
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

A. Blakli, V. Årnes, T. G
ascogne, J. U

lsrud
G

am
ification of Curricula

Andreas Blakli
Vegard Opkvitne Årnes
Theo Camille Gascogne
Jesper Ulsrud

Gamification of Curricula for Primary,
Lower Secondary, and Upper
Secondary Schools

Bachelor’s project in Programming
Supervisor: Mariusz Nowostawski

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Andreas Blakli
Vegard Opkvitne Årnes
Theo Camille Gascogne
Jesper Ulsrud

Gamification of Curricula for Primary,
Lower Secondary, and Upper
Secondary Schools

Bachelor’s project in Programming
Supervisor: Mariusz Nowostawski
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Through the years, teaching methods have developed further from their tradi-
tional ways in order to stay up to date with the modernisation of multimedia.
NTNU Gjøvik wishes to explore the possibilities with providing a platform for the
course coordinators to present their curriculum for their students through the in-
terface of a game, optimising the experience for interaction and visual feedback
with intent to provide the students with a greater, more consistent sense of ac-
complishment than traditional means of studying. The implementation consists
of an Kotlin Android front-end with LibGDX/LibKTX for the cross-platform game
engine, and Firebase for storage. The service provides an interface for structuring
classes into classrooms consisting of one or multiple modules with either self made
content for mini games, or imported ones created by fellow teachers. Students are
able to join these classrooms and launch specific mini games, or access the mini
game through an open world view. In the open world the students can interact
with their teachers and be given quests. Upon completing the games, students are
rewarded with points, and possibly achievements for their overall performance.
In addition, users play as their configured avatar to make the player feel more
involved in the game.

The game engine developed for this project is structured into an Entity Com-
ponent System (ECS), with entities composed of components and systems that
control how the data types and values in the components are manipulated and
used. This combined with the LibKTX and LibGDX allows for great customizabil-
ity, lightweightness and scalability for the engine. This simplifies adding new mini
games as already existing components and systems can be reused.

The application as it is now gives any course coordinator, teacher or teachers
assistant the opportunity to deliver any teaching material in a more interactable
and rewarding way for the students. The way the quizzes are played differs from
the usual way of just clicking the answers and lets the players navigate around an
open world to handle the challenges.

iii

Sammendrag

Oppigjennom årene har læringsmetoder utviklet seg mer og mer fra de tradis-
jonelle metodene for å holde følge med moderniseringen av multimedia. NTNU
Gjøvik ønsker å utforske mulighetene til å gi lærerne en plattform til å presentere
undervisningspensumet gjennom et spillgrensesnitt, for å optimalisere opplevelsen
med interaksjon og visuelle tilbakemeldinger med den hensikt å gi et forbedret
læringsutbytte, med bedre og mer konsistent mestringsfølelse. Implementeringen
består av en Kotlin Android front-end med LibGDX/LibKTX for kryssplattform
spillmotor, og Firebase til lagring. Systemet gir et grensesnitt for lærerne til å
strukturere klassene inn i klasserom bestående av en eller flere moduler med en-
ten selvlaget innhold for minispill, eller importert fra andre lærere. Studenter kan
bli med i klasserom og starte spesifikke minispill, eller få adgang til minispillene
gjennom en åpen spillverden. I den åpne spillverdenen kan studentene samhandle
med lærerne og bli gitt utfordringer. Når spillene eller utfordringene blir utført,
belønnes studenten med poeng, og mulige oppnåelsesmedaljer for innsatsen. I
tillegg kan alle brukere spille med en egendefinert avatar for å gi spillerne en mer
involvert følelse i spillverdenen.

Spillmotoren som er utviklet for dette prosjektet er strukturert inn i et Entity
Component System (ECS, eller Enhets Komponent System på Norsk), enhetene
består av komponenter. Systemer kontrollerer hvordan data typene og verdiene
inne i komponentene blir manipulert og brukt. Dette kombinert med LibGDX/Lib-
KTX gir god tilpassbarhet, lettvekt og skalerbarhet for spillmotoren. På grunn
av hvordan man kan bruke opp igjen komponenter og systemer forenkler dette
prosessen for å lage nye minispill.

Med måten motoren er satt opp er det enkelt å legge til nye minispill ved
hjelp av alle de samme komponentene som allerede er i systemet. Applikasjonen
slik den nå er, gir en hvilken som helst kurskoordinator, lærer eller lærerassistent
muligheten til å levere undervisningsmateriell på en mer interaksjonell og givende
måte for studentene. Måten quizene spilles på, skiller seg fra den vanlige måten
å bare klikke på svarene og la spillerne navigere rundt i en åpen verden for å
håndtere utfordringene.

iv

Contents

Abstract . iii
Sammendrag . iv
Contents . v
Figures . viii
Tables . ix
1 Preface . 1
2 Abbreviations and Definitions . 2
3 Document Structure . 4
4 Introduction . 5

4.1 Group Background and Competence 6
4.2 Project Audience . 6
4.3 Thesis Audience . 6
4.4 Roles . 6
4.5 Software Development Methodology 7
4.6 Progress Plan . 7

5 System Specification . 8
5.1 Requirements . 8

5.1.1 Functional Requirements . 8
5.1.2 Non-Functional Requirements 9
5.1.3 Timetable . 9

5.2 Initial Changes from the Project Plan 10
5.3 User Stories . 11
5.4 Use Cases Teacher . 12
5.5 Use Cases Student . 13
5.6 Use Case Diagram . 14
5.7 Sprint Backlog . 16

6 System Architecture Design . 17
6.1 Technologies and Frameworks Used . 17
6.2 Game Engine Architecture Design . 18
6.3 Game Design . 19
6.4 Game Modes . 20
6.5 Database Design . 21

6.5.1 Define the Objective of the Database 21
6.5.2 Locate and Consolidate the Necessary Data 21

v

vi A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

6.6 App-Game Cross Communication . 22
7 System Graphical Design . 24

7.1 Game Graphical Design . 24
7.2 UI Design . 26

7.2.1 Profile UI Prototype . 26
7.2.2 Classroom and Module System Prototype 26
7.2.3 Navigation . 27

8 The System Development Process . 29
8.1 Technology and Methods Used . 29
8.2 Development Process and Agile Methods 32
8.3 Debugging Methods Used . 33

9 System Implementation . 34
9.1 Game Engine Implemented System Architecture 34

9.1.1 The Components of the ECS . 34
9.1.2 The Systems of the ECS . 36
9.1.3 Game Screens and Classes . 39
9.1.4 Systems Interaction . 42

9.2 Database Implementation . 45
9.2.1 Getting User Data from Firestore 47

9.3 UI Implementation . 47
9.3.1 Gamification . 48
9.3.2 Navigation . 48
9.3.3 Database Querying from Fragment 49
9.3.4 Lists . 49
9.3.5 User Avatar . 51
9.3.6 Settings . 51

9.4 Classroom and Module System . 53
9.4.1 Versatility of Gamification . 53
9.4.2 Decisions Surrounding the Data 53
9.4.3 Classrooms and Modules . 54
9.4.4 Modules and Games . 54

10 Quality Assurance and Testing . 57
10.1 Quality Assurance . 57
10.2 User Testing . 58

11 Installation . 59
11.1 Requirements . 59
11.2 How to Run with Android Studio and Emulator on a PC 59
11.3 How to Run on Phone with APK File 60

12 Result . 61
13 Discussion . 65

13.1 Evaluation . 65
13.2 What Could Have Been Done Differently? 65

13.2.1 User Testing . 65
13.2.2 Database . 66

Contents vii

13.2.3 Workload . 66
13.2.4 Kotlin . 66

13.3 Further Work . 67
13.4 The Group Work . 67

14 Conclusion . 69
Bibliography . 70
A Additional Material . 72

A.0.1 Project Agreement . 73
A.0.2 Project Plan . 77
A.0.3 Bachelor Thesis Task . 88
A.0.4 Version History . 90
A.0.5 Miscellaneous . 93

Figures

5.1 Use Case Diagram . 14
5.2 Sprint Backlog . 16

7.1 Early render of what the game potentially would look like. 25
7.2 Early App Concept . 26
7.3 Screenshot of first prototype, made in Adobe XD 27

9.1 UML class BindEntitiesComponent . 34
9.2 UML class RenderSystemText2D . 38
9.3 GameActivity program code . 39
9.4 Engine pooled systems . 40
9.5 UML class OpenWorldScreen . 41
9.6 Collapsed UML Class Diagram of the ECS and parent classes 43
9.7 System sequence diagram of open world quest retrieval 44
9.8 Diagram showing the structure of the database 46
9.9 Application navigation bar . 49
9.10 Adapter class . 50
9.11 ListItem class . 50
9.12 Spinner functions . 51
9.13 Avatar save and get functions . 51
9.14 Usage of shared preferences files . 52
9.15 Settings functionality . 52
9.16 System sequence diagram of launching a specific mini game from

the application classroom/module system 56

11.1 Android Studio Launch Options . 59

12.1 App Screenshot Classroom . 62
12.2 App Screenshot Module . 62
12.3 App Screenshot Module Select . 63
12.4 Game Screenshot Open World . 63
12.5 Game Screenshot Interact with Teacher 64
12.6 Game Screenshot Quiz . 64

viii

Tables

2.1 Abbreviations and Definitions part 1 2
2.2 Abbreviations and Definitions part 2 3

4.1 The group members’ roles . 6
4.2 The group members’ main responsibilities 7

5.1 User Stories . 11
5.2 Use Case 1 . 12
5.3 Use Case 2 . 12
5.4 Use Case 3 . 12
5.5 Use Case 4 . 13
5.6 Use Case 5 . 13
5.7 Use Case 6 . 13

ix

Chapter 1

Preface

This Bachelor project was provided by the Department of Information Security
and Communication Technology at the Faculty of Information Technology and
Electrical Engineering by the Norwegian University of Science and Technology
(NTNU IIK). This project was one of the top choices our group had put down,
and it instantly caught our attention and curiosity. Every group member had pre-
vious experience with Android mobile development and game development using
different technologies. The project allowed us a lot of freedom to choose the dir-
ection of the design in the game and application itself, which all group members
appreciated immensely. In addition, the potential to further develop our skills and
experience in both application and game development from this project was great,
and we all want to thank NTNU IIK for the opportunity. We also want to give a
big thanks to Espen Torseth, Basel Katt as the clients, and Mariusz Nowostawski
as our study supervisor for all advice, guidance, feedback and encouragement. It
has helped us improve the quality of the project and thesis tremendously.

1

Chapter 2

Abbreviations and Definitions

Android Mobile operating system based on a modified version of Linux

Android Studio
The official integrated environment for developing
Android applications

Android SDK
SDK stands for Software Development Kit, it is developed by
Google for the Android platform

Kotlin Programming language

LibGDX/LibKTX
LibGDX is an open source game development framework,
LibKTX is the Kotlin extension for LibGDX

LibGDX Ashley An entity framework, for creating different entities in games
GDXLiftoff Setup configuration tool for LibGDX projects
OS Operating system
iOS Mobile operating system developed by Apple

Scrum
Agile development framework, often used for
software development

Scrum team
All individuals working together using the scrum method,
a team has different roles for the members

Scrum master
Role in a scrum team. A leader for the team, responsible for
the other team members

Product owner Role in a scrum team, the person representing the stakeholders

Sprint
Repeatable fixed length events used in scrum, with a concrete
development goal to be reached

Product Backlog List of all things that must be done to complete a project

Sprint Backlog
Subset of a Product Backlog for items to be completed
during a specific sprint

Table 2.1: Abbreviations and Definitions part 1

2

Chapter 2: Abbreviations and Definitions 3

Firebase Platform for creating mobile and web applications
Firestore NoSQL database from Firebase

ECS
Entity Component System used in this application, the main
architecture of the game is structured into this system

NPC A non-playable character in a game
Unreal Engine Game engine developed by Epic Games

UI
Means User Interface, anything a user may interact with while
using a software or any digital product

Gimp Digital image manipulation software
Aseprite Pixel-art tool
Adobe XD User experience design tool
Git Version control system used for software development

Git Bash
Application providing a command line experience for Git
in Windows

Github
Web platform hosting software development version control
and online repository using Git

Trello Web application for organizing and prioritizing projects or tasks

Discord
Online communication platform for voice and text chat, and
sharing content

Zoom
Online communication platform for video, voice or text
chat

Prototype
A prototype is an early sample, model, or release of a
product built to test a concept or process

Coroutine
Concurrency design pattern that you can use on Android to
simplify code that executes asynchronously

API
Application Programming Interface, is an interface that defines
interactions between multiple software applications or mixed
hardware-software intermediaries

Alpha version The first phase of the software release cycle
Beta version The second phase of the software software release cycle

Gradle files
Gradle files are the main script files for automating the tasks in
an android project and are used by the Gradle for generating
the APK from the source files

APK
Android Package File, used to distribute applications on Google’s
Android operating system

Table 2.2: Abbreviations and Definitions part 2

Chapter 3

Document Structure

• Introduction: This chapter contains a short introduction of the project work.

• System Specification: This chapter contains the system requirements, user
stories, use case diagrams and product backlog for the project.

• System Architecture Design: This chapter explains the system architec-
tural design choices made regarding the application, game engine, game
design, story, mechanics and game modes.

• System Graphical Design: This chapter explains how the graphical design
process, game art style and layout of user interface was done.

• The System Development Process: This chapter explains the system de-
velopment process of this project.

• System Implementation: This chapter explains how the planned features
were implemented in the final product.

• Quality Assurance and Testing: This chapter describes how the quality
assurance process was done with the testing process of the application.

• Installation: This chapter describes the installation process for the applic-
ation on a PC using Android Studio with Emulator and installation on a
physical/real Android device.

• Result: This chapter contains the final results of the accomplished goals for
the finished application.

• Discussion: This chapter contains the discussion concerning the project
work, what could have been done differently, further work for the applica-
tion, summary and evaluation of the group’s work.

• Conclusion: Conclusion of the whole project, based on the results in Chapter 12
and reflections around the solution

4

Chapter 4

Introduction

The Norwegian Directorate for Education has prepared a whole new curriculum
for digital security for all ages in the school system (Primary, Lower Secondary,
and Upper Secondary School). The newly prepared curriculum states that digital
security will not be a subject by itself, but instead be a part of every individual
subject. This is going to be a big challenge for a lot of teachers, especially coming
up with a complete approach to the subject area, as digital security rarely will be
part of the teacher’s core competence.

This is why NTNU IIK wants to support the teachers so their work is simpli-
fied by developing an application that would make it easier to teach the Digital
Security curriculum. The application would be a game-teaching app, that focuses
on the gamification of the curriculum to make it more fun, interactive and help
give the students a high learning outcome. Experience from other similar apps is
that they can often be perceived as boring, irrelevant and not engaging enough
to students, see the bachelor project task in the appendix A.0.3. The goal is to
develop an engaging application that changes this so that it feels relevant to both
the students and teachers.

Due to the size of the project it was decided with the clients Espen Torseth,
Basel Katt and study supervisor Mariusz Nowostawski to scale down the project’s
requirements and focus on some key aspects of the task. The clients’ expectations
were a running prototype of the principal functionality and not a complete run-
ning system. And this project’s results would be used as input for improving the
specification of a planned system that will start development later in 2021.

The research question this project focuses on is the game and classroom mod-
ules for teachers. Modules will be highly customizable, allowing teachers to fill
them with the required content at any given time, while giving them the ability to
configure their own mini games by using the curriculum. One of the primary goals
is to make an app that can give teachers a way to provide fun and interactive ways
for students to learn the new curriculum. The application is supposed to make it
possible to use in any given course, not just for the Digital Security curriculum.

5

6 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

4.1 Group Background and Competence

The group consists of four students, three of which are on the game programming
track and one on the application programming track of the study. All four have
prior experience in Android Studio and Android Mobile programming from the
Mobile/Wearable Programming course. The application will be focused on the
Android platform, and will be developed in the programming language Kotlin,
using Android Studio as the IDE. For the game development it was decided to
use LibGDX and LibKTX to create the game engine, libraries which the group
members had no prior experience in. It was chosen as it would allow for high
customizability, low requirements from users device, and easy adaptation for other
platforms.

4.2 Project Audience

The application itself is aimed at all students and all teachers in the Norwegian
school system, all the way from Primary School, to Lower Secondary and Upper
Secondary School.

4.3 Thesis Audience

The thesis is aimed at an academic audience which understands the English lan-
guage and has experience in data technology and informatics, with an interest in
application/game design and development for mobile devices. It is primarily for
NTNU’s clients of this project, but is also suitable for potential investors or other
people who want to support this project further after the initial proof of concept
has been developed.

4.4 Roles

A hierarchy was created to organize group work, this was done to improve work-
flow so everybody always had something they could work on and would not sit idle
and do nothing. One group leader and one secretary. The group leader’s respons-
ibilities was to organize the group members e.g. when to meet, what to prioritize
in the development process, contact with the stakeholders, study supervisor and
scheduling of guidance sessions with said stakeholders and study supervisor. The
secretary’s responsibilities were to take minutes of meetings with the stakehold-
ers, study supervisor and contact with the stakeholders, study supervisor.

Group leader Andreas Blakli
Group secretary Vegard O. Årnes

Table 4.1: The group members’ roles

Chapter 4: Introduction 7

Project work was organized to support the individual group member’s skill set to
maximise productivity, note: this was a guideline, not a rule written in stone.

Game Engine Andreas Blakli
Application Vegard O. Årnes
Design Theo Camille Gascogne
Database Jesper Ulsrud

Table 4.2: The group members’ main responsibilities

Realistically, all of the group members’ have had the roles laid out in the table
above as everybody to some extent has been working on all main modules of the
system, but the main responsibility of a given system belongs to the person which
has been given that designated role.

4.5 Software Development Methodology

Scrum was chosen as the development process for the project. The sprints duration
was decided to last for a week. Sprint planning and sprint retrospective meetings
were held each Monday, and daily meetings were held throughout each workday.
Each Monday at 11am there was also a scheduled meeting with the clients and
the supervisor. See Section 8.2 for a more detailed description of how the Scrum
method was used.

4.6 Progress Plan

In the project plan, all the way in the beginning while developing the founda-
tions of the applications, a Gantt chart was set up for the work process of the
project. See the Project Plan in A.0.2 chapter 6.2 for full Gantt chart. Each week
had its individual concrete theme and goal. Some of these goals had to be changed
throughout the process, because of how the scoping of the project unfolded dur-
ing development. These changes are discussed in different sections in the thesis,
depending on the area of the project that had to be changed.

Chapter 5

System Specification

5.1 Requirements

The main project requirements laid out by the clients and stakeholders was an
application that had the goal to gamify the new upcoming digital security cur-
riculum in the Norwegian school system. The user base for the application would
primarily be teachers and students, at any grade in any course. As the application
needs to be suitable for any context in any class, for all ages, it should be easy
for the teacher to create and implement a gamification of any curriculum with as
much creative freedom as possible. See Chapter 4 for further explanation of what
the application seeks to accomplish.

5.1.1 Functional Requirements

1. Gamification - The app needs to offer a gamified experience to the user.
2. Creative freedom - The teachers should be able to create their own classrooms

to host self-made or imported modules with self-made or imported mini
games.

3. Editable - The course coordinators need to be able to add new content in
to their classrooms modules at any time.

4. Classrooms - Students should be able to join a classroom that a teacher has
set up.

5. Android platform - The app’s primary platform should be on android phones
and tablets.

6. Cross-platform - The app should be easy to port to other devices running
different operating systems e.g. iOS and windows 10.

7. Profile - The app needs to have a user profile where users can edit their
in-game avatar.

8

Chapter 5: System Specification 9

5.1.2 Non-Functional Requirements

1. Scalable - The app should be able to scale well to any screen with small or
big resolutions.

2. Modular - The app should be modular and dynamic to allow for content
updates, e.g. adding new mini games, achievements, game maps, and other
new features.

3. Pedagogically viable - The game experience should help the students learn
the curriculum.

4. Performance - The application should be lightweight to allow weaker and
older devices to run the program. Support Android 8.0 and newer.

5. Reliability - Service uptime 99.5%.

5.1.3 Timetable

During early planning, a timetable was made to allocate time and human resource
to the systems that were to be implemented in the application, which the group
members would follow. The initial timetable can be seen in the Gantt-schema in
the Appendix A.0.2. The changes made to the timetable is discussed in Section 5.2
and the product backlog can be seen in Section 5.7.

10 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

5.2 Initial Changes from the Project Plan

In the prototyping phase, the requirements engineering process was a continuous
task revisited with every iteration. In discussions with the clients and study su-
pervisor ideas were scrapped or adjusted to make sure the application’s solutions
stayed relevant and within scope, see the project plan found in appendix A.0.2.
In the requirements, a multiplayer gameplay option was specified as being ne-
cessary for our intended system, due to miscommunication on what was optional
and what was necessary. The multiplayer feature was therefore removed from the
requirement, but is a part of the possible future extensions to the application. The
service was also intended to be functioning on web browsers as to not discrim-
inate against people with sub-standard phones or tablets, and while the game is
playable on both desktop and in browser, the work needed to translate the applic-
ation UI to work on desktop as well, was considered redundant and was therefore
scrapped. In addition, creating an entire forum website environment for teacher
was a goal specified in the Gantt-schema as it would make it easier for teachers
to share their modules or games with each other. Instead, it was made a require-
ment to simply implement the functionality necessary for teachers to import each
other’s modules and games without a UI dedicated to making it shareable.

Chapter 5: System Specification 11

5.3 User Stories

Actor Story

Teacher
As a teacher I need to register an account so that
I can use the application with teacher permissions

Student
As a student I need to register an account so that
I can use the application with student permissions

All As a user I need to login to the application
All As a user I need to logout of the application
All As a user I need to be able to configure my avatar
Teacher As a teacher I need to create a classroom
Teacher As a teacher I need to create a module
Teacher As a teacher I need to create a quiz
Teacher As a teacher I need to play the quiz I created
Teacher As a teacher I need to play the open world game
Teacher As a teacher I need to delete the classroom I created
Teacher As a teacher I need to delete the module I created
Teacher As a teacher I need to delete the quiz I created
Teacher As a teacher I need to import another teacher’s module
Teacher As a teacher I need to import another teacher’s specific quiz

Student
As a student I need to join my teacher(s) classroom(s) and
get access to the module(s) and stored quiz(zes) my teacher(s)
has created

Student
As a student I need to be able to choose between the quizzes
my teacher(s) has created and play the specific game I chose

Student
As a student I need to play the open world game where I can
interact with my teacher(s) and see all the quizzes they have
created

Student
As a student when I play the open world game I need to be able
to chose between and play the quiz(zes) my teacher(s) have
created

Student
As a student I need to check my total score and achievements so
that I can see my progress

Table 5.1: User Stories

12 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

5.4 Use Cases Teacher

Use Case 1 Create Quiz
Actor Teacher
Use Case
Overview

The teacher logs into his/her account, then navigates to
the classroom and module they want to add a quiz to.

Table 5.2: Use Case 1

Use Case 2 Create Classroom
Actor Teacher
Use Case
Overview

The teacher logs into his/her account, then navigates to
the classroom list and adds a classroom

Table 5.3: Use Case 2

Use Case 3 Create module
Actor Teacher

Use Case
Overview

The teacher logs into his/her account, then navigates to
the classroom and enters said classroom and creates a new
module.

Table 5.4: Use Case 3

Chapter 5: System Specification 13

5.5 Use Cases Student

Use Case 4 Play specific quiz
Actor Student
Use Case
Overview

The student logs into his/her account, then navigates to
the classroom chooses a module and then chooses a quiz to play

Table 5.5: Use Case 4

Use Case 5 Play in the open world game
Actor Student
Use Case
Overview

The student logs into his/her account, then navigates to
the home screen and enters the game

Table 5.6: Use Case 5

Use Case 6 Change avatar
Actor Student
Use Case
Overview

The student logs into his/her account, then navigates to
their user profile then chooses edit profile

Table 5.7: Use Case 6

14 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

5.6 Use Case Diagram

Figure 5.1: Use Case Diagram

Chapter 5: System Specification 15

The use case diagram Figure 5.1 shows how the system is intended to work and
the many actions a user can do with it. A user wishing to use the app may first
log in to the app. For the teacher, they may create a new classroom and new
modules for that classroom or, if they wish, import modules to that classroom.
For these modules, quizzes can be made or importing pre-made quizzes into it.
Importing a module is marked with an include to importing another teacher’s
quiz since an imported module may come with pre-made quizzes. The teacher
can also delete classrooms, modules, and quizzes. Deleting a classroom includes
deleting all modules inside classroom, which will also delete every quiz inside
those modules. Both the teacher and the student may register users and create
an avatar and join the open world game. The students, once they have registered
and created an avatar, may join specific classrooms start any quiz they wish to do
inside it or simply play the open world game which by extension lets quizzes be
accessed. Between quiz sessions, the students may check their accumulated total
score. Once a user has finished using the app, they may log out.

16 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

5.7 Sprint Backlog

Figure 5.2: Sprint Backlog

The sprint backlog is the structure in which the tasks were divided and conquered.
The structure for sprints were inspired by plans made in project plan Gantt chart
visible in chapter 6.2 within A.0.2, though it saw some adjustments during devel-
opment time as tasks required more sprints to complete. The actual content of the
backlog is based on the user stories prepared in Table 5.1. Then the gap in sprint
number signify either time taken to refactor, bug fix, or complete previously unfin-
ished functionality from earlier sprints, sprints in which the goal was to learn more
about necessary technologies, or sprints dedicated to writing the thesis. Further
information about the version history of the application can be seen in appendix
under section A.0.4

Chapter 6

System Architecture Design

6.1 Technologies and Frameworks Used

LibGDX

LibGDX is a framework for creating game engines. It is based on OpenGL (ES)
and it is written in the Java programming language. It is free and open source
and provides the option to be cross-platform between android, iOS, Linux, Mac
OS X, Windows, BlackBerry, and web browsers with the use of WebGL. LibGDX
was primarily chosen for this project because of the customizability and scalability
it would give the game engine and android application at the cost of a longer and
more intensive development process, because libGDX only provides a framework,
all the game engine architecture (the entity component system) and logic must
be made from scratch [1].

LibKTX

LibKTX is a framework extension of LibGDX which allows for a better development
process as a lot of functionality from LibGDX is converted to Kotlin and expanded
upon. It is written in the Kotlin programming language [2].

LibGDX Ashley

LibGDX Ashley is a framework extension of LibGDX which allows for better cre-
ation of the Entity Component System and is written in Java [3].

Cloud Firestore

Cloud Firestore is a NoSQL based database service created by Google which is
mainly used for storing, querying, and synchronizing data from mobile devices

17

18 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

and web applications. Cloud Firestore was created to be performance focused/-
optimized and fast. It is used in this project for its tightly integrated functionality
with Android and Kotlin which made database operations easier than going with
a database framework from another service provider. In addition, the project was
made knowing that in a final official distribution, the application would use other
established database and authentication systems verified and already used by edu-
cational institutions which makes cloud Firestore (Firebase) a placeholder until
further development. It is describes later, in Section 9.2 how this is implemented,
and in Section 6.5 how it was designed.

Firebase Authentication

Firebase was chosen as the storage solution. The whole group had previously
worked with Firebase which was a great advantage. Firebase has its own au-
thentication system which was one of the reasons why it was selected. With its
authentication system the user can choose what kind of login credentials to be
used. For an application that is going to be used for education in the school sys-
tem there would most likely be login credentials provided from the school. With
Firebase authentication it is possible to update the means by which users login
at any point. That means the application could be developed with just using an-
onymous usernames or emails. And then when it is used by a school or some
institution, it can be upgraded to use their credentials at that time, for example,
the Feide login system NTNU uses. It can also be upgraded to use phone, Google,
Facebook, Github or some of the other Firebase approved login methods. Firebase
authentication also works across all platforms and it is very secure. It is developed
by the same team that created the Google Sign-in, Smart Lock and Chrome Pass-
word Manager. Firebase applies Google’s internal expertise of managing one of
the largest account databases in the whole world. The application needs different
roles for their users, as there are going to be teachers and students using the app.
Firebase has a system built in for that, but it is a part of their Cloud Functions, and
they are behind a paywall. And for that reason it was decided to have an attribute
in the user database that distinguishes the user as either a teacher or a student.

6.2 Game Engine Architecture Design

The main architecture of the game engine is structured into an entity compon-
ent system (ECS). An entity can be thought of as an object (player, NPC, build-
ing, wall, rock etc.) placed in the game world and every entity is composed of
one or multiple components. A great inspiration for the ECS and learning source
for the GDX/KTX library was the Youtube channel Quillraven [4] and the Libgdx
Cross-platform Game Development Cookbook by Marquez and Sanchez [5]. See
Figure A.1 and Figure A.2 in the appendix for how a player entity is created. A
component contains various data types and values specific to that component. The
systems control which and how the different components data is used and manip-

Chapter 6: System Architecture Design 19

ulated. The goal of an ECS is to simplify inheritance between classes so that an
entity’s components can be added or removed dynamically during runtime, which
improves readability of the code and scalability of the program.

Creation of the game engine is done by pooling the different systems from the
ECS into the game engine. LibGDX provides pooling as a way of adding one or
multiple systems to the game engine which is a performance friendly way of mak-
ing the game engine for Android mobile devices as destroying and creating entities
usually is a memory intensive/expensive operation if the systems are not pooled,
but with pooling the memory allocation is more efficient.
See the API documentation LibGDX [6]

Using an ECS with LibKTX allows for great customizability, light weightiness, and
size of the completed program because only the systems needed for a specific
game and or game mode need to be created, instead of relying on huge frame-
works e.g. Unreal Engine 4 which provides a ton of unnecessary functionality for
this project’s size and undertaking. It is also worth noting that LibKTX is royalty
free which means that there are no licensing fees that need to be payed with a
complete and commercialized product. This was considered when making the de-
cision between which game engine to use for this project, as this thesis and its
results would potentially be viewed by investors, and inspected in terms of how
feasible it would be to fully release a commercialized product of the "gamification
of digital security curriculum" idea.

6.3 Game Design

The main idea for this application was to have multiple mini games the teacher
could choose between and input the necessary curriculum the students needed to
learn. The player would also be able to play as his/her own configured avatar in
the game worlds.

The game design process was inspired by Using Design Games by McMullin [7]
and the game design document from Grand Theft Auto by Dailly [8] Some key
design principles taken from each of these were Objectives, Constraints,Success
criteria, Reward and Play from Using Design Games. From the Grand Theft Auto
design document: Story, Game structure and Players.

• Story - The game will be set in a fantasy world
• Game structure - There will be a separate game world for each game mode.

These game worlds are quiz and open world.
• Players - Primarily single player, but players must be able to interact with

their teachers, so some online futures are expected.
• Objectives - The objectives will vary depending on the game mode chosen

by the player.
The quiz game mode will feature a quiz where the player is given a question

20 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

and will be presented with potential correct or wrong answers.
The open game world game mode will feature all of a player’s teachers in
the world which the player can interact with and be given quest objectives
to complete.
• Constraints - In quiz game mode the player can not choose multiple an-

swers, maximum 4 choices, question and answer text is limited to a reason-
able amount.
• Success criteria - The quiz game mode success criteria are met when the

player answers a question correctly.
The open world game mode success criteria are met when the player com-
pletes a quest objective.
• Reward - The player will be rewarded with a score that increases when

the success criteria are met. When the player meets a certain score criteria
he/she is rewarded with an achievement.
• Play - The player will play as their own configured avatar in the game world

corresponding with the player’s game mode choice. The player will control
his/her avatar with touchscreen based input.

6.4 Game Modes

The game is composed of two minigames/game modes: quiz and open world.

Quiz Game Mode

The main game mode is a quiz game. The game mechanics follow the logic of a
quiz, where a player will be asked a question in form of text on the screen and
presented with different potential answers as world objects they can interact with
and choose between. The answer objects also have a text field above them with the
answer text. All answers have the potential to be correct or wrong, to give teachers
as much creative freedom as possible, they themselves can choose which answers
are correct or wrong when they create the quiz. To give the player a feeling of
achievement when they answer a question correctly, the player is given a score
counter in the top left corner of the screen which increases with the maximum
potential amount the teacher has set that question to be. When the player finishes
the entire quiz, he/she is given complete feedback on their performance in the
form of a list containing the score achieved for each answered question.

The quiz game mode doubles up as two game modes. If the teacher so wishes
he/she can write a question as a piece of learning material, then set the max poten-
tial score to be 0 and set the answer text as "proceed". This can be combined into a
quiz where a player is presented with a piece of information from the curriculum,
then the player interacts with the "proceed" object to proceed to the next piece of
information or is asked a question related to the previous presented information.

Chapter 6: System Architecture Design 21

Open World Game Mode

The open world game mode is a world containing all of the teachers belonging to
the specific player playing the game. Each teacher appear in the game world with
their own unique avatar and name above their head. A teacher act as quest giver
whereas the player interacts with a specific teacher and all quizzes made by that
teacher are displayed as sign posts in the game world which are quest objects.
When a player interacts with one of the quests, the chosen quest is activated and
the player are teleported to the quiz game world. This means that the game modes
have been switched and the Quiz Game mode is the one being used.

The game engine has been set up to be modular with system pooling. Expand-
ing the game and creating new game modes have been set up to make the process
as easy as possible. For every new game mode that is to be made, a new system
and new component for that system is added and pooled to the engine.

6.5 Database Design

This section contains the designed structure of what the database for the applic-
ation needed to consist of.

6.5.1 Define the Objective of the Database

For the application it was necessary to have a database that could store all the data
needed about all the students, teachers, courses, games and personal avatars. It
therefore needed to contain a list of all users, teachers and students. A list of all
classrooms, linked to the teachers, students, and courses. And for the game data, it
needed to store all information about the different teaching material input by the
teachers, so that when the different minigames are to be played by the students
it displays all the appropriate questions and tasks for the specific situation.

6.5.2 Locate and Consolidate the Necessary Data

The database needed to keep track of a specific set of data for all users. Users are
stored by their user ID, which is randomly generated as a user is registered. In
addition a user also has a name and an email connected to their account. Data
needed to be stored, so the application could see if a user was a teacher or a
student, and also see what courses each user is a part of, whether it being a teacher
or student. There is an achievement system in the application, so each user has
a list of achievements, these are also different from students to teachers. Every
user has an individual in-game avatar that can be customized. Therefore, the user
document had to store data that could tell the program what sort of outfit or
appearance the user chose to have in the game.

The classrooms are divided into one document for each classroom. Classrooms
are created by a teacher, and the students can join classrooms themselves. There-
fore, there needed to be a field storing the teacher’s name, and a list storing all the

22 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

students taking part in the class. The data the document is consisting of needed
to include what course it is for, and what grade. Since the same course can be run
in different grades, like for example both 2nd and 4th grade can have English or
Math, so there needed to be one database entry for each individual classroom. The
entry also needed to store data on what year the classroom is active, because the
students move grades each year, and the course may change curriculum or some
of the contents. Each classroom has its own list of quizzes and minigames in it. So
when the teacher makes a new quiz or minigame for the students of that class, it
is easily obtainable from the game. The classrooms are divided into modules. The
modules are supposed to be like different chapters in each course. In the modules,
minigames and theory for the curriculum could be stored.

The minigames and quizzes have their own database collection for each minigame.
There needed to be stored data so each minigame can display the right content
from the curriculum to the specified students. For example, if a teacher is going
to create a quiz for their students, the quiz entry needs to contain information
about what course, what grade and what year, so it can be collected from the
right classroom. It needed to hold all the questions, and all the answers and also
all the data about the scoring of the different questions.

6.6 App-Game Cross Communication

As LibKTX is a cross-platform library, it runs and exists separately from the android
application, thus, means to communicate between the app and game had to be
implemented in a seamless manner. Three separate methods of communication
between application and game are used to establish connection, namely shared
preferences, pass through parameter, and file reading/writing. Though this pro-
ject only utilises an android application for launching games, creating an IOS, or
Windows application to launch the game through will work in a similar manner.

For sharing small, consistent segments of data between game and application,
LibKTX can communicate with android’s shared preferences, a form of reading
and writing to a specific file which is easy to access in both application and game
engine. Through shared preferences the application and game are able to persist-
ently store 3 particular datatypes, the user’s chosen head, the user’s chosen body,
and the score received during game play. The design of the player is stored in
this manner as it needs to always be consistent with the player’s design and will
change rarely. Adapting this shared preferences system for IOS is also possible us-
ing NSUserDefaults, which is important for functional requirement 6 of enabling
easy porting to other platform as shown in Section 5.1.1

When loading the open world, the teachers in each of the users classrooms are
passed through the parameter used to launch the game, that is done by passing
the necessary strings as arguments which can then be accessed in each screen. The
argument passing is used for teacher design, and name, as well as game type and
game name if the game is launched directly from the classroom. Finally, passing
through read/write to file is done for the specific game data, as the game data

Chapter 6: System Architecture Design 23

is fetched from the database and written to file locally, then accessed by the file
from local storage using file name passed through the parameter.

Chapter 7

System Graphical Design

7.1 Game Graphical Design

The design and art style of the game is retro-inspired from old 2D games. Players
have their own customizable avatar which they can play as in-game. Assets like
grass, bushes, trees, rocks, and other objects are low resolution pixel based.

Going for a 2D game in this project makes sense as a 2D game is less performance
heavy than going with a game in 3D. It is unreasonable to presume and expect
that the majority of the user base for this application will have expensive high-
end devices which can handle 3D rendering, not to mention battery life as an
application which requires a lot of processing power will eat up more resources
i.e. more energy from the battery has to be used which shortens the potential play
time. Making the game in 2D will also make the asset creation process less time
consuming compared to creating an asset in 3D, i.e. more time can be spent else-
where in the program development process. See Figure 7.1 for how the potential
planned art style of the game will be.

24

Chapter 7: System Graphical Design 25

Figure 7.1: Early render of what the game potentially would look like.

26 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

7.2 UI Design

At the beginning of the project, some of the first activities to do were to make
prototypes of the UI. The early prototypes revolved around the requirements of
the app: to offload some of the teacher’s work and make learning fun and enga-
ging for students through gamification, so the UI needed to be simple, organized
and user friendly. Naturally, there were a lot of proposals to what it would look
like, all of which revolved around the main requirements which were taken into
consideration.

7.2.1 Profile UI Prototype

To gamify the app, the prototypes of the user profile featured a profile picture,
which would be the user’s avatar, a total score display to give students direct
feedback on their progression and a level display to accompany the user’s total
score. The idea was to give students a rewarding feedback in the form of an easy
to digest summary of a user’s progression and achievements. To make the app effi-
cient and easier to use, the prototypes featured several functions in one fragment
such as a search bar and editing inside the profile fragment and a friends list for
social interaction and a group list for assignments.

Figure 7.2: This figure shows an early concept of the User info, User Profile, and
the discontinued Friends fragment.

7.2.2 Classroom and Module System Prototype

As the classroom and module system were the core of the application, the proto-
typing followed an iterative design process over the course of one work week, in

Chapter 7: System Graphical Design 27

which the important design principles were compounded into the main idea. The
idea was to have a classroom section on the bottom menu that would navigate
users to a page containing a list of classrooms as well as the option to join an ex-
isting classroom, or create a new classroom if the user was a teacher. Upon clicking
the classroom, details from the classroom are loaded into a page with a menu to
select a specific view, one would contain announcements from the teacher, another
with class leader board, and finally one containing the module list. The module list
was intended to be designed more as a scrollable page with graphical elements,
with modules represented as nodes in a tree, where users can choose the path
they wish to take when working to complete all modules. There were plans to
have module-types which would require previous modules to already have been
finished, as well as an option to skip past modules if the student felt comfortable
enough with the previously unfinished modules. The skip module would fetch ran-
dom games from each unfinished module in a test with low tolerance for failure,
upon passing the skip module, the student would not have to complete the unfin-
ished modules to advance past the skip. The teacher would be able to create new
or import existing modules and place them freely on the node tree, and would be
able to modify the content inside each module whether created or imported. The
modules can be filled with different games that can be launched individually, or
played in the sequence designated by the teacher.

Figure 7.3: Screenshot of first prototype, made in Adobe XD

7.2.3 Navigation

Navigation plays a key role in making the app easy and efficient to use for the
end users. Thus, the navigation had to be simple and organized. At the start of
development, how the app’s navigation should be, was amongst the first things to

28 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

be considered. A drop-down menu was considered for the app so every fragment
of the app would be accessible from one menu which would stay hidden until
the user needed it, but ultimately a navigation bar was ideally suited for the task
at hand as it is a simplified navigation menu which could be accessed without
extra gesturing to make it appear. Additionally, the navigation bar always presents
the user with four options. Initially, the navigation bar was planned to be used
as an all-in-one navigator between fragments, but it proved to impede the user
experience due to frequent miss clicks if the navigation bar was to have more
than five options so later prototypes and early alpha would feature three to four
buttons for the essential fragments and settings.

Chapter 8

The System Development Process

8.1 Technology and Methods Used

Android SDK

Android SDK is a system development kit for developing applications on the An-
droid platform. The SDK provides functionality for programming with Java, Kot-
lin, C++, xml and others with extension packages to the SDK e.g. GoLang. It also
provides tools for program debugging. The Android SDK supports Linux, Window
7 or later and Mac OS X operating systems. For this project Kotlin was chosen as
the primary programming language over Java because Kotlin is trying to solve a
lot of problems Java inherently has with its somewhat chaotic nature, its intuit-
ive way of writing code and the null exception problem. Kotlin is being heavily
pushed onto developers by Google, and other software companies are switching
over. Pinterest and Square are two examples of companies which are currently
using Kotlin [9], [10].

Android Studio IDE

Android Studio IDE is an Integrated Development Environment provided by Google
and is based on JetBrains IDEA IntelliJ. Android Studio provides a text editor for
programming, Gradle building, debugging tools, UI layout editor with Google’s
standard UI elements e.g. buttons, layouts, and an Emulator which can be con-
figured to emulate different android devices running different OS version of An-
droid. It supports Linux, Window 7 or later and Mac OS X operating systems. An-
droid Studio was the only IDE which was used as it provided all the functionality
needed for the making of this project [10].

29

30 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Gimp

Gimp is a digital image manipulation program, it is free and open source. It sup-
ports Linux, Windows and macOS. Gimp was used in this project for editing sprites
[11].

Aseprite

Aseprite is a raster graphics editor for Windows, macOS, and Linux. It is free
and an excellent tool for making sprites from scratch. Aseprite was used to make
custom sprites for the app [12].

Adobe XD

Adobe XD is a vector-based user experience design tool for web apps and mobile
apps. It supports macOS and Windows. There are versions for iOS and Android
to help preview the result of work directly on mobile devices. Adobe XD was used
for its ability to create click-through prototypes which would simulate how the
app navigation would work [13].

GDXLiftoff

GDXLiftoff is a setup configuration tool used for LibGDX Gradle projects, which
helps to simplify the setup of the initial project files, extensions, and its depend-
encies [14].

Git

Git is a version control system which is actively used by many developers through-
out a system development process. It allows for multiple people to work on the
same project at the same time and distribute work done into a repository. People
can push the changes they have done to the repository and others can then pull the
updated repository to their own local system and work with the updated program
code. Git holds a history of all the pushes that are made into the repository which
allows for easy backtracking if an unknown error occurs in the program, so that
the error can be backtracked to which push it came from and then removed/re-
verted to a previous version [15].

Git Bash

Git Bash provides an emulation layer of the Git command line for windows oper-
ating systems. It was used for pushing, pulling, branching, merging project files
and version control in this project [16].

Chapter 8: The System Development Process 31

GitHub

GitHub is a web-based platform which is a free service provided for users with
a registered account, with optional, paid, premium functionalities. Its primary
purpose is to host program code in a repository. It allows for collaboration between
people/developers all over the world given that they have an internet connection
to use Git for sharing work. Git Bash and GitHub were heavily used throughout
the development process of this project [17].

Trello

Trello is a web-based application which provides a hub for organizing project
work. It does this by having a card system which members of a Trello project can
manipulate i.e. add, move, remove cards and then set which person is currently
working on a specific or multiple cards. The cards are organized in lists which
makes converting the card system to SCRUM backlog easy. Trello was used in this
project for having a SCRUM overview with a product backlog, current sprint log
i.e. in progress/currently worked on and completed sprint backlog. This was done
to keep track and overview of over which functionality needed to be created and
who was working on different parts of the program [18].

Discord

Discord is a Voice over IP (VoIP) communication platform, which is available on
Android, iOS, Linux, Windows, Mac OS, and web-browsers. Discord provides op-
tions for streaming, sharing content, talking, and writing text live. Discord was
used as the main communication platform between group members through the
development process of this project. Due to COVID-19 and lockdowns, physical
group sessions were deemed too difficult and risky. With the Norwegian govern-
ment recommending people to work from home if possible, it was the decided by
the group to communicate digitally through Discord [19].

Zoom

Zoom is a digital communication platform which allows users to hold video con-
ferences and online voice meetings. It supports Android, iOS, Linux, Windows
7 (and above) and Mac OS X. Zoom was used to communicate with the study
supervisor and stakeholders [20].

Microsoft Whiteboard

Microsoft Whiteboard is a digitized whiteboard which allows for one or multiple
people to cooperate remotely from their own PC. It is available for Windows
10 and Xbox One. This application was used to draw diagrams and share ideas
between the group members of this project [21].

32 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

8.2 Development Process and Agile Methods

Scrum

Scrum is an agile system development method; Scrum can be explained by split-
ting it up into components (note: this explanation is focused on Scrum with soft-
ware development, the Scrum process itself can be used for other product devel-
opment processes as well) [22].

Product Owner

The product owner is a person responsible for representing stakeholder(s) who
owns the product idea and presents what the stakeholders want in terms of realiz-
ing the product idea into a fully developed software product. Throughout the de-
velopment process the product owner acts as an intermediary between the Scrum
team and stakeholders to show what has been developed. This is to make sure the
Scrum team develops a solution the stakeholders want in the finished product. The
project ideas and problems that need to be solved are put into a product backlog.

Scrum Team

The Scrum team consists of developers, a product owner and a Scrum master. The
team is usually built up with three to nine team members.

Scrum Master

A Scrum master is responsible for helping Scrum team members to stay on track
and solve problems the product owner has laid out in the product backlog. In
addition, the Scrum master helps the team with being successful by preventing
distractions, ensuring good team cooperation, and educating team members on
the Scrum process throughout the system development process.

Sprint

A sprint is where what work will be solved/completed from the product backlog by
the Scrum team. A sprint usually lasts from one day and up to four weeks. Before
starting a sprint, the Scrum team picks out tasks from the product backlog and
discusses what will be done in the upcoming sprint. When a sprint is completed, a
card holding all information on what has been worked on in the sprint is created,
and added to the sprint backlog to keep track of which problems/tasks from the
product backlog have been solved/completed. See Figure A.26 in the appendix for
a Trello sprint backlog overview from an early point in the development process.

Chapter 8: The System Development Process 33

Project Work

For this project, the group decided Scrum would be the most agile development
method to use. Kanban and Scrumban were considered as optional agile develop-
ment methods, but the group decided against these because all group members
had previous experience using the Scrum development method, and that Scrum
would fit the workflow of the development process better than Kanban and Scrum-
ban.

After some time in the development process, the Scrum method was modified
to fit better with the group needs. Realistically, the Scrum team consisted of two
product owners and two Scrum masters, Andreas Blakli and Vegard O. Årnes took
on these roles. The Scrum method generally recommends against this approach
with multiple product owners and Scrum masters, but since the group size was
small this approached worked out very well. Daily Scrum sessions were held in
Discord every workday to discuss current tasks and who was working on a par-
ticular problem from the product backlog, to coordinate workflow between team
members. Since all team members were in Discord, problem solving, debugging
and clarification of a scheduled sprint’s log were easy to coordinate and solve.
Work hours were scheduled between 09:00 to 16:00, Monday to Friday. Every
Monday, a 30 minute session with the clients and study supervisor was held, to
discuss progress, priorities, and product backlog.

8.3 Debugging Methods Used

Rubber Ducking

Rubber ducking is a debugging method that seeks to solve logical errors in the pro-
gram code by explaining how an entire/section of code from the program works,
what it seeks to accomplish and what the problem is to a rubber duck. The pro-
cess of explaining a problem out loud to a rubber duck often helps a developer to
understand what and where the problem is located [23].

Rubber ducking was extensively used throughout the development process
and group members found this an efficient way of debugging.

Pair Debugging

Pair debugging is much the same as pair programming, it involves two program-
mers that work together to correct a logical error in the program code.

Pair debugging was less commonly used, as pair debugging required another
person to stop working on their own code and help out with the problem code.

Chapter 9

System Implementation

9.1 Game Engine Implemented System Architecture

9.1.1 The Components of the ECS

This section covers how the component’s in the entity component system were im-
plemented from the previously discussed game engine architecture in Section 6.2.
How and what a specific component is used/does is covered in Section 9.1.2

BindEntitiesComponent

Contains vector for position offset for slave entity from master entity. See Fig-
ure 9.1

Figure 9.1: UML class BindEntitiesComponent

InteractableComponent

Contains variables related to the victory condition of the game, the score value
for a question, variables related for telling the program what sort of intractable

34

Chapter 9: System Implementation 35

entity type the entity is e.g. is it a teacher or quest entity. And name of the quiz if
it is a quest entity. See Figure A.3 in the appendix for figure of the Interactable-
Component class.

MovementComponent

Contains velocity vector (speed) for entities with this component. See Figure A.4
in the appendix for figure of the InteractableComponent class.

OrientationComponent

For orientation of entities i.e. up, down, left, right, e.g. player is moving left, then
the sprite must be adjusted so that the sprite is facing in the same direction as the
player is moving. Note: this component is used but has no visual effect in-game
because all of the used sprites have only one direction, but it is fully possible to
later expand upon this so sprites can be oriented. See Figure A.5 in the appendix
for figure of the OrientationComponent class.

PlayerComponent

Contains data relevant to the player, total score gained, player health, player user-
name etc. See Figure A.6 in the appendix for figure of the PlayerComponent class.

QuizComponent

Contains data relevant for the quiz game. See Figure A.7 in the appendix for figure
of the QuizComponent class.

QuizQuestComponent

Contains data relevant to the quest and teacher entities, name of teacher and
whether to show all available quizzes that belongs to a given teacher. See Fig-
ure A.8 in the appendix for figure of the QuizQuestComponent class.

SpriteComponent

Contains the sprite texture and its color values i.e. RGB and alpha. See Figure A.9
in the appendix for figure of the SpriteComponent class.

TextComponent

Contains data for text rendering. See Figure A.10 in the appendix for figure of the
TextComponent class.

36 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

TransformComponent

For transforming entities with position vector and size vector i.e. moving the en-
tities on screen. See Figure A.11 in the appendix for figure of the Interactable-
Component class.

9.1.2 The Systems of the ECS

This section covers the implemented system’s of the entity component system. See
Section 6.2 for how the architecture of the ECS were designed and Section 9.1.1
for what a specific component contains.

BindEntitiesSystem

BindEntitiesSystem is responsible for binding an assigned entity (slave) to a mas-
ter entity and transforming the transform pos (position) vector of the slave entity
to match the master entity’s pos vector plus the offset value so the entity is cor-
rectly offset from its master. This system is used primarily for the player entity as
the player entity is built up by two entities which are the head and body entit-
ies. Using this system for other entities is not a problem as it is designed to work
with all entities that have a sprite and a pos vector. It interacts with the BindEn-
titiesComponent and TransformComponent. See Figure A.12 in the appendix for
figure of the BindEntitiesSystem class.

InteractableSystem

InteractableSystem is responsible for collision detection, if necessary, move player
back away from the object it collided with, destroying specific entities i.e. quest,
teacher, question, answer entities on collision, updating the player score based
on correct/wrong answer. The components this system interacts with are the
InteractableComponent, TransformComponent, PlayerComponent, TextCompon-
ent, QuizComponent and QuizQuestComponent. See Figure A.13 in the appendix
for figure of the InteractableSystem class.

MovementSystem

MovementSystem is responsible for moving all the created entities with the Move-
mentComponent and setting the world bounds so the player cannot move outside
the game world. The components this system interacts with are the Transform-
Component and MovementComponent. See Figure A.14 in the appendix for figure
of the MovementSystem class.

PlayerInputSystem

PlayerInputSystem is responsible for handling player input. Based on player input
it will manipulate the direction vector and orientation direction from the Orient-

Chapter 9: System Implementation 37

ationComponent. Which is then used in the MovementSystem to move the player
entity. The components this system interacts with are the TransformComponent,
OrientationComponent and PlayerComponent. See Figure A.15 in the appendix
for figure of the PlayerInputSystem class.

QuizSystem

QuizSystem is responsible for main game logic of the quiz game, see Section 6.4
for how the quiz game mode was designed. It reads a specified quiz from file, then
creates the quiz entities for the question and answers dynamically based on which
questions and answers that belong together. When a player has given an answer,
the InteractableSystem will change the playerHasAnswered bool to true in the
QuizComponent and the next set of entities for question and answers is created.
Once the player finishes the quiz, the score is saved and written to disk for use in
other parts of the application and the game is exited. The component this system
interacts with are the QuizComponent. See Figure A.16 in the appendix for figure
of the QuizSystem class.

QuizQuestSystem

QuizQuestSystem is responsible for main game logic of the open world game, see
Section 6.4 for how the open world game mode was designed. When a player
interacts with a teacher entity, the system creates quest entities which are dis-
played as a signpost in-game for all quizzes that belong to that specific teacher
the player interacted with. These signpost quests are dynamically removed by the
InteractableSystem when a player interacts with another teacher entity to avoid
overlapping entities. When a quest entity is interacted with by a player, the name
of the quiz is passed to the quiz game and then the game screen is switched to the
quiz game. This system interact with the QuizQuestComponent. See Figure A.17
in the appendix for figure of the QuizQuestSystem class.

RenderSystem2D

RenderSystem2D is responsible for rendering all entities with a 2D sprite texture,
the viewport from the game engine is passed to the system and set inside the
batch. The camera position is updated based on the player entity transform vec-
tor position. This ensures that the camera will follow the player entity and always
stay centered. This system interacts with the SpriteComponent and Transform-
Component. See Figure A.18 in the appendix for figure of the RenderSystem2D
class.

38 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

RenderSystemText2D

RenderSystemText2D is responsible for rendering text to the screen. It has its own
custom viewport so that characters in the text are sized appropriately. This is ne-
cessary because the default game viewport is scaled to the game world size, which
is 9x16 units. Trying to render text with this viewport size makes it huge and
blurry, so the custom viewport is set to 1080 x 1920 which makes the text a lot
smaller and clearer because of the higher viewport size. To account for the offset
between the different viewports sizes, the vector position coordinates are scaled
up so that text entities will be positioned correctly according to the game world
coordinates. The viewport camera will follow the player entity based on the player
entity’s vector coordinates. To keep the text entities placement static, their posi-
tion is updated and offset by the camera’s current position so they will always stay
in their original set position. This system interacts with the TextComponent. See
Figure 9.2 for RenderSystemText2D class figure.

Figure 9.2: UML class RenderSystemText2D

Chapter 9: System Implementation 39

9.1.3 Game Screens and Classes

This section addresses the game screens and relevant classes to fully create the
game engine from the systems explained in Section 9.1.2 and game modes indi-
vidual design explained in Section 6.4.

GameActivity

GameActivity class creates a new Android Activity and initializes the Prot01 class
which is where the game engine is created and the chosen game is started. See
Figure 9.3 for program code.

Figure 9.3: GameActivity program code

40 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Prot01

Prot01 is the class responsible for creating the game engine with its pooled systems
from the ECS, adding and setting the correct game screen based on which game
the user chose in the main Android application. It takes three strings, and a list
of strings in the constructor. These are: which game screen to create, username
of player, name of the locally stored quiz and a list containing teacher data. The
create() method adds and sets the game screen based on the showScreen string
in a when statement, it defaults to OpenWorldScreen and passes on the respective
values each game screen requires in their constructor. See Figure 9.4 for how the
systems are pooled and Figure A.19 in the appendix for class figure.

Figure 9.4: Engine pooled systems

Abstract screen

Abstract screen: Is an abstract class that holds the game Prot01 class and its pooled
systems, game engine and sprite batch, this abstract class is used for the Open-
WorldScreen and QuizScreen since each of these game screens requires all of the
previously mentioned variables, and values. See Figure A.20 in the appendix for
figure of the class.

OpenWorldScreen

OpenWorldScreen class constructor takes game class Prot01, a list of strings (of
teacherData), username and inherits from the Abstract screen class. When the
screen is shown the show() method is used to activate three functions, these are:
createMapEntities(), createUserEntityFromPlayerData(), and createTeacherEntit-
ies(teacherDataList). createMapEntities() reads a text file from disk. This file con-
tains the map layout in which each row and column are iterated through. Based
on what value each element has, the appropriate entity is created with its corres-
ponding components. createUserEntityFromPlayerData() creates the player en-
tity with the corresponding sprites the user configured their avatar to look like
in the app. It does this by reading the playerData+username.xml file contain-
ing the strings with which sprites the user has chosen. The player is built up

Chapter 9: System Implementation 41

by two entities: playerEntityBody and playerEntityHead. The playerEntityBody
is composed of six components, these components are: TransformComponent,
MovementComponent, GraphicComponent, PlayerComponent, OrientationCom-
ponent, and TextComponent. The playerEntityHead is composed of the Transform-
Component, MovementComponent, GraphicComponent, BindEntitiesComponent,
and OrientationComponent. createTeacherEntities(teacherDataList) function cre-
ates the teacher entities with the teacher(s) configured avatar(s) from the data
provided in the teacherDataList. A teacher is built up by two entities, the teacher-
EntityHead and teacherEntityBody. The teacherEntityHead is composed of the
TransformComponent, GraphicComponent, TextComponent, InteractableCompon-
ent, and QuizQuestComponent. The teacherEntityBody is composed of the Trans-
formComponent, GraphicComponent, InteractableComponent, and QuizQuestCom-
ponent. See Figure 9.5 for figure of the class.

Figure 9.5: UML class OpenWorldScreen

QuizScreen

QuizScreen class constructor takes game class Prot01 username and inherits from
the Abstract screen class. The QuizScreen is built up like the OpenWorldScreen,

42 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

when the show() method is used there are two functions which are called, the
createMapEntities() and createPlayerEntity(). The createMapEntities() does the
same as explained above in the OpenWorldScreen, the same goes for createPlayer-
Entity(), but the key difference here is that the player also has the QuizCompon-
ent. See Figure A.21 for figure of the class.

HelperFunctions

HelperFunctions is a class created to help against code duplication. Functions that
are used multiple places throughout the game code’s logic is to be placed in this
class. For now it contains chopString(str: String, maxLength: Int) which takes a
string "str" and an integer "maxLength" as input and returns the chopped string
and how many times it has been chopped. This function is used by text compon-
ents and is needed because when using LibGDX draw method for text, the text
will be drawn from the starting position vector, to the right and down. So the
string is chopped so it will not go out of the horizontal screen boundary and offset
vertically so it moves upwards each time it has been chopped. See Figure A.22 in
the appendix for figure of the class.

PlayerControl

The playerControl class was created to give the player a way to interact with the
game world trough an action button. The class uses a stage, that handles the
viewport, which in turn controls the coordinates used within the stage and sets
up the camera used to convert between stage coordinates and screen coordinates.
This is needed to render the action button on the screen. The class uses two near
identical functions, touchUp and touchDown, which checks if the button is pressed
or not and sets the correct boolean value accordingly. The draw() function will
draw the button on the screen when called.

QuizInfo

The QuizInfo class purpose is to display the results after the quiz has been created
as well as to give a UI element which allows user to traverse back to the applic-
ation from the game. This is done through receiving the mutable list of points
gathered from answering the questions within the quiz. The list is passed from
the quiz component into the Quiz info constructor upon completing the game.
Upon creation the class renders a forest green background that fills the window,
then populates a table inside a stage with the point list and the exit button.

9.1.4 Systems Interaction

When a system in the pooled engine sees an entity containing a specific component
that system will start using its implemented logic e.g. when the QuizSystem sees
an entity with the QuizComponent it will activate and start the logic for the quiz

Chapter 9: System Implementation 43

game mode. See the figure Figure 9.6 for a collapsed class diagram of the ECS.
See Figure A.25 in the appendix for the fully exploded class diagram.

Figure 9.6: Collapsed UML Class Diagram of the ECS and parent classes

44 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

The Figure 9.7 is a system sequence diagram which represents the involved sys-
tems when a player interacts with a teacher in the open world. When a specific
teacher is interacted with, the quest entities/quizzes belonging to that teacher are
created and displayed in the world. Descriptive text is used instead of function
names, the main function call is processEntity() for the systems, as this function
processes all of the components belonging to that specific system on every tick.

Figure 9.7: System sequence diagram of open world quest retrieval

Chapter 9: System Implementation 45

9.2 Database Implementation

The figure below, Figure 9.8, shows the structure of the database as it is in the pro-
ject currently. It is not very large, with only four tables. As stated in Section 6.5,
there was going to be a database entity for each of the mini games in the ap-
plication, but as the quiz was implemented into the open world game, it was not
needed to have more than one table for the quiz. The classroom entity can have
zero to many quizzes stored in it, and individual quizzes can exist in multiple
classrooms simultaneously. The classrooms also have two relationships with the
user’s entity because a user can either be student or teacher. A student user can
be in zero or many classrooms, and a classroom can have zero to many students.
A teacher user can be the teacher for zero to many classrooms, and a classroom
can only have one teacher. The modules ended up being an entity of its own, as
that made more sense than including it somewhere into the classroom’s table. It
is also connected to the quiz table, as quizzes are to be created into their own
modules, and the classrooms are storing all the quizzes for all the modules in the
classroom. There can be zero to many modules in each classroom, and the mod-
ules can exist in multiple classrooms. Each module can have zero to many quizzes,
and each quiz can exist in multiple modules. Even though the database ended up
containing only one type of game-data table, namely quizzes, the system has been
designed so it is very easy implementing new mini games into the application and
database. They would all communicate with the database in the same manner so
it would only need to be added a new collection, and the database functionality
in the app would be easy to manipulate to communicate with the new collection.

46 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure 9.8: Diagram showing the structure of the database

Chapter 9: System Implementation 47

9.2.1 Getting User Data from Firestore

For getting the data of a logged in user from Firestore there were some complica-
tions. Since making the queries and actually getting that data from the database
takes some time, it needs to be done using coroutines in Kotlin. A coroutine is a
concurrency design pattern that can be used on Android to simplify code that ex-
ecutes asynchronously. Since Kotlin does not let the data be fetched and returned
instantly, coroutines is what is supposed to be used. The problem is that to be
able to use the coroutines, use of a suspended function is required, and to use a
suspended function the whole class needs to inherit the suspended functionality.
And the way the navigation system is set up in the application itself regarding
all the fragments, it needs to inherit from the Fragment class. Unfortunately, an
effective solution for this was not found, it proved to be difficult to solve and it
caused additional obstacles. But one of the main goals of the application was to
make the classrooms and modules as interactive, modular and modifiable as pos-
sible for both the users. Therefore, it was decided to keep the fragments the way
they were and find another way of getting the data from Firestore.

The solution ended up being that once logged into the application, all neces-
sary data about the user like for example its courses, classrooms, teacher, students,
and score, is read into a dedicated user object. So instead of having to make a
query to Firestore every time data from a user was needed, it is made one query
once the user is logged in, and the data is stored in an object which can easily
pass out the data for the user as needed wherever in the application. Passwords
or anything that could prove to be a potential threat, are not stored either in the
Firebase user database or in the application [24].

9.3 UI Implementation

Much like early prototypes of the app, the user interface has been designed with
large buttons labelled appropriately for easy navigation and provides lists in frag-
ments where appropriate. The fragments appear with less functions than initially
planned to avoid overwhelming the user with too many options than needed. For
each user, lists have been implemented in their profile to give them quick access to
the modules they have responsibility of if they are a teacher, or a list of classrooms
to attend for students. The use of lists keeps the interface simple and clearer as
the list was implemented with scroll function so it keeps the interface from dis-
playing information that may not be needed at the time while also keeping all
their modules and classrooms in one place at the bottom of the screen. The UI
was planned to have a fragment dedicated to friends and colleagues with a way
to send messages or notify the students of a new classroom/module. The fragment
would have featured a list of friends and groups the user is currently in. However,
this was scrapped as it was not needed to fulfil the requirements for the app, and
the app itself has been developed around a ’single-player’ experience so a friends
list or a group list would not be useful. The App was also supposed to have no edit

48 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

fragment for their profile as the edit function would be accessed through pressing
buttons next to the user information and avatar, this was later removed as having
its own fragment for editing profiles would remove any unnecessary miss-clicks
and organize the app’s functions so it would only be accessed when needed. See
the figures: A.32 A.30

9.3.1 Gamification

To fulfil the requirement of making learning fun and engaging for students, the
student’s user profile fragment features an achievement list, a text view that dis-
plays their total accumulated score which is saved to the database, and a level
display that increases depending on the user’s score. Achievements functions as
unlocks after certain criteria are met and will be added to a user’s achievement list
once those criteria are fulfilled. This serves to give the students feedback on their
performance in the modules as well as reward for performing well. The inclusion
of a customizable avatar functions as another layer of reward, where being able to
show one’s achievements through their avatar is a reward. Therefore, the avatar
is constructed with two parts: a head and a body, which can be used to mix and
match different head and body parts to the user’s desire. This can also serve as a
goal for users to strive for to unlock new parts for their avatar or for completion
of achievements. Teachers are also given an avatar which is displayed within the
open world game mode, but it does not function as gamification of their side of
the app, rather as a representation of the responsible teacher of a classroom which
the students may interact with in the game world. See the figure: A.33

9.3.2 Navigation

The implementation of the app’s navigation is split into two parts: one for the
user’s profile, information, edit, and the other part is for creation of modules and
quizzes. The home screen features a button to the open game world. Both parts
of the app are always accessible through the navigation bar which has four but-
tons navigating to home, modules/classrooms, profile, and settings, respectively.
The two parts are also further divided into a sub-home fragment which is where
the navigation bar buttons lead to. The user’s profile fragment includes buttons to
directly access key features of the app; the user’s information, a way to edit their
avatar which is also their in-game representation. To avoid confusion, these but-
tons are labelled with the name of the fragment they navigate to. For the classroom
part of the app, the teachers can make new classrooms with modules containing
quizzes, and students can join these classrooms. The navigation bar has been im-
plemented with icons clearly indicating where it navigates to. The app also has a
side menu which appears when swiping to the right. See the figure: A.34.

Chapter 9: System Implementation 49

Figure 9.9: Application navigation bar

9.3.3 Database Querying from Fragment

Implementation of the UI fragments is mostly straightforward. Generally, the app’s
buttons use setOnClickListeners to preform actions when pressed. A lot of them
simply serve as navigation to different fragments, whose names are labelled on
the respective buttons. However, the UI fragments also use Firebase queries to
gather and display user relevant information on screen. This is accomplished by
functions inside a User object which returns saved variables inside said object, and
these variables are queried from the Firebase database using the DBObject. Thus,
username, score, relevant modules, and achievements will change depending on
which user is logged on the app.

9.3.4 Lists

The lists are implemented as RecyclerViews which use an adapter class to display
the items of the list onto it, as well as a class for list items that acts as a tem-
plate for which the adapter can put in information. This class does this through a
function, onBindViewHolder, which assigns text and image to the cardview of an
object in a list depending on its position inside that list and onCreateViewHolder
which uses an xml file. What the adapter can put in the cardview is decided by
the listItem class which the class uses in its constructor. This makes it simple for
developers to edit what type of information a list needs to have as editing on the
listItem class will make lists that use it display new information depending on
what was changed on it. Another function will use get functions from User object
to get the user’s classrooms, achievements or any other array from the database
and dynamically create a list to display the queried information. This keeps the
interfaces from being hard coded for each user and will instead always display
information that is relevant for the current fragment.

50 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure 9.10: Adapter class

Figure 9.11: ListItem class

Chapter 9: System Implementation 51

9.3.5 User Avatar

The avatar selection however is done locally via GDX files. The implementation of
a GDX file system, which acts as a write to and read from the shared preferences
files, is used to store local data such as which avatar parts the user had picked. The
selection itself is done with spinners in the editProfileFragment. Once the desired
avatar has been finished, the editProfileFragment will use save functions to write
to the shared preferences files, through LibGDX, which parts were used under a
keyword. The files created are labelled with the username of a user which distin-
guishes what files to use when using the get functions for the avatar selection, as
the username becomes an argument in the get function. These functions are used
for other fragments that also display the user’s avatar. To avoid having the app
rely on locally created files, which becomes a problem if a different user logs into
the same device and their avatar selection has not been saved on said local files,
the avatar selection is also saved to the database, so the necessary information is
queried and written to the shared preferences files on log-in.

Figure 9.12: Spinner functions

Figure 9.13: Avatar save and get functions

9.3.6 Settings

The settings fragment is used to change the colour and light mode of the app itself.
The user may change between green, red, purple orange or default (blue) themes,

52 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

and this will persist into dark mode should the user want to use that. The settings
fragment uses a different class called sharedprefs which, like its name implies,
uses shared preferences files to change the theme of the app. This is much like
how the usage of LibGDX works since both uses shared preference files, but the
class does it via the editor interface which is a built-in method used to modify
values in a shared preferences object. Once a theme has been chosen, the settings
class uses the editor to write Boolean true or false to the shared preferences files.
Upon starting the app, the AppActivity class will check the shared preference file
for which theme to use and apply the theme. Admittedly, this was challenging to
achieve because the app cannot change themes during run-time. This is solved
through restarting the app so every button will restart the app once it is pressed,
which will then make AppActivity go through the shared preference file and check
which theme to use.

Figure 9.14: Usage of shared preferences files

Figure 9.15: Settings functionality

Chapter 9: System Implementation 53

9.4 Classroom and Module System

9.4.1 Versatility of Gamification

As previously stated in Section 5.1, the application needed to provide the means
for teachers to portray the content of their curriculum regardless of student age or
course type. However, the classroom module system achieves this albeit in a lim-
ited fashion. The finished product of the module system allows teachers to create
their classrooms with games that can be grouped into groups called “modules”,
and allows users to launch each separate game. The limitation of the service is the
lack of variation in gamification. The application classroom system only provides
one game type in which the teacher can provide an unlimited amount of title
text and up to four answers for each title, as well as points gained for answering
the designated correct answer. The finished game works primarily as a quiz but
can also function as a means for teachers to provide informational text students
can read in the game world. Nonetheless, the implemented method for launching
games within the module has the potential to launch any game type as long as
the game mode is its own LibGDX screen. The only adjustment necessary for the
application to launch any newly created game mode would be to create a means
for the teacher to input the data which is to be gamified, and thereafter create a
collection for the new game mode within the database and allow the new datatype
to be passed from application to game similarly to solution already present in the
quiz game mode system. This aspect of the application was therefore developed
in accordance with non-functional requirement 2: modularity, defined under Sec-
tion 5.1.2

9.4.2 Decisions Surrounding the Data

The architecture for the classroom and module system within the application lay-
out relies heavily on the RecyclerView functionality present within the Android
API. It was chosen due to its performance- and battery efficiency when handling a
potentially endless amount of frequently updated items in a list, while also being
flexible in design opportunities [25]. In addition, this feature is compatible with
the chosen system of storage as the RecyclerViews are filled with data real-time
from the external database upon accessing the relevant fragments. This direct
database solution was favoured as there would not be of any need for any per-
sistent local SQLite storage unless the app was designed to be available for offline
play, in which case the hit to application performance, though minor, would out-
weigh the minuscule network requirements from keeping viewed data synchron-
ised with external database. As such, the requirements to run the application are
more geared towards requiring stable connection rather than on the user’s device.

54 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

9.4.3 Classrooms and Modules

The RecyclerViews were nested within each other by having list elements redir-
ect the user to a new relevant fragment on click. The new fragment would then
contain specific information to the particular item, and if that information happen
to be a list it would be displayed again as a RecyclerView, which might also have
the possibility to be clicked. The relevant RecyclerViews are for classrooms, an-
nouncements, modules and games. Each user has their own classroom list present
in their UI. Upon clicking the classroom, the navigation system redirects them to
the classroom fragment which is then filled real-time with classroom data from the
database. The classrooms have a top menu for announcements, modules, and par-
ticipant list showing all students. The announcement page is set to be the default
start screen of the classroom and loads a RecyclerView with an array of announce-
ment strings from the database. It allows for teachers to add new announcements
through a standard text input field and publish button, which is not present for
the students participating. Functionality which was intended to only be access-
ible for teachers are all registered as UI elements in the layout XML file that are
only shown if the user viewing the fragment is a teacher. This assumes that all
teachers participating in the classrooms should all have administrator rights for
said classroom. Students can join any classroom by pressing the join button and
writing the ID of the class, if it exists in the database, it is added to their list. As
such functional requirement 4 as defined in Section 5.1.1 is fulfilled.

9.4.4 Modules and Games

The module tab within the classroom fragment contains a RecyclerView with a list
for the modules, a button to create a new module, and one for importing an ex-
isting module. Modules are as previously mentioned a collection of topic specific
games and the responsibility for creating or importing them falls on the teacher.
Upon creating a module, it is added to the module array within the classroom
document in the database classroom collection, while a new empty module doc-
ument is created within the database module collection. The list of module ids
within the classroom document allows the application to query the database for
those specific module documents from the “modules” collection within the data-
base, whose data it then uses to fill the RecyclerView with modules. Importing an
existing module adds the module id to the module list in classroom document sim-
ilarly to what happens when adding a new module, as it only needs to reference
an already existing module document.

When clicking one of the modules in the module RecyclerView, the user is
redirected to the fragment for specific module, where the module id is used to
fetch relevant module data from the database. The module consists of a Recycler-
View for the games, and input fields for the teacher to create or import a new
game. The option for creating a game leads the user to a new fragment for filling
the necessary data for creating the game, while importing lets user reference an
existing game id within the database. Upon creating or importing, the game id is

Chapter 9: System Implementation 55

added to the database module document array responsible for storing the relevant
games. The RecyclerView within the specific module is then updated to contain the
games registered in the database. When the game in said RecyclerView is clicked,
the game engine is launched, and the specific game type is started and loaded
with relevant data which was written to file on click. The teachers ability to con-
figure the games was the main functionality fulfilling the functional requirement
of giving teacher creative freedom in displaying their curricula described in Sec-
tion 5.1.1, as well as the fourth non-functional requirement of being pedagogically
viable described in Section 5.1.2.

Games could also be launched directly from within the open world game by
interacting with the teacher, specifics for this functionality can be found it Sec-
tion 9.1.3. However the functionality allowing teachers to decide which mini
games are accessible for students within the open world is located in the classroom
system. Teachers can press the "World" button in the ClassroomModuleFragment
to access the WorldEditFragment, containing an "Add" button and a RecyclerView.
Upon pressing the "Add" button, teacher is prompted to input the ID of a mini
game, if it exists its added to the classroom documents "quizes" array within the
database and displayed in the RecyclerView. Thereafter students of the class can
open the particular mini games in the RecyclerView by interacting with the teacher
of the classroom in the open world game and selecting it. Launching the mini
games from within the open world is possible because all of the mini games the
teacher made available in open world are written to file in local storage and named
in the format of "gameName-TeacherName". The locally stored files are updated
whenever the user enters their profile fragment.

The third functional requirement of having the service be editable, as seen
in Section 5.1.1, was achieved as every module and game can be deleted from
their respective list. If entire modules were deemed unfitting for the classroom,
the course coordinator could press the delete icon on the RecyclerView entry to
remove the reference to the module in the database. Similarly individual mini
games could be removed from modules or from the list of mini games available
in open world in the same manner. Removed modules and mini games continue
to exist within the database as the delete functionality only de-references their id
within the array of IDs, as such if course coordinator wants to re-add them later,
they can simply be imported again. The delete button is only available for users
with teacher rights.

56 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure 9.16: System sequence diagram of launching a specific mini game from
the application classroom/module system

Chapter 10

Quality Assurance and Testing

10.1 Quality Assurance

For the quality assurance for the application, the team decided on not having a
single test phase. But instead having continuous individual testing on every git-
push that was made, to any branch. This is in accordance with the scrum devel-
opment model, as each individual developer has a constant responsibility for the
quality of the product [26]. Test routines were set up, and updated as the ap-
plication was developed to ensure that no pushes broke or invalidated any of the
previous work. Every person who made a push had to go through all test points,
and only if every aspect of the application were still running as intended, a merge
request could be made to merge branches into main.

For pushing new or changed functionality into the repository it was the indi-
vidual developer’s main responsibility to check that the push would not conflict
with any existing systems, but since this could be a rather large job for one person
alone, multiple developers would check that the push did not break any of the
systems they had the responsibility for. See the table: 4.2.

When a branch was to be merged into main, at least two members of the
team needed to be present during the merging and follow the agreed upon testing
routine. As responsibility for different sections of the product was split between
the developers, the team members attending were dependent on which of the
application’s areas were affected. This was necessary to ensure that relevant parts
of the system were tested before the merge.

Quality assurance during development was also an important aspect of the
process, implementing proper error handling became key in detecting and nar-
rowing down possible issues in the system. This was done using both user feed-
back in the form of toasts, and developer feedback by using the separate logging
functionalities the android API and LibGDX/LibKTX.

57

58 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

10.2 User Testing

There were four test phases planned for the application. The first one at the end
of sprint one, with the alpha prototype. This was to get feedback on the initial
design and what direction the design should take from there.

The second test was planned at the end of sprint two. There the testers were
supposed to test a more interactable version of the application, to see and give
feedback on how the application behaved and felt while navigating through the
different sections.

The third planned test was meant to take place in the early stages of sprint
four. At this stage a Beta version of the application was to be presented to the
testers, still with no game functionality, but with most of the applications func-
tionality and design in place. The users were going to test the full experience using
the application, from registering and logging in, to navigating through, opening
classrooms and modules, checking out their profiles and all the way up to the
point of starting a mini game. The feedback was supposed to help finalize the
Beta version.

The fourth and final planned test phase revolved around the gameplay as-
pects of the application. The phase was meant to gather teacher feedback on their
experience of managing classrooms and the configuration of games within it, as
well as questioning students using the application regarding what could be done
to improve the gameplay aspect and make it more entertaining and rewarding.

Unfortunately, there ended up being no actual user testing for the application.
There were several reasons for this, the main one being the situation around the
pandemic. The campus and schools were mostly closed, so this made the testing
process extremely difficult, the potential time and work invested to make it work
were deemed not to be worth it. The development of the game engine itself for
the application took more time than expected. It was planned a concrete phase
for the testing, but since the engine development prolonged the development for
the application and the mini games it was continuously delayed.

Feedback was given from the clients and the study supervisor through the
whole process, so they were the closest thing to a testing audience. They were
kept updated through the Alpha and Beta stages, and provided some feedback and
advice, but of course not as much as would have been gathered from actual user
testing. The fact that no opportunity for testing opened up was quite a set-back.
All potential feedback on the application from students and teachers were lost.
The feedback would have been immensely helpful in finalizing the applications
design, and center it around the user’s needs and demands. The lost potential to
find bugs and missing functionality that the team itself would not have been able
to pick up on, is also something that might end up having an effect on the finalized
product. In the end, the lack of proper testing became an obstacle which impeded
progress and stunted the finalized version of the app.

Chapter 11

Installation

11.1 Requirements

To be able to run the application an Android phone or emulator with at least
Android 8.0 and a network connection is required.

11.2 How to Run with Android Studio and Emulator on
a PC

1. Install Android Studio on the PC, select the repository location and open
the project.

2. Let all the Gradle files finish synchronizing before doing anything else. On
the initial set up this will most likely take some time to complete.

3. Make sure there is an emulator installed with at least Android 8.0.
4. Before the application can be run make sure the right launch option is se-

lected. The right one should be the one called just “android”. The options
called "Android Launcher" or "Lwjgl3LauncherKit" will not work. Your emu-
lator with the right Android version also needs to be selected. It should look
like the picture below.

Figure 11.1: How the launcher options should look before running the applica-
tion in Android Studio

5. The application is now ready to run and use.
6. An existing user can be used to test the application with the email:

"student9@test.com" and password: "123456".
Or email: "teacher1@test.com" and password: "123456"

59

60 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

7. Note! When using the application it is important to visit the user profile.
Why this has to happen is discussed in Section 13.2.

11.3 How to Run on Phone with APK File

1. APK file needs to be downloaded or transferred onto the phone. The APK
file is located inside the repository with the folder path:
"gamePrototype01\android\release", if unforeseen problems arise in the re-
lease version of the application try using the debug release of the APK in-
stead located in the folder path:
"gamePrototype01\android\debug"

2. In the phone settings permissions to install applications from unknown sources
need to be granted.

3. Once permissions have been granted the APK file needs to be found in the
phone’s file explorer. Once found just tap the file to install.

4. There might be more permissions or access you need to grant the application
for it to install properly. These will most likely show up as pop-ups when
installing.

5. Once installed the application is ready to use (For a couple of the phones
that were used to test this, it would not work while connected to WiFi, so if
there is no reaction while trying to log in or create a new user try switching
from WiFi to mobile network).

6. An existing user can be used to test the application with the email:
"student9@test.com" and password: "123456".
Or email: "teacher1@test.com" and password: "123456"

7. Note! When using the application it is important to visit the user profile.
Why this has to happen is discussed in Section 13.2.

Chapter 12

Result

The goals of the application were to develop an application that would make it
much easier for teachers to teach any new curriculum to the students. It would
give them an opportunity to create interactive ways to learn, using classroom
modules and mini games. The teachers needed to be able to use any teaching
material they would want to create mini games. The classroom modules in the
application needed to be highly modifiable for the teachers so that it would be
easy to create new ones, and it should be possible to share modules with other
teachers so they can use mini games created by others.

All of these goals were met to some extent for the application that was de-
veloped. Any teacher can create a classroom, and inside the classrooms they can
create new modules. The classroom acts like most classrooms on any teaching
application where the teacher can post announcements and information about
the course, see Figure 12.1. Where the application stands out from other learning
platforms is the module system, see Figure 12.2 and Figure 12.3. The teacher can
input any appropriate teaching material and use it to create a mini game. The
mini game that was developed for the application was a quiz game, with a sep-
arate open world for the student to navigate. The player spawns into the open
world, and there they can see the available teachers, see Figure 12.4. The player
can walk over to a teacher to start a quiz the teacher has created, see Figure 12.5.
The player then needs to navigate around the world to answer the quiz, see Fig-
ure 12.6. The way the application is interacting with the mini game makes it easy
to pass the same teaching material into another mini game if it is created further
down the line.

61

62 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure 12.1: Screenshot from app -
this is the list of announcements in-
side a classroom. Accessed once a
classroom has been picked

Figure 12.2: Screenshot from app 2
- Inside a module is a list of quizzes
which the user may access

Chapter 12: Result 63

Figure 12.3: Screenshot from app 3
- Inside the classroom, where a list of
modules is displayed. The user may
click to access a module

Figure 12.4: Screenshot from game
- In the open world game, a student’s
teachers may be found and interac-
ted with

64 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure 12.5: Screenshot from game
- After interacting with the teacher,
the student may select a quiz to do

Figure 12.6: Screenshot from game
- The quiz in action inside the game
world

Chapter 13

Discussion

13.1 Evaluation

The finished product distinguishes itself from applications of similar purposes,
for example Quizlet [27], by basing the gamification on a heavily graphical user
experience in which they control a character representing themselves to interact
with the world. It seeks to utilise this increased graphical feedback and intractab-
ility to further involve the students in the content presented to them. The open
world game option has been designed to provide a digital environment where
students can explore a world with teachers as quest givers, it is inspired by retro
2D roleplaying games and will be the passive and relaxed method for students
to learn while having fun. For cramming, and increasing knowledge on specific
topics, the application UI module system provides the same gamification from a
more systematic interface. The application UI will allow students to play the same
minigames available in the open world game, and potentially more, by accessing
them directly within modules inside the classroom. Traditionally, gamification of
learning experience follows minimalistic design principles, such as quizzes with
black text on white backgrounds and clickable buttons for answers, or plain flash-
cards. This solution breaks that tradition in its attempt to make the gamification
immersive, while still maintaining similar levels of customizability for teachers. All
this while ease of scaling the service up and limitless creative freedom for further
development.

13.2 What Could Have Been Done Differently?

13.2.1 User Testing

The lack of user testing became inevitable during the development of this applic-
ation due to the situation around the pandemic as previously mentioned in Sec-
tion 10.2. Nevertheless, it was a setback as potential valuable feedback from the
public could not be acquired which would undoubtedly have been useful to gain
insight in the practical uses of the application. The feedback would have helped

65

66 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

with designing the app around the user experience instead of our own, and pos-
sibly point out issues or concerns some users might have with the application, so
the finalized product could be as good as possible.

13.2.2 Database

There are some problems with the database that, while it did not impact develop-
ment, makes it seem unfinished. The main issue being how it is not asynchronous.
This, however, is no fault of the database itself, rather when the app sends and re-
trieves information to/from it. Instead of asynchronously getting the data needed
at the time it is actually needed, it is all read as you log into the application, see
Section 9.2.1 for more details on how it was implemented. From there it is put
into a user object from which anyone can retrieve data about a user at any time.
When a user logs in they have to visit the user profile for the quizzes and teachers
to be read from the database, so that the lists used for the open world game can
be generated. The original plan was to have all database functionality in a separ-
ate database class or object, and keep that functionality away from the fragments.
This did not work because the fragments needed to inherit from the Fragment
class, and therefore could not inherit the suspended functionality needed to run
asynchronous functions. More error handling when getting data should be added
to ensure no object are retrieved as null.

13.2.3 Workload

Initially, the project looked manageable at the start, but once the basis of the pro-
ject were made, we quickly realized how much work was needed to get the main
classes and functions working as specified. Due to the lack of proper documenta-
tion of Kotlin with e.g Firebase, a lot of time was put into research and we were
left with less time than planned once the main classes and functions were added
to the application. Simple bug fixing usually ended up with taking more time than
expected. Other aspects of Android Studio did make some of our work more tedi-
ous than it should have been. Any work involving navigation would at times make
Android Studio run at one frame per minute or crash program entirely due to the
navigation file consuming too much memory.

13.2.4 Kotlin

Despite being a coding language made for mobile application, there was a lack
of documentation for the use of Kotlin with specific components. Code examples
in Java existed and converting the Java code to Kotlin took time. There is an
automatic Java to Kotlin converter built in to Android Studio, but this would more
often than not convert the code incorrectly so it was faster to manually convert
the code to Kotlin. Since only one group member knew how to write Java, the
rest of us were in theory learning a second programming language while we were
expanding our knowledge with Kotlin. In reflection of this we could probably have

Chapter 13: Discussion 67

achieved more with the application if we wrote it in C++ with Unreal Engine
4. That being said, this project has been a huge learning experience for all of
the involved group members, and we all value this learning experience as it has
expanded our knowledge and made us better developers. With the knowledge we
now have we could make a similar application in Kotlin with LibKTX in a much
shorter time span.

13.3 Further Work

Continuation of this bachelor project is definitively possible with how the game
engine is set up. The code would have to receive minor changes to the internal
pathing so the system paths would work correctly on other devices than Android,
since LibGDX uses different methods for system paths between the devices it sup-
ports. The main application would need to be ported if it is to work with e.g.
iOS (Apple devices) to the Swift programming language. The database functions
should get asynchronous coroutines, this would greatly increase the application’s
data flow, because as of writing this, the user has to manually visit the different
fragments so the database functions are called to synchronize the data between
the device and database. The collision system needs a little bit of a tune up be-
cause if a player is persistent enough they can go through objects with a collision
box, a "handy" feature for speedrunners, but it is something that should be fixed.
Audio should be added further to the game as it adds a new "dimension" to game
and it would make it more engaging for the players, currently there is only one
audio feedback which activates once a mini game is completed. An animation
system should be added to the game to animate the sprites e.g. when a player
moves in game his/her avatar’s feet should move with a walking animation. Po-
tentially a new system should be created to help improve performance on older
and weaker devices to dynamically add and remove entities as they go in and out
of the screen boundaries. More game modes should be created to help increase
the variety games the player can choose between and play. Regular new game
mode additions is something that would help keep the playerbase of the applic-
ation continuously interested as new content is refreshing and "new". The game
engine architecture is designed to be modular so new game modes can easily be
added. General bugfixes throughout the program is also something that should be
done.

13.4 The Group Work

Mentioned in Section 4.4, distribution of work was divided among us and priorit-
ized in regards to an individual’s skill set. This was never meant to be a "hard" rule
and was never used as that either. All members of the group have been working
on all aspects of the program to some extent. A person was given a main respons-
ibility of a system and had to keep track of how that system developed throughout

68 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

the development process e.g. status updates. Did they need any help to get cer-
tain functionality working, what did other team members need to do to integrate
their system with that system, etc. This approach worked out well, it allowed us to
mix up our daily programming task so the development process did not become
tedious and boring. It also allowed for different approaches to programming prob-
lems others had not thought about, which helped increase the final quality of the
implemented program code.

Communication was done through Discord and Zoom due to the COVID-19
pandemic mentioned in Section 8.1. Communicating digitally worked out well;
we were able to distribute work amongst ourselves and give updates on our work-
load. Discord made it easier to contact group members to work with and request
assistance with problems that required more than one person to solve such as
merging or combining the work of two to finish a function. To the group, this be-
came a daily routine of checking to-do lists, notifying group members or simply
establish work times. This daily routine served to ensure progress was made every-
day and kept each other updated on how far other aspects of development were
progressing, mentioned in Section 8.2.

Chapter 14

Conclusion

The plan for the project was to create an easily scalable application in which any
form of curricula could be adapted into a graphical game, allowing teachers to
gamify any content which students can access through an application UI, or a
game UI. The requirements were all fulfilled to some extent, and the application is
capable of portraying the intended user experience for teachers and students. The
game engine and application achieved the goal of being developed with scalabil-
ity as the primary focus, as further extending the service with new game modes
will require minimal work due to the modularity of the engine. The cost of this
was the limited presented end result which, although minimal, shows that adding
new game modes is easily done by creating it as a new LibGDX screen. The scalab-
ility is also possible due to the entity component system, as adding entirely new
functionality can be done through adding a new component with a system that
executes for all entities with said new component. This also means that adding
new functionality to existing systems can also be done easily by editing the sys-
tems themselves to update specific entities in a particular way if right conditions
are met. This can be seen in the intractable system where the logic for both collid-
ing with teacher and colliding with walls is implemented. The drawbacks of using
LibGDX/LibKTX for the custom game engine is the learning curve for the libraries,
which made the time investment for developing the engine greater than expec-
ted. As a result, more features of the service were put on hold as more people
participated on the development of game engine, stifling productivity on other
aspects of the application. The benefit of this however is the ability to optimize
for performance and increased accessibility for all devices by avoiding the clut-
ter which might follow when using commercial game engines. LibGDX/LibKTX
provided everything necessary to develop the application, the only limitation is
time. With the way things were developed, the time consumption of further de-
veloping all aspects of the game experience was shortened significantly, and the
final product achieved the level of versatility wanted.

69

Bibliography

[1] LibGDX, Libgdx, Last visited 22.04.21. [Online]. Available: https://libgdx.
com/.

[2] LibKTX, Libktx, Last visited 22.04.21. [Online]. Available: https://github.
com/libktx/ktx.

[3] LibGDX, Libgdx ashley, Last visited 22.04.21. [Online]. Available: https:
//github.com/libktx/ktx.

[4] Quillraven, Youtube channel, Last visited 19.04.21, 2020. [Online]. Avail-
able: https://www.youtube.com/channel/UCe02AjMmzRwrChKaQ7mkv8g.

[5] D. S. Marquez and A. C. Sanchez, Libgdx Cross-platform Game Development
Cookbook. 2014, Last visited 19.04.21. [Online]. Available: https://www.
amazon.com/Libgdx-Cross-platform-Game-Development-Cookbook/dp/
1783287292.

[6] LibGDX, Api documentation: Class pooledengine, Last visited 22.04.21. [On-
line]. Available: https://libgdx.badlogicgames.com/ci/ashley/docs/
com/badlogic/ashley/core/PooledEngine.html.

[7] J. McMullin, ‘Using design games,’ 2007, Last visited 09.05.21. [Online].
Available: https://boxesandarrows.com/using-design-games/.

[8] M. Dailly, Grand Theft Auto Game Design Document. 1995, Last visited 09.05.21.
[Online]. Available: https://www.gamedevs.org/uploads/grand-theft-
auto.pdf.

[9] JetBrains, Last visited 22.04.21. [Online]. Available: https://kotlinlang.
org/docs/faq.html#what-companies-are-using-kotlin.

[10] Android studio, Last visited 22.04.21. [Online]. Available: https://developer.
android.com/studio.

[11] Gimp, Last visited 09.05.21. [Online]. Available: https://www.gimp.org/.

[12] Aseprite, Last visited 10.05.21. [Online]. Available: https://www.aseprite.
org/.

[13] Adobe xd, Last visited 22.04.21. [Online]. Available: https://www.adobe.
com/no/products/xd.html.

[14] T. Ettinger, Gdx-liftoff, Last visited 22.04.21. [Online]. Available: https:
//github.com/tommyettinger/gdx-liftoff.

70

https://libgdx.com/
https://libgdx.com/
https://github.com/libktx/ktx
https://github.com/libktx/ktx
https://github.com/libktx/ktx
https://github.com/libktx/ktx
https://www.youtube.com/channel/UCe02AjMmzRwrChKaQ7mkv8g
https://www.amazon.com/Libgdx-Cross-platform-Game-Development-Cookbook/dp/1783287292
https://www.amazon.com/Libgdx-Cross-platform-Game-Development-Cookbook/dp/1783287292
https://www.amazon.com/Libgdx-Cross-platform-Game-Development-Cookbook/dp/1783287292
https://libgdx.badlogicgames.com/ci/ashley/docs/com/badlogic/ashley/core/PooledEngine.html
https://libgdx.badlogicgames.com/ci/ashley/docs/com/badlogic/ashley/core/PooledEngine.html
https://boxesandarrows.com/using-design-games/
https://www.gamedevs.org/uploads/grand-theft-auto.pdf
https://www.gamedevs.org/uploads/grand-theft-auto.pdf
https://kotlinlang.org/docs/faq.html#what-companies-are-using-kotlin
https://kotlinlang.org/docs/faq.html#what-companies-are-using-kotlin
https://developer.android.com/studio
https://developer.android.com/studio
https://www.gimp.org/
https://www.aseprite.org/
https://www.aseprite.org/
https://www.adobe.com/no/products/xd.html
https://www.adobe.com/no/products/xd.html
https://github.com/tommyettinger/gdx-liftoff
https://github.com/tommyettinger/gdx-liftoff

Bibliography 71

[15] Git, Last visited 22.04.21. [Online]. Available: https://git-scm.com/.

[16] Git-bash, Last visited 22.04.21. [Online]. Available: https://gitforwindows.
org/.

[17] Github, Last visited 22.04.21. [Online]. Available: https://github.com/.

[18] Trello, Last visited 22.04.21. [Online]. Available: https://trello.com/.

[19] Discord, Last visited 22.04.21. [Online]. Available: https://discord.com/.

[20] Zoom, Last visited 22.04.21. [Online]. Available: https://zoom.us/.

[21] Microsoft whiteboard, Last visited 13.05.21. [Online]. Available: https://
zoom.us/.

[22] J. Sutherland, Scrum Handbook. 2010, Last visited 22.04.21. [Online]. Avail-
able: https://www.researchgate.net/publication/301685699_Jeff_
Sutherland%27s_Scrum_Handbook.

[23] Rubber duck debugging, Last visited 13.05.21. [Online]. Available: https:
//rubberduckdebugging.com/.

[24] Kotlin coroutines on android, Last visited 29.04.21. [Online]. Available:
https://developer.android.com/kotlin/coroutines?gclid=Cj0KCQ%
5Cnewline%20jwp86EBhD7A%20RIsAFkgakiJI8gqeUk6FxiT8%5Cnewline%
20AhfceUp_4xdt84BtDmFZ7tJaptwaDDO4M65bQMaAqN3EALw_wcB&gclsrc=
aw.ds.

[25] Create dynamic lists with recyclerview, Last visited 05.05.21. [Online]. Avail-
able: https://developer.android.com/guide/topics/ui/layout/
recyclerview.

[26] D. Pereira, ‘How does qa fit with scrum?,’ 2020, Last visited 09.05.21. [On-
line]. Available: https://medium.com/serious-scrum/how-does-qa-
fit-with-scrum-4a92f86bec5b.

[27] Quizlet, Last visited 19.05.21. [Online]. Available: https://quizlet.com/.

https://git-scm.com/
https://gitforwindows.org/
https://gitforwindows.org/
https://github.com/
https://trello.com/
https://discord.com/
https://zoom.us/
https://zoom.us/
https://zoom.us/
https://www.researchgate.net/publication/301685699_Jeff_Sutherland%27s_Scrum_Handbook
https://www.researchgate.net/publication/301685699_Jeff_Sutherland%27s_Scrum_Handbook
https://rubberduckdebugging.com/
https://rubberduckdebugging.com/
https://developer.android.com/kotlin/coroutines?gclid=Cj0KCQ%5Cnewline%20jwp86EBhD7A%20RIsAFkgakiJI8gqeUk6FxiT8%5Cnewline%20AhfceUp_4xdt84BtDmFZ7tJaptwaDDO4M65bQMaAqN3EALw_wcB&gclsrc=aw.ds
https://developer.android.com/kotlin/coroutines?gclid=Cj0KCQ%5Cnewline%20jwp86EBhD7A%20RIsAFkgakiJI8gqeUk6FxiT8%5Cnewline%20AhfceUp_4xdt84BtDmFZ7tJaptwaDDO4M65bQMaAqN3EALw_wcB&gclsrc=aw.ds
https://developer.android.com/kotlin/coroutines?gclid=Cj0KCQ%5Cnewline%20jwp86EBhD7A%20RIsAFkgakiJI8gqeUk6FxiT8%5Cnewline%20AhfceUp_4xdt84BtDmFZ7tJaptwaDDO4M65bQMaAqN3EALw_wcB&gclsrc=aw.ds
https://developer.android.com/kotlin/coroutines?gclid=Cj0KCQ%5Cnewline%20jwp86EBhD7A%20RIsAFkgakiJI8gqeUk6FxiT8%5Cnewline%20AhfceUp_4xdt84BtDmFZ7tJaptwaDDO4M65bQMaAqN3EALw_wcB&gclsrc=aw.ds
https://developer.android.com/guide/topics/ui/layout/recyclerview
https://developer.android.com/guide/topics/ui/layout/recyclerview
https://medium.com/serious-scrum/how-does-qa-fit-with-scrum-4a92f86bec5b
https://medium.com/serious-scrum/how-does-qa-fit-with-scrum-4a92f86bec5b
https://quizlet.com/

Appendix A

Additional Material

72

Chapter A: Additional Material 73

A.0.1 Project Agreement

 1 av 3

Norges teknisk-naturvitenskapelige universitet

Vår dato

Vår referanse

Prosjektavtale

mellom NTNU Fakultet for informasjonsteknologi og elektroteknikk (IE) på Gjøvik (utdanningsinstitusjon), og

__

___ (oppdragsgiver), og

__

__

___ (student(er))

Avtalen angir avtalepartenes plikter vedrørende gjennomføring av prosjektet og rettigheter til anvendelse av de
resultater som prosjektet frembringer:

1. Studenten(e) skal gjennomføre prosjektet i perioden fra ____________ til______________ .

Studentene skal i denne perioden følge en oppsatt fremdriftsplan der NTNU IE på Gjøvik yter veiledning.
Oppdragsgiver yter avtalt prosjektbistand til fastsatte tider. Oppdragsgiver stiller til rådighet kunnskap og
materiale som er nødvendig for å få gjennomført prosjektet. Det forutsettes at de gitte problemstillinger det
arbeides med er aktuelle og på et nivå tilpasset studentenes faglige kunnskaper. Oppdragsgiver plikter på
forespørsel fra NTNU å gi en vurdering av prosjektet vederlagsfritt.

2. Kostnadene ved gjennomføringen av prosjektet dekkes på følgende måte:

• Oppdragsgiver dekker selv gjennomføring av prosjektet når det gjelder f.eks. materiell, telefon, reiser
og nødvendig overnatting på steder langt fra NTNU i Gjøvik. Studentene dekker utgifter for
ferdigstillelse av prosjektmateriell.

• Eiendomsretten til eventuell prototyp tilfaller den som har betalt komponenter og materiell mv. som
er brukt til prototypen. Dersom det er nødvendig med større og/eller spesielle investeringer for å få
gjennomført prosjektet, må det gjøres en egen avtale mellom partene om eventuell
kostnadsfordeling og eiendomsrett.

3. NTNU IE på Gjøvik står ikke som garantist for at det oppdragsgiver har bestilt fungerer etter hensikten, ei heller
at prosjektet blir fullført. Prosjektet må anses som en eksamensrelatert oppgave som blir bedømt av intern og
ekstern sensor. Likevel er det en forpliktelse for utøverne av prosjektet å fullføre dette til avtalte
spesifikasjoner, funksjonsnivå og tider.

Andreas Blakli, Vegard Opktivtne Årnes, Theo Camille Gascogne, Jesper Ulsrud

NTNU Fakultet for informasjonsteknologi og elektroteknikk(IE) på Gjøvik

20.05.202111.01.2021

Norges teknisk-naturvitenskapelige universitet

Fakultet for informasjonsteknologi og elektroteknikk

2

4. Alle beståtte bacheloroppgaver som ikke er klausulert og hvor forfatteren(e) har gitt sitt samtykke til

publisering, kan gjøres tilgjengelig via NTNUs institusjonelle arkiv NTNU Open.

Tilgjengeliggjøring i det åpne arkivet forutsetter avtale om delvis overdragelse av opphavsrett, se «avtale om
publisering» (jfr Lov om opphavsrett). Oppdragsgiver og veileder godtar slik offentliggjøring når de signerer denne
prosjektavtalen, og må evt. gi skriftlig melding til studenter og instituttleder/fagenhetsleder om de i løpet av
prosjektet endrer syn på slik offentliggjøring.

Den totale besvarelsen med tegninger, modeller og apparatur så vel som programlisting, kildekode mv. som inngår
som del av eller vedlegg til besvarelsen, kan vederlagsfritt benyttes til undervisnings- og forskningsformål.
Besvarelsen, eller vedlegg til den, må ikke nyttes av NTNU til andre formål, og ikke overlates til utenforstående uten
etter avtale med de øvrige parter i denne avtalen. Dette gjelder også firmaer hvor ansatte ved NTNU og/eller
studenter har interesser.

5. Besvarelsens spesifikasjoner og resultat kan anvendes i oppdragsgivers egen virksomhet. Gjør studenten(e) i sin

besvarelse, eller under arbeidet med den, en patentbar oppfinnelse, gjelder i forholdet mellom oppdragsgiver
og student(er) bestemmelsene i Lov om retten til oppfinnelser av 17. april 1970, §§ 4-10.

6. Ut over den offentliggjøring som er nevnt i punkt 4 har studenten(e) ikke rett til å publisere sin besvarelse, det
være seg helt eller delvis eller som del i annet arbeide, uten samtykke fra oppdragsgiver. Tilsvarende samtykke
må foreligge i forholdet mellom student(er) og faglærer/veileder for det materialet som faglærer/veileder
stiller til disposisjon.

7. Studenten(e) leverer oppgavebesvarelsen med vedlegg (pdf) i NTNUs elektroniske eksamenssystem. I tillegg
leveres ett eksemplar til oppdragsgiver.

8. Denne avtalen utferdiges med ett eksemplar til hver av partene. På vegne av NTNU, IE er det
instituttleder/faggruppeleder som godkjenner avtalen.

9. I det enkelte tilfelle kan det inngås egen avtale mellom oppdragsgiver, student(er) og NTNU som regulerer
nærmere forhold vedrørende bl.a. eiendomsrett, videre bruk, konfidensialitet, kostnadsdekning og økonomisk
utnyttelse av resultatene. Dersom oppdragsgiver og student(er) ønsker en videre eller ny avtale med
oppdragsgiver, skjer dette uten NTNU som partner.

10. Når NTNU også opptrer som oppdragsgiver, trer NTNU inn i kontrakten både som utdanningsinstitusjon og som
oppdragsgiver.

11. Eventuell uenighet vedrørende forståelse av denne avtale løses ved forhandlinger avtalepartene imellom.
Dersom det ikke oppnås enighet, er partene enige om at tvisten løses av voldgift, etter bestemmelsene i
tvistemålsloven av 13.8.1915 nr. 6, kapittel 32.

Norges teknisk-naturvitenskapelige universitet

Fakultet for informasjonsteknologi og elektroteknikk

3

12. Deltakende personer ved prosjektgjennomføringen:

NTNUs veileder (navn): __

Oppdragsgivers kontaktperson (navn): ___

Student(er) (signatur): ___ dato ____________

 ___ dato ____________

 ___ dato ____________

 ___ dato ____________

Oppdragsgiver (signatur): ___ dato ____________

Signert avtale leveres digitalt i Blackboard, rom for bacheloroppgaven.

Godkjennes digitalt av instituttleder/faggruppeleder.

Om papirversjon med signatur er ønskelig, må papirversjon leveres til instituttet i tillegg.

Plass for evt sign:

Instituttleder/faggruppeleder (signatur): ____________________________________ dato ____________

Mariusz Nowostawski

Espen Torseth

18.01.2021

18.01.2021

18.01.2021

18.01.2021

18.01.2021

Chapter A: Additional Material 77

A.0.2 Project Plan

Project Plan

Andreas Blakli Vegard Opkvitne Årnes
Theo Camille Gascogne Jesper Ulsrud

31.01.21

Contents
1 Aims and Borders 2

1.1 Background . 2
1.2 Project aims . 2
1.3 Borders . 2

1.3.1 Requirements . 2

2 Scope of development 2
2.1 Subject area . 2
2.2 Delimitation . 3
2.3 Task description . 3

3 Project organisation 3
3.1 Responsibilities and roles . 3
3.2 Routines and group rules . 3

4 Planning, Follow-up and reporting 4
4.1 Division of project . 4
4.2 Plan for status meetings and decision points in the period 4

5 Organisation of quality assurance 5
5.1 Documentation, standard use and source code 5
5.2 Configuration control . 5
5.3 Risk analysis (identify, analyze, measures, follow-up) (Technolog-

ical, Business-wise, Project group-wise) 5

6 Plan for implementation 7
6.1 Activities (Work Breakdown Structure), milestones and decision

points . 7
6.2 Gantt-schema . 7

1

1 Aims and Borders

1.1 Background
The projects goal is to make an app for phones, tablets and web browsers which
is a gamification of the digital security curriculum for Norwegian students from
primary school, junior high school and high school.

1.2 Project aims
The project aims to make the teaching process for students fun, interactive and
to give the students a high learning outcome and a sense of accomplishment
when solving a task. The app also seeks to create a better tool for teachers to
use in their workday, so their workflow becomes more efficient, and help them
offload some of their daily workload.

1.3 Borders
1.3.1 Requirements

Needs to work on phones, tablets and web browsers.
The app must be designed in a way so it scales well with small and big screen
resolutions.
User profile and the option to edit said profile. Provide the student with a
customizable avatar, the avatar will also grow with the student as they age
and go trough the different school levels. The avatar needs to be inclusive and
politically correct.
App must be modular and dynamic to allow for content updates if and when
the digital security curriculum changes.
The game must be engaging for the user and provide a useful learning experience.
The game must work with multiplayer so that a group of students can play
together e.g. co-op, it must also work in a school environment i.e. classroom
and at home.

2 Scope of development

2.1 Subject area
Our main subject area will be developing a mobile application for android de-
vices. We will be developing using kotlin in Android Studio. We aim to use an
OpenGL library for Android Studio to program our 3D games and animations.
We are using Firebase for our database solution, and we also use Firebase for
our user creation, login and authentication functionality.

2

2.2 Delimitation
We will mainly focus on just android development over iOS and web, because
of the size of the scope will become to large if we are to implement support for
all platforms. Developing the application with focus on android support will
make it more manageable, and we might also have to cut down even more on
the scope to have time to make a working product.

2.3 Task description
The task at hand is to create an application that could be used in norwegian
schools to teach about digital security. Utdanningsdirektoratet(UDIR) has come
up with a new curriculum for digital security for all ages(primary school, junior
high school and high school), where digital security will be a part of every other
subject, and therefore not a subject by it self. The goal of the application is
therefore to help the teachers, who more often than not will not be greatly
familiar with the subject of digital security. The application will have the func-
tionality so that the teachers can make games, quizzes etc to help teach about
the subject. The traditional learning applications are often perceived as quite
boring and dull, and do not engage the students enough, and that is why NTNU
IIK wants to make an app that will help make it easier for the teachers and more
relevant, engaging and fun for the students.

3 Project organisation

3.1 Responsibilities and roles
To structure ourselves we have set up a hierarchy where we have one group leader
and one secretary. The group leader responsibilities is to organizes the group
members e.g. when to meet, what to prioritize in the development process,
contact with the stakeholders and scheduling of guidance sessions with said
stakeholders. The secretary’s responsibilities is to make minutes of meetings
with the stakeholders and contact with the stakeholders.
Andreas Blakli is the group leader and Vegard O. Årnes is the group secretary.
As for the general work structure we will mainly do weekly scrums. To organize
the scrum sessions and decide who’s working on the different tasks in the project
we are using Trello.com’s card system. We do not have a super strict setup
where one person only works with one aspect of the system/application, we
have a more "free" approach where people can take which task they want from
the available tasks set up in Trello. When we are scrumming we are all sitting
together in a voice chat application so we can communicate directly and clear
up issues quickly and efficiently.

3.2 Routines and group rules
1. Meet up at the scheduled group sessions.

3

2. If a group member is unable to join said session they must notify the other
group members.

3. Follow deadlines and deliver work on time.

4. If stuck on a problem don’t be afraid to ask for help.

5. If a group member fails to follow the rules that are laid out above, the
group leader will make contact with the troubled member and find out
why things is not working out and try to find a solution for all of the
involved parties. If no solution can be found, the study supervisor will be
contacted and notified of the problem the group is experiencing.

4 Planning, Follow-up and reporting

4.1 Division of project
The software development method used for the project is as mentioned before,
Scrum, though adjusted for a smaller sized group. It was chosen due to its free
nature in that optimising each part of the code, layout element, or functionality
will be a constant task based on feedback from other developers, users, or prod-
uct owners. In addition, the learning curve is relatively steep in the start, and
an agile method takes education of team members more in to account through
development, instead of for other more streamlined methods (i.e. waterfall)
where everyone needs to be fully aware of each step of the development process
early in development.
The development process will follow all main principles of scrum, however as
the Corona pandemic is ongoing during this, some additional steps are taken
for better communication between team members, organisation and discipline.
More weight is put on constant voice communication in work hours, and an
online scrum board is regularly updated to keep track of each others progress.
To hinder unexpected issues during development, merging of branches will also
either happen in pairs, or during group meetings with all present.

4.2 Plan for status meetings and decision points in the
period

Status meetings are held daily since we are all scrumming together in a voice
chat application 5 days a week between 09:00 - 16:00.
Important executive decisions are made on the 25.01.2021 after our meeting with
the stakeholders to get the final specifications for the application. The next
major decision point is when we have the application ready for user testing.
And after that the next major decision point will be with the stakeholders
after we have analyzed the results of the user testing process. Minor decisions
regarding UI elements/layout and program architecture will be made throughout
the system development process.

4

5 Organisation of quality assurance

5.1 Documentation, standard use and source code
Due to how the application is planned to work, trough using customizable mod-
ules made for unique classes by the teacher, the documentation should be a
walkthrough of how modules are set up for the teachers and how to navigate
and get trough the education content in the modules for the students. The
walkthrough should cover every variation of modules that are possible to make.
Alongside documentation for the end-user, a documentation on implementation
should also be made to increase understanding amongst the developers and any
future developers. The documentations should be updated regularly to ensure
the information end users/development acquire from it is not outdated. Things
to consider when making the documentation should be to make it easy to access
the information needed, so an FAQ is needed for the end user. The source code
will be open source in GitHub throughout development until further notice from
product owners. Documentation of source code and the iterative changes made
on it in development will be part of the documentation mentioned above.

5.2 Configuration control
Throughout development, maintaining the application’s integrity is important
to uphold and demonstrate the safety and security of the app, and it is crucial
for our application to be resilient against attempts at tampering with infor-
mation inside the applications or rooms made for students as well as protecting
private information of students and teachers alike. Applying configuration man-
agement does just that. More specifically, configuration management handles
changes systematically so that we may maintain the application’s integrity. Dur-
ing development of the application, the architecture of the application’s system
should be defined so that any changed made to it can be easily tracked and
documented. With the system’s functionality documented, changes to the sys-
tem can then be proposed and approved by the development team. Once the
proposed changes are approved and under development, the relation between
functionalities are to be reported on often so changes can be notified as soon as
possible. Finally once the changes has been implemented, the changes should
undergo testing to see if it has achieved its intended functionality. The changes
made are then to be documented with details on functionality before and after
implementation.

5.3 Risk analysis (identify, analyze, measures, follow-up)
(Technological, Business-wise, Project group-wise)

To make sure the application is secure and resilient to attacks, using the STRIDE
model is a good start to identify threats based on the method of attack and
affected part of the system. STRIDE categorizes such attacks based on:

• Spoofing – Authenticity, gaining access to other user’s accounts.

5

• Tampering – Integrity, illegal modification of data.

• Repudiation – Non-reputability, hiding the authenticity of user actions.

• Information disclosure – Confidentiality, exposure of private and sensitive
data.

• Denial of Service – Availability, denying access to a service.

• Elevation of Privilege – Authorization, gaining a higher level of privilege
illegally

Once threats are identified, an evaluation of the threats are needed to properly
assess those threats. A scoring model is often used for ranking threats in terms of
severity and risk for a project. The DREAD is a scoring model that categorizes
the severity of an attack in how easy it is to execute for example. The threat is
then given a final score based on the five aspects listed below.

• Damage – how damaging would the attack be to a system or project

• Reproducibility – how easy is it to replicate an attack

• Exploitability – how easy is it to launch the attack

• Affected users - how many are affected by the attack

• Discoverability – how easy it is to notice the attack

An example of how scoring threats would work.

Threat D R E A D Total Rating
Brute force password 2 1 3 1 3 10 Medium

After analysing the threats, the focus should be set to restrict the dam-
age done to the system by the attacks. The various methods of mitigating the
threats can also be generally classified in the same way threats are (STRIDE)
but may also vary from project to project. Implementing mitigations and secu-
rity functions should be done alongside the development of the application. In
our case to mitigate spoofing attacks such as brute force password, the use of
authenticators and password encryption would be sufficient.

6

6 Plan for implementation

6.1 Activities (Work Breakdown Structure), milestones
and decision points

As the development process will be following an agile process, the service will be
subject to change throughout the development lifecycle. As such activities for
implementation involve the previously mentioned scrum-board, using “trello”
for keeping track of smaller functionalities that can be developed separately.
Each functionality will be developed in different dedicated sprints but will also
be going through one or more refactoring cycles as product owner feedback,
user feedback and developer feedback will illuminate changes or extensions to
build towards the final product. Milestones will be measured according to this
feedback as well as specific checkpoints related to meeting with product owner
as well as the different iterations of testing done with actual users. Progress is
therefore best seen when both product owner and userbase are satisfied with
the different implementations, which means that we will not need to refactor
or extend previously worked on functionalities more than adjustments related
to other elements (I.E. User interface), they can therefore be considered the
decision points of the project as they influence the next weekly scrums the
most.

6.2 Gantt-schema

7

Figure 1: Gantt-schema for first 6 weeks

8

Figure 2: Gantt-schema for weeks 7-12

9

Figure 3: Gantt-schema for weeks 13-18

Figure 4: Gantt-schema for weeks 19-21

10

88 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

A.0.3 Bachelor Thesis Task

Oppdragsgiver

Oppdragsgiver: NTNU IIK

Kontaktperson Espen Torseth

Adresse: NTNU Gjøvik, A217

Telefon: +47 916 90 629

Epost: espen.torseth@ntnu.no

Gameification av nytt pensum i digital sikkerhet for barne- og ungdomsskole og videregående

Utdanningsdirektoratet (UDIR) har utarbeidet nytt pensum i digital sikkerhet for barneskole (1.-7.

trinn), ungdomsskole (8.-10. trinn) og videregående skole. Digital sikkerhet skal innlemmes i alle

emner, og vil derfor ikke være et selvstendig emne. Dette vil gjøre undervisningen mer utfordrende

for lærere, spesielt med tanke på en helhetlig tilnærming til fagområdet. Digital sikkerhet er også

sjelden kjernekompetansen til lærerne.

NTNU IIK ønsker å støtte opp under lærernes jobb ved å utvikle en app som støtter undervisningen i

digital sikkerhet. Erfaring fra andre tilsvarende apper er at de ofte oppleves som kjedelige, lite

relevante og ikke engasjerer elevene. Dette ønsker vi å endre til en engasjerende app som føles

relevant for både elvene og lærere.

Oppgavene

Vi har ikke utarbeidet en fullstendig kravspesifikasjon ennå, men vi vet allerede at vi vil trenge

komponentene under. Hver komponent er en bacheloroppgave i seg selv:

1) Profileditor

a. Brukere skal ha sin egen profil og avtar og ved behov en midlertidig avatar

b. Avatarer skal vokse med dem gjennom trinnene

c. Avatarer må være inkluderende i sin utforming r

2) Digital assets

a. Primær brukerflate for elever vil være mobil

b. Sekundær brukerflate er tablet eller laptop

c. Alle assets må være designet slik at de fungerer godt på små og store flater

d. Full liste over assets er ikke lagd ennå

3) Innholdseditor

a. Digital sikkerhet er i konstant utvikling så vi må kunne lage nytt og endre innhold

b. Vi ønsker ikke den normale statiske flyten i tilsvarende løsninger

c. Innholdet bør kunne utforskes mer som en quest enn som en presentasjon

4) Spilldesign/scoring

a. Hvordan kan kunnskap og evner i digital sikkerhet gjøres engasjerende?

b. Hvilke spillformater kan fungere for klasserom?

c. Hvilke spillformater kan fungere for gruppearbeid?

d. Hvilke spillformater kan fungere for hjemmearbeid?

90 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

A.0.4 Version History

1

Version History
α - Version

29 Dec. v0 : – Empty project start

27 Jan. v0.3: - Login authentication, core fragments, navigation system.

Bugfixes:

Clean-up, Register user compatible with DB, added DB test functions.

Add viewbinding to DB related fragments and updated navigation functionality

used.

Code clean-up

1 Feb. v0.7: - Settings, Classroom Recyclerview, User Info, DB data retrieval, Teacher/student role.

 Bugfixes:

 Fix Navigation Error & Login Error.

9 Feb. v1.0: - Menu hide/show functionality added, User profile, User Sessions

 Bugfixes:

 Improved settings, can change theme without resetting app.

 Fixed logout button.

β - Version

19 Feb. v1.1: - Main functionality of KTX engine added, Moveable sprite in game, Imported alpha into

game repository, game engine launchable from application UI.

 Quality Assurance:

 Quality assurance of all database functionality in beta repository.

 Code Clean-up

26 Mar. v1.2: - DBobject with all user data, Classroom creation updated and improved, Classroom

now compatible with database, improved user profile, added different student and teacher profiles.

 Bugfix:

 Branch merge errors

 Branch merge errors, fix consistency error making layout change

 depending on screensize.

14 Apr. v1.4: - Game map creation, Screen switching improved, improved entity disposal, Quiz

creation fragment added, Read/Write Quiz to file functionality, Improved game movement,

Implemented intractability & collision detection with objects.

 Quality Assurance/Bugfix:

 Pair programming of game engine

20 Apr. v1.6: - Text rendering functional, Player score HUD displayed, Quiz entities now present on

map, can be answered by colliding with, Other questions loaded upon answering, Quiz Question and

answer positioned dynamically, Communication between game and app established through shared

prefs, Movement improved to be joystick-Like.

 Quality Assurance/Bugfix:

 Pair debugging of game engine

5 May. v1.8: - Quiz creation compatible with DB, Local quiz deletion, Achievement system, Avatar

creation, Open world game created with playable quiz and interactable teachers, Created Avatar now

displayed in-game, Open world compatible with DB, Result screen after completed quiz added,

Classroom/Module/Quiz creation/importing and user interface in application completed, Interact

button added,

2

 Bugfix:

 Scaling issues

 Open World game debugging and clean up.

 Classroom/Module/Quiz creation/import compatible with DB

19 May. v2.0: - Made teacher-only functionality only visible to teachers, home fragment updated to

work as open world launcher, open world teacher and quest entities now dynamically added and

placed, Teacher now decides what specific quizzes are available in open world, Imported quizzes

made by other teachers now functional in open world, Audio feedback added when a quiz is

completed, Teacher can now delete modules and/or their quizzes + delete quizzes from the open

world quiz list, and graphical assets in the game are updated.

 Bugfix:

 Database error handling, not allowing to add non-existent modules/quizzes to be

 imported.

 Profile and settings fragment no longer randomly breaks.

 In-game collision and activation fixes

Chapter A: Additional Material 93

A.0.5 Miscellaneous

Figure A.1: playerEntityBody program code

94 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure A.2: playerEntityHead program code

Figure A.3: UML class InteractableComponent

Chapter A: Additional Material 95

Figure A.4: UML class MovementComponentFig

Figure A.5: UML class OrientationComponent

Figure A.6: UML class PlayerComponent

96 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure A.7: UML class QuizComponent

Figure A.8: UML class QuizQuestComponent

Figure A.9: UML class SpriteComponent

Chapter A: Additional Material 97

Figure A.10: UML class TextComponent

Figure A.11: UML class TransformComponent

Figure A.12: UML class BindEntitiesSystem

98 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure A.13: UML class InteractableSystem

Figure A.14: UML class MovementSystem

Chapter A: Additional Material 99

Figure A.15: UML class PlayerInputSystem

Figure A.16: UML class QuizSystem

Figure A.17: UML class QuizQuestSystem

100 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure A.18: UML class RenderSystem2D

Figure A.19: UML class prot01

Figure A.20: UML class abstractScreen

Chapter A: Additional Material 101

Figure A.21: UML class QuizScreen

Figure A.22: UML class HelperFunctions

102 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure A.23: UML class QuizInfo

Figure A.24: UML class playerControl

Chapter A: Additional Material 103

Figure A.25: Exploded UML class diagram ECS and parent classes

104 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure A.26: Early sprint in Trello

Chapter A: Additional Material 105

Figure A.27: Screenshot from app - The home screen that welcomes a user upon
successful login

106 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure A.28: Screenshot from app - The edit profile fragment, lets the user edit
their avatar. This fragment can be accessed from a profile fragment

Chapter A: Additional Material 107

Figure A.29: Screenshot from app - This fragment can change themes and
light/dark mode. Accessed through navigation bar

108 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure A.30: Screenshot from app - The teacher’s information fragment, accessed
from their profile fragment

Chapter A: Additional Material 109

Figure A.31: Screenshot from app - The teacher’s profile fragment, accessed from
the navigation bar and menu. Other fragments may be accessed from here

110 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure A.32: Screenshot from app - The user information fragment, accessed
from the user profile fragment

Chapter A: Additional Material 111

Figure A.33: Screenshot from app - The user profile accessible from the menu
and navigation bar. The user may access other fragments from here

112 A. Blakli, V. Opkvitne Årnes, T. Gascogne, J. Ulsrud: Gamification of Curricula

Figure A.34: Screenshot from app - The side menu, accessible by swiping to the
right on any fragment

Chapter A: Additional Material 113

Figure A.35: Screenshot from app - The classroom list, accessible from the nav-
igation bar. A user may click one to view it’s content

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

A. Blakli, V. Årnes, T. G
ascogne, J. U

lsrud
G

am
ification of Curricula

Andreas Blakli
Vegard Opkvitne Årnes
Theo Camille Gascogne
Jesper Ulsrud

Gamification of Curricula for Primary,
Lower Secondary, and Upper
Secondary Schools

Bachelor’s project in Programming
Supervisor: Mariusz Nowostawski

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Preface
	Abbreviations and Definitions
	Document Structure
	Introduction
	Group Background and Competence
	Project Audience
	Thesis Audience
	Roles
	Software Development Methodology
	Progress Plan

	System Specification
	Requirements
	Functional Requirements
	Non-Functional Requirements
	Timetable

	Initial Changes from the Project Plan
	User Stories
	Use Cases Teacher
	Use Cases Student
	Use Case Diagram
	Sprint Backlog

	System Architecture Design
	Technologies and Frameworks Used
	Game Engine Architecture Design
	Game Design
	Game Modes
	Database Design
	Define the Objective of the Database
	Locate and Consolidate the Necessary Data

	App-Game Cross Communication

	System Graphical Design
	Game Graphical Design
	UI Design
	Profile UI Prototype
	Classroom and Module System Prototype
	Navigation

	The System Development Process
	Technology and Methods Used
	Development Process and Agile Methods
	Debugging Methods Used

	System Implementation
	Game Engine Implemented System Architecture
	The Components of the ECS
	The Systems of the ECS
	Game Screens and Classes
	Systems Interaction

	Database Implementation
	Getting User Data from Firestore

	UI Implementation
	Gamification
	Navigation
	Database Querying from Fragment
	Lists
	User Avatar
	Settings

	Classroom and Module System
	Versatility of Gamification
	Decisions Surrounding the Data
	Classrooms and Modules
	Modules and Games

	Quality Assurance and Testing
	Quality Assurance
	User Testing

	Installation
	Requirements
	How to Run with Android Studio and Emulator on a PC
	How to Run on Phone with APK File

	Result
	Discussion
	Evaluation
	What Could Have Been Done Differently?
	User Testing
	Database
	Workload
	Kotlin

	Further Work
	The Group Work

	Conclusion
	Bibliography
	Additional Material
	Project Agreement
	Project Plan
	Bachelor Thesis Task
	Version History
	Miscellaneous

