
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Levi Sørum

Sharing of team knowledge in virtual
software development teams

A case study

Master’s thesis in Computer science, TDT4900
Supervisor: Torgeir Dingsøyr
Co-supervisor: Nils Brede Moe

March 2021

M
as

te
r’s

 th
es

is

Levi Sørum

Sharing of team knowledge in virtual
software development teams

A case study

Master’s thesis in Computer science, TDT4900
Supervisor: Torgeir Dingsøyr
Co-supervisor: Nils Brede Moe
March 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

Through the last years of my studies I’ve been fortunate to have a wonderful
part-time job as a software developer at KnowIt. It is due to my employers that
I was introduced to my supervisor Nils Brede Moe at SINTEF, who not only
guided me through the process of deciding what to write about, but provided
me with insightful knowledge throughout the project. It was also through my
part-time work that I experienced how the COVID-19 pandemic caused a unique
work situation, which gave me the interest and motivation to learn more. Prior
to and during my master’s project I was given the opportunity to work remotely,
which was a new experience that introduced me to the challenges of not being
co-located with one’s colleagues. I quickly knew that I wanted to dedicate my
thesis to research the new work circumstances for software developers caused
by the lockdown.

I would like to thank my colleagues at KnowIt Objectnet who helped bring
this project to life, and for being very understanding and flexible when I had
to postpone the start-date of my full-time employment when the project took
longer than expected. I would like to thank Nils Brede Moe for being a great
guide, and for always providing me with a direction when I got lost in the
project. I would like to thank my academic supervisor Torgeir Dingsøyr at
NTNU; first for taking me as a master’s student during the fall semester when
many professors would only accept master’s students during the spring; second
for providing great guidance of how to do academic research; and lastly for
proof-reading the thesis paper. Lastly, I would like to thank the participants
of the study who were so kind as to show me how they work and share their
insights with me.

On a more personal note, I would like to thank my family for always believing
in me and for supporting me financially during the last few months so I could
work on my thesis full-time, as well as to my room-mates whom I could always
turn to for motivation when something was difficult. This has been a special
time for me, and despite the challenges I can say that I am happy with the
outcome.

I hope you enjoy your reading.

Levi Sørum

Trondheim, March 12, 2021

Abstract

Due to the COVID-19 pandemic lockdown, software development teams are
forced to collaborate in highly virtual environments. With software develop-
ment being knowledge intensive work, the field of knowledge sharing in virtual
software development teams becomes increasingly relevant, but with a lacking
amount of empirical research on this particular topic research possibilities are
limited. This study describes the virtuality, knowledge sharing behavior and
degree of shared team knowledge of a single virtual software development team.

The case team was observed at three occasions, and events demonstrating
knowledge sharing were recorded. Next, semi-structured interviews were con-
ducted with 5 of the team’s members asking about their work situation and
processes, as well as concrete questions which responses were later compared to
measure an overlap of knowledge. Degree of virtuality and knowledge sharing
activities were identified through qualitative analysis of the collected data, and
the overlap measure of team-knowledge were found through semi-quantitative
analysis by grouping similar statements and calculating the average number of
respondents per statement. The results showed a moderate-to-high degree of
virtuality, a moderate degree of shared team knowledge, and an array of knowl-
edge sharing activities including Agile practices, use of knowledge management
systems and certain meetings that had a higher focus on knowledge sharing.

A feedback meeting with the team’s Scrum master supplemented our find-
ings, and we learned that their degree of shared knowledge and knowledge shar-
ing behavior was likely affected by the non-interdependence of team members.
The research was limited by a small sample size and the inability to measure all
types of shared team knowledge due to a limitation of scope. We recommend
future researchers to conduct additional empirical studies of a similar nature,
enabling the comparison and further study of knowledge sharing in virtual soft-
ware development teams.

Contents

1 Introduction 1

2 Background 4
2.1 Virtual Teams . 4
2.2 Knowledge . 8
2.3 Team knowledge . 9
2.4 Knowledge Management . 14
2.5 Knowledge sharing . 19

3 Method 27
3.1 Conceptual framework . 27
3.2 Research design . 31
3.3 Informants . 34
3.4 Data collection . 35
3.5 Data analysis . 36
3.6 Quality of the research . 49
3.7 Researcher positionality . 50
3.8 Ethical considerations . 50

4 Case context 52
4.1 The organization . 52
4.2 The team . 52
4.3 Workflow . 53
4.4 Team virtualness . 56

5 Results 63
5.1 Team-knowledge sharing activities 63
5.2 Shared Team Knowledge . 73

6 Discussion 93
6.1 Team virtualness . 93
6.2 Knowledge sharing activities . 95
6.3 Shared team knowledge . 98
6.4 Summarizing the discussion . 103

7 Conclusions 106
7.1 Limitations . 107
7.2 Implications and future research 107

A Appendix: Interview Guide 114

B Appendix: Approval from NSD 117

C Appendix: Letter of invitation 119

1 Introduction

Due to the outbreak of the COVID-19 pandemic in 2020, governments have
introduced guidelines that impose social distancing and reduced travel on large
populations. This has had significant implications for the software engineering
industry, whose workers are commonly expected to work remotely from home,
making software development teams highly distributed. As a consequence, soft-
ware development teams are forced to communicate, collaborate and coordinate
by using digital communication tools, thus becoming what is called a virtual
team [7]. In short, virtual teams are teams whose communication, collabo-
ration and/or coordination are enabled by communication technology because
some members do not work in either the same place or at the same time, and
therefore cannot collaborate face-to-face all the time [54].

The concept of virtual software engineering teams did not originate with
the COVID-19 pandemic; globally distributed software projects have become
quite common in the last decades, motivated by companies’ desires for cost
reduction, shorter time to market, access to a skilled labor pool, and increased
innovation [56]. By removing the geographic boundaries of a project, virtual
teams have become vital to maintaining our increasingly globalized social and
economic infrastructure [47]. In other words, increased globalisation has long
been a driving factor for increased virtuality of work teams. But it’s not only
global teams that are virtual. In fact, modern-day teams are often considered
to be more-or-less virtual even if they are co-located, because their work rely on
some form of technology [31]. Software development teams have been at least
somewhat virtual for a long time due to the usage of technologies like version-
control software and digital backlogs. What’s new with the COVID-19 pandemic
is the sudden requirement of social distancing and reduced travel, forcing team
members to work remotely, drastically increasing their distribution and thus
their degree of virtualness [35]. In other words, the pandemic has introduced
a requirement for a high degree of team virtuality that has not been present
before. Although increased team virtuality addresses the requirement of social
distancing and reduced travel, it comes with its own set of challenges. Team
virtualness has been associated with a lower communication frequency and a
lower degree of knowledge sharing within teams [18], both of which are vital
factors for the effectiveness of teams within the software industry [7].

Software engineering is a diverse and constantly evolving field, where knowl-
edge is a central asset for a projects’ success. Rus et al. (2002) [53] identified a
set of motivations for why knowledge management is important in the field of
software engineering. Much of the knowledge within an organization is acquired
by its individuals through experience, and often involves a learning process of
trial and error. Thus, the software engineering discipline is experimental in na-
ture, and as a result, much of the acquired knowledge is held in the mind of the
individual who learned it. An organization ideally want to re-use previous ex-
periences for future projects, however if these experiences and practices are not
captured, then future development teams will not benefit from them, and the
team must acquire the knowledge all over again. The authors also found that

1

while knowledge may often already exist in an organization, a lack of knowledge
arises when it is not transferred to those who don’t have it, and as a result,
previous mistakes are repeated when they could have been avoided. And so the
purpose of knowledge management is to organize acquisition of new knowledge,
identify expertise, as well as capture, package, and share knowledge that exists
in an organization. Knowledge sharing is an activity in which knowledge is
moved from one donating party to another receiving party [58]. An exchange
of knowledge takes place though either the donation or collection of knowledge,
and can be performed on an individual or an organizational level [41]. Sharing
knowledge is an essential group process for team effectiveness, it is needed for
good decision-making and the building of the team’s knowledge base, and it is
a critical success factor for cross-functional teamwork [58]. A study by Staples
et al. (2008) [58] examined the potential effects of different aspects of virtuality
on knowledge sharing. They found that the degree of dispersion can affect the
sharing of knowledge because co-location promotes both formal and informal
contact and communication. Teams with more informal communication have
greater cross-functional cooperation, which is more difficult in a distributed con-
text. In other words, the study found that a high degree of dispersion negatively
affects the amount of knowledge that is shared within a team, and that reduced
knowledge sharing negatively affects team performance.

A type of knowledge that has been found to be especially important for
virtual software development teams is team knowledge. According to Moe et al.
(2016) [46] team members need to share the same understanding of many aspects
of the team’s work if virtual software development teams is to be successful.
In other words, the members must share the same mental model of how the
team works. Shared mental models allow team members to predict what their
teammates are going to do and what they are going to need in order to do it ,
and so shared team knowledge provide mutual expectations that allow teams to
implicitly coordinate without the need to constantly communicate [12]. In other
words, team knowledge allows team members to make valid assumptions about
the behavior of other team members, and thereby enable effective collaboration
and cooperation despite being distributed [46].

According to Šmite et al. (2010) [57], a majority of the empirical research
that has been previously performed on distributed software engineering projects
have studied intra-organizational collaboration between two sites, and so there
appear to be a lack of empirical research on highly-distributed software engi-
neering projects where every participant is at their own remote site. In other
words, there is a lack of studies on teams that are highly virtual. Furthermore,
a majority of their identified studies has had a focus on the management aspects
of virtual software engineering projects, and so there is little of research on the
practical aspects of virtual software engineering, and this number is especially
low in the field of knowledge management.

To summarize, there is an emergent requirement for a high degree of virtual-
ness within software development teams, and the effectiveness of virtual software
development teams rely on the successful sharing of team knowledge. Unfortu-
nately, however, the studies on this particular topic is scarce. While it is desired

2

to perform studies on how to improve the effectiveness of virtual software de-
velopment teams, this is difficult without a sufficient empirical knowledge base.
Recent events has not only made highly distributed virtual teams a relevant
context to explore, but has also presented us with an excellent opportunity to
do so. The main contribution of this master’s project is to perform a descrip-
tive case-study of a highly distributed, cross-functional virtual team within the
software engineering industry, in order to learn which team-knowledge sharing
activities they perform in a virtual setting. We will also evaluate the team’s
overlap of team knowledge, and use this as a measure of how well the team
proceeds to share team-knowledge among each other. Thus we formulate two
research questions:

• R1: Which team-knowledge sharing activities are used by the team?

• R2: What is the overlap measure of the team’s shared team knowledge?

In other words, we are going to study a single case of a virtual software
engineering team, in order to describe three things about that particular case.
First, we wish to know which activities are used by the team that result in the
sharing of team-knowledge (R1). A virtual team is not a binary or discrete
phenomenon. There are as many flavors of virtual teams as there are virtual
teams, and each team operate a little differently. If future researchers are to,
for example, perform a systematic review in order to learn which practices lead
to an improved sharing of team-knowledge within a virtual team, it is necessary
that the reviewed studies include which practices are performed, as well as the
result, which leads us to our next topic of study. The second topic that we
wish to describe about our case is, simply put, how well the team achieves the
sharing of team knowledge (R2). The term team knowledge will be described in
more detail in the next chapter, but for now it will suffice to think of team
knowledge as the sum of each individual team members’ knowledge that is
relevant and helps the team perform their tasks effectively. With the assumption
that successful sharing of team knowledge leads to an increased ”overlap” of
shared team knowledge among its members, the second objective of this study
is to measure the degree of overlap of the team’s shared team knowledge.

The rest of this paper is organized as follows: Section 2 includes the back-
ground theory used to perform and discuss our analysis. Section 3 describes
the method used to collect and analyse data. Section 4 shows the result of the
analysis performed in the method section, and Section 5 includes a discussion of
our findings. Section 6 will conclude our work and suggest directions for further
research.

3

2 Background

Within this chapter we will review and present the findings of relevant literature
in order to provide a theoretical background upon which this study is based.
Section 1 of this chapter will review virtual teams, in terms of what makes a
team virtual. As we will see, there are several ways to define a virtual team,
and so we aim to identify which specific characteristics makes a team virtual.
Moreover, we will explore the potential strengths and weaknesses of virtual
teams. In Section 2 we will look deeper on the definitions of knowledge, as well
as which characteristics knowledge may inhabit. Within Section 3 we extend on
this knowledge in order to define shared mental models and, eventually, team
knowledge, which is a type of knowledge highly relevant to virtual software
development teams. We will also present a framework for shared team knowledge
which will be very central for the remainder of this paper. In Section 4 we will
review the basics of knowledge management by describing its relevance to the
motivation of this study, categorizing different schools of knowledge management
strategies, and presenting a research framework for knowledge management.
In Section 5 we will build upon this knowledge in order to review knowledge
sharing. We will first present a definition of knowledge sharing as well as factors
that are known to influence knowledge sharing behavior. Then, finally, we
will explore how Agile methodologies affect knowledge sharing within software
development teams.

2.1 Virtual Teams

A distributed team consists of team members who are spread in different loca-
tions and work remotely on different parts and independent tasks of the project
without any face-to-face interactions [32]. Virtual teams refer to teams that
are geographically distributed and who rely on technology to communicate and
collaborate [47], and the difference between distributed teams and virtual teams
is that virtual teams work jointly on the same tasks [32]. According to Gheni et
al. (2016) [25], the difference between traditional projects and virtual projects
are the number of organizations and locations involved in the implementation
of the project. In traditional projects a large majority of the team members
are working for the same organization and in a single location, whereas virtual
projects may be composed of team members in different organizations, dis-
persed geographically. Furthermore, the authors describe international projects
as projects involving team members working in many locations across country
borders, and global projects combine the characteristics of both virtual projects
and international projects. Global teams are distributed teams working on in-
ternational projects across country borders [47], and may be formed when an
external company is subcontracted for providing software development services
for a client company (outsourcing), or when a company creates its own soft-
ware development centers located in different countries to handle the internal
demand (offshoring) [32]. Global virtual teams (GVTs) combine the character-
istics of global and virtual teams. They are groups of people who are working

4

together from different places in the world with different languages and cultures,
and who depend on information and communication technology to communicate
with each other [25].

2.1.1 Definition of team virtuality

Hosseini et al. (2015) [31] conducted a literature review in order to construct a
conceptual model for conceptualising team virtuality. They found that there are
several different approaches to defining virtual teams. The first is the traditional
approach, also called the dichotomy approach, through which team virtuality is
a discrete category to which teams are either included or excluded based on a
set of criteria. In other words, teams are either virtual or they are conventional
(i.e. face-to-face). The main criteria for team virtuality is geographic dispersion
of members, asynchronicity (i.e. temporal dispersion), reliance on information
communication technologies, boundary spanning (e.g. cultural and nationality
differences, or working for different organizations), temporality of teams (limited
duration of team), and the fact that members are mutually accountable for a
common purpose.

The dichotomy approach has several drawbacks, however. In the real world,
a categorical approach fails to capture the whole picture, as a team may inhabit
some of these criteria, or inhabit them to different degrees. In those cases,
it is difficult to pinpoint a cut-off point of what constitutes a virtual team,
and what doesn’t. Another approach to defining team virtuality is one that
the authors have named the virtuality approach. Researchers that follow this
approach have regarded the dichotomy approach as an oversimplification of
reality, as it is impossible to find modern-day teams that are purely virtual or
traditional in contemporary organisations, because even co-located teams often
rely on technology. The virtuality approach instead considers all teams along a
continuum ranging from merely face-to-face to entirely virtual. In other words,
team virtuality is a team characteristic of various levels, as opposed to a discrete
category.

But even within the virtuality approach there are no agreed-upon conceptu-
alisation for virtuality. Some approaches use discrete levels to classify degree of
virtuality, while other approaches regard virtuality as a continuous measure. In
the latter approach, researchers have introduced constructs or dimensions as the
causes of virtuality increase in teams. These factors, which the authors refer to
as constructs of virtuality, are factors which shift a team arrangement towards
one extreme of the virtuality continuum, which are purely virtual teams. The
other extreme of this continuum are the conventional co-located team working
arrangements.

From several different sources of literature, Johnson et al. (2009) [35] sum-
marized a list of dimensions that define a team’s degree of virtualness, which
are listed in Table 1. These factors were electronic dependence, geographic dis-
persion, level of technology support, percentage of time apart while working on
a task, degree of physical distance, use of virtual communication tools, amount
of informational value provided by those tools, synchronicity of communication,

5

use of computer-mediated communication, temporality, and diversity. These
keywords helps us paint a mental picture of what makes a team virtual, al-
though several of these keywords are related and may be combined. Most of
their reviewed literature, however, seemed to agree that team virtuality must
include the use of computer-mediated communication. Furthermore, while there
appreared to be a widespread agreement that virtual teams are geographically
dispersed, some argue that geographic dispersion is not a prerequisite for virtual
teams. In fact, Kirkman and Mathieu et al. (2005) [38] argued that the defini-
tions of team virtualness that include a requirement for geographic dispersion
makes the implicit assumption that when teams are co-located, then they are not
likely to interface through virtual means. The authors contend that while teams
with geographic and other forms of member dispersion are more likely to adopt
more virtual means of communication and collaboration, a team with co-located
members may also choose to employ virtual means of coordinating their actions,
and that co-location does not prevent a team from being highly virtual. Gumm
et al. (2006) [29] also claims that when evaluating a team’s physical or geo-
graphical distribution, it is necessary to take the team’s perceived distance into
account, as opposed to only considering the team’s actual physical distances.
Perceived distance also applies to temporality. In a team with an established
asynchronous communication culture temporal distance may seem lower than
for a team that relies on highly synchronous communication mechanisms.

Dimensions of team virtualness

Electronic dependence

Geographic dispersion

Level of technology support

Percentage of time spent apart while working on a task

Degree of physical distance

Use of virtual communication tools

Amount of informational value provided by virtual communication tools

Synchronicity of communication

Use of computer-mediated communication

Temporality

Diversity

Table 1: Dimensions of team virtualness, as summarized by Johnson et al.
(2009) [35]

6

2.1.2 Potential strengths and weaknesses

The geographical distribution of team members may be both a great strength
as well as a potential weakness for virtual teams. Since virtual teams are not
confined by geographical boundaries, the team may benefit from employing ex-
pertise from a much larger pool of candidates, enabling the assembly of teams
that maximise functional expertise [21]. This increased pool of expertise can
provide organizations with a competitive advantage [17]. An absence of geo-
graphic boundaries promotes knowledge sharing across organizational units and
sites, and thus knowledge may be more broadly distributed within an organi-
zation [21]. Working in virtual teams also provides some benefits for the team
member. Since team members are not required to commute into an office or
work site, the time and cost spent on travel and relocation are significantly re-
duced [21]. The flexibility of working from home facilitates work-life balance
and enhances employee satisfaction [17].

Many of the challenges faced by virtual teams are related to communication,
collaboration, and coordination. The geographical and organizational dispersion
of virtual teams may hinder communication and make coordination dependent
on the team’s shared knowledge [24]. Effective knowledge sharing is more dif-
ficult in virtual teams than in co-located teams , and for this reason virtual
teams suffer a performance penalty [7]. When team members work remotely,
there is no way to signal a person’s availability for ”spur-of-the-moment” in-
formal communication, and as a result there are fewer instances of informal
communication taking place than there would be in a co-located work environ-
ment [47]. In other words, virtual teams face a lower communication frequency
than co-located teams, and may cause challenges when using agile approaches
that require frequent communication.

The reduced communication frequency faced by virtual teams can lead to
isolation and high levels of social distance between team members, making it
more difficult to build trust and a shared sense of responsibility [21]. While
members co-located teams rely on physically observable behaviors in order to
assess trustworthiness of other team members, Alsharo et al. (2017) [3] claims
that virtual teams rely upon different behaviors, that are unique to virtual
settings, to compensate for the lack of physically observed behaviors. According
to the authors, trust between members of a virtual team is less affect-based and
more cognition-based, meaning that trust rely less on personal factors such
as caring and emotion, but more based on one’s perceptions of evidence of
another person’s trustworthiness, as well as their capabilities and competencies
to perform the task at hand. Institution-based trust, as the authors calls it,
allows team members to trust each others behavior based on the norms and
rules of the organization. The authors discovered that institution-based trust
affects virtual team effectiveness more so than personality-based trust.

de Guinea, Webster and Staples et al. (2012) [18] performed a meta-analysis
of the consequences of virtualness on team functioning, and they found that
short-term and long-term teams respond differently to higher levels of virtual-
ness. Generally, they found that teams that were more virtual exhibit higher

7

task conflict, lower communication frequency, less knowledge sharing, lower per-
formance and lower satisfaction. However, they discovered that the time length
of the project studied was a significant moderator on the effect virtualness had
on performance. Long team teams, that is, teams that worked together for
more than a single day, saw no negative effect on team performance and sat-
isfaction as virtualness increased. Team conflict was even reduced with higher
virtualness. The negative effects on communication frequency and knowledge
sharing faced by both short- and long-term teams with increased virtualness,
was significantly weaker in long-term teams. Their analysis also suggests that
while the communication delays caused by asynchronous communication was a
significant penalty to team effectiveness in short-term teams, it appeared to be
less significant in long-term teams who had more time available to finish their
tasks.

2.2 Knowledge

According to Rus et al. (2002) [53] there are four levels of knowledge: data,
information, knowledge and experience. Data is discrete, objective facts about
events, and may be either qualitative or quantitative. Data is raw material
used to compose information, and say nothing about it’s own importance or
relevance. Information is data that has been organized in a way that makes it
useful. Knowledge is the understanding of information, and can be thought of
as ”information about information”. Experience is applied knowledge. While
knowledge itself cannot be stored, it is possible to store information about knowl-
edge. New knowledge can be created through experiences, observations and
drawing rational conclusions.

Alavi and Leidner et al. (2001) [1] defines knowledge as information that has
been possessed in the mind of individual. In other words, knowledge becomes in-
formation once it is processed in the mind of individuals, and knowledge becomes
information once it is articulated and presented in the form of text, graphics,
words, or other symbolic forms. There are a few important implications of this
view of knowledge. In order for individuals to arrive at the same understanding
of data or information, they must share a certain knowledge base. Systems de-
signed to support knowledge organizations will be geared toward enabling users
to assign meaning to information and to capture some of their knowledge in
information and/or data. In order for knowledge held by an individual or a
group to be useful for others, it must be expressed in such a manner as to be
interpretable by others. Hoards of information are of little value, and only the
information which is actively processed in the mind of an individual through a
process of reflection and learning can be useful.

According to Wildman et al. (2012) [64], knowledge can be obtained ei-
ther through top-down or bottom-up processing. Top-down processing is ac-
complished by first having access to explicit declarative knowledge, which then
develops into procedural knowledge through practice. Bottom-up processing is
accomplished when individuals or teams are subjected to a situation without
prior explicit declarative knowledge or instruction. By engaging in the given

8

task or situation, they implicitly understand how to engage in the task proce-
dure and thereby obtain declarative knowledge from exposure.

2.2.1 Knowledge characteristics

There are several dimensions that can be used to describe the nature of knowl-
edge. Whether the knowledge is held by an individual, a group, or an organi-
zation, it may be documented or undocumented depending on whether or not
the knowledge has been captured and externalized [53]. It may be characterized
as either implicit or explicit depending on the nature of the knowledge type,
including whether it is declarative or procedural knowledge, and the manner in
which the knowledge is obtained [64]. Explicit knowledge is more easily commu-
nicated, and thus easier to document and reuse. It usually contains processes,
templates, and data captured in media [53]. Tacit knowledge refers to knowl-
edge that is more abstract in nature, resides in the human brain, is embedded
in individual experience and action, and is therefore not easily conveyed [49]. It
is gained through experience, is highly personal to the individual, and is more
easily influenced by the beliefs, perspectives, and values held by the individual
[53].

Wildman et al. (2012) [64] categorizes knowledge as either static or dynamic,
depending on the temporal nature of its content and structure. Static knowledge
captures metal representations of information that remains stable over time,
while dynamic knowledge captures mental representations of information that
is rapidly changing or evolving. The authors claim it is possible that static team
knowledge is better learned through top-down processing due to its stable and
long-term nature, whereas dynamic team knowledge is better learned through
bottom-up processing due to time and situational constraints.

According to Rus et al. (2002) [53], there are three different levels of knowl-
edge abstraction, describing the extent to whether its application is specific or
general. At the most specific level is point data, which describes (quantitatively
or qualitatively) information about a single project or event. Examples of point
data are metrics collected for a specific project, or lessons learned from a spe-
cific event. From a set of point data collected from multiple projects, models are
created that contain more information applicable to new projects. From these
models, best practices and standards may be built.

Furthermore, Rus et al. mention two more knowledge characteristics: knowl-
edge awareness and knowledge scope. Knowledge awareness refer to the knowl-
edge about existing knowledge, as well as knowledge about the lack of required
knowledge. Knowledge scope refer to the domain in which certain knowledge is
applicable.

2.3 Team knowledge

A mental model can be described as a person’s own idea of the world around
them, or a subjective representation of external reality [65]. More specifically,

9

mental models can be defined as organized knowledge structures that allow in-
dividuals to interact with their environment, draw inferences, make predictions,
understand phenomena, decide which actions to take, and experience events vi-
cariously [44]. According to Rouse and Morris et al. (1989) [52], humans can
have their own individual mental model of a system with which they interact.
This mental model allows them to predict and explain the system’s behavior,
as well as recognize and remember relationships among its components. These
mental models allows them to construct expectations of what is likely to occur
next. The authors themselves proposed a more concise working definition, as
follows:

”Mental models are mechanisms whereby humans generate descrip-
tions of system purpose and form, explanations of system functioning
and observed system states, and prediction of future system states”.

- Rouse and Morris et al. (1989) [52], p. 360

To summarize, a mental model is an organized knowledge construct that
allows a person to describe, explain, and predict events related to a specific
system. Cannon-Bowers et al. (1993) [12] suggested that if the members of a
team have shared mental models, then that would allow the team members to
predict what their teammates are going to do and what they are going to need
in order to do it. In other words, teams that have shared or common men-
tal models are able to adapt quickly to changing task demands, making them
more effective. Klimoski and Mohammed et al. (1994) [39] argues that the
definition of shared mental models largely depend on what it means to ”share”
a mental model. Sharing can mean both ”having in common”, ”dividing up”,
or ”overlapping”. Thus, shared mental models may refer to having common,
distributed, or overlapping representations among several individuals. If the
system in question is a team, and the individuals sharing mental models are
the members of that team, then one might instead refer to their shared men-
tal models as team mental models. A more formal definition of team mental
models are team member’s shared, organized understanding and mental repre-
sentation of knowledge about key elements of the team’s relevant environment
[39]. In other words, team mental models are shared mental models for which
the domain has been restricted to that of the team[13]. According to Cannon-
Bowers et al. (1993) [12], team mental models should not be identical among
team members, but rather, compatible, so that they provide mutual expecta-
tions that allow teams to coordinate and make predictions about the behavior
and needs of their teammates. Cooke et al. (2000) [13] refer to team mental
models as the collective task- and team-relevant knowledge that team members
bring to a situation. It is acquired through training and experience, and is long
lasting in nature. Team situation models, on the other hand, refer to the team’s
collective understanding of the specific situation [50], is developed in-situ while
the team is actually engaged with the task, and is highly dynamic. The team
situation model guides the team in assessing additional cues and patterns in
the situation, determining strategies available to the team, assessing how the

10

team is proceeding, predicting what teammates will do and need, and selecting
appropriate actions to take.

Team knowledge has been defined as the collection of task- and team-related
knowledge held by teammates and their collective understanding of the situation
[13]. In other words, they refer to team knowledge as a set of knowledge struc-
tures including both the team mental models and the team situation models. It
has also been described as an emergent structure in which knowledge that is crit-
ical to team functioning is organized, represented, and distributed within a team
[64]. Due to the ambiguity of the word ”shared” (e.g. in common, distributed, or
overlapping), Cooke et al. (2000) [13] describe shared team knowledge as either
knowledge that is similar within a team (i.e. homogeneous), or knowledge that is
distributed among team members (i.e. heterogeneous). In heterogeneous teams,
that is, teams in which different team members are assigned different roles, the
possession of heterogeneous team knowledge is required, meaning that the differ-
ent team members have role-specific yet compatible knowledge. While a certain
degree of overlap of team knowledge is needed for effective coordination and
shared expectations among team members [12], a situation in which every team
member has identical knowledge is not only highly unlikely, but will also be
highly dysfunctional [39]. Therefore, for the purposes of this paper, we will use
the term shared team knowledge to describe homogeneous team knowledge, or
in other words, team knowledge that is similar within a team.

2.3.1 Framework for Shared Team Knowledge

Wildman et al. (2012) [64] proposed a framework for categorizing team knowl-
edge. The authors define team cognition as the conceptual sum of the knowledge
of the individual team members, as well as the emergent knowledge structure
that results from the interplay of the individual cognitions of each team member.
Team knowledge refers to the structure of team-level mental representations such
as mental models, transactive memory, situation awareness, strategic consensus,
or other mental representations concerned with the organization, representation,
and distribution of knowledge among team members. These team-level mental
representations may be categorized into four basic types of knowledge content:
task related, team-related, process-related, and goal related. Faegri et al. (2016)
[24] proposed a framework of shared team knowledge that classify and describe
classes of knowledge with particular importance for virtual teams. The main
classifications of their framework is adopted from Wildman et al. (2012) [64],
but includes more detailed attributes relevant to virtual software teams. In this
section, we will provide an overview of this framework.

Task-related

Wildman et al. (2012) [64] describes task-related team knowledge as a mental
representation focused on the task-work that a team is performing, such as task-
mental models and knowledge about how a task should be accomplished as well
as the criteria for completing the task successfully. The authors found that the
sharedness of task mental models and task knowledge within a team was often

11

Figure 1: Wildman et al. (2012) [64] p. 91 - fig. 1: Organizing framework of
team knowledge

measured using a score overlap between team members on a set of items assessing
their individual knowledge about the key pieces of information in a particular
task. The majority of their reviewed literature categorized task mental models
and task knowledge as static in nature, meaning that it is relatively unchanging
over time.

Team situation models are the mental representations held by teams about
the dynamic moment-to-moment aspects of the task, team, process, and goals.
However, according to Wildman et al. there was only a small amount of work
that focused on dynamic mental-representations in teams, and the majority of
said work focused on task-related situational information. The authors specif-
ically mention two examples of dynamic task-related situational information:
one was the measurement of what cues in the environment the team members
were attending to, and the other was interruptive questionnaires where team
members report on the current status of a task-related situation.

Faegri et al. (2016) [24] found two primary types of task-related team knowl-
edge. The first type is task strategies, which is a shared understnding about
how a task is supposed to be accomplished by the team so that a sufficient level
of performance can be achieved. This type also includes knowledge of how task
work is allocated to members of the team, and plans of how team subgroups
should be used for working on parts of a task. The second type of task-related
team knowledge is knowledge about the content of a task. This includes a shared
understanding about the content about how the parts of the tasks interact, and
a shared understanding about how a task is connected to its environment.

12

Team-related

Wildman et al. (2012) [64] describes team-related knowledge as the men-
tal representations concerning one’s teammates or the team as a whole. More
specifically, team-related knowledge is knowledge of the qualities and charac-
teristics of the team members and the team itself, and not of team processes.
Expertise location is an example of static, team-level mental representation con-
cerning the location and structure of expertise within the team, such as which
expertise is held by which individual, as well as the individual’s degree of held
expertise within a given topic.

Faegri et al. (2016) [24] defined three primary types of team-related knowl-
edge: team membership knowledge, team member model, and expertise loca-
tion. Team membership knowledge refers to knowledge about who is on the
team and defined boundaries of who shares responsibility of the team’s work.
The team member model is a type of shared mental models containing informa-
tion about the characteristics and qualities of the individual team members, in-
cluding their knowledge, skills, attitudes, preferences, strength, weaknesses and
tendencies. A shared team member model is important in distributed teams
where interactions are infrequent, as it enables one to predict the behaviours
of their fellow team members and act accordingly, increasing the automation of
the process [44]. Expertise location refers to the extent to which team mem-
bers know who knows what on the team, and the authors claim this type of
knowledge is particularly important for virtual teams, and is positively associ-
ated with team performance. Techniques such as Planning Poker may improve
expertise location within a team [24].

Process-related

Process-related team knowledge refers to mental representations regarding
teamwork and the interpersonal processes involved in team interactions such as
team interaction mental models and other mental representations focused on
processes such as communication, leadership, and coordination. The difference
between process-related knowledge and task-related knowledge, is that task-
related knowledge is particular for each task, while process related knowledge
will be generic and valid for a range of tasks [24].

Faegri et al. (2016) [24] classified two primary types of process-related team
knowledge: team interaction mental models, and team norms. Team interaction
mental models include knowledge of interaction and interpersonal processes in a
team, such as communication, leadership, and coordination. The authors claim
that team interaction mental models enable virtual teams to be adaptable as
it creates expectations and drives team member behavior. Examples of the use
of team interaction mental models in virtual teams are when the team have a
rhythmic, temporal pattern of interaction, or use video calls. Team norms refer
to codes of conduct that are accepted by the team members. They are formed
and adopted as patterns of actions are found to be useful or effective.

Goal-related

13

Wildman et al. (2012) [64] describes goal-related team knowledge as mental
representations concerning the goals and objectives for the team, as well as the
mental representations concerning the achievement of these goals. This mental
representation is not referencing the requirements of the task, the characteristics
of the team, or the team interaction processes, but rather it is focused on the
knowledge or understanding of an overarching goal or mission relevant to the
team. An example of goal-related team knowledge is strategic consensus, a
construct that captures the extent to which the members of the team share an
understanding of the strategic vision that the team aims to achieve.

Faegri et al. (2016) [24] classified two primary types of goal-related team
knowledge: Overarching team goals, and strategic consensus. The former are
the mental representations of an overall goal or mission for the team, team
expectations, or performance objectives, as well as the mental representations
concerning the achievement of these goals. Strategic consensus refers to an
agreement about strategic goals for the organization. The authors claim that
goal-related team knowledge is very important for virtual agile teams. For self-
organization to work, the team members must have a profound interest and
commitment to the overall objectives of the team. Social bonds are weaker in
virtual teams, making social contracts among the members more fragile. And
for this reason, establishing and maintaining shared goals between the team
members are both challenging and important.

2.4 Knowledge Management

During the 1980s emerged the belief that knowledge had an increasingly impor-
tant role as an organizational resource, and that the success of an organization
requires systematic knowledge management [63]. Through the 1990s manage-
ments not only realized that knowledge was a critical resource, but also that
their organizations generally poorly managed it [22]. Knowledge had become
a central asset in not only knowledge-focused industries, but also manufactur-
ing, financial services and government organizations [15], and it became a more
accepted belief that the success of a business relied on competitive knowledge
assets and their effective utilization [63]. In other words, creating, providing,
sharing, using, and protecting knowledge was believed to improve organizational
performance [22]. The field of knowledge management rose to fulfill these needs,
with a twofold objective: first, to make the enterprise act as intelligently as pos-
sible to secure its viability and overall success; and second, to otherwise realize
the best value of its knowledge assets [63]. Davenport et al. (1998) [16] defined
knowledge management as ”a method that simplifies the process of sharing,
distributing, creating, capturing and understanding a company’s knowledge”.

Rus et al (2002) [53] claim that organizations have knowledge management
needs regarding domain knowledge for individual projects, knowledge of tech-
nology, knowledge about an organization’s local policies, and the knowledge of
who knows what within an organization. Software development requires not
only knowledge about its own domain, but also knowledge of the domain of the
problem which the developed software is supposed to address. Domain-specific

14

knowledge takes a long time to to acquire, and is often complex and application-
specific. Domain knowledge that no one in the organization possesses must
be acquired first-hand through training or by hiring knowledgeable employees.
However, once this knowledge is attained, successful knowledge management can
make such knowledge available to other members of the organization, so that
the learning process need not be repeated. The field of software engineering is
heavily reliant on technical knowledge in order to achieve the desired outcome
for projects. Due to the dynamic and constantly changing nature of technol-
ogy, however, this can pose challenges. A fast pace of change and stream of
new technologies can make it difficult for an organization to keep ahead in the
competition, making software engineering a difficult domain to master. Knowl-
edge management may help speed the learning curve for new technologies by
facilitating sharing of previously acquired knowledge within the organization.
Knowledge concerning existing software bases and local programming conven-
tions within an organization is often maintained informally in the minds of expe-
rienced developers, and shared through informal conversations, such as during
coffee breaks. While this type of knowledge sharing is generally encouraged, it
is not sufficient for making the knowledge available throughout an organization,
because the knowledge may not reach everyone who needs it. Additional for-
mal means of communication is required in order to make the knowledge more
available on a larger scale. The majority of an organization’s assets reside as
tacit knowledge within the minds of its employees. Tacit knowledge is very
mobile, and if a person leaves the organization, then their knowledge goes with
them, leaving a gap in the organization’s knowledge. Knowledge management
helps identify who knows what, so that structures can be made to retain some
of the tacit knowledge held by employees. Furthermore, mapping knowledge
gaps is useful for identifying what knowledge is required from a successor. As
it is becoming increasingly common for teams to work across borders of loca-
tion and time, knowledge management becomes necessary in order to help them
communicate, collaborate and coordinate. Through knowledge management, an
organization may facilitate transfer and mutual sharing of knowledge, as well
as the storage of work artifacts and their status in a format that is available for
all team members.

2.4.1 Knowledge management strategies

Earl et al. (2001) [22] proposed a taxonomy involving three categories of knowl-
edge management schools: technocratic, economic and behavioural. The techno-
cratic schools revolve around information or management technologies, of which
the systems school is the most established and formal approach. Its key idea is
to capture individual or group-held knowledge in knowledge bases which other
people can access. The system school includes knowledge management strate-
gies that use technology to manage a knowledge base, and examples of such
technologies within the software industry are JIRA, Wiki and Github [4], and it
is believed that the systems school is unfeasible without IT. Engineering design
and maintenance are classic applications, and the managed knowledge tends to

15

be domain-specific and aims to support and improve knowledge-intensive work
tasks and decision making. The authors suggested that the systems school of
knowledge management rely on two critical success factors: first, it would be
required with incentives or rewards for knowledge creation and contribution to
the knowledge base; second, if the contributed knowledge is to become ”of-
ficial knowledge”, then the knowledge content must be validated. A second
technocratic school of knowledge management is the cartographic school, which
revolves around the mapping of organizational knowledge by recording and dis-
closing who in the organization knows what by building knowledge directories.
Its main idea is that people holding expertise should be accessible for consulta-
tion and knowledge exchange. Since tacit knowledge is not easily expressed or
articulated, the objective is to identify who might be a source of said knowledge,
making the tacit knowledge accessible through conversation instead of a knowl-
edge base. The cartographic school of knowledge management relies on a culture
of mutual support and knowledge sharing as well as communication networks
in order to be successful. In this school, the contribution of IT is to connect
people via intranets to help them locate knowledge sources and providers using
directories. The third and last technocratic school of knowledge management
is the process school, which is driven by the ideas that performance of business
processes can be enhanced by providing personnel with the relevant knowledge,
and that management processes are inherently more knowledge-intensive than
business processes. This school revolves around decision-relevant, contextual
and best-practice knowledge. In this school, both knowledge and information
are provided by systems and intranets to operatives, staff or executives. Its
philosophy is enhancing the firm’s core capabilities with knowledge flows.

The commercial school is the only school that was labeled as ”economic”,
as it was concerned with both protecting and exploiting a firm’s knowledge or
intellectual assets to produce revenue streams. Its philosophy is pure commer-
cialization of intellectual or knowledge property, with a concern not for what it
is, but how to do it efficiently and effectively. It relies on the development of
a specialist team or function to aggressively manage property so it is not too
easily forgotten. It also requires the development or acquisition of techniques
and procedures to manage intellectual assets as routinized processes, in order
to avoid sub-optimization.

The last three schools are the behavioral schools, including the organiza-
tional, spatial and strategic schools. The organizational schools describe the
use of organizational structures to share or pool knowledge, often described
as ”knowledge communities”, which are a group of people with a common in-
terest, problem or experience. The essential feature of these communities is
that they exchange and share knowledge interactively in unstructured ways as
an interdependent network. The communities are also typically supported by
knowledge bases provided over networks, and so they combine both codification
and personalization knowledge management strategies. The philosophy of this
school is increasing connectivity between knowledge workers, and rely on two
critical success factors: first, is a tradition of sociability and networking; sec-
ond, a moderator is required for the communities, whose function is to know

16

who knows what as well as what is known. The spatial school revolves around
the use of spatial design to facilitate knowledge management, and consider the
fact that people in organizations are social being who prefer socialization over
documentation. The main objective is to encourage socialization as a means
of knowledge exchange, with the belief that tacit knowledge is best exchanged
through discussion. The strategic school sees knowledge management as a di-
mensions of competitive strategy, and knowledge is considered the key resource.
This school is concerned with raising consciousness about the value creation
possibilities available from recognizing knowledge as a resource,

2.4.2 Research framework for knowledge management

In Lee and Choi et al. (2003) [40], the authors propose a research framework
in which they emphasize three major factors for managing knowledge: enablers,
processes, and organizational performance. These are connected in the follow-
ing way: knowledge management enablers provide infrastructure that facilitates
knowledge management processes. These processes lead to intermediate out-
comes which affects the organizational performance. This research framework
is shown is Figure 2.

Figure 2: Lee and Choi et al. (2003), p. 182, fig. 1: An integrative research
framework for studying knowledge management.

Knowledge management enablers are organizational mechanisms meant to
stimulate knowledge creation, protect knowledge, and facilitate the sharing of
knowledge in an organization. They are influencing factors that provide the
infrastructure necessary for the organization to increase the efficiency of knowl-
edge processes. According to the authors, the most important enabler for suc-
cessful knowledge management is an appropriate organizational culture that
encourages people to create and share knowledge within the organization. An-
other important factor is an organizational structure that put knowledge to use
through centralization and formalization. Furthermore, an organization should
acquire people with desirable skills in order to acquire their knowledge and com-
petence. Technology may be used to connect people and facilitate the sharing
of knowledge and creation of new knowledge, as well as infrastructure to store
knowledge.

Knowledge processes, or knowledge management activities, are structured co-
ordination for managing knowledge effectively, such as creation, sharing, storage,
and usage. The authors emphasize knowledge creation as an important knowl-
edge management process. Knowledge creation is a continuous process where

17

individuals and groups share tacit and explicit knowledge. The authors adopt
the SECI model to explore knowledge creation and knowledge transfer, and this
model is made up of four activity modes; socialization, externalization, com-
bination, and internalization. Socialization converts tacit knowledge into new
tacit knowledge through social interactions between members. Externalization
codifies tacit knowledge into explicit concepts. Combination converts explicit
knowledge into more systematic sets by combining key pieces. Internalization
embodies explicit knowledge into tacit knowledge.

Organizational performance is the degree to which companies achieved it’s
business objectives. These measures can be categorized into four groups: fi-
nancial measures, intellectual capital, tangible and intangible benefits, and bal-
anced scoreboard. The balanced scoreboard retains financial performance and
supplements it with measures on the drivers of future potential. Directly linking
knowledge management processes with organizational performance is not pos-
sible as different organizations measure performance differently, It is possible,
however, to link knowledge management processes with intermediate outcomes,
and these outcomes may then be linked to the organizational performance. Ac-
cording to the authors, an important intermediate outcome is organizational
creativity, which is the transformation of knowledge into business value, and
the seed of all innovation.

2.4.3 Knowledge management systems

Alavi et al. (2001) [1] define knowledge management systems (KMS) as a class
of information systems applied to managing organizational knowledge. More
specifically, they describe them as IT-based systems developed to support and
enhance the organizational processes of knowledge creation, storage / retrieval,
transfer and application. According to the authors, knowledge management
systems can support knowledge management in several ways, one of which is
knowledge sharing and collaboration in virtual teams.

Wu and Wang et al. (2006) [66] describe two common characteristics of
knowledge management systems, namely knowledge repositories and knowledge
maps. Knowledge repositories are databases of useful documents with the sys-
tem that provides functions for capturing, organizing, storing, searching and
retrieving the knowledge and information. Knowledge maps are searchable in-
dexes or catalogues of expertise that help team members find individuals with
particular knowledge. According to the authors, a major benefit of KMS comes
from knowledge creation and sharing on the basis of ”pull” by users, as opposed
to a ”push” of information on them.

Alavi and Tiwana et al. (2002) [2] identified a set of challenges faced by vir-
tual teams, to which they propose ways a knowledge management system may
help alleviate these challenges. First, knowledge management systems may sup-
port the development and maintenance of a virtual team’s transactive memory.
Secondly, knowledge management systems may support mutual understanding
between the virtual team’s members, which suffers due to the barriers to effec-
tive communication. Furthermore, dispersion of virtual team members cause a

18

failure to share and remember contextual knowledge, leading to misunderstand-
ings or misinterpretations of a remote team member’s behavior, further leading
to conflict and difficulty in coordination of team efforts. Supposedly, knowl-
edge management systems may support the sharing and retaining of contextual
knowledge in virtual environments. Lastly, knowledge management systems
may support symmetry in shared knowledge, so that each member has access
to the same information.

2.5 Knowledge sharing

The success of knowledge management initiatives depends on the sharing of
knowledge between employees. Knowledge sharing is a major focus area of
knowledge management because it provides a link between the level of the indi-
vidual knowledge workers, where knowledge resides, and the level of the organi-
zation, where knowledge attains its economic or competitive value [30]. Wang
and Noe et al. (2010) [61] describes knowledge as a critical organizational re-
source that provides a sustainable competitive advantage in a competitive and
dynamic economy, and claims that organizations must consider how to transfer
expertise and knowledge from experts to novices in order to gain that com-
petitive advantage. In other words, successful knowledge management depends
on effective exploits of an organization’s existing knowledge-based resources.
Knowledge sharing between employees and within and across teams allows or-
ganizations to exploit and capitalize on knowledge-based resources [16]. Knowl-
edge sharing and combination is positively related to, among other things, re-
ductions in production costs, team performance and faster completion of new
product development projects [61]. According to Hendriks et al. (1999) [30],
knowledge sharing is not only an important pillar in knowledge management ef-
forts, but also a significant barrier to effective knowledge management. Factors
such as inadequate organizational structures, sharing-unfriendly organizational
cultures and denominational segregation are all factors identified to impede the
sharing of knowledge in organizations. Moreover, the authors claim that em-
ployee motivation is of critical concern, as well as the willingness and ability to
use ICT-systems that support knowledge sharing.

2.5.1 Definition of knowledge sharing

According to Hendriks et al. (1999) [30], knowledge cannot be shared like a
commodity that can be passed around freely, but rather it is tied to a knowing
subject, and requires an act of reconstruction in order to be shared. The party
that possesses the knowledge must first externalize it. An act of externalization
may take many forms, including performing actions based on this knowledge,
explaining it in a lecture or codifying it in an intelligent knowledge system.
Second, the party seeking to acquire knowledge must internalize the externalized
knowledge. Internalization may also occur in various forms, such as learning
by doing, reading books, or trying to understand the codified knowledge in a
knowledge base. Internalization of externalized knowledge may be distorted by

19

barriers such as distance in space, time, culture and language, as well as social
distance and differences in mental or conceptual frames. This process is shown
in Figure 3.

Figure 3: Hendriks et al. (1999) [30], p. 93, Figure 2 A simplified model of
knowledge sharing

In Chapter 2.4.2 we saw that knowledge transfer involved socialization, ex-
ternalization, combination and internalization [40]. The definition by Hendriks
et al. (1999) [30], however, only includes externalization and internalization in
their definition of knowledge sharing. While in other literature, the definition
of knowledge sharing also includes socialization [4]. From the literature we have
read the terms knowledge sharing and knowledge transfer have been used inter-
changeably, so what is the difference between the two? Wei et al. (2011) [62]
summarizes knowledge transfer as dyadic exchanges of organizational knowledge
between the source unit and a recipient unit that involves direct communication
processes between the two parties. At the organizational level these units are
separate organizations or departments, at the team-level the units are separate
teams, whereas on the individual level, on which there will be most focus on in
this paper, the units are individual people. Cummings et al. (2004) [14] defined
knowledge sharing as ”the provision or receipt of task information, know-how,
and feedback regarding a product or procedure”. According to them, knowledge
sharing includes verbal communication about a task and exchange of tangible
artifacts, as well as implicit coordination of expertise and information about
who knows what in the group. It may occur via written correspondence or
face-to-face communications through networking with other experts, or docu-
menting, organizing, and capturing knowledge for others [61]. Wang and Noe
et al. (2010) [61] describes the difference between ”knowledge transfer” and

20

”knowledge sharing” as follows:

”Knowledge transfer involves both the sharing of knowledge by the
knowledge source and the acquisition and application of knowledge
by the recipient. ”Knowledge transfer” has typically been used to de-
scribe the movement of knowledge between different units, divisions,
or organizations rather than individual.”

- Wang and Noe et al. (2010) [61], p. 117

To summarize, it would appear that knowledge transfer is a broader term
than knowledge sharing, and that knowledge transfer involves the movement
of knowledge between higher-level units, in addition to how the knowledge is
applied by the receiving unit. Knowledge sharing, on the other hand, concerns
itself with a smaller scope, involving individual people instead of groups or de-
partments. While knowledge transfer involves four conversion modes (socializa-
tion, externalization, combination, internalization) [40], knowledge sharing only
involves three (socialization, externalization, internalization). In other words,
knowledge sharing does not entail combination as a mode of conversion, which
is the conversion of explicit knowledge into other forms of explicit knowledge.
It does, however, entail moving of knowledge between two individuals through
socialization, externalization and internalization.

2.5.2 Factors influencing knowledge sharing

The factors influencing the extent to which knowledge sharing takes place may
be labeled as cognitive and motivational limitations towards knowledge sharing,
where the former are related to an individual’s ability to share knowledge, and
the latter is related to an individual’s willingness to share knowledge [60]. In
the literature review by Nguyen et al. (2020) [49] the author proposes the four-
dimensional ISTO model, which is short for the individual-social-technological-
organisational model. In this model, online knowledge sharing behavior in or-
ganizations is categorized into four groups: individual, social, technological and
organizational. We will make use of this model as we proceed to explore factors
which may influence the sharing of knowledge in a team or an organization.

Individual factors refer to the factors that are personal to the individual,
and its motivations derive from an individual’s own perception of achieving a
reward, benefit, or some form of enjoyment [49]. Lin et al. (2007) [41] identify
two broad classes of individual motivation, namely intrinsic and extrinsic mo-
tivation, both of which influence individual intentions and behaviors regarding
knowledge sharing. Extrinsic motivation to share knowledge refers to the cost-
benefit analysis where rewards for performing knowledge sharing are compared
to the efforts involved in the exchange [41]. Donating knowledge can take both
time and mental effort, thus and employee will be more motivated to donate their
knowledge if they expect benefits such as receiving organizational rewards or re-
ciprocation from their colleagues. Reputation and peer recognition are extrinsic
motivations known to encourage knowledge sharing [49]. Employees often share

21

useful knowledge to gain the respect of their peers, or to establish a position
as an expert in an organization. Intrinsic motivation, on the other hand, refers
to engaging in an activity for it’s own sake, out of interest, or for the pleasure
or satisfaction derived from the experience [41]. People may experience enjoy-
ment from helping others, or gain satisfaction from enhancing their knowledge
self-efficacy (that is, the confidence in one’s own ability to provide knowledge
valuable to others) [41, 49]. Openness to experience has been positively related
to individuals’ self-report of knowledge exchange, suggesting that people who
are open to new experiences tend to have a high level of curiosity, resulting in a
pique interest to seek others’ ideas and insights [9]. Several studies have shown
that individuals who are more confident in their ability to share useful knowl-
edge are mode likely to express intentions to share knowledge and report higher
levels of engagement in knowledge sharing [61]. Lin et al. (2007) [41] concluded
in their study that extrinsic rewards secure only temporary compliance, and
that reciprocal benefits, knowledge self-efficacy, and enjoyment in helping oth-
ers were significantly associated with employee knowledge sharing attitudes and
intentions, while expected organizational rewards did not significantly influence
employee attitudes and behavior intentions regarding knowledge sharing. This
result, however, could be impacted by the fact that more than 67 percent of
their sample respondents were executives.

The social factors refer to an individuals relationships with other people in
the organization, feedback from their colleagues, and reciprocity [49]. Social
interaction ties were shown to improve the depth, breadth, and efficiency of
knowledge sharing between employees. Trust was also shown to increase an
individual’s willingness to share their knowledge. Furthermore, individuals who
shares their knowledge with a colleague will often expect the receiver to share
the same amount of knowledge back. Social norms also influence an individual’s
behavior; an employee who perceive a greater social pressure to share knowl-
edge will have a greater willingness to do so [49, 34]. In virtual communities
both he number of direct ties and personal relationships an individual has with
other members have been shown to be positively related to the quantity and
the perceived helpfulness of knowledge shared [61]. Diversity, which was found
to be a dimension of team virtualness in Chapter 2.1, has also found to be a
factor influencing knowledge sharing in organizations, teams and work-groups.
Cultural diversity have also been found to influence knowledge sharing behavior
in global virtual teams [37]. Team members who consider themselves a minority
based on gender, marital status, or education have been found to be less likely
to share knowledge with team members [61]. Diversity entails not only cultural
diversity, but also other types of diversity. Different types of team diversity,
such as different background within education, experience and technical knowl-
edge, unfamiliarity of team members, physical distance between team members,
different languages and time difference have all been perceived as barriers to ef-
fective knowledge sharing for agile software development teams [27]. Note that
physical distance between team members and time difference (temporality) were
both found to be dimensions of team virtualness in Chapter 2.1.

In a virtual team, face-to-face communication may not be possible, and so

22

the team is dependent on ICT to facilitate knowledge sharing. For this rea-
son, technological factors may carry more weight than they would in co-located
teams. According to Van den Hooff et al. (2003) [60], the role of ICT in knowl-
edge sharing is to facilitate easier exchanges (independent of time and place)
between team members, and to promote connectivity and communality. Con-
nectivity refers to an individual’s ability to directly contact other members of
the team, positively influencing both the ability and willingness of members to
share knowledge. Communality refers to the collective storing and sharing of
information so that it is accessible by all team members. With an increased
shared intellectual capital follows a greater willingness to contribute to it, and
with the increase of knowledge about other member’s capabilities and interests
follows an increased ability to share knowledge. Previous research has found
that employees’ comfort level and ability to use computers likely influence the
usage of collaborative electronic media for information sharing [33]. According
to Nguyen et al. (2020) [49], system quality, perceived ease of use, and the
usefulness of information technology affects how likely employees are to make
use of them. Employees who understand how to use all the functions in a vir-
tual platform, and who perceive an improved performance upon using them, are
likely to interact more and thus share more knowledge. Van den Hooff et al.
(2003) [60] also found that task interdependence, computer effort, an individ-
ual’s attitude towards computer-based information, and information culture in
an organization are factors that influence the use of ICT to achieve knowledge
sharing.

The organizational factors refer to the determinants within an organisa-
tional context, such as rewarding incentives, management support, commitment,
shared goals, and leadership. Employees who strongly commit to organisations
tend to contribute their knowledge to build a relationship with their colleagues
and to contribute to the organisation [49]. Greater commitment to an organi-
zation are linked to an in increase prosocial behaviors and attitudes, and may
engender beliefs that the organisation has rights to the information and knowl-
edge one has created or acquired [34]. The beliefs of organisational ownership
of knowledge and information could be related to, or reinforced by, organiza-
tion culture, which refers to the shared values and attitudes of the members
of an organization [34]. Management have a responsibility to create the organ-
isational culture in which knowledge sharing among employees is encouraged
[49]. Common goals improve trust among individuals and reduce the fear of
self-interest by other members of the organisation, making employees more will-
ing to share knowledge [49]. Supervisors who recognize employees’ contribution
and empower them is also a key determinant for knowledge sharing [49].

2.5.3 Knowledge sharing in agile software development

According to Ghobadi et al. (2015) [26], knowledge sharing is an important area
of concern, especially within the field of software development. They describe
software development as a collaborative and knowledge-intensive process that
requires the blending and interweaving of diverse knowledge dispersed across

23

domains of specialization. Developers, user interface designers, user representa-
tives, and project managers engage in iterative development cycles that require
intensive knowledge sharing in terms of rapid reflections to exploit diverse exper-
tise and explore existing and potential opportunities in software development.
Moreover, effective knowledge sharing is necessary to allow team members to
discuss critical aspects of coordinating work across distributed spaces. Bjørnson
and Dingsøyr et al. (2008) [8] found that out of the three categories of knowl-
edge management schools proposed by Earl et al. (2001) [22] (see Chapter
2.4.1), the technocratic and behavioural schools were used in software engineer-
ing. The former refers to the knowledge management strategies that focus on
explicating knowledge and its flows, and the latter refers to schools focusing
on collaboration and communication as knowledge management strategies [5].
Ebert et al. (2008) [23] proposed a classification of knowledge in software engi-
neering describing three types of knowledge. The first type is project knowledge,
which is defined as ”the knowledge about resources, functional and attributes re-
quirements, work products, budget timing, milestones, deliverables, increments,
quality targets and performance parameters”. The second type is product knowl-
edge, which is defined as ”the knowledge about product features and how they
relate to other products, standards, protocols and the like”. The third type is
process knowledge, which is defined as ”the knowledge about business processes,
workflows, responsibilities, supporting technologies and interfaces between pro-
cesses”.

According to Chau and Maurer et al. (2004) [11], long chains of commu-
nication between the customer and the coder will result in a high amount of
information lost to the person who actually codes the software. For example,
the customer may express what they want from their software, but if this infor-
mation needs to go through an analyst, architect and designer before it reaches
the coder, then there are many points vulnerable for communication error. Agile
methodologies such as Scrum and Extreme Programming (XP) rely on direct
face-to-face communication between customers and developers for knowledge
sharing, reducing the information loss. They rely on individual, team and cus-
tomer communication and interactions, emphasizing the management of tacit
knowledge over explicit knowledge [5]. Andriyani et al. (2017) [4] found that
Agile practices were associated with the three aforementioned types of software
engineering knowledge: project knowledge, including timelines, team progress
and plans; product knowledge, including requirements and designs; and process
knowledge, including coding techniques and synchronised teamwork. Moreover,
agile teams use three specific knowledge management strategies: discussions
(e.g. sharing requirements), artefacts (e.g. user stories), and visualisations (e.g.
burn down charts). Agile methodologies recommend the use of cross-functional
(i.e. heterogeneous) teams as opposed to role-based (i.e. homogeneous) teams,
because the former facilitate better collaboration and knowledge sharing [11].

Scrum is an Agile methodology in which the product is developed in a se-
quence of self-contained mini-projects called iteration, and the product function-
ality grows incrementally by adding new features during each iteration [6]. The
software development project has three roles: The product owner is responsible

24

for deciding functionality of the product and prioritization of its implementa-
tion; the scrum master is responsible for establishing scrum practices and rules,
representing management to the project, shielding the team and removing ob-
stacles; and the team member is someone belonging to the team that carries out
the actual development activities, and the team is often cross-functional [6]. Ac-
cording to Adriyani et al. (2017) [5], Scrum practices such as sprint and release
planning, daily Scrum meetings and sprint retrospective all support the sharing
of knowledge, especially process and project knowledge. Through discussion the
team achieves socialization, which is the process of sharing tacit knowledge (e.g.
sharing mental models and technical skills). Externalization occurs when agile
teams gain the shape of metaphors, concepts and models in written form, such
as documentations, diagrams or artifacts. Through internalization process, the
externalized knowledge is processed to gain understanding about ”know-how”.
Finally, knowledge is combined when the team compile knowledge from different
sources in order to transform it into action.

According to Chau and Maurer et al. (2004) [11], daily Scrum meetings, also
referred to as stand-up meetings, are short daily meetings in which each team
member report their work progress since the last meeting, state their goals for
the day, and voice problems related to their tasks or suggestions to their col-
leagues’ tasks. These meetings facilitate communication among the entire team,
provide visibility of one’s work to the rest of the team, raises awareness of who
has knowledge about specific parts of the system, and encourage communica-
tions among team members who may not talk to each other regularly.

Agile planning [68] includes two agile processes, called release planning and
iteration planning. With release planning, the software development project is
divided into multiple releases in order to accelerate the software’s time to mar-
ket. During release planning, the customer presents the desired features to the
programmers, and the programmers provide an estimation of their difficulty,
which the customers then use to lay out a plan for the project [42]. These
initial plannings create a rough release plan, which is accurate enough for deci-
sion making, but imprecise enough to require regular revision. Each release is
composed by several iterations, each of which lasts around 2-4 weeks. Iteration
planning [11, 68] is performed at the beginning of each iteration to regularly
give the team direction. The customers presents desired features for the next
iteration, and the programmers break them down into tasks and estimate their
cost at a finer level [42]. These estimations are used to predict whether the de-
velopers will complete all the proposed tasks, and if not then the iteration tasks
are renegotiated with the customers [11]. This way of working allows the devel-
opers to demonstrate parts of the software product frequently, making it easier
to detect misunderstandings and errors of communication between customer
and developer [68]. The amount of progress is very visible to the customer, and
with the ability to see and decide which features should be worked on next, the
team are able to deliver more of what is most needed [42].

Another Scrum practice that involves feedback and communication is the
retrospective meetings, which is a feedback meeting held at the end of every
iteration. During the retrospective, the team does a short reflection on what

25

went well during the iteration and what should be improved in the next iteration
[42]. The objectives of the meeting is to gather data, generate insight, and
decide what to do next [20]. Data is gathered when the team shares their
review and feedback, report on what happened during the previous sprint and
briefly discuss it with their teammates. Insight is generated by participating in a
further discussion about which issues should receive focus, and how these issues
should be solved. The team then decides which actions should be performed in
order to solve the discussed issues. Retrospectives facilitate the identification
of any success factors and obstacles of the current process, and provide the
opportunity for these issues to be raised, discussed, and dealt with continuously
during the project [11].

Extreme Programming (XP) is an Agile methodology based on four core
values: communication, simplicity, feedback and courage [48]. The objective of
XP is to find the simplest way of working that could possibly work, in the belief
that predictive overhead is too expensive to be useful. A single team handles
all aspects of the development using simple practices, with enough feedback to
enable the team to see where they are and to tune the practices to their unique
situation [42]. Pair programming is one of the core processes of XP and in-
volves two developers working together using a single computer to design, code
and test software [48]. According to Chau and Maurer et al. (2004) [11], pair
programming is a great facilitator for eliciting and sharing tacit knowledge, as
the two developers share a range of knowledge between one another, some ex-
plicit but mostly tacit. The knowledge shared includes task-related knowledge
such as system knowledge, best-practices and technology knowledge; contextual
knowledge such as past experiences; or social resources such as personal con-
tacts or referrals. These are all types of knowledge that developers tend not
to document, and is often only shared through informal and casual conversa-
tion. Furthermore, XP recommends pairs to be rotated to ensure the shared
knowledge is accessible by the entire team.

26

3 Method

The purpose of this study was to describe a single case of a virtual software
development team in terms of their activities promoting team-knowledge shar-
ing, and how well they achieve the sharing of team knowledge. There is a lack
of studies performed on modern virtual software-development teams, especially
within the field of knowledge sharing. Focus was placed on team-knowledge as
opposed to general knowledge due to the fact that team-knowledge is crucial
for the coordination and collaboration of virtual teams [46]. For this purpose,
two research questions were posed about the case, which answers will provide
empiric material which will, hopefully, be one of many cases, promoting the
construction of more generalized theory in the future. The research questions
posed are the following:

• R1: Which team-knowledge sharing activities are used by the team?

• R2: What is the overlap measure of the team’s shared team knowledge?

This chapter presents the description of the research process and is divided
into several sections. Section 1 presents the conceptual framework defining the
concepts that are relevant for answering the posed research questions. Sec-
tion 2 presents research design, describing the major design decisions made for
this study along with their arguments. Section 3 provides a description case
and informant selection, and Section 4 describes the data collection procedures.
Section 5 describes how collected data was analysed with regard to the concep-
tual framework. Section 6 discuss quality of research, while Section 7 discuss
the researcher’s own positionality with regards to the study. Finally, in Section
8 we describe ethical considerations that were made for using information about
the case and the informants.

3.1 Conceptual framework

Before we could answer any of the research questions it was necessary to establish
a conceptual framework that defines the boundaries of which types of data are
relevant, and which aren’t. The purpose of this chapter is to provide a set
of concepts and their definitions from the background chapter (see Chapter 2)
which will guide the direction of the remainder of this study. For each of the
two research questions we will list a set of concepts that are relevant in order
to answer those questions. Additionally, we will define a conceptual framework
in order to evaluate the team’s degree of virtualness.

3.1.1 Team virtualness

To evaluate the team’s degree of virtualness we will define our conceptual frame-
work based on what we found in Chapter 2.3.1: ”Characteristics of a virtual
team”. Johnson et al. (2009) [35] summarized a total of 11 different dimensions
of team virtuality, and we quickly saw that several of these dimensions have

27

similar themes, and may be grouped into two main categories: dimensions re-
lated to the use of technology, and dimensions related to team distribution (see
Table 2). It was also noticed that some of these dimensions appeared similar
in meaning. For example, ”use of virtual communication tools” and ”use of
computer-mediated communication” were both interpreted to mean the same
thing, that is, the use of digital tools for communication with other team mem-
bers. And so both of these dimensions were combined into a single dimension
named ”Use of virtual communication tools”. Furthermore, geographic disper-
sion and degree of physical distance could be interpreted to mean the same thing.
Instead of combining them into a single dimension, we chose to instead define
”geographic dispersion” as the team’s dispersion on a global basis (e.g. which
city and country each member is located), and ”degree of physical distance”
as the time and effort it would require for a team member to physically visit
another, or for the entire team to physically gather at one place. Since it was
outside the scope of this study to measure each of the remaining 10 dimensions
in detail, the conceptual framework that was used to measure team virtual-
ness would be simplified to mainly focus on the two main categories (use of
technology and team distribution), and then probe more in-depth on individual
dimensions where it seemed relevant for the case.

Use of technology Team distribution

Electronic dependence Geographic dispersion

Level of technology support Percentage of time spent apart
while working on a task

Use of virtual communication tools Degree of physical distance

Amount of informational value
provided by virtual communication
tools

Synchronicity of communication

Temporality

Diversity

Table 2: Dimensions of team virtuality, grouped into two main themes: use of
technology and team distribution

3.1.2 Overlap of shared team knowledge

In order to answer the research question R2: ”what is the overlap measure of
the team’s shared team knowledge?”, two separate items needed to be learned.
First, it was necessary to find out what relevant knowledge each individual team

28

member possessed. Note that there is an emphasis on the word ”relevant”, be-
cause only knowledge that was relevant to our context has been considered. If
several of the team members possessed overlapping knowledge about, for ex-
ample, European history, then that would not be very helpful in a software
engineering context. A conceptual framework was required to define the bound-
aries of what knowledge was relevant in order to collect the correct information.
In section 2.3.1 we introduced a conceptual framework for team knowledge by
Wildman et al. (2012) [64] as well as the classifications of team knowledge types
by Faegri et al. (2016) [24], and so the framework presented in Chapter 2.3.1
serves as a conceptual framework to define which types of knowledge are rele-
vant. In the framework by Wildman et. al, team knowledge was divided into
four categories based on content: task-related, team-related, process-related,
and goal-related. Faegri et al. further divides these categories into different pri-
mary types of knowledge. Knowledge about task strategies and task content are
primary types of task-related knowledge. Team membership knowledge, team
member model and expertise location are primary types of team-related knowl-
edge. Team interaction mental models and knowledge about team norms are
primary types of process-related team knowledge. Knowledge about overarching
team goals and strategic consensus are primary types of goal-related knowledge.
These knowledge categories and their primary types of knowledge are shown in
Table 3. Knowledge that belonged to one of these primary types of knowledge
was considered to be relevant for our context.

Task-related Team-related Process-
related

Goal-related

Task strategies Team
membership

Team
interaction
mental models

Overarching
team goals

Task content Team member
model

Team norms Strategic
consensus

Expertise
location

Table 3: Categories of team knowledge and their primary types of knowledge.

The second item that needed to be learned in order to measure the team’s
degree of shared knowledge, was a manner in which overlap between held knowl-
edge may be measured. In other words, it was necessary to quantify the ”shared-
ness” of held team knowledge, in order to create a measure of the team’s overall
shared knowledge. Cooke et al. (2000) [13] claims that quantification of team
knowledge makes it easier to compare individual results within a team to assess
knowledge similarity, and that team knowledge may be quantified in terms of
category frequencies from the coding of qualitative data (e.g. interview tran-
scripts). According to the authors, team knowledge similarity, also referred to as

29

consensus, compatibility, or overlap among team members, is the metric which
is most focused on by researchers, as there is a general implication that a high
measure of team knowledge similarity leads to more effective teams. It must be
noted, however, that this implication is not intrinsically true, as heterogeneous
teams, that is, teams whose members have separate roles that requires separate
sets of knowledge, require a degree of dispersion of knowledge in order to func-
tion. In other words, heterogeneous teams whose team members hold identical
knowledge will be highly dysfunctional, and so using team knowledge similarity
as the sole metric of quantifying team knowledge will be incomplete and will
not provide an accurate picture of the team’s collectively held knowledge. This
is why a clear definition of boundaries are required to define which knowledge
similarities should be quantified. In the paper by Faegri et al. (2016) [24],
from which we retrieved a conceptual framework for team knowledge, the term
”team knowledge” describes knowledge that is shared among team members.
The types of team knowledge proposed in their framework are types of shared
team knowledge that is relevant for all members a software development team in
order to help them make valid assumptions about activities done by the other
team members. The types of team knowledge that is described by Faegri et
al. and is included in the conceptual framework of this study does not entail
role-specific knowledge, nor in-depth technical knowledge. Instead, the primary
types of team knowledge can be thought of as collectively produced frames of
reference, or shared models, enabling the formation of accurate expectations
of the tasks, the team, and the expected and accepted behaviors [39]. Since
the types of team knowledge being quantified are the types that a software de-
velopment team would collectively possess, and because we are not measuring
role-specific or individualistic knowledge types, we argue that using similarity
as a metric of quantifiable team knowledge, as described by Cooke et al. (2000)
[13], is not an incomplete measure for the purposes of this study.

3.1.3 Team-knowledge sharing activities

The conceptual framework for shared team knowledge applies not only to mea-
sure the overlap of shared team knowledge, but also to define which processes
was considered as team-knowledge sharing processes. In order to answer R1:
”Which team-knowledge sharing activities are used by the team?”, we need to
define criteria for what constitutes a team-knowledge sharing activity. To recap
Chapter 2.5.1, knowledge sharing involves a giving and a receiving party, where
the giving party must externalize their knowledge to a format that can be in-
ternalized by the receiver. Externalization and internalization may take several
forms: the giving party may perform actions based on their owned knowledge,
and the receiving party may observe these actions in order to understand them;
the giving party may explain their owned knowledge through a lecture, and
the receiving party may listen; the giving party may codify their knowledge
in a knowledge system, and the receiving party may read it. Using this defi-
nition we can describe a team-knowledge sharing activity as any activity that
demonstrates the externalization and internalization of team knowledge, or the

30

movement of team knowledge through socialization. Furthermore, Chapter 2.5.3
described how Agile practices were associated with sharing of (team) knowledge,
with an emphasis on the Scrum methodology. There is a parenthesis around
the word ”team” because the practices were involved with the sharing of several
types of knowledge, involving team knowledge. The practices include working in
iterations, stand-up meetings, sprint- and release-planning, sprint retrospective
and pair programming. The Scrum methodology brings the product owner into
the team, which is cross-functional, in order to reduce barriers of communica-
tion. To summarize, we wish to find whether the case-team in question displays
any of the practices associated with (team) knowledge sharing, in addition to
any observed instances of team-knowledge sharing between two or more team
members.

Demonstrated instances of Agile practices

Moving team-knowledge through
socialization

Scrum roles (Scrum master, product
owner, team members)

Moving team-knowledge through
externalization and internalization

Cross-functional team

Working in iterations

Stand-up meetings

Sprint and release planning

Sprint retrospective

Pair programming

Table 4: Conceptual framework for identifying team-knowledge sharing activi-
ties.

3.2 Research design

This study was conducted as a cross-sectional, descriptive case-study following
the positivist research paradigm. The ontological position of this study is that
there exist a reality that can be systematically and rationally investigated em-
pirically, and that this reality is driven by general laws that apply to human
behavior [55]. In other words, this study was conducted in the belief that there
may exist a causal relationship between which knowledge sharing activities are
performed by a team and the team’s degree of shared team knowledge, and that
this relationship may be affected by the team’s degree of virtualness. And thus
this study aims to contribute to uncovering the reality of this relationship by
providing empiric material from a single case, which will hopefully in the future
be one of many cases, upon which hypotheses and theories may be built by
following the scientific method.

31

With the objective of answering the proposed research questions in the con-
text of a single case, a middle-ground between extensive and intensive (tight and
loose) research design was chosen. According to Miles et al. (2018) [45], a loose
research design is befitting for qualitative researchers who consider the item of
research to be too complex for explicit conceptual frames, and instead let their
conceptual frameworks inductively emerge throughout the course of their study.
A tight research design, on the other hand, are fitting for researchers who work
deductively with a previously defined construct, and puts more weight on proce-
dures and overhead. Both approaches have their strength as well as weaknesses.
With a loose design the data becomes richer as the data collection becomes less
selective. This, however, may result in a higher work load of analyzing the data,
and the result of analysis may be less generalizable for other cases, as there is no
apparent structure which can be replicated. A tighter research design is more
economic in terms of workload, and is more probable to yield generalizable re-
sults and conclusions. Unfortunately, however, a tight research design places
limits on the complexity and flexibility of collected data. Since the objective
of this study was to answer a set of concrete research questions proposed in
chapter 1, an extensive approach appeared to be appropriate. Yet, due to the
fact that the number of similar studies performed was low, it would be diffi-
cult to completely anticipate the nature of the data that would be collected. If
the research design was too tight, then there could be situations in which data
would be taken out of context in order to be forced into a strict framework that
may not actually reflect the real world. For this reason, a standardized protocol
for data collection was maintained, although there was left room for flexibility
and openness for a broad variety of data in case anything unexpected emerged.
Unfortunately, a somewhat loosened research design was less economic in terms
of the information load to be analyzed, but seeing as the scope of the study was
not large to begin with, this seemed to be a reasonable trade-off.

For similar reasons as those stated in the previous paragraph, a hybrid of
qualitative and quantitative research design was chosen. According to Guba
and Lincoln et al. (1994) [28], a highly quantitative research approach strips
away much of the acquired data’s context and may fail to provide clarity of the
generalizability of the results. A qualitative approach, on the other hand, pro-
vides contextual information along with the acquired data, providing greater
internal validity as well as an insight into its external validity. Quantitative
data is more comparable than qualitative data, however, and so a quantitative
approach may yield greater external validity, while a qualitative approach may
yield greater internal validity. With the mindset of choosing an approach that
would best answer the proposed research questions, it would seem that both
a highly quantitative as well as a highly qualitative approach would be inap-
propriate. If this study was to be one out of many similar studies building a
foundation of empiric material, then external validity would seem important,
and so a quantitative approach would be fitting. Yet, the nature of our research
required at least a partially qualitative approach. For example, an evaluation of
the team’s degree of virtualness required the measurement of a variable which
has previously been defined as a multi-dimensional and continuous measurement

32

[35, 18]. Our first research question R1: ”Which knowledge sharing activities
are used by the team?” could accept responses of a somewhat discrete nature,
but it seemed probable that if a quantitative approach was used to collect these
answers (e.g. though a questionnaire), then the informants would be required to
be familiar with the field of knowledge management, or else the internal validity
of the results would suffer. A qualitative approach could yield discrete answers
to R1 as well, but would provide a greater flexibility to the data collection (e.g.
semi-structured interviews), allowing the researcher to ensure that the received
responses are, in fact, responses to the questions that they want to ask. Such
approaches would also yield a greater richness of the collected data, further im-
proving the internal validity of the results. For our second research question
R2: ”How much overlap is there between the individual team member’s team
knowledge?”, it is evident from its wording that the answer would have to be
at least partially quantitative. Yet, from our conceptual framework, a wide va-
riety of information is required in order to measure an individual’s held team
knowledge, and acquiring those amounts of information through a quantitative
manner would most likely be very tedious for the informants. Instead, the most
fitting approach to answer this question appeared to be a hybrid of one that is
qualitative and one that is quantitative. A semi-structured protocol was used
in order to acquire rich information from the informants in order to identify
concepts within thematic boundaries. The resulting concepts would later be
quantified and compared between the informants.

The case-study method appeared to be the most suitable method of acquir-
ing knowledge about a group, which in our case was a single software develop-
ment team. The strengths of the case-study method is that it allows for the
examination of a phenomenon in depth using various kinds of evidence obtained
from interviews with those involved, direct observation of events and analysis
of documents and artifacts [67]. As the goal is not to construct or test a theory
or hypothesis, but rather, describe the circumstances and dynamics of a single
software development team, the method used was narrowed down to the descrip-
tive case-study method. If the goal of a study is simply to describe in-depth a
case within it’s own context without the goal of constructing or testing a theory
or hypothesis that applies to a broader population, then one might question
whether the study is at all generalizable. Denzin et al. (2011) [19] posed four
possible answers to this, one of which is the following:

The first is to say that the question is irrelevant because establishing
typicality is not the intent of the researcher. The case is simply the
case. The case portrayal might, however, have some utility beyond
itself. For example, a researcher might argue that if one had several
descriptive studies of the same phenomenon in hand, one might ex-
amine whether there is a trend, or if a descriptive study is well done,
it might be used for comparison with other descriptive studies of the
same or similar phenomenon.

- Denzin et al. (2011) [19] - The SAGE Handbook of Qualitative
Research, 5th ed, p.609

33

As such it was concluded that the descriptive case-study method would serve
as a fitting means to the purpose of this study. The goal is not for this study to
construct or test a theory or hypothesis in and of itself, but rather to provide
one building block out of many, which will contribute to an increased pool of
empirical research in the field of knowledge sharing in virtual teams which may
provide the grounds upon which to construct and test theories and hypotheses
in the future.

In order to answer the second research question R2: ”How much overlap is
there between the individual team member’s team knowledge?”, a conceptual
framework as described in chapter 3.1 was used. This framework required in-
quiry of the team knowledge of individual team members, which would later be
compared to measure an overlap score. However, much of the team knowledge
held by a team is highly dynamic in nature, and may change from one day to
another [13]. For example, which tasks the team is currently working on will
change with time as the team completes one task and begins another, and so the
task-related team knowledge held by an individual may change from one week
to another. For this reason it was required to sample the team members’ held
team knowledge from within a short window of time in order to avoid threats
to internal validity, and so a cross-sectional time perspective was chosen.

3.3 Informants

For this study we needed to gather data from members of a single software
development team. In order to choose which team to study there were 2 re-
quirements. First, the team’s main work had to be within the field of software
development. Second, the team needed to work virtually, meaning that the
majority of their work needed to be conducted through the aid of computer-
mediated communication. The research institution for which this study was
conducted (SINTEF) cooperated with several consultant companies within the
software industry, and queried one of these companies whether they currently
had any teams fulfilling said requirements.

Through this consultant company the researcher established contact with a
cross-functional software development team working for a Norwegian organiza-
tion. This team consisted of a total of 11 members, 7 of which were employees
of the organization, along with 5 consultants from our contacted consultant
company. The team included 6 developers and 5 non-developers, including 2
functionally responsible, 1 functional architect, 1 UX-designer and 1 product
owner. The team’s members had been required to work from home since the
onset of the COVID-19 pandemic, and communicated and collaborated exclu-
sively through digital means. By agreement with one of the members of the
team, each team member was extended an invitation to participate in the study.

From a total of 11 team members who were invited, 5 team members ac-
cepted the invitation to participate in the study, including 3 developers and
2-non developers. Ideally it would be preferred that the entire team accepted,
which would improve the internal validity of the results. However, as there are
a lack of similar studies and thus no previously established recipe for collecting

34

data of this nature, a flexibility of and openness to the data collection was re-
quired. In other words, large amounts of data would need to be collected from
each informant, and so for the completion this study to remain feasible given the
time limit of a master’s project, 5 informants seemed to be an adequate number
of informants, although perhaps on the lower-end of what would be preferred.

3.4 Data collection

The main method of data collection were in-depth, semi-structured interviews
with each informant. However, prior to the initiation of data collection, the
researcher were invited by the team to attend and observe three digital team
meetings; a stand-up meeting, a retrospective meeting, and a sprint planning
meeting. The three meetings took place through a video call on Microsoft
Teams, to which each team member attended from their own remote location.
The researcher entered the digital meeting room and turned off their audio and
video feed before all the attendants arrived, then silently observed as the meeting
carried on as usual. During the observed meetings the researcher wrote a very
rough transcript of the events that took place as well as their own thoughts
about them, while also noting any observed sharing of team-knowledge. After
the meeting was concluded, the researcher wrote a summary. These observations
served multiple purposes. First, they provided context knowledge that proved
useful when writing an interview script, as these insights gave the researcher
an idea of how questions may be phrased in order for them to make sense
to the informants. Furthermore, it provided valuable insight that would help
supplement the description of the context. Lastly, it provided an opportunity for
to see the team in action, and see first-hand demonstrations of team-knowledge
sharing, instead of just hearing about them from the interviewed informants.
This brings us to the next source of data.

Each of the participating informants (5 in total) were interviewed, one at
a time, within a 3-day time-span in the middle of the week: 1 interview on
the first day, 3 interviews on the second day, and 1 interview on the last day.
The interviews all took place over video-calls on Microsoft Teams which both the
interviewer and the interviewees attended from their own home. The informants
were told prior to starting that they were free to talk as much or little as they
would like about the subjects that would be discussed, and that it was perfectly
fine to not answer a question if they didn’t want to. The informants were asked
questions according to Interview Guide (see Appendix A), and the interview was
recorded using an audio-recorder. These recordings would later be transcribed
by the researcher, and the transcriptions served as basis for analysis.

After the transcribed interviews were analysed and their results were ac-
cumulated, a subset of the results were presented to the Scrum-master of the
team during a feedback meeting. The purpose of this meeting was to provide the
Scrum-master with insight about their own team, but also to ask them whether
the results made sense to them, in order to detect any anomalies that would
threaten internal validity. The meeting took place on Microsoft Teams, and was
attended by the researcher, their supervisor, and the case team’s Scrum master.

35

The researcher held a power-point presentation of the presented results, and the
three attendants discussed the results during the presentation. At the end of
the meeting, the Scrum-master was asked questions in order to fill any gaps in
the researcher’s previously possessed context knowledge. By agreement with all
the attendants, the meeting was recorded using Microsoft Team’s own recording
feature. The recording was not transcribed or analysed, but re-played by the
researcher while taking notes about items that should be added to the context
chapter.

3.5 Data analysis

A set of 5 interview transcripts along with summaries of 3 observed meetings re-
quired analysis in order to structure our findings. A qualitative analysis method
was used in which sentences and paragraphs were assigned to codes according
to what kinds of information they could provide us. A pre-defined code hier-
archy was first established according to the conceptual framework described in
Chapter 3.1. For each unit of data (i.e. interview transcript or observed meet-
ing summary) its containing sentences were assigned codes to the pre-defined
code structure in an iterative manner, level by level, until the bottom of the
code hierarchy was reached. Then, each of the bottom-level codes were anal-
ysed in a more open-ended manner; some codes were analysed qualitatively
by identifying patterns and concepts that occurred, while others were analysed
semi-quantitatively in order to quantify how many interviewed informants ex-
pressed in agreement with a specific statement. To code the data, a qualitative
data analysis software named NVivo was used, which allows for the coding of
text-based data. The 5 interview transcripts and 3 meeting observation sum-
maries were uploaded into NVivo and read through once before the analysis
process started.

3.5.1 Pre-defined code structure

Before the analysis process could begin, it was necessary to establish a pre-
defined code hierarchy to provide structure for the analysis. At the top level a
code was created for each data type to be analysed, that is, one for interviews
and one for observations. The ”Observations” code was given three children,
one for each observed meeting, named ”Retrospective”, ”Sprint-planning” and
”Stand-up”. See Figure 4 for reference.

Within the ”Interviews” code, a pre-defined code hierarchy was set up based
on the conceptual framework described in Chapter 3.1.

At first a code was created corresponding to each of the research questions,
named R1: ”knowledge sharing activities” and R2: ”Team knowledge”, in
addition to a third code named ”Team virtualness”. These top-level codes were
given child codes according to the conceptual framework described in Chapter
3.1. The top level code named ”Team virtualness” was given two level-2 child
codes, named ”Use of technology” and ”Team distribution”, respectively. The
level-1 code named ”R1: Knowledge sharing activities” was given three level-

36

Figure 4: The top levels of the code hierarchy. At level 0 a code was made
for each type of data to be analysed. At level 1, a code was created for each
observed meeting under the ”Observations” code.

2 child codes, named ”Socialization”, ”Externalization + internalization”, and
”Agile practices”, respectively. The level-1 code named ”R2: Team knowledge”
was given four level-2 child codes: 1) ”Goal-related team knowledge” which is
given two level-3 child codes, named ”Overarching team goals” and ”Strategic
consensus”; 2) ”Process-related team knowledge” with two level-3 child codes
named ”Team interaction mental models” and ”Team norms”; 3) ”Task-related
team knowledge” with two level-3 child codes named ”Task content and ”Task
strategies”; and lastly 4) ”Team-related team knowledge” with three level-3
child codes named ”Expertise location”, ”Team member model”, and ”Team
membership”. The pre-defined code hierarchy is shown in Figure 5.

Within the ”Observations” code, a pre-defined code hierarchy was set up
within each of its three child codes, named ”Retrospective”, ”Sprint-planning”
and ”Stand-up” respectively. The pre-defined codes used were identical be-
tween the three level-1 observation codes, and so the figures will only show the
code hierarchy with respect to the level-1 code named ”Retrospective”. Within
each observation code, two level-2 codes were created, named ”Protocol” and
”Knowledge sharing activities” respectively. Within the ”Knowledge sharing
activities” code, a code hierarchy was set up according to the conceptual frame-
work for knowledge sharing in Chapter 3.1. Level-3 child codes were created
named ”Socialization”, ”Externalization”, and ”Externalization and internal-
ization” accordingly. This pre-defined code hierarchy is shown in Figure 6.

3.5.2 Pre-coding the data

The interview transcripts were coded in an iterative manner, first by coding sen-
tences into the pre-defined code hierarchy, one level at a time, and then later in
a more open-ended manner. In the first iteration, the interview transcripts were
read through while each sentence of the informants’ responses were considered
whether it carried information about the team’s degree of virtualness, or infor-
mation that would help answer any of the research questions, in which case they
were assigned level-1 codes respectively. For example, if a response mentioned

37

Figure 5: Pre-defined code hierarchy used for analysis of interviews. These codes
were then divided into sub-codes at level 2 and 3 according to the conceptual
framework used.

38

Figure 6: Pre-defined code hierarchy used for analysis of observed meetings,
shown with respect to the ”Retrospective” code. A code was created for infor-
mation about the meeting protocol, and another code was created for displays
of sharing team knowledge.

anything that could be related to the team’s degree of virtualness, then the
relevant sentence was coded into the ”Team virtualness” code, along with any
surrounding sentences if they provided context for the relevant sentence. In the
second iteration, the accumulated sentences assigned to each of the level-1 codes
were read through again, while simultaneously re-coding the sentences into any
of the code’s level-2 child codes. For example, if a sentence previously coded into
”Team virtualness” mentioned anything relevant to the use of technology, then
that sentence would be re-coded into the level-2 code ”Use of technology”, along
with any of its surrounding sentences if they provided context for the relevant
sentence. This process was repeated in the third iteration, where the sentences
assigned to level-2 codes were read through and re-coded into its relevant level-3
child codes, if any. The remaining bottom-level codes would later be analysed in
a more open-ended manner, in which each of the informants’ statements would
be assigned their own codes, and similar statement codes would be combined to
get an overview over how many informants expressed any given statement.

Similarly to the interviews, the observation summaries were read through
while simultaneously assigning codes to sentences and paragraphs. For each ob-
servation summary, sentences were assigned codes from the pre-defined core hi-
erarchy descending from the observation’s own code. For example, when coding
the summary of the observed retrospective meeting, sentences and paragraphs
were assigned either of the pre-defined level-2 codes descending from the level-1
”Retrospective” code (note that identical code hierarchies descended from each
of the three level-1 codes). This process was carried out in an iterative manner.
During the first iteration, the summaries of each observed meeting was read

39

through while simultaneously assigning sentences to either of its descending
level-2 codes as shown in Figure 6. Every sentence or paragraph that contained
information about the meeting itself, or could provide a description or outline
of the protocol of the meeting, was assigned the level-2 code named ”Proto-
col”. Every sentence or paragraph that displayed instances of team-knowledge
sharing was assigned the level-2 code named ”Knowledge sharing activities”.
During the second iteration, the accumulated sentences and paragraphs in the
level-2 code named ”Socialization”, ”Externalization”, or ”Externalization and
internalization”, depending of the nature of which the knowledge was shared.

3.5.3 Observed meeting protocol

From the written summaries of the observed meetings, any sentences that either
contained spoken statements by the attendants that described the meeting pro-
tocol, or notes that described what happened during the meeting, were assigned
the level-2 code named ”Protocol” in their respective level-1 code (there is one
for each observed meeting). The result of this coding was a chronological list
of strings describing events that happened throughout the meeting, as well as
statements that were made by the attendants about the meeting protocol. This
list was used as the basis for writing a narrative about what is done during these
meetings, and which practices are used. These narratives were used in the next
chapter when describing the team’s workflow when presenting the case context.
Moreover, these narratives supplemented the results from the analysis of inter-
views with regards to the virtualness of the team as well as the team-knowledge
sharing activities used by the team.

3.5.4 Team virtualness

During the first iteration of the interview transcript coding, any sentence that
provided insight into the team’s degree of virtualness was assigned the level-1
code of ”Team virtualness”. More specifically, any sentence that included in-
formation related to any of the dimensions of team virtualness listed in Table 2
(see Chapter 3.1) was assigned to the level-1 code named ”Team virtualness”.
Moreover, if any of its surrounding sentences provided relevant context for the
meaning of the sentence in question, then those sentences were included as well.
On the second iteration, all of the sentences previously coded as the level-1 code
”Team virtualness” were re-coded into either of its level-2 child codes ”Use of
technology” or ”Team distribution”, depending on which group (of Table 2)
the sentence’s relevant dimension of virtualness belonged to. Again, any sur-
rounding sentences that provided context to the sentence in question were also
included. The ”Team distribution” code was assigned to any sentences that were
related to any of the dimensions of virtualness falling under the ”Team distri-
bution” group of Table 2, including team’s geographic dispersion, percentage
of time spent apart while working on a task, degree of physical distance, syn-
chronicity of communication, temporality and diversity. The ”Use of technology
code was assigned to any sentences that were related to any of the dimensions

40

of virutalness falling under the ”Use of technology” group of Table 2, including
the team’s electronic dependence, level of technology support, use of virtual
communication tools, amount of informational value provided by those tools,
and the use of computer mediated communication.

During the third iteration the contents of ”Team distribution” and ”Use
of technology” were analysed in an open-ended manner, meaning that no pre-
defined codes were used. Within the ”Team distribution” code we noticed that
all of the sentences described one of the six virtualness dimensions related to
team distribution, and so level-3 child codes were created for each of these di-
mensions, as shown in Figure 7. We also noticed that within the contents of ”Use
of technology”, the sentences described the use of technology related to either
documentation, meetings, or other forms of communication. Thus three level-
3 child codes were created, named ”Documentation”, ”Meetings” and ”Other
interactions”, respectively. Even within these level-3 child codes new patterns
were detected, and so level-4 child codes were created. The ”Documentation”
code was extended to include three level-4 child codes named ”Jira”, ”Teams”
and ”Wiki”. The ”Meetings” code was extended to include three level-4 codes
named ”Miro”, ”Teams” and ”Technology satisfaction”. The ”Other interac-
tions” code was extended to include two level-4 child codes named ”Teams and
”Communication threshold”. The resulting code structure is shown in Figure 7.
During the fourth iteration, the contents of the level-3 codes descending from
”Use of technology” were re-coded into either of its level-4 codes depending on
which technology they referred to. Moreover, within the ”Meetings” code, sen-
tences containing an expression of the satisfaction of the usage of technology for
meetings were assigned the ”Technology satisfaction” code. Within the ”Other
interactions” code, sentences describing the threshold for reaching out to other
team members by using technology was assigned the ”Communication thresh-
old” code. When the pre-coding was complete and new child codes were created
for emerging patterns, we were left with a set of open-ended codes that would
later be analysed, which are listed in Table 5.

Within each of the open-ended codes listed in Table 5, the content was read
through while simultaneously assigning an individual code to each statement.
For example, within the ”Geographic disperison” code, individual codes were
made for each statement that were related to the team’s geographic disper-
sion. This process was repeated for every open-ended code, in order to extract
informant statements related to the topic of their parent code. Similar state-
ments were later combined into more general ones, resulting in the statements
presented in Chapter 4.4.1.

3.5.5 Team-knowledge sharing activities

Both the interview data and meeting observation data was analysed with the
goal of identifying the team’s knowledge sharing activities. In Chapter 3.1 a
conceptual framework was established in which a set of concepts were deemed
relevant to identify team-knowledge sharing activities. The first item we would
search for was mentions or observed demonstrations of the movement of team-

41

Figure 7: Emerged code structure from analysing the content of the pre-defined
codes descending from ”Team virtualness”.

42

Open-ended codes

Geographic dispersion

Physical distance

Time spent apart

Communication synchronicity

Temporality

Diversity

Jira

Wiki

Miro

Teams (Documentation)

Teams (Meetings)

Teams (Other interactions)

Technology satisfaction

Communication threshold

Table 5: Open-ended codes descending from ”Team virtualness”

knowledge, either through socialization, or through externalization and inter-
nalization. The second item we would search for was the mention or observed
usage of the Scrum methodology or Agile practices such as Scrum roles, cross-
functional teams, working in iterations, stand-up meetings, sprint and release
planning, sprint retrospective or pair programming.

The interviews were coded in an iterative manner, and in the first iteration,
any sentence that either mentioned the sharing of knowledge through socializa-
tion or externalization and internalization, or mentioned the use of agile prac-
tices, were assigned the level-1 code named ”R1: Knowledge sharing activities.”
Any surrounding sentences that seemed relevant for context was included as well.
During the second iteration, the contents of the level-1 code was re-coded into
either of its level-2 codes. Any sentences that mentioned the sharing of team-
knowledge through socialization was assigned the level-2 ”Socialization” code.
Any sentences mentioning the sharing of team-knowledge through externaliza-
tion and internalization was assigned the level-2 code named ”Externalization
+ internalization”. Any sentences mentioning the use of Agile practices as-
sociated with knowledge sharing were assigned the level-2 code named ”Agile
practices”. The level-2 codes ”Agile practices” and ”Socialization” were left
open ended, but within the code ”Externalization + internalization” a pattern
of responses were detected, and so the ”Externalization + internalization” code
was given five level-3 child codes, named ”Documentation”, ”Lecture”, ”Train-
ing”, ”Workshop” and ”Other”. Sentences that mentioned either of the first
four activities were assigned their respective level-3 code, while the remaining
sentences were assigned to the ”Other” code. After three iterations of coding,

43

we were left with the resulting code structure as shown in Figure 8.

Figure 8: Emerged code structure from analysing the content of the pre-defined
codes descending from ”R1: Knowledge sharing activities”.

After three iterations, we were left with a set of open-ended codes (i.e. codes
with no child codes), which all had a set of sentences assigned to them. These
codes were the level-2 codes named ”Agile practices” and ”Socialization”, as well
as the level-3 codes named ”Documentation”, ”Lecture”, ”Training”, ”Work-
shop” and ”Other”. The open-ended codes are listed in Table 6. Each of these
open-ended codes were then analysed, one at a time, by creating a child code
for each of the mentioned knowledge sharing activity. These codes, along with
the activities seen in the observations, would form the basis for the results with
the objective of answering R1: ”Which team-knowledge sharing activities are
used by the team?”.

The written summaries from the three observed meetings were also analysed
iteratively with the objective of identifying knowledge sharing activities. First,
the entire contents of every meeting were assigned to each their own respective
level-1 code as described in Figure 6. The observed retrospective meeting was
assigned the level-1 code named ”Retrospective”, the sprint planning meeting
was assigned the code named ”Sprint planning”, and the stand-up meeting was
assigned the code named ”Stand-up”. Each of these level-1 code had a child
code structure as described in Figure 6. In the second iteration the contents
of each of the three level-1 codes were re-coded into either of its level-2 child
codes named ”Protocol” or ”Team knowledge”. More specifically, any sentence
that described an event of the meeting, or anything that contained informa-
tion regarding the meeting protocol, was assigned the code named ”Protocol”.
Any sentence that described an event in which team-knowledge was shared was

44

Open-ended codes: Interviews

Agile practices

Socialization

Documentation

Lecture

Training

Workshop

Other (Externalization + internalization)

Table 6: Open-ended codes descending from ”R1: Knowledge sharing activi-
ties”

assigned the code ”Team knowledge”. For any of the coded sentences, sur-
rounding sentences were included if they seemed relevant for context. During
the third iteration the contents of the level-2 ”Team knowledge” code was then
re-coded into either of the level-3 codes named ”Goal-related team knowledge”,
”Process-related team knowledge”, ”Task-related team knowledge” or ”Team-
related team knowledge”, depending on which type of team-knowledge was de-
scribed being shared. During the fourth iteration, the contents of these level-3
codes were again re-coded into their respective primary types of shared team
knowledge as described by the conceptual framework in Chapter 3.1. No other
codes were created in addition to the pre-defined codes, and the set of codes left
open-ended for further analysis are shown in Table 7.

Open-ended codes: Observations

Protocol

Overarching team goals

Strategic consensus

Team interaction mental models

Team norms

Task content

Task strategies

Expertise location

Team member model

Team membership

Table 7: Open-ended codes descending from each of the level-1 codes named
”Retrospective”, ”Sprint planning” and ”Stand-up”.

The open-ended codes descending from each observed meeting served multi-
ple purposes. The ”Protocol” code was used to get an outline of the chronologi-

45

cal order of events that happened throughout the meeting, and was analysed to
get a picture of which practices were used by the teams throughout the meeting,
or which events took place during the meeting that lead to the sharing of team
knowledge. The remaining codes in Table 7 were used to get a picture of which
types of team knowledge were shared during each observed meeting.

3.5.6 Shared team knowledge

During the first iteration of analysis, any sentence from the interview transcripts
that contained information about the informant’s team knowledge (i.e. it was
related to any of the pre-defined level-3 codes of Figure 5), was assigned the level-
1 code ”R2: Team knowledge”. On the second iteration, any sentences that said
anything about overarching team goals or strategic consensus was assigned the
level-2 code of ”Goal-related team knowledge”. Sentences that said anything
about team interaction mental models or team norms were assigned the level-2
code of ”Process-related team knowledge”. Sentences that said anything about
task content or task strategies were assigned the level-2 code of ”Task-related
team knowledge”. And finally, sentences that said anything about expertise
location, team member model or team membership was assigned the level-2 code
of ”Team-related team knowledge”. On the third iteration, all the sentences
previously assigned to either of the level-2 codes ”Goal-related team knowledge”,
”Process-related team knowledge”, ”Task-related team knowledge” or ”Team-
related team knowledge” were assigned to their respective pre-defined level-3
codes as shown in Figure 7.

During the fourth iteration, the resulting set of level-3 codes were then anal-
ysed in a more open-ended manner, meaning that child codes were created as
patterns of concepts was recognized in the data. Within the ”Team interaction
mental models” code, sentences could be further divided into three groups as
they were either related to regular team meetings, irregular team meetings, and
other interactions, and so each of these groups were assigned to level-4 child
codes with respective names. Within the ”Task content” code, the sentences
could be further divided into three groups and assigned level-4 codes accord-
ingly. The first group was named ”Tasks”, and contained sentences related to
which tasks the team was currently working on. The second group was named
”Dependencies”, and contained sentences related to dependencies between the
team’s tasks. The third group was named ”Environment”, and contained infor-
mation about how the team’s tasks affected the environment surrounding them.
Within the ”Task strategies” code, a set of sentences appeared to be related in
that they contained information regarding the team’s task allocation strategies,
and so a subset of the statements that emerged within the ”Task strategies”
code was assigned it’s level-4 code named ”Task allocation strategies”, while
the rest was assigned a level-4 child code named ”Other task strategies”. The
resulting codes are shown in Figure 9. The end result of this iterative coding
of the contents in ”R2: Shared team knowledge” was a set of leaf-nodes from
which more concrete statements could be derived. The resulting leaf-codes after
the fourth iteration are shown in Table 8.

46

Figure 9: Emerged code structure from analysing the content of the pre-defined
codes descending from ”R2: Team knowledge” for four iterations.

47

Resulting codes from fourth iteration

Overarching team goals

Strategic consensus

Regular meetings

Irregular meetings

Other interactions

Tasks

Dependencies

Environment

Task allocation strategies

Other task strategies

Expertise location

Team member model

Team membership

Table 8: Leaf-codes resulting from the fourth iteration of the coding process of
the contents of ”R2: Team knowledge”

During the fifth iteration of coding, individual codes were created for each
of the statements made by the informants within the resulting codes from the
fourth iteration, and during the sixth iteration similar statements were combined
to form more general ones. When the sixth and final iteration of coding was
complete, what was left was a set of statements related to any of the codes
listed in Table 8. Moreover, a number had been attached to each statement,
representing how many informants had expressed a statement of similar intent.
For each of the listed leaf-codes, its related statements were presented together
using a bar graph showing how many informants expressed a given statement.
Furthermore, if a set of informants expressed a given statement, and a subset
of those informants expressed a related and more specific statement, then a bar
graph of a stronger colour and smaller font was shown inside the original bar
graph. This provided a visualization of how many informants expressed each
statement, and to which degree they did specify in their statement.

3.5.7 Calculating overlap measure

To calculate a measure of overlap within a group of statements, the average
number of respondents for each statements within the group was calculated.
The overlap measure was assigned a label ranging from low to high according
to it’s average value, according to Table 9. Initially, overlap measures were
calculated by including every single received response. A second calculation was
then performed after filtering of responses that were unspecified or unrelated,
as well as grouping together responses that likely referred to the same thing.

48

The filtering and combination of responses were dependent on the researcher’s
own interpretation of the results, and thus for transparency reasons both the
initial and the second calculation were included in the results.

Numeric average Label

4.0 to 5.0 High

3.5 to 4.0 Moderate-to-high

2.5 to 3.5 Moderate

2.0 to 2.5 Low-to-moderate

1.0 to 2.0 Low

Table 9: Labels assigned to the numeric average value of respondents of state-
ments.

3.6 Quality of the research

The feasibility of this study was affected by the circumstances around which this
thesis project was conducted. Normally, master’s students at NTNU spend the
first semester of the year to conduct a project in which they gain background
knowledge within a field, which they later use to write their master’s thesis in
the next semester. The researcher’s first-semester project was in relation to
a field very unrelated to the fields of knowledge sharing and agile teams. For
this reason, the researcher was required to learn their background knowledge
while simultaneously performing the thesis project. In hindsight, a consequence
of this is that some early decisions, such as which questions to include in the
interviews, were not thoroughly informed, resulting in missed opportunities to
get richer data.

The researcher’s inexperience as an interviewer caused some ambiguity to
spesificness of some of the interview questions, and as a result the answers to
some questions had varying degree of detail. Moreover, the researcher did not
probe the informants in order to compensate for their varying degree of detailed
answers. These factors may affect the internal validity of results related to
overlap measures of team knowledge.

The number of interviewed informants and observed meetings were also
somewhat low, and in some cases the results may have been too weak to draw
concrete conclusions. Ideally we would have interviewed the whole team, but
only 5 informants agreed to interviews. If the project had a longer duration it
would have been possible to find a different team in which a larger portion of the
members were able to participate in interviews, but the researcher had already
committed to this one team, partly due to time restrictions, and partly due
to the researcher’s own positionality. Furthermore, there were several types of
meetings that we did not observe, such as estimation meetings and requirement

49

phase meetings, simply because the team did not hold any such meeting for the
duration of the data collection period.

3.7 Researcher positionality

The selection of case team was largely affected by the researcher’s part-time em-
ployment for a consultant company. Before the beginning of the thesis project,
the student contacted their employers and asked them whether they had any
specific topics that they wished for him to write about in the master’s thesis.
His employers put him in contact with a researcher in a partnering research in-
stitution (i.e. SINTEF) who would serve as a guide and supervisor. Due to this
partnership between SINTEF and the researcher’s employers, the case team was
found through the consultant company’s network. As a result, several of the
members of the case team were hired consultants employed at the same consul-
tant company as the researcher. Although the researcher was not familiar with
any of the team’s consultants, they all were aware that they were colleagues,
which may have affected how the researcher interacted with the informants who
were hired consultants.

Furthermore, the researcher was a software developer, although a some-
what inexperienced one. However, being a developer, the research will most
likely have a larger focus on the developer’s perspectives and that of the non-
developers, simply because that is what the researcher is familiar with. Inter-
views were performed on both developers and non-developers, but because the
researcher, due to his trade, more naturally speak the same language as de-
velopers, the interview questions may be more suited for developers than for
non-developers. Had the interview guide been written in collaboration with
a non-developer, then the interview questions would likely have more quality
assurance in terms of generalisability between the roles.

3.8 Ethical considerations

Seeing as this study would require the collection and analysis of personal and
organizational data, a set of ethical considerations had to be made. Before
conducting the data collection, an application was sent to the Data Protection
Official at the Norwegian Centre for Research Data (NSD), including a de-
scription of the study along with the data collection and processing protocols.
Shortly after, the NSD responded with a letter of approval (see Appendix B),
stating that the implementation of this study was considered to be legal and
ethical on the condition that it was implemented in the manner which had been
stated on the application. It was also necessary to ensure that each participant
was informed in their decision to participate, along with their rights. A letter
of invitation was then electronically forwarded to all of the team’s members
(see Appendix C). This letter described the purposes and scope of the study,
which questions it hoped to answer, and what participation would entail. It
also included information about how a participant’s data would be processed,
and who the participants could contact if they wished to view, alter or delete

50

their data. Moreover, the letter informed the team members that participation
was voluntary, that individuals could choose to not participate in their study,
choose not to answer individual interview questions, or to withdraw their par-
ticipation from the study at any time, without any negative consequences to
them or to their team. Lastly, the letter of invitation included a consent form
through which participants could express their consent to participate in either
the interviews, observations, or both, which were collected prior to the data
collection procedures. Before each interview took place, a short summary of
the participant’s rights were repeated orally in order to ensure the participant
was thoroughly informed, before asking the participant for permission to audio
record the interview, to which all the informants agreed. The audio recordings
of the interviews along with their transcriptions were labeled with the chrono-
logical order in which the interviews took place, and stored on a secure SINTEF
server.

When presenting the context and results, the data was anonymized so that
neither the informants nor their employing organization would be identifiable.
When referring to specific informants, they were simply referred to as ”they”,
and their roles would be generalized from specific roles into being either ”devel-
oper” or ”non-developer”. The employing organization would simply be referred
to as ”the organization” or something of a similar nature. Furthermore, when-
ever the informants mentioned identifiable names of the services or projects
that they were currently working on, their names were exchanged for something
generic, such as ”Project P1” and ”Project P2” ect.

51

4 Case context

This chapter will present the case that was studied in order to provide context
to the results of the next chapter. The organization under which the case team
worked will be presented in the first sub-section. Next we will present the
team including its responsibilities, members and structure. In the third section
we present the team’s workflow, and describe the process of their regular in-
team meetings. Lastly, we present our results related to the team’s degree of
virtualness.

4.1 The organization

The studied case team was one out of several teams working under an organi-
zation of the Norwegian public sector whose employees worked remotely from
home due to the COVID-19 pandemic. The organization was responsible for a
domain which involved a total of 4 processes in addition to the management of
a large amounts of users and their personal data, and the service of their cus-
tomers. A total of three departments were responsible for their own sub-domain,
and each department’s sub-domain were further divided between a set of teams
belonging to each department. ”Department 1” and ”Department 2” both had 4
teams each, and ”Department 3” had only one team. Each team was composed
of somewhere between 6 and 14 team members. In addition to these teams
were a set of teams whose support was shared among the three departments,
such as hardware, platform and dev-ops teams. For each department, a single
person were designated the role of ”team-lead”, although the organization’s def-
inition of ”team-lead” reminded more of a department or project manager, as
the ”team-lead” was not directly involved with the team’s daily work, but rather
responsible for managing all of the department’s teams in a more overarching
manner, such as keeping an overview of the teams’ statuses,ensure they have
access to their required resources, and act as an intermediary between the teams
and higher management. As a consequence, the Scrum-masters of each team
were inclined to adapt some of the more traditional ”team-lead” responsibilities
by overseeing their team’s daily work.

4.2 The team

The case team which was studied belonged to ”Department 1”, which was the
department that concerned itself with the service of end-users, management of
user data and two of the organization’s processes. The team itself were respon-
sible for several items. First, they were responsible for the re-implementation
of a work tool used by the organization’s case-managers. The case-managers
were employees of the organization who handled the service of the organiza-
tion’s customers and members, and followed up on their cases. Their work
tools were previously built in Flash, which would soon be obsolete, and so the
work-tools had to be re-implemented in React. The case team were responsible
for re-implementing the tool’s front-end, while another team were responsible

52

for it’s back-end. The second item the team were responsible for was a portal
through which the organization’s customers would be able to log in and report
data about their members. The reported data were then to be parsed and stored
in the organization’s systems, and so a third responsibility of the team was the
management of the reported data. At the time when the study was conducted,
the team were also responsible for managing a change in customer and member
rights due to the merging of several municipalities and counties in Norway.

The team itself was composed of 11 members, including six developers, two
functionally responsible, one functional architect, one UX-designer and a prod-
uct owner. Out of these 11 members, 2 developers and 2 non-developers were
hired consultants from an external IT consultant company, while the remaining
7 team members were employees of the organization. Additionally, an architect
were grouped with the team because they were newly employed and needed a
set of faces whom they could be familiar and talk to daily. The team worked
by following the Scrum methodology, and so one of the developers also had
the role of Scrum-master, who, in addition to being responsible for enforcing
Scrum practices and rules also entailed responsibilities that would traditionally
be defined as team-lead responsibilities, such as guiding the team and making
sure the team members are able to complete their tasks and ask for help when
they require it, and generally manage the team’s day-to-day activities. More-
over, a set of case-managers had a part-time position in which they supported
the team by informing them about their needs regarding the work-tools that
the team was developing. The case team is referred to as a ”team” throughout
this paper, although in reality they more closely resemble a group in that not
every team member is mutually dependent [36]. While the team’s developers
worked together in a mutually dependent manner that more closely resembled
that of a ”team”, the non-developers operated more like support functions for
the developers as they were not as involved in the daily work of every team
member. For example, the architect did not share tasks with the rest of the
team members, and were only grouped with them for social reasons. The two
functionally responsible worked with testing functionality that were developed
by the developers, but one of them were involved with the front-end worked
while the other were involved with the back-end work.

4.3 Workflow

The team worked in terms of releases and sprints, where one release (or de-
livery) was divided into three week long sprints. Prior to the start of a new
release ”behovsfase” meetings, or requirement phase meetings, would be held in
the team to present and discuss the requirements related to the release. Pre-
planning meetings were held during the last week of every sprint. During these
meetings, the department’s team-lead and the Scrum masters and functionals
of every team in the department would plan which tasks should be worked on
during the coming sprint, and give each task a priority. The first day of the new
sprint each team then holds their own sprint-planning meetings, in which each
team’s tasks are prioritized and planned in a finer manner. As the tasks have

53

already been prioritized during the pre-planning meetings, the main purpose
of the meeting is for the team to gain a common overview of what the coming
sprint will be like. If the team finds it necessary then they will shortly after
also hold estimation meetings, in which each task is estimated in terms of how
many work hours are required to complete it. Throughout the sprint the team
holds daily stand-up meetings in order to keep each other up to date on their
progress, and at the last day of the sprint the team holds a sprint retrospective
where they report on what went well, what didn’t, and which steps they can
take to improve the next sprint.

4.3.1 Sprint-planning

The first Monday of every sprint a meeting was held in order to plan out which
task would be worked on during the sprint. The team has a pre-defined ”weight”
capacity for the sprint, depending on how many developers are on the team,
where one ”weight” represents one week of work for a single developer. During
this meeting, the team commonly go through their tasks, and each task is briefly
explained, usually by one or two people, to the rest of the team. The tasks are
presented to the team through notes on a board, where each note represent
each task. The notes are sorted by the tasks’ priority, and they are grouped
according to where they are in the task workflow, which is one of the following
stages: 1) ”Open / In analysis”, 2) ”Ready for execution”, 3) ”In progress”, and
4) ”Awaiting dependency”. The team commonly discuss each task briefly, and
move the notes between the groupings depending on whether the team should
work on it this sprint or not. Some of the tasks presented to them already have
an estimation in terms of weights, and some tasks are given estimation during
the meeting. However, the team may hold a meeting after the sprint-planning
meeting in order to estimate tasks that do not have an estimation. The team
is informed of which person has the role of Sheriff, and they are asked whether
any of the team members wish to hold a KOMPIS-lecture in which they lecture
a topic to the rest of the team.

4.3.2 Daily stand-up

Every day before lunchtime the team held a stand-up meeting. During the
meeting, which was led by the Scrum master, every single team member gives a
brief description of the task they are currently working on, whether they have
any problems, and whether they need any help from their teammates. The
meetings are scheduled to last 15 minutes, and its purpose is not to initiate
complex discussions, but rather simply keep the rest of the team up to date
with the work one is doing. If some of the team members realize that a topic
requires further discussion, then they are encouraged to schedule time for this
after the stand-up meeting is finished.

Despite the fact that only the developers functioned as a mutually dependent
”team” while the entire team functioned more as a group, every one of the team’s
members attended the daily stand-up meeting, together with the architect and

54

sometimes even the department’s team-lead. Furthermore, the case-managers,
for which the team were developing work-tools, were also invited to the daily
stand-up meetings, and would occasionally attend, although usually they would
be too busy with their own work. This is peculiar, because the practice of daily
stand-up meetings were made for teams and not for groups, and are known
to be less productive and satisfactory with a high number of attendants [59].
During a conversation with the team’s Scrum master we were told that before
the COVID-19 lockdown, there was some negativity related to the daily stand-
up meetings as they would often get side-tracked and not be as effective as
they could have been. However, more recently, there has been a shift of focus
from reporting what was done yesterday to informing what each individual
is working on in the present, in order to find out who needs help and who
needs to schedule further discussion after the stand-up meeting is concluded.
Furthermore, after the COVID-19 lockdown and the enforcement of working
remotely from home, the Scrum master allowed the team some slack to socialize
during these meetings, because some days the daily stand-up would be the only
time where some team members met other people from work. Because of this
there has been more positivity around the daily stand-up, and it has become
more crucial function in order to reduce the perceived distribution of the team.

4.3.3 Sprint retrospective

The last Friday of the sprint the team holds a sprint retrospective in which
they reflect on what went well and what didn’t, in order to improve the next
sprint. The team use a common board on which each team member are free to
write notes and place them in either of three columns, named ”What worked
well”, ”What worked not so well”, and ”Points of action”. One team member
leads the meeting through its agenda, although it varies which team member is
responsible for leading the retrospective meeting. During the first 15-30 minutes
of the meeting all of the team members write their own notes and place them
in either of the two first columns. These notes contain thoughts about what
has been positive and what has been negative during the last sprint. When
the team has finished writing notes the team commonly go through every note,
although there seemed to be more focus on the notes within the ”What didn’t
go well” column. For each note, the team discuss what the problem is, whether
the team should do something to improve it, in which case they discuss what can
be done. If the team decides to take action, a new note is placed in the ”Points
of action” column of the board, briefly describing what should be done, along
with who should do it. When the team has discussed every note in the two first
columns, brief documentation is written describing who attended the meeting,
along with which points of action were decided upon, and who is responsible for
each point.

55

4.3.4 Sheriff

Part of the team’s areas of responsibility is the maintenance of the services and
applications that fall under their part of the organization’s domain. Every week
a team member is appointed to the role of ”Sheriff”, meaning that they are
responsible for monitoring the health status of the team’s services. The Sheriff
must regularly look through health check dashboards and system logs to detect
any malfunctions, as well as read any incoming errors and alarms. If an error is
detected, the Sheriff is then responsible for either fixing the error, or delegate
the job to someone else in the team if they don’t know how to fix it themselves.

4.3.5 KOMPIS

During every sprint planning meeting, the Scrum-master asks the team whether
any of them wants to hold a KOMPIS lecture. If a team member has something
they wish to share with the rest of the team, whether it’s technical, domain-
related, or something else, the team schedules a KOMPIS meeting in which
the team member holds a lecture. Every member of the team is then invited,
and the team members can choose for themselves whether to attend or not.
During a conversation with the team’s Scrum-master, we were told that new
people would soon be joining the team, and so the team was planning to hold
a KOMPIS meeting in which one of the team’s functionally responsible would
lecture about the team’s domain.

4.4 Team virtualness

To evaluate the team’s degree of virtualness, a conceptual framework was con-
structed in which a list of dimensions of virtualness, as summarized by Johnson
et al. (2009) [35], were grouped into two groups, ”Team distribution” and ”Use
of technology”, as shown in Table 2 in Chapter 3.1. The complete list of dimen-
sions of virtualness included geographic dispersion, percentage of time spent
apart while working on a task, degree of physical distance, synchronicity of
communication, temporality, diversity, electronic dependence, level of technol-
ogy support, use of virtual communication tools, amount of informational value
provided by those tools, and the use of computer mediated communication. To
get a measure of each of these dimensions we used a combination of statements
procured from interview transcripts, observed events during meetings as well as
oral communication with the team’s Scrum master during a feedback meeting.

4.4.1 Team distribution

The first group of dimensions of team virtualness, as described in the conceptual
framework (see Chapter 3.1), were the dimensions related to team distribution,
including geographic dispersion, percentage of time spent apart while working
on a task, degree of physical distance, synchronicity of communication, tempo-
rality and diversity. We will present the results related to the team’s degree of

56

distribution by grouping them according to each dimension. The findings are
summarized in Table 10.

Dimension of distribution Findings

Geographic dispersion All team members located in the
same country and in (or near) the
same city.

Degree of physical distance Team members do not meet
physically, with very few exceptions.

Percentage of time spent apart
while working on a task

Approximately 100 percent

Synchronicity of communication Video calls for meetings. Chat and
audio or video calls for
communication between individuals.

Temporality The team worked iteratively. All
team members worked the same
”core hours” during the day, with a
few exceptions.

Diversity Team members live in the same
country and speak the same
language.

Table 10: Technologies used for team communication and collaboration.

In Chapter 3.1 we defined the dimension of geographic dispersion as the
team’s dispersion relative to countries and cities, while degree of physical dis-
tance was described as the effort required to physically meet the rest of the
team. The informants were not asked directly where their current home address
is, however all 5 of the informants said that they used to work in the organiza-
tion’s office located in a Norwegian city prior to the pandemic lockdown. These
statements, supplemented by the contextual information provided by small talk
during the observed meetings, made it seem safe to assume that the majority
of team members are located in the same city, or at least close enough to it so
that daily commuting is possible. Out of the 5 team members who were inter-
viewed, all 5 of them reported that all of the team members had been working
remotely from home since the onset of the COVID-19 pandemic, and that they
did not have any meetings that the team attended physically since then. How-
ever, 4 informants reported that those who had functional roles had attended
occasional meetings at their office. Two informants reported that the team had
been offered to physically meet for one occasion, but both of the informants
had chosen to stay at home. One of these informants said that this meeting

57

was in a social non-work related context. One informant who joined the team
in June 2020 said that they had only ever met one of the other team members
in-person since they joined the team, and that they had only met the rest of
the team members through digital communication. To summarize, a total of
3 out of 5 informants explicitly reported not having met the rest of the team
in-person since the lockdown was initiated on march 13th 2020, while all 5 of
them reported having worked from home during that time period.

All of the informants said that the team meetings take place using group
video calls. These calls provided a high degree of communication synchronicity
during the meetings held by the team. 4 of the informants expressed dissatisfac-
tion with the conversation flow of the video meetings, in that small delays made
it difficult not to talk over one another. We observed three meetings held by us-
ing group video calls, and observed highly synchronous conversation take place,
although every once in a while one person would talk over another by accident.
During the interviews the informants were asked how they communicate with
each other outside of the team meetings. Every one of the 5 interviewed infor-
mants said that when they initiate communication with another team member,
they usually send them a text-based chat message containing simple correspon-
dences. These chat messages were sent using Microsoft Teams. If the receiver
of the message were online on Microsoft Teams they would immediately get a
notification through the application that someone had sent them a message, and
they were free to respond at their convenience. All 5 informants also said that if
discussions required more complex forms of communication, then the communi-
cating team members would initiate an audio or video call, yielding high degrees
of communication synchronicity for the duration of the call. To summarize, the
actual video and audio calls between the entire team or individual team mem-
bers had a high degree of synchronicity. Chat messages had a lower degree of
synchronicity, and so initiating contact would usually not happen instantly.

1 informant mentioned during their interview that their organization had
recently imposed a 7,5 hour work day limit on their employees, and so the team
members’ work days were mostly in sync. The team’s Scrum master was asked
to elaborate on this during the feedback meeting, and they said that due to
economic reasons, the employees were asked not to work longer than 7,5 hours
each day until the end of 2020. These restrictions seemed to be lifted at the turn
of a new year, however. Nonetheless, the employees had defined times at which
they were expected to be at work, directly translated from Norwegian to mean
”core time”. These were set hours in which the employees were expected to be
present and available. Although employees were allowed to sometimes deviate
from these times when planned in advance, the team members appeared to work
mostly simultaneously during these set hours.

Every one of the informants who were interviewed said that they were either
an employee of the team’s employing organization, or they were a consultant
from a Norwegian consultant company. None of the emerged information seemed
to indicate any form of off-shoring, and none of the interviewed or observed team
members appeared to be citizens of a country other than Norway. The team
worked together and communicated in Norwegian, and it appeared that every

58

team member knew the language.

4.4.2 Use of technology

The second group of dimensions of team virtualness, as described in the con-
ceptual framework (see Chapter 3.1), were the dimensions related to the use of
technology, including electronic dependence, level of technology support, use of
virtual communication tools, amount of informational value provided by those
tools, and the use of computer-mediated communication. The informants talked
about all of these dimensions to some degree, including statements about which
technologies were used to which purpose. Additionally, statements were made
by all the informants regarding their own satisfaction with the team’s use of
technology, and those statements were also included and presented in this sub-
section.

Throughout the interview the informants were asked questions asking how
the team hold meetings, how they communicate with each other, and how they
document their work. Through their answers the informants all mentioned an
array of technologies that are used for team communication and collaboration,
including Microsoft Teams, Miro, Jira and a Wiki. The results are summarized
in Table 11.

Meetings Other interactions Documentation

Teams - Video calls Teams - Chat Jira

Miro - Boards Teams - Video calls Wiki

Teams - Channels Miro - Boards

Table 11: Technologies used for team communication and collaboration.

All 5 informants reported that their meetings take place through video calls
facilitated by Microsoft Teams, and one informant said that Microsoft Teams
are the standard communication tool used by their organization. Furthermore,
3 of the informants also mentioned using Miro during meetings as a substitute
to a traditional blackboard. According to the informants explanations and our
observations, Miro is a digital tool where participants are able to create notes
and figures which they are able to display on a board that may be divided in
multiple sections. It is mainly used for planning-meetings as well as retrospective
meetings, but all 3 of the informants mention using Miro for workshops as well.
All 3 of these informants said that they are satisfied with Miro as a tool.

4 out of 5 informants experienced a loss of natural conversation flow during
video calls facilitated by Microsoft Teams as opposed to in-person meetings,
and explained that this is due to the tendency for multiple people to speak si-
multaneously. 2 of these informants also expressed an increased communication
difficulty due to the loss of natural body language and mimic, as one would lose

59

the ability to maintain eye contact with the other attendants. Despite these
difficulties, 4 out of 5 informants, including 3 of the informants who also re-
ported experiencing difficulties with video calls, still reported that Microsoft
Teams worked well as a substitute for in-person meetings, and that they had no
major difficulties using it. 1 informant claimed that they preferred virtual meet-
ings using Teams and Miro above in-person meetings, as they found it easier to
maintain focus throughout the meeting. These results are shown in Figure 10.

Figure 10: Satisfaction with use of technology during meetings.

The informants were asked how they interact with other team members out-
side of team meetings. All 5 of the informants replied that direct contact with
another person is usually initiated through a text-based chat on Teams, and

60

when discussions become more complex the conversation proceeds to become a
video call. Furthermore, 2 informants mentioned the existence of several dedi-
cated Teams channels for different subjects, which the entire team had access to.
These subjects include production deliveries, code-reviews and testing. Accord-
ing to 1 of these informants, some of the Teams channels are also open to other
teams and individuals within the organization, for example channels for the or-
ganization’s various domains. Those channels were often used for inter-team
collaboration.

When asked whether working virtually had an effect on their threshold for
initiating contact with other team members, all 5 informants reported that they
did not experience a higher threshold for initiating contact in a virtual setting.
3 informants actually reported experiencing a lower threshold for initiating con-
tact with other team members in a virtual setting, as opposed to approaching
them in-person in a co-located office, especially if they wanted to approach
someone from another team, or someone whom they did not know. 2 of them
expressed that the use of Microsoft Teams has decreased their own fear of dis-
turbing their colleagues when reaching out, in that they were able to send a
text-based message which the other person were free to reply to whenever they
were available. The third informant appreciated the discretion of video calls
between two parties, explaining that in an office-landscape everyone would be
able to see if someone approaches another person to ask for help. 1 informant
expressed frustration with the loss of ability to see whether the other person
is actually present or away from their work station, as Teams lists a person as
”available” until they’ve been away from their computer for a given amount of
time. In spite of this frustration, this individual still reported that they did not
experience a higher threshold for initiating contact. These results are shown in
Figure 11.

When asked how the team documents their work, 4 out of 5 said that they use
Jira as their main tool for documentation. The informants explained that Jira
is a tool that maintains a task backlog where each individual task goes through
a workflow where it is first created, next it goes through funcitonal analysis
where requirements are specified. Then the task receives a priority as well as
an estimation for work time required to completion, before it is placed in an
iteration. Once placed in an iteration, the task goes through another workflow
in which it is placed in a queue from which the developers may choose which
task they wish to work on. Lastly, when the task has been completed, the result
is deployed to production, and the Jira ticket is closed. We simply used the word
”task” when describing the workflow, but in reality, a Jira ticket may represent
a problem that needs to be solved, decisions that needs to be made, as well as
questions that needs to be answered. Each ticket may include a description of its
content, and users may write comments within the ticket in order to discuss the
issue or provide help to the person who is currently working on it. Furthermore,
each ticket has its own status describing where it currently is in the workflow. 3
informants also mentioned using their organization’s own designated Wiki-page
for storing documentation. During the retrospective meetings the team uses a
Miro board in order to create items of action, and both the Miro board as well

61

Figure 11: Experienced threshold for initiating contact with other team mem-
bers.

as these items of action are stored in a Wiki page by filling in a template. 1
informant mentioned that the sprint planning meetings are documented in the
Wiki in a similar manner, and 1 other informant mentioned that validations
are documented in the Wiki. However, neither of these 2 informants provided
further explanation of details.

62

5 Results

During the data analysis process described in Chapter 3.5, 5 interview transcrip-
tions along with 3 written summaries of observed team meetings were coded with
respect to the conceptual framework described in Chapter 3.1. From the anal-
ysis emerged several types of data. Firstly, a set of general statements emerged
from the analysis of the interview transcripts, along with a number representing
how many of the 5 informants expressed a statement of similar nature. These
statements are visualized in bar graphs in this chapter, where the length of the
bar represents how many informants expressed agreement with each statement.
Moreover, some of the graph bars contain even smaller bars inside them. They
represent how many informants not only expressed a statement similar to that
of the larger outer bar, but also expressed a related and more specific state-
ment, and is written with a smaller font and displayed with a stronger colour.
From the written observation summaries, analysis procured descriptions of a
set of observed events, grouped by topic. Some of these events described the
protocol of and tools and practices used during the observed meetings. These
event descriptions were used not only to outline a narrative of how these meet-
ings are performed, but also to identify the use of technology as well as the use
of Agile practices that are associated with the sharing of team knowledge. A
different grouping described events in which the sharing of team knowledge was
demonstrated either through socialization or through externalization and inter-
nalization. Lastly, there were groupings of event descriptions according to the
different types of team knowledge as described in the conceptual framework (see
Chapter 3.1), depending on which type of team knowledge was being shared.

This chapter is divided into two sections, each of which presents the results
relevant for answering one of the research questions. Section 1 presents our
findings regarding the team’s team-knowledge sharing activities, including both
mentions of activities by the informants as well as observed demonstrations of
team-knowledge sharing. In Section 2 we present the quantified measure of
shared team knowledge between the 5 interviewed informants.

5.1 Team-knowledge sharing activities

Several different approaches were used to construct a picture of which knowledge-
sharing activities are used by the team, and data was used both from interviews,
observations and the feedback meeting with the team’s Scrum-master. In Chap-
ter 3.1 we established three concepts which would serve to identify the sharing of
knowledge. First, any use of Agile methodologies associated with increased team
knowledge sharing such as Scrum or Extreme Programming, especially practices
such as Scrum roles, daily stand-up, sprint and release planning, sprint retro-
spective, cross-functional teams, working in iterations and pair programming,
were considered to be knowledge sharing activities. Furthermore, any mentioned
or observed activities that involved the movement of knowledge, either through
socialization or by externalization and internalization, were also included. Dur-
ing the interviews a range of questions were asked regarding the team’s way of

63

working, how they communicate and how they perform documentation. Due
to the loose structure of interviews and open-ended nature of questions we re-
ceived a wide array of responses, where some activities were mentioned more
often than others. While the majority of identified activities were procured from
the interviews, in-depth information about the various activities were retrieved
both from interviews, observations and the feedback meeting. The full list of
identified knowledge sharing activities are summarized in Table 12.

5.1.1 Agile practices

All 5 of the informants responded that their team is cross-functional, works it-
eratively, and that the team works using the Scrum methodology. 3 informants
said that their sprints each last for three weeks. 4 informants mentioned the
use of Scrum roles, meaning that the team has one designated Scrum master,
as well as one team member who holds the role of product owner, in addition
to the other team members of various cross-functional roles. However, from our
feedback meeting we understood that the role of Scrum-master also includes re-
sponsibilities that are more traditionally labeled as ”team-lead” responsibilities.
See Chapter 4 for more details. According to all 5 informants, the team holds
a stand-up meeting every day in which every team member provides a status of
their work, and notifies the team of any problems they are facing. Although the
stand-up meetings are not used for problem-solving, these meetings allow the
team members to be aware of each other’s issues, and to approach each other
at a different time to help each other resolve their problems. All informants
mentioned having sprint planning meetings at the beginning of each sprint, and
4 informants responded that they also do sprint retrospectives. These three
meetings were observed, and more closely described in Chapter 4. 1 informant
also said that the team also has processes in place for new features that could
remind of release planning, although they did not use that name and they did
not go in to much detail of the nature of these processes other than that the
team has meetings in order to plan which overarching tasks should be done in
order to complete the release, as well as establish requirements.

4 informants responded that they use task estimation, in which tasks are
given a number representing how many work weeks are required for one devel-
oper to complete the task. 3 informants said that somewhat regularly they hold
estimation meetings. 1 information said that at the beginning of a new project
the team receives a package of Jira items, which will be roughly estimated at
the beginning of the project. However, throughout the sprints the team will
receive new Jira items, many of which lack an estimate, and so the estimation
meetings serve to provide an estimation for those tasks. From the observa-
tions we learned that during the sprint planning meeting the team would get
an overview of tasks, and if many of their tasks lacked an estimate they would
schedule a meeting shortly after in order to estimate the tasks. These meetings,
however, would only be held if there was a need for it. 1 informant responded
that the estimations are based on the team members’ own experiences, and 1
informant also said that during these meetings, the team members share their

64

Agile practices Externalization Externalization and
internalization

Socialization

Cross-functional teams Document task workflow
in Jira

Training new team
members

1-on-1 calls for
clarification

Working in iterations Document decisions and
functional clarifications
in Jira

KOMPIS-lecture Daily coffee breaks

Sprint and release
planning

Document meeting
attendants in Wiki

Architecture meetings Meeting discussions

Task estimation Document validations in
Wiki

Create retrospective
points of action

Discuss retrospective
points of action

Prioritized tasks Document retrospective
points of action in Wiki

Using MIRO boards for
workshops

Scrum-roles Document meeting Miro
board in Wiki

”Behovsfase”

Sprint retrospective Clarification meetings

Daily stand-up meetings Discussions in Jira

Ask for code-reviews in
Teams channel

Functional clarifications
in Teams channel

Table 12: Summary of all team-knowledge sharing activities mentioned during
interviews.

65

content-related knowledge by providing an explanation of why they provide a
given estimation on a task. The result of these meeting are increased sharing of
task-related team knowledge.

All 5 informants mentioned the use of a prioritized queue for tasks, facilitated
by Jira. 2 of the informants mentioned that the product owner is at least partly
responsible for setting the task priorities. By combining what we learned during
the observations along with various statements from the interviewed informants,
we learned that there is one Jira item per task, and the Jira item contains a
priority of either 1000, 2000 or 3000, where a higher number means a higher
priority. When the developers choose a new task to start on, they are presented
their task backlog in which the Jira items are sorted by priority, and they are
inclined to choose from the tasks with highest priority.

5.1.2 Activities mentioned during interviews

Aside from the Agile practices, the interviewed informants mentioned an array
of other activities that involved the sharing of team knowledge. These involved
activities of externalization such as various types of documentation, activities
of both externalization and internalization such as lectures and training, as well
as activities of socialization.

1 informant said that the team sometimes hold something called ”kompis”
(buddy) meetings, in which one team member holds a lecture about a specific
topic, and the other team members are invited to listen. The topics lectured
may be both technical but also non-technical, for example about the organiza-
tion’s domain. 2 informants mentioned the ”behovsfase” meetings in which the
team discuss their tasks’ requirements, and 1 informant said that they found
them to be useful because through these meetings they gain knowledge of why
a task is to be solved a certain way. Furthermore, 1 informant said that team
members sometimes hold meetings in which architecture is explained to the
other members of the team, without going much into detail about these meet-
ings. 2 informants said that when required, the team will hold clarification
meetings about specific topics, but did not elaborate on details. 1 informant
said that new members require some amount of training when first joining the
organization and the team. They did not specify the nature of this training,
however. 3 informants said that the team holds daily coffee breaks in which the
team members are allowed to socialize, although it is unclear whether any team
knowledge is shared during these breaks as they are not focused on work and
hold no structure. It is included, however, as socialization in general tends to
facilitate the sharing of tacit knowledge.

4 informants said that they externalize task-related team knowledge such
as task and problem descriptions by using Jira. 2 informants elaborated on
how exactly Jira was used, and their combined explanation said that Jira is
a tool that systematizes task knowledge. Through Jira, the team can share
information about specific tasks, such as a problem description, requirements,
suggestions to solutions, priority in the task queue, estimation of required work
time, which team member created the task, which team member is working on

66

the task, as well as the task’s status. Every team member has access to the Jira
items, and so if one needs information about a specific task, they may look it up
in Jira. If they have questions that the Jira ticket does not answer, then they
can look up who created the task and ask them directly for clarification. When
a team member starts working on a task they will label the Jira item as ”In
progress”, while marking themselves as the person working on that item. Every
sprint the team will be working on a group of Jira items, and these items are
presented to the team members as a queue sorted by task priority. 2 informants
said that whenever functional clarifications or decisions are made regarding a
task, the team tries to document it within the Jira item, although they evaluate
whether they find it necessary for every case.

Another knowledge management system used by the team are the organi-
zation’s Wiki pages. 3 informants said that they use a Wiki page in order to
document information about sprint planning meetings and retrospective meet-
ings, such as who attended them, what was discussed and which points of action
has been decided upon. 1 informant said that the Wiki page contains templates
for the sprint retrospective and sprint planning meetings, and that the team are
supposed to fill this templates during those meetings and store them in the Wiki.
For both of these meetings the team also make a screenshot of the resulting Miro
board and upload it. In the retrospective, the selected points of action are also
documented here, along with the person responsible for each point. 1 informant
said that the team also document validations in Wiki, without elaborating what
these validations do.

1 informant said that the team has a dedicated Teams channel for code
reviews and functional clarifications. In this channel, team members can notify
the rest of the team that they would like a code-review on their work, and other
team members can respond to let them know they will do it. The channel is
also used for functional clarifications, in that a team member can notify that
a task needs functional clarification, and other team members may respond by
clarifying.

3 informants said that during various workshops they use Miro as a tool.
This allows all of the team members to express themselves in a systematized
manner. During the sprint retrospective, the team uses Miro board to express
their own feelings about the previous sprint through notes. During the sprint
planning meeting, the Miro board contains a board containing a single note
representing each Jira item the team would be working on during the coming
sprint.

All of the informants said that they find it easy to approach others on the
team if they need help with something, and said that they regularly contact
each other to ask for help, usually through a text chat which often proceeds to
become a voice or video call. In other words, all 5 informants indicated that
1-on-1 sessions of knowledge sharing are common.

67

5.1.3 Activities observed during sprint retrospective

We observed a sprint retrospective meeting with the team, during which we
noted any events that involved the sharing of team-knowledge between the team
members. The meeting seemed to be a facilitator of knowledge sharing through
discussion, especially focused around problems encountered by the team, solu-
tions to these problems, as well as the team’s norms. The findings, which are
summarized in Table 13, were grouped by mode of conversion (i.e. socialization,
externalization, and externalization and internalization).

Socialization Externalization Externalization and
internalization

Discuss positives with
previous sprint

Expressing positives and
negatives on Miro board

Explaining notes on Miro
board

Discuss negatives with
previous sprint

Expressing points of action
on Miro board

Explaining technical issues
to teammates

Discuss solutions to
problems

Document points of action
in Wiki

Discuss team norms Document Miro board in
Wiki

Discuss ”health check”
points

Document meeting
attendants in Wiki

Remind team of meeting
scope

Document ”health check”

Table 13: Summary of all team-knowledge sharing activities observed during
retrospective.

At the beginning of the meeting, and empty Miro board was opened with
three columns named ”What went well”, ”What didn’t go well”, and ”Points
of action”, and the team members all started filling the two first columns with
notes. Each note represented an externalized expression of a positive or negative
aspect with the previous sprint. When the team was finished writing notes, they
went through each note together in a manner where the author of the note often
explained what they tried to expressed through the note, and the team would
discuss the issue and possible solutions to problems. During these discussions it
sometimes occurred that team norms would be questioned or new norms would
be suggested, and the team would discuss it further. Sometimes technical issues
would be brought up, and a team member would have to explain its details to
the rest of the team.

68

Towards the end of the meeting, as the team finished discussing the notes, a
Wiki page was brought up in which they documented who attended the meeting
as well as the selected points of action along with their responsible team mem-
bers. Then a screenshot was taken of the Miro board, and this was uploaded to
the Wiki as well. Lastly, the team brought up a ”health check” website, which
contained a set of points that were either green or yellow. The team discussed
whether any of these should change color, before they did some small talk and
concluded the meeting.

5.1.4 Activities observed during sprint planning

As we observed a sprint-planning meeting with the team, we noted every ob-
served event that included the sharing of team knowledge through socialization,
externalization, or both externalization and internalization. The results are
summarized in Table 14.

The objective of the sprint planning was to organize a set of Jira items in
order to decide which tasks would be worked on during the sprint. As the
meeting started, the Scrum-master brought up a Miro board in which a set of
Jira items were presented through notes on the board. The board was divided
into four columns, named ”Open / In analysis”, ”Ready for execution”, ”In
progress” and ”Awaiting other issues”, and each of these columns were filled
with a set of Jira items representing pending tasks. Which column a task was
placed in represented its status within the task workflow. Furthermore, the tasks
were colour coded by priority and whether the item needs estimation. They were
also tagged with the name of the person responsible for it. Moreover, written
notes could be added to each task item on the board throughout the meeting,
and seemed to serve as a guide to summarizing the meeting at the end.

Before starting, the Scrum-master brought up the Wiki pages in order to fill
in the meeting attendants. The Wiki page also contained a number representing
the sprint capacity. Then the team members were asked whether anyone would
like to hold a KOMPIS lecture during the sprint, which the team discussed for
a short while and a few suggestions were brought up. The KOMPIS lecture was
part of the Wiki page’s template, in which they would document any upcoming
lectures. Although the team decided not to hold any lectures this sprint, it
still facilitated the sharing of team knowledge in the form of expertise location
through socialization. The team would also be notified who is Sheriff during
the coming sprint.

The Scrum-master proceeded to lead the meeting in a manner in which
the team collectively went through each Jira item on the board. Usually, one or
two people would start by explaining the Jira item by sharing their task-content
knowledge. They would explain the problem, and sometimes also suggest strate-
gies to solve those problem. Some tasks were divided into sub-tasks, and a team
member would have to clarify exactly which sub-task the team was responsi-
ble for doing. Some tasks were dependent on other tasks, and a team member
would have to clarify this as well. Some of the tasks were already being worked
on by the team, and the responsible team member would have to elaborate on

69

Socialization Externalization Externalization and
internalization

Discuss potential KOMPIS
lectures

Organize Jira items on Miro
board by workflow status

Explain Jira item (task
content)

Discuss task content Color coding Miro task
notes by priority

Explain potential task
strategy

Discuss task progress Add meeting notes to Miro
board

Explain task dependencies

Discuss task estimation Comment Jira item with
task strategies

Explain task’s sub-tasks

Discuss task strategies Set weight on Jira item

Schedule meetings Document potential
KOMPIS lectures in Wiki

Notify who is Sheriff Document meeting
attendants in Wiki

Discuss which tasks to
include in sprint

Document sprint capacity in
Wiki

Discuss whether an
estimation meeting is
required

Remind team of meeting
scope

Table 14: Summary of all team-knowledge sharing activities observed during
sprint planning.

70

Socialization Externalization Externalization and
internalization

Discuss problems Explain previous task

Discuss problem strategies Explain current task

Discuss task progress Explain encountered
problems

Discuss daily activities Suggest problem strategies

Schedule time to collaborate Express need for assistance

Remind team of meeting
scope

Express need for
clarification

Table 15: Summary of all team-knowledge sharing activities observed during
stand-up.

their progress. A subset of the tasks were straightforward to explain, while
others prompted more in-depth discussion within the team, such as what a task
actually entails, which strategies are best, and which estimation weight a task
should have. These discussions could lead to changes in the Jira item, such
as commenting task strategies or set a new estimated weight. Throughout the
meeting the team would get a common overview of which tasks should in fact
be worked on during the coming sprint, and which should wait. They would
also discuss whether an estimation meeting is required, based on how many of
the tasks on the board lack an estimate. In the end they would summarize the
meeting, and schedule new meetings if they were required.

5.1.5 Activities observed during stand-up

As we observed a sprint-planning meeting with the team, we noted every ob-
served event that included the sharing of team knowledge through socialization,
externalization, or both externalization and internalization. The results are
summarized in Table 15.

No additional tools were used other than Microsoft Teams in order to fa-
cilitate the communication, and we observed no acts of pure externalization of
team knowledge. The meeting was led by the Scrum-master, who asked the
team members, one at a time, what they had been doing since the last stand-up
meeting, what they would be working on today, and whether they had en-
countered any problems. In some cases the Scrum-master also asked the team
member about their progress of their current task, if they had been working on
the same task for a while. Every team member systematically explained what

71

they had been working on since last time and what they were working on now.
If they had encountered any problems they would briefly elaborate on this, and
express the need for assistance or clarification from other team members when
needed. In some cases one or two people provided the clarification or suggestions
for problem strategies to the person in need. In other cases a discussion was
prompted within the team about the problem and possible solution strategies.
If the discussions grew complex, the involved parties would schedule time to
collaborate to solve the problem, and carry on with the meeting.

72

5.2 Shared Team Knowledge

The second research question, R2: ”How much overlap is there between the
individual team members’ team knowledge?” was dependent on two pieces of
information: 1) which types of team knowledge should be measured, and 2)
which metrics should be used to measure it. The framework by Faegri et al.
(2016) was used to determine which types of team knowledge should be mea-
sured, and these types are summarized in Table 3 of Chapter 3.1. To measure
the overlap of the team’s held team knowledge, similarity of team knowledge
[13] was used as a metric to quantify the team’s shared team knowledge. Inter-
view transcripts were analyzed as described in Chapter 3.5.6, in which specific
statements made by the informants displaying any of the selected knowledge
types were compared, and statements that were similar were combined into
more general statements. The result was a set of general statements related
to each of the primary knowledge types described in Chapter 3.1. Attached
to each of these statements were a number representing the number of infor-
mants who expressed a statement of similar nature. These statements and their
number of agreeing informants will be represented in this chapter, grouped by
the team-knowledge category under which each statement fall (i.e. goal-related,
team-related, process-related and task-related). Each set of related statements
will be presented in a bar graph, visualizing how many informants expressed
each general statement. Furthermore, if a statement was made by a set of in-
formants, and a subset of those informants express a more specific statement
about the same subject, then it will be displayed as a bar graph of stronger
colour and smaller font within the original bar graph.

5.2.1 Goal-related team knowledge

When asked about the team’s overarching goals, 4 informants said that they
have a goal related to development. Out of these 4 informants, 3 of them spec-
ified that their overarching goal is to develop tools used by the organization’s
internal case managers, and 2 of them said that their goal is the development
of any currently ongoing project. We grouped these two statements within one
that we named ”Development” because while talking to one of the informants
we learned that their currently ongoing project is in fact a tool they are develop-
ing for the case-managers. Furthermore, 4 informants mentioned maintenance
as one of their overarching goals. 2 of these informants further specified the
maintenance of their technical ground structure, or, their previously existing
back-end services. The remaining 2 informants specified the maintenance of ex-
isting applications. One of these informants elaborated by describing an existing
application that worked as a user interface for their customers. 3 informants
said that one of the team’s goal is to ensure that the customer and data deliv-
ered by the team’s services is correct. While talking to 2 of these informants
we learned that the team’s domain require a high degree of data integrity, and
that errors could cause problems for their customers and members. A single in-
formant responded that one of their goals are to correct incoming errors, and 1

73

Figure 12: Overarching team goals according to the informants.

74

Figure 13: Strategic consensus according to the informants.

informant mentioned customer satisfaction as a goal. The informants’ responses
regarding the team’s overarching goals are summarized in Figure 12.

When asked what is the strategy to reach the overarching goals, the in-
formants’ responses were scattered, and no two informants responded the same
thing. The result were different responses, each mentioned by a single informant.
These responses were to ensure the integrity and quality of the data managed by
the team, to add new functionalities (without going into detail as of which func-
tionalities should be added), to continuously perform technical maintenance, to
correct existing errors, to avoid spending too much time and energy on details
and focus on the big picture, and to provide detailed descriptions of problems
and solutions. 4 out of 5 informants expressed that the question was difficult to
answer. When we presented these results during the feedback meeting, we got
the impression that these are questions that one usually do not think about,
and therefore it is not common to explicitly share knowledge about it.

5.2.2 Team-related team knowledge

The informants were asked who is on the team, and which roles they have. For
reference, the list of team members and roles provided to us by the team’s scrum
master lists the following team roles: 2 functionally responsible, 1 architect,
1 functional architect, 1 UX-designer, 1 product owner, 1 team lead, and 6
developers, where 1 of the developers had the role of Scrum master. Out of
the 6 developers, 2 were back-end developers, 1 were front-end developer, and

75

Figure 14: Amount of team members belonging to each role, according to the
informants

76

Figure 15: Amount of team members belonging to each developer sub-role,
according to the informants

3 people worked on both back-end and front-end.
All 5 informants responded that the team has 1 Scrum master and 1 UX

designer, and 4 informants responded that they have 1 functional architect. 4
out of 5 team members responded that they have exactly 2 functionally respon-
sible, but 1 out of 5 did not specify any exact number, except that there at least
2. The informants responded somewhat differently on how many developers are
on the team, where 2 responded six, 1 responded eight and 1 responded five. 1
of the respondents did not specify how many developers were on the team, but
through their phrasing we could deduct that they were talking about at least
4 different people. It should be noted that it was the same individual who did
not specify in both cases. Furthermore, 1 informant mentioned an architect, 1
informant mentioned a team lead and 1 informant mentioned a system owner.
These results are summarized in Figure 14.

3 out of 5 informants also specified the roles of the developers when listing
who is on the team. 2 informants said that they have three back-end developers,
while 1 informant did not specify an exact number, but that they have someone
who works back-end. 1 informant said that they have two developers who work
both back-end and front-end, while 1 informant said that they have two or three
developers who work both. 2 informants responded that they have one front-end
developer, while 1 informant responded that they have two front-end developers.
These results are summarized in Figure 15 Note that the informant who did not
specify an exact number for the former two roles is the same informant who did
not specify on how many functionally responsible and developers they have.

We presented these results during the feedback meeting and learned that
after the initiation of the lockdown, several new members had joined the team.
Many of the new members had non-developer roles, meaning that not only

77

had they never met the rest of the team in-person, but neither did they work
interdependently with all the team’s developers. The Scrum master said this
could be a possible explanation as to why there is a scatter on the responded
number of developers on the team. We were also told that 1 of the developers
worked purely front-end, while the rest of the developers work both front-end
and back-end, but that many of them consider themselves as pure back-end
developers because they don’t like working on front-end.

When presenting these results during the feedback meeting, we learned sev-
eral things. First we learned that after the initiation of the lockdown, sev-
eral new members had joined the team. Many of the new members had non-
developer roles, meaning that not only had they never met the rest of the team
in-person, but neither did they work interdependently with all the team’s de-
velopers. The Scrum master said this could be a possible explanation as to why
there is a scatter on the responded number of developers on the team. Secondly,
we learned that only 1 of the developers were considered to be purely front-end,
while the rest are able to do both front-end and back-end work. Some of the
developers, however, considered themselves to be purely back-end because they
prefer back-end over front-end, but were able to take front-end tasks as well
should the need arise. For this reason, the Scrum master themselves would
place all the developers except for one into the ”front-end + back-end” group.
Furthermore, we learned that while there are technically two people listed as
members of the team with the role of architect and team-lead, whether they
could actually be defined as part of the team can be questioned. The architect
were a new employee and were grouped with the team so that they would have
a group of colleagues with which they could socialize at work. The team-lead,
as described in Chapter 4, had more of a project manager role, and were not
directly involved in the day-to-day work of the team. Lastly, we learned that the
department has had many recent changes of product owners because there have
been several different deliveries, and many domains have also changed product
owners during an ongoing release as well. At one time during the observed
sprint-planning someone asked whether a particular person were the system
owner, and said that they change so frequently. Out of our three observed
meetings, the system owner attended only one, which was the stand-up.

The informants were also asked whether they have a face and name connected
to each role that they summarized, and all 5 responded yes. Furthermore, the
informants were asked to name a field in which they themselves feel that they
lack expertise, and later asked whether they knew someone on the team who
holds such expertise. All 5 informants responded that they know of someone on
the team that they can approach if they need help in that particular field.

5.2.3 Task-related team knowledge

When asked about which tasks the team is currently working on, all 5 informants
responded that they are currently working on a project which we refer to as
”Project P1”, which is an application used by the organization’s internal case
managers. According to 3 of the informants, ”Project P1” is a task in which

78

Figure 16: Task content: Which tasks the team is currently working on, accord-
ing to the informants.

the team is re-implementing an existing application because the old one is built
with Flash, which is being deprecated. 2 informants also explained that the
Team is working on the front-end part of this application, while another team
is providing the back-end. 3 out of 5 informants responded that the team is
also working on a task which we refer to as ”Project P2”. 2 of these informants
explained that this task involves logic around their customers rights to access
data or their terms of agreement should there be any fusions or fissions between
organizations. We found it relevant to add that the 3 informants who responded
”Ensure correct data” were the same 3 informants who responded ”Project P2”
as one of the team’s current tasks. All 5 informants also mentioned that the
team is currently working on maintenance of existing applications, although
only 1 informant specified what kind of applications are being maintained. This
informant mentioned that existing Flash applications that will be replaced in
the future still needs to be maintained for a while longer.

5 informants said that the team has tasks related to maintenance and error
correction of existing services and applications. 1 informant specified by say-
ing the team has tasks related to the maintenance of back-end services used
by other teams. 2 informants responded that the team is developing back-end
services, or end-points, to the front-end application developed by another team.
1 of these informants said that out of all the team members, there are two who
are currently working on developing these endpoints. They both explained that
the other team requires data on a specific format, and that their own team are
responsible for developing end-points that provide that data. 1 informant re-

79

sponded that the team is currently preparing for starting their next delivery (i.e.
release), and that many from the team are involved, including the functionals,
architect, interaction designer and ”the whole gang”, as they said themselves.

1 informant said that one of the team’s members are working on a task
which we refer to as ”Project P3”. They did not provide many details, except
that there are continuously changes happening within that project, and so the
team member in question are never out of work. 1 informant responded that
the team is involved in a task referred to as ”Project P4” without going into
detail as of what that task entails. The latter informant also expressed that
they were uncertain of their team’s degree of involvement in said ”Project P4”.
During the observed retrospective we noticed that one of the notes on the board
of ”what went well” was a workshop that had the same name as ”Project P4”,
but we learned nothing about its specifics other than that people were happy
with its workshop. These informants’ responses regarding the team’s current
tasks are summarized in Figure 16.

The informants were asked how their current tasks affect the environment
around them, such as end-users and other teams. 4 informants responded that
the ”Project P1” task directly affects the workflow of their end-users, which are
the organizations internal case managers. The tool that the team is developing
will allow the case managers to continue doing their work when their existing
tool becomes deprecated. Out of these 3 informants, 1 specified that the re-
implementation of their existing tool will bring improvements that will ease
the workflow of the case managers; 1 informant specified that any unforeseen
error may prevent the case-managers of performing their work; and 1 informant
responded that the team working on the back-end for the ”Project P1” task
are affected by the work done by their own team, in that their own team are
dependent on the other team’s services in order to make their own deliveries,
and so the other team is often pushed to prioritize maintaining those services.

2 informants explained that the work that the team does on the ”Project P2”
task affects their customers’ workflow in that it determines what information
each customer has access to about their members. The nature of the task is
to provide each customer access to the member information which they are
permitted to see, and restrict the customers from seeing member information
that they’re not supposed to see. Earlier, when 1 of these informants were asked
which tasks the team were working on, they provided an explanation of ”Project
P2” in which they implied that the task affected the privacy of their members as
well. However, since it was only implied and not a direct answer to the question
asked, we chose not to include it in the results. Nonetheless we mention it as a
side-note for transparency’s sake.

2 informants explained that the work they do on the back-end services used
by other teams directly affect those other teams in that they are responsible
for what data is provided to those teams. Although they did not explain what
kind of data they serve to other teams, they both explained that some other
teams are dependent on the back-end services that they provide and maintain.
2 informants explained that the maintenance work done by the team affects
the quality of services that they provide, without specifying which services they

80

Figure 17: How the team’s tasks affect the teams environment according to the
informants.

81

Figure 18: Which actors are affected by the team’s current tasks, according to
the informants.

were talking about. From these 2 informants, 1 informant were talking about
services used by other teams, while 1 informant were talking about services used
by their customers.

Lastly, 2 informants talked about how some of their tasks affect their en-
vironment without specifying which tasks they were talking about. Of these 2
informants, 1 informant said that the teams have tasks in which other teams
are dependent on their completion, and 1 informant said that the completion
of tasks directly affect the progress of the team’s own project, in that failure
to complete a task on time may further delay the completion of other project
tasks. These results are summarized in Figure 17.

The informants’ responses were additionally grouped together by which ac-
tors were said to be affected, regardless of which task they were affected by.
This created a rough picture of which actors were affected by the total of work
done by the team, according to the informants’ responses. When grouping the
responses this way, a total of 4 informants responded that their organization’s
internal case managers were affected by some task that the team is working on.
3 informants responded that their customers were affected, and 2 informants
responded that their members were affected. 4 informants responded that other
teams within the organization were affected, while 1 informant responded that
the completion of the team’s other tasks were affected. These results are shown
in Figure 18.

The informants were asked whether there were any dependencies between
their current tasks or their sub-tasks. 3 informants said that within the work
that the team was currently doing on ”Project P1”, there were a few sub-
tasks that were dependent on one anothers’ delivery. 1 informant responded
that there were no dependencies within the ”Project P1” task, because the
dependencies that they previously had were solved and delivered last week (note
that all of the team members were interviewed during a 3-day span within the
same week). 2 informants responded that within the ”Project P2” task, there

82

Figure 19: Task content: Which tasks have dependencies, according to the
informants.

were currently sub-tasks that were related and dependent on one another. 1
informant explained that out of the work the team was currently doing, there
were existing tasks or sub-tasks which were dependent on one another, but they
did not specify which tasks were dependent. These results are shown in Figure
19.

When the researcher queried about the team’s task strategies, he phrased the
interview question as ”how will the team perform those tasks?”. All 5 informants
responded by instead describing the team’s task allocation strategies, and only
2 informants also described the team’s task strategies. 1 of these informants
responded that to perform the ”Project P1” task, the team would have to
create new endpoints and try to keep the least amount of logic in the actual
front-end application. 1 informant responded that with the ”Project P2” task,
the team would have to attempt to reproduce errors within a test environment.
1 informant responded that with maintenance tasks, when their users report
errors, the team had to identify the next plan of action by recognizing whether
the error is previously known, and whether to create a new issue or simply add
it to an error log and close it. The remaining 3 informants did not specify
any task strategies. 3 out of 5 informants also responded that they found the
question to be difficult. These results are shown in Figure 20.

All 5 informants provided some description of the team’s task allocation

83

Figure 20: Task Strategies: What are the strategies for performing the team’s
current tasks, according to the informants.

strategies, and all 5 informants provided a description of how the team’s de-
velopers, specifically, allocated tasks between them. All 5 informants explained
that the first factor deciding who takes which task is a prioritized queue of
tasks from which the developers pick one from the top. The prioritized task
queue was the main factor, although not the only factor, deciding who works
on which task. 4 informants responded that priority aside, which tasks a devel-
oper worked on was also decided by their skills, and if they did not possess the
skills required to perform the highest prioritized task, then they were free to
choose the next one in the queue. 3 informants responded that the developers
also had a role division between them, deciding who works on which kinds of
tasks. These 3 informants also provided examples of such role divisions, where 2
informants divided between dedicated front-end and back-end developers, while
1 informant divided by which applications or services they mostly worked on.
Furthermore, 1 informant responded that when someone has worked on a task
for a very long time, the team tries to alternate tasks so that the person doesn’t
grow tired of that task while also ensuring that more than a single person gains
knowledge of that field. 1 informant said that they usually checked whether any
of the other team members needed help with their task before starting on a new
one. These results are shown in Figure 21.

2 of the informants were not developers, and 1 of them explained that there
were dedicated tasks that they worked on, and that those tasks were naturally
allocated to them if it fell within their area of responsibility. While the other

84

Figure 21: Task allocation strategies: How developers allocate tasks between
them, according to the informants.

informant who were not a developer didn’t explicitly say so when asked, it was
heavily implied throughout the interview that the same applies to them, as
they are the only person in the team with their given role, and their role clearly
defines their area of responsibility.

5.2.4 Process-related team knowledge

The informants were asked to list which meetings the team held regularly, which
meetings the team held irregularly or spontaneously, as well as any other in-
teraction that happens between team members. The informants were also later
asked to describe the team’s protocol for meetings that they hold on a regular
basis, however it should be noted that the interviewer accidentally skipped the
latter question in one of the interviews.

When asked to list the team meetings that were held on a regular basis, all 5
informants mentioned the daily stand-up meeting. When later asked to describe
the protocol of the stand-up meetings, 4 out of 4 responding informants said
that every team member gives a short status of what they’ve been working on
and let the team know if they have problems or need help. 2 informants said
that the stand-up meeting is also used for small talk between team members,
although they try to keep the duration of the meeting to a minimum. 1 of
these informants explicitly said that the meeting typically lasts for 15 minutes,
without being asked for duration.

All 5 informants also listed sprint-planning meetings as one of their regular

85

Figure 22: Team interaction mental models: Which meetings the team holds
regularly, according to the informants.

86

meetings, and although they were not asked for it’s frequency, 4 informants
said that the meetings take place every 3 weeks, at the start of a new sprint.
When asked to describe the protocol for the sprint planning meetings, 4 out of 4
responding informants said that the team gets a common overview of what work
is to be done during the next sprint, and 3 of these informants said that they
do this by going through a prioritized queue of tasks that has been prepared
beforehand. 2 out of these 4 informants also said that during the sprint planning
meeting, the team make an assessment of which tasks can actually be included
in the sprint, and which tasks need more preparation.

4 informants mentioned retrospective meetings as one of their regular meet-
ings, and all 4 informants said that the retrospective meetings were held as
frequently as sprint planning meetings, that is, every three weeks. 3 out of 4
informants described the meeting protocol, and said that the team first sum-
marize the previous sprint, as in what worked well and what didn’t, and later
they create a few points of action to improve these issues for the coming sprint.

3 informants mentioned that the team had daily coffee-breaks at a scheduled
time, which offered the team members to meet in a more casual setting. Further-
more, 2 informants mentioned an array of meetings that were held externally
to the team itself, which some members of the team attended regularly. Out of
these external meetings, 2 informants mentioned pre-planning meetings in which
a team-lead and all scrum-masters from the organization’s teams planned the
coming sprint before the teams themselves held their own internal sprint plan-
ning meetings. 1 informant mentioned dedicated status meetings for the team’s
various projects in which a selected few members reported to management about
the projects’ status. 1 informant mentioned department-meetings where all the
organization’s teams presented what they had been working on. 1 informant
mentioned a meeting called ”frontend laug” in which developers from the various
teams discussed frontend, as well as the ”developer forum” in which developers
discussed backend. These meetings were held once every sprint. These results
are shown in Figure 22.

When asked whether the team held any meetings irregularly or sponta-
neously, all 5 informants said that they do hold meetings for various purposes
whenever there is a need for it. 4 informants mentioned estimation meetings
as an example, in which the team attempts to estimate how much time is re-
quired to complete each individual task from a set of given tasks that require
estimation. 2 informants mentioned ”behovsfase” meetings, but both provided
rather brief descriptions. 1 informant said that at the onset of a new release,
the functional architect and UX designer present requirements related to the
release in order to discuss their feasibility and cost with the rest of the team.
The other informant said that during these meetings the team discuss which
requirements they have and why they have them. The latter informant also ex-
pressed that these meetings are useful because attendants gain knowledge about
not only what the requirements are, but why they are needed. Furthermore, 2
informants said that the team held clarification meetings whenever there were
subjects in which the team needs clarification, but the structure of these meet-
ings were highly variable. 1 informant mentioned meetings with end-users who

87

Figure 23: Which meetings the team holds irregularly, according to the infor-
mants.

Figure 24: What type of interactions happen outside of meetings, according to
the informants.

88

were testing the systems being developed by the team, saying that because the
end-users don’t understand the technical terms as well it is important to com-
municate properly to make sure they understand each other. These results are
shown in Figure 23.

The informants were then asked whether they would communicate with other
team members outside of the team meetings, and in which case they were asked
to elaborate on how that communication would take place. All 5 informants
said that if they had simple questions to another person then they would send
them a text-based chat message on Teams, and if the correspondence required
a more complex form of communication then they would initiate an audio or
video call through Teams. While all 5 informants mentioned using text-based
chat for communication, 2 of these informants also specified that the team had
dedicated Teams channels for various purposes in which several team members
could participate. 1 informant said that some discussions about specific tasks
would take place textually within the Jira item of question in order to maintain
documentation of the discussions. These results are shown in Figure 24.

5.2.5 Overlap measures

The initial calculated overlap measures based on the total received responses
is shown in Table 16. These are the overlap measures prior to any filtering or
combination of responses. Based on the researchers own interpretation of the
results, some of these responses were filtered due to either being unspecific or
irrelevant, or combined due to being similar. The resulting overlap measures
after filter and combination is shown in Table 17. After filtering and combina-
tion, the total of the remaining responses yielded a numeric average of 2.5 and
a moderate overlap measure of overall team-related knowledge.

Within the responses related to overarching team goals, we noticed that
two statements possibly referred to the same thing. These statements were
”Development of tools for case managers” and ”Development of any currently
ongoing project”. During the feedback meeting we learned that the development
of tools for case managers were the team’s currently ongoing project. And so
we argue that these statements may be combined, yielding a numeric average
of 2.2 instead of 2.0.

The team membership knowledge was considered low-to-moderate for all
roles, and low for the developer roles. There was, however, one informant who
did not specify an exact number for several of the roles they mentioned. If all
of the unspecified responses are filtered away, then the numeric average for all
roles becomes 2.5, yielding a moderate degree of overlap as opposed to low-
to-moderate. However, by filtering unspecified responses, the developer roles
were only specified by 2 out of 5 informants, which is not enough to make
any conclusions about the team’s knowledge about the developer’s roles. Thus
we choose to disregard the responses related to developer roles due to lack of
responses.

Within the responses about which actors were affected by each task, two
of the responses did not specify which task they were talking about. If these

89

Knowledge type Numeric average Label

Overarching team goals 2.0 Low-to-moderate

Strategic consensus 1.0 Low

Team membership (all roles) 2.3 Low-to-moderate

Team membership
(developer roles)

1.4 Low

Current tasks 2.6 Moderate

Actors affected (grouped by
task)

1.6 Low

Actors affected (total) 3.0 Moderate

Task dependencies 1.8 Low

Task strategies 1.0 Low

Task allocation strategies 2.3 Low-to-moderate

Team interaction (regular
meetings)

2.8 Moderate

Team interaction (irregular
meetings)

2.3 Low-to-moderate

Team interaction (outside of
meetings)

3.0 Moderate

Table 16: Initial overlap measures of each measured knowledge type prior to
filtering of unspecified or irrelevant statements, or combination of similar state-
ments.

90

two unspecified responses are filtered out, the numeric average becomes 1.8 as
opposed to 1.6. The numeric average of the responses grouped by actor instead
of task becomes 3.3 as opposed to 3.0. If the unspecified answer related to task
dependencies is filtered out, then the task dependency overlap becomes 2.0 as
opposed to 1.8, yielding a low-to-moderate overlap as opposed to low.

Within the task-allocation strategies, there was one response, ”Ask if anyone
needs help”, that was only mentioned in a by-sentence without elaborating in
detail. The informant implied that this was more of a personal practice than
a general practice, and thus we argue that this response can be filtered due to
irrelevance. 3 informants also mentioned ”Defined roles” as a task allocation
strategy, in which 2 referred to developer’s roles as either back-end or front-
end, and 1 referred to the developer’s roles as to whether they were working
on a back-end service or an application. Throughout the interviews the words
”back-end” and ”services” were often used interchangeably, and so were the
words ”front-end” and ”application”. For this reason we believe that these
three responses all referred to the same thing, and thus can be grouped into a
single statement named ”Defined roles”. After filtering and grouping responses,
the numeric average of task allocation strategies becomes 3.3 as opposed to 2.3,
yielding a moderate degree of overlap as opposed to low-to-moderate.

5 of the received responses related to interaction models of regular meetings
were related to inter-team meetings. However, the question was aimed at intra-
team meetings only, as is reflected by the phrasing of the question, and thus we
argue that the statements related to ”External meetings” may be disregarded,
yielding a numeric average of 4.3 as opposed to 2.8, and a high overlap measure
as opposed to moderate. One of the responses related to interaction models
outside of meetings mentioned Jira discussions. Discussions on Jira is in the
form of comments on specific tasks, has a very low synchronicity. It would not
be strange if the majority of informants did not consider Jira comments to be a
form of interaction, but rather documentation. In fact, a total of 4 informants
mentioned the use of Jira for documentation, of which 2 mentioned using Jira
for some type of discussion. For this reason we argue that the response may
be considered irrelevant and thus filtered, yielding a numeric average of 3.7
as opposed to 3.0, and an overlap measure of moderate-to-high as opposed to
moderate.

91

Knowledge type Numeric average Label

Overarching team goals 2.2 Low-to-moderate

Strategic consensus 1.0 Low

Team membership (all roles) 2.5 Moderate

Current tasks 2.6 Moderate

Actors affected (grouped by
task)

1.8 Low

Actors affected (total) 3.3 Moderate

Task dependencies 2.0 Low-to-moderate

Task strategies 1.0 Low

Task allocation strategies 3.3 Moderate

Team interaction (regular
meetings)

4.3 High

Team interaction (irregular
meetings)

2.3 Low-to-moderate

Team interaction (outside of
meetings)

3.7 Moderate-to-high

Table 17: Overlap measures of each measured knowledge type after the filtering
of unspecified or irrelevant statements, and combination of similar statements.
The highlighted values are the ones affected by filter and combination.

92

6 Discussion

The objective of this study was to provide empirical data of the shared team
knowledge and knowledge sharing activities of a virtual software development
team, in order to fill a gap of empirical research on this particular topic. Our case
was a cross-functional software development team in which the team members
all worked remotely from home, and through observed meetings and in-depth
interview of 5 team members we sought to answer two questions: R1: ”Which
team-knowledge sharing activities are used by the team?”, and R2: ”What is
the overlap measure of the team’s shared team knowledge?”.

After presenting the results to the aforementioned questions, the purpose
of this chapter is to provide context and meaning to the results, examine their
links to previous research, while illuminating possible weaknesses. Section 1 of
this chapter discusses and evaluates the team’s degree of virtualness. Section
2 discusses the findings of knowledge sharing activities while tying them to
which types of team knowledge are likely being shared during these activities.
Section 3 evaluates the overlap measures of various types of team knowledge
and discusses possible causes and weaknesses of the results. In Section 4 we tie
the previous sections together to evaluate the findings in relation to each other,
and link our findings to previous research.

6.1 Team virtualness

To evaluate the team’s degree of virtualness, we will consider the team’s work
situation and practices in terms of the degrees of virtualness as summarized by
Johnson et al. (2009) [35]. These dimensions were geographic dispersion, per-
centage of time spent apart while working on a task, degree of physical distance,
synchronicity of communication, temporality, diversity, electronic dependence,
level of technology support, use of virtual communication tools, amount of infor-
mational value provided by those tools, and computer-mediated communication.

All of the team members were located in the same country and in or near the
same city, but were dispersed in the manner that they were all located in their
own separate homes. However, if we evaluate the teams degree of geographic
dispersion with respect to country and city borders, it can be considered to
be low. Although the team was not highly dispersed geographically, one could
argue that they were still highly dispersed in a more practical sense, however, if
we take their perceived distance into account [29]. Although the team members
were located within commuting distance of each other, they were not allowed
to physically meet, and so they might as well have been located on their own
separate islands. For this reason one could argue that the team has a high
degree of physical distance. Team members are never co-located while working
on the same task, with the only exception being a single social gathering in a
non-work setting, as well as a handful of meetings in which only a few of the
team members gather in the organization’s office building. In other words, the
team spends close to one hundred percent of their work time apart. For this
reason, all communication between team members took place through virtual

93

tools, yielding a non-optimal synchronicity of communication in most of the
cases. During scheduled meetings the team would all gather in a Teams video
call with a relatively high communication synchronicity for the duration of the
meeting. However, small delays seemed to be somewhat of a problem during
these meetings, as it caused people to talk over and interrupt one another. For
this reason we considered the synchronicity of communication during meetings
to be moderate-to-high instead of high.

Communication outside of meetings usually took place through text-based
chat through Teams. While it can be argued that text-based communication
generally have a low degree of synchronicity, especially with technologies like e-
mail where one have to actively check for new e-mails. The team used Microsoft
Teams for their daily work, however, meaning that team members seemed to
be logged into teams mostly throughout the day, so they were likely to get a
notification as soon as someone sent them a message. There was also a very
low overhead for sending someone a text-based message through chat compared
to for example e-mail. The results also showed that text-based chat was only
used for simpler correspondences, while more complex queries were often made
by making video or audio calls through teams. We concluded that the com-
munication synchronicity or lower for text-based chat than for audio and video
calls, but due to the way in which the chats are used to initiate contact that
may later lead to audio or video calls, we’d argue that their synchronicity of
communication outside of the meetings is moderate, as opposed to low. Thus
the overall synchronicity of communication of the team can be considered to be
moderate.

The team members all spoke Norwegian and seemed to be Norwegian cit-
izens, and so their degree of diversity could be considered as low. Since they
were all located in the same time-zone their business hours were the same, and
they had set ”core-hours” during which employees were expected to be present
at work. These factors contributed positively to the team’s degree of tempo-
rality. Additionally, they worked in an iterative manner with a set of regular
meetings, such as the daily stand-up, sprint planning and sprint retrospective.
An iterative way of working may provide a team with a rigid structure that
maintains the team’s common pace of working. As such we would consider the
team’s temporal dispersion to be low.

As for the dimensions of virtualness that were related to the use of tech-
nology, many of those dimensions seemed similar in nature, and so our results
about these dimensions were not as clear-cut as with the dimensions related to
distribution. Nonetheless, they still provided enough information to describe
these dimensions if we consider the context and the overall results as a whole,
instead of individual findings. For example, our case is a software development
team where each team member work remotely. Their work station is a com-
puter, and it is needed for any collaboration with the rest of the team. For this
reason alone it is possible to claim that the team’s electronic dependence is quite
high. All of their workflows are facilitated through various technologies, making
the team’s level of technology support high as well. All of their communication
takes place over Microsoft Teams, either through voice or video calls, or through

94

text-based chats, and thus we conclude that their use of virtual communication
tools, as well as their degree of computer-mediated communication, is high. As
for the informational value provided by those tools, it seemed like the team de-
pended on them for collaboration and coordination, making their informational
value quite high.

Dimension of virtualness Degree

Geographic dispersion Low

Degree of physical distance High

Percentage of time spent apart
while working on a task

High

Synchronicity of communication Moderate

Temporality Low

Diversity Low

Electronic dependence High

Level of technology support High

Use of virtual communication tools High

Informational value provided by
virtual communication tools

High

Computer-mediated communication High

Table 18: The team’s degree of virtualness.

Table 18 summarizes our interpretations of the team’s dimensions of vir-
tualness. Out of 11 dimensions, 7 of them were considered to be high, 1 was
moderate, and 3 were considered to be low. If each dimension weighed equally
we would simply declare the team’s overall degree of virtualness to be moderate-
to-high. However, this largely depends on the definition of team virtuality, and
the weights of each of its factors. Unfortunately, there are disagreements about
how team virtualness should be defined and evaluated [31], and so pinning down
an exact quantitative measure of the team’s degree of virtualness becomes a
challenge that falls outside the scope of this paper.

6.2 Knowledge sharing activities

While we did not directly observe any explicit sharing of goal-related knowledge,
several activities were mentioned during the interviews. Two types of meetings
mentioned, ”Behovsfase” and architectural meetings, focus on the sharing of

95

goal-related knowledge, although these meetings are not held very often. More-
over, it is likely that working with the product owner in a cross-functional team
enables this kind of knowledge sharing [11].

”Behovsfase” meetings revolve around not only discussing the requirements
of a coming release, but also the reasoning of the various requirements. From
the information we could gather around these meetings, it is likely a facilita-
tor of knowledge sharing related to the team’s overarching goals, as it helps
team members learn why they do the things that they do. Moreover, it is the
springboard for dialogue between the developers and the non-developers, such as
the product owner, architects and designers, providing a more complete picture
and making sure the different parties understand each other. These meetings,
however, are only held at the beginning of a new delivery, and thus don’t oc-
cur very often. Architectural meetings, as one informant mentioned, are held
more as the need arises, and revolve around bridging the team’s tasks with
the domain. From what we could gather, these meetings also facilitate sharing
of goal-related knowledge in the form of explaining the domain (overarching
goals), and architecture (goal strategies). We have no information about how
often these meetings are held, but are inclined to assume it is not very often
because these types of meetings were only mentioned once by a single informant.

While the team may not often hold meetings with the purpose of shar-
ing goal-related knowledge, some of their Agile practices may still contribute.
Through iterative work cycles and Scrum roles the product owner is frequently
brought close to the developer, and are able to steer them in the direction of
the goal during throughout the development process [11, 68]. Task prioritization
enables the product owner to inform the development team of which tasks are
most important to achieve the most value, and priorities may be re-evaluated
each sprint as the development evolves [10]. By having cross-functional teams
there are frequent interactions between developers and non-developers such as
architects, enabling a flow of information between those with roles that require
more goal-related knowledge, and those with roles that require more technical
knowledge [11].

Nonetheless, we did not observe any instances of goal-related knowledge
sharing, mostly because our observed meetings’ purposes are mostly to share
other types of knowledge, such as team-related and task-related. For more
complete data, we would also have liked to observe a ”behovsfase” meeting as
well as an architectural meeting, but none of these meetings were being held for
the duration of this project. It is likely that had we been able to observe any
of these meetings we would have a more complete picture of the team’s sharing
of goal-related knowledge, which, as it is now, is somewhat lacking.

One recurring observation of the sharing of team interaction mental models
is the collective use of the Wiki pages throughout the meeting. Although the
Wiki is used for documenting various aspects of the different meetings, the
meetings are documented by following a template that the team collectively fill
in throughout the meeting. These templates serve as an agenda for what will
be done throughout the meeting, and may help inexperienced team members
know the purpose and plan of the meeting. At least, from the researcher’s own

96

point of view as an outsider, the collective use of the templates was helpful
for this purpose. During the observed meetings we also saw demonstrations
of sharing of process-related knowledge in the form of reminding the team of
the purpose and scope of this meeting in order to get them back on track, and
sometimes suggesting possible meetings to bring up the topic, or suggest that
the discussing parties schedule a later time for that discussion. Other than
using Wiki templates and reminding the team of the meeting scope, we did
not observe any explicit sharing of team interaction mental models. However,
it seems reasonable to assume that this is a type of knowledge that will be
learned naturally through experience as a member of the team. 1 informant
said an amount of training is required for new team members, and although
we were not given any details about this training, it is not unlikely that some
introduction to the team’s way of collaborating is in place. If a team member is
present on Microsoft Teams, then they will be invited to team meetings as they
are scheduled, and thus they will know which meetings are being held that they
should attend.

A lot of shared process- and team-related knowledge was observed during the
sprint retrospective, where the team members not only shared their thoughts
and opinions about the team’s overall situation, but also open discussions about
the team’s practices and whether they should be changed. If someone perceived
that a team norm was not optimal, this meeting allowed them to bring it up
for discussion with the rest of the team. If the team decided on changes to
their norms, then these decided changes would be externalized as points of
action in the Wiki. Overall, the sprint retrospective appeared to us as the
largest facilitator of team-norm related knowledge sharing. At the end of the
meeting the team would collectively discuss ”health check” points, which is a
documentation of the team’s overall status in terms of resource needs for upper
management. This discussion served to share a mental model of the team’s
needs.

Although sprint-planning meetings mainly focused on the sharing of task-
related knowledge, some sharing of team-related knowledge was observed as
well. The meeting starts by discussing which KOMPIS lectures should be held,
and this discussion facilitates sharing of knowledge related to expertise location.
Although the KOMPIS meetings themselves don’t focus on a specific type of
knowledge, they revolve around general knowledge sharing, and also help team
members get insight of the lecturing person’s expertise. The meetings are super-
ficially documented in the sprint-planning meeting’s Wiki page, although it is
unclear how frequently the Wiki pages from such meetings are actually accessed
and consumed.

Daily stand-ups facilitate the sharing of a team membership model in that
every team member give a brief description about their daily activities. While
this may seem trivial, the case team was quite large, and when the members do
not meet in-person on a regular basis it may be difficult to keep track of who
is who. Overall, we did not observe many activities that revolved around the
sharing of team membership knowledge, and so we argue that the daily stand-up
meetings are crucial for this purpose.

97

From the explanations provided by the data, Jira can be described as a
knowledge management system for task-related knowledge. A majority of the
team’s documentation processes seemed to revolve around Jira and the man-
agement of task-related team knowledge. The system was not only used for
externalization, but also actively used by the developers for things such as task
description, task allocation and clarifications related to the task’s requirements
and strategies.

The team’s sprint planning practices also largely contribute to the sharing of
task-related team knowledge. A part of the sprint planning meeting’s protocol
is that for each task planned for the sprint, a person with knowledge about the
task will share it with the rest of the group, often prompting discussions. The
results of these discussions may be externalized in Jira, where it will later be
consumed by the person who works on the task. Furthermore, task estimation
meetings seems to serve as a facilitator of shared task strategies, as they involve
team members sharing their knowledge about how a task should be solved and
how long it might take.

While the daily stand-up is not a platform for problem solving, it facilitates
the sharing of task knowledge on a more superficial level in that team members
report on problems they’re having, and other team members may provide pos-
sible solution strategies. Moreover, it serves as a gateway to further discussions
after the stand-up meeting in smaller groups specific to certain problems. It
was also used for brief clarifications with the other team members.

6.3 Shared team knowledge

The overlap measure of shared team knowledge was found to be on the lower
end of moderate, and we believe a significant factor to this result is the non-
interdependence of several team members. During our feedback meeting we
discussed whether the team by definition was, in fact, a team, or whether they
were a group. We learned that while the team’s developers functioned as a
team, that is, they were mutually dependent, it would seem that the entire
team functioned more as a group, meaning that different people could work on
different items in parallel [36]. In this section we discuss some of these findings
in more detail.

6.3.1 Goal-related team knowledge

The within overarching team goals, result showed two statements that were
both responded by only a single informant each, namely ”Correct incoming
errors” and ”Customer satisfaction”. We consider the fact that the former
statement were responded by a team member whose tasks and responsibilities
differ from the other respondents. Due to the team’s structure more resembling
a group than a team, the team members could have responsibilities and tasks
that did not overlap with the rest of the team’s, making them have a different
perspective on the overarching goal of the team. This would explain why there is
some spread in the results, and it could explain why this individual considered

98

error correction to be an overarching team goal, while the other respondents
did not. For the latter statement, ”customer satisfaction”, it should be noted
that the informant who expressed this statement answered very thoroughly on
the question, and mentioned a higher number of goals compared to the other
informants.

The statements regarding the team’s strategic consensus were highly scat-
tered, and almost all the informants found the question to be difficult. The
scatter in results could be caused by several factors: First, it could simply be
that the team had a low degree of knowledge overlap on goal strategies. This in-
terpretation seemed plausible due to the feedback received when presenting the
results during the feedback meeting. We were told that these are abstract ques-
tions that one tend to not think about in one’s daily work, and that the team
members were more concerned with the concrete tasks that are ahead of them.
Secondly, since the question was phrased in a manner where the informants
were first asked for the team’s overarching goals, and then after they were asked
about the team’s strategy to reach those goals, the resulting degree of strategic
consensus is dependent on the degree of agreement of the team’s overarching
goals. In other words, it becomes unlikely that the degree of strategic consensus
will be higher than the agreement on the team’s overarching goals.

6.3.2 Team-related team knowledge

In short, there was a high agreement that the team had 2 functionally respon-
sible, 1 Scrum master, 1 UX designer and 1 functional architect. There was
some scatter as to how many developers were on the team, ranging from 5 to 8
with one unspecified answer. The architect, team-lead and system owner were
mentioned by only a single informant each, meaning that the majority most
likely did not consider them to be part of the team.

When listing the members of the team there was one informant who did
not specify an exact number of people belonging to each role. For example,
this individual said that they had a plural of functionally responsible, at least
4 developers, at least 1 back-end developer and either two or three developers
who work both back-end and front-end. The phrasing of the question was
”Who is on the team, and which roles to they have?”, and it does not explicitly
ask for an exact number, even if that is what the researcher were implicitly
asking for. Neither was the informant asked to specify exact numbers during
the interview. These mistakes were caused by the inexperience of the researcher
as an interviewer, and could have been avoided had the question been phrased
to explicitly ask for specific numbers, or if the researcher probed for specific
numbers during the interview. As we proceed to interpret the results, however,
all we can do is keep this fact in mind and consider the likelihood that an
unspecified number does not necessarily mean that the informant does not know,
but rather that they did not know that that’s what was being asked for. For
this reason we chose to disregard their response, as their actual knowledge has
not been collected.

There was some scatter in the responses about how many developers are on

99

the team, where 1 informants said eight, 1 said five, 2 said six and 1 did not
specify but mentioned at least 4 different people. During the feedback meeting
we learned that a possible explanation for this was that after the lockdown was
initiated, the team had gained several new team members who, at the time of
the interviews, had never met the rest of the team in-person. Moreover, some of
these new members had non-developer roles, meaning that, due to the structure
of the team (i.e. as a group in which the developers worked as a team), they
did not work very interdependently with all the developers.

Out of the three informants who specified the developers’ roles as either
front-end, back-end or both, there was also some scatter, and one of the re-
spondents did not specify exact number of people who worked either back-end
or both. During the feedback meeting we learned that the team only has one
front-end developer, while the rest of them, in practice, are able to work both
front-end and back-end. However, some developers avoid front-end work if they
can and thus consider themselves back-end developers only. In other words, the
developers’ role definitions seemed to be somewhat unclear, with the exception
of one developer having the role as pure front-end. This could be a possible
explanation for the scatter. However, with only three respondents specifying,
the sample size is very thin, especially when one informant did not specify exact
numbers, and so the conclusions we can draw from those results will be weak.
For the 2 informants who did not specify, it is difficult to know whether they
did not know the developers’ roles, or whether they simply did not know that it
was relevant information. The phrasing of the question did not specify exactly
how specific their responses should be, which is likely the cause as to why some
informants specified about the developers’ roles, while others didn’t.

The team architect, team-lead and system owner were all mentioned by
only one informant each. For the architect is likely that the majority of team
members simply don’t consider them as technically part of the team. They
were grouped with them for social reasons and did not work directly with the
team’s tasks. However, during our observations, the person who were listed
as architect in our received list of team members seemed to be present at all
of the observed meetings (i.e. stand-up, retrospective and sprint-planning),
and actively participating in discussions. What we make of this, is that the
architect is an active participant in common group meetings and activities, but
that their responsibilities and tasks do not overlap with the rest of the team,
and therefore they are not considered technically as a team member. Similarly
to the architect, it is likely that only a single person mentioned the team-lead
because the majority do not consider them as part of the team. As we described
in Chapter 4, the team-lead acted more as a project or department manager
responsible for several teams, and therefore is not involved in the team’s day-
to-day work.

As for the system owner, it seemed like the team has had several recent
changes of system owners, and that it was simply hard to keep track. During
the retrospective we observed that one person asked whether a particular person
is the system owner, confirming that some team members may find it hard to
keep track of who the system owner is. However, the system owner seemed to

100

participate in the daily stand-up meetings, so they appeared to be at somewhat
involved in the team’s daily activities. It seems improbable that the majority of
team members were not aware of their presence, and so it must be questioned
whether the informants considered the system owner role as part of the team
or not.

6.3.3 Task-related team knowledge

When asked which tasks the team are currently working on, the informants
responded with an array of various tasks. All informants were in agreement
that the team was working on ”Project P1”, which was the replacement of the
work tools for the organization’s internal case managers. They were all also
in agreement that the team had continuous tasks related to maintenance and
error correction of existing services and applications. This seems to correlate
with the informants responses about the team’s overarching goals. 3 informants
responded ”Project P2” as one of the team’s tasks, which was the task related
to their customers’ rights to access member data in the case of fusions or fissions
between organizations. The fact that the 3 informants who responded ”Project
P2” as one of the team’s current tasks were the same 3 informants who responded
”Ensure correct data” on the team’s overarching goals further increases our
belief that the team’s responses about the team’s overarching goals were highly
related to the team’s current tasks.

While there was a general consensus about the tasks related to ”Project P1”
and ”Maintenance and error correction”, there is only a moderate consensus
about ”Project P2”, and a low consensus for the rest of the tasks. These re-
sponses, similarly to the responses regarding overarching goals, could be due
to the fact that the team by definition more resembles a group than a team.
With different people working on different things without being mutually de-
pendent of one another, it is more difficult to be aware of each others tasks
than if they were working on the same projects. For example, the information
who responded ”Project P3” said that it is only a single person who worked on
those tasks. Similarly, there were only two team members who were working on
the tasks related to developing end-points for other teams. The spread in the
responses regarding the team’s current tasks is thus likely explained by the fact
that different team members are working on different non-interdependent tasks.

For two of the tasks that only had 1 respondent each, namely ”Preparing
for next delivery” and ”Project P4”, it may very well be that that the other
informants don’t consider it a ”task” in the same sense as the other responses.
The informant who responded ”Preparing for next delivery” said that many of
the team members are involved, or as they said it, ”the whole gang”. It seems
unlikely that the team were not aware that this preparation was taking place.
Moreover, during the observed retrospective, the team expressed that they were
happy with the recent workshop, which had the same name as ”Project P4”,
and so the team seemed to be aware of its existence. Furthermore, the infor-
mant who responded with ”Project P4” expressed their uncertainty about the
team’s involvement in that project. Neither ”Preparing for next delivery” nor

101

”Project P4” was mentioned any more in the informants’ responses regarding
task content, strengthening our belief that the informants did not consider them
significant enough for further discussion.

While there was a high agreement that the ”Project P1” task affected the
case managers, there was an overall low degree of overlap in which actors were
affected by each task. A potential cause is that these results are dependent of
and will inherit the scatter of the responses related to the team’s current tasks.

There was some disagreement about whether there were any task depen-
dencies in ”Project P1”. While 3 informants seemed to agree that the project
currently had dependent task, 1 informant said that the tasks’ dependencies
had been resolved last week. The interviews were all conducted in the middle
of the same week within a 3-day span, so this was an actual disagreement and
not just a change of circumstances. It could be that either of the groups who
responded that there was or wasn’t dependencies in ”Project P1” were fully
informed on the status quo, possibly because all the team members don’t work
interdependently. 2 out of 3 informants who talked about ”Project P2” also
talked about it having dependencies, so although the number 2 is low in and of
itself, it is a moderate amount compared to how many informants mentioned
”Project P2” in the first place.

Similarly to the responses about the goal strategies, a majority of the infor-
mants found the questions about task strategies to be difficult, and although all
of them responded, only two of them actually provided responses related to task
strategies, while all of them also (or only) described the team’s task allocation
strategies. None of the responding informants said the same thing regarding
the team’s task strategies, mostly because they discussed the strategies of dif-
ferent tasks. It is possible that the phrasing of the question was too vague,
and instead of ”how will the team perform those tasks?” it might have been
better with something along the lines of ”what is the strategy for performing
those specific tasks?”. Yet, we can’t help but notice the similarities between the
graphs of goal strategies and task strategies, making it possible that the spread
in responses is not inherently caused by the vagueness of the question. Again
we refer to the findings that the team functions more as a group. It wouldn’t
be strange if a person did not know how a specific task is to be solved is they
are not directly involved in solving it.

6.3.4 Process-related team knowledge

The bare results yielded a moderate overlap in interaction models related to
regular meetings, low-to-moderate overlap related to irregular meetings, and a
moderate overlap related to communication outside of meetings. However, as
we will show in the coming paragraphs, we argue that a set of responses may
be disregarded, yielding a moderate-to-high overlap in regular meetings and
communication outside of meetings.

The informants had a moderate-to-high degree of overlap in their answers
about which meetings the team holds regularly, with the exception of the men-
tion of a set of meetings that take place externally to the team. However, the

102

question was aimed at intra-team meetings only, and thus we can disregard the
responses regarding inter-team meetings. With irregular meetings, there was a
high agreement that estimation meetings are held when ever there is a need for
it, but a lower overlap on the remaining three meetings that were mentioned,
namely ”Behovsfase”, clarification meetings, and user-test meetings, yielding an
overall low-to-moderate overlap in irregular meetings.

As for interactions that happen outside of meetings, there was a high agree-
ment that simple correspondences are done through Teams chat, and often serve
as a gateway for initiating more complex communication through video and au-
dio calls. Fewer informants mentioned discussions on Teams channels and on
Jira, however. It is peculiar that only 2 people mentioned the Teams channels,
because they were described as being used often. It is possible, however, that
other respondents who mentioned Teams chat were also referring to the use of
channels, without explicitly saying so. The fact that ”Jira” was not a more
frequent response is likely due to the phrasing of the question, which was as
whether the team members interact outside of meetings, and in which case how
those interactions take place. Discussions on Jira is in the form of comments
on specific tasks, has a very low synchronicity. It would not be strange if the
majority of informants did not consider Jira comments to be a form of inter-
action, but rather documentation. In fact, a total of 4 informants mentioned
the use of Jira for documentation, of which 2 mentioned using Jira for some
type of discussion. For this reason we chose to disregard the ”Discussions on
Jira” response, yielding a moderate-to-high overlap in interactions outside of
meetings.

6.4 Summarizing the discussion

We suggested that several of the low scores of knowledge overlap were possibly
caused by the team’s structure as a group instead of the formal definition of a
team, in which every team member is mutually dependent [36]. These sugges-
tions would be in agreement with previous findings showing that dependence is
positively associated with knowledge sharing [51].

The team’s goal-related knowledge appeared to be in correlation with their
task-related knowledge. In other words, their idea of the team’s overarching
goals were tied to which ever tasks were before them, possibly due to the team’s
frequent sharing of task-related knowledge compared to their relatively infre-
quent sharing of goal-related knowledge. With this focus on tasks, the infor-
mants were able to provide a rich set of data about their task-related team
knowledge, while the data regarding their goal-related team knowledge was a
bit narrower. Likewise, the data showed a rich set of task-knowledge sharing
activities, and very few goal-knowledge sharing activities. It must be noted
that a rich data provides greater opportunity to create an overlap than lacking
data, and it must be considered that the data collection methods may have been
inadequate in collecting data related to goal-related knowledge and knowledge
sharing. For example, a sprint-planning was observed, which is heavily task fo-
cused, while no ”behovsfase” meeting was observed, which have more emphasis

103

on goals. Nonetheless, the overlap in the informants’ knowledge of overarching
team goals seemed to be somewhat similar to their overlap in which tasks they
are working on. Similarly, their overlap in goal strategies was similar to their
overlap in task strategies.

Out of the measured team-related knowledge we only procured measures of
team membership knowledge, and none of team member models and expertise
location. The main reason for this is that mapping such knowledge would require
lengthy interviews, and so knowledge types had to be prioritized. In hindsight
we take notice that the majority of observed sharing of team-related knowledge
is not of the measured type (i.e. team membership), but rather the unmeasured
types (i.e. expertise location and team member model). The only observed
sharing of team membership knowledge was when each team member briefly
described their daily activities, and this sharing was not explicit enough to
give an updated overview of the exact role of each team member. We only
measured a moderate degree of team membership knowledge, as there seemed
to be some disagreement how many developers were on the team, and whether
the architect, team-lead and system owner were considered to be part of the
team. While the overlap in team membership knowledge is not optimal, it is
not a complete picture of the teams overlap in team-related team knowledge,
and under different circumstances it would be desirable to measure expertise
location and team member model as well.

The largest portion of identified knowledge sharing activities were related
to the sharing of task-related knowledge, and of most significance was possibly
the sprint-planning and the use of Jira as a task-knowledge management sys-
tem. The overlap score of task allocation strategies was the 3rd highest score of
all the knowledge types, possibly because task allocation is almost completely
facilitated by Jira’s prioritized task queue. Task descriptions were considered
moderate, and this type of knowledge was brought up every sprint planning
by visually sharing a list of Jira items, supported by explanations and discus-
sions. Moreover, task descriptions were shared during daily stand-up, as people
described what they were working on. However, the informants had a low over-
lap of task strategies, which is a type of knowledge that is both managed by
Jira and discussed during sprint-planning and partly in daily stand-ups, so it
can be questioned whether these activities alone made a difference. It must
be considered, however, that there is a significant possibility that up to 3 of
the informants misunderstood what the researcher was asking for when asking
about task strategies during the interviews, and so the internal validity of the
overlap of task strategies suffers.

Knowledge related to task dependencies scored a low-to-moderate overlap,
and we only observed sharing of knowledge related to task dependencies dur-
ing the sprint-planning, where some Jira items would be sorted under ”await-
ing dependencies”, and when team members verbally explained dependencies.
Although task-dependency knowledge would be externalized by uploading a
screenshot of the Miro board to Wiki, it is unlikely that this knowledge was
accessed frequently by the team members in the same way as the Jira task
queue. Externalization alone does not constitute knowledge sharing unless an-

104

other party internalizes the knowledge, and it is possible that sharing of task-
dependency knowledge simply wasn’t frequent enough to yield a higher degree
of sharedness. In a similar fashion, we observed no sharing of knowledge related
to which actors are affected by specific tasks, correlating with the low overlap in
which actors were affected by which tasks. Aside from the task-strategies mea-
sures, the positive link between task knowledge managed by Jira and overlap
measure of task knowledge would be in agreement with previous findings that
suggest the use of technology for knowledge management improves knowledge
processes such as knowledge sharing [1].

There was a high overlap in interaction models for regular meetings, which
is also a type of knowledge that is partly managed by a knowledge management
system (i.e. the Wiki) through active documentation. The overlap score for
interaction models of irregular meetings was low-to-moderate, and none of the
informants mentioned any documentation of these meetings. These results are
in agreement with previous findings that usage of Wikis as a knowledge man-
agement system leads to improved sharing of knowledge [43]. It must be noted,
however, that just because the informants did not mention it, it doesn’t neces-
sarily mean that the documentation did not take place. But it does suggest that
the informants were unaware of such documentation. The interaction models
outside of meetings scored moderate-to-high without being mentioned in any
documentation, but this is likely a type of knowledge that is learned through
experience in working with the team, and possibly through training.

105

7 Conclusions

Due to an emergent need for a high degree of virtuality in software development
teams paired with a lack of empirical studies of such cases, this study set out
to describe a case of a single virtual software development team. The aim was
to describe their degree of virtuality, their knowledge sharing activities, and
their overlapping degree of shared team knowledge. The study was conducted
through qualitative and semi-quantitative analysis of observations, interviews
and a feedback meeting with the team’s Scrum master.

The team’s virtualness was measured in terms of 11 different dimensions re-
lated to distribution and use of technology, where 7 of them were high, 1 moder-
ate, and 3 were low. More specifically, the team had a high degree of technology
usage, while the dimensions related to distribution were overall moderate due to
their low degree of diversity, geographic distribution and temporal dispersion.
With a vast disagreement in literature as to how virtuality is defined and mea-
sured [31], we chose not to explicitly label the overall degree of virtuality, but
rather describe each of the identified dimensions of virtuality [35]. The hope is
that this transparency enables method generalisability that is independent of
which measure and definition of virtuality is used.

The team used a variety of Agile practices that has been linked to increased
knowledge sharing, such as various Scrum practices, cross-functional teams and
an iterative work cycle. They used Jira as a knowledge management system
for task-related knowledge, and a Wiki for the management of process-related
and some team-related knowledge. We observed much sharing of team-norm
knowledge during sprint retrospective, and much sharing of task-related knowl-
edge during sprint planning. Both of these meetings involved usage of Miro to
externalize knowledge. During the daily stand-up be observed some sharing of
team-related knowledge and some sharing of task-related knowledge on a super-
ficial level. We did not observe any sharing of goal-related knowledge, and only
a few infrequent goal-knowledge sharing activities were mentioned during the
interviews.

The team’s overlap score of team knowledge was on the lower end of mod-
erate, with higher scores related to team interaction at regular meetings and
outside of meetings and task allocation strategies between the developers, and
lower scores related to goal strategies and task strategies. We discussed these re-
sults with the team’s Scrum master during a feedback meeting and learned that
a significant amount of the spread may be linked to the non-interdependence of
the team members in a large team, which would be in agreement with previous
research claiming dependence is positively linked with knowledge sharing [51].
The types of knowledge that were managed through knowledge management
systems generally scored higher than the types that didn’t, with the exception
of task strategies. These results, too, are in agreement with previous research
finding that usage of knowledge management systems is positively linked with
knowledge sharing [1, 43].

106

7.1 Limitations

The most important limitation to this study is that the results are not, and are
not supposed to be, generalisable. It is a descriptive case study, and so the goal
is to describe various aspects with a single case, and the aspects of a general
population. Although we explored possible links and explanations of the results
in the discussion chapter, these explanations are highly specific to the case, and
although some findings may be in agreement with previous findings, the goal of
the study was not to confirm or reject previous research.

The most significant threat to internal validity was likely the low number
of informants interviewed. In order to have a more correct overlap measure of
shared team knowledge it would be required to interview the entire team, which
unfortunately we were not given the opportunity to do. Instead we interviewed
a sample of about half the team and were required to generalise the result from
that sample to the whole team. The biggest downside to this was that in the
cases where several of the informants did not respond, the results were too weak
to draw any conclusions and in some cases the results were discarded.

Due to a restriction in interview time, we chose not to attempt to map the
team’s knowledge related to expertise location, team member models and team
norms. We concluded that mapping these types of knowledge would require a
large amount of time, and with with the low number of informants it was possible
that the data would not be complete. For this reason the overlap measure in
those three knowledge types were not measured, making our overlap measure of
team knowledge somewhat incomplete.

The types of observed meetings were also not complete, especially because
none of the observed meetings involved sharing of goal-related knowledge. To
get a complete picture of the team’s knowledge sharing activities it would be
required to observe requirement phase meetings, architectural meetings and
possibly estimation meetings as well. Unfortunately, these meetings were not
held for the duration of data collection.

7.2 Implications and future research

The main contribution of this paper is empiric material that, hopefully, future
researchers may use alongside other empirical studies to increase our common
knowledge about knowledge sharing in virtual software development teams. We
believe that recent events have contributed to a normalization of working from
home, and thus it is also our belief that it is highly relevant to study how
to increase the performance of highly distributed virtual teams. Especially in
the software development industry, which is highly knowledge-intensive, this is
partly achieved by researching how to increase the team’s knowledge sharing.
For this reason we have two main propositions for future research.

First, a single empiric case hardly contributes to the common knowledge base
on it’s own. It is only in combination and comparison with other empiric studies
that the findings have further utility. For this reason we suggest that future
researchers perform similar case-studies, describing the virtuality and knowledge

107

sharing behavior of software development teams, as well as the success of these
knowledge sharing behaviours.

Next, once there is an established base of empirical studies, we suggest that
systematic reviews are performed to investigate the relationships between knowl-
edge sharing behaviour, degree of shared knowledge, and team virtualness. More
specifically, we believe it would be interesting to see whether virtualness acts
as a moderator between knowledge sharing activities and the degree of shared
knowledge. Or in other words, whether certain types of knowledge sharing are
less effective when performed in a more virtual setting.

108

References

[1] Maryam Alavi and Dorothy E Leidner. “Knowledge management and
knowledge management systems: Conceptual foundations and research is-
sues”. In: MIS quarterly (2001), pp. 107–136.

[2] Maryam Alavi and Amrit Tiwana. “Knowledge integration in virtual teams:
The potential role of KMS”. In: Journal of the American Society for In-
formation Science and Technology 53.12 (2002), pp. 1029–1037.

[3] Mohammad Alsharo, Dawn Gregg, and Ronald Ramirez. “Virtual team
effectiveness: The role of knowledge sharing and trust”. In: Information
& Management 54.4 (2017), pp. 479–490.

[4] Yanti Andriyani. “Knowledge Management and Reflective Practice in Daily
Stand-Up and Retrospective Meetings”. In: International Conference on
Agile Software Development. Springer, Cham. 2017, pp. 285–291.

[5] Yanti Andriyani, Rashina Hoda, and Robert Amor. “Understanding knowl-
edge management in agile software development practice”. In: Interna-
tional Conference on Knowledge Science, Engineering and Management.
Springer. 2017, pp. 195–207.

[6] Giovanni Asproni. “An introduction to scrum”. In: Software Developer’s
Journal 6 (2006), pp. 1–10.

[7] Swati Kaul Bhat, Neerja Pande, and Vandana Ahuja. “Virtual team effec-
tiveness: an empirical study using SEM”. In: Procedia Computer Science
122 (2017), pp. 33–41.

[8] Finn Olav Bjørnson and Torgeir Dingsøyr. “Knowledge management in
software engineering: A systematic review of studied concepts, findings
and research methods used”. In: Information and Software Technology
50.11 (2008), pp. 1055–1068.

[9] Angel Cabrera, William C Collins, and Jesus F Salgado. “Determinants
of individual engagement in knowledge sharing”. In: The International
Journal of Human Resource Management 17.2 (2006), pp. 245–264.

[10] Lan Cao and Balasubramaniam Ramesh. “Agile requirements engineering
practices: An empirical study”. In: IEEE software 25.1 (2008), pp. 60–67.

[11] Thomas Chau and Frank Maurer. “Knowledge sharing in agile software
teams”. In: Logic versus approximation. Springer, 2004, pp. 173–183.

[12] Sharolyn Converse, JA Cannon-Bowers, and E Salas. “Shared mental
models in expert team decision making”. In: Individual and group decision
making: Current issues 221 (1993), pp. 221–46.

[13] Nancy J Cooke et al. “Measuring team knowledge”. In: Human factors
42.1 (2000), pp. 151–173.

[14] Jonathon N Cummings. “Work groups, structural diversity, and knowledge
sharing in a global organization”. In: Management science 50.3 (2004),
pp. 352–364.

109

[15] Thomas H Davenport and Varun Grover. “Knowledge management”. In:
Journal of management information systems 18.1 (2001), p. 3.

[16] Thomas H Davenport, Laurence Prusak, et al. Working knowledge: How
organizations manage what they know. Harvard Business Press, 1998.

[17] Vida Davidavičienė, Khaled Al Majzoub, and Ieva Meidute-Kavaliauskiene.
“Factors Affecting Knowledge Sharing in Virtual Teams”. In: Sustainabil-
ity 12.17 (2020), p. 6917.

[18] Ana Ortiz De Guinea, Jane Webster, and D Sandy Staples. “A meta-
analysis of the consequences of virtualness on team functioning”. In: In-
formation & management 49.6 (2012), pp. 301–308.

[19] Norman K Denzin and Yvonna S Lincoln. The Sage handbook of qualitative
research. sage, 2011.

[20] Esther Derby, Diana Larsen, and Ken Schwaber. Agile retrospectives: Mak-
ing good teams great. Pragmatic Bookshelf, 2006.

[21] James H. Dulebohn and Julia E. Hoch. “Virtual teams in organizations”.
In: Human Resource Management Review 27.4 (2017). Virtual Teams in
Organizations, pp. 569–574. issn: 1053-4822. doi: https://doi.org/10.
1016/j.hrmr.2016.12.004. url: http://www.sciencedirect.com/
science/article/pii/S1053482216300961.

[22] Michael Earl. “Knowledge management strategies: Toward a taxonomy”.
In: Journal of management information systems 18.1 (2001), pp. 215–233.

[23] Christof Ebert and Jozef De Man. “Effectively utilizing project, product
and process knowledge”. In: Information and Software Technology 50.6
(2008), pp. 579–594.

[24] Tor Erlend Fægri, Viktoria Stray, and Nils Brede Moe. “Shared knowledge
in virtual software teams: A preliminary framework”. In: 2016 IEEE 11th
International Conference on Global Software Engineering (ICGSE). IEEE.
2016, pp. 174–178.

[25] Ali Yahya Gheni et al. “FACTORS AFFECTING GLOBAL VIRTUAL
TEAMS’PERFORMANCE IN SOFTWARE PROJECTS”. In: Journal of
Theoretical and Applied Information Technology 92.1 (2016), p. 90.

[26] Shahla Ghobadi. “What drives knowledge sharing in software development
teams: A literature review and classification framework”. In: Information
& Management 52.1 (2015), pp. 82–97.

[27] Shahla Ghobadi and Lars Mathiassen. “Perceived barriers to effective
knowledge sharing in agile software teams”. In: Information systems jour-
nal 26.2 (2016), pp. 95–125.

[28] Egon G Guba, Yvonna S Lincoln, et al. “Competing paradigms in qual-
itative research”. In: Handbook of qualitative research 2.163-194 (1994),
p. 105.

[29] Dorina C Gumm. “Distribution dimensions in software development projects:
A taxonomy”. In: IEEE software 23.5 (2006), pp. 45–51.

110

[30] Paul Hendriks. “Why share knowledge? The influence of ICT on the mo-
tivation for knowledge sharing”. In: Knowledge and process management
6.2 (1999), pp. 91–100.

[31] M Reza Hosseini et al. “Evaluating virtuality in teams: A conceptual
model”. In: Technology Analysis & Strategic Management 27.4 (2015),
pp. 385–404.

[32] Samireh Jalali and Claes Wohlin. “Global software engineering and agile
practices: a systematic review”. In: Journal of software: Evolution and
Process 24.6 (2012), pp. 643–659.

[33] Sirkka L Jarvenpaa and D Sandy Staples. “The use of collaborative elec-
tronic media for information sharing: an exploratory study of determi-
nants”. In: The Journal of Strategic Information Systems 9.2-3 (2000),
pp. 129–154.

[34] Sirkka L Jarvenpaa and D Sandy Staples. “Exploring perceptions of orga-
nizational ownership of information and expertise”. In: Journal of man-
agement information systems 18.1 (2001), pp. 151–183.

[35] Stefanie K Johnson, Kenneth Bettenhausen, and Ellie Gibbons. “Reali-
ties of working in virtual teams: Affective and attitudinal outcomes of us-
ing computer-mediated communication”. In: Small Group Research 40.6
(2009), pp. 623–649.

[36] Jon R Katzenbach and Douglas K Smith. “The discipline of teams”. In:
Harvard business review 83.7 (2005), p. 162.

[37] Brenda Killingsworth, Yajiong Xue, and Yongjun Liu. “Factors influencing
knowledge sharing among global virtual teams”. In: Team Performance
Management (2016).

[38] Bradley L Kirkman and John E Mathieu. “The dimensions and antecedents
of team virtuality”. In: Journal of management 31.5 (2005), pp. 700–718.

[39] Richard Klimoski and Susan Mohammed. “Team mental model: Construct
or metaphor?” In: Journal of management 20.2 (1994), pp. 403–437.

[40] Heeseok Lee and Byounggu Choi. “Knowledge management enablers, pro-
cesses, and organizational performance: An integrative view and empir-
ical examination”. In: Journal of management information systems 20.1
(2003), pp. 179–228.

[41] Hsiu-Fen Lin. “Effects of extrinsic and intrinsic motivation on employee
knowledge sharing intentions”. In: Journal of information science 33.2
(2007), pp. 135–149.

[42] Lowell Lindstrom and Ron Jeffries. “Extreme programming and agile soft-
ware development methodologies”. In: Information systems management
21.3 (2004), pp. 41–52.

[43] Ann Majchrzak, Christian Wagner, and Dave Yates. “Corporate wiki
users: results of a survey”. In: Proceedings of the 2006 international sym-
posium on Wikis. 2006, pp. 99–104.

111

[44] John E Mathieu et al. “The influence of shared mental models on team
process and performance.” In: Journal of applied psychology 85.2 (2000),
p. 273.

[45] Matthew B Miles, A Michael Huberman, and Johnny Saldaña. Qualitative
data analysis: A methods sourcebook. Sage publications, 2018.

[46] Nils Brede Moe et al. “Enabling knowledge sharing in agile virtual teams”.
In: 2016 IEEE 11th International Conference on Global Software Engi-
neering (ICGSE). IEEE. 2016, pp. 29–33.

[47] Sarah Morrison-Smith and Jaime Ruiz. “Challenges and barriers in virtual
teams: a literature review”. In: SN Applied Sciences 2 (2020), pp. 1–33.

[48] James Newkirk. “Introduction to agile processes and extreme program-
ming”. In: Proceedings of the 24th International Conference on Software
Engineering. ICSE 2002. IEEE. 2002, pp. 695–696.

[49] Tuyet-Mai Nguyen. “Four-dimensional model: a literature review in online
organisational knowledge sharing”. In: VINE Journal of Information and
Knowledge Management Systems (2020).

[50] Judith Orasanu. “Shared mental models and crew decision making”. In:
Princeton, NJ (1990).

[51] Jun-Gi Park and Jungwoo Lee. “Knowledge sharing in information sys-
tems development projects: Explicating the role of dependence and trust”.
In: International Journal of Project Management 32.1 (2014), pp. 153–165.

[52] William B Rouse and Nancy M Morris. “On looking into the black box:
Prospects and limits in the search for mental models.” In: Psychological
bulletin 100.3 (1986), p. 349.

[53] Ioana Rus, Mikael Lindvall, and S Sinha. “Knowledge management in
software engineering”. In: IEEE software 19.3 (2002), pp. 26–38.

[54] Linda Schweitzer and Linda Duxbury. “Conceptualizing and measuring
the virtuality of teams”. In: Information systems journal 20.3 (2010),
pp. 267–295.

[55] Graeme Shanks et al. “Guidelines for conducting positivist case study
research in information systems”. In: Australasian Journal of Information
Systems 10.1 (2002).

[56] Darja Smite, Marco Kuhrmann, and Patrick Keil. “Virtual teams [Guest
editors’ introduction]”. In: Ieee Software 31.6 (2014), pp. 41–46.

[57] Darja Šmite et al. “Empirical evidence in global software engineering: a
systematic review”. In: Empirical software engineering 15.1 (2010), pp. 91–
118.

[58] D Sandy Staples and Jane Webster. “Exploring the effects of trust, task
interdependence and virtualness on knowledge sharing in teams”. In: In-
formation systems journal 18.6 (2008), pp. 617–640.

112

[59] Viktoria Stray, Dag IK Sjøberg, and Tore Dyb̊a. “The daily stand-up
meeting: A grounded theory study”. In: Journal of Systems and Software
114 (2016), pp. 101–124.

[60] Bart Van den Hooff et al. “Knowledge sharing in knowledge communities”.
In: Communities and technologies. Springer. 2003, pp. 119–141.

[61] Sheng Wang and Raymond A Noe. “Knowledge sharing: A review and
directions for future research”. In: Human resource management review
20.2 (2010), pp. 115–131.

[62] Jun Wei, Wei Zheng, and Mian Zhang. “Social capital and knowledge
transfer: A multi-level analysis”. In: Human Relations 64.11 (2011), pp. 1401–
1423.

[63] Karl M Wiig. “Knowledge management: an introduction and perspective”.
In: Journal of knowledge Management (1997).

[64] Jessica L Wildman et al. “Team knowledge research: Emerging trends and
critical needs”. In: Human Factors 54.1 (2012), pp. 84–111.

[65] John R Wilson and Andrew Rutherford. “Mental models: Theory and
application in human factors”. In: Human Factors 31.6 (1989), pp. 617–
634.

[66] Jen-Her Wu and Yu-Min Wang. “Measuring KMS success: A respecifica-
tion of the DeLone and McLean’s model”. In: Information & management
43.6 (2006), pp. 728–739.

[67] Robert K Yin et al. “Design and methods”. In: Case study research 3.9.2
(2003).

[68] Shi Zhong, Chen Liping, and Chen Tian-en. “Agile planning and devel-
opment methods”. In: 2011 3rd International Conference on Computer
Research and Development. Vol. 1. IEEE. 2011, pp. 488–491.

113

Intervjuguide

Introduksjon

Takke personen for å stille til intervju

Presentere meg selv

 Navn og studie

 Masteroppgave om kunnskapsdeling i virtuelle team

Kort om intervjuet

 Varighet ca 60 min

Dette er ikke en eksamen av dine kunnskaper

 Hvis du får et spørsmål du ikke vet svaret på, er det greit å si «vet ikke»

Samtykkeskjema

 Deltakelse er frivillig

 Du kan når som helst trekke deg i ettertid

 Du kan velge å avstå fra å svare på spørsmål

 Intervjuet vil anonymiseres

Be om samtykke for opptak (Sett på ved tillatelse)

Bli kjent

Kan du fortelle meg litt om jobben / stillingen din?

A Appendix: Interview Guide

Datainnsamling

Kan du fortelle litt om teamet du er i nå?

Jobber dere kun fra hjemmekontor, eller møtes dere noen ganger fysisk?

Hvilket medium brukes for møter?

Hvordan opplever du å bruke dette mediet for møter?

Holder teamet noen faste møter?

Hva gjør dere på de faste møtene?

Bruker teamet å holde noen møter utover de faste møtene?

Er alle møtene like nyttige for deg?

Deltar du på alle møter som blir planlagt?

Hender det at du interagerer med andre på teamet utenfor planlagte møter? I så fall,
hvordan kommuniserer dere da?

Hvordan dokumenterer teamet arbeidet som blir gjort?

Hvem er det som er med på teamet ditt, og hvilke roller har de?

Hvilken rolle har du?

Finnes det noen områder hvor du føler har mer ekspertise enn de andre på teamet?

Finnes det noen områder du har lite kunnskap om?

Vet du om noen på teamet som sitter med kunnskap om dette området?

Hvordan opplever du å kontakte andre på teamet for å spørre om slikt?

Hva er det teamet ønsker å oppnå med arbeidet dere gjør?

Har du noen personlige mål som du ønsker å oppnå?

Føler du at de andre på teamet deler det samme målet som deg?

Hvilket arbeid skal utføres for at teamet skal nå disse målene?

Hvilke oppgaver jobber teamet med nå?

Hvordan skal disse oppgavene utføres?

Hvordan fordeler dere disse oppgavene (eller deler av oppgavene) mellom hverandre?

Er noen av disse oppgavene eller deloppgavene avhengig av hverandre?

Hvordan vil disse oppgavene påvirke miljøet utenfor teamet (dvs. f. eks. brukere, andre team
hos SPK)

Avslutning

Er det noe mer du ønsker å legge til som du føler bør være med, som vi ikke allerede har
snakket om?

Har du noen spørsmål til meg?

Takke for deltakelse

30.1.2021 Meldeskjema for behandling av personopplysninger

https://meldeskjema.nsd.no/vurdering/5fc104f3-726b-479c-a4a4-2566ac23bc82 1/2

NSD sin vurdering

Prosjekttittel

Kunnskapsdeling i Virtuelle Team

Referansenummer

183452

Registrert

27.11.2020 av Levi Sørum - levis@stud.ntnu.no

Behandlingsansvarlig institusjon

Stiftelsen SINTEF / SINTEF Digital

Prosjektansvarlig (vitenskapelig ansatt/veileder eller stipendiat)

Nils Brede Moe, Nils.B.Moe@sintef.no, tlf: 93028687

Type prosjekt

Studentprosjekt, masterstudium

Kontaktinformasjon, student

Levi Sørum, levis@stud.ntnu.no, tlf: 99466654

Prosjektperiode

01.09.2020 - 01.03.2021

Status

04.01.2021 - Vurdert

Vurdering (1)

04.01.2021 - Vurdert

Det er vår vurdering at behandlingen av personopplysninger i prosjektet vil være i samsvar med
personvernlovgivningen, så fremt den gjennomføres i tråd med det som er dokumentert i meldeskjema med
vedlegg 4.1.2021, samt i meldingsdialogen mellom innmelder og NSD. Behandlingen kan starte.

MELD VESENTLIGE ENDRINGER
Dersom det skjer vesentlige endringer i behandlingen av personopplysninger, kan det være nødvendig å
melde dette til NSD ved å oppdatere meldeskjemaet. Før du melder inn en endring, oppfordrer vi deg til å
lese om hvilke type endringer det er nødvendig å melde:
https://nsd.no/personvernombud/meld_prosjekt/meld_endringer.html

B Appendix: Approval from NSD

30.1.2021 Meldeskjema for behandling av personopplysninger

https://meldeskjema.nsd.no/vurdering/5fc104f3-726b-479c-a4a4-2566ac23bc82 2/2

Du må vente på svar fra NSD før endringen gjennomføres.

TYPE OPPLYSNINGER OG VARIGHET
Prosjektet vil behandle alminnelige kategorier av personopplysninger frem til 1.3.2021.

LOVLIG GRUNNLAG
Prosjektet vil innhente samtykke fra de registrerte til behandlingen av personopplysninger. Vår vurdering er
at prosjektet legger opp til et samtykke i samsvar med kravene i art. 4 og 7, ved at det er en frivillig,
spesifikk, informert og utvetydig bekreftelse som kan dokumenteres og som den registrerte kan trekke
tilbake.

Lovlig grunnlag for behandlingen vil dermed være den registrertes samtykke, jf. personvernforordningen art.
6 nr. 1 bokstav a.

PERSONVERNPRINSIPPER
NSD vurderer at den planlagte behandlingen av personopplysninger vil følge prinsippene i
personvernforordningen om:
- lovlighet, rettferdighet og åpenhet (art. 5.1 a), ved at de registrerte får tilfredsstillende informasjon om og
samtykker til behandlingen
- formålsbegrensning (art. 5.1 b), ved at personopplysninger samles inn for spesifikke, uttrykkelig angitte og
berettigede formål, og ikke viderebehandles til nye uforenlige formål
- dataminimering (art. 5.1 c), ved at det kun behandles opplysninger som er adekvate, relevante og
nødvendige for formålet med prosjektet
- lagringsbegrensning (art. 5.1 e), ved at personopplysningene ikke lagres lengre enn nødvendig for å
oppfylle formålet

DE REGISTRERTES RETTIGHETER
Så lenge de registrerte kan identifiseres i datamaterialet vil de ha følgende rettigheter: informasjon (art. 13),
innsyn (art. 15), retting (art. 16), sletting (art. 17), begrensning (art. 18), underretning (art. 19),
dataportabilitet (art. 20).

NSD vurderer at informasjonen som de registrerte vil motta oppfyller lovens krav til form og innhold, jf. art.
12.1 og art. 13.

Vi minner om at hvis en registrert tar kontakt om sine rettigheter, har behandlingsansvarlig institusjon plikt
til å svare innen en måned.

FØLG DIN INSTITUSJONS RETNINGSLINJER
NSD legger til grunn at behandlingen oppfyller kravene i personvernforordningen om riktighet (art. 5.1 d),
integritet og konfidensialitet (art. 5.1. f) og sikkerhet (art. 32).

For å forsikre dere om at kravene oppfylles, må dere følge interne retningslinjer og eventuelt rådføre dere
med behandlingsansvarlig institusjon.

OPPFØLGING AV PROSJEKTET
NSD vil følge opp ved planlagt avslutning for å avklare om behandlingen av personopplysningene er
avsluttet.

Lykke til med prosjektet!

Kontaktperson hos NSD: Lasse Raa
Tlf. personverntjenester: 55 58 21 17 (tast 1)

Vil du delta i forskningsprosjektet

 «Kunnskapsdeling i Virtuelle Team»?

Dette er et spørsmål til deg om å delta i et forskningsprosjekt hvor formålet er å få bedre kunnskap om

hvordan kunnskapsdeling fungerer i virtuelle team. I dette skrivet gir vi deg informasjon om målene

for prosjektet og hva deltakelse vil innebære for deg.

Formål

Studiet er et case-studie for å undersøke hvordan et team av programvareutviklere som arbeider

sammen virtuelt deler kunnskap mellom hverandre. Vi ønsker å få innsikt i hvilke metoder teamet

benytter for å dele kunnskap med hverandre, samt vurdere effektiviteten av disse. Teamet vil

observeres gjennom 3 digitale prosjekt møter etter avtale med leder for teamet, og hver enkelt deltaker

vil bli intervjuet én gang. Studiet gjennomføres i relasjon til en masteroppgave som skrives i

samarbeid med NTNU og SINTEF.

Hvem er ansvarlig for forskningsprosjektet?

SINTEF Digital og Instituttet for Datateknologi og Informatikk ved NTNU er ansvarlige for

forskningsprosjektet.

Hvorfor får du spørsmål om å delta?

Du er utvalgt til å delta i denne studien fordi du er en person av høy interesse som jobber som en del

av et tverrfaglig virtuelt team. Det er totalt 13 personer som får denne henvendelsen, og alle er en del

av det samme teamet.

Hva innebærer det for deg å delta?

Hvis du velger å delta i prosjektet innebærer det at du blir observert ved tre forskjellige anledninger,

samt at du stiller deg disponibel til intervju. Intervjuet vil ta 45-60 minutter, og lydopptaker vil bli

brukt etter samtykke. Intervjuet består av spørsmål om din rolle i teamet, hvordan du kommuniserer

med teamet, og din oppfattelse av teamet og dets arbeidsmetoder. Observasjon av møter vil bli skrevet

referat om, hvor hovedtemaer som noteres er teamets arbeidsmetoder under møter.

Det er frivillig å delta

Det er frivillig å delta i prosjektet. Hvis du velger å delta, kan du når som helst trekke samtykket

tilbake uten å oppgi noen grunn. Alle dine personopplysninger vil da bli slettet. Du kan også velge å

avstå fra å delta i prosjektmøtet samt svare på enkeltspørsmål under intervju. Det vil ikke ha noen

negative konsekvenser for deg hvis du ikke vil delta eller senere velger å trekke deg, eller dersom du

avstår fra å svare på spørsmål.

Ditt personvern – hvordan vi oppbevarer og bruker dine opplysninger

Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi behandler

opplysningene konfidensielt og i samsvar med personvernregelverket. Masterstudenten samt veileder

og prosjektansvarlig ved SINTEF er de eneste som vil ha tilgang til dine opplysninger. Opplysningene

vil bli oppbevart på en kryptert server hos SINTEF. All data vil bli anonymisert ved publikasjon, og

det vil ikke være mulig å identifisere enkeltpersoner som har deltatt i studien.

Hva skjer med opplysningene dine når vi avslutter forskningsprosjektet?

Prosjektet skal etter planen avsluttes 18. februar 2021. All data som ikke har blitt anonymisert vil bli

slettet når studien er avsluttet.

C Appendix: Letter of invitation

Dine rettigheter

Så lenge du kan identifiseres i datamaterialet, har du rett til:

- innsyn i hvilke personopplysninger som er registrert om deg, og å få utlevert en kopi av

opplysningene,

- å få rettet personopplysninger om deg,

- å få slettet personopplysninger om deg, og

- å sende klage til Datatilsynet om behandlingen av dine personopplysninger.

Hva gir oss rett til å behandle personopplysninger om deg?

Vi behandler opplysninger om deg basert på ditt samtykke.

På oppdrag fra SINTEF har NSD – Norsk senter for forskningsdata AS vurdert at behandlingen av

personopplysninger i dette prosjektet er i samsvar med personvernregelverket.

Hvor kan jeg finne ut mer?

Hvis du har spørsmål til studien, eller ønsker å benytte deg av dine rettigheter, ta kontakt med:

 NTNU, Institutt for datateknologi og informatikk ved masterstudent Levi Sørum

(levis@stud.ntnu.no), telefon: 994 66 654

 SINTEF Digital, Avdeling for Software Engineering, Safety and Security ved Nils Brede Moe

(nils.b.moe@sintef.no), telefon: 930 28 687

 Vårt personvernombud: NSD – Norsk senter for forskningsdata AS

(personverntjenester@nsd.no), telefon: 555 82 117

Hvis du har spørsmål knyttet til NSD sin vurdering av prosjektet, kan du ta kontakt med:

 NSD – Norsk senter for forskningsdata AS på epost (personverntjenester@nsd.no) eller på

telefon: 55 58 21 17.

Med vennlig hilsen

Nils Brede Moe Levi Sørum

(Forsker/veileder)

Samtykkeerklæring

Jeg har mottatt og forstått informasjon om prosjektet [sett inn tittel], og har fått anledning til å stille

spørsmål. Jeg samtykker til:

 å delta i observasjon

 å delta i intervju

Jeg samtykker til at mine opplysninger behandles frem til prosjektet er avsluttet

--

(Signert av prosjektdeltaker, dato)

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Levi Sørum

Sharing of team knowledge in virtual
software development teams

A case study

Master’s thesis in Computer science, TDT4900
Supervisor: Torgeir Dingsøyr
Co-supervisor: Nils Brede Moe

March 2021

M
as

te
r’s

 th
es

is

