

[32] Ethan Marcotte. HTML5 - Responsive Web Design. url: https://docs.microsoft.com/en-us/
archive/msdn-magazine/2011/november/html5-responsive-web-design (visited on 05/06/2021).

[33] Angular material. card overview. url: https://material.angular.io/components/card/overview
(visited on 05/14/2021).

[34] Angular material. expansion overview. url: https://material.angular.io/components/expansion/
overview (visited on 05/14/2021).

[35] Carlos Mauri. 7 benefits of using SASS over conventional CSS. url: https://www.mugo.ca/
Blog/7-benefits-of-using-SASS-over-conventional-CSS (visited on 05/15/2021).

[36] MDN. Base64. url: https://developer.mozilla.org/en-US/docs/Glossary/Base6 (visited on
05/18/2021).

[37] All The Way Up Media. MOBILE WEBSITES. url: https://allthewayupmedia.com/mobile-
website/ (visited on 05/10/2021).

[38] Microsoft. The STRIDE Threat Model. url: https://docs.microsoft.com/en- us/previous-
versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN (visited on 05/07/2021).

[39] microsoft.com. Color Palettes (Windows GDI). url: https ://docs .microsoft .com/en- us/
windows/win32/gdi/color-palettes?redirectedfrom=MSDN (visited on 05/03/2021).

[40] microsoft.com. REST API Reference. url: https://docs.microsoft.com/en-us/rest/api/azure/
devops/?view=azure-devops-rest-6.1 (visited on 05/09/2021).

[41] npmjs.com. How to use ngx-qrcode? url: https://www.npmjs.com/package/@techiediaries/
ngx-qrcode (visited on 05/18/2021).

[42] npmjs.com. What is ZXing? url: https://www.npmjs.com/package/@zxing/browser.

[43] Mary Poppendieck. “Lean software development”. In: 29th International Conference on Soft-
ware Engineering (ICSE’07 Companion). IEEE. 2007, pp. 165–166.

[44] Vivek Ratan. Automate static website deployment to Amazon S3. url: Docker : %20A %
20Favourite%20in%20the%20DevOps%20World (visited on 05/11/2021).

[45] rxjs.dev. Convert observable to promise. url: https://www.learnrxjs.io/learn-rxjs/operators/
utility/topromise (visited on 05/17/2021).

50

https://angular.io/guide/what-is-angular
https://www.npmjs.com/package/jspdf
https://www.npmjs.com/package/jspdf
https://web.archive.org/web/20120326125547/http://chandlerproject.org/Journal/HumaneUserInterface20041102
https://www.ukessays.com/essays/statistics/risk-analysis-methods.php
https://www.ukessays.com/essays/statistics/risk-analysis-methods.php
https://www.jetbrains.com/help/webstorm/running-inspections.html
https://www.jetbrains.com/help/webstorm/running-inspections.html
https://www.hubspire.com/resources/general/application-programming-interface/
https://www.hubspire.com/resources/general/application-programming-interface/
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/mock-ups
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/mock-ups
https://www.keycloak.org/
https://blog.postman.com/intro-to-apis-history-of-apis/
https://blog.postman.com/intro-to-apis-history-of-apis/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/november/html5-responsive-web-design
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/november/html5-responsive-web-design
https://material.angular.io/components/card/overview
https://material.angular.io/components/expansion/overview
https://material.angular.io/components/expansion/overview
https://www.mugo.ca/Blog/7-benefits-of-using-SASS-over-conventional-CSS
https://www.mugo.ca/Blog/7-benefits-of-using-SASS-over-conventional-CSS
https://developer.mozilla.org/en-US/docs/Glossary/Base6
https://allthewayupmedia.com/mobile-website/
https://allthewayupmedia.com/mobile-website/
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/gdi/color-palettes?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/gdi/color-palettes?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/rest/api/azure/devops/?view=azure-devops-rest-6.1
https://docs.microsoft.com/en-us/rest/api/azure/devops/?view=azure-devops-rest-6.1
https://www.npmjs.com/package/@techiediaries/ngx-qrcode
https://www.npmjs.com/package/@techiediaries/ngx-qrcode
https://www.npmjs.com/package/@zxing/browser
Docker:%20A%20Favourite%20in%20the%20DevOps%20World
Docker:%20A%20Favourite%20in%20the%20DevOps%20World
https://www.learnrxjs.io/learn-rxjs/operators/utility/topromise
https://www.learnrxjs.io/learn-rxjs/operators/utility/topromise

[46] rxjs.dev. RXJS Overview. url: https://rxjs.dev/guide/overview (visited on 05/03/2021).

[47] Sass. Sass documentation. url: https://sass-lang.com/documentation (visited on 05/12/2021).

[48] Adam Shostack. Threat Modeling Designing for Security. John Wiley Sons, 2014.

[49] Gaurav Singhal. Understanding the Purpose of Nested Components. url: https://angular.io/
guide/component-overview (visited on 05/05/2021).

[50] Ian Sommerville. Software Engineering. Edinburgh Gate Harlow Essex CM20 2JE England:
Addison-Wesley, 2007.

[51] swagger.io. What Is Swagger? url: https ://swagger . io/docs/specification/2- 0/what - is -
swagger/ (visited on 05/09/2021).

[52] thinkingportfolio.com. Project Risks vs. Business Risks. url: https://thinkingportfolio.com/
project-risks-vs-business-risks/ (visited on 05/03/2021).

[53] Powered by Help Scout Trello 2021. What is Trello? url: https://help.trello.com/article/708-
what-is-trello (visited on 2021).

[54] RESTful API Tutorial. What is REST. url: https://restfulapi.net/ (visited on 03/21/2021).

[55] udemy.com. Angular - The Complete Guide (2021 Edition). url: https://www.udemy.com/
course/the-complete-guide-to-angular-2/ (visited on 05/15/2021).

[56] Wikipedia. Interface description language. url: https : / / en . wikipedia . org / wiki / Interface
description language (visited on 05/09/2021).

[57] YAML.org. YAML Ain’t Markup Language. url: https://yaml.org/ (visited on 05/11/2021).

51

https://rxjs.dev/guide/overview
https://sass-lang.com/documentation
https://angular.io/guide/component-overview
https://angular.io/guide/component-overview
https://swagger.io/docs/specification/2-0/what-is-swagger/
https://swagger.io/docs/specification/2-0/what-is-swagger/
https://thinkingportfolio.com/project-risks-vs-business-risks/
https://thinkingportfolio.com/project-risks-vs-business-risks/
https://help.trello.com/article/708-what-is-trello
https://help.trello.com/article/708-what-is-trello
https://restfulapi.net/
https://www.udemy.com/course/the-complete-guide-to-angular-2/
https://www.udemy.com/course/the-complete-guide-to-angular-2/
https://en.wikipedia.org/wiki/Interface_description_language
https://en.wikipedia.org/wiki/Interface_description_language
https://yaml.org/

Appendices

52

Appendix A

Pre-project plan

A1

Pre project report

Abdi Bako - StudNr: 488104
Amr Hamcho - StudNr: 488087

Mustafa Abdullah - StudNr: 472447
Shamil Khumparov - StudNr: 997722

BIDAT39 Bacheloroppgave - Dataingeniør
NTNU i Gjøvik

Dato: 31.Januar 2021

Contents

1 Goals and Boundaries 1
1.1 Background . 1
1.2 Goals . 1
1.3 Frames . 1

1.3.1 Technical . 1
1.3.2 Practical . 1

2 Scope 2
2.1 Subject Area . 2
2.2 Delimitation . 2
2.3 Task description . 2

3 Project organization 2
3.1 Responsibilities and roles . 2
3.2 Rules in group . 2
3.3 Measures in case of violation of rules . 3

4 Planning, follow-up and reporting 3
4.1 Main division of the project . 3
4.2 Plan for status meetings and decision points in the period 3

5 Organization of quality assurance 4
5.1 Documentation, standard use and source code 4
5.2 Risk analysis . 4

5.2.1 Risk Identification . 4
5.2.2 Risk scenarios and risk Analysis . 4

6 Plan for accomplishment 7
6.1 Gantt diagram . 7
6.2 Milestones and decision points . 8

1 Goals and Boundaries

1.1 Background

Those whom are responsible for those vehicles would like to know which vehicles are available
and which ones are unavailable due to problems. Those whom are responsible for fixing those
vehicles would like an easier and dependable way of updating the documentation of the vehicles
in the system.

Headit is a software development company, which is behind the development of many IT
solutions for a different range of costumers.

1.2 Goals

The primary goal of this project is to deliver a working application, where the user can easily
search for a vehicle and create a technical report of the vehicle, or download the technical report
of the report.

Beside completing and running the application, the subsidiary goals will be to learn how it
is to be working on a real life project, and learn from both our fellow students and the more
experienced employees at Headit. Additionally Familiarize with software tools used to develop
an application from start to finish.

1.3 Frames

1.3.1 Technical

• Making a responsive web design (RWD), which means that the website can be viewed on
different screen sizes.

• The application should be delivered and ran though docker containers.

• The web application should be accessible through most browsers that support HTML5.

1.3.2 Practical

Meeting with the scrum master and the product owner will be essential moving forward in the
project, thus making it a must meeting with them once every week. The corona-virus situation
made it challenging to meet in person, thus we held the meetings over internet over Microsoft
Teams.

1

2 Scope

2.1 Subject Area

Assetfront is a platform that keeps track of an organization’s assets, enabling Asset Management
to more efficiently keep track of their asset credential. Assetfront enables value-based decision-
making throughout the organization. The transparent real-time information and the Assetfront
network provide maximum machine coverage and cash flow by letting you strategically introduce
and request assets directly in profitable machine communities [1]. Assetfront Repair is part of
Assetfront, which will keep track of the condition of vehicles at a company. Workshops, service
centers and certification agencies have easy access to update designated Digital Machine Cards
directly. Real-time and efficient for both the service company and the machine owner.

2.2 Delimitation

2.3 Task description

Assetfront Repair has the following functionalities:

• Search engine takes serial number to search for specific vehicle.

• Register a service/inspection for the companies assets.

• Digital vehicle documentation view/update.

• Send in a file (images/pdf).

• Dynamically generate PDF files from the registered service.

3 Project organization

3.1 Responsibilities and roles

• Scrum Master - Ronny Kristiansen

• Product owner - Geir Bjerkemo

• Group leader - Shamil Khumparov

• Supervisor - Seyed Ali Amirshahi

• Scrum team - Amr Hamcho, Abdi Bako, Mustafa Abdullah, Shamil Khumparov

3.2 Rules in group

1. In case of sickness, the other group members should be informed as soon as possible.

2. Being on time for group meetings.

3. Maximum three undocumented absences from supervisors meeting.

4. Communication with other group members when an issue arises.

2

5. A weekly meeting with our supervisor.

6. Sprint planning meeting.

7. Weekly scrum meetings.

3.3 Measures in case of violation of rules

1. Oral warning followed by a written one in case of more than 3 three undocumented
absences.

2. The person receives a written warning. It must be pointed out what violation has occurred
and be informed of the consequences.

3. If the group is unable to resolve the issue internally, discuss with the supervisor.

4. If the group member does not follow the written warning after meeting with the supervisor,
he/she will be excluded from the group.

4 Planning, follow-up and reporting

4.1 Main division of the project

Scrum is the development model which will be used throughout the project development. Scrum
is an agile framework for incremental product development, which is widely used in software
development. The core of Scrum is iterations, which is repeated until all the product require-
ments have been implemented. Scrum would be a suitable development model in our project.
The product owner has defined the functional requirements which will be added into an artifact
called “Product Backlog”. The workload will be divided into iterations called ”sprints”. The
duration of a sprint depends on the complexity of the iteration. In our case, the length of the
iteration would be between 1 to 4 weeks.

4.2 Plan for status meetings and decision points in the period

The scrum team has planned a weekly scrum meetings on Fridays from 8:30 to 9:30. The
meeting will be mainly about sprint planning. The group members will meet 3-4 times a week,
and one other obligatory meeting with the supervisor on Wednesday from 14:00 til 15:00.

3

5 Organization of quality assurance

5.1 Documentation, standard use and source code

The group members have agreed on creating a google drive folder where all the written docu-
ments would be available and possible to be modified. As well as making a team on Microsoft
Teams we could communicate and held meeting. All the meeting with the supervisor and scrum
meetings must be documented. Moreover, the group has created a project planning document
using Trello[2] Where we can easily assign a task to a group member and check the development
towards the end.

5.2 Risk analysis

We will only be analyzing the risks that affect the project negatively.

5.2.1 Risk Identification

• Time: Lack of time. All the group members must learn new technologies.

• Motivation: Positive work environment to keep the team members motivated.

• Cost: Too ambitious projects for a limited budget.

• Change in requirements possible scenarios: change in programming. language or
change in project architecture.

• Change in external systems: possible scenarios would be: a new product owner.

5.2.2 Risk scenarios and risk Analysis

In this section, we will assess the risk and its affect on different aspects of the project

• Probability of Occurrence(OV): likelihood that an identified risk could occur (0 -
10) 0 being not present, and 10 being certain.

• Severity of Consequences Value(CV): rating based on the impact of an identified
risk to safety, resources, work performance, property, and/or reputation. (0 - 10) 0 being
not present, and 10 being high.

• Risk Rating (RR) = Probability of Occurrence (OV) x Severity of Consequences Value
(CV).

Possible risk scenarios might be, these are sorted from highest risks to the lower ones:

4

No. Name Description ProbabilityConsequence
Risk
value

Measures

1 Delays
Postponements
in sprints

4 9 36

Flexible work assignments
through the sprint. The group
should have good communication
with the supervisor, product
owner and between group
members. When a group member
feels the work assignment is too
much, s/he should ask for
assistance from other team
members.

2 Data Leak
Leakage of sensi-
tive data to un-
wanted parties

3 10 30

Severity of data leakage may vary
on the data leaked. That’s why it
is important to maintain a level
of security. Such as keeping the
repositories used private and only
invite group members. Data from
the company and made for the
company should be handled with
care and precaution.

3

Lack of
experi-
ence and
knowledge

Lack of knowled-
ge may causes
postponements
and work on defe-
ctive technology
since the group
members are
working on new
technology to
finish the project

3 8 24

Setting aside plenty of time for
research. The group members
should utilize their supervisor if
such problems arises.

4
Loss of
data/documentation

2 10 20
Backup frequently both cloud
based and hard storage

5 Illness
Illnesses causing
absences

2 7 15
Taking this into consideration in
the planning phase

6
Lack of mo-
tivation

Overwork may
lead group mem-
bers to lose their
motivation down
the line

2 5 10
Group members should not over-
work themselves and communi-
cate transparently to each other

5

Low consequences Medium consequences High consequences
Low Probability 6 5 4
Likely 3
High Probability 2 1

6

6 Plan for accomplishment

6.1 Gantt diagram

Figure 1: Gantt Diagram

7

6.2 Milestones and decision points

• The group must be finished with the project plan by 31st of January.

• The group must be finished with the design (mock-ups and project architecture)by 15th

of February.

• The group must be finished with the first version of the code by 15th of April.

• The group must be finished with the testing by 1st of May.

• Project submission is on the 10nd of May.

• The group must be finished with the report writing by 20th of May.

• Project presentation is on the between 5th - 10th june.

8

References

[1] Intedradet Cooperative Solutions. Assetfront. URL https://assetfront.com/.

[2] Atlassian. Trello. URL https://trello.com/.

[3] GanttProject. 2.8.11, 2020. URL https://www.ganttproject.biz/.

List of Figures

1 Gantt Diagram . 7

9

Appendix B

Survey questionnaire

A13

A14

A15

A16

Appendix C

REST API Documentation

The document attached below (next page) is a REST-API documentation generated by Swagger
and later exported as a PDF file.

A17

5/13/2021 AssetFront

file:///C:/Users/hamch/AppData/Local/Temp/Temp1_html-documentation-generated.zip/index.html#__Models 1/3

Up

AssetFront
This is the API for https://assetfront.com.

To use this API, you must have an active user with the required roles in AssetFront, or a registered
oAuth2 client.

(You can not register this client yourself. Please contact ICS Partner AS to request access).

Endpoints marked with a padlock require authorization. Click the "Authorize"-button to log in.

More information: https://headit.no
Contact Info: post@headit.no
Version: V2.0.0
BasePath:/
All rights reserved
http://apache.org/licenses/LICENSE-2.0.html

Access

1. APIKey KeyParamName:api_key KeyInQuery:false KeyInHeader:true

Methods

[Jump to Models]

Table of Contents

Lookup

GET /asset/lookup/{serialNo}

Lookup

GET /asset/lookup/{serialNo}
Returns basic information for assets with corresponding Serial No or Object Ref
(lookupAssetsUsingGET)

Path parameters

serialNo (required)
Path Parameter — serialNo

Consumes
This API call consumes the following media types via the Content-Type request header:

application/json

Return type
array[array[Object]]

Example data

5/13/2021 AssetFront

file:///C:/Users/hamch/AppData/Local/Temp/Temp1_html-documentation-generated.zip/index.html#__Models 2/3

Up

Up

Content-Type: application/json

[["{}", "{}"], ["{}", "{}"]]

Produces
This API call produces the following media types according to the Accept request header; the media
type will be conveyed by the Content-Type response header.

application/json

Responses
200
OK
401
Unauthorized
403
Forbidden
404
Not Found

Models

[Jump to Methods]

Table of Contents

1. Asset - Asset
2. Checkpoint - Checkpoint
3. Option - Option
4. ProductClass - ProductClass
5. TechnicalCondition - TechnicalCondition

Asset - Asset

mainImageUrl (optional)
String

productClass (optional)
ProductClass

resourceId (optional)
String

tcr (optional)
array[TechnicalCondition]

title (optional)
String

Checkpoint - Checkpoint

id (optional)
Long format: int64

name (optional)
String

5/13/2021 AssetFront

file:///C:/Users/hamch/AppData/Local/Temp/Temp1_html-documentation-generated.zip/index.html#__Models 3/3

Up

Up

Up

options (optional)
array[Option]

value (optional)
Long format: int64

Option - Option

description (optional)
String

id (optional)
Long format: int64

value (optional)
Long format: int64

ProductClass - ProductClass

id (optional)
Long format: int64

title (optional)
String

TechnicalCondition - TechnicalCondition

checkpoint (optional)
array[Checkpoint]

id (optional)
Long format: int64

name (optional)
String

Appendix D

Technologies and Tools

Overleaf: Cloud-based LATEXeditor. The team used this tool to write this project.

Adobe XD1: vector-based user experience design tool. The team used this tool to design
mock-ups.

Git: Version control system designed to handle project of different sizes.

Bitbucket: Git-based repository. It is web-based.

WebStorm: Integrated Development Environment (IDE) for web, JavaScript and TypeScript
development.

Node.js: Server-side platform, and a JavaScript runtime for building scalable and event-driven
applications.

npm2: A package manager for JavaScript and Node.js.

Trello: A project management platform for task organizing.

JSON: is a lightweight, text-based, language-independent data interchange format [27].

Bootstrap: is a CSS framework to build responsive and mobile-first applications [17].

Sass3: Sass is a stylesheet language that is compiled to CSS [47].

1https://www.adobe.com/no
2Node Package Manager
3syntactically awesome style sheets

A21

Appendix E

Project assignment

A22

ICS - Assetfront Repair

+47 62 51 00 52 post@headit.no www.headit.no Side 1 av 2

Oppdragsgiver
Oppdragsgiver: Headit AS

Kontaktperson: Rune Kollstrøm

Adresse: Løvstadvegen 7, 2312 Ottestad

Telefon: 625 10 052

E-post: rune.kollstrom@headit.no

Bakgrunn

Headit AS utvikler unike fag- og innsiktsløsninger som hjelper deg til å jobbe enklere, og ta
riktige beslutninger. Vi er et stort og innflytelsesrikt miljø med tverrfaglig kompetanse
innen UX, data science, forretnings- og systemutvikling. Headit er et selskap som jobber
sammen med våre kunder om å realisere strategi og mål. Hver dag skriver vi videre på vår
unike historie. Vi har hovedkontor på Hamar, og er i dag 33 ansatte.

Lytte, forstå og løse!

Assetfront- Networked Lifecycle Machine Management(Bransjen sin facebook for maskiner)
er en Command & Control platform for ulike typer transportkjøretøy, maskiner og verktøy
(Hub, Dashboard, Exhange). Assetfront sitt dashboard gir brukerne full oversikt over sine
maskiner på tvers av organisasjonen. Mer info om assetfront kan finnes på assetfront.com

Oppgaven - Assetfront Repair

«Assetfront Repair» skal bidra med å lette arbeidet for de som utfører vedlikehold og
inspeksjoner på maskiner tilknyttet Assetfront. Systemet skal sørge for en enkel måte å
oppdatere og tilknytte opplastet dokumentasjon til maskinene som er registrert i
Assetfront.

Det ønskes at det lages et system der man enkelt kan registrere service eller inspeksjoner
for maskiner, og laste opp vedlegg. Slik funksjonalitet finnes tilgjengelig i dag for brukere
av Assetfront, men det er et ønske om kunne effektivisere denne prosessen, slik at brukere
utenfor Assetfront kan gjøre denne type dokumentasjon tilgjengelig for Assetfront.

Oppgaven som er tenkt løst ved å utvikle en app/webside der man kan laste opp service-
og inspeksjonsmetadata sammen med vedlagt dokument. Dette skal kunne finnes igjen og
importeres i Assetfront via et REST API, og knyttes til korrekt maskin.

Det må utvikles både en frontend- og backend-del til løsningen.

Dagens Assetfront kjøres i AWS, og benytter flere av AWS sine tjenester. Løsningen består
av en Spring Boot-applikasjon, med tilhørende Angular-app og bruk av Material design.

Studentene vil få teknisk støtte fra Headit sine utviklere. En representant fra ICS Partner
vil være produkteier, og vil sikre at oppgaven understøtter Assetfront sine behov og krav.

ICS - Assetfront Repair

+47 62 51 00 52 post@headit.no www.headit.no Side 2 av 2

Oppgaven er egnet for to til fire utviklere, noe som også vil bidra til en innføring i Scrum-
metodikk og team-samarbeid, og vil gi innsikt innen følgende områder:

 Backend
 Frontend
 UX
 Skylagringstjenester (vedlegg)
 Scrum
 REST API
 Kommunikasjon
 Programmering

A25

Appendix F

Project agreement

A26

A27

A28

Appendix G

Today’s TCR

The document attached below (next page) is today’s method to handle TCRs. After a user fills
the form, it has to be scanned in the system.

A29

Internal Ref:

Title:

Location:

Description:

English/German:

Brand:

Unknown

Not applicable

Model:

Unknown

Not applicable

Excavator Belt

Data

Features

_
Producer

Year model:

Unknown

1st time registered:

Chassisnumber:

Unknown

Not applicable

Hours:

Not applicable

Milage (km):

Not applicable

Transport dimension
(L/W/H) :

Unknown

Not applicable

Transport weight (kg) :

Unknown

Not applicable

Material
Transport information

Inspection/Sertification

CEmarked

Unknown

Latest inspection:

Unknown

Not applicable

Latest sertification:

Unknown

Not applicable

Hydraulics:

Unknown

Not applicable

Additional hydraulics:

Unknown

Not applicable

Cabin type:

Unknown

Not applicable

Belts:

Unknown

Not applicable

1: Yes

2: No

Hydraulics

Cabin

Excavator details

Tyres:

Unknown

Not applicable

Bucket:

Unknown

Not applicable

Bucket capasity:

Unknown

Not applicable

Undercarriage:

Unknown

Not applicable

Accessories:

Unknown

Not applicable

Availability

_

Status
1: Available

2: Ordered

3: Not Ordered

4: Delivered

Type of availability
1: Sale

Deadline for interest:

Available from:

Available to:

Price:

Currency:

Owner contact details:

Comments / Terms for
transfer:

2: Rental

3: Transfer

Buyer contact details:

Latest service:

Hours / km latest service:

Cost:

Next service:

Status

_
Operational status

Select
1: Operative

2: Spare

3: Maintenance

Service

_
Service updates

Inspection

_
Inspection

Latest inspection:

Next inspection:

Comments:

Order date:

Inspection status
1: Approved

2: Not approved

Purchase

_
Purchase

Type of purchase
1: Stock

2: Reseller

3: End user

4: Demo

Order status
1: Ordered

2: Confirmed

3: Received

Confirmed date:

Estimated arrrival week:

Arrived date / week:

End user contact details:

Date:

Not applicable

4: Delivered

5: Cancelled

Conditions

_
Technical conditions report (TCR)

General

Overall condition
0: Object(s) working satisfactory when last used.

1: Object(s) in working condition, but may have minor flaws

2: Object (s) may have more extensive flaws or omissions.
Inspection/repair is recommended.

Hours

Hours:

Unknown

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Function check

Start the engine
0: Correct display on instruments and warning lights

1: Instruments/light signalling fault

2: Engine does not start, neither with starting aid

Test all maneuvring gear
0: All maneuvering gear and levers function without slack. Brake,

steering and gear change all function. No leakage

1: Maneuvering gear and levers do not function. Slack. Lacking
brakes, steering or gear changing. Air or exhaust leakage

2: Critical maneuvering gear and levers do not function. Defect
brakes, steering or gear/clutch. Larger leakages

Heating/Defrosting system
0: Heating / defrosting system working satisfactory

1: Heating / defrosting system has low effect

2: Heating / defrosting system is defect

Air Condition (A/C)
0: A/C for the driver and passengers appear satisfactory

2: A/C for the driver and passengers do not work

Parking brake
0: Parking brake working satisfactory

1: Parking brake not working

Engine

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Oil level
0: Level between min and max mark

1: Below min but shows on dipstick

2: Oil level not showing on dipstick

Coolant
0: Minus 35C or lower. Correct fluid levels. No visible leakages

1: Unknown, or higher than minus 35C. Tubes are rotten. Drive
belts worn

2: Visible leakages

Exhaust leakages
0: No visible leakage

2: Visible leakage

Fuel system

Mud container for water and impurities
0: No impurities

1: Water and dirt in mud container/fuel filtre

2: Water in glass/filtre during winter conditions

Water separator
0: Water separator working satisfactorily. Drainage and heating

works

1: Water separator does not work. Can not be drained. Faulty
heating

Leakages
0: No visible leakage

1: Visible leakage

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Electric system

Battery control
0: Battery in place and OK

1: Flat battery, rusty terminals

2: Defect/ missing battery/batteries

Dynamo with bolts
0: Dynamo with bolts in order

1: Dynamo does not give satisfactory charge power

2: Dynamo is defect

Starter
0: Starter mounted. Connection cables are without irr and mounted

1: Starter loose. Loose connection wire

Sight/Lights

Wind screen
0: Wind screen has little wear, and has no cracks or chips needing

repair

1: Wind screen needs repair

2: Wind scren has cracks and/or major wear. Needs replacing

Main/park/stop ligths/blinkers/horn/mirror and window wipers
0: All lights working. Horn working. Mirrors complete and clean.

Window wipers cleaning satisfactory

1: One or more lights not working. Mirror broken, cracked or
missing. Wiper blades defect

Body/Interior

Body damage and corrocive
0: No visible damage or corrocive

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

1: Minor damage, cracks or deformations.Corroctive attack on
painted surface

2: Major damage and deformations. Corrocive break through on
bodywork

Paint
0: No visible damage. Satisfactory surfaces

1: Minor damages, stains and oxidations/dullness

Condition Interior/Furnishing
0: Interior/furnishing/seats are in satisfactory condition

1: Defects/ worn but still usable

Truck body/Frame

Corrosion and damages
0: Frame without corrosion and damage

1: Minor corrosion and/or damage on frame

2: Frame has major corrosion or damages

Working hydraulics

Oil level
0: Level between min and max mark

1: Oil level below MIN but registered

2: Oil level cannot be registered. Leakages

Hydraulic pump
0: Hydraulic pump working and properly fastened to frame

2: Defect hydraulic pump

Funktion
0: Works evenly, no sagging

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

1: Works unevenly and/ or sagging

Hydraulic tank and leakage hydraulic cylinders
0: No leakages

2: Major leakage, breach or damages

Additional hydraulic
0: Additional hydraulic function properly

2: Additional hydraulics do not work

Enhancement

Chains
0: Chains suitable for all wheels are present and residual value

more than 50%

1: Chains suitable for all wheels are present, and residual value
between 20 and 50%

2: One or more chains are missing or worn

Fire Extinguisher
0: Present, correct size, and function tested >3 year

1: Function tested< 3 years

2: No Fire Extinguisher

Hydraulic transmission

Oil level
0: Level between min and max mark

1: Oil level below MIN but registered

2: No oil is registered. Leakages

Leakages
0: No leakage

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

2: Leakage

Disperse gear box

Leakages
0: No leakage

2: Leakage

Load/Digging equipment

Cracks, attrition or deformations
0: No cracks or deformations. Normal attrition

1: Minor cracks, damages and/or deformations. Extensive
attrition, but still repairable

2: Equipment worn out

Shear/Tear equipment

Cracks, attrition or dformations
0: No cracks or deformations. Normal attrition

1: Minor cracks, damages and/or deformations. Extensive
attrition, but still repairable

2: Equipment worn out

Sustainers

Sustainers
0: Sustainers working without damages

1: Minor damages or deformations. Still working satisfactory

2: One or more sustainer not working

Steering brake

Functional Control of steering brake
0: Steering brake is functioning satisfactorily

2: Steering brake does not work

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Belts

Supporting wheels and supporting rolls, sprocket and stretch wheel for slack
0: No slack

1: Slight movement

2: Major movement. One or more wheels are missing

Sprocket wheel and attaching bolts
0: Little or no wear. No loose or missing bolts.

1: Wear but teeth are not sharp.

2: Belt skipping teeth. Crack or deformation in crown. Bolts
missing.

Belt tension
0: More than 50% left of belt tension

1: Belt tension has 2050% left

2: Belt tension finished

Belt plate and bolts steel belts
0: No loose bolts or missing. All belt plates in place

2: Loose or missing belt plates and/or bolts

Belt chains
0: No defect cases / chains

2: Defect belt chains

Belt wearing/damage on rubber belts
0: No cracks go through

1: Smaller damages/cracks

2: One or more belts are defect

From date:

To date:

Reserve price:

Comments:

Improvements costs:

Auction Details

Sales Details
General sales details

Note! Closing date must be Monday Thursday.

Updated by the auction system. Price ex. tax and markup

Updated by the auction system.

Protected Information

Protected information
General

Economy

Rest value:

Unknown

Acquisition value:

Acquisition year:

Latest valuation value:

Latest valuation dato:

Latest valuation performed
by:

Comments valuation:

Valuation

Appendix H

TCR JSON

A47

A48

Appendix I

TCR PDF

A49

Company: Hundalen As

Name: John Thomas

Date: 8.5.2021

Email: john.tom@gmail.com

Phone Number: 94000011

Materielltilstand

Generell vurdering.

Salgsobjekt (-ene) fungerte tilfredsstillende ved siste bruk.

Salgsobjekt (-ene) er i bruksmessig stand, men kan ha mindre feil.

Salgsobjekt (-ene) kan ha større feil. Inspeksjon/reparasjon anbefales.

Alt.: Elektrisk.

Batterikontroll.

Batteri tilstede og i orden.

Utladet batteri. Irrede poler.

Defekt(e)/manglende batteri(er).

Lader.

Lader tilstede og gir tilfredsstillende ladestrøm.

Lader ikke.

Motorfunksjon.

Starter og går tilfredsstillende.

Starter ikke.

Alt.: Forbrenningsmotor

Kjølevæskenivå.

Mellom min og max merke.

Under min, men synlig.

Væskebeholder er tom. Lekkasjer.

1

Kjølevæskens frysepunkt.

Minus 35 grader C eller lavere.

Ukjent, eller høyere enn minus 35 gr C.

Lekkasjer.

Ingen synlige lekkasjer.

Synlige lekkasjer. Drivstoff siver ut.

Oljenivå.

Mellom min og max merke.

Under min, men vises på peilestaven.

Oljestand vises ikke på peilestav.

Start motoren.

Riktig utslag på instrumenter og varsellamper.

Instrumenter/lamper varsler feil.

Starter ikke, heller ikke med hjelpestart.

Funksjonskontroll.

Funksjonstest for styrefunksjoner, lift opp/ned, ut/inn, sving. Kjøring fremover/bakover, samt belastning/momentprøver.

Alle funksjoner fungerer uten feil. Ingen lekkasjer.

Mangler ved en eller flere av funksjonene. Lekkasjer.

En eller flere av funksjonene virker ikke.

Prøv alle manøveringsorganer.

 Riktig utslag på instrumenter og varsellamper. Alle manøveringsorganer fungerer uten feil.

Instrumenter/lamper varsler feil. Et/flere manøveringsorganer fungerer dårlig.

Manøveringsorganer av betydning fungerer ikke.

Hydraulikk.

Hovedsentral oppe/nede.

Begge hovedsentralene er uten lekkasjer og virker tilfredsstillende.

Hovedsentral oppe eller nede har mangler/lekkasjer av betydning for funksjonaliteten.

Oljenivå.

Nivå mellom min og max.

Oljenivå under min, men synlig.

Oljestand kan ikke registreres. Lekkasjer.

2

Elektrisk.

Brytere/kabler.

Fungerer og er uten synlige skader.

Skadede kabler. Ødelagte bryterhendler.

Kabelbrudd og/eller defekte brytere.

Manøverpanel oppe/nede.

Begge manøverpanelene fungerer tilfredsstillende.

Ett eller begge manøverpanelene fungerer ikke.

Ramme/understell.

Ramme/fundament for skader.

Uten synlige skader.

Mindre skader, sprekker eller deformasjoner.

Større skader og/eller deformasjoner.

Støttebein.

Støttebein fungerer uten skader.

Mindre skader eller deformasjoner. Fungerer fortsatt tilfredsstillende.

Ett eller flere støttebein fungerer ikke.

Kurv/Plattform.

Innfesting av kurv/plattform.

Tiltrukne bolter.

Løse og/eller manglende festebolter.

Rekkverk og port med lukkemekanisme.

Uten synlige skader.

Deformert rekkverk.

Manglende port eller defekt lukkemekanisme.

Sving med låsing.

Fungerer tilfredsstillende.

Defekte betjeningsorganer/ brytere for sving og/eller stopp.

3

Sakser/Bommer

Innfestinger.

Tiltrukne bolter.

Manglende festebolter.

Sveisekontroll

Uten synlige skader.

Mindre skader, sprekker eller deformasjoner. Større slitasje, men fortsatt reparerbart.

Større skader og/eller deformasjoner.

Sikkerhetskomponenter.

Klembeskyttelse.

Fungerer tilfredsstillende.

Defekt eller manglende klembeskyttelse.

Nødsenk/sving/stopp.

Fungerer tilfredsstillende.

Defekte betjeningsorganer/ brytere for nødsenk/ sving/ stopp.

Vater/nivellering.

Fungerer tilfredsstillende.

Defekte indikatorer/libeller.

Bremser.

Bremsesystem.

Alle hjul har tilfredsstillende bremsevirkning.

Ett eller flere hjul har ikke tilfredsstillende bremsevirkning.

Tilhengerbremsene virker ikke.

Lys.

Lys.

Alle lys virker tilfredsstillende.

Ett eller flere lys virker ikke.

4

Lasteplan/karmer.

Lasteplan med karmer, luker og låser.

Uten synlige skader.

Mindre skader, sprekker eller defekter.

Defekte låser.

Trekkrok/sikkerhetslenker.

Sikkerhetslenker.

Begge sikkerhetslenkene er tilstede.

En eller begge sikkerhetslenkene mangler.

Trekkrok.

Ingen synlige skader på trekkrok.

Skader på trekkrok eller krokens innfesting i rammen.

Hjul/Dekk.

Lufttrykk.

Korrekt lufttrykk.

Tydelig feil lufttrykk.

Punkterte hjul.

Ramme.

Rust og skader.

Rammen/bærende konstruksjon er uten synlig rust eller skader.

Rammen/bærende konstruksjon har mindre rustangrep og/eller skader.

Rammen/bærende konstruksjon har betydelige rustangrep og skader.

Selvgående funksjon

Selvgående funksjon.

Fungerer tilfredsstillende.

Funksjonen virker ikke.

5

Appendix J

Assetfront on an Iphone 6

A55

(a) Sub header (b) Home and Download

(c) File upload in Service
and Inspection

(d) Inspection and User
details

(e) Scanning QR-code (f) Service Data

A56

—

(a)
User
de-
tail

(b) Service PDF

(c) After submission (d) TCR PDF File

A57

Appendix K

Implementation of TCR

1 <div *ngIf="onSuccessfulSearch ()">

2 <mat -accordion >

3 <div *ngFor=" let item of tcrCopy.tcr; let indexTcr = index">

4 <mat -expansion -panel >

5 <mat -expansion -panel -header matRipple [matRippleColor]="

color" >

6 <mat -panel -title fxLayoutAlign="space -between center end"

>

7 <div >{{ tcrCopy.tcr[indexTcr].name}}</div >

8 <div *ngFor="let n of tcrCopy.tcr[indexTcr]. checkpoint

let in = index">

9 {{ allCheckPointSelected(indexTcr)}}

10 <div *ngIf="allSelected && allCheckPoint.length >=

11 tcrCopy.tcr[indexTcr]. checkpoint.length">

12 <mat -icon *ngIf=" tcrCopy.tcr[indexTcr].

13 checkpoint.length -1 === in">

14 check_circle_outline

15 </mat -icon >

16 </div >

17 </div >

18 </mat -panel -title >

19 <ng -template matExpansionPanelContent >

20 <h1 *ngFor="let checkp of tcrCopy.tcr[indexTcr].

checkpoint;

21 let indexCp = index">

22 <mat -card class="card" id="card">

23 <mat -card -content id="body">

24 <h1 id="subTitle" >{{tcrCopy.tcr[indexTcr].

checkpoint[indexCp].name}}

25 </h1>

26 <h2 *ngFor="let op of tcrCopy.tcr[indexTcr].

checkpoint[indexCp]. options;

27 let value = index" class="value">

28 <div class="row" id="description">

29 <div class="col -lg -1">

30 <mat -radio -button

31 value="value"

32 labelPosition="after"

33 (change)="updateValue(value ,indexTcr ,

indexCp)"

34 color="primary"

35 name="{{ tcrCopy.tcr[indexTcr]. checkpoint[

indexCp].name}}">

36 {{ tcrCopy.tcr[indexTcr]. checkpoint[

indexCp]. options[value]. value}}

A58

37 </mat -radio -button >

38 </div >

39 {{ getNewlyFilledTcr ()}}

40 <div >{{ allCheckPointSelected(indexTcr)}}</div

>

41 <div class="col -lg -7">

42 {{ tcrCopy.tcr[indexTcr]. checkpoint[indexCp

]. options[value]. description }}

43 </div >

44 </div >

45 </h2>

46 </mat -card -content >

47 </mat -card >

48 </h1>

49 </ng -template >

50 </mat -expansion -panel -header >

51 </mat -expansion -panel >

52 </div >

53 </mat -accordion >

54

55 <mat -card -actions >

56 <div fxLayoutAlign="center">

57 <button mat -button

58 id="back"

59 (click)="toHome ()"

60 mat -raised -button

61 color="warn">

62 <i class="fa fa-arrow -left" ></i>Back </button >

63

64 <button [disabled]="!atLeastOneSelected" mat -button

65 id="next"

66 (click)="personData ()"

67 mat -raised -button

68 color="primary">

69 Next <i class="fa fa-arrow -right" ></i></button >

70 </div >

71 </mat -card -actions >

72 </div >

Listing K.1: TCR Component

A59

Appendix L

Meetings with The Company and
Product Owner

A60

Date Participated Description

11. Nov
Headit(Kristiansen and Blakstad),
Assetfront(Bjerkemo),
Development Team

Presentation of assigment

13. Jan
Headit(Kristiansen and Blakstad),
Assetfront(Bjerkemo),
Development Team

Detailed project introduction

22. Jan
Headit(Kristiansen and Blakstad),
Assetfront(Bjerkemo),
Development Team

Detailed project introduction

25. Jan
Assetfront(Bjerkemo),
Development Team

Detailed description of functionalities and design

01. Feb
Headit(Kristiansen and Blakstad),
Assetfront(Bjerkemo)
Development Team

Document signing and technical API access

09. Feb
Assetfront(Bjerkemo and Kristin),
Development Team

Access to existing platform(vendo)

16. Feb
Headit(Kristiansen and Blakstad),
Assetfront(Bjerkemo),
Development Team

Presentation of Mock-ups and Status report

05. Mar
Headit(Kristiansen and Blakstad),
Assetfront(Bjerkemo),
Development Team

Status Report

24. Mar
Headit(Kristiansen and Blakstad),
Assetfront(Bjerkemo),
Development Team

Status Report and Technical help

14.Apr
Headit(Blakstad),
Development Team

Technical Help

21.Apr
Headit(Blakstad),
Development Team

Tecnical Help

27. Apr
Headit(Kristiansen and Blakstad),
Assetfront(Bjerkemo),
Development Team

Last presentation before user test

3. Mai Assetfront employees User Test
10. Mai Headit and Develpment team Project delivery

A61

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Abdi Bako
Amr Hamcho
Mustafa Abdullah
Shamil Saidovich Khumparov

Assetfront Repair

Bachelor’s project in Engineering - Computer Science
Supervisor: Seyed Ali Amirshah

May 2021Ba
ch

el
or

’s
pr

oj
ec

t

	List of Figures
	List of Tables
	Introduction
	Background
	Project Description
	Target Audience
	Responsibilities and Roles

	Requirement Specification
	Functional Requirements
	Non-functional Requirements
	 Non-functional Product Requirements
	 Non-functional Organizational Requirements

	Use cases
	Misuse cases
	Risk Analysis

	Software Development Methods
	Considered models
	Extreme Programming (XP)
	Kanban

	Scrum
	Daily Scrum meeting
	Meetings with Supervisor
	Milestones

	Development Process
	Scrum as development method
	Pair Programming
	Trello

	Technologies, Design, and Implementation
	Technology Assessment
	Technologies and Tools
	Choice of Technology
	Git

	Design
	System Design
	Object-oriented design
	Prototyping
	Components
	services
	GUI and UI Design
	S3 file-system Design

	Implementation
	System Overview
	Connecting to API
	service overview
	Component Overview

	Deployment and Testing
	Deployment
	Amazon Deployment
	Docker

	Testing
	Static Testing
	Manual Testing
	User Testing

	Discussion and Conclusion
	Development Method and Process
	Team Cooperation
	Meetings with The Company and Product Owner

	Development
	Security
	Application Design
	User Test

	Future work
	Conclusion

	Bibliography
	Appendices
	Pre-project plan
	Survey questionnaire
	REST API Documentation
	Technologies and Tools
	Project assignment
	Project agreement
	Today's TCR
	TCR JSON
	TCR PDF
	Assetfront on an Iphone 6
	Implementation of TCR
	Meetings with The Company and Product Owner

