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Abstract

Food waste is a significant problem globally, and it is important to reduce it to
obtain a sustainable future. Quality analysis of kiwis is mainly performed by de-
structive methods, which contributes to food waste. Destructive methods are also
time-consuming as kiwis must be destroyed to be physically measured.

A relatively new, non-destructive, efficient, and sustainable way of performing
quality analysis of fruits is hyperspectral imaging (HSI). Our group reviewed the
current literature on the determination of kiwi ripeness and decided to contribute
with state-of-the-art research.

In this bachelor’s thesis, a high-quality dataset was collected by capturing hy-
perspectral (HS) images and performing physical measurements such as firm-
ness, sugar content, pH, salt, size, and weight of kiwifruits. This dataset was
pre-processed and used to develop regression and machine learning models for
determining the sugar and firmness of "Hayward" kiwi fruits. The best model
at determining sugar and firmness was UVE-PLS, which performed moderately
(RMSE= 2.804 N; R? = 0.434) at predicting firmness and good to excellent
(RMSE= 0.777°Brix; R? = 0.759) at predicting sugar content.
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Sammendrag

Matsvinn er et stort problem i verden, og det er viktig & redusere det for 4 oppné en
baerekraftig fremtid. Kvalitetsanalyse av kiwier utfgres for det meste ved destrukt-
ive metoder, noe som bidrar til matsvinn. Destruktive metoder er ogsa tidkrevende
ettersom kiwier ma gdelegges for & bli malt fysisk.

En relativt ny, ikke-destruktiv, effektiv og baerekraftig mate & utfore kvalitet-
sanalyse av frukt pd, er hyperspectral avbilding. Gruppen var gjorde en gjen-
nomgang av dagens vitenskapelige artikler om vurdering av kiwis modenhet og
tenkte at vi kunne bidra med véar forskning. I denne bacheloroppgaven ble et data-
sett av hgy kvalitet samlet ved & fange hyperspectrale bilder og utfgre fysiske
malinger som fasthet, sukkerinnhold, surhet, salt, stgrrelse og vekt pa kiwi. Dette
datasettet ble forhandsbehandlet og brukt til & utvikle regresjons- og maskin-
leringsmodeller for & bestemme sukker og fasthet av "Hayward" kiwifrukter. Den
beste modellen for & bestemme sukker og fasthet var UVE-PLS, som presterte
moderat (RMSE = 2,804 N; R?> = 0,434) pa & forutsi fasthet og bra (RMSE =
0,777°Brix; R? = 0,759) pé & forutsi sukkerinnhold.
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Chapter 1

Introduction

Food permeates significant aspects of our lives. It provides us nutrients and en-
ergy to live and is essential for our physical and mental health. The increased
availability of new information has changed people’s perception of eaten food.
Research has shown that there is a clear link between food quality, customer sat-
isfaction, and loyalty. That is why fruit and vegetable suppliers always look for
more accurate and efficient ways to determine their products’ important external
and internal features. This way, they can deliver higher quality food and improve
customer loyalty, which provides higher revenue. Traditional inspections evalu-
ate either the external structure of agricultural products or interior features using
destructive techniques. There is, however, ongoing research on performing non-
destructive determination of the internal components because the internal parts
provide more valuable information, and using it would significantly reduce food
waste. Computer vision technology is used to assess these interior features, which
provides much more information than regular RGB imaging. In our bachelor’s pro-
ject, we focus on determining kiwi ripeness using a non-destructive method called
hyperspectral imaging (HSI).

This bachelor’s thesis allowed us to explore the boundary of what has been
studied before and use advanced laboratory equipment. We found this very com-
pelling and were prepared to put in the work to learn something entirely new
for us. It included how to operate the equipment, use it to collect our data, and
analyze it.

1.1 Significance of the study

There are many reasons why we decided to work with determining kiwi ripeness
using a non-destructive method. We wanted to address a global issue, and we
wanted to work on an innovative research project and obtain and master new
skills that we can need in our future careers.
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1.1.1 Food waste

In our bachelor’s thesis, we wanted to do be innovative and contribute to an im-
portant global issue in our society- the low quality of available fruits and veget-
ables. 32% of the Norwegian consumers stated that they do not consume enough
fruits and vegetables, giving a poor quality of these as their main reasons[1]. Stud-
ies also show that the amount of unnecessary food waste in developed countries is
vast. One reason for this is that some fruits and vegetables are mistakenly marked
as low-quality in manual sorting processes. They are then thrown away despite
actually having high quality.

Nowadays, the food industry predicts the quality of fruits and vegetables primar-
ily based on destructive tests. These tests are performed on a few samples from
a given batch and then averaged to represent the batch as a whole. Although
destructive methods are helpful, they might not accurately portray the quality
of individual produces inside the set as there is variance within the agricultural
samples. Although the average achieved from all destructive tests shows that a
batch should be disregarded, individual produce can still satisfy the quality cri-
teria. The non-destructive test that examines all samples can solve this problem.
In addition to this, the non-destructive manner has other advantages: it is less
time-consuming, does not damage tested products, and has higher prediction ac-
curacy.

As explained above, destructive tests lead to higher food waste and do not
accurately predict internal qualities. That is why we aim in this bachelor’s thesis
to develop a technique that will efficiently determine the ripeness of fruits non-
destructively using hyperspectral imaging (HSI). Reducing food waste and in-
creasing the prediction accuracy of agricultural products is very motivational for
our group as we strive for a sustainable future.

1.1.2 Non-destructive method

The HSI market is something that is still very new in the world. Not many people
have heard about it, and even fewer could experience it. We found it very valu-
able for our future perspectives to gain experience in working with hyperspectral
(HS) cameras and analyzing HS images. This fact is highly motivating to touch on
techniques and methods that might never have been tried before, and precisely
using HSI. This technology is expected to grow drastically in upcoming years[2],
technology that today is costly and mainly available only for doctoral students
and researchers. Using HSI gives us the chance to innovate. However, the number
of publications with multispectral imaging on food and agriculture products has
skyrocketed since 2009(1.1B). This research area is still in need of new findings,
and we hope to contribute to it.
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Figure 1.1: Publications on spectral imaging in recent years. The colored years
inside the plot show the first publication (Image source [3]).

1.1.3 Working with kiwifruits

We wanted to study a popular product in Norway and whose ripeness is chal-
lenging to understand just by visual inspection. Among many possible fruits and
vegetables to research, our choice fell on kiwifruits. Surveys show that the aver-
age Norwegian eats many kilograms of kiwis per year [4]. To ensure that chosen
kiwifruits are ripe, people test them by pressing on them[5]. This tendency, un-
fortunately, damages fruits.

Kiwifruit is as well one of the fruits that are richest in nutrition benefits. It is
rich in vitamin C, a good source of folate, potassium, and dietary fiber, and has
many health benefits: lowering blood lipid levels and alleviating skin disorders.
There are also investigations stating that its antioxidant and anti-inflammatory
actions might help prevent cardiovascular disease, cancer, and other degenerative
disorders[6]. So this fruit is not only well-liked through Norwegians but can also
have a positive effect on their health.

1.2 Problem description

In this project, we are trying to determine the internal quality parameters of "Hay-
ward" kiwi using hyperspectral imaging (HSI). Our goal is to make a fast and
reliable way of determining the ripeness of kiwis without doing destructive meas-
urements.
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By using HSI, we can non-destructively collect sensory information of kiwis
in a wide range of electromagnetic frequencies and use regression and machine
learning models to find a correlation between spectral images and the internal
quality parameters of the kiwifruit.

1.3 Target group

This project targets two different types of groups, researchers and food distribut-
ors.

1.3.1 Product target group

We provided results on HSI on "Hayward" kiwis for food distributors to take more
informative commercial decisions regarding adopting the technology.

1.4 Research aims

The research questions to be examined in this thesis are:

1. To investigate the potential use of HSI to be used for non-destructive assess-
ment of firmness, sugar content, and pH for kiwi of type "Hayward"?

2. Study the correlation between sensory information and the internal qualities
for kiwi of type "Hayward"?

3. What techniques and models provide the best results for the determination
of kiwi’s ripeness?

4. Which wavelengths are most relevant for determining internal quality para-
meters of kiwi?

5. Can the process of predicting ripeness of kiwis be automated?

1.5 Contributions

This bachelor’s thesis has provided both scientific and societal contributions, which
are further discussed below.

1.5.1 Scientific contribution

This project was done in collaboration with Bama AS and NTNU Techonology
transfer organisation (TTO), where Bama AS provided information about the kiwi
market.

Bama AS is interested in having a portable device with different functional-
ities helpful in analyzing their products. This bachelor’s thesis is considered as a
step towards reaching that goal. There has been developed a non-destructive kiwi
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Portable Automatic
. Sugar | Firmness | pH | 400-2500nm Spectra RGB Peels
device
Collector
Yes
350-2500 S
Attempted | Partially [7] [7] [7] "1 But not "Hayward" | Not done usar
[8] [10]
[9]
Our
Contribution X X X X X X X X
Future
Work X X X X

Table 1.1: Broad terms where this bachelor’s thesis made contribution.

SVR PLS | MLR | ANN/MLP KNN Tree regressor
Attempted | Limited | Yes | Yes | Not done | Notdone Not done
Our
Contribution X X X X X X

Table 1.2: Our model contribution

quality meter by Felix instruments!, which uses Near-infrared light to predict the
Dry Matter Content and sugar content in the kiwi.

All the devices that claim to be portable and available in the market (for ex-
ample, Felix) have several drawbacks, such as size, time of determination, weight,
and specific range.

Most of the scientific papers published on the topic HSI which try to determine
the ripeness of "Hayward" kiwi are limited to the visible to near-infrared spectral
range. This project extends this range into the short-wave infrared, which has only
been reported in two papers[7][8]. Although these papers cover the same spectral
range, their datasets have covered only three kiwi parameters. In comparison, we
provide two additional quality parameters (salt, core firmness) and more sensory
information (RGB imaging and peels).

Previous research has limited data collection and machine learning models
tested. Most of them measure sugar content (soluble solids content (SSC)) and
flesh firmness; however, we measure additional quality parameters such as pH
level, salt, weight, temperature, circumference, and core firmness. Our project
also further innovates by implementing machine learning models that have rarely
or never been tried before on "Hayward" kiwi.

Our bachelor’s thesis captures HS images of kiwi peels, which shows the spec-
tral information inside the kiwi. This has been done before to predict sugar content
in kiwi with 1-MCP[10] chemical growth regulator. Providing a dataset with this
information is of high scientific value.

Our project also explains in detail how our automatic spectra collector works.
Which there is little detail about in the scientific articles.

In addition to HSI, our project provides RGB images captured with different

Thttps:/ /felixinstruments.com/food-science-instruments/portable-nir-analyzers/f-751-kiwi-
quality-meter/
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illumination to contribute towards the future goal of determining kiwi ripeness
using a regular camera.

All of these contributions is summarised in Table 1.2 and 1.1.

Further information about previous research on the topic is discussed later in
Chapter 4: State of the art.

Our main scientific contributions follow:

e Extended spectral range: Our research explores spectral information in
between 400 to 2500 nm, and in current literature, there is a limited num-
ber of papers on kiwifruit that exceed 1600 nm. This implies that we are
contributing with innovative research within the shortwave infrared range
beyond 1600 nm.

e Creation of dataset: We created a big dataset with 495 "Hayward" kiwifruits?.
It contains the following data for each sample: 3 different modes of color
images taken by a phone camera, VNIR and SWIR HS images of kiwifruit
and a slice of the inside, measurements of firmness, sugar level, salt level,
pH level, temperature, weight, and size (circumference). There has not been
created a similar dataset with all these details. To create this set, we have
prepared, learned about methods, and experimented until we were sure
about the required skills on 200 different samples of kiwifruits bought from
local stores.

e Algorithm for automatic spectral extraction: We created a semi-automated
program for extracting spectra® of each kiwi sample from the HS images.
This is usually time-consuming and crucial for creating large datasets.

e Commercial application: We have provided models, methods, and results
of non-destructive quality parameter prediction of "Hayward" kiwifruits that
possibly can be used in commercial applications and might be applied to
other fruits as well.

e Methodology for analysis: We have tested models that have not been re-
searched thoroughly on kiwifruit as of current literature and experimented
with many different combinations of pre-processing techniques to enhance
these models.

e Publication in a scientific journal: Our project contributes to the scientific
field by new results and methods that have not been reported before for
kiwi type "Hayward." We will publish our work in a scientific journal and
hopefully encourage more research in this field.

e Thorough description of methods: All methods that were used are de-
scribed thoroughly. Our bachelor’s thesis can be reused as a study guide for
those who want to further investigate "Hayward" kiwifruit with HSI.

2The "Hayward" kiwi is the main green variety produced for the world’s markets and domin-
ates production in most growing areas. It is moderately hairy and more rounded than other kiwi
varieties[11]

3A spectrum is a graph that shows the intensity of the light being emitted or reflected
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1.5.2 Societal contribution

In this subsection, an attempt is made to show the current situation where imma-
ture kiwifruits contribute to already enormous food waste contrary to the United
Nations(UN) sustainability development goals.

Food waste has become a topic of societal concern and a focus of much re-
search lately. In 2011, the Food and Agriculture Organization of the United Na-
tions (FAO) stated that about one-third of the food produced for human consump-
tion was wasted. This resulted in around 1.3 billion tonnes of food lost in the world
[12]. This figure was estimated to about 88 million tonnes of food in the European
Union, corresponding to around 173 kg per capita. In economic terms, this meant
a loss of 143 billion euro per year. Although estimations from 2019 an improve-
ment showed an improvement [13], there is still considerable room for future
changes. The scientific research dedicated to food waste has more than doubled
from 2011 until 2017 [14]. These studies looked both at the consumer, the retail
level, and there is work attempting to explore food waste from an overall system
perspective.

Statistics, methods of measurements, and definitions of food waste can vary
according to the different sources one considers. It is, however, rarely doubted
that lowering waste level is valuable for nature. The enormously high amount of
thrown away food has a massive impact on our environment. Food losses affect
the use of resources, such as fresh water, cropland, and fertilizers. According to
a Swedish study from 2015, waste minimization by 35% could result in the re-
duction of greenhouse gas emissions of 800-1400 kg/tonne[ 15]. Food waste and
climate action are two of the aims in UN sustainable development goals [16]. By
lowering food waste level, we will be beneficial for social, economic, and envir-
onmental reasons. Inaccurate methods of analyzing quality and ripeness levels of
fruits and vegetables in general, and in our case of interest- kiwis, play a prom-
inent role of the contraries to UN goals. Consumers’ perceptions of the quality of
fresh and mature produce at the point of purchase and point of consumption play
an important role in decisions about what to buy, eat, and discard. If they buy
a product that does not satisfy their expectations, they will most likely throw it
away. On the other side, there are available destructive ways of estimating kiwis’
ripeness, leading to environmental instability. After the destructive measurements
have been carried out, the kiwis are thrown away, meaning potential high-quality
fruits will be wasted.

In our thesis, we contribute to achieving 2 of UN sustainability development
goals by trying to partially resolve this enormous problem by attempting to find
new or more efficient methods for analyzing kiwifruits ripeness. If we can ensure
well-matured fruits in grocery stores, we will get satisfied customers [17], and
thus there will be less waste.

We want to mention that we have not wasted any kiwifruits during the whole

period of our tests. The remaining kiwis from destructive tests had been processed
and used to make jam and smoothies.
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1.6 Project limitations

The project has a deadline on 20th of May, giving us just above three months to
review the literature on this topic, learn to use the complex imaging system, create
a dataset, conduct pre-processing, analyze the data and prepare the report. The
limitation of time has made us specify the task more clearly, as we do not have
time to cover a study as broad as we would like. We had to prioritize firmness and
sugar content as the processing of models takes much time.

Because the project was bound to start in January and end in May, we would
not have access to fruits coming straight from harvesting due to the project not
being in sync with the harvesting season. Also, the distributor does not have all the
details of the harvesting and storage. Therefore, we do not know the exact har-
vesting date, how the fruits were stored, the temperature of storing, whether or
not there were some pesticides used. All these factors would have some impact on
the results as they bring uncertainty into the equation. Other similar scientific pa-
pers have more exact information about the kiwis used and ensured bio-variability
using kiwi for different farms and harvest months.

In addition to this, we are limited to the equipment NTNU owns and are avail-
able for us to use. Currently, there are two HS cameras, one in the VNIR range and
the other one in the SWIR range. We also had to take other students or professors
into consideration and could not use the equipment at any time we would like.
Another project was carried out at NTNU using the kiwis in parallel with ours.
After reviewing research in the field, our group decided with our supervisor that
looking at only kiwi would be enough for a bachelor’s thesis. Kiwi was the fruit
with little research among other candidates like mango and avocado.

Because we collected a large, high-quality dataset, we did not have enough
time to analyze all the kiwi quality attributes from the data we collected in this
thesis. Several quality parameters and sensory information were analyzed, and
many models were tried. The data captured and models used had to be prioritized.
Running the models used much computational power and often take a long time
to run, even on high-end computers.

1.7 Thesis structure

e Chapter 1: Introduction, explains our contribution, project limits and gen-
eral information about the project.

e Chapter 2: Background, explains the background of the group and sci-
entific field.

e Chapter 3: Theory, explains the theory that the project builds upon, and
ensures that the reader can follow the terms used later in the report.

e Chapter 4: State of the art, mentions previous research done within both
destructive and non-destructive methods, and show results of different rel-
evant papers.
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e Chapter 5: Data acquisition, shows and explains the data acquisition period,
materials used and further discusses this part of the project.

e Chapter 6: Data processing, shows equipment used and explains the auto-
mation of spectra collection, visualization, pre-processing and how the mod-
els were trained.

e Chapter 7: Results and discussion, shows the results of our models and
discusses various aspects of the models.

e Chapter 8: Conclusion, concludes our report and explains improvements
needed for future work and our learning outcome.

The project is split into two main parts, data acquisition, and modeling. There-
fore, Chapter 5: Data acquisition has its discussion and structure as this fits better
there. We did this to keep the main focus of Chapter 7: Results and discussion
on the results of our models and reduce the size of this chapter to make it easier
to follow for the reader.






Chapter 2

Background

In this chapter the following information is discussed.

e Group Background
e Contributors
e Scientific field of the project

2.1 Group Background

The computer vision Course (IMT 3017) is very relevant for this project. This
course teaches how images are captured and filters that can be applied to images
and to extract information from the image so that a computer can make decisions
based on it. Eivind, Vebjgrn, and Katherine have completed this course. They have
shared relevant information from the course with Jon.

During this course, Vebjgrn and Eivind had a project working with HSI of pota-
toes to detect bruises early. Because of this, they have the most experience with
HSI. Vebjgrn and Eivind were, because of this reason, put to work most closely
with the camera.

Everyone except Katherine had the course Artificial Intelligence (IMT 3104).
This course teaches how to make machine learning models so that a computer can
make good decisions based on given information. Jon’s background comes from
software development and has experience with management from being class rep-
resentative and leading lab activity in physics (REA2021).

2.1.1 Project Roles and Responsibility Management

Every group member has contributed to project creation, but there were also di-
vided special responsibilities assigned to different project periods and main tasks.
The responsibilities were split according to table 2.1. Even though responsibilities
were divided among the group, everyone contributed to almost all the tasks. We
made sure everyone got a good learning experience from each other. The total
hours spent per period is shown in Figure 2.1, and per member on Figure 2.2.

11
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Main Other
Task o e1s .
responsibility | contributors
Project management | Jon Elias Katherine, Vebjgrn
Report writing Katherine Everyone
Literature
e Katherine Everyone
review
Data-acquisition Eivind Everyone
Data pre-processing ) . )
and Modelling Vebjgrn Eivind, Jon Elias

Table 2.1: Distribution of responsibilities.

Hours of work

pre-project
Literature review _
pata squiston |
Data processing and modelling _
Reportwritine - |

v} 100 200 300 400 500 600

Figure 2.1: Distribution of total hours spent on each period. (total hours 1857)

USER DURATION
@ Eivind Kohmann 484:39:55

Katheris 469:07:44
@ viniisen 463:14:34
@ Jonemo 440:13:26

Figure 2.2: Distribution of total hours between members (See appendix B for
more info).

2.1.2 Project Contributors

1. Sony George is an associate professor at NTNU, and he is our supervisor.
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2. Hilda Deborah is a research scientist at NTNU and group’s company con-
tact. She has done a master thesis on HSI, so she will take part in the learning
process and be at the disposal of any questions.

3. BAMA-Gruppen AS is Norway’s largest private distributor of fruit and veget-
ables, and it will deliver needed fruits for student’s bachelor’s thesis project.

4. Tom Reise is a bachelor’s thesis supervisor.

5. NTNU Techonology transfer organisation (TTO) provided project support
and logistics related with fruit handling.

2.1.3 NTNU technology transfer organization (TTO)

NTNU Technology Transfer is an organization within NTNU that focuses on com-
mercializing ideas that come from NTNU’s employees, teams, and Central Norway
Regional Health Authority (Norwegian: Helse Midt-Norge). These ideas are sup-
posed to create a positive community impact. NTNU Techonology transfer organ-
isation (TTO) explains its mission as: "Together with the teams at The Norwegian
University of Science and Technology and The Central Norway Regional Health
Authority, we create products and services that benefit society." !

2.2 Expected knowledge

We performed a survey on computer engineering students at Norwegian Univer-
sity of Science and Technology (NTNU). The results showed that none of them
had heard about HSI before studies at NTNU, and students that attended about it
during their studies took a course in Computer Vision. Students and many IT pro-
fessionals are not aware of HSI which shows that the field’s potential is tremend-
ous. Because of this reason, this thesis provides an understandable introduction
to HSI and spectral imaging.

2.3 Scientific field

This project touches many scientific fields, which are further described below to
give the reader a short introduction to the topics. These are spectral imaging and
machine learning which are combined into chemometrics.

2.3.1 Spectral imaging

Spectral imaging is an extension of traditional RGB imaging as it captures addi-
tional images in more wavelengths. Spectral imaging uses all wavelengths possible
to acquire with image sensors, even outside of the visible spectrum. As a result,
new information can be obtained that otherwise would not be captured in regular

TTOs homepage: https://www.ntnutto.no/home/
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RGB. This information obtained is often referred to as the spectra or spectrum to
the object of analysis.

Figure 2.3: Spectral data (datacube) of a kiwi where the x- and y-axis represent-
ing the spatial dimensions and the z-axis the spectral dimension.

Reflectance

Feature
X
Monochrome RGB Spectroscopy Multispectral Hyperspectral

Spatial infformation  Yes Yes No Yes Yes

From several From several dozens
Band numbers 1 3 dozens to 3to10

to hundreds

hundreds

Spectral information No No Yes Limited Yes

Figure 2.4: Comparison of how different amounts of images are stacked together
and named (Image source [18]).

Spectral images are stored as datacubes (also called image cubes). An RGB
image can be expressed as a datacube containing only three layers; red, green,
and blue, shown in figure 2.4. A datacube has two spatial dimensions and one
spectral dimension explaining the wavelengths (images or bands).

The prefixes multi, hyper, and ultra are used to describe the number of bands
and the wavelength spacing between them, seen in figure 2.4. This distinction is
made to explain what information can be explained from the spectral images.

2.3.1.1 Multispectral imaging

Spectral imaging is usually classified as multispectral if the images captured are
between 3 and 10. However, there is no exact boundary, but according to the
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standard IEEE P40012, multispectral is defined as having a spacing of 20nm or
more between the images.

Multispectral imaging captures images from specific areas of the electromag-
netic spectrum and gives rise to many applications. It is much used for remote
sensing like astronomy and as a tool for mapping details like vegetation and en-
vironmental changes on the Earth. It has also shown applications related to food,
paintings, forensic sciences and archaeology, and many more in the last years.

There are advantages and disadvantages to multispectral imaging as it con-
tains fewer bands. Because there are few bands, less image processing is required
compared to hyperspectral imaging (HSI). It provides more flexibility as a smaller,
more portable capturing device can be used. Depending on the spacing between
the spectral bands, it can obtain some spectral information, but it would not form a
continuous spectrum. This discontinuity is solved in hyperspectral imaging (HSI).

2.3.1.2 Hyperspectral imaging

Like multispectral, there is no exact boundary for how many spectral bands are
needed to classify as HS. The number of bands can range from tens to hundreds,
and the spacing between each band is defined as less than 20nm by the standard
IEEE P4001 2.

hyperspectral imaging (HSI) has many of the same real-world applications
as multispectral imaging but can also be used where more spectral precision is
needed. Some of the applications are agriculture, food processing, health care,
surveillance, chemical changes, and astronomy. HSI provides high-quality spectral
information required in specific use-cases where precision is crucial. However, it
is worth noting that by researching topics with HSI, the applications may later be
applied with multispectral imaging choosing the essential wavelengths to reduce
redundant computation and costs.

The use of HSI in the food industry has increased in recent years due to its
ability to evaluate food quality. Qualities such as flavor, freshness, ripeness, and
defects (like bruises and fungi) can be assessed in rapid succession[19].

Wavelength Regions for Hyperspectral Imaging

VNIR SWIR

400-1000nm 970 - 2500 nm
<= UV—=<—Visible —= <=—NIR—= < MWIR— < |WIR——=
200-400 nm 380-800nm 900 — 1700 nm 3-5um 8-12pum
200 400 600 800 1000 1500 2000 2500 3000 4000 5000 8000 10000 12000

Wavelength (nm)

Figure 2.5: Names of different electromagnetic wavelength regions. (Image
source [20])

2 https://ieeexplore.ieee.org/document/8900295
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Due to the satisfactory spectral resolution in HSI, it is possible to study the
spectral changes with high accuracy compared to multispectral imaging. This is
useful for research purposes as the high spectral resolution allows for analysis by
Spectroscopy.

HSI cameras are limited to specific spectral ranges (see figure 2.5) because of
technical challenges and are expensive to manufacture. As the field grows and the
technology advances, cameras with broader spectral range might become more
common in the future.

HSI is used mainly in laboratories instead of commercial applications because
the devices are expensive and complex with small efficiency. Making HSI cheaper,
more user friendly, and more compact are some of the significant challenges in
making it more widespread.

An imaging system with a higher spectral resolution than hyperspectral is
called ultraspectral imaging. It has more than 500 bands.

2.3.2 Machine learning

Machine learning is the combination of statistics and computer algorithms to
model relationships between data. One significant aspect of machine learning is
its ability to model data where it is difficult or unfeasible to construct algorithms
by conventional methods. Depending on the data to model, machine learning is
split into Supervised and Unsupervised learning.

Unsupervised learning aims at finding relationships in data without human
intervention. This involves finding patterns and unknown relationships like cluster
analysis, seeking to separate the data into clusters.

While Unsupervised learning finds hidden relationships, Supervised learning
aims at making predictions. These predictions can either be continuous (regres-
sion) or discrete (classification). Supervised learning is more relevant for this pro-
ject because we are making a regression on spectra to predict kiwi ripeness.

Supervised learning can be further divided into two main categories, linear
and non-linear. These categories describe how the relationship between two or
more variables is connected. The difference between linear and non-linear models
is noticeable. A linear model is used when a linear function can be used to predict
the dependent variable. While the non-linear model is more complex, it uses a
non-linear function to predict the dependent variable. Non-linear relationships
are common in nature and physics [21] and are tricky to model perfectly, but it is
still possible to find good approximations.

2.3.3 Chemometrics and multivariate analysis

Chemometrics is a field that inherits methods from computer science and statistics
to solve descriptive and predictive problems in biochemistry, chemistry, medicine,
and compounds engineering [22]. It uses machine learning models and multivari-
ate analysis to derive chemical information from the spectra of the object of study.
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This is possible because the spectra of the object change when the chemical
properties change. Each periodic element has its electromagnetic radiation pat-
tern, which can identify the periodic elements present and their concentrations.
Using this fact, this can be further applied to a molecular and physiological level,
it can be, for example, be sugar, water content, pH level, or even firmness.






Chapter 3

Theory

This project builds upon theory about hyperspectral imaging, pre-processing tech-
niques, and several machine learning models. As a result, the theory chapter is
quite large.

3.1 Hyperspectral Imaging

HSI system can be set up in many different ways. There can be other cameras,
filters, and acquisition modes. These different ways to set up a HSI system are
further explained below.

3.1.1 Types of cameras

There are multiple ways of capturing HS data, and each has its pros and cons.
Some are easier to manufacture, and others may be more suitable for the spe-
cific situation. The different techniques are split into spectral, spatial, and non-
scanning methods.

e A wavelength scanner(figure 3.1 C) is a spectral scanning method in which
the whole object is captured at once by one wavelength/band at a time.
Such a camera is usually designed by having different wavelength filters on
a turntable wheel. The data cube is constructed by stacking each image on
top of the other. It has the advantage of being able to pick and choose which
wavelengths to use, and each 2D image has a direct representation of the
actual scene. A weakness is that if the scene moves during the scan, it is
impossible to do spectral correlation unless each band is realigned.

e Snapshot is a non-scanning method, meaning it captures the whole object
and all the bands simultaneously, creating the data cube in the exact mo-
ment, just like a regular camera. Since these cameras are difficult and ex-
pensive to manufacture, they are nowadays mainly used in astronomy.

e Line and point scanners are Spatial scanners. They capture the full spectra
at once, but only parts of the image at the time. A line scanner scans one

19
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row of the image and needs the object or camera to move over the scene.
Since it flips like a push broom mopping the floor, it is also called a push
broom scanner.

A point scanner differs from a line scanner as it only captures all of the
wavelengths for one pixel at a time. This scanner requires the object or
camera to also move along the second spatial dimension. Because it scans
like a whiskbroom, it is called a whiskbroom scanner. The line scanner is
The advantage of spatial scanners is that they can provide high spectral res-
olution over a wide spectral range [23]. They are helpful in situations where
the scene moves, e.g., imaging the sky using planes or satellites. However,
with motion comes the complexity of needing advanced hardware to allow
for imaging at different speeds, making it more complex and expensive to
produce.
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Figure 3.1: Different types of HSI cameras (Image source [24]).

3.1.2 Acquisition modes

HS cameras can be set up in different acquisition modes to satisfy other require-
ments. In these various modes, the camera and light source has different positions.
It can be set up in either transmission, reflection, or interactance mode. Transmis-
sion and reflection are the two most basic modes to use, while interactance is more
complicated. Transmission measures how much light the object does not absorb,
while reflectance measures how much light the thing reflects (not absorb).

With reflection mode, the light and the camera are at the same side of the
measured object (as shown on figure 3.2A), measuring the object’s reflection. Re-
flection mode is helpful when evaluating the external quality of fruits and veget-
ables.

Transmission measures how much light is passed through the object. This



Chapter 3: Theory 21

measurement is done by having the light source and camera on the opposite side
of the object (as shown in figure 3.2B). The transmission mode is more useful
when evaluating internal concentrations; however, little light is carried over to
the camera.

It is possible to have a setup with both reflected and transmitted light; this
is called absorbance mode. In this mode, the light source and the camera are on
the same side of the measured object. Unlike in reflection mode, there is a wall
between the light and the camera (as shown in figure 3.2C). This setup results
in some light reflected from the object, and some are transmitted through the
object[25].
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Figure 3.2: (A) reflection mode, (B) transmission mode (C) Absorbance mode
(Image source [25]).

3.1.3 Camera noise

Hyperspectral cameras are particularly susceptible to noise due to their complex
sensor that needs to be sensitive to many wavelengths. Since this noise influences
each pixel and the overall quality of the image, it is important to reduce its effects.
This is mainly done during the acquisition and after by preprocessing.

Then explaining noise during imaging, the term Signal to Noise Ratio (SNR)
is often used and refers to the amount of noise compared to the measured signal.
By having a relatively high signal compared to the noise, the signal is less influ-
enced by it. Thus the signal is more reproducible and does not fluctuate between
measurements.

A common technique to increase the SNR during imaging is to capture the
same scene (in push broom scanners, this would be a line) multiple times and
then average the results. This reduces the noise by a factor of +/N, where N is
the number of captured lines[26]. Another method of increasing the SNR when
imaging is using an equalization filter.

3.1.3.1 Equalization filter

A filter for the quantum efficiency (sensitivity) of silicon-based sensors are weak in
the spectral region around 400nm and 900nm. More light in this region is needed
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for getting a low SNR. However, increasing the light results in saturating in the
other spectral region where the light is most effective. Because of this, reason
equalization filter aims to flatten this sensitivity bypassing more light onto the
area where the quantum efficiency (sensitivity) is lower and suppresses where it
is higher.

3.1.3.2 Radiometric calibration

Radiometric calibration involves four different steps to increase spectral accur-
acy. These steps involve dark current correction, sensor calibration, illumination
correction, and spectral calibration.

The dark current is the signal that the sensor produces when the sensor does
not capture any photons. This noisy signal increases with the temperature of the
camera and the integration time of the camera. An image is captured with the
HS camera with the lens closed to remove this signal. Then the dark current is
removed from the resulting reflectance. The dark current calibration is the only
thing done by the radiometric calibration that changes during different operating
conditions[26].

Spectral sensors can have high variability in pixel sensitivity. Therefore a sensor
calibration has to be carried out. The manufacturer of the camera does this with
an integrating sphere.

Since the manufacturer already does the sensor calibration, the only thing
explicitly done to the image acquired is removing the dark current.

3.1.4 Reflectance

HS cameras are dependent on the reflectance of the surfaces in the scene to obtain
images. Reflection is the effectiveness of how well a surface reflects the radiant en-
ergy emitted on the surface. In our study, this radiant energy is in the form of elec-
tromagnetic radiation from the visible to shortwave infrared spectrum (SWIR). By
measuring the amount of radiation (number of photons) emitted and then reflec-
ted onto the camera sensor, we obtain spectral information that allows us to study
the changes within and outside a kiwi. As explained in section Chemometrics and
multivariate analysis, different chemical compounds reflect different amounts of
photons at different frequencies, meaning it is possible to correlate the spectral
reflections with physiological parameters.

We measure the reflectance R, of a surface by dividing the total reflected ra-
diance flux, ®5, by the total emitted radiance flux, .

_ %R

R=
P

(3.1)

There are a few scenarios when the reflectance value can exceed 1 (100%).
There may be an external radiance source like a lamp that is not accounted for,
or maybe the surface itself emits radiation, e.g., the material is fluorescent. The
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scenario we experienced the most was due to the geometric shape of the object
being imaged.

3.1.4.1 Geometric and material limitations

From section 3.1.4 we know what reflectance is and how to calculate it given the
emitted and reflected radiance values. Even though we can measure both of the
components to calculate the reflectance, difficulties with consistency appear when
dealing with different shapes and surface qualities.

In general, there are two different types of reflections. The first one is specular
reflection, where all emitted light is reflected at an equal angle on the opposing
side from the surface normal. In physics, this is often explained by stating that
the angle of incidence is similar to the angle of reflection. This reflection often
appears when the reflection surface is clean and smooth, which can be reflected
by a mirror. The other one is diffuse reflection, where the emitted light is reflected
at different angles from the reflection point. This reflection happens when the
reflection surface is rugged, for example, matte or satin finish.

Figure 3.3: a) Specular reflection b) diffuse reflection (Image source [27]).

The surface of the reflectance target is flat and rough, which reflects diffusely
and therefore gives constant reflection to the camera sensor. This is preferred
because it avoids concentrating the light in one place, which would quickly lead
to overexposure on the camera sensor depending on the angle of the incident
light.
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The shape of the kiwis is oval, which means the reflection surface is hemi-
spherical. This hemispherical property is not uniform across different kiwis and
serves inconsistencies as some are flatter, while others are more round. It leads
to differences in the specular reflection in different kiwi areas, and this difference
is therefore not uniform across all kiwis. Combined with the hemispherical in-
consistencies, we do not know the exact properties of the different kiwi surfaces,
leading to minor differences in perceived reflection for the camera sensor.

3.1.4.2 Normalization

When dealing with spectral images, it is helpful to transform the pixel values in
the image into reflectance, called normalizing. Reflectance tells us how much of
the emitted light got reflected up into the camera and is easier to interpret as it
can be compared between different amounts of illuminant radiance. With normal-
ized data, we can look at the spectral properties of objects and obtain information
about the object’s composition of elements. This is possible because different parts
reflect light differently, as explained in section 2.3.3Chemometrics and multivari-
ate analysis. However, by transforming the data into reflectance, we make the
values more comparable to other datasets independent of different light sources
used.

To transform the spectral images into reflectance we use equation 3.3 ex-
plained in 3.1.4, but with modified variable names for convince of this section.
Since the radiance emitted from the laps, ¢z in equation 3.2 is unknown; we
need a way of calculating it. This is solved by having a surface in the scene where
the reflectance value is already known and then constructing a new equation 3.3
to solve for ®;. A surface where the reflective properties are known is called a
reflectance target!.

Variables:

e &, = Radiance emitted from the lamps
R,.s = Reflection of reference object
I,.s = Radiance of reference object
R;,, = Reflection value

I;,, = Radiance in the image

The equation for transforming each pixel value in an image to reflectance
values. I;,, is the intensity of one pixel and R;,, its new value.

I:
Rip= q)l_’}: (3.2)
I
o, =L (3.3)
lzref

'https://www.labsphere.com/labsphere-products-solutions/materials-coatings-2/
targets-standards/test-child/
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If we combine the two equations above we get:

I
R. =

m

L (3.4)

Iref

Figure 3.4: Each HS image must contain a spectralon reflectance target with
known reflectance in order to transform the data to reflectance.



26 Moen, Kohmann, Saidi, Nilsen: HSI kiwi quality parameters

3.2 Pre-processing

Pre-processing techniques aim at preparing the data for the machine learning
models. This section explains the theory behind these techniques.

3.2.0.1 Image morphology

Image morphology is the operation performed on an image to change the structure
of the image. Binary morphology is the structural change in binary images based
on the properties of the kernel used. The two main kernel functions are erosion
and dilation.

e Erosion transforms pixel with value 1 to O if any of the other pixels in the
kernel is 0, which causes the total amount of pixels with value 1 to decrease
and the number of pixels with value O to increase.

e Dilation does the opposite of erosion. Pixels with value 0 change to 1 if any
of the pixels in the kernel is 1.

e Opening is the operation of erosion to remove weak links between objects
and then to do dilation to increase the size of the objects back to original.

e Closing is the operation of dilation to increase the size of the links between
objects, then doing erosion after to reduce the size of the objects back to
normal.

These operations are relevant for making binary masks in the automatic spec-
tra collection algorithm we use for saving time and effort on a collection of spectra.

3.2.1 Spectral pre-processing

After collecting the spectra that will be used for creating prediction models and
analysis, it is almost essential to apply some pre-processing techniques. It is primar-
ily done to eliminate unrelated effects that have nothing to do with the sample’s
chemical nature. These effects may arise due to the different geometries between
the samples.

3.2.1.1 Hanning window filter

A Hanning filter is a filter used for smoothing out the spectrum, often to reduce
noise. The filter only operates at a portion of the spectrum at a time called the win-
dow, and the user specifies its size. The window size influences how the smooth-
ness of the spectrum; a larger window size would result in more smoothing. The
function is defined as h(i) = 0.5x(1 —cos(z*Tﬂ*i)), were N defines the window size
and i specifies the ith element inside the window. Using the weights defined by the
Hanning function and noisy spectra y, the resulting smoothed signal is defined as
R; = > H(i) % y;. It is repeated until the moving window has convolved over the
entire spectra. This is done for all the elements inside the window [28].
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The function is defined from and including O to N, and to exactly hit y=0 at
the lower peaks. The function can be seen from Figure 3.5.

h(x) = 0.5 (1 — cos(2 7 x))

08
06
04

0.2

Figure 3.5: Plot of Hanning window with N = 1.

There is little research on using the Hanning window filter as a pre-processing
technique. However, it has been shown that it works well compared to other pre-
processing techniques for HSI [29]. Braun ([30]) has shown that the Hanning
filter is "almost always" recommended when working with spectra.

3.2.1.2 Standard normal variate (SNV)

Standard normal variate (SNV) tries to correct for scattering effects by normaliz-
ing each spectrum. By subtracting the mean and dividing by the standard devi-
ation for each spectrum, the spectra would all obtain a mean of 0 and have most
of the values between [—1,1].

The normalization for a single spectrum X can be expressed as:

X;—X

X = (3.5)

g

Where x; is the reflectance value of a wavelength, X is the average reflectance of
all wavelengths, and o is the standard deviation.

Equation 3.5 can be generalized to correct for all of the spectra at once by the
following equation:

i,j
X;j = —— ! (3.6)
> 2 (x; —%;)
I\[bands_1

SNV is effective at removing or decreasing multiplicative scattering effects that
may occur during image capturing. It also corrects for the global intensity differ-
ences that might arise between different scans. As a result, SNV pre-processing
can interpret spectra easier as it causes decreased dependency on scattering and
global intensity differences[31].
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Mean of day 1,2,3 from box 3,6.9 Mean of day 1,2,3 from box 3,6,9 WITH SNV
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(a) Mean of set of spectra before SNV pre-processing (b) Mean of set of spectra after SNV pre-processing

Figure 3.6: Example of before and after SNV pre-processing, where each graph
represents box (3,6,9) from a day (notice that the graphs are centered around 0
on the y-axis on b).

3.2.1.3 Multiplicative scatter correction (MSC)

Multiplicative scatter correction (MSC) is quite similar to SNV but requires a ref-
erence spectrum to start with. This reference spectrum should ideally be free from
noise and scattering effects, but the spectra’ mean spectrum is usually used. MSC
corrects spectra by assuming that each spectrum can be approximated using a
linear combination of the mean spectra, X .., €xpressed in equation 3.7.

MSC and SNV is widely used in HSI and on quality inspectrion of agricultrual
products[32]. Therefore these are are highly relevant for this project.

Xi N a; + biXmean (3-7)

Where q; is a constant, b; is a coefficient and X; is a single spectrum, i represents
a sample.
By solving for a; and b; using ordinary least squares, the corrected spectra can

be calculated by using equation 3.8, where X7 is the corrected spectrum.
Xi —a;
e = (3.9
1

3.2.1.4 Savitzky-Golay (SG) filter

The SG-filter aims to increase the SNR ratio from a signal in the time domain. The
filter works differently from standard data smoothing filters, which often is a func-
tion of a moving window (for example, Hanning 3.2.1.1). The filter aims to make
a new point g; in the middle of an moving average window (with size n) using
polynomial least-squares fitted to the noisy signal points f,, = [ fi_%, wees fis oo f,-+%]
inside the window. All the points g = V g; is after completion the smoothed version
of the signal f = Vf;. This polynomial fitted over f,, is often either of quadratic
or quartic order; however, it can have any m order. For simplicity we define the
window size n = n; + n,, where n; = n, which is the number of points to left and
right of f; C f,,,.
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k=n,

8= Z Crfivk 3.9

k=—nl

Doing the least-squares technique for all the moving window combinations
can take time. However, it is possible to use pre-calculated convolution coefficients
(ct) to estimate the smoothing operation. This is done according to equation 3.9
which defines the moving window with filter coefficients ¢ = Vc¢;.. By using these
filter coefficients, the derivation of the noisy signal can also be provided. These
filter coefficients vary for the window size, polynomial order, and the derivation
order [33].

The filter coefficients are pre-calculated using standard least squares regres-
sion, with a unit vector instead of f values. More details on how these coefficents
are calculated can be found in Press and Teukolsky[33].

SG-filter for spectral pre-processing

There are significant benefits of using the SG filter for spectral pre-processing. It is
a better way of derivation on the spectra since it considers multiple points when
computing the derivative. Since regular derivation also amplifies the noise that
exists in the data, it is necessary to apply smoothing. The SG-filter does this and
also preserves higher movements in the spectral data[33].

Different values of both window size and polynomial order give a different
smoothed signal which enforces different smoothed versions of the spectral data.
According to [34], the exact window size is related to one specific component of
the spectra and recommends exploring the variables independently.

The SG-filter is widely used in HSI and has been applied to agricultural product
inspection multiple times [35]. Therefore this filter is of high importance for our
project.

3.2.2 Efficent wavelength (EW) selection

The dimensionality of the spectra is far too large to be used directly in the re-
gression models as it would make poorly designed models. A regression model
should consist of only the essential wavelengths that contribute to the prediction
and show a real relationship. This is where effective wavelength (EW) selection
comes in.

No technique works best for selecting EWs in every situation as it depends on
the size of the dataset and the required accuracy of the prediction.

Wavelength selection algorithms are much better than randomly or brute-
forcing the wavelengths to make the best model. If we assume that the model
will pick 20 wavelengths from the 186 wavelengths captured (from VNIR), there
are many possible combinations to choose from. To be more exact, this can be cal-
culated using the binomial coefficient: 12806) which is roughly equal to 3.5 % 10%°
combinations.
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3.2.2.1 PLS - Uninformative Variable Elimination (UVE)

This section involves Partial least squares (PLS) which is explained later in section
3.3.3.

The coefficients in the regression line explained by PLS tell us how much
the independent variable affects the measurements, Y. A more significant coef-
ficient, regardless of its negative or positive, means that the independent variable
is more important in explaining the relationship between X and Y. This can be
used to eliminate uninformative variables as they tend to reduce the accuracy of
the model. It is done by creating a PLS model, taking the absolute value of each
coefficient, then removing the independent variable associated with the lowest
coefficient. For the next iteration, the new PLS model is created by one less in-
dependent variable, and the same elimination process continues. The elimination
process happens until a minimum number of variables specified by the user is
reached.

3.2.2.2 Successive projections algorithm (SPA)

One of the simpler variable selection algorithms is SPA. It finds the N most unique
wavelengths based on the spectra given (independent variables), where N is the
number of wavelengths to be selected. It does so by starting with one wavelength,
then incorporates a new wavelength for each iteration until N number of wavelengths
is reached. The essence is to select those wavelengths whose content is minimally
redundant and to reduce multicollinearity.

Initially, the algorithm needs one wavelength and the number of wavelengths
to be selected (N). With the initial wavelength it creates a column vector from the
independent variables (spectra) X; ;, that we call x;,;;;q. For all of the remaining
column vectors, it calculates the projection onto the orthogonal subspace using
the equation 3.10. The subscript j represents a wavelength, and x; its column
vector. P is the projection operator.

Px;j=x;— (ijxiniriaz)Xiniriaz(Xijinitial)_l (3.10)

The wavelength corresponding to the most extended projection, Pxj, is to be
selected. This is calculated by comparing the length of each projected column
vector, ||Px;l|, and selecting the biggest one. For the next iteration, x;p;;q; is the
column vector of the newly selected wavelength. It iterates until N — 1 has been
selected. N — 1 because the user-specified the first one.

Because SPA is dependent on two initial values, it is often combined with a pre-
diction model, e.g., MLR 6.5.2, and a loop that iterates through each wavelength
and each N. The best wavelength subset can thTest all candidatesen be obtained
by comparing how well each model performs.
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Figure 3.7: Simplified example of 5 measurements each containing 3 independ-
ent variables (called samples in this illustration) forming 5 unique column vec-
tors. By selecting x5 as the initial vector, the projection operations lead to the
selection of x, as it presented with the longest projection(Image source [36]).

3.2.2.3 Recursive feature elimination (RFE)

The RFE eliminates features recursively until N variables are selected. The vari-
ables are scored using regression coefficients. If cross-validation is used, this is
repeated for all parts of the cross-validation.

1. Select all features.

2. Calculate importance using a regression model.
3. Prone features with least importance.

4. Repeat until N variables are selected..

Since the best variables are kept and restored, these get a much higher score than
the rest. If N is small, some variables have much higher importance values than
the rest. This gives spikes in the band-importance plot.

3.2.2.4 Genetic algorithm (GA)

The Genetic algorithm (GA) implements Darwinistic perspective on variable se-
lection. In other words the methodology is made to simulate evolution. Several
candidates are tested, with different variables used then the best ones are selected
for further processing. The ones selected are used to make new candidates to be
tested. The procedure of the algorithm is also explained in the list below.

e Test all candidates.
e Select the best candidates to breed.
e Perform crossover and mutation.

A number of candidates to test each iteration is selected. Each candidate ran-
domly selects bands to use then the fitness of each candidate is measured through
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a machine learning model. For all of these fitness scores, the best ones are selected
to breed into a new iteration; this cycle is repeated until an acceptable fitness is
achieved.

The breeding process involves both crossover and mutation. With two selected
candidates to breed, the children inherit 50/50 from each parent. Mutation on
the variables selected by the children is performed to include variety, this involves
randomly including or excluding variabels.

GA is used in one other paper performing non-destructive ripness determina-
tion of kiwi [9]. It has been proven to be a effective wavelength selection method
combined with Partial least squares (PLS) on spectral data [37].

3.2.3 Data split using SPXY

When training machine learning models, a train test split has to be applied to
the dataset. This is necessary as evaluating the performance of a model using the
same data previously trained can lead to biased conclusions. By having a separate
dataset for testing, we can be sure that the model can perform well on new data
and is not overfitted.

A random train test split is not always the best way to split the data. The
data in the test set does not necessarily provide a representation of the real-world
scenario. Without further involvement, random test splits would give different ac-
curacy depending on how the shuffle was done. This is why algorithms to pick the
best data points for training and testing consistently have been developed. When
working with spectral data, the Kennard-Stone (KS) algorithm[38] calculates a
Euclidean distance matrix. This matrix contains the euclidean distance between
all of the independent samples in a matrix x. This distance matrix is then used to
make a test set representing the dataset as a whole. The training set is selected to
represent the contour of the data feature space, while the test set its content.

It does this by selecting two samples in x with the highest distance between
them into a subset S, which will eventually become the samples selected for train-
ing. Then the minimum distance between all the rest of the samples in x and the
selected S is calculated. From these minimum distances, the maximum distance
is selected and added to the subset s. These steps are repeated until k samples are
selected into S, depending on the test size.

While the normal KS algorithm uses the regular Euclidean distance between
all the samples, sample set partitioning based on joint x-y distance (SPXY) also
includes the dependent samples y. The normal euclidean distance used by the KS
is shown in equation 3.11, where M is the number of variables in each sample and
dgs(i, ) is the distance between sample i and j. The variable t goes through all
the measurements in the sample.

Equation 3.12 shows the SPXY distance formula. This formula implements the
euclidian distance used in KS on both x and y, and divides these by the maximum
distance, which results in a maximum value of 2[38].
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M
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This data-splitting algorithm was used because it selects the best samples for train-
ing and testing. Also, it has been used before to perform ripeness determination
of kiwi [39]. Its accuracy has however been doubted by Birba ([40]). However,
this study seems not to use spectral data.

dspxy(i,j) =

3.3 Multivariate models

Multivariate models are models that use multiple independent variables to predict
one outcome. Since most of the changes in the real world are dependent on more
than one variable/event, it is necessary to include multiple variables to be able to
have good accuracy in the model.

There are many multivariate models to chose from, but the ones we will in-
troduce here are standard chemometric methods and have shown good predictive
power regarding spectral data. These are MLR, PLS, and SVR, but we will also in-
troduce artificial neural nets and K nearest neighbor.

3.3.1 Multiple linear regression (MLR)

Multiple linear regression is a statistical technique and a generalization of simple
linear regression to take on more than one independent variable. It assumes that
the relation between the independent X and dependent Y variables is linear and
tries to fit the best line to the data[41]. This fitting is done by estimating a coeffi-
cient 3, for each independent variable in X and an error term €. The error term
tries to correct for unobserved noise between the linear relationship between X
and Y. For one dependent variable y;, the equation would look like this 3.13:

Yi=PBo+ P1Xio+ BoXin +-Pp1Xip 1 te (3.13)

Where i is one of the samples (i = 1,..,n) and p an index number for each
independent variable (p =0, ..,m+ 1), m is the number of independent variables.
An equation that covers all of the samples can be written using matrices. The
shape of each matrix would look this:
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Yo 1 X1 X2 0 Xypa Bo €o
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Which allows all of the equation to be written together as matrices.
Y=Xp+e (3.15)

To find the best 3 coefficients, we want to minimize the Sum of Squared Errors
(SSE). By using the fact that any one-dimensional vector has this property, vv =
[|v||%, we can write the SSE for matrices as follows:

ele=(Y —-xB)I (Y -Xp) (3.16)

By taking the derivative on both sides with respect to f3, setting the equation to 0
(a vector of zeros), and solving for 3, we obtain the minimum value? for 3.16.

B=x"x)"'x"y (3.17)

3.3.2 Support Vector Regression (SVR)

In ordinary linear regression, the goal is to minimize the sum of the squared error
to get the best fitting regression function. That is achieved with a constraint of O,
meaning all points that do not lay on the fitted line are defined as an error.

N
MINCY (i —wix;)?) (3.18)
i=1
Constraint:
lyi —w;x;| =0 (3.19)

y; is the actual value, w; is the coefficient and x; is the feature.

In Support vector regression (SVR), we want to define a margin of error, €, for
the regression function to decrease how strictly the hyperplane fits the data points.
As we most likely cannot include all data points within the margin of error, we
need to include another variable, &, to measure the error of all points outside the
margin of error. This works well in specific datasets as there is often a margin of
error in real-world data, and the points outside the margin of error can be viewed
as noise or outliers. With the constraints ¢ and &, we can define our boundaries
for the hyperplane:

lyi —wix;| < e +1&;] (3.20)

2More details can be found in https://www.stat.purdue.edu/~boli/stat512/lectures/
topic3.pdf[42]
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So with the constraints in mind, we want to minimize the Euclidean distance
of the data points to the margin of error. Before we do that, we need to express the
orthogonal distance between the closest points of different samples by a vector w.

First, we need a unit vector, v, that is orthogonal to the margin of error on the
opposite side. Then we need a vector, v, that expresses the distance between the
samples on the margin of error. Vector v is found simply by subtracting the vector
from the origin of the red sample by the vector from the origin to the green sample
in figure 3.8. Now, by taking the dot product of u and v, we get a projection w
that expresses the orthogonal distance between both sides of the margin of error.
For a better visualization, see figure 3.8.

Y

Figure 3.8: The orthogonal distance, vector w, is found by projection of unit
vector, u, dotted with vector v.

Now we have an expression ﬁ that we got by dotting unit vector u and
vector v, which represents the width between the samples. We can maximize this
expression to get a hyperplane that separates the features the most. Since w is
in the denominator, maximizing the expression is the same as minimizing ||w||,
which allows us to rewrite as MIN(% llwl]?).

Finally, we can minimize w and add a constant C to scale the dependence of
the sum of errors of the points outside of the margin of error:

1 n
MIN(S[[wl*)+C ) &,
GIWIM+C2 8

There are different methods of tuning the scale of the constant C, and more
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explanation of SVR in detail in this footnote®.

There is a large margin of error between different kiwis and scanning days
in our project, making SVR interesting compared with ordinary linear regression.
The margin of error and weight of points outside the margin of error can be tuned;
it brings more hyperparameters that can influence results in various ways, making
SVR a good candidate model.

3.3.3 Partial least squares (PLS)

Partial least squares (PLS) works quite differently from regular linear regression.
Instead of working directly on the independent and dependent variables, PLS uses
the components derived from Principal component analysis (PCA) to predict the
dependent variable. PCA transforms the variables into latent variables called com-
ponents, which reduces the dimensionality of the data. All of the components will
explain the original data; however, only some components are needed to explain
the majority, reducing the dimensions needed. These components consist of two
matrices called scores and loadings used by PLS to make a prediction[39] [43].

PLS is a popular regression model as it is often used in chemometrics. This
is because it is more robust than linear regression, and the model parameters
do not change significantly when more data is used for calibration. It also works
well when there are more independent variables than dependent. It also works
well where there exists multicollinearity, meaning there is a correlation between
independent variables[44]. Collinearity can often make a case for spectra because
a lot of the wavelengths vary with each other.

The number of components used is compared towards a performance metric
(often MSE or R?) in order to decide on how many components to use in PLS
regression.

3.3.3.1 Eigenvectors

An eigenvector can be called the characteristic vector of a matrix (A). This is be-
cause it does not change if matrix A is scaled or transformed; only the eigen-
value associated with that eigenvector changes. Formally this can be written as
T(v) = A*v, where v is the eigenvector, A its eigenvalue and T(v) is a transform-
ation done on v.

An eigenvector of a matrix A can be solved as |A—1I x A| = 0 where I is the
identity matrix.

The components calculated by the PCA algorithm can be seen as the eigen-
vectors of the covariance matrix. It can help understand the Nonlinear Iterative
Partial Least Squares (NIPALS) algorithm, which PLS algorithm implements.

3https://towardsdatascience.com/an- introduction-to- support-vector-regression-svr-a3ebcl672c2
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3.3.3.2 NIPALS

To compute the principal components (scores and loading), the NIPALS algorithm
is used. The algorithm works iteratively until convergence for each desired com-
ponent.

All the measured independent variables are measured in a matrix X. This mat-
rix is mXn long with n number of samples and m number of independent variables.
All the data in X are mean-centered.

Firstly the algorithm takes a column (independent variable/ wavelength) of
X called x;. Then the covariance between that independent variable and the rest
of the dataset is computed into a variable p called loadings, which can be seen
as a new dimension of the data. To compute where the points are on this new p
dimension, the covariance between p and X is calculated into variable t (scores).
the calculation of t and p is repeated (step 2-3) until ¢ is equal to t used in step
2 with some error.

1. t= Xj
2. p=covar(t,X)=X"t/ HXTt”
3. t=covar(X,P)=Xxp

These are the steps to calculate 1 component of X. Once one component is
calculated, the component’s data explains in X must be removed to calculate the
next component. This is done by subtracting the component from X by X,,,, =
X—pxtl.

Once all of the components are retrieved, X can be written as the sum of all
the components X = ZIIV t; * pl.T, where N is the number of components, and i is
the i-th component.X can also be written as X = t * pg + e, where e is the sum
of all the other components and N is the number of components.

It is shown that the NIPALS algorithm gives the same results as the eigenvector
calculation on the covariance matrix of the data [43].

3.3.3.3 PLS Theory

As mentioned earlier, PLS tries to do a regression based on the components, not
the values themselves. It consists of an inner relation linking individual scores
from X and Y and an outer relation that looks at the entirety of the component.
This can be shown illustrated graphically in figure 3.9.

Just doing the NIPALS algorithm for both Y and then X, and then compare the
components in both of the variables is an option. This is done by setting X = t xp*
and Y = UQ"+F. t and p are the scores and loadings of x, U, and Q are the same
for Y. While F is defined as the error. Then U is regressed by t through U = b x t,

where b is the regression coefficient. This can be solved by b = lg:‘i

This is called the inner relation. However, the outer relation looks at the scores
and loading in X and Y dotted together (also known as PCA component). The goal
of PLS is to minimize the error F in Y while keeping the inner relations between

the scores and loadings [46].
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Figure 3.9: PLS has both inner and outer relation (Image source [45]).

A better way is to do the NIPALS algorithm on X and Y at the same time. This
is the same as doing them after each other; however, the components for X are
done towards a column of Y. Also, the components for Y are done towards the t
the loadings component of X. The steps for the combined NIPALS algorithm are
shown below [47].

u=y;

p =covar(u,X) =X"u/ “XTu”
t =covar(X,P)=Xx*p
q=covar(t,Y)=Y"'t/ ||YTtH
u=Yxq

kL=

The components retrieved from Y are almost equal to the regression method
used before U = bxt, while the components for X are done towards one Y column.

PLS is highly relevant for this project because there exists much multicollin-
earity in the spectra, which other methods can struggle to cope with.

3.3.4 k-nearest neighbors algorithm (KNN)

K-nearest neighbor (KNN) uses "K"-neighbors in multidimensional space to make a
prediction. It finds these neighbors by calculating the euclidean distance between
the variable to be predicted and all the samples in the training set. Then it takes
the mean of the dependent variable in these neighbors, which is the resulting
prediction[48].

It seems like KNN has not been used for this application before. However,
since it was originally developed for classification, it has been used to classify
agricultural mold products. For example Xie et al.[49] used KNN to classify healthy
and gray mold in tomato leaves.
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3.3.5 Artificial neural network (ANN)

Artificial neural network (ANN) is made of many layers of nodes with intercon-
nected connections with weights. Inside the nodes, there is an activation function.
The input of this function is the sum of all the connections to that node times their
weights. The output of that node for the next layer is the value the activation func-
tion produces.

Input layer Hidden layers i Output layer
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Figure 3.10: Architecture of a standard Artificial neural network (ANN) (Image
source [50]).

Backpropagation is used to blame each weight for the total error. Once each
connection is blamed with an error, gradient descent is performed to correct for
that error. The gradient decent is performed through a loss function, which it tries
to minimise.

If the higher the weight, the stronger the connection is. This is a sign of over-
fitting. There are techniques available to reduce high weights and overfitting.

The dropout layers would randomly drop out nodes from the neural network
while training. The nodes left are then more responsible for the connectivity be-
cause more and more nodes are removed [51].

L2 regularization adds a penalty term to the loss function, which prevents
large value weights. This term is a constant L2 times the error of the network
applied the weights[52].

A callback can stop the training before the number of set epochs is finished
(EarlyStopping). This is to stop over-training the model, stopping when the loss
value has not improved.

Multilayered Perceptron (MLP) is a feed-forward artificial neural network. It
means that each node is connected to the nodes above itself in the layer.
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MLP and ANN has been widely used to perform classification on HSI. For ex-
ample EIMasry et al. [53] used MLP and to detect chilling injury in Red Delicious
apples. However it seams like it has not been applied to regression problems on
agricultural products using HSI.

3.3.6 Tree regressor

Tree regressor performs regression with several decisions trees. Each measure-
ment in one sample is mapped as input to one decision tree. This means that when
using a tree regressor, there will equally as many decision trees as measurements
in one sample.

These decision trees works similarly to ANN, however it is shaped like a tree
and has inequalities inside the nodes instead of activation functions. The inequal-
ity inside the node follows this equation: a = w x x < b. These coefficients are
then fitted using gradient decent and 12 regularizer[54].

3.4 Model evaluation

The most common way to evaluate the performance of a model is to divide the
dataset into three subsets; calibration, validation, and verification. The calibra-
tion set is used to train the model; then, the validation set is used to find which
parameters give the best result. After the best model parameters are selected, the
verification set is used to verify the model’s performance.

By testing the model on different datasets, we decrease the chance of overfit-
ting as the model adapts to the general trend. By increasing the number of subsets,
the quality decreases as there is less data in each subset. The balance between
quality and quantity in each subset must be found to create a good model with
low bias.

3.4.1 Evaluation metrics

In order to evaluate how well a model is explaining the data and how it performs
when predicting new values, it is necessary to establish good evaluation metrics.

3.4.1.1 R-squared

R-squared (R?) is a measurement of how accurate a prediction is. It is defined
as the amount of total variation the model can recreate from the independent
variable[55]. Its maximum value is one meaning all the variation can be explained
from the independent variable. The lowest value possible value is 0, meaning the
independent variable explains no variation.

N epo2
SSres _ 1 2 i f (x) (3.21)

RP=1-
N _
5Stot > i—y)?
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In equation 3.21, x; is the independent variables, y; is the dependent variable,
and f(x;) is the predicted value of x;. y is defined as the mean of the variable
y The variable i goes through all the N samples. The squared sum of residuals
(SS,.s) is defined as the squared error of the prediction. The total squared sum
(SS;,¢) calculates the standard deviation of the variable y.

When the prediction is perfect, the SS,,, term would be 0 because V; : y; =
f(x;), which results in the R? term to be 1. The more the f(x;) is not equal to y;
the closer R would be to zero.

However, using R? for evaluating multiple regression results can lead to biased
conclusions[55]. This is because R? provides no information if the model includes
useless variables or even fits the data. Because of this, it is important to be aware
of how many independent variables the model uses and draw conclusions based
on the combined result from multiple metrics.

3.4.1.2 Mean squared error

Mean squared error (MSE) is defined by similar terms used above (Equation
3.22). MSE calculates the average squared difference between the predictions and
ground truths. The error is squared to get positive values, and to have a larger ef-
fect on bad predictions. The absolute value of the error is also often used (called
mean absolute error), but is not as mathematically convenient as MSE. Root mean
squared error (RMSE) which is defined as the root of the MSE (equation 3.23) is
however pretty close to the mean absolute error.

Compared to R?, the value of MSE depends on the standard deviation of the
dependent variable it predicts. This metric can not be compared to a model that
transforms the features to change the standard deviation.

In the equation 3.22, N is the number of points, y; is the ground truth while
f(x;) is the prediction of y;.

S, 20 (yi—f (x))?

N N
RMSE = v MSE (3.23)

3.4.2 Cross-validation

Cross-validation is a model evaluation method where the calibration set is divided
into K subsets, where the model is then trained and tested K times. Each subset is
used once as a validation set, and after K evaluations, the average of all iterations
is used as a model training result. See figure 3.11 for a better visualization.
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Figure 3.11: 5-fold cross validation (Image source [56]).

3.5 Fruit material

The kiwifruit "Hayward" originates from the species "Actinidia deliciosa" and is
just one of many cultivars. Because of its many characteristics, such as its large
size, good taste, and long-term storage potential, it sets the industry standard
compared to the other cultivars. It became widely exported around the globe [57].

3.5.1 Difference between maturity and ripeness

Maturity and ripeness are commonly used as synonyms; however, they have dif-
ferent definitions. Maturity is used in the period before the fruit or vegetable is
harvested. On the other hand, ripening starts when the color, flavor, and texture
are fully developed (matured). After achieving ripeness, the produce starts its

spoilage process 4.

3.5.2 External quality parameters

Many different types of kiwi are cultivated, and each of them has a different com-
position of pigments that affect their color. Researches[58] showed that in "Hay-
ward" kiwi type, the color is almost the same- green at all stages of development,
maturation, ripening, and its outer- and inner- pulp does not change much when
fruit becomes ripe. When it comes to kiwi’s weight, it is also very different for each
kiwi type. Commercially produced "Hayward" kiwifruits typically weigh 95-115g.

“http://eagri.org/eagri50/HORT381/pdf/lec03.pdf
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3.5.3 Internal quality parameters

There are many different physiological and internal parameters that can affect on
kiwi’s quality. In our project, we mainly focused on SSC, firmness, pH.

Firmness is a physical property that is one of the most important indices of
ripeness and quality of many fruits and vegetables. In general, the firmness of
fruits decreases moderately as they become more mature, and the firmness de-
creases quickly as they ripen. Overripe and damaged fruits become soft. Chen and
Sun(1991) in a review of available methods for quality evaluation and sorting of
agricultural products, concluded that the industry accepts firmness as a criterion
for sorting agricultural products into different ripeness groups[60].

SSC is another critical quality parameter used for quality predicting. It in-
dicates the sweetness of kiwifruits in laboratories for research and industry. It is
measured in degrees Brix, which represents the sugar content of fruit juices.

pH measures the relative amount of free hydrogen and hydroxyl ions in the
water or other liquid solutions. It says about how acidic a liquid is, and it has a
range of pH that goes from O til 14, where seven is neutral. A level of less than
seven indicates pH, whereas a pH level greater than 7 indicates a base. When
it comes to fruits, each fruit has a different pH level, and it can change during
ripening.

3.5.4 Harvest and storage

Harvest time for kiwi sort "Hayward" is in Europe from October until April, whereas
in New Zealand, Chile, and Australia, it varies from May until September[61].
Since SSC is the most used ripeness feature for kiwifruit, type "Hayward" is usu-
ally harvested at a 6.2°Brix[ 62] before they have finished maturing. By doing this,
the fruit will remain in good condition while in storage. When this minimum ma-
turity standard is achieved, all the kiwifruits can be harvested in one picking. This
process is done by handpicking. When awaiting transport, kiwis need to be shade
and cool as quickly as possible. Doing this maximizes storage. Later kiwifruits are
transported to destinations and left for softening. Softening of crops depends on
the temperature at which they are stored. Kiwis soften three times faster at 5C
than kiwi at OC. Kiwifruits should be stored at 90 to 95% relative humidity and at
temperatures as neat to OC as possible, but not below that, because these fruits are
sensitive to freezing injury. Even when held in these conditions, they are matur-
ing. About one-third to one-half of the remaining flesh firmness can be lost per
month for type "Hayward." "Hayward" fruits can be stored from 3-6 months under
proper storage conditions [63].
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State of the art

In this chapter, the papers that present previous work done in detecting internal
and external features of kiwifruits are presented. Each sub-chapter contains a
short introduction to the quality metric and its predictions done with spectro-
scopy. The following can be found:

soluble solids content (SSC)
Firmness

pH

Other quality metrics used for kiwis

4.1 Soluble solids content (SSC)

The relationship between SSC measured by refractometer, kiwifruit ripeness, and
eating quality was investigated by Ford in 1971[64]. He found that "Hayward"
kiwifruit harvested with SSC that was less than 6.0°Brix did not give a good fla-
vor when ripe. Because his conclusion was not based on many different chemical
tests on kiwis from different orchards- he stated that this relationship needs fur-
ther investigation. That is why other researchers started to work on this subject
to investigate previous results further. Few years later in 1977 Reid[65] studied
"Hayward" kiwis from various places. The findings were similar to the previous
and showed that kiwis harvested too early would never reach a final SSC as high
to achieve pleasant flavor. In addition to that, these kiwis will have an overall
poor quality. Subsequently, Harman(1981)[66] drew the same conclusion about
low taste-panel scores for harvesting at below 6.0°Brix and recommended a min-
imum SSC value of 6.2°Brix for "Hayward" kiwis. This recommendation was ac-
cepted by the New Zealand kiwifruit industry and led to regulation that harvesting
of "Hayward" kiwi can be done when these have reached a minimum of 6.2°Brix.

Mentioned 6.2°Brix level standard has, however, showed later not to be an
optimum. Hopkirk et al. (1986)[67] concluded in the study that there is a consid-
erable variation in SSC that occurs between individual fruits in orchards at any
time. In addition to that, SSC value also varies along the length of kiwis. Because

45
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of these reasons, there is a possible sampling error involved, which can lead to
difficulties in establishing the generalized relationship between ripeness index at
harvest and final eating quality based just on Brix refractometer value.

4.1.1 SSC as a predictor

Mitchell together with other co-workers ((Mitchell and Mayer 1987),[68],(Mitchell,
1990)[69]) found that SSC level in kiwifruit "Hayward" at the time of harvest was
not a reliable technique for predicting SSC. This is because the huge amount of
carbohydrates are still in the starch form at harvest. The fact observed by Reid et
al. (1982)[70] showed that kiwifruit SSC continues to increase for weeks after the
harvest and that this increase leads to increases in the concentrations of fructose,
glucose, and sucrose. They showed as well that there occurs a fall in starch con-
tent. Mitchell et al. (1989)[71] confirmed these facts and stated that SSC of ripe
kiwifruits could be used as a good predictor of ripeness and eating quality of
kiwifruits.

4.1.2 Spectroscopic predictions of SSC in VNIR spectral range

There are available several types of kiwifruits, and each type has a different SSC
level. Even the same kiwi type, but grown in a different country or region, can
differ from others. Macrae et al.(1989)[72] compared kiwi "Hayward" from two
orchards. They founded that these were not similar and that the major differences
were in total starch concentration. As said previously, starch in kiwifruits changes
with time into SSC and this fact may affect both how the fruit ripens after harvest
and the final sugar level. This may explain the fact that there are different R?
values achieved in previously done studies.

McGlone and Kawano(1998)[73] did a big study on "Hayward" kiwis. They
used one large sample set of kiwis and four smaller ones. Each of them had a
different orchard origin. The biggest set, called KFRM, consisted of 393 New Zea-
land kiwifruit, which had a large final firmness range. The other four sets were as
follows: KOLD(61 Japanese kiwifruits), KMKT(86 New Zealand kiwifruits from
a retail market), KSSZ(43 smaller sizes New Zealand kiwifruits), KLSZ(41 lar-
ger New Zealand kiwifruits). For data analysis, they used three datasets. They
combined sets KOLD, KMKT, KSSZ, and KLSZ to one set-KMIX, consisting of 231
kiwifruits. They combined also all 5 sample sets into a KALL set, that consisted of
624 kiwifruits. All these sets were scanned by NIRSystem 6500 spectrophotometer
that had the spectral range 400-1100nm. Modeling was done using the partial
least squares method (PLS) with a random four-way cross-validation. Results of
prediction were different for each of these sets. Dataset KFRM had R?=0.88, RMSE=0.37,
KMIX had R*=0.85, RMSE=0.47 and KALL had R*=0.90, RMSE=0.42.

In the same year- 1998 Martinsen and Schaare[74] presented their results on
the 650-1100 nm spectrum range. They also used kiwi "Hayward," but exclus-
ively from New Zealand. There were 1800 kiwis used for that study. Six hundred
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of these were harvested at very low SSC, down to 4.7°Brix, and 1200 were col-
lected during the normal commercial harvest 6.2°Brix. The other ones were al-
lowed to ripen for three weeks at room temperature. Each day SSC of end slices
from 6 kiwifruits were measured by refractometer. When there was an increase
of 2°Brix founded at five kiwifruits, 30 kiwis were placed into cool storage at 0°C
to await further analysis. Then the analysis was completed within five days from
that time. Interval Partial Least-Squares Regression (iPLS) algorithm was used to
make a conclusion based on SSC values and achieved spectrum. All this resulted
in R>=0.834 and RMSE = 0.39. These results were worse than ones presented
above by McGlone and Kawano(1998)[73].

Osborne et al. (1999)[75] tested also a low cost NIR spectrometer on 322 kiwis
from New Zealand to estimate SSC and DM at reasonably high speed. PLS regres-
sion in conjunction with wavelength selection provided models with RMSE of
0.27°Brix for SSC. This error was below previously published results by McGlone
and Kawano(1998)[73]. Authors meant that their findings would allow the grad-
ing of kiwifruit by SSC into several classes with distinctly different taste attributes.

4.1.3 Spectroscopic predictions of SSC and TSS in SWIR spectral range

SWIR spectral range is not as widely used as VNIR. However, SWIR was used by
some researchers, and good results were achieved.

Lee et al. in 2012[7] used a spectral range of 408 to 2492 nm for predict-
ing quality features of 1530 "Hayward" kiwifruits that came from three different
farms. Kiwifruits were ripened at 20°C on the day of harvest, and from the next
day, 90 fruits from each of the three farms were evaluated by SWIR spectrum every
five days. All this lasted 25 days. Prediction based on achieved results was calcu-
lated using the modified PLS regression method. Very good results were achieved
for SSC. The prediction was: a standard error of prediction(SEP)[76]= 0.49°Brix
and R? = 0.98.

Later in 2017 Li et al.[8] published also their work that used similar spectral
range: 350-2500 nm. Their results were not as good as these of Lee et al. They
used 1040 "Hayward" kiwifruit samples for prediction of Total soluble solids con-
centration(TSS)!. Li2017Jun used both PLS and SVM for prediction. Best results
were achieved by SVM giving R? = 0.83 for TSS and RMSE = 1.02°Brix.

4.2 Firmness

The firmness and ripeness of fruits at harvest time, storage, and shelf life vary
greatly. This is the case also for kiwifruits. At harvest, "Hayward" kiwifruits are in
range 60-110N[77], and when at "eating ripe" approximately 3.9-7.8 N as Stec et
al. founded in 1989 [78].

The ripe kiwifruits produce much more ripening hormone than unripe ones,
so if the soft fruits are not separated from the firm ones, the increased ripening

!Total soluble solid means amount of total soluble solid present in the unit volume of solution
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reduces the storage and shelf life of the whole batch. That why it is vital to could
accurately measure their firmness and separate them.

There are many different methods for measuring firmness, both destructively
and non-destructively. The most common one is by using a penetrometer. Some
others methods were developed, but there are very rarely used today (Chen and
Sun(1991)[59]).

4.2.1 Spectroscopic predictions of firmness in VNIR spectral range

In the study of McGlone and Kawano from 1998[73], mentioned already in 4.1.2,
researchers tested also prediction of firmness on their sets. The combined KMIX
set that consisted of four subsets with a total number of 231 kiwifruits achieved
the worst results of R?=0.42, RMSE=11.8 N. The results were better for a set
KALL that consisted of five subsets with together 624 kiwifruits. R? resulted in
0.66 value and RMSE= 7.8 N. The best result was on the set KFRM- a set of 393
New Zealand kiwifruit of a large final firmness range. Within this narrow, in terms
of orchard origin and size, the kiwifruit dataset was produced a better firmness
model giving a R2=0.76 and RMSE= 7N. The authors stated in conclusion that:
"this model performed poorly against independent datasets, suggesting the in-
fluence of secondary correlations due to fruit characteristics that are not directly
related to fruit firmness"[73]. For all these sets, a PLS was used as a model applied
on the spectral range of 400-1100 nm.

The results from more recent studies were different. Berardinelli et al. in
2019[79] used a prototype based on a NIR sensitive camera and a Xenon lamp
to scan "Hayward" kiwis. Their prototype was set up and used to capture 8-bit
grayscale images of the radiation passed through the kiwifruits. Then the sum
of the pixels with distinct gray tone was used to build models. Researchers used
116 kiwifruits with firmness values measured by a penetrometer in the range of
0.8N to 87N. They used different techniques for prediction, but the best result
was achieved by the PLS algorithm that allowed prediction of the firmness with
R?>=0.777 and RMSE = 13N.

4.2.2 Spectroscopic predictions of firmness in SWIR spectral range

Lee et al. (2012)[7] and Li et al. (2017)[8] have used SWIR range for predictions of
firmness. Lee et al. achieved SEP of 3.32 N and R? = 0.88 using "modified" PLS on
the spectral range 408-2492 nm. Their results was much better than those of Li et
al. These researchers used both PLS-r and SVM-r on the spectral range 350-2500
nm. Models were tested on 2125 "Hayward" kiwifruits and resulted in R? = 0.6
and RMSE= 3.92 N for prediction.

4.2.3 Non-destructive measurements of kiwi’s firmness in the field

In 1989 in Japan there was developed and commercialized a device- HIT-Counter I
and later an improved version of it- HIT-Counter II[80] that could non-destructively
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measure kiwis firmness. It evaluates the firmness by applying non-destructive
compressive force. The machine applies the force within the range of elasticity
to not damage an object, and no bruising occurs. It uses deformation as an index
for evaluation.

Researchers carried out conventional, destructive fruit firmness tests to de-
velop this device and compared it to those achieved by non-destructive machines.
The relations (R®= 0.927) between the HIT-Counter values and the internal qual-
ity features, including sugar and acid contents, were investigated. Findings showed
that HIT-Counter was highly correlated with a destructive firmness tester. The cor-
relation between its values and the pH values of kiwifruits was high (R?= 0.821).
No clear relation between the sugar content and device’ values was observed. By
this, developers concluded that HIT-Counter could be used as an index of the in-
ternal quality evaluation based on the pH.

The HIT-Counter II device did not require any technical skills and is easy to
operate. There is a possibility to use it to evaluate ripeness, prime eating condi-
tion, quality control in shipping, quality evaluation during storage. Although the
device was produced commercially over 30 years ago, it was not widely used in
the industry.

In 1999 Peleg[81] developed a commercial fruit firmness sorter for various
fruit types and shapes. The machine provided a system that allowed physical con-
tact of the inspected fruits by a sensor on the line and, based on the achieved
results to sort fruits into a firm or soft without producing any damage. This sorter
was successfully calibrated and tested on "Hayward" kiwifruits. For the experi-
ment, two samples were sorted by this machine. The first sample had 246 kiwis
that were from a cold storage room. The second sample had 213 kiwis that were
stored before sorting in a controlled atmosphere. After sorting, their firmness val-
ues were compared to those achieved by a regular penetrometer. Results showed
larger mean firmness readings of the fruits stored in a controlled atmosphere, but
the machine successfully separated kiwifruits into correct firmness ranges.

4.3 pH

The industry standards for quality control are SSC and firmness. However, there
were also attempts to use pH for this. Although there are not many studies try-
ing to predict pH level in kiwis, some researchers have gotten good results using
spectroscopy for prediction.

4.3.1 Spectroscopic predictions of pH in VNIR spectral range

In 2010 Moghimi et al.[82] used Vis/NIR spectroscopy and chemometrics to pre-
dict pH of kiwifruit. They obtained transmission spectra of 100 "Hayward" kiwifruits
in the wavelength range from 400 to 1000 nm. Their prediction models were
developed using PCA and PLS. They resulted in quite high correlation coeffi-
cient(R)[83]. It was R=0.943 and RMSE 0.076, which are better than later find-
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ings of Zhu et al.[9]. These authors have used HSI for predicting pH of kiwifruits
based on variable selection algorithms and chemometric models. There were 133
kiwis of 3 different types: "Xuxiang," "Hongyang," "Cuixiang," and an HSI push-
broom reflectance imaging system covering 450-1670nm spectral ranges was used
for acquiring images of them. From all of the tried models (Genetic Algorithm—Partial
Least Square) GAPLS [84] and (Least-Squares Support-Vector Machine)L. S-SVM
[85] gave the best results for R= 0.88 and RMSE=0.0152.

4.3.2 Spectroscopic predictions of pH in SWIR spectral range

As mentioned before, there are, in general, not so many studies that were done on
pH. The only study that was available on the SWIR spectral range for "Hayward"
kiwifruits was the one did by Lee et al. in 2012[7]. By applying a spectral range
of 408 to 2492 nm on 1530 "Hayward" kiwifruits, they have gotten better results
than researchers that used the VNIR range described in the section above. pH
prediction was calculated using the modified PLS regression method and resulted
in a SEP of 0.28% and R* = 0.91.

4.4 Other quality metrics used for kiwis

4.4.1 Skin color as predictor

There are around 60 species of kiwi that are cultivated[86], and each type has a
different composition of pigments. This affects color as well as health-promoting
effects of them as founded by Nishiyama et al. (2005)[87].

During fruit maturation, flesh color can vary, and most fleshy fruits are green
only during the earlier stages of development. In kiwis used in this project, Actin-
idia deliciosa "Hayward" kiwis, which are also sometimes called Actinidia chinesis
"Hayward," it is different. Researchers Montefiori et al. (2009)[ 58] compared these
kiwis to three types of A. chinensis: "Wuzhi No. 3", "Hort16A" and "Jinfeng". These
results are shown in 4.1. At the beginning of their study the pericarp tissue? of four
varieties had a hue angle® of h° >110°. All these kiwis were recognized as being
green. After an almost three-month period during which samples were harves-
ted, there was only a slight drop in the hue angle for "Hayward" kiwis. "Hayward"
kiwifruits appeared green at all stages of development: maturation, ripening, and
its outer and inner layers retained their chlorophyll* Figures nr: 4.2, 4.3 show
this. Because of the lack of changes, the ripeness level of kiwi type "Hayward" can
not be predicted just by skin color and hue angle.

2In fleshy fruits, the outer layer is the pericarp. The pericarp- "is the tissue that develops from
the ovary wall of the flower and surrounds the seed to protect it in environments apart from the
parent plant"[88]

3Hue is one of the main properties of color; typically represented by a single number, often
corresponding to an angular position around a central or neutral point or axis[89].

“Chlorophyll is a green pigment found in plants.
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Figure 4.1: Outer and inner pericarp colour in fruit of Actinidia deliciosa "Hay-
ward" (A) and A. chinensis: "Wuzhi No. 3" (B), "Hort16A" (C) and "Jinfeng" (D)
developing on the vine. Data points are means + standard errors. (Image source

[58]).
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Figure 4.2: Unripe "Hay- Figure 4.3: Ripe "Hay-
ward" kiwifruit.(Image ward" kiwifruit. (Image
source [58]). source [58]).

4.4.2 Density as a predictor

The density of a given substance is its mass per its volume; it varies with temper-
ature and pressure, but this variation is typically small for solids and liquids[90],
so it can be neglected. Density has been used as a good estimator for quality eval-
uation for vegetables, fruits[91], [92] and as well as for evaluating of ripeness of
"Hayward" kiwifruits (Jordan et al. (2000)[93]).

4.4.3 Summary of previous research

Most of the papers done on "Hayward" kiwi have been on SSC and firmness de-
termination. This was not surprising because both SSC and firmness are used as
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standard parameters for the determination of quality and ripeness. Although there
are much fewer studies on the SWIR range, they gave better results than VNIR.
In fact, all of the best results were achieved on SWIR spectral range 408-2492
nm. Additionally, these results were produced by the same researchers Lee et al.
(2012)[7] using "modified" PLS model. For SSC they achieved R? = 0.98, for firm-
ness R? = 0.88 and for pH R? = 0.91(table 4.1).

There has been some confusion about the accuracy achieved by Zhu et al.
(2017)[9]. Review articles on the subject have assumed that this article used R2.
However, this is not the case. This article used R and not R?, and we recalculated
their accuracy into R? so that they are more comparable to other results.

Spectral

‘ Reference Kiwi variety ‘ ‘ Model ‘ RMSE, R? ‘ Samples | Year
range (nm) P
Lee et al.(2012)[7] "Hayward" 408-2492 "modified" PLS | N/A 0.980 | 1530 2012
McGlone et al.(2002)[91] "Hayward" 300-1140 PLS 0.320 0.940 | 360 2002
McGlone and Kawano(1998)[73] | "Hayward" 400-1100 PLS 0.390 0.900 | 624 1998
McGlone and Kawano(1998)[73] | "Hayward" 400-1100 PLS 0.370 0.880 | 393 1998
McGlone and Kawano(1998)[73] | "Hayward" 400-1100 PLS 0.470 0.850 | 231 1998
Martinsen and Schaare(1998)[74] | "Hayward" 650-1100 iPLS 0.390 0.834 | 1800 1998
SSC Berardinelli et al. (2019)[79] "Hayward" NIR PLS 1.400 0.550 | 116 2019
Guo et al.(2016)[39] Xuxiang', 865-1711 | FS-LSSVM 0.589  0.971 | 200 2016
'Huayou'
Schaare and Fraser(2000)[94] Yellow-fleshed 300-1100 PLS N/A 0.930 | 1000 2000
not stated,
Osborne et al. (1999)[75] from New Zealand 300-1140 PLS 0.270 N/A 322 1999
TSS | Liet al.(2017)[8] | "Hayward" 350-2500 | SVM-r | 0.660 | 0.830 [1040 2017
Lee et al.(2012)[7] "Hayward" 408-2492 "modified" PLS | N/A 0.880 | 1530 2012
Berardinelli et al. (2019)[79] "Hayward" NIR PLS 13.0 0.777 | 116 2019
McGlone and Kawano(1998)[73] | "Hayward" 400-1100 PLS 7.00 0.760 | 393 1998
McGlone and Kawano(1998)[73] | "Hayward" 400-1100 PLS 7.80 0.660 | 624 1998
Liet al.(2017)[8] "Hayward" 350-2500 SVM-r 3.04 0.600 | 2125 2017
McGlone and Kawano(1998)[73] | "Hayward" 400-1100 PLS 11.8 0.420 | 231 1998
"Xuxiang",
Zhu et al.(2017)[9] "Hongyang", 450-1670 LS-SVM 17.9 0.930 | 133 2017
"Cuixiang"
Lee et al.(2012)[7] "Hayward" 408-2492 "modified" PLS | N/A 0.910 | 1530 2012
Moghimi et al.(2010)[82] "Hayward" 400-1000 PCA, PLS 0.076 0.889 | 100 2010
pH "Xuxiang",
Zhu et al.(2017)[9] "Hongyang", 450-1670 GAPLS-LS-SVM | 0.0152 | 0.823 | 133 2017
"Cuixiang"

Table 4.1: Literature review of kiwifruits.
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Data acquisition

In this chapter the following can be found:

Fruit Sampels

Hyperspectral system

RGB imaging

Physiological measurements.

The data acquisition lasted five weeks, where two of these weeks were used
for a pilot project. We learned during it about the scanning environment and
procedures. Data acquisition also involved HSI, RGB imaging, and physiological
measurements. Among these physiological measurements were salt, SSC, firm-
ness, and pH level. Both the kiwi and kiwi peels were captured with HSI. During
each week, the data collection took place for three days with one day in between,
e.g., Monday-Wednesday-Friday. This gave the kiwi time to ripen, as all of the
kiwis were gradually obtained with the same ripeness.

53
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Figure 5.1: Acquisition workflow.

5.1 Fruit samples

Kiwifruits (Actinidia deliciosa "Hayward") were harvested in Italy and delivered to
us through BAMA at the beginning of February 2021. They provided us with boxes
(1-9), with each having 55 fruits, giving us a total of 495 kiwis. Upon arrival, the
boxes were stored in the refrigerator at 4°C to prevent them from ripening at a
fast pace.

Each particular day in the data acquisition weeks included HSI of multiple
boxes of kiwi, except on day 3, but only one box to go through RGB imaging and
physiological measurements, see table 5.1. The HSI of the same boxes throughout
the week was additional data needed for tracking the spectral changes in kiwi. At
the start of each week, three kiwi boxes were carried out from the refrigerator
and labeled. Then the measurements began.

The first measurement was the weight and circumference of each kiwi; the cir-
cumference was measured using measuring tape along the longest axis. After they
were measured, kiwis in batches of 8 were placed into egg cartons and imaged
using HSI. The egg cartons worked as a stabilizer to keep the kiwis from wiggling.
When the imaging of every kiwi in a box was complete, it got either placed into
a refrigerator for storing at 8°C (seen on figure 5.2) or sent to RGB imaging and
physiological measurements. Table 5.1 illustrates which boxes are being imaged
and which box is being measured (RGB and physiological measurements) each
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Imaging (HSI)

55

Physiological measurements and RGB imaging

Day1 Box1, Box 2, Box 3 Box 1
Week 1 Day2 Box 2, Box 3 Box 2
Day 3 Box3 Box 3
Day1 Box4, Box 5, Box 6 Box 4
Week 2 Day2 Box5,Box6 Box 5
Day3 Box6 Box 6
Day1 Box7,Box 8,Box9 Box 7
Week 3 Day2 Box8,Box9 Box 8
Day3 Box9 Box 9

Table 5.1: Weekly plan of which boxes are being scanned by HSI and what box
are being measured destructively for each particular day.

day.

Figure 5.2: Kiwis in 8°C storage.
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5.2 Hyperspectral configuration

The HSI system consisted of two different HS line-scanner cameras (VNIR! and
SWIR?), a laboratory rack with conveyor belt, two full-range light sources and a
computer. The cameras have the following specifications:

HySpex VNIR-1800 HySpex SWIR-384

Sensitivity range (nm) 400-1000
Spatial pixels 1800
Spectral sampling (nm) 3.26
Spectral channels 186

Bit depth 16
Sensor type CMOS
Field of view 17°

Max speed (fps) 260

930-2500
384

5.45

288

16

MCT

16°

400

Table 5.2: Important specifications of VNIR-1800 and SWIR-384.

Our hyperspectral setup had the cameras mounted vertically with one lamp
for each camera. There are several reasons why we chose to use this setup.

————————————————— » Hyperspectral

cameras

Illuminant

Stabilisation object
Kiwi samples x
" \

Moving platforn:\
iy N

llluminant

Spectralon tile
X

Motor
N

Translator stage
N

Figure 5.3: Our setup with two hyperspectral (HS) cameras, two illuminants,
conveyor belt with moving platform, spectralon tile, and kiwis on a stable surface.

It was possible to scan with both cameras at the same time while not needing
to change the lamp geometry by using this setup. This would have been the case
if both lamps were used for each camera. Using one lamp for each camera, we
halved the scanning time and exposed the kiwis for less heat.

Yhttps://www.hyspex.com/hyspex- products/hyspex-classic/hyspex-vnir-1800
2https://www.hyspex.com/hyspex-products/hyspex-classic/hyspex-swir-384
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Although the cameras could have been slightly angled towards a common field
of view, we discarded this solution as the images would have different viewing
angles, which would make them harder to compare and possibly merge.

Even though our setup meets our main demands, it still has some drawbacks.
By assigning one lamp to each camera, the light casts shadows differently as the
kiwis do not have a flat surface. This makes it harder to compare the same points
of a kiwi in both VNIR and SWIR.

5.2.1 Hyperspectral imaging

The camera software and image acquisition settings (camera height, focus, illu-
minants) were tuned before imaging to ensure the scene and image capturing
remained as equal as possible between days and scans. The kiwis were put on the
conveyor belt 30 cm away from the lens of the hyperspectral cameras as this was
in the depth of field. The reflectance target was adjusted so that it was the same
distance away from the cameras.

There were some last procedures before scanning took place. We ensured that
the lights were aligned with the line scanner to give close to uniform light distri-
bution at the focus point. External lights were turned off to not interact with the
imaging process.

The setup was optimized for speed as the lamps heated the kiwis. This was
done by using a lower frame period (6000us and 26000us for vnir and swir re-
spectively) to make the conveyor belt move faster while scanning. A fan was also
set up about 80cm away from the kiwis for further cooling.

5.2.1.1 Parameters and filters

Integration time is a given time the sensor uses to measure a signal, while frame
period is how long the shutter is open each second second®. The camera paramet-
ers were adjusted to allow for rapid imaging of kiwi. This meant that the frame
period and the integration time were short (integration time equal to 6000us) and
that equalization and polarization filters were not applied. This compromise was
made as we tried to minimize the heating of the kiwis when imaging. Both the
equalization and polarization filter would have increased the image quality, but
we decided not to use them due to the cameras needing a longer exposure time.
This does not mean the image quality was poor, but filters could have improved
it. The same holds for not using frame averaging.

3https://www.ophiropt.com/laser- -measurement/knowledge- center/article/8003
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5.2.1.2 Reflectance target

The reflectance target (5.4) consists of four different
panels that reflects light differently. The target reflects
diffusely, as explained in section 3.1.4.1. These four
surfaces are constructed to reflect 99%, 50%, 25%, and
10% of the incident light. Since the surfaces do not re-
flect uniformly for all wavelengths, the manufacturer
provided a table for all precise reflectance values.

Figure 5.4: A multi-step
reflectance target (Image

5.3 RGB imaging source [95]).

In addition to HS images, different RGB images in a

light booth were also captured. The light booth (Veri

Vide CAC 60-5) that can simulate four different lighting

conditions; D65, D50, UV, and F (Fluorescent light, but only D65, D50, and F), was
used for RGB images. The images were captured using an iPhone 12 Pro Max with
the primary lens. The specifications # of the phone are listed below:

e Primary: 12 MP sensor (1.4 micron photosites), 26 mm-equivalent f/1.6-
aperture lens, phase detection autofocus(PDAF), optical image stabilizer(OIS)

e Resolution: 4032x3024 pixels

e Compression: HEIC

Das= 230 *F

P\

(a) Veri Vide CAC 60-5 light booth for (b) Sample RGB image in fluorescent light
simulating lighting conditions

Figure 5.5: A light booth and an example of a RGB image.

“https://www.dxomark.com/apple-iphone-12-pro-camera-review-great-smartphone-video
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5.4 Physiological measurements

After the kiwis were imaged in the light booth, the destructive physiological meas-
urements were taken- this involved measuring firmness, sugar content (SSC), salt,
and pH of each kiwi. More detailed information about the measurements carried
out can be found in Appendix D.

5.4.1 Firmness

Before measuring the firmness of a kiwi, we gently peeled a strip of the skin using
a fruit peeler on both sides. Then we measured the kiwi flesh firmness (meas-
ured in Newton) at where they were peeled using a stand-mounted penetrometer
(Vaiseshika Digital Fruit Pressure tester) mounted to a fixed frame with an 8mm
diameter tip. The speed at which we did the measurement was 5mm/s, as higher
speeds could give improper results [96]. The depth at which we penetrated was
8mm, the same as the diameter of the tip. The penetrometer used can be seen in
figure 5.6.

| cALERATION |

DISPLAY REVERSE

PENETROMETER

FRUIT FIRMNESS TESTER

Figure 5.6: Penetrometer used for the firmness measurements.

After both sides had been measured, we cut the kiwi into four parts, two slices,
and two halves. This was done by the following procedure: cut the kiwi in the
middle to make one stem and one bottom half. Then cut a 3mm slice from each
half, as illustrated in figure 5.7. A firmness measurement of the core of each half
was then measured. We used the same penetrometer setup as the first one.
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[
3mm 3mm

Figure 5.7: Slicing of the kiwis. H1 and H2 represents kiwi halves and S1 and S2

slices 3mm thick.

5.4.2 Brix refractometer

One of the slices (S1 or S2 in figure 5.7) was used for measuring sugar (SSC) using
the Brix refractometer (Digital Atago Pal-1 Digital pocket refractometer shown in

figure 5.8.

The slice was put into a garlic squeezer and squeezed so that both 3-4 drops
of kiwi juice entered the device. After the device had been measured, we clean it
using water and soft tissue so that no kiwi juice was remaining.

A Brix refractometer measures the sugar content
(Measured in soluble solids content (SSC)) in an
aqueous solution by refraction. This solution could be
from fruits, vegetables, juices, soft drinks, wine, beer,
or other plant-based foods [97]. When light enters a
liquid at an angle, it bends differently depending on
the density of the liquid. Using the fact that water
and water with dissolved sugar have different dens-
ities, the refractometer can estimate how much sugar
is in a solution/liquid. The measurements are in Brix
degrees(°Bx), where one degree Brix corresponds to 1
gram of sucrose in a 100 gram solution. However, there
are other dissolved solids than sucrose in the solution.
The Brix refractometer only approximates the dissolved
solids content (known as SSC)[98].

5.4.3 Salt meter

The same slice and procedure from measuring SSC

Docket

Figure 5.8: Digital Atago
Pal-1 Digital pocket re-
fractometer.

were used to measure salt with the salt meter (Atago Pal-Salt seen in figure

5.9)[99].
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The salt meter uses the conductivity of the solu-
tion as a predictor for how much salt it contains. The
conductivity is found by transmitting a small electric
charge through the solution. The Pal-Salt can measure
the salt concentration in the range from 0.00 to 10.0%
(g/100mL) with an accuracy of +£0.05% for the salt
concentration of 0.00 to 0.99%.

Salt meter is widely used in the food industry to
check salt content in various products [ 100]. It is not as
often used in fruit measurements because these values
are not so significant in fruits.

5.4.4 pH and temperature

One of the two halves (H1 or H2 in figure 5.7) was also
used for measuring pH and temperature. Both meas-
urements were done by inserting a rod into the kiwi
half and waiting for the value to converge. The pH rod
was cleaned and put into a jar of water between each
measurement.

61

Figure 5.9: Pal-Salt: Di-
gital hand-held salt meter
by Atago.

A pH meter is an instrument that determines the acidity or alkalinity expressed
as °. The range measured layed between 0-14 pH and £1000mV (redox).

(a) pH measurement of the kiwi (b) Portable pH meter, pH 7 model

Figure 5.10: The pH meter used and how it was operated.

5In chemistry, pH ( denoting "potential of hydrogen" or "power of hydrogen") is a scale used to

identify the pH or basicity of an aqueous solution[101]
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5.4.5 Kiwi slices

The other slice was put on a tray to be imaged using hsi. This HSI took place
during the physiological measurements and used the same camera parameters as
the other measurements. The slices were imaged at an equal distance as the kiwis,
30cm from the lens.

5.5 Normalization

Because the images captured by the VNIR and SWIR cameras were raw image
files, they included some noise. Radiometric calibration was applied to remove
noise, increasing the Signal to Noise Ratio (SNR), and then data was transformed
into reflectance, called normalizing. This is because reflectance gives information
about the object in the scene and not just the radiance captured by the camera. It
also makes the data easier to interpret.

5.5.1 Radiometric calibration

Since the raw images contained dark current noise®, it was removed by using
software provided by HySpex. The program only subtracted the dark current from
the raw image. The raw image files were stored as backup.

5.5.2 Transforming to reflectance

The images were transformed into reflectance by using the darkest shade (10%)
on the reflectance target. This shade was manually selected on both the VNIR and
SWIR images. However, since the reflectance target stayed in the same place for
all images, it was possible to automate.

We normalized the image by transforming each column into reflectance one
at a time. This was to reduce artifacts from influencing the normalization process
and because the radiance along the spatial points of the image is not uniform.
The points used as reference values in each column were also averaged by taking
the mean of 20 pixels below and above. This was to compensate for noise and
unwanted particles on the reflectance shade.

Further calculations were made to retrieve the reflectance of the kiwi. Since
the actual reflectance of the reflectance panel is known, light emitted from the
source can be calculated. This was done according to Equation 3.3. Equation 3.2
was then used on all columns for all bands.

Hanning window filter with window size 11 was applied to the spectra after
normalization to increase the Signal to Noise Ratio (SNR) ratio. However, several
smoothing parameters were evaluated before coming to this conclusion; among
tried smoothing filters were median and mean filters.

6Section explaining dark current noise 3.1.3.2
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Figure 5.11 shows the results before and after applying the hanning window.
From the figure it is possible to see that the SNR, measured with standard devi-

ation in the spectra has decreased.

Standard Deviation reduction: 0.00014151242597085917
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Figure 5.11: Spectra of kiwi white core before and after applying the Hanning
window smoothing filter with size 11. Wavelength is in nm.

When smoothing spectra, there is a trade-off between noise reduction and
data retention. If the spectra is smoothed too much, fewer data about the kiwi is
retained. Therefore it is necessary to experiment and find a suitable smoothing
filter that reduces noise and does not erase much spectral information.

5.5.3 Verification of normalization

In order to verify that the normalization transform was correctly done, we com-
pared the normalized values on a color checker and reflectance target with the
ground truth. To make these values comparable with the HS images normalized
for kiwi, they were retrieved using the same camera parameters and normaliza-
tion patch (10%).

The X-rite passport ColorChecker (seen in figure 5.12) was used and had its
ground truth color values provided by the manufacturer. The shades used to com-
pare normalization values were the top row of shades seen on the ColorChecker in
figure 5.12. These shades are called Black, N3.5, N5, N6.5, N8, and white. From
these shades, Black towards N6.5 was used. The number after "N" represents the
whiteness of a shade (Munsell value), which correlates with its average reflect-
ance value. The average reflectance values were retrieved from a technical review
[102].
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Figure 5.12: X-rite passport ColorChecker

To calculate the average reflectance values of these shades, wavelengths from
380 to 730 nm were used; this was the same as from the technical review. The
values from these wavelengths were then averaged and calculated to be in per-
centage.
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Figure 5.13: Measured ColorChecker reflectance values.

The x-axis on figure 5.13 shows the different colors from black to N6.5. It
was found that the brighter the reflectance, the more inaccurate the captured
reflectance values were. The same conclusion can be made from the spectra of
the colors retrieved from [103].



Chapter 5: Data acquisition 65

99%

= Measured
— Actual

Reflectance
=}
o
(=]

0.525 1 — Measured
— Actual

=
n
=
=}

0.475

Reflectance

0.450

0.275 4 —— Measured
—_— Actual
0.250

0.225
0.200

10%

Reflectance

0.130 { —— Measured

— Actual
0125

0.120

Reflectance

0.115

0110

Band

Figure 5.14: The ground truth compared to the captured reflectance of the 4
different shades (99%, 50%, 25%, 10%) on the reflectance target used in the
data acquisition.

Figure 5.14 shows the difference between the captured reflectance values from
the reflectance target and the ground truth. The same conclusion from the Col-
orChecker can also be made here. As the reflectance of the ground truth increased,
the more significant the difference between the captured reflectance values and
ground truth.

The reflectance values captured from the 10% patch on Figure 5.14, is very
close to the ground truth. This is because the HS image was normalized using this
patch. If the normalization was done using a different patch, the same would be
observed only for that patch. The same would also happen on the ColorChecker
if it was normalized using the 99% patch, the whitest shade would be closest to
the ground truth.

The MSE between the real and captured reflectance percent from the Col-
orChecker was around 0.0016 and 0.0067 for reflectance target. This is a tiny
reflectance error. Therefore the normalization is correct. However, there are re-
flectance values captured from the kiwi closer to the ground truth, and some of
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them will be further away.

An attempt was made to find the best SG-filter parameters using the Col-
orChecker. However, this was without success. The parameters found did not work
well when used as pre-processing for the models.

This verification was also done on a HS image that was not smoothed with the
Hanning window. This showed that with the Hanning window, the accuracy was
40% better on the ColorChecker and about 1% better on the reflectance target.

5.6 Physiological measurement visualization

After we collected the physiological measurements, it was necessary to visualize
the data to see any trends. We used boxplots to visualize how the data varied from
day to day because it compares the data value distribution well. Using boxplots,
we understood what could be explored in the dataset and its primary qualities.
This was important as we could prioritize the dataset parameters that made the
most sense to utilize in our models.
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Figure 5.15: Correlation matrix of cleaned dataset.

We also used a correlation matrix to see how the dataset correlated within
its internal parameters (see figure 5.15). This strengthened our confidence in
what parameters were the most valuable for determining the ripeness of the kiwi.
By looking at the matrix (figure 5.15), we can see that ssc and firmness has the
highest correlation, which indicates that these parameters have the best trends.
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Even though we have a large dataset that includes many of the internal para-
meters of the kiwi, there is still some uncertainty as we have little information
about the harvesting and transportation of the kiwis. As a result, we do not know
how much the kiwis had ripened before we received them. Firmness and SSC have
different periods of rapid change, and if our data does not include this stage, the
data might be skewed more towards fully ripe. This means that we could have
fewer data points where the kiwis are unripe, making it harder to determine the
ripeness by using models. Our limited amount of samples strengthens this uncer-
tainty. Four hundred fifty-five kiwis is a lot and takes a long time to acquire meas-
urements and images for. However, a larger dataset in the specific rapid change
periods would represent a customarily distributed dataset.

There is also a possibility of human error when writing down measurements.
Even though we tried our best not to make any mistakes, the error is probable
when inputting around 4000 values manually.

5.6.1 Firmness

avg Flesh

Figure 5.16: Flesh firmness from the 9 days of measurements, where each box
(day) has its own color.

Figure 5.16 shows the average flesh firmness of each box (day) of measure-
ments, and we can see a downward trend as the kiwis ripen. This is expected
because the firmness decreases as the kiwi ripens. As mentioned in section 5.1,
three boxes were taken out of 4° storage each week and placed in 8° storage
between scanning days. This caused boxes 2 and 3 to ripen faster than box 4,
which was stored at a lower temperature. The same applies to box 5 and 6 com-
pared to box seven, as we can see as a "staircase" effect in figure 5.16. This did
not affect the results of our models as the spectra and measurements are being
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compared. However, it is an interesting finding that the kiwi might ripen faster at
two weeks stored at 4° than one week stored at 8°.

There were several sources of error while measuring firmness. Firstly, The kiwi
samples vary in shape, size, and firmness, which impacts the results. Secondly,
manual measurements cause some variation in speed of penetration with the pen-
etrometer, which ideally should be constant for all samples. This human error was
somewhat reduced as the penetrometer was mounted but could not be eliminated.
The peeling was also done manually, which caused variation in the depth of peel-
ing. This might impact the firmness measurements as some kiwis might be softer
towards the core of the pulp.

Week 1 Week 2 Week 3

Monday - 19.7 °C | 235 °C
Wednesday QEE: @ 24.4°C 238°C

Friday 183 °C 23.0°C (22,7 °C

Figure 5.17: Kiwis’ temperature during destructive measurements.

In the kiwi industry, there is a standard that states that the firmness of kiwifruits
should be measured at temperatures between 0 and 5°C-ideally at 0°C[104]. It is
because the temperature of fruit is known to affect firmness measurements[105].
Our firmness measurements were performed at 20° (see figure 5.17) and could
vary between boxes and batches as there were delays and other contributing
factors. This temperature variation might also cause some errors in the kiwi firm-
ness measurements.
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Figure 5.18: All the firmness measurements (top/bottom flesh and both sides of
the core) and the distribution of values.

5.6.2 SSC

The boxplots of SSC show that there is an upwards trend of sugar content in the
kiwis (see figure 5.19). The first two boxes have the most significant leap as we
did not let the Brix refractometer fully converge the first two days of scanning.
Even though the measurements on the first two boxes are less accurate compared
to the rest of the boxes, there is still a clear trend of increase in SSC.

Since we are not sure if all the measurements on boxes 1 and 2 are accurate,
we cannot assume that the change in SSC is as rapid as the boxplot shows. This
further enhances our uncertainty of exactly what stage the kiwis were at when
we received them. Another source of error is the temperature of the kiwis as we
measured with the Brix refractometer. The temperature should ideally be 20°, but

as we had many samples to measure, this was not always the case, as seen in
figure 5.17.
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Figure 5.19: SSC from the 9 days of measurements, where each box (day) has
its own color.

As with firmness, the variation between samples can also sway the results
as we do not have many samples in each box. It is mainly the sugar gradient
(difference in SSC from the core versus the edge of the pulp) within the kiwis that
vary and depending on how significant this gradient is and which part of the pulp
was used when squeezing the sugar mixture, the result might change a lot [94].
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Figure 5.20: ph and salt measurements over 9 days (boxes), where each color
represents a day/box.

As we can see in figure 5.20, there is no evident trend for salt or pH in our
dataset. This might be why very few papers have attempted to use these paramet-
ers for the quality assessment of kiwi fruits. In the correlation matrix figure 5.15,
we can see that salt has a low correlation with the other parameters. The rows and
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columns are colored blacks with a correlation value mostly less than 0.1. pH on
the other hand, correlates more with firmness and sugar, which indicates that it
could have potential as a quality parameter even though there is no evident trend
in the boxplot.

For both parameters, there is some source of error in the measuring equip-
ment. This source of error is larger on the equipment used for measuring salt but
cannot be neglected for pH. Both measurements were done manually and can
therefore include some human error.

The salt meter used in this project does not work optimally with mixed con-
tents, impacting the results. How much of an impact the salt meter had is hard to
speculate on, but better equipment for measuring salt would increase the accuracy
of the measurements.

For pH, the values were rounded up by one decimal, which might skew the
data more towards larger values and hide some of the smaller trends.






Chapter 6

Data pre-processing and
modeling

Hyperspectral images are composed of many data (e.g., one HSI image of 7000x1800
pixels and 186 spectral bands contains more than 2 billion individual pixels),
which makes them challenging to work with. In order to handle data at this scale,

it is necessary to reduce it into something more manageable by removing unin-
formative and redundant data. In addition to reducing the data, pre-processing
also involves cleaning it from artifacts like random/systematic noise and physical
phenomena.

After the pre-processing, the spectral data is combined with data from the
physiological measurements to find relationships between them using different
machine learning and regression models. Since not all wavelengths are relevant
for modeling this relationship, dimensionality reduction is used to locate the rel-
evant ones.

This chapter will cover the pre-processing steps used for extracting and creat-
ing spectral datasets, exploring spectral data, and cleaning it using three different
methods before it is used for modeling.

/" Data pre-processing Machine learning
! , models

. N - p - N p “
Create spectral ‘ o Spectral pre- ' . Dimensionality
: dataset > ‘ Wi processing ' Datasplit reduction

J

|| . S

Regression

Effective wavelength models

‘ Spectral plots ‘ ‘ Derivatives selection

Scatter correction \ Data compression

Figure 6.1: The steps involved in pre-processing HS data before using it to train
models.

73



74 Moen, Kohmann, Saidi, Nilsen: HSI kiwi quality parameters

6.1 Programming languages and libraries

For analyzing the collected data, the programming language Python was used.
This is because Python provides easy access to comprehensive libraries for sci-
entific purposes. Here is a list of libraries used:

Pandas (CSV file handling) [106]

Numpy (Numerical calculations) [107]

Spectral python (Hyperspectral file handling) [108]
Sklearn (Machine learning algorithms) [109]

Tensorflow (Artificial neural network)[110]

Seaborne & Matplotlib (Visualizations)[111][112]
Opencv (Morphological operations on images) [113]
XGboost (Tree regressor) [114]

Statmodels (Statistical models, variable selection) [115]
SciPy (Signal processing, Function minimalisation) [116]

—_
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6.2 Automatic spectra collection

We automated the process to save time, make new spectral datasets with ease,
and reduce errors caused by human mistakes like false labeling. The program ran
under human supervision to ensure no mistakes were made. This was necessary
as some variations in kiwi size, geometry, and the kiwi’s position in the frame were
necessary.

As we had four months to plan and execute the project, automating the col-
lection of spectra was the only way to go. We estimated that with three weeks, six
boxes to be scanned each week with 55 kiwis in each box, two camera types, and
two datasets would require labeling of 3960 samples.

3x6%x55%x2x2=3960

When labeling, it takes time to load the images and create the mask of each kiwi;
thus, we assumed that, on average, the time to label each kiwi would be between
1 and 2 minutes.

3960 samplesx[1,2] minutes = [3960,7920] minutes = [66,132] hours

The main differences between VNIR and SWIR images when collecting the
kiwi spectra was kernel size for morphological operations and threshold values.
The kernel was scaled because of higher spatial resolution in VNIR images com-
pared to SWIR.

Creation of kiwi mask

To represent the position of each individual kiwi, a binary mask was created as
this makes calculating center points in the next section more accessible.
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Figure 6.2: Flow of the automatic spectra collection algorithm.

The first step in creating the mask was to do simple thresholding on a grayscale
representation of the image. Through experimenting, it was found that the best
thresholding bands were 130 and 34 for VNIR and SWIR respectively. In these
bands, the kiwis were the brightest, making it easier to separate the kiwis from
the background. These bands also turned out to be the global maxima for each
kiwi spectrum.

After thresholding, unwanted information was removed using the opening
(erosion followed by dilation) morphological operation multiple times, but with
different kernels, as shown in figure 6.3. The opening operation was preferred as
it mostly preserved the size of each kiwi, allowing for accurate separation of kiwi
and background.
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Figure 6.3: Example of how the morphological operations shape the binary im-
age. Going from left to right, 1) Thresholded image, 2) Opening with kernel
30x30, 3) Opening with kernel 580x1, 4) Opening with kernel 300x1.

Finding center points

Since the binary mask constructed in the previous section consisted of distinct,
separated shapes, a border-following algorithm was used. It detected shapes and
provided information about how big and where its center was located. The al-
gorithm is described in further detail by (Satoshi Suzuki [117]) but is implemen-

ted as a function in OpenCV library called findContours .

Sorting kiwis

As the function findContours returned all centroids in the incorrect order, it was
necessary to map each centroid to the corresponding kiwi. It was done by sorting
the kiwis by row and then sorting by column.

Generation of the spectral library

Finally, a spectrum for each kiwi center was obtained and stored in a spectral lib-
rary by calculating the mean spectrum for an area of 30x30 for SWIR and 150x150

https://docs.opencv. org/master/d4/d73/tutorial py contours_begin.html


https://docs.opencv.org/master/d4/d73/tutorial_py_contours_begin.html
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for VNIR. There was also an option to use the mean spectrum of the whole kiwi.
This was achieved by calculating the average spectrum for each kiwi for every
spectrum in the kiwi mask.

6.2.1 Combining the spectra

An attempt at stitching the VNIR and SWIR spectra to one continuous spectrum
was make but showed to be in general very difficult[118]. The difficulties arise
due to several factors like spatial, geometric, our HSI setup, and normalization
differences that each introduces small changes. Therefore, implementing a proper
solution to combine them is outside the scope of this thesis, but implementation
for illustration purposes was made.

The combined spectra was created by exploiting the small overlap between
the VNIR and SWIR in the range 930-1000nm. VNIR was used as ground truth,
and SWIR was moved up or down until the spectral lines overlapped. Because of
slight differences in reflection values between the two spectra, a weighted average
for making the transition smooth was used.
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Figure 6.4: Full kiwi spectrum ranging from 400 to 2500nm where the VNIR and
SWIR range are colored differently.

6.3 Visualization of spectral data

Compressing an image of a kiwi into a single spectrum is difficult as the spectrum
needs to be representative and provide good spectral information. Since the de-
cisions in doing so will influence the predictive power of the models, it is important
to do this step properly by experimenting.
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Figure 6.5: Different regions on a kiwi give different spectra. 4 unique points
on the kiwi and the corresponding spectrum is plotted in the same color. Each
spectrum was the average of an 5x5 area.

The spectra of a kiwi can vary a lot depending on where it was picked from.
Figure 6.5 illustrates this by showing four different points from different illumin-
ations and surface curvatures. Notice how the blue spectrum takes on values bey-
ond 1. This is due to specular reflection, which causes the spectra to include more
noise due to overexposure. The red and yellow spectra was picked from darker re-
gions than the green point, which made them smoother and generally have lower
reflectance values.

The green point was picked for creating a dataset because it was not too
smooth, was consistent on the other kiwis, not hard to find, which made the pro-
cess automatable and in-camera focus. This spectrum for the center point was
averaged over a 30x30 and 150x150 area for VNIR and SWIR respectively. The
areas were of this size to reduce noise, and other papers had used a similar size.

A second dataset was also made with the average of the whole kiwi. This is
because it is difficult to know if the spectral information needed for predicting
specific quality parameters in kiwi are present in the spectrum or not. Having
a second dataset is helpful as it provides a bit of different spectral information,
which is useful in concluding if the pre-processing methods were any good.

6.3.1 Spectral trends

After the spectral datasets are created, it is necessary to visualize them and under-
stand how the data is formed. In our case, we want to look for spectral changes
and trends that change between the days and weeks.
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This was done by making a program to select and visualize the different spec-
tra. Since the spectra from the kiwis are a bit different from each other, but a box
of kiwis was to represent kiwis with the same ripeness, the average spectrum for
each box was used as an estimate. The variations of spectra in a box is visual-
ized in figure 6.6 in both spectral ranges. These variations are expected before
the spectra are pre-processed and on a common baseline. Since pre-processing
of spectra makes them harder to interpret when visualized, the visualizing was
without pre-prepossessing.
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Figure 6.6: The variations in spectra of 55 kiwis (box 3 on day 3) in the VNIR
and SWIR spectral ranges.

The average spectrum of box 3,6,9 (these boxes were imaged three times each
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particular week in the acquisition period) was plotted for each of the three days.
These boxes made it possible to track the same 55 kiwis and their spectral changes
shown in figure 6.7.
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Figure 6.7: Average spectral plots of 55 kiwis (one box) for each day, each week
for both spectral ranges. The boxes used was box 3,6,9 for week 1,2,3 respectively.

The plots reveal little change between the days in week 1 as all spectra lay on
top of each other. There are some slight height differences at the maxima and local
minima, but not enough to conclude anything. Week 2 shows more differences
as the spectrum tends to drop for each day and was what we expected to see;
however, the final week is the opposite.

This concludes that the general trend is not visible in these six spectral plots,
but that does not necessarily mean there is no trend. The changes may not be
considerable differences in height but small changes in slopes or bumps, which
are hard to pick up visually. It is common to do some spectral pre-processing to
find these differences, but that makes the visualization harder to interpret as the
changes are much more minor. To find these differences, more advanced tech-
niques or modeling has to be used.

However, there is undoubtedly a connection between the two spectral ranges
as SWIR follows the VNIR trend, even though two different cameras captured
them. The conclusion that can be drawn from this is that each week has its own
trend and is unlikely to be data acquisition or preprocessing errors as the same
pattern arises each week.

In addition to comparing the spectra to each other to look for trends, we also
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compared the changes in specific wavelengths to the changes in the physiological
measurements.

6.3.2 Physiological correlation with spectra

To see if there were any correlation between the physiological and spectral changes,
we calculated the correlation between each band to change in every quality para-
meter. The full spectral range (VNIR and SWIR) was used to measure the correl-
ations. The VNIR range goes to around 1000nm, the SWIR range continues from
there until 2500nm. The spectra used is the average spectra from the whole kiwi
mask (Full).

Using the spectra of the kiwi and the physiological measurements, the Pear-
son correlation coefficient between these two was calculated. In short terms, the
Pearson correlation is a normalized version of the covariance matrix. This method
would tell us what wavelength correlated most with what feature and a prediction
can be made on what feature will be predicted the best. To do this, all the features
and wavelengths were looped through in a double for loop, then the absolute cor-
relation coefficient between the feature and the wavelength was calculated.

Lastly, given all the Pearson correlation between all the features and a wavelength,
the mean of these correlations was retrieved for each feature and plotted in a bar
chart.
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Figure 6.8: Feature correlation with spectra.

As seen from the bar chart on Figure 6.8b, average flesh correlates most with
the captured spectra of the kiwis. As seen from (a) on the same figure, most of
the features correlate best in the VNIR range, at around 740-760nm. In the case
of sugar, it has big peaks around 500 nm but increases in the SWIR region.

Using the bar chart, we can expect the models to work best on flesh firmness,
core firmness, and sugar. Less performance is expected from pH, salt, and weight.
Lastly, the VNIR range is expected to perform better than the SWIR range.

However, there is less oscillation in the SWIR range than in VNIR, which can



82 Moen, Kohmann, Saidi, Nilsen: HSI kiwi quality parameters

be a sign that this range is better for predictions. The VNIR range goes a lot up
to and down while the SWIR range is flatter with minor variations. These slight
variations can explain more of the data with a machine learning model than the
VNIR range.

6.4 Spectral pre-processing

The spectral pre-processing algorithms used were SNV, MSC, and derivatives,
which are regularly used when working with spectral data. In order to find what
pre-processing worked best for the separate models and quality parameters, each
model was tested with and without and a combination of SNV or MSE with differ-
ent Savitzky-Golay derivatives. This was tested on many of the models by brute-
forcing a wide range of different parameters and combinations.

6.4.1 Scatter correction

The scattering correction algorithms SNV and MSE were experimentally used with
and without derivatives to remove artifacts that interfered with the spectra. Be-
cause it is difficult to know if the spectral information is enhanced or reduced
when combining them with derivatives, they were tested in various ways with the
models.

6.4.2 Derivatives

As the reflection offset values in the spectra varied, derivatives using Savitzky-
Golay were used to make a baseline for each spectrum. As seen in figure 6.9, the
amplitude and slope differs, while the baseline is almost the same.

It was found that brute-forcing the SG-filter parameters before training the
models worked best. The optimal SG-filter parameters changed depending on
the physiological measurement to be predicted and the type of machine learn-
ing model used.

Regarding the Savitzky-Golay derivatives, the parameters tested were window
size from 7 — 51, polynomial orders from 2 — 7, and 1st-3rd derivatives.

As mentioned in theory, it reduced noise in the spectra and should give better
performance [34].
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Figure 6.9: Difference before and after differentiation of two spectra using
Savitzky-Golay with window size 5, 3rd order polynomial and 1st derivative.

6.5 Modeling

Several different regression and machine learning models were developed in an
attempt to combine the trends found in the physiological measurements with the
spectral changes. The models implemented were MLR, PLS, ANN, Tree regressor,
and KNN. MLR and PLS models were implemented because of their good perform-
ance in predicting SSC and firmness in other kiwi cultivars. ANN, Tree regressor,
and KNN were implemented as little research regarding these had previously been
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done. All models were combined with different efficient wavelength selection al-
gorithms and/or pre-processing techniques, but all models used the same data
splits.

All models were combined with pre-processing techniques and/or efficient
wavelength selection algorithms to search for the optimal, but all models used
the same data splits.

6.5.1 Dataset split

In order to ensure that our models would be able to predict a wide range of values,
we used the SPXY algorithm to split the dataset into 4 smaller ones. Before the
split, we discarded samples where the physiological measurement value layed
outside a 99% confidence interval, reducing the number of kiwis in the dataset
down to 444. This was according to the error specified by the manufacturers for
the physiological measurement equipment. The SPXY algorithm was first used to
create a calibration and a prediction set with a 7 : 3 distribution as illustrated in
figure 6.10. The prediction set was further split into validation and verification
using the same algorithm but with a 1 : 1 distribution. It is important to note that
the dataset split was applied after any spectral pre-processing. The calibration and
verification datasets have values spanning over the most extended range since
they are being used to train and test each model.

Sample Sets | Samples | Quality parameter Range Mean | SD
311 Firmness (N/cm?) | 6.1-27.45 | 12.83 | 4.42

Calibration SSC (°Brix) 9.5-18.4 14.56 | 1.65
pH 3.3-4.8 3.95 | 0.30

133 Firmness (N/cmz) 6.25-22.25 | 11.83 | 3.47

Prediction SSC (°Brix) 10.3-16.6 | 14.71 | 1.20

pH 3.4-4.5 3.93 | 0.20

67 Firmness (N/cmz) 7.15-21.8 | 11.33 | 3.03

Validation* SSC (°Brix) 13.1-16.6 | 15.03 | 0.86
pH 3.6-4.3 3.92 | 0.17

66 Firmness (N/cm?) | 6.25-22.25 | 12.3 | 3.79

Verification* SSC (°Brix) 10.3-16.5 | 14.39 | 1.39
pH 3.4-4.5 3.93 | 0.23

Table 6.1: Statistics of quality parameters in the different datasets without any
spectral pre-processing. (* is 50% of the prediction dataset).
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Figure 6.10: The construction of the different datasets using SPXY.

6.5.2 Multiple linear regression (MLR)

The wavelengths selection was carried out by finding the subset of wavelengths
that gave the best predictions when used in an Multiple linear regression (MLR)
model. This was done iteratively by testing subsets containing up to 100 wavelengths.
For each subset testing, every possible initial wavelength for SPAZ. For each subset
created by SPA, an MLR model was trained on calibration data and evaluated using
the Root mean squared error (RMSE) of the validation data (Root mean squared
error (RMSE)V). The subset of wavelengths corresponding to the MLR model with
the smallest RMSEV was then selected as a basis for the first wavelength elimin-
ation step.

The MLR models were constructed using the Successive projections algorithm
(SPA) for wavelength selection and three elimination procedures to exclude un-
important wavelengths further.

The first elimination step involves evaluating candidate subsets of the selected
subset. Candidate subsets with L number of wavelengths are created by taking the
L first wavelengths from the subset. Each of the candidate subsets is then used to
create new MLR models, and the best candidate subset is the one with the smallest

2 the two initial values for SPA are the wavelength for calculating the first projections and how
big a subset of wavelengths to return



86 Moen, Kohmann, Saidi, Nilsen: HSI kiwi quality parameters

RMSEV.

The second elimination step involves a backward elimination process to re-
move wavelengths that do not efficiently contribute to the model’s predictive abil-
ity. This included making a relevance index for each wavelength belonging to the
subset selected in the previous step. This index is calculated by multiplying the
absolute value of the regression coefficient by the standard deviation, calculated
by the calibration data, of each wavelength. The wavelengths are then sorted in
descending order according to the relevance index, and then the same procedure
used in the first elimination step is carried out.

The final step looks at the differences between the minimal RMSEV and the
RMSEYV values of the smaller subsets obtained from the second step.

Suppose the difference between the minimal RMSEV and a subset with fewer
wavelengths has a slightly larger RMSEV. In that case, the subset with the slightly
larger RMSEV is chosen due to the difference not being significant.

The final step involves selecting the smallest subset so that the RMSEV is not
significantly larger than the subset corresponding to the minimum RMSEV. This is
calculated using an F-test with a significance level a = 0.25, which has been used
elsewhere [119].

6.5.3 Partial Least Squares (PLS)

Partial least squares was combined with two different efficient wavelength selec-
tion algorithms, Uninformative Variable Elimination (UVE) and Genetic algorithm
(GA). These algorithms are aimed to exclude wavelengths that do not contribute
a significant amount to the prediction.

6.5.3.1 UVE-PLS

PLS was combined uninformative variable elimination (UVE) to reduce the num-
ber of wavelengths used. This worked by iteratively applying PLS to the dataset
and calibrating it using cross-validation. The model that performed the best is se-
lected and has the wavelength that contributes the least removed. This was done
by extracting the regression coefficients from the model, then taking the absolute
value and removing the lowest one. The elimination of uninformative wavelengths
happens until a user-specified amount of wavelengths is reached.

6.5.3.2 Variable scoring for GA-PLS

A score matrix was set up to score the wavelength importance before training the
GA-PLS models. The max score was set to normalize the score given by the differ-
ent variable selection methods. Then the score given was assigned accordingly.

1. Regression model (P-values)
2. Variance Threshold from "Sklearn" (Variable variance)
3. Select Percentile (Mutual information)
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4. Recursive feature elimination (RFE)

The first three steps are often referred to as Univariate variable feature elimina-
tion. Which uses statistical tests to test the performance of each variable. The last
step: RFE implements UVE recursively.

The Select percentile punishes variables that have mutual information. This
metric was derived from information theory, which calculated how information
could be retrieved from one wavelength by observing another. This is relatively
equal to the covariance matrix.

After going through all of these variable scoring techniques, the Genetic al-
gorithm was kick-started. The resulting score matrix was thresholded between 80
and 25% to get the initial population to be scored and mated.

GA used PLS to score each of the candidates, then selected the best four can-
didates from a population size of 8 to mate. Once two parents were selected, they
would merge 50-50 to create new candidates. The mutation was also introduced,
which randomly changed the usage of bands.

6.5.4 Support Vector Regression SVR

Loop on N-components

Gridsearch
Pipeline
. Calibration
Datasplit Standard scalerH Kernel PCA H SVR W

Prediction l

;I Trained model H Result }

Figure 6.11: SVR model workflow.

The tools used in the model were imported from the library "sklearn"[109].

The model was created as a pipeline with StandardScaler, Kernel principal
component analysis (KPCA), and SVR, and used cross-validation with GridSearchCv
to find the optimal hyperparameters.

GridSearchCv is used for permuting a set of hyperparameters on the model to
find the optimal values, which would be very time-consuming to do manually.

The spectra and features were scaled down to have a mean of 0 and stand-
ard deviation of 1 by using StandardScaler in the pipeline to decrease scale im-
portance. Then KPCA was used for dimensionality reduction, which reduced the
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features by 3-4x while keeping the essential information in new feature vectors.
This improved both the speed and accuracy of the model. Lastly, in the pipeline,
the feature vectors were passed into a SVR model trained with a calibration data
split.

GridSearchCv was used on the pipeline to find the optimal value of the hyper-
parameters C (which as discussed earlier in section 3.3.2) and gamma (to control
the variance or spread of the RBF kernel function).

This process was looped from 5 to 60 components for the KPCA parameter
"N-components" to find which number of components gave the best result while
also reducing dimensionality (see figure 6.11).

6.5.5 K-Nearest neighbor KNN

A function to minimize was made. Given SG-parameters and the number of com-
ponents to use in KPCA, the data dimensionality was reduced accordingly. Then
GridSearchCv was used to find the optimum number of neighbors for the model.
The GridSearchCv module was set to use the validation dataset to test the models
with different neighbors. The function returned the MSE value of the validation
dataset.

To minimize this function, scipy-differential evolution was used. It uses gradi-
ent descent to find the minima of a function.

6.5.6 Artificial Neural Network ANN

To compile and train the neural network, the python library Tensorflow was used.
The spectra and features were scaled down to have a mean and variance of
1 (using StandardScaler). Then there was experimentation with the number of
neurons and activation functions. As loss function MSE was used.
The layers was setup like the list shows below.

Input Dense 512 Sigmoid, 12=0.001
Dropout 0.2, 12=0.001

Hidden 512 Relu, 12=0.001
Dropout 0.2, 12=0.001

Hidden 512 Softmax, 12=0.001
Output 1 linear

There were some techniques used to prevent overfitting. An early stopping
callback was introduced; this stopped the training if the loss function did not
decrease after two epochs. Then a 12 regularizer with 12=0.001 and a few dropout
layers were used.

The output layer had to be linear because the output is a regression and not a
classification.
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6.5.7 MLP

Using GridSearchCy, different layer sizes, activation functions, and learning rate
were tried. This was then put inside a brute-force for SG-filters.

6.5.8 Tree regressor

The GridSearchCv module from "Sklearn" was used to test out different paramet-
ers. The parameters were built upon some initial guesses. Then, random paramet-
ers close to the initial guess were added. The GridSearchCv module then picked
the parameters that worked best, which was then used to build new random para-
meters.
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Figure 7.1: Tree of all implementations made in the project. Green indicates best
performance, yellow second best performance, orange ok performance, red did

not work.

In this chapter, the project arrangement and the predictive accuracy of the
machine learning and regression models are discussed. Figure 7.1 shows all the
implementations that have been attempted in this thesis and color graded by how
well they worked. It gives a good overview of our efforts in this part of the project.
However, it does not tell the whole story as some of the red or orange parts could
be improved if we had more time to experiment.
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7.1 Project priorities

Due to several limitations, our priority layed according to Figure 7.2. The RGB
images and peels were only collected and not looked at because of the lack of
time. Our main priority was SSC and firmness, using the models listed in the
Figure.
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Figure 7.2: The prioritization of models and quality parameters during the project
work.

7.2 Model selection

The different wavelength selection methods SPA, UVE, and GA were used to re-
duce the number of wavelengths into a smaller portion that predicted the quality
parameters. They do not work independently but were fused with either MLR or
PLS, creating SPA-MLR, UVE-PLS, and GA-PLS. For models not using conventional
regression, the dimensionality reduction method Kernel principal component ana-
lysis (KPCA) was used.

The best predictions of firmness and SSC by MLR, PLS, SVR, and KNN using
the wavelength mentioned above selection and dimensionality reduction methods
are displayed and compared in table 7.1 and 7.2 respectively.

Each model was tested with several different spectral pre-processing and in-
ternal parameters, which produced variation in performance. The best performing
model was chosen based on several evaluation metrics and the number of EWs
used. Good performance was defined by having a low RMSE and high R? for both
the calibration and verification dataset with slight differences between them and
a minimum number of EWs. This assured that the model was not overfitted to
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one particular dataset and included wavelengths primarily with good predictive
power.

7.3 Firmness

UVE-PLS combined with the SWIR spectral range seemed to give the best per-
formance at predicting firmness with overall the lowest RMSE (2.804) on the
verification set and fewest EWs (8). These EWs and its measured-predicted graph
can be found on figure 7.3

Notice that KPCA-KNN uses StandardScaler on the physiological measure-
ments; for this reason, the RMSE values of this model cant be compared to the
rest of the models. Therefore the focus is turned to the R‘% when comparing it to
other models.

Our Rg results are lower than what has been achieved on "Hayward" kiwi with
0.88 [7]. This article had a much bigger dataset and higher bio-variability than we
had access to. They had 1530 kiwi samples retrieved from 3 different farms. They
also stored the kiwis for ripening at 20°C instead of 8°C, like in our project. Doing
this in our project would have provided a much higher bio-variability among the
kiwis, which could have improved our predictive power.

As mentioned earlier in Chapter 5, the kiwis should be around 5°C when meas-
uring the firmness using the penetrometer. This was not accounted for when meas-
uring firmness during the Data acquisition. Therefore our measurements could
have a more significant uncertainty than wanted.

The EWs selected by the best regression model for predicting firmness in
SWIR were around 1611-1622, 1649-1655, 2347-2353nm. Li et al.[8] found EWs
around 1050, 1395, 1450, 2100, 2300nm, and several EWs around 1700-1900nm.
It makes sense that we did use many of these EWs, since their accuracy is higher
than ours. In the VNIR range these EWs have also been reported: 555, 1000,
638, 503, 452, 700, 822. This was done by Zhu et al.[9], which looked at an-
other kiwi variety. Because of little overlap between our EWs and other reported
wavelengths, we can not verify that our EWs is strongly correlated with firmness.

7.3.1 VNIR vs SWIR

Since there is much research done in the VNIR range, one would expect this spec-
tral range to perform best. This makes sense because the VNIR range is sensitive
to most chemical, organic bonds[39]. However, our results show the contrary.

For firmness, the most successful models were in the SWIR range (As seen in
figure 7.4 C). The average Rf using this range was around 0.26 while for VNIR this
was around 0.22. Also, the best prediction using UVE-PLS was using this range.
This shows that using the SWIR range instead of the VNIR range to predict firm-
ness is a better choice.

As Figure 7.4D the both datasets worked much better in the SWIR region. The
improvement in SWIR region using the full dataset is much less than for region.
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Firmness

Camera | Dataset | Model Pre-processing EWs RMSE; | RMSE, | RZ R
SPA-MLR SavitzkyGolay(17,5,1) 56 3.282 3.425 | 0.478 | 0.315
UVE-PLS MSC SavitzkyGolay(33,5,2) 24 3.539 3.092 | 0.385 | 0.357
Full GA-PLS SavitzkyGolay(43,2,2) 86 2.333 1.842 | 0.019 | 0.181
KPCA-SVR StandardScaler comp=45 | 3.355 3.277 | 0.609 | 0.272
KPCA-KNN SavitzkyGolay(21,4,2) 9 0.891* | 0.864* | 0.283 | 0.269
SPA-MLR SavitzkyGolay(7,5,1) 7 4.184 3.61 0.168 | 0.167
UVE-PLS MSC SavitzkyGolay(27,5,1) 25 3.884 3.025 | 0.307 | 0.249
Region GA-PLS SavitzkyGolay(47,3,2) 86 2.266 1.928 | 0.054 | 0.085
KPCA-SVR StandardScaler comp=55 | 3.479 3.291 | 0.511 | 0.234
KPCA-KNN | SNV, SavitzkyGolay(41,6,0) 36 0.988* | 0.988* | 0.085 | 0.084
SPA-MLR SNV 48 3.488 3.19 0.404 | 0.397
UVE-PLS | SNV SavitzkyGolay(21,5,1) 8 3.376 2.804 | 0.452 | 0.434
Full GA-PLS SavitzkyGolay(11,2,1) 116 19.67 | 13.797 | 0.062 | 0.049
KPCA-SVR StandardScaler comp=45 | 3.377 2.848 | 0.629 | 0.371
KPCA-KNN | SNV, SavitzkyGolay(21,2,0) 14 0.938* | 0.923* | 0.17 | 0.182
SPA-MLR SNV SavitzkyGolay(33,5,1) 24 3.718 3.222 0.31 | 0.398
UVE-PLS MSC SavitzkyGolay(21,5,1) 22 3.646 3.07 0.344 | 0.381
Region GA-PLS None 89 4.632 3.385 | 0.016 | 0.024
KPCA-SVR StandardScaler comp=30 | 3.479 3.291 | 0.603 | 0.22
KPCA-KNN SavitzkyGolay(21,5,1) 15 0.93* 0.844* | 0.243 | 0.193

Table 7.1: The best performances of each model for evaluating firmness in the
VNIR and SWIR range separate. Both spectral ranges was tested on two differ-
ent datasets, Full (average of whole kiwi) and Region (150x150 and 30x30 av-
eraged area for VNIR and SWIR respectively). Every model used the same cal-
ibration (70%) and verification (15%) set. (* KPCA-KNN uses StandardScaler,
therefore the RMSE value of this model is not directly cis not directly compar-
able)omparable)
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Figure 7.3: Performance and EWs of UVE-PLS using SG filter with window size
21, 5th polynomial and 1st derivative in the SWIR spectral range. The selected
EWs are: 1611, 1616, 1622, 1649, 1655, ..

SPA-MLR and UVE-PLS had a substantial accuracy increase using region in SWIR
than in VNIR, while the other models only had a slight increase. GA-PLS goes to
the contrary compared to the models: the accuracy was better in VNIR when using
region. This can be because the SWIR region is in some way less susceptible to
noise than VNIR, or because the different ways the models functions.
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Figure 7.4: Comparisons of how well the models performed and the differences
in performance between the two datasets between VNIR and VNIR.

7.3.2 Full vs Region

In most papers on ripeness determination of "Hayward" kiwi, what area on the
kiwi they used to collect the spectra is not specified. However, Zhu et al. ([9])
showed that using the full dataset gave the best results, but this was not used for
"Hayward". It has also been shown that the selection of the region of interest is
crucial for the results [120].

In our dataset, the Full region improved the accuracy significantly. The aver-
age R% for the Full region was about 0.28 while for the region, about 0.20 (As
seen on figure 7.4C). For example, for SPA-MLR on VNIR the accuracy increased
from 0.167 to 0.315 when using the Full region. For almost all the models, the
predictive power was increased when using the Full region. The exception to this
rule is SPA-MLR and KPCA-KNN for SWIR.

The Full dataset performed better because the area of average reflectance is
larger. This reduces sources of error like specular reflection and unwanted reflec-
tion from the kiwi hairs. The quality attributes can also be different in various
regions on the kiwi, therefore using the Full dataset reduces these differences.
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7.4 SSC

Many of the same conclusions drawn from firmness can be made here as well.
SWIR performed much better than VNIR and Full performed much better than
Region. There is an exception here as well, for VNIR KPCA-KNN performed best
with Region. KPCA-KNNs predictive power seems to vary significantly depending
on what to be predicted, camera, and dataset.

The best R% made on SSC on "Hayward" kiwi was 0.98[7], this is the same
paper that had the best results for firmness. Our best Rf was 0.759 with UVE-
PLS, which is far away from the best result which has been done before. However,
our Rf of 0.759 is considered to be moderate to good. It is worth noting that the
perception of what an excellent R? value is depends on the situation. Its generally
accepted that a R? value above 0.95 is considered to be significant.

SSC
Camera | Dataset | Model Pre-processing EWs RMSE; | RMSE, | RZ RZ

SPA-MLR SNV SavitzkyGolay(27,5,1) 21 1.343 1.11 0.397 | 0.405

UVE-PLS SNV SavitzkyGolay(27,5,1) 16 1.308 1.047 0.428 | 0.39

Full GA-PLS SavitzkyGolay(45,2,2) 86 2.783 1.669 | 0.097 | 0.156

KPCA-SVR StandardScaler comp=41 | 1.109* | 1.141* | 0.682 | 0.24

VNIR KPCA-KNN | MSC, SavitzkyGolay(31,2,0) 178 1.082* | 0.779* | 0.068 | 0.062
SPA-MLR SNV SavitzkyGolay(21,5,2) 33 1.364 1.131 0.376 | 0.371

UVE-PLS SNV SavitzkyGolay(27,5,1) 20 1.352 1.1 0.381 | 0.314

Region GA-PLS MSC SavitzkyGolay(49,2,1) 86 1.078 0.989 | 0.231 | 0.111
KPCA-SVR StandardScaler comp=59 | 0.878* 1.24* | 0.813 | 0.216

KPCA-KNN | SNV, SavitzkyGolay(39,5,2) 17 0.952* | 0.939* | 0.171 | 0.191

SPA-MLR SNV SavitzkyGolay(33,5,2) 24 1.186 1.11 0.495 | 0.503
UVE-PLS SavitzkyGolay(11,5,1) 15 1.016 0.777 | 0.621 | 0.759

Full GA-PLS SavitzkyGolay(49,6,2) 131 2.202 1.825 0.27 | 0.173

KPCA-SVR StandardScaler comp=49 | 0.745* | 0.851* | 0.866 | 0.638

SWIR KPCA-KNN | SNV SavitzkyGolay(45,2,1) 6 1.056* | 0.812* | 0.265 | 0.556
SPA-MLR SNV SavitzkyGolay(7,5,2) 11 1.533 1.547 0.163 | 0.174

UVE-PLS SavitzkyGolay(27,5,2) 15 1.222 0.977 | 0.494 | 0.493

Region GA-PLS SavitzkyGolay(21,6,2) 136 2.873 2.05 0.042 | 0.018
KPCA-SVR StandardScaler comp=59 | 0.993* | 1.062* | 0.747 | 0.403

KPCA-KNN | SNV, SavitzkyGolay(45,2,2) 6 0.964* | 0.815* | 0.427 | 0.513

Table 7.2: The best performances of each model for evaluating SSC in the VNIR
and the SWIR separate. Both spectral ranges was tested on two different datasets,
Full (average of whole kiwi) and Region (150x150 and 30x30 averaged area
for VNIR and SWIR respectively). Every model used the same calibration (70%)
and verification (15%) set. (* KPCA-SVR and KPCA-KNN uses StandardScaler,
therefore the RMSE value of this models is not directly comparable).

However, as seen from the box-plots in data acquisition, the SSC of the first
two boxes deviates a lot from the rest of the data. It was discovered that excluding
these boxes from the dataset decreased the RMSE, but the R% did not increase.
This is probably because the number of kiwi samples decreases by 55 %2 = 110.
If we had measured more kiwis with greater accuracy and higher bio-variability,
the predictive power of our models would also increase.

The EWs that was included in the best SSC prediction model was in the range
957,984-995, 1398-1415, 1616-1627 and 2069-2074nm. This showed to be quite
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similar to what Li et al.[8] observed, which reported 950, 1150, 1200, 1400 and
1650nm (but this was for TSS). Zhu et al. also reported that 945, 960 and 987nm
served as EWs after investigating the VNIR spectral range on another kiwi variety.
Because we share common EWs with other publications, the wavelengths can be
justified of having a strong connection with SSC in kiwi.
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Figure 7.6: Performance and EWs of UVE-PLS using SG filter with window size
11, 5th polynomial and 1st derivative in the SWIR spectral range. The selected
EWs are: 957, 984, 989, 995, 1262, 1398, 1404, 1409, 1415, 1589, 1616, 1622,
1627, 2069, 2074.
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7.5 Other models and pH

Not all models were prioritized, which are listed in the table below. Also, an at-
tempt at predicting pH was made. Because of the lack of priority, not all perform-
ance metrics are listed. Salt did not show any great results. Therefore this feature
is not listed.

Some of these metrics show great potential, but because of the lack of time it
was not further investigated.

Other results (VNIR full)

Model Pre-processing Feature | RMSE, R? - adj, R‘Z,
MLP (adam, relu) MSC SavitzkyGolay(25,2,2) | pH level | 0.039 0.14 N/A
KNN SavitzkyGolay(15,6,1) pHlevel | 0.047 0.139 0.165
Treeregressor None Firmness | 2.339 N/A N/A
ANN StandardScaler Firmness | N/A N/A 0.003
RFE-MLP SavitzkyGolay(43,3,0) Firmness | 2.051 N/A N/A

Table 7.3: Results for other models and (pH).

7.6 Model discussion

A discussion about some of the models used, is made here. A justification is made
about why the model performed well or poorly.

7.6.1 Artificial neural network (ANN)

The neural network never got below 0.9 MSE on firmness, however, the data was
scaled so the error was in reality much larger. The R? score was around 0.09,
which shows there was little success with the neural network. The neural network
winded up only guessing the mean of the training data, which was a problem since
the data was scattered.

Scaling the value range so that the ANN would be able to do a prediction was
troublesome. Optimally the value range should be between -1 and 1, scaling the
spectra and measurements to this range was hard.

For the ANN to work properly, methods to scale the data has to be applied and
much more samples needs to be collected. Also ANN works better for classification
than for regression models, and has been applied accordingly.

The MLP showed greater potential than the regular neural network. Achieving
a 0.14 R? adjusted on pH.

7.6.2 KNN

At first KNN was used without KPCA, only with and without SG-filter parameters.
By using KPCA the curse of dimensionality was avoided and much better predic-
tions where made.
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7.6.3 SPA-MLR

SPA-MLR was tested with several pre-processing techniques such as MSC and SNV
in combination with derivatives using Savitzky-Golay. These improved the overall
model performance and resulted in using fewer EWs. The results in both SSC and
firmness was competing against the best model as it performed quite well.

7.6.4 GA-PLS

GA-PLS seemed to have trouble converging towards fewer EW. Usually, it selected
way to many variables and even with modifications it seemed to only converge
against many EWs.

The GA was warm-started through different variable scoring techniques through
"sklearn". Without this warm-start the GA would take an exceptionally long time
to find any reasonable results. An example of how the variable scores would look
like is shown in Figure 7.7.
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Figure 7.7: Importance of each band for flesh firmness in SWIR.

Many scientific papers have used GA-PLS in combination with other models
to achieve better results. For example Zhu et al. (Zhu et al.) achieved 0.95 R? on
flesh firmness with GA-PLS-MLR. Because of the time limitation, this was not tried
out.

7.6.5 UVE-PLS

The maximal number of components was set to 25 as the search for a good model
with few independent variables was preferred. It was tested with MSC, SNV and
derivatives using Savitzky-Golay with different window sizes but only fitting using
the 5th polynomial. Only this polynomial was thoroughly tested to save time due
to the algorithm being computationally expensive. The model generally performed
well in predicting both kiwi parameters but can be more tested using other orders
of the polynomial fitting.
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7.6.6 KPCA-SVR

SVR was tested with pre-processing techniques like SNV, StandardScaler and SG
filter, both with and without dimensionality reduction by KPCA. The results with
pre-processing and dimensionality reduction combined were lower than just using
dimensionality reduction.

7.7 Evaluation of spectral pre-processing

Standard normal variate (SNV) and multiplicative scatter correction (MSC) im-
proved the performance of most of the models at predicting both firmness and
SSC. If these were combined with derivatives, they did not always seem as neces-
sary as the models did not get any significant performance boost.

The use of derivatives for spectral pre-processing showed to be advantageous
as it generally increased the predictive power of each model. The 1st derivative
showed to give better results at predicting firmness, but the 2nd derivative for
predicting SSC.

When differentiating the spectra, the height differences are eliminated, and
the spectra becomes more comparable. By doing this, it forces the models to look
more at the contours of the spectra instead of the spectra itself. By using the SG-
filter to retrieve the derivatives, noise in the spectra is also reduced.

When differentiating spectra, the height variations are eliminated, and the
small variations are amplified. This makes it easier for models to find the small
differences, which may be essential for predicting different quality parameters. By
this observation, we can address that most models for predicting both SSC and
firmness are dependent on the slight differences.

Each model performed differently on the same pre-processed data. This means
that there are no general best pre-processing techniques as it depends on the data
and the models used.
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Conclusion

The results obtained in this project have not been reported before, so that we will
publish our work in a scientific journal/conference.

The SSC accuracy achieved is moderate to good (R%=0.74, RMSE, = 0.777).
This was achieved using UVE-PLS with SNV and SG-filter. This is very good with
the geometrical and material limitations that comes with using HS cameras.

The firmness accuracy was however harder to predict (R>=0.43, RMSE, =2.80).
This was done using UVE-PLS with the SG-filter.

8.0.1 Answer to research aims

1.

To investigate the potential use of HSI to be used for non-destructive assess-
ment of firmness, sugar content and pH for kiwi of type "Hayward"?

HSI can be used to perform non-destructive assessment of "Hay-
ward" kiwi. Especially Sugar content (SSC), however firmness and pH
is harder to predict.

Study the correlation between sensory information and the internal qualities
for kiwi of type "Hayward"?

This has been looked at through our machine learning models.
However, more research is needed to draw a more accurate conclusion.
What techniques and models provide the best results for the determination
of kiwi’s ripeness?

Conventional methods like UVE-PLS and SPA-MLR works well for
non-destructive determination of kiwi ripeness.

Which wavelengths are most relevant for determining internal quality para-
meters of kiwi?

The wavelengths our models used to regress, in combination with
those provided by state of the art, the EWs for firmness, and SSC have
been retrieved.

. Can the process of predicting ripeness of kiwis be automated?

Yes, through our automatic spectra collector, pre-processing tech-
niques, and machine learning models, we have seen the potential of
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automating the process successfully in the future.

8.1 Future work

e SWIR range: More work is needed at using the SWIR range with HS cam-
eras since our results has shown that using this range gives better predic-
tions.

e Efficient wavelengths: EWs for quality parameters like pH and DM needs
to be found. This applies in both SWIR and VNIR ranges with HS cameras.

e Portable device: Once the EW are further specified, the possibility of using
multispectral imaging to make a small portable device that can determine
kiwi ripeness.

e RGB imaging: In the wide future, research needs to be conducted on the
possibility of using RGB imaging to determine kiwi ripeness.

e Hayward kiwi type: There are very few studies on "Hayward" kiwi. More
research needs to be done on this kiwi variety.

e Combining VNIR and SWIR ranges: Future research needs to look at com-
bining the spectra from both VNIR and SWIR as this can possibly contain
more information and provide better results.

8.2 Learning outcome

To be able to complete this project, much knowledge was required. However, the
members have been able to acquire this knowledge and use it to achieve good
results. The members have learned about "Hayward" kiwi, HSI with its complex
equipment and acquisition techniques, machine learning, pre-processing tech-
niques, dimensionality reduction, and data collection. For HSI this is very useful
knowledge to have in the current growing market.

The group also learned how to work in teams to coordinate efforts to achieve a
common goal. We further learned how to apply programming to solve real-world
problems.

This research project gave us an insight on how to properly do a literature
review and write a scientific report that contributes to state-of-the-art research.

8.3 Contribution

By combining the knowledge from the spectroscopic devices[8][7], and our res-
ults from the HS cameras, a small portable HS camera that can assess kiwi ripeness
is closer to reality. The specific wavelengths selected for each quality parameter
retrieved from the spectroscopic devices and our HS camera can be put onto a
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portable multispectral camera. By using this small multispectral camera, the ripe-
ness of "Hayward" kiwi can be evaluated quickly and remotely.

A table that shows our contributions is listed below. Light green color indic-
ates our main contributions, while the light yellow color indicates less significant

contribution.

Contribution

Portable Device

Comment

Our project has further shown what wavelengths and models are relevant for SSC and Firmness.
By further specifying this, the future goal of having a portable ripeness assessment device is one step closer.

SSC Our predictions made on SSC has further improved its predictability
Firmness Our predictions made on firmness has further improved its predictability
H pH was harder to predict. However a attempt was made to predict this, using MLP and KNN
p Futher work needs to be done to predict this quality parameter.
400-2500nm A dataset of hyperspectral images of kiwi covering the spectral range 400-2500nm.

This has high scientific value. What wavelengths and models work in this range is also of high importance.

Automatic spectra collector

Automatic spectra collection ha