
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Håvard Bjørnøy

Investigating the Effect of Samples per
Class and Number of Classes for
Capsule Networks' Performance

Master’s thesis in Computer Science

Supervisor: Keith Downing

June 2020

Håvard Bjørnøy

Investigating the Effect of Samples per
Class and Number of Classes for
Capsule Networks' Performance

Master’s thesis in Computer Science
Supervisor: Keith Downing
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Summary

Image analysis is becoming ubiquitous in everyday services as for example unlocking your
phone with face recognition, QR codes detection, and photo enhancer algorithms. Big
industries like autonomous vehicles, autonomous warehouses, assembly lines and medical
diagnosis tools are dependant on accurate robust solutions for their image analysis models.
Different convolutional neural networks (CNNs) are the backbone of most of these modern
applications. Despite CNNs great success, they have deficiencies in modelling spatial
relationships between components and struggle to extrapolate on concepts like rotation.
A new architecture, Capsule networks, aimed to tackle these deficiencies is proposed by
Hinton et al. (2011) and Sabour et al. (2017).

A capsule network group neurons as units (capsules) that can represent if an object(or
part of an object) exists as well as it’s properties (rotation, hue, brightness). The cap-
sules also have dynamic connections that agree when a capsule is related to a capsule in
the layer above. These changes enable capsule networks to exploit spatial relationships
between components of objects and generalize better on new instances with slightly dif-
ferent properties. If the capsule network generalizes better than regular CNNs, a promising
application for capsule networks are small datasets. This thesis investigates capsule net-
works performance on subsets of the MNIST dataset with few samples per class, ranging
from 1 to 100 samples per class. In addition, a study of capsule networks performance on
datasets with 2 to 1623 number of classes is carried out on the Omniglot dataset, specifi-
cally to discover how the capsule network performs and scales to this challenge. In both
experiments in this thesis, a CNN is used as a baseline.

The first experiment compared performance of the capsule network from Sabour et al.
(2017) (CapsNet) and the CNN baseline from Sabour et al. (2017) on small datasets. The
capsule network consistently outperformed the CNN baseline, in contrast with the results
from previous discoveries by Schlegel et al. (2018) on the topic. The average difference in
accuracy between the CapsNet and the CNN baseline for samples per class of 1,5,10, and
20 is 7%.

The second experiment compared the models from last experiment, modified for big-
ger input and outputs. The capsule network outperformed the CNN baseline on datasets
with many classes. However, the CNN scaled much better w.r.t. model parameters than the
capsule network. While the CNN parameters only increase by 3% from 2 to 1623 classes,
the capsule network in this instance increased by 785%. The model was too big, so it had
to be reduced in capacity to reduce the GPU memory so it would fit into limited resources
of 16GiB GPU memory. For 400 classes, CapsNet achieved a 52.12% test accuracy, in
contrast to the CNN baseline with a 20.63% test accuracy. The CapsNet model modified
for 400 classes had 489% more model parameters than the compared CNN baseline. The
unbalance in the number of parameters undercuts the side-by-side comparison of the mod-
els. Future work should investigate solutions to the scaling of capsule networks to many
classes.

i

Sammendrag

Bildeanalyse er allestedsnærværende i daglige tjenester, for eksempel ansiktsgjenkjen-
ning for å låse opp telefonen, QR-koder og algoritmer for bildeforbedring. Store industrier
som autonome kjøretøy, autonome lager, samlebånd og medisinsk diagnose er avhengig
av nøyaktige robuste løsninger for sine bildeanalysemodeller. Ulike convolutional nevrale
nettverk (CNN) er sentrale komponenter i de fleste av disse moderne applikasjonene. Til
tross for CNNs store suksess, har de problemer med modellering av romlige forhold og
sliter med å ekstrapolere på konsepter som rotasjon. En ny arkitektur, kapselnettverk, som
tar sikte på å takle disse manglene foreslås av Hinton et al. (2011) og Sabour et al. (2017).

Et kapselnettverk grupperer nevroner som enheter (kapsler) som kan representere om
en gjenstand (eller del av et objekt) eksisterer så vel som dens egenskaper (rotasjon, farge-
tone, lysstyrke). Kapslene har også dynamiske forbindelser som er enig når en kapsel
er relatert til en kapsel i laget over. Disse endringene gjør det mulig for kapselnettverk
å utnytte romlige forhold mellom komponenter av objekter og generalisere bedre i nye
tilfeller med litt forskjellige egenskaper. Hvis kapselnettverket generaliseres bedre enn
vanlige CNN-er, er en lovende applikasjon for kapselnettverk små datasett. Denne mas-
teroppgven undersøker ytelsen til kapselnettverk på undergrupper av MNIST datasettet
med få prøver per klasse, fra 1 til 100 prøver per klasse. I tillegg blir en undersøkelse
av kapselnettverkets ytelse på datasett med 2 til 1623 antall klasser utført på Omniglot
datasettet, for å oppdage hvordan kapselnettverket presterer og skalerer til denne utfor-
dringen. I begge eksperimentene i denne oppgaven sammenlignes kapselnettverk med en
CNN grunnlinjemodell.

Det første eksperimentet sammenlignet ytelsen til kapselnettverket fra Sabour et al.
(2017) (CapsNet) og CNN modellen fra Sabour et al. (2017) på små datasett. Kapsel-
nettverket overgikk konsekvent CNN modellen, i motsetning til resultatene fra tidligere
funn av Schlegel et al. (2018). Den gjennomsnittlige forskjellen i nøyaktighet mellom
CapsNet og CNN modellen var på 7%

Det andre eksperimentet sammenlignet modellene fra forrige eksperiment, modifis-
ert for større input og output. Kapselnettverket overgikk CNN modellen på datasett med
mange klasser. Imidlertid skalerte CNN mye bedre m.t.p. modellparametere smmen-
ligned med kapselnettverket. Mens CNN-parametrene bare øker med 3% fra 2 til 1623
klasser, økte kapselnettverket i dette tilfellet med 785%. Modellen var for stor, så den
måtte reduseres i kapasitet for å redusere GPU-minnet, pga tilgjengelige ressurser. For
400 klasser oppnådde CapsNet testnøyaktighet på 52.12%, i motsetning til CNN-baseline
med en testnøyaktighet på 20.63%. CapsNet-modellen modifisert for 400 klasser hadde
489% flere modellparametere enn den sammenlignede CNN modellen. Ubalansen i antall
parametere gjør det vanskelig å sammenlignde modellene. Framtidig arbeid bør undersøke
løsninger for skalering av kapselnett til mange klasser.

ii

Preface

This thesis is written during the spring of 2020. It is my final assignment in the five-
year master program Computer Science at the Department of Computer Science (IDI) at
Norwegian University of Science and Technology (NTNU). The thesis has forced me to
dive into cutting edge knowledge in Machine Learning. It has been rewarding to see that
many of the basic principles learnt throughout the years are relevant. However, I have also
realized that it is important to see them questioned and challenged.

In my work for this thesis I get to acknowledge the revolutionary effect convolutional
neural networks has had on the image processing field. At the same time as it is questioned
for its exponential inefficiencies, and challenged with Capsule architecture and dynamic
routing. In this thesis Capsule network is examined for it’s promise and limitations with
different applications.

I would like to show my appreciation to Keith Downing for his guidance throughout
the thesis. By my side I had Hedda Hognedatter Bjørnebye Vik who had to listen to my
thoughts and ideas. I thank her for her support and encouragement.

Håvard Bjørnøy,
Oslo, June 2020.

iii

iv

Table of Contents

Summary i

Sammendrag ii

Preface iii

Table of Contents v

1 Introduction 1
1.1 Background and motivation . 1
1.2 Research goals and questions . 2
1.3 Research approach . 2
1.4 Datasets . 3
1.5 Contributions . 3
1.6 Report overview . 4
1.7 Summary . 4

2 Background Theory 5
2.1 Artificial Neural Networks . 5
2.2 Regularization . 8

2.2.1 L1 and L2 regularization . 8
2.2.2 Dropout . 8

2.3 Convolutional neural networks . 9
2.4 Capsule network . 13

2.4.1 Dynamic routing . 14
2.4.2 Loss function . 15

2.5 Summary . 16

3 Structured Literature review 17
3.1 General goals . 17
3.2 Criteria for relevance . 17

v

3.3 Searching . 18
3.3.1 Sources . 18
3.3.2 Execution . 18

4 State of the art 21
4.1 Dynamic routing between Capsules . 21
4.2 Further development . 22
4.3 Large and complex images . 25
4.4 Non-image applications . 26
4.5 Few samples per class . 27
4.6 Many classes . 29
4.7 Summary . 29

5 Models 31
5.1 Baseline . 31
5.2 Capsnet . 31

5.2.1 Regularization network . 32

6 Experiments and results 35
6.1 Datasets . 35
6.2 Optimization and hyperparameters . 37
6.3 Technology . 37
6.4 Experiment 1: Few samples per class . 37

6.4.1 Hyperparameter and experimental setup 37
6.4.2 Results . 42

6.5 Experiment 2: Many classes . 44
6.5.1 Model adaptations to different sizes of input and output 44
6.5.2 Hyperparameters and experimental setup 45
6.5.3 Results . 46

6.6 Summary . 49

7 Discussion 51

8 Conclusion 53

Bibliography 55

vi

Chapter 1
Introduction

This report looks into the progress in the Capsule network field, and its performance on
datasets. Experiments are carried out on MNIST, a dataset of handwritten digits - as well as
on a modified version of Omniglot, a dataset with 1623 different letters from 50 different
alphabets. The aim is to investigate the performance of capsule networks on datasets with
a small sample-size per class and on datasets with many classes.

1.1 Background and motivation

Many industries are now dependant on inferring knowledge from images or videos through
object segmentation, tracking, and recognition; For example industries that work with au-
tonomous vehicles, robotic assembly lines, robotic warehouse systems, medical diagnos-
tics tools, or autonomous vacuum cleaners. There are functioning solutions to some of
the applications in these industries, however, progress in the field of computer vision can
improve efficiency and safety as well as save time and lives.

In 2012 there was a breakthrough in performance for Convolutional Neural Networks
(CNNs), see the article by Krizhevsky et al. (2012). Following that, CNNs quite abruptly
became the underlying model for best models in the majority of image and video appli-
cations. CNNs are flexible, simple, and most of all scales very well. They have many
flaws, but flaws that are rather simple to overcome by augmenting the dataset to fit the
application.

Despite all the successful industry applications there have been some critics of the ar-
chitecture. CNNs fails to learn the spatial relationship between higher-level features like a
whole car, and its lower-level features like its wheels, spoiler, and headlights. The conse-
quence is that a CNN can classify an edited image of a car with the headlights as wheels,
wheels as a spoiler, and a spoiler on the hood wrongly as a car. This happens despite the
fact that the network may have seen 10 times more cars than a human. Unlike the net-
work, a human can very quickly see that even though the edited ”car” has all the necessary
components it does not have the correct spatial relationship between the components.

1

Chapter 1. Introduction

In the article written by Hinton et al. (2011), the idea of capsules was introduced to
tackle the issue of spatial relationships. Capsules are more complex building blocks that
can represent not only a feature but a feature’s properties. This way the spatial relation-
ship between higher or lower-level features can be represented. In the article by Sabour
et al. (2017), dynamic routing between capsules (see Section 2.4.1) is introduced for the
first time to update the weights between capsules so spatial relationships can manifest in
a hierarchical structure between higher-level features and lower-level features. The prac-
tical effect of this change in architecture is a more data-efficient network that is robust to
anomalous data. However, this comes at the cost of a more complex and slower to train
network than other networks.

Capsule networks have so far shown great promise with performance close to other
cutting edge models on the small, low-noise dataset MNIST (see Wan et al. (2013)). How-
ever, researchers that have applied the capsule network to noisy images of objects in nat-
ural environments have received poor results (see for example Xi et al. (2017)). Xi et al.
(2017) and Rawlinson et al. (2018) points out that stacking more capsule layers decreases
the performance. Recently, Rajasegaran et al. (2019) have overcome this challenge and
increased performance on more complex data.

The thesis outline and explore the progress made in the field of capsule networks.
The focus of the experiments in the thesis is the inherent limitations the original capsule
network has with respect to data scarcity and a bigger output-space.

1.2 Research goals and questions
The goal of this thesis is to investigate the performance CapsNet has on datasets with few
samples per class and with increasingly more classes. The following research questions
(RQ) guides the thesis:

RQ1: Will CapsNet perform better than a CNN on a datasets with few samples per class?
RQ2: Will CapsNets perform better than a CNN on datasets with many classes?

1.3 Research approach
The capsule network explored in this thesis is modeled after the original model in the arti-
cle by Sabour et al. (2017). Iwasaki (2018) has implemented a bare-boned GPU-enabled
version of the capsule network in PyTorch. In this paper, that implementation is modified
to dynamically fit differently sized inputs as well as differently sized outputs. A regular
convolutional neural network modeled after Sabour et al. (2017) baseline is implemented
as a baseline, alongside the capsule network, for comparison. The batch size as well as
the regularization is adjusted to adapt to memory limitations and different regularization
needs.

An analysis- and plotting toolbox is developed to analyze the performance of different
models applied to different datasets. The models are trained to classify modified versions
of the MNIST and Omniglot datasets. MNIST is a dataset with 28×28 images of handwrit-

2

1.4 Datasets

ten digits, while Omniglot is a dataset with 105 × 105 images of letters from 50 different
languages. The datasets are in turn modified to contain different numbers of samples per
class and number of classes, and used in the experiments. The goal is that the results of
the quantitative analysis can shed light on how well the capsule network scales to more
complex issues.

1.4 Datasets
Except for the already introduced MNIST and Omniglot dataset that are used in the exper-
iment part of the thesis, several datasets will be mentioned and referred to throughout the
thesis. For readers who are not already familiar with these datasets, a short explanation of
each of them is included here.

• MultiMNIST is a dataset with 70M 36 × 36 images two of digits from MNIST
dataset superimposed on each other with 80% overlap. Published by Sabour et al.
(2017)

• SVHN is a dataset with 99289 32 × 32 gray-scale images of StreetView House
Numbers gathered and cropped from Googles street view. Published by Netzer et al.
(2011)

• Fashion MNIST is a dataset of 70000 28×28 gray-scale images of fashion products
of 10 different categories. Published by Xiao et al. (2017)

• SmallNORB is a dataset with 96×96 images of toy figures of 5 classes(four-legged
animals, human figures, airplanes, trucks, and cars). The images were taken from
many different viewpoints as well as different lighting conditions. Published by
LeCun et al. (2004).

• CIFAR10 is a dataset with 60000 32×32 RGB images of 10 different classes includ-
ing airplane, horse, dog, and truck. Published by Krizhevsky and Hinton (2009).

• ImageNet(ILSVRC) is a hierarchical image database with 15 million images with
22,000 categories. Annually a competition called ImageNet Large-Scale Visual
Recognition Challenge(ILSVRC) is held using a subset of the ImageNet database; A
dataset with 1000 classes, containing approximately 1.2 million natural images for
training, 50,000 for validation and 150,000 for testing. The images have different
resolutions but more than 256× 256 pixels.. Published by Deng et al. (2009).

1.5 Contributions
The main contribution of this thesis is an insight into how capsule networks perform on
datasets with different characteristics. The models and the analysis toolbox used in this
project are in a public repository on Github, see Bjørnøy (2020). Instructions of how to
set up the project with the correct packages are located in the README.md file in the
repository.

3

Chapter 1. Introduction

1.6 Report overview
The thesis goes methodically over relevant background theory in Chapter 2. In Chapter
4 the state of the art results and insights relevant to the thesis will be briefly presented.
The different models used in the experiments are explained in detail in Chapter 5. The
experiments, including all the empirical data, are presented and commented in Chapter
6. In Chapter 7, a more in-depth discussion of the result will take place. Finally, the
conclusions reached from the thesis is presented in Chapter 8.

1.7 Summary
CNNs are the industry standard for image analysis applications. However, their poor abil-
ity to learn spatial relationships between components of an object has driven the field to
invent an alternative that tackles this shortcoming. The alternative, Capsule networks,
show promise with regards to capturing spatial relationships. Nevertheless, Capsule net-
works have their own shortcomings that need to be explored more.

The goal of the thesis is to compare CNN’s and Capsule network’s performance on
datasets with vastly different characteristics. Characteristics like how many samples exist
per class, and how many classes there are. The approach is to add functionality to an
already existing bare-boned implementation of a capsule network. The contributions from
this thesis is an empirical comparative study of the CapsNet and the CNN architectures, as
well as the open-source analysis toolbox used in the writing of this thesis.

4

Chapter 2
Background Theory

This chapter presents relevant background theory. Section 2.1 introduces artificial neu-
ral networks, while Secton 2.2 explaines regularization. These are fundamental consepts
needed to understand convolutional neural networks and capsule networks, but readers
who are well familiar with the topic are advised to skip these sections. Section 2.3 out-
lines convolutional neural networks, the predecessor of capsule networks. Finally capsule
networks are presented in Section 2.4, before the chapter is summarized in Section 2.5.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are human-created neural networks. They were origi-
nally inspired by biological neurons in the human brain. A biological neuron is a process-
ing unit, as illustrated in the top part of Figure 2.1. As shown in Figure 2.1, a biological
neuron consist of a cell body with a nucleus, several filaments called dendrites, a single
long filament called the axon connected to axon terminals and synapses connecting axon
terminals to other neurons’ dendrites. The reader is not expected to have a knowledge of
how a biological neuron works in great detail; it simply functions as an analogy for those
who have.

Artificial neurons, illustrated in the bottom part of Figure 2.1, are inspired by the bi-
ological neuron. The analogy is as follows: The dendrites together function as the input
vector x, where each dendrite i sends a scalar signal xi from a lower level neuron i. The
synapses are mimicked by weights in the matrix W, with elements wij , and bias bj . They
decide what relation a higher level neuron j have to the input xi by the affine transforma-
tion

aj|i = wijxi + bj , (2.1)

where aj|i simply is the output from the affine transformation. The cell body function

5

Chapter 2. Background Theory

dendrites

synapses

cell
body

axon
axon
terminals

Σ|f

in1

in2

inn

out

bias

nucleus

Figure 2.1: Biological neuron (top) and artificial neuron (bottom), the illustration points out the
different parts and similarities between biological and artificial neurons. The flow of data is from the
left(inn:input, synapses and dendrites) to the right(out:output, axon terminals)

6

2.1 Artificial Neural Networks

is modeled by a summation of aj|i, where the output is zj

zj =
∑
i

1 · aj|i (2.2)

and an activation function f(zj). The axon functions as an output h,

hj = f(zj), (2.3)

a scalar that can be connected to other neurons. By stringing all of these operations to-
gether, one has what one would call a neural network layer. Although ANNs mimics some
of the functions of biological neurons - it is a simplistic version, and in some dimensions,
it differs. By stacking several layers together, and connecting the output of one layer to
the input of another, a multi-layered neural network is formed. A neural network can be
represented as a graph where each node is a neuron.

To be able to approximate non-linear functions, one needs to introduce non-linearity in
the network; this is the task of the activation function. If the activation function is linear,
the network can only express linear solutions. A popular activation function to use in
neural networks is the rectified linear unit (ReLU: a(x) = max(0, x))

The loss function is a measure of the quality of the output. A typical scenario could
be that you have input data X and labeled output data y; if so, one could do supervised
learning. The goal of supervised learning is to learn from the input-output pairs to emulate
the underlying model. Using the model, one could then predict the label ŷ of input data. A
typical loss function in the context of supervised learning is the mean squared error where
the loss is the average of the sum of the squared residuals,

L =
1

n

n∑
i=1

(y(i) − ŷ(i))
2
. (2.4)

The idea is to adjust the weights in the network so that the loss is minimized. To do
this, one needs the partial derivatives of the loss function w.r.t. the weights. The partial
derivatives are found using backpropagation Kelley (1960). After that, an optimization
algorithm, popularly the Adam optimizer Kingma and Ba (2014) is applied. In other
words, the weights are updated iteratively in a promising direction by the optimizer, which
calculates it with the partial derivatives, until a local optimum is reached.

The model of artificial neurons that are presented in this paper is the most widely
used model. However, when designing artificial neurons and their interaction, there is a
trade-off between how closely one wants to mimic biological neurons and performance.
Biological neurons are complex, and with the complexity it is often more challenging to
implement parallelized computing. Remarks on this topic are present in that of (Goodfel-
low et al., 2016, Chapter 1.2.1). For more detailed information about artificial neurons,
loss functions, backpropagation, optimizers Goodfellow et al. (2016) is a good source.

The early deep neural networks had some problems that did not make them very robust.
The deeper the networks became the more evident became the problems of vanishing and
exploding gradients. In the early years, the tanh(), a function that can return very high
gradients as well as near-zero gradients, was used as an activation function. When these
gradients backpropagate with a fixed learning rate it is possible for the gradient to vanish,

7

Chapter 2. Background Theory

making it hard to train the first layers. The gradient can also coincidentally explode, which
can return NaN values because of numerical overflow.

ReLU, is an activation function that is known to combat both these problems because
of it’s stable derivative. ReLU combined with bad initialization of weights or high learning
rates can render neurons useless because the weights are updated in such a fashion that the
ReLU will never activate. If the ReLU never activates the derivative will always be zero
making it impossible to update its weights. Today there are many different methods to
combat these problems.

2.2 Regularization
When constructing a model, one wants the model to learn from a training dataset in such a
way that the model can be applied to other, similar data points. However, there are many
practical challenges when training a model. One of the bigger issues are cases where
the model fits the data points instead of fitting the underlying model, called over-fitting.
Overfitting generally occurs when one has a combination of a too small dataset as well as
a model with high capacity. Regularization attempts to address the problem of over-fitting.

Regularization is any modification one makes to a model that intends to reduce its
generalization error but not its training error. Generalization is a term that indicates how
well a model performs on unseen data compared to the data the model trains on. Some
regularization methods put constraints or penalties to a model, either incorporating prior
knowledge or expressing a preference for simpler models.

2.2.1 L1 and L2 regularization
Both L1 and L2 regularization penalizes the parameters of the model using the norms with
the same names. In a neural network, the weights are the parameters. The penalization, Ω,
is added as a term in the loss function with a coefficient α which regulates its effect. The
modified loss function, L̃(θ,X, y) is thus

L̃(θ,X, y) = L(θ,X, y) + αΩ(Θ). (2.5)

For L2 regularization the penalization Ω is simply the 2-norm of the weights, which
incentivizes the model to have low weights, adding bias for a simpler model. L1 regular-
ization uses the 1-norm, with a similar effect. However, since the L1 derivative is constant,
it forces more of the weights towards zero. This has the effect of making sparse weight
matrices that can be leveraged to make learning algorithms faster.

2.2.2 Dropout
The term dropout refers to dropping out some units of the network. Dropout effectively
removes some units of the network by multiplying the output with zero. Different units are
randomly removed every run, given a user-defined probability. Dropout is computationally
efficient, but still a great method for regularizing a model.

There exist multiple other regularization methods, such as data augmentation, multi-
task learning, early stopping, sparse representations, and adversarial training, but only a

8

2.3 Convolutional neural networks

general understanding of the regularization concept and the methods are expected for this
project paper.

2.3 Convolutional neural networks

Convolutional neural networks (CNNs) are networks in which the matrix multiplication in
Equation (2.1) is replaced by a convolution in at least one of the layers. In its most general
form, a convolution is an operation on two functions given a real-valued argument. In the
context of neural networks a convolution, K ∗ I , is more narrowly defined as

Sij = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n). (2.6)

Here, sij is the output of the convolution, K is the kernel and I is the input. S, I and
K are matrices, so Sij is the element on the ith row and jth column of S. The kernel’s
values represent the weights of the network. Figure 2.2 illustrates how a convolution from
Equation (2.6) works. In the figure, a 2 × 2 kernel with values w-z is applied to a 3 × 4
matrix with values from a-l. The bottom part of the figure displays the resulting output, a
2× 3 matrix.

The asterisk ∗ in Equation (2.6) denotes a convolution of the kernel K and Input I .
Implementations of convolutions in neural networks popularly give the user control of
different parameters that alter the behavior from the default convolutional operation. There
is given a short introduction to some of the relevant hyperparameters one can change in
the convolution module in the popular neural network library PyTorch (see Paszke et al.
(2017a)). Read the Pytorch documentation and source code for 2D convolutional layers
for more details. For a more in-depth explanation and great animations on this topic read
Al-Rfou et al. (2016).

In the code in Figure 2.3, one can see the parameters defining the first layer of the
LeNet-5 architecture (introduced in LeCun et al. (1998)). The layer object defined in
Figure 2.3 can then later process the input, a 32 × 32 gray-scale image. Since a grey-
scale image only has one feature, light intensity, the argument in channels is set to
1. If the images had been in RGB-code, it would contain information in three features
(red, green, and blue), meaning the input would have had three channels. The argument
out channels can be determined by the user, as any positive integer without any con-
straints. The amount of channels (both in and out) denotes how many feature maps there
are in the input and output of the convolution. A feature map is the output S from Equa-
tion (2.6). Thus, layer defined in Figure 2.3 would initialize six kernels, which again
produces six feature maps. The kernel size defines the length of each dimension of
the kernel. In Figure 2.2 you can see a convolution with kernel size = (2,2). The
kernel size controls how many weights there are in the kernel and indirectly how big
a feature can be. It also affects how big the output feature map becomes.

The next argument in Figure 2.3, padding, is a method of adding additional border
units to the input volume. With Zero-padding, the implementation in PyTorch would pad
a number of extra zeroes around the volume. A 32x32 input with padding=2 would
become a 36x36 input.

9

Chapter 2. Background Theory

INPUT

KERNEL

OUTPUT

a b c d

e f g h

i j k l

w x

y z

aw + bx +
ey + fx

bw + cx +
fy + gz

cw + dx +
gy + hz

ew + fx +
iy + jz

fw + gx +
jy + kz

gw + hx +
ky + lz

Figure 2.2: An example of a 2D convolution without kernel flipping. A 2x2 kernel is applied to a
3x4 matrix, producing a 2x3 matrix. The illustration is borrowed from Goodfellow et al. (2016)

import t o r c h
l a y e r = t o r c h . nn . Conv2d (i n c h a n n e l s =1 , o u t c h a n n e l s =6 ,

k e r n e l s i z e = (5 , 5) , padd ing =0 ,
s t r i d e =1 , d i l a t i o n =1)

Figure 2.3: Example of how to create a convolutional layer in Pytorch Paszke et al. (2017a). It is
an implementation of the first layer in the so-called LeNet-5 architecture from LeCun et al. (1998).
The network will be explained in detail later in this section.

10

2.3 Convolutional neural networks

Figure 2.4: An example of the effect of different strides on output size and overlapping receptive
fields. The colored boxes are the same 3 × 3 kernel being applied as it traverses through the input
volume.

The effect of different number of strides is shown in Figure 2.4 and defines the step-size
of the 3× 3 kernel as it traverses through the input volume.

In Figure 2.2, stride is 1, thus the output becomes a 2×3 matrix. With stride=2,
the output matrix would have been 1 × 2, completely neglecting i, j, k and l in the input
in Figure 2.2. Thus, one can say that stride defines how often the kernel evaluates the
input. This means it also affects the size of the output as well as how much the kernels
overlap and evaluate the same values.

The final argument in Figure 2.3, dilation, is a way to ”inflate” a kernel by inserting
spaces between kernel elements. The effective size of the kernel increases, even though it
has the same amount of kernel elements. Explaining dilation and the previously explained
arguments without the use of animations is difficult. For a more visual approach, the web-
site created by Al-Rfou et al. (2016) has great animations accompanied by more textual
explanation.

A prevalent architecture applied to images is a deep neural network alternating between
convolutional layers and pooling operations. A pooling operation is a form of downsam-
pling at a certain location with summary statistics (e.g., maximum, average) of the nearby
values. Max-pooling, a popular type of pooling, returns the maximum output within a
rectangular kernel. One have to set the kernel size of the pooling layer in the creation
of the MaxPool2d() object, as explained in Paszke et al. (2017b).

By using convolutional layers and pooling layers, the input is transitioned from high
spatial information to low spatial information. Deep layers capture more conceptual fea-
tures than shallow layers, which typically capture features like edges and textures. This

11

Chapter 2. Background Theory

Gaussian connections

Full connection
Full connectionSubsamplingConvolutions

SubsamplingConvolutions

Input, 32x32

Feature maps,
28x28, 6 C.

F. maps,
14x14, 6 C.

F. maps, 10x10, 16 C.
F. maps, 5x5, 16 C.

Layer 120.
Layer 84 Output 10

Figure 2.5: An example of a convolutional network, LeNet-5 LeCun et al. (1998). The illustration
shows how an digit-instance propagates through the network as input and output of layers. The
squares are 2 dimensional feature maps where ”Y ×Y,Z C”, with A×A in spatial dimensions and
Z number of C channels. The three last layers are one dimensional layers with Z length.

process from small concrete detail-oriented features to more conceptual features is popu-
larly referred to as feature extraction. The final layer is often fully connected and is used to
do the inference/classification part. The division between feature extraction and inference
is commonly used to give a holistic explanation of convolutional networks. However, it is
debated how accurate this holistic explanation is.

In Figure 2.5, one can see the LeNet-5 Architecture, the network architecture that
sparked some interest in the field with its classification of handwritten digits. LeNet-5
was one of the earliest successful applications of the convolutional network, when it was
applied to images of handwritten digits. Each of the squares in Figure 2.5 is a feature map
that represents the where in the image a certain feature is. LeNet-5 extract features by
alternating applying convolutions and subsampling the input. The spatial dimensions are
reduced from 32×32 to 5×5 while the number of channels increases from the original one
gray tone to 16 channels. After that, the spatial dimensions are flattened as there are 2 fully
connected layers and Gaussian connections. Gaussian connections function very similar
to the more modern cross-entropy but use euclidean radial basis functions as a measure of
cost.

The general idea of CNNs is that they mimic the human vision process with restrictive
receptive fields like human eyes use in its visual processing. The architecture of convolu-
tional neural networks is developed to model data that is assumed to have some properties.
Neighboring values are assumed to be highly correlated, a property the network exploits.
The assumption is valid for natural images, as neighboring values in an image are often
highly correlated. Most natural time-series also have very correlated neighboring values.
If convolutional neural networks are used on data where the assumption does not hold, it
will underperform. Further, CNNs assume that a feature that is useful in one location is
useful in several other locations. This assumption allows for parameter sharing. Parameter
sharing makes the architecture much more memory efficient.

CNNs have had great success in the image-domain, as well as other domains. Al-

12

2.4 Capsule network

though, some moderate critics like Geoffrey Hinton have pointed out some of its weak-
nesses as in Hinton et al. (2011). CNNs are equivariant to translation. By adding pooling
layers, they make the network somewhat shift-invariant. CNNs are also somewhat invari-
ant to small changes in viewpoint. Humans are great at recognizing objects that are seen
from a new viewpoint. Hinton et al. (2011) points out this seeming lack of awareness of
orientation in CNNs, what he more generally calls pose. Pose information refers to 3D
orientation relative to the viewer, but the pose also encompasses lighting and color. He
thinks that the focus should on designing networks that aim for equivariance, disentangle
instead of discarding. He addresses these problems in new research in his work on capsule
networks, which will be explained in Section 2.4.

2.4 Capsule network
CNNs are known to be prone to fail to recognize entities with different rotation and light-
ing if it has not seen sufficient images in the training phase. This weakness is a motivation
behind Capsule networks. Capsule networks can also use convolutions, but differs from
CNN and other ANNs in two main ways; Neurons are grouped together in capsules which
are updated as an unit and dynamic routing is introduced in relation to updating the cap-
sules.

The concept of capsules was first outlined in a paper about transforming autoencoder
(Hinton et al. (2011)). Dynamic routing, one of the central concepts of capsule networks,
was presented in the article by Sabour et al. (2017). The article by Sabour et al. (2017)
can be said to be the start of the field of capsule networks. The next year the same authors
suggested modifying the representation of capsules and the routing algorithm for a perfor-
mance boost in their paper titled Matrix capsules with EM routing, Hinton et al. (2018).
The modifications are outlined in Chapter 4.

A capsule is a group of neurons that collectively produce an activity vector, where
each neuron is an element in the activity vector. The activity vector make it possible
to represent different instantiation parameters. By instantiation parameters, one means
the properties that define the state of an instance of an entity. Properties may include
instantiation parameters such as position, size/depth, rotation, deformation, lighting, hue,
texture. The orientation of the activity vector represents the described state of the entity
in the input, and is referred to as the pose of the entity. The length of the activity vector’s
length represents the probability that the entity exists in the input, equivalent to traditional
neurons’ scalar activation value.

A capsule is a group of neurons that collectively produce an activity vector, where
each neuron is an element in the activity vector. The neurons together make it possible
to represent different instantiation value(e.g. rotation, hue, lighting) of the entity in the
input. The orientation of the activity vector represents the described state of the entity
in the input. The length of the activity vector’s length represents the probability that the
entity exists in the input.

Traditional neurons have an activation value, a scalar, as an output. Capsules, on
the other hand, have an activity vector. Neurons’ activation value has a representative
ability limited to signaling the probability of an entity existing or not. In the capsule, this
probability of existence is represented by the length of the activity vector. The orientation

13

Chapter 2. Background Theory

of the vector represents the instantiation parameters. By instantiation parameters, one
means the properties that define the state of an instance of an entity. Properties may include
instantiation parameters such as position, size/depth, rotation, deformation, lighting, hue,
texture. The orientation of the activity vector will be referred to as the pose of the entity.

The motivation behind introducing CNN was to simulate the process of the biologi-
cal visual cortex. Plain ANNs were bad at image processing. CNNs not only increased
performance but lowered computational time. Capsules are not as rooted in biology com-
pared to CNNs, but rather to humans’ ability to understand that up-down car is a car even
though one maybe never have seen a car of that type in that specific position. The ability
to generalize is the driving force behind the introduction of capsules.

In Sabour et al. (2017), there are claims that CNNs’ inability to deal with affine trans-
formations in new inputs will be the architectures’ downfall. To learn affine transforma-
tions, CNNs will have to replicate feature detectors on a grid that grows with the number
of dimensions or increase the labeled dataset size in a similarly exponential way. The latter
seems to be the strategy for many industry solutions. The capsule network is much slower
computationally, but it does not suffer from the same exponential traits.

As previously mentioned one of the key part of capsule networks is the dynamic rout-
ing algorithm proposed by Sabour et al. (2017). The algorithm is outlined in Section
2.4.1. Furthermore, the capsule network applies a non-traditional loss function, margin
loss, which is explained in Section 2.4.2.

2.4.1 Dynamic routing
The forward pass from lower capsule layer to higher capsule layer is called dynamic rout-
ing and differs from neurons forward passes in architectures like LeNet-5. The input ui

from the lower level capsule i is a activity vector whose norm is squashed between 0 and
1. The first operation is to apply transformation matrix Wij on the activity vector ui to
calculate the prediction vector ûj |i,

ûj|i = Wijui. (2.7)

Analogous to traditional neurons this first operation is equivalent to Equation (2.1) for
traditional neurons. In Equation (2.2), one can see the traditional neurons sum over all
its contributions uniformly, whereas capsule networks suggest a bit more complex model.
The sum sj

sj =
∑
i

cijûj|i, (2.8)

takes the sum of the prediction vector uj|i weighted by coupling coefficient cij for ev-
ery capsule pair(i, j). The coefficients are calculated iteratively with the dynamic routing
algorithm. Lastly the capsule network suggest to squash sj ,

vj =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

. (2.9)

This transformation secures an activity vector vj width a norm between 0 and 1 as an
output. The squash function introduces non-linearity and takes the role closes to and tra-

14

2.4 Capsule network

ditional activation function from Equation (2.3). Sabour et al. (2017) reasoned the choice
of the unprincipled non-linear activation simply by stating ”We leave it to discriminative
learning to make good use of this non-linearity”.

The coupling coefficients cij in Equation (2.9) symbolize agreement between capsule
i and capsule j. The coupling coefficients from a capsule to all its parent capsules together
sum up to 1,

∑
j=1 cij = 1, forcing the capsules to prioritize its information sharing. This

property is enforced by a routing softmax

cij =
exp(bij)∑
k exp(bik)

, (2.10)

where bij are the log prior probabilities that capsule i and j are coupled. Coupled is
defined by the agreement aij = ûj|i ·vj between output vj of capsule j in the layer above
and the prediction vector ûj|i made by capsule i in the layer below. The scalar output
called agreement is treated as a log-likelihood and is added to bij . Iteratively the coupling
coefficients are recomputed, the network computes another forward pass, and the log priors
are learned as stated in the Algorithm 1. This process is called routing-by-agreement.

Algorithm 1 Dynamic routing algorithm (from Sabour et al. (2017))

1: procedure DYNAMIC ROUTING(ûj|i, l, r)
2: for capsule i in layer l and capsule j in layer (l + 1) do
3: bij ← 0

4: for r iterations do
5: for capsule i in layer l and capsule j in layer (l + 1) do
6: ci← SOFTMAX(bi) . SOFTMAX(bi) computes Eq. 2.10
7: sj ←

∑
i cijûj|i

8: vj ← SQUASH(sj) . SQUASH(sj) computes Eq. 2.9
9: bij ← bij + ûj|i · vj

return vj

2.4.2 Loss function
The suggested loss function for capsule networks in Sabour et al. (2017) is

Lk = Tk max(0,m+ − ‖vk‖)2 + λ (1− Tk) max(0, ‖vk‖ −m−)2. (2.11)

where Tk = 1 iff class k is present, m+ = 0.9, m− = 0.1 and λ is a coefficient to
down-weight the loss for absent classes. Lk is the margin loss for each high-level capsule,
k, also called the class capsule. The length of these capsules output vectors ‖vk‖ predict
whether or not class k is present in the input. This marginal loss function enables the
model to classify multiple classes. The total loss is the sum of the marginal losses for
every last layer capsules. All the operations in the dynamic routing are differentiable, and
the routing iterations can be unrolled into a directed differentiable graph; hence one can
use backpropagation on capsule networks.

15

Chapter 2. Background Theory

To force the capsules to encode the instantiation parameters of the classes, one can
use reconstruction as a regularization method. The last layer of capsules encodes separate
classes. The method masks everything but the activity vector of the correct class, which is
then used as input to three fully connected layers as presented in Figure 5.2 in Chapter 5.
The last layer has the same amount of logistic units as the input size. One can then encour-
age the model to recreate the input image by minimizing the mean squared error between
the pixel intensities from the original image and the outputs from the reconstruction net-
work. This reconstruction loss is added as a term in the loss function. The reconstruction
of the input happens to also be a great tool to gain insight and to diagnose the model.

2.5 Summary
This chapter has introduced the core concepts ANNs, regularization, and CNN, as these
are important to introduce capsule networks. Capsule layers can both be of convolutional
nature or fully connected as plain ANNs. Capsules change the computational node, which
usually is a neuron, to rather be a group of neurons that together model the instantiation
parameters of an entity. These instantiation parameters can represent rotation, hue, and
lighting of an instance within each capsule. The output of the capsule is an activity vector,
where the direction of the vector represents the entity’s state, and the length represents
the probability of existence. The non-linear transformation in capsule network is not like
traditional activation functions. The squash function squashes the length of the vector
instead of the individual neuron outputs. Regularization of capsule networks is done by
minimizing the difference between the reconstruction of the input from the correct capsule
and the original image.

16

Chapter 3
Structured Literature review

Structured Literature reviews(SLRs) are important to make it clear why the papers ref-
erenced to in section 4 are included and to ensure that the work related to this thesis is
of quality. The SLR is created as a guideline for the author and readers of this thesis
on how to gather, filter out and choose literature. The guideline is formed from the top
down. First, the general goal of the SLR is defined. Thereafter, a more concrete criteria
checklist is created as a tool to filter papers more efficiently. Following that, methods to
search and gather the information is elaborated on. This thesis touches on several branches
of science, such as biological neurons, mathematical optimization and computer science.
Different branches of science use different journals, therefore the search engine Google
Scholar has been used to find relevant papers. The search-terms are created and designed
to narrow the search as much as possible to minimize the time needed to review all the
candidates. If there are not enough relevant papers from the narrow search a more expan-
sive search with a less concrete search-term is used. The paper that introduced a functional
Capsule network, Dynamic Routing between Capsules, Sabour et al. (2017), is central to
the searches conducted whilst writing the thesis.

3.1 General goals
The general goal of the SLR is to gain a updated knowledge of the capsule network ad-
vances. There is extra focus on Capsule networks applied to datasets with larger images,
many classes and datasets with few samples per class.

3.2 Criteria for relevance
The criterias are designed to accept papers that accept both general advances in the field as
well as more specified applications. To make up for the differences, the criterias are parted
into two categories. General criterias which apply to all papers and Special criterias that
only apply to the different groups.

17

Chapter 3. Structured Literature review

General criterias which apply to all papers:

• It should give insight into the behaviour and properties of capsule networks

• The methods should be understandable.

• It should have non-ambiguous interpretable results.

Special criterias which apply to papers in one of the following areas(Further development,
large images, many classes or few samples per class):

• The paper includes a significant change of the capsule network architecture or rout-
ing algorithm, with originality. (Further development)

• The paper compares the their model to the original CapsNet with datasets covered
in Sabour et al. (2017). (Further development)

• The paper apply a capsule network on a dataset with bigger images than 32 × 32.
(Large images)

• The paper apply a capsule network on a dataset with more than 10 classes. (Many
classes)

• The paper apply a capsule network on a dataset with less than 500 samples per class.
(few samples per class)

3.3 Searching

3.3.1 Sources
There are several relevant repositories for Computer Science like Springer, ACM, IEEE,
NIPS, ICLR, ICML and AAAI. Google Scholar is used for all searching. This is because
there are so many journals, and several have bad search-engines. Google scholar on the
other hand does not take any responsibility for the quality for its content. This puts the
responsibility on quality assuring on the searcher.

3.3.2 Execution
The starting point for the search is of course the paper that introduced dynamic routing
between capsules Sabour et al. (2017). The citations from this paper are assessed for
relevance. All other searches are limited to papers that cites the original paper, which
implicitly also restrict the search to all papers written in 2017 or later.

Search terms used for finding the articles most relevant to the Research questions.

• (capsule AND ”(many OR more) (Classes))” 33 results

• (capsule AND agreement AND (”samples per class” OR ”small dataset” OR ”data
scarcity”)) 43 results

18

3.3 Searching

”agreement” was added to the last search-term to get under 50 candidates and filter out the
papers that does not have an in-depth explanation of capsule networks.

The search results were first graded according to the criteria checklist based on the
abstract. The papers with the highest scores were then skim-read and re-graded. Using
the adjusted grade, a decision is made whether some areas of research were lacking in
quality papers. If so some of these search-terms were made less concrete to include more
papers were I felt more candidates was needed. The process of searching, picking out and
assessing is a cyclic process.

19

Chapter 3. Structured Literature review

20

Chapter 4
State of the art

This chapter outlines development of the capsule network idea and review literature that
has applied capsule networks to different datasets. Section 4.1 goes deeper into the original
Capsule articles, before further developments are presented in Section 4.2. Thereafter the
focus shifts to applications on larger images (Section 4.3), non-image applications (Section
4.4), fewer samples per class (Section 4.5), and many classes (Section 4.6). At the end of
the chapter there is a summary of all the strengths, limitations and nuances of capsule
networks that was discovered in the literature.

4.1 Dynamic routing between Capsules
As mentioned in the background theory, Hinton et al. (2011) outlined how capsules can
represent instantiation parameters, and how the length of the capsule vector could sym-
bolize entity existence. They also formulated how, with a transformation matrix, one can
calculate the prediction vectors for higher level capsule as in Equation (2.7). However, the
transformation matrices had to be supplied externally in Hinton et al. (2011), limiting the
use-cases for common image classification tasks. The dynamic routing between capsules
presented in Sabour et al. (2017) formulated a method to train the transformation matrices
as weights in a network.

The design of the capsule networks was inspired by inverse computer graphics ren-
dering. Rendering is the process of producing images from a certain viewpoint given 3D
models, textures and lighting conditions. It is calculated with transformation matrices that
can perform scaling, rotation, translation, mirroring and shearing of objects. In capsule
networks the inverse process is carried out by multiplying the transformation matrix with
the capsule vectors to calculate the prediction vector in Equation (2.7). The purpose of
the process is to make the network viewpoint invariant, which the authors think is a better
solution than to account for every possible viewpoint of an object in a dataset- a non-trivial
task. The capsule network proposed by Sabour et al. (2017), will from now on be referred
to as CapsNet

CapsNet was implemented with focus on MNIST and MultiMNIST, but it was also

21

Chapter 4. State of the art

implemented with and without modifications on the CIFAR10, SVHN, and smallNORB
datasets (see Section 6.1). The results from Sabour et al. (2017) on MNIST and Mul-
tiMNIST are presented in Table 4.1 with different number of routing iterations and with
and without reconstruction loss. The results unambiguously favor including the recon-
struction error. The number of routings have less of an effect without reconstruction, but
the appendix of Sabour et al. (2017) provide additional reasoning on why 3 routing it-
erations is recommended for all experiments. It is shown to converge faster than fewer
iterations and the average change of the priors bij in Equation (2.10) is very low after 5
routing iterations.

The baseline in Sabour et al. (2017) is not a state of the art network, but a vanilla CNN
with three convolutional layers of 256, 256, 128 channels. Each layer has a 5 × 5 kernel
with a stride of 1. The two last layers are fully connected layers connected by dropout to a
softmax 10-output layer. The loss function used is cross-entropy. The CapsNet performs
significantly better than this baseline on both MNIST and MultiMNIST.

Sabour et al. (2017) used the exact same CapsNet architecture on the smallNORB
dataset and achieved 2.7% error rate, on par with state of art CNNs. A slightly smaller
model was trained on the smaller SVHN dataset and achieved 4.3%. The network had 64
channels in the regular convolutional layer, 16 6D convolutional capsules and finishing
with 8D class capsules. A slightly bigger capsule network is applied to the CIFAR10
network. The solution presented used an ensemble of 7 models whom each focused on
24×24 patches of the input image. There were 64 instead of 32 convolutional capsules, and
the RGB input image requires 3 input channels. The routing softmaxes were introduced
to a none-of-above category to mitigate capsule networks tendency to model all the non-
discriminatory background as well. The network achieved a 10.6% test error which is not
state of the art, but as the authors point out it is on-par with the results presented by the
first CNNs applied to CIFAR10.

Model Routing iterations Reconstruction MNIST Multi-MNIST
Baseline NA NA 0.39% 8.1%
CapsNet 1 no 0.34± 0.032% NA
CapsNet 1 yes 0.29± 0.011% 7.5%
CapsNet 3 no 0.35± 0.036% NA
CapsNet 3 yes 0.25± 0.005% 5.2%

Table 4.1: Results for the CapsNet from Sabour et al. (2017) with different number of routing
iterations and with and without reconstruction loss included applied on different datasets. The results
are presented as error-rates.

4.2 Further development
The authors of the original paper on dynamic routing later published a new paper on ma-
trix capsules with EM Routing Hinton et al. (2018). The paper suggested changes to both
the representation of capsules and on the method of dynamic routing. Instead of represent-
ing the capsule as a vector, a matrix was proposed. The matrix represent the pose of the

22

4.2 Further development

entity and each matrix has a separate logistic unit trained to represent the presence of the
entity. Dynamic routing is based of a principle of routing-by-agreement. The agreement is
modeled by the cosine distance between capsule vectors in Sabour et al. (2017), while it is
formulated as Expectation Maximization(EM) of clusters in Hinton et al. (2018). The acti-
vated poses (transformed into vectors) of lower-level capsules represent data points while
every higher-level capsule represent a Gaussian cluster. The architecture from Matrix cap-
sules with EM-routing will from here on be called EM-CapsNet.

The authors claim they have overcome 3 deficiencies of the original CapsNet Sabour
et al. (2017).

1. Using a logistic unit instead of the capsule vector length to represent an entity’s
existence, allows for loss functions that are optimized through the routing procedure.
This is not possible with the capsule vector length as it must be squashed by an
unprincipled non-linear function.

2. Using the negative log variance of a Gaussian cluster instead of the cosine distance
between two capsule vectors as a formula for their agreement, improves the model’s
ability to distinguish between good and very good agreement. This is because the
cosine distance saturates at 1(perfect agreement).

3. Using matrices with n elements requires n transformation matrices, while using vec-
tors with n elements requires n2 transformation matrices, improving the scalability
of the architecture.

The EM-CapsNet was applied to the smallNORB dataset see LeCun et al. (2004).
Their model with a test error of 1.4% improved on the previous best-known result of 2.6%
(Cireşan et al. (2011)) by 45%. The CNN baseline constructed by Hinton et al. (2018)
scored as low as 5.2%. The paper also experimented with a EM-CapsNet with cross-
entropy loss. It collapsed in performance and did slightly worse than the baseline CNN.

The smallNORB dataset was also used to test the model’s ability to recognize objects
from never-seen-before viewpoints. Whereas the goal was to get an indication of whether
the model have managed to extrapolate on rotational transformations. The baseline and the
EM-CapsNet were trained until they had the same test accuracy on the familiar viewpoints,
in an attempt to isolate their ability to generalize to new viewpoints. When tested on the
new viewpoints, EM-CapsNet performed 30% better than the CNN baseline. EM-CapsNet
is also applied to CIFAR10 and MNIST with minimal alterations. The network performed
worse than the CapsNet architecture on both.

The architecture of CapsNet is criticized by Rawlinson et al. (2018) for it’s unsuper-
vised routing algorithm and supervised training of the network weights. Rawlinson et al.
(2018) implies that this manner of training make deep capsule network architectures diffi-
cult to train. The paper suggests unsupervised training of capsules, which entail removing
the margin loss as well as the masking of all but one capsule before the reconstruction
network. This means that the previously capsule layer referred to as class-capsules, now
all capsules represent the latent variables of the data (latent-capsules). This change en-
ables the network to function as an autoencoder. As expected, there was an improvement
in reconstruction loss, but the equivarient qualities, the corner-stone trait of capsules, col-
lapsed. All capsules contributed to all the outputs. However, it is desirable that the cap-
sules specialize in some way or form. To enable the capsules to specialize, an algorithm

23

Chapter 4. State of the art

that sparsefies the latent capsules activations was applied. Sparsefying the connections
between capsules allows the latent capsules to represent and specialize in different subsets
of features, making the network regain its equivarient abilities.

To classify the instances during testing, the outputs from the unsupervised trained
sparse Capsule network (Sparse-CapsNet) were passed on to a Support Vector Machine
(SVM). SVM is a popular algorithm for linear classification of clusters in multidimen-
sional space. The SVM in Rawlinson et al. (2018) utilized the kernel trick with the pop-
ular non-linear radial basis function Boser et al. (1992), making it a non-linear classi-
fier. Sparse-CapsNet performed vastly better than CapsNet on affNIST after training on
MNIST. Sparse-CapsNet scored 99% accuracy on MNIST and 90.12% on affNIST, Cap-
sNet scored 99.22% accuracy while it got 66% on the affNIST dataset. Sparse-Capsnet
had at the time, the best testing accuracy on affNIST using only the MNIST dataset, and
without extensive augmentation. Their results where surpassed by another capsule net-
work the year after, by Kosiorek et al. (2019). They presented a testing accuracy of
92.2 ± 0.59%. That said, affNIST is not a very popular benchmark dataset for testing
this type of viewpoint-generalization.

Kosiorek et al. (2019) presents an unsupervised capsule autoencoder, which aims to
utilize the capsule’s ability to model geometric relationship between parts and wholes.
The paper also presents state of the art results on unsupervised classification on SVHN and
MNIST. It performs sub-par(33.48%) compared to state of the art(57.6%) on the CIFAR10
dataset. CIFAR10 Krizhevsky and Hinton (2009) is a dataset with complex, noisy, natural
images. The authors of the unsupervised autoencoder claim that the cause for this sub-
par performance is the model’s inability to model background. However, despite capsule
networks shortcomings on natural images, it seems like capsule networks’ equivarience
properties are well suited for the field of unsupervised learning.

Together with Rawlinson et al. (2018) , many papers support the claim that the orig-
inal CapsNet cannot create significantly deep networks. Peer et al. (2018) and Xi et al.
(2017) demonstrate it with respectively 6 and 3 layers of capsule layers. On both occa-
sions the network suffered a total collapse in performance, scoring approximately 10%
on the MNIST dataset. Since the MNIST dataset have ten classes, the performance is
equivalent to random guessing.

Other papers not only support the conclusion that CapsNet cannot create deep net-
works, but present solutions to the issue. Both Peer et al. (2018) and Rajasegaran et al.
(2019) suggests a substitute for the dynamic routing as described in Sabour et al. (2017).
Both successfully train deeper capsule networks, but Peer et al. (2018) reports sub-par per-
formance when increasing the depth. They observed near uniform coupling distribution,
and managed to force a parse-tree coupling structure which enabled deep learning to some
degree. A new architecture as well as a class-independent decoder is suggested by Ra-
jasegaran et al. (2019). According to Rajasegaran et al. (2019), the changes that enabled
deeper networks were localized routing in a convolutional framework as well as including
skip connections as originally proposed by He et al. (2016). The new changes (in an 7-
ensemble architecture) resulted in state of the art test accuracy amongst capsule networks
for the different benchmarks datasets: CIFAR10(92.74%), SVHN(97.56%) and Fashion
MNIST(94.73%). They also achieved a 68% reduction in the number of parameters.

Rajasegaran et al. (2019) back up the conclusion by Rawlinson et al. (2018) that an

24

4.3 Large and complex images

class-independent decoder can represent features more efficiently without the constraint of
modeling classes separately. In CapsNet’s class capsules the different classes all tried to
represent rotation, skewness and boldness for each digit in MNIST independently. These
features are universal for all of the digits. By implementing class-independent capsules,
the redundancies are removed and the capsules are more expressive.

4.3 Large and complex images
There are some successful applications of capsule networks on larger images, LaLonde
and Bagci (2018) being one of them. They look into segmenting pathological lungs from
large 512× 512 CT scan images. LaLonde and Bagci (2018) presents a capsule version of
the U-net Ronneberger et al. (2015), a popular architecture for segmenting large images.
The capsule U-net provides slightly better segmentation accuracy than state of the art
baselines, while reducing the number of parameters in the model with 95.6% compared to
the regular U-net model Ronneberger et al. (2015). To reduce the number of parameters
LaLonde and Bagci (2018) introduces locally constrained routing. They also implemented
deconvolutional capsules as an alternative to regular deconvolutional layers. Two years
after, more thorough research to back up the claims from LaLonde and Bagci (2018) and
investigate the properties of capsules in image segmentation were published by LaLonde
et al. (2020).

Medical imaging mostly have a uniform background to contrast the object imaged, and
thus resemblance the other images that capsule networks have been successfully applied
to. The results from LaLonde and Bagci (2018) show that capsules can be scaled up for
quite high resolutions, especially since the limiting factor with processing large images is
often the models parameters. For efficient training, a model must be trained be on one
or more GPUs. So the fact that a capsule version of the U-net decreased the original
network’s size with 95.6%, shows great promise for capsules as a method of reducing the
size of models, thus requiring less GPU memory.

The previous sections of this chapter have mostly focused on capsule networks tasked
with images ranging from 28 × 28 to 96 × 96(smallNORB) resolution with 10 classes.
The capsule networks have achieved state of the art results most of the datasets, except
CIFAR10. The images from MNIST, SVHN and Fashion-MNIST have a flat background
without to many details or variations. It is pointed out that CIFAR10 have a more natural
background, a context with other objects and textures. In other words, the images are more
complex. An example of an underlying pattern one does not want to classify by using is
the following. Two of the classes in CIFAR10 is horse and airplane. Horses have more
images with a green meadow background, while airplanes have more sky or buildings
in the background. Having a way to deal with this background and model/discard it is
important, and seemingly is one of the more pressing challenges of capsule networks.

Members of the image analysis community have requested a modification of capsule
networks tailored for the ImageNet dataset. No evidence that a model with the tradi-
tional use of capsules that have been applied to the ILSVRC have been found. One pa-
per, Zhang et al. (2018), presented results on ILSVRC, with a Capsule Projection Net-
work(CapProNet). The network was implemented with different traditional CNNs like
Resnet He et al. (2016) and DenseNet Huang et al. (2017) as backbones with capsules in

25

Chapter 4. State of the art

the final layer. The term capsules is loosened up the traditional definition of capsules as a
grouping of neurons. This implementation of capsule subspaces borrows some ideas for
capsules, but are more of an augmentation on CNNs. The CapProNet only used the cap-
sule subspaces in the last layer. Subspace capsule share the regular capsules characteristics
of:

1. A vector to represent a capsule

2. Vector length represent probability of entity existence

3. Vector orientation represent instantiation parameters

However, the capsule is not formed by grouping a specific set of neurons. The paper pro-
poses to learn a set of capsule subspaces, then projecting a input feature vector onto them.
The resultant vectors for the different capsule subspaces represent the capsule vectors.
Zhang et al. (2018) claims 10 − 20% improvement compared to different depth ResNets
on ILSVRC as well as 5− 7% improvement to different depth Densenets. The implemen-
tation had only < 1% computational overhead compared to the original CNN network.

The work on capsule subspaces have since been elaborated on by Edraki et al. (2020).
Edraki et al. (2020) incorporates the principle of capsule subspaces in the intermediate
layers, apposed to only applying it in the last layer as in Zhang et al. (2018). The sub-
space capsules make the routing algorithm obsolete. Unfortunately the papers used dif-
ferent backbones for the experimental part, making it hard to comment on their relative
performance. The subspace capsule network in Edraki et al. (2020) made significant im-
provement in performance compared to the baseline models in the three image related
tasks: supervised classification, semi-supervised classification and generating high quality
images on multiple datasets using a generative adversarial network framework proposed
by Goodfellow et al. (2014). The experiments used different datasets and image sizes,
ranging from CIFAR10’s 32× 32 images to ImageNets 256× 256 images.

4.4 Non-image applications

The capsule architecture is to some extent designed to emulate inverse graphics, the pro-
cess of decoding several 2D images from different viewpoints into a 3D understanding of
entities. However, several papers have reported on capsules networks’ promising equiv-
arient properties. Motivated by this, other people have modified capsule networks, so that
they can be applied to problems from other domains. An example is a 78-dimensional
multivariate timeseries for diagnosing patients, extracted and processed from the dataset
MIMIC-III (Johnson et al. (2016)). Capsule networks have also been applied to several
text classification problems, like sentiment classification, question categorization, news
categorization, review classification, opinion classification.

The EM-CapsNet modified for learning diagnostics on the MIMIC-III dataset, learned
successfully, but was observed converging slowly by Bahadori (2018). Bahadori (2018) in-
troduced spectral capsules for faster convergence. Spectral capsules calculates their vector-
poses by performing a principal component analysis (PCA) of the weighted votes from the

26

4.5 Few samples per class

capsules below. PCA is a linear calculation that is popularly used as a dimensionality-
reduction tool, as it finds the axis in a multi-dimensional space that preserves most infor-
mation if projecting onto that axis. The pose of the capsule is the vector that preserve
the most variance in the data. The activation vector and agreement are then calculated by
using the fraction of variance captured by the votes from the capsules below.

Setting the differences in pose representation and adjustments for time-series aside, the
differences between EM-Capsnet and Spectral capsules are analogous to the difference
between Gaussian mixture models and principal component analysis. Some experience
working with these approaches is enough to explain why Spectral capsules are more ro-
bust in training; PCA cuts through much of the noise, and crudely explain its data in broad
strokes. The final results of the Spectral capsules was an AUC of 0.8050, only slightly bet-
ter than the EM-CapsNet, with an AUC of 0.8017. However, it is not possible to conclude
whether the PCA approach shows merit in image analysis or other domains, as there is
no evidence that the spectral capsules has been applied to the image analysis domain was
found when researching material for this thesis.

There are examples of capsule networks being successfully applied to the domain of
natural language processing (Srivastava et al. (2018), Xia et al. (2018), Kim et al. (2020)).
In 2018 Zhao et al. (2018) presented results on par with state of the art models in many
text classification applications like review classification, sentiment classification and ques-
tion categorization. They tested their model on Reuters-21578, a dataset with a training
set of single-labeled documents and a testing set of multi-label documents. It performed
significantly better at the transfer between the task compared to the 9 different state of
the art baselines. It has been observed that capsule networks have strong generalization
abilities, and that could be a possible explanation for these results. Though Zhao et al.
(2018) point out that the single-label to multi-label transitions from N label space to a
2N labels space. To make up for an exponentially increasing label-space, one can gather
more multi-label data or augment new data. Labeling data is quite labor intensive and
augmenting documents are not as easy and effective as image augmentation. Since the
capsules are thought to be more data-efficient, they should be well suited for multi-label
text classification problems.

The discussed papers show the promise capsule networks have for a wide range of
applications. Despite being engineered to perform well on visual or spacial tasks, the abil-
ity to describe a specific entity with several instantiation parameters instead of a boolean
signal seem to fit a wide set of applications.

4.5 Few samples per class
The field of deep learning have been focused on learning large datasets, and are by many
thought to easily overfit small datasets in many cases. This notion is challenged by Ol-
son et al. (2018), whom applies neural networks to 116 real world datasets from the UCI
Machine Learning repository, with hundreds of model parameters per observation. As one
might expect, they find that regularization of the networks increase the performance, but
lack of it does not lead to a collapse in performance in contradiction to the popular no-
tion. Capsule networks has several times exemplified its comparably better generalization
properties compared to regular CNNs. After training on MNIST it performed significantly

27

Chapter 4. State of the art

better on AffNIST, after training on smallNORB the capsule network excelled in perfor-
mance on never-seen-before viewpoints. Even in the domain of of text classification it
showed the best results when training on single-label data and testing on multi-label data,
showcasing great generalization properties. In this section, the performance of capsule
networks on small datasets is investigated.

In the time writing this thesis, the COVID-19 pandemic have over 4 million reported
cases globally and regulations effect the global community and economy. CT scans of
COVID-19 patients have typical features that can be recognized by doctors and artificial
intelligence models. Because of their wide availability and fast turnaround time, CT-scans
has the potential for being a complementary tool for diagnostics of COVID-19 and poten-
tially similar use-cases. This is a problem capsule networks could be suitable for. How-
ever, it is often difficult assembling a good dataset for models to be trained on in the
medical field; Health institutions have privacy standards that must be upheld and different
countries, regions and hospitals have different formats and databases of data. Thus, large
datasets are not easily available.

The dataset used in Mobiny et al. (2020) is a good example of data that is gathered
from more than 5 sources, even using pictures in journals with downgraded resolution and
yet has only 746 CT scans. The images are of either COVID or non-COVID class and the
dimension of the images ranged from 153 × 120 to 1853 × 1458 pixels. Mobiny et al.
(2020) solves the challenges of a scarce dataset by implementing a capsule network with
improvements specific for the task, as well as a generative adversarial network for gen-
erating 900 new images. To regularize properly, they patched over parts of images that
the network deemed to have discriminatory features. This forced the network to discrimi-
nate between COVID or non-COVID CT scans using all the available fine-grained telltale
signs as well. The capsule network architecture with (0.96 AUC) and without (0.93 AUC)
the patching of images beat the CNN baselines: Inception-v3 (0.89 AUC), DenseNet121
(0.90 AUC) and ResNet50 (0.88 AUC). The paper also includes a comparison with three
Thoracic Radiologists where the network consistently outperformed all radiologists. At a
15.64% false positive rate the model achieve 95% true positive rate while the best Radiol-
ogist 85.11% true positive rate. This showcase that capsules can achieve great results on
datasets without spacial rotation and transformations that capsules are designed to excel
at.

Attempts at exploring capsule networks’ data efficiency reports similar performance
as CNNs. Schlegel et al. (2018) apply three versions of capsule networks together with
two CNNs to the MNIST dataset with different number of samples per class. Their exper-
iment trains the networks with different training set size (1,5,10,20,30,50,100 samples per
class) until convergence. The authors attempt to replicate the models from Sabour et al.
(2017) (ConvNet1 with 8.2M parameters) and Hinton et al. (2018) (ConvNet2 with
319K parameters). The third Capsule network was a minimized version of ConvNet2
(Convnet2small) with only 62K parameters. The CNN1 network has 3 convolutional
layers, totalling 13.2M parameters, while the CNN2 network have 2 convolutional layers,
totalling 1.1M parameters.

Capsnet1 performed similarly but consistently slightly worse (0 − 10%) than CNN1
and CNN2. Both ConvNet2 and ConvNet2small collapsed in performance, under-
performing consistently on all number of samples under 101. Capsnet1 was designed to

28

4.6 Many classes

perform on the MNIST dataset and performed slightly better than Capsnet2 on the whole
dataset, but it was not expected to handle few datapoints so badly. After all CapsNet2
was concluded to generalize better by Hinton et al. (2018), and a decrease in number of
parameters generally decrease overfitting which is a danger with small datasets. However
the implementation detail of the Matrix capsules is somewhat lacking, and is possibly the
reason for the errors.

4.6 Many classes
To the extent the research conducted for this thesis has uncovered, no capsule network
have been applied to a dataset with more than a 1000 classes. Except from CapProNet,
with their looser definition of capsules, no capsule network have performed well on a
dataset with that many classes. It would be interesting to see CapsNet applied to a dataset
with many classes, and with monotone background opposed to natural surroundings like
ImageNet and CIFAR100.

4.7 Summary
There are many ways of implementing the general idea of capsules. CapsNet (Sabour et al.
(2017)) is only one of them. Novel ways of representing the instantiation parameters and
routing mechanisms to model agreement between higher and lower level capsule have been
developed. EM-CapsNet Hinton et al. (2018) contributed with matrix instead of vector
capsules which decrease the size of the needed transformation matrix, thus decreasing the
number of parameters needed. The EM-CapsNet delivered 45% better accuracy than the
state of the art on smallNORB. However, it performed worse than its counterpart, CapsNet,
on both MNIST and CIFAR10.

Sparse unsupervised capsules is thought to generalize better by Rawlinson et al. (2018).
Rawlinson et al. (2018) claim that the combination of CapsNets’ unsupervised routing al-
gorithm and supervised training is the reason the network structure cannot become very
deep. Peer et al. (2018) and Xi et al. (2017) support the hypothesis as they have not been
able to train the original CapsNet from Sabour et al. (2017) with more than 2 capsule layers
without a collapse in performance. Deep capsule networks are possible in a convolutional
framework with localized routing and skip connections, according to Rajasegaran et al.
(2019). Peer et al. (2018) also show this, as they successfully managed to train deeper
networks by forcing the network to create a parse-tree, but with diminishing results.

Sparse unsupervised capsules also introduced a class-independent decoder, that in-
cluded an algorithm that sparsify couplings between capsules. The class-independent
decoder enables more efficient decoding of features within the dataset, instead of rep-
resenting rotation, lighting etc. for all n classes. The class-independent decoder was also
used by Rajasegaran et al. (2019) with great success. Their model achieved state of the
art results for capsule networks with CIFAR10 (92.74%), SVHN (97.56%) and Fashion
MNIST (94.73%).

The capsule network idea has been applied to images as large as 512 × 512 in the
medical imaging field with great success. However, subpar results was achieved when

29

Chapter 4. State of the art

capsule network implementations was applied to ImageNet, which contains large images,
1000 classes and many samples. Capsule networks also achieved subpar results on CI-
FAR10. It has been pointed out that it might be because of capsule networks tendency to
want to model all the non-discriminative background. Both CIFAR10 and ImageNet are
natural images with a wide range of backgrounds and context. Two similar implementa-
tions (Zhang et al. (2018); Edraki et al. (2020)) with a looser definition of capsules have
achieved state of the art results on ImageNet and CIFAR10. Their definition of capsules
does not statically group a set of neurons as a capsule. These implementations are a aug-
mentation on existing CNNs inspired by the properties of capsules. That said, they present
very promising results, especially given the very small computational overhead.

The idea of capsule networks, just like the idea of convolutional network before it,
shows great promise outside the intended application on images. Capsule networks have
been applied to multivariate timeseries and text categorization with success. In the case of
text categorization, the capsule network implementation showed significant improvement
over the baseline models when transferring from single-label to multi-label classification.
This transferring between from different training data and testing data indicates great gen-
eralization abilities, and has been presented earlier on AffNIST (Sabour et al. (2017);
Rawlinson et al. (2018)) and on new viewpoints in smallNORB Hinton et al. (2018). Suc-
cess in classifying multi-label has also been done on MultiMNIST Sabour et al. (2017).

Capsule network achieved better results than CNN baselines on a COVID-19 CT scan
dataset with few samples. The dataset does not have many viewpoints or other apparent
features it is designed to perform well on. Intuitively the reason that capsules outperformed
CNNs in this task would be the lack of a big dataset. The results from Schlegel et al. (2018)
contests that hypothesis as their experiment tested CapsNet from Sabour et al. (2017) and
EM-Capsnet from Hinton et al. (2018) on MNIST with samples ranging from one to a
hundred. The EM-Capsnet did much worse than both the CapsNet and accompanying
CNN baselines. CapsNet did not differentiate from the CNNs. Whether or not capsule
have properties that make them more suited for scarce datasets is still under the lupe, and
will be expanded on in this thesis.

There are not many examples of capsule network(traditional definition) applied to im-
age dataset with very many classes. Therefore this is and interesting research topic that
will be expanded upon in this thesis.

30

Chapter 5
Models

This chapter presents the architecture of the baseline model as well as the capsule network
model custom-built for the MNIST dataset. In addition, the section states relevant hyper-
parameters and the environment in which the model is trained. The architectures are later
modified to accommodate changes in data, those changes are covered in Section 6 and the
modifications are explained in this section.

5.1 Baseline
For comparison, a baseline model is constructed. It is a standard CNN based on the base-
line used by Sabour et al. (2017). The architecture is described as two parts, called the
feature extractor part and the classifier part. The feature extractor consists of three convo-
lutional layers with 256, 256 and 128 channels. Each layer has a 5× 5 kernel with a stride
of 1.

The classifier consists of 3 fully connected layers with 328, 192 and 10 channels. To
transition from convolutional layers to fully connected layers, the classifier flattens the
spacial information of the output from the feature extractor. The two first layers apply
the ReLu activation function, while the last layer uses softmax as the activation function.
Before the the last layer, the model applies a dropout with a rate of 0.5 on the activations.
Cross-entropy is used as the loss function. The CNN model contain 13.3M parameters.

5.2 Capsnet
The CapsNet architecture is based on the original capsule network by Sabour et al. (2017)
and is visualized in Figure 5.1. It consists of only three layers, making it one of the
more shallow models compared to other state-of-the-art models in the image-classification
domain. The first layer is a conventional convolutional layer with a 9 × 9 kernel, with a
stride of 1 and applies the ReLU activation function to the output. This layer is defined
as the feature extractor of the model. In Figure 5.1 the orange boxes visualize how the

31

Chapter 5. Models

6

32

DigitsCaps

16

10 10

||L2||

Wij = [8x16]

6

9x9

20

256

PrimaryCaps

ReLU Conv

9x9 820

Figure 5.1: Architecture of CapsNet from Sabours Dynamic Routing between capsules Sabour et al.
(2017)

layer maps from the 28 × 28 gray-scale image to a 20 feature map with 256 channels.
The second layer, called primary capsules, consist of convolutional capsules with 9 × 9
kernel with a stride of 2. In Figure 5.1 the blue boxes attempt to visualize how the layer
maps from the 256 20× 20 feature maps to 32 channels of 6× 6 8D Capsules. The third
layer, called class capsules is a fully connected layer between the 32 6 × 6 8D Capsules
and the 10 16D capsules for each class. The class is predicted by the class capsule with
the highest magnitude activation vector. The routing algorithm is only used between the
capsule layers as there is no orientation in the scalar activations to agree on. The CapsNet
model contain 8.2M parameters(regularization network included).

5.2.1 Regularization network
The regularization network is a fully connected network with 3 layers with 512, 1024, 784
neurons, in each of the respecting layers. The output of each layer is activated by the ReLU
function except for the last layer’s output which uses the sigmoid function. The output
from the 784 neurons is mapped back into a 28 × 28 gray-scale image with the goal of
being close to the original input image for the whole capsule network. The reconstruction
network is optimized by minimizing the sum of squared differences between the outputs
of sigmoid units and the pixels in the original input image. This reconstruction loss is
added as a term in the loss function, Equation (2.11), for the capsule network. To prevent
the term from dominating the loss function, it is regulated by the coefficient λ which is set
to 0.0005.

32

5.2 Capsnet

DigitsCaps

16

10

=0 Masked = Representation of the reconstruction target

FC
ReLU

FC
Sigmoid

FC
ReLU

512 1024 784

Figure 5.2: Architecture of Capsnets reconstruction network from Sabours Dynamic Routing be-
tween capsules Sabour et al. (2017)

33

Chapter 5. Models

34

Chapter 6
Experiments and results

This section presents the approach and result of two experiments. Both experiments com-
pare a capsule network to a CNN baseline, as detailed in Chapter 5. First the datasets are
explained in Section 6.1. Thereafter a brief explanation of the optimization algorithm used
as well as relevant hyperparameters is presented in Section 6.2, followed by a statement of
technology in Section 6.3. Section 6.4 presents an experiment with few samples per class
carried out on MNIST. In Section 6.5, an experiment with a increasingly higher number
of classes is carried out on a dataset assembled from the Omniglot dataset. The chapter is
concluded by a short summary of the most important findings in Section 6.6.

6.1 Datasets

The MNIST dataset (LeCun et al. (1998)) contains 28 × 28 gray-scale images of hand-
written digits (10 classes). The training set contains 50000 samples per class with 10000
samples in the test set per class.

The dataset is used in many of the papers published on capsule networks, including
the original CapsNet. Therefore it is a familiar benchmark when testing performance
of networks. It is also the dataset used by Schlegel et al. (2018), who ran an experiment
similar to the one outlined in Section 6.4, ”Experiment 1”. Experiment 1 aims to reproduce
the experiment conducted by Schlegel et al. (2018) and to supplement that experiment.

The Omniglot dataset (Lake et al. (2015)) contains 105×105 gray-scale images of 1623
different handwritten symbols/letters from 50 different alphabets. The training dataset
has 12 instances per class while the testing set has 8 instances per class. The dataset is
altered from the original hierarchical dataset by Lake et al. (2015). Only the images from
Omniglot is used as the model’s input, and only character ID numbers are returned. In
other words, the model does not use the fact that characters are from different alphabets.

Several alphabets are related to others and have common letters with slightly different
typography. An example being the letter ”a”/”α”, as shown in Figure 6.1. To distinguish
between some of these instances can be very challenging. Yet all the models have to deal

35

Chapter 6. Experiments and results

Figure 6.1: The letter equivalent to the letter ”A” in four different alphabets sampled from the Om-
niglot dataset. The different alphabets in the Omniglot datasets have several similar letters which is a
challenge to distinguish between, exemplified here by the letter A in Cyrillic, Old Church Slavonic,
Greek and Latin.

with this obstacle. This means that the models will be restricted from reaching a very high
score as many classes are near impossible to discriminate.

The Omniglot dataset is a suitable dataset for the experiment with increasingly higher
number of classes (”Experiment 2”) not only because it has a total of 1623 classes; It
also has images with monochrome neutral background with little discriminate details. It is
desired to have this type of background as natural images hinder performance according
to research discussed in Section 4.3. In Experiment 2, the idea is to isolate the effect of
increasing the number of classes, which is possible using Omliglot.

When sampling classes from the Omliglot dataset to create the training set, an alphabet
is chosen randomly. Thereafter, classes (letters) are chosen randomly from that alphabet,
until the desired number of classes are selected. If one wants more classes than letters in
the chosen alphabet, another alphabet is randomly chosen. This continues until the desired
number of classes is reached. Remember that when choosing a letter from an alphabet,
one gets 12 instances of that letter. The sampling is carried out in this manner to maximise
the chance of including different letters, not similar letters from different alphabets as
exemplified in Figure 6.1.

Augmentation of images is applied during training, and it is chosen to use the same
augmentation as Sabour et al. (2017). The images are shifted randomly up to 2 pixels
horizontally or vertically. The transformed images are not stored as a separate image-file
or affect the number of samples per class. This transformation is to make sure the model
becomes translation invariant as both datasets are centred and preprocessed well.

36

6.2 Optimization and hyperparameters

6.2 Optimization and hyperparameters
The models are all trained using an Adam optimizer (Kingma and Ba (2014)). The results
are measured after the epoch which achieved the best test loss. Because of resource limi-
tations, the models run for a set number of epochs. Thus, convergence is not guaranteed.
The loss used by the optimizer is 1000 times lower than the losses reported in Section 6.4
and Section 6.5. This scaling is for easier visualizing of the results.

A suitable batch-size is defined for each experiment and is kept constant throughout the
experiment. It is assumed that the batch-size has a rather small impact on the experiments,
given the scope of the experiments. The learning rate (LR) is also set for the experiments,
but is different for the capsule network and the CNN. Preliminary experiments to deter-
mine the LR are conducted and explained in Section 6.4.1. The reconstruction loss of the
capsule network is scaled by a constant, to control the effect on the total loss. The constant
is set to be 0.0005 in both experiments as in the original model (Sabour et al. (2017)).

6.3 Technology
The experiments are written in Python 3.6.8, using the deep learning framework Pytorch.
Torchvision is used to download and load the MNIST dataset. The Omniglot dataset is
downloaded from the Github page by Lake et al. (2015). Torchnet, Visdom, and TQDM
together provide different means of visualizing the real-time progress and performance of
the network during training. The results are calculated on a single Tesla P100 with 16
GB memory graphics processor unit. For installment of software and usage of program
consult the readme.md file in the code repository (Bjørnøy (2020)).

6.4 Experiment 1: Few samples per class
Experiment 1 is designed to answer the first research question: Will CapsNet perform
better than a CNN on a datasets with few samples per class? It is roughly modeled after the
experiment in Schlegel et al. (2018). A capsule network and a CNN is trained on subsets
of the MNIST dataset with fewer samples per class. This experiment is interesting as many
real-life applications have few samples, an example being medical image diagnosis of very
rare diseases. The model architectures are exactly as described in Section 5.

6.4.1 Hyperparameter and experimental setup
Preliminary experiments determine the learning rate (LR) for the different models, using
one sample per class (SPC=1). In Figure 6.2, test loss of the CNN model with different
learning rates during training is visualized. As one can see from Figure 6.2, a high learning
rate of 0.001 results in a high test loss that oscillate around the same value. Further inves-
tigation also shows that the training loss behaves similarly, and that the test accuracy stays
constant at approximately 10% (accuracy equivalent to random guessing). The most prob-
able reason behind this behaviour is exploding gradients. From Figure 6.2, one can see
that the CNN network produced best results with a LR of 0.0001. Furthermore, it had the

37

Chapter 6. Experiments and results

highest test accuracy as well as the highest training loss, indicating better generalization
results as well. A LR of 0.0001 is therefore used for the CNN baseline in this experiment.

Figure 6.2: Test loss for CNN model trained for 500 epochs on MNIST with one sample per class
on the MNIST dataset and a batch-size of 1. The different lines are the CNN model trained with
different learning rates from 0.001 to 0.00001.

In Figure 6.3 results of the same preliminary experiment for CapsNet is presented.
From Figure 6.3, one can see that a LR of 0.001 produces slightly lower test loss than
a LR of 0.01, after a high number of epochs. However, one can see that the slope is
steeper for the LR of 0.001, indicating that the model keeps on learning even after many
epochs. Thus, a LR of 0.001 is preferred. An investigation of the training loss supports
the conclusion; A LR of 0.001 produces consistently higher training loss than a LR of
0.01, indicating better generalization properties. Furthermore, in Figure 6.4, one can see
a big difference in performance, favoring a learning rate of 0.001 for the CapsNet in this
experiment.

The batch size (BS) is assumed to be independent of the type of model. Different
batch-sizes are tested on the CNN model with SPC=1, the test accuracy can be seen in
Figure 6.5. The model seem to be very insensitive to changes in batch-size. There is
no obvious best choice. However, the model with BS=1 have not only the best result,
but also beats the other models quite consistently the last 100 epochs(best in 69% of the
measurements). Therefore a batch-size of 1 is chosen for this experiment.

The models are trained for 500 epochs on the MNIST datasets with 1,5,10,20,30,50
and 100 samples per class. Thereafter, the best test accuracy for each model is compared.

38

6.4 Experiment 1: Few samples per class

Figure 6.3: Test loss for CapsNet model trained for 500 epochs with one sample per class on the
MNIST dataset and a batch-size of 1. The different lines are the Capsnet model trained with different
learning rates from 0.01 to 0.0001.

39

Chapter 6. Experiments and results

Figure 6.4: Test accuracy for CapsNet model trained for 500 epochs with one sample per class on
the MNIST dataset and a batch-size of 1. The different lines are the Capsnet model trained with
different learning rates from 0.01 to 0.0001.

40

6.4 Experiment 1: Few samples per class

Figure 6.5: Test accuracy for CNN model trained for 500 epochs with one sample per class on the
MNIST dataset and a learning rate of 0.0001. The different lines are the Capsnet model trained with
Batch size equal to 1,2 and 3

41

Chapter 6. Experiments and results

6.4.2 Results
The results from Experiment 1 are presented in Table 6.1, Table 6.2, and Figure 6.6. Figure
6.6 simply displays the test accuracy from Table 6.1 and Table 6.2 for easier comparison.

Table 6.1 and Table 6.2 show that both models unsurprisingly get better test accuracy
with more samples per class. It is expected that a network that generalizes well would
get a slight increase in training accuracy as the CNN baseline has. However, surprisingly,
the CapsNet achieves 100% train accuracy across the experiment. That suggests that the
CapsNet might overfit the dataset even with 100 samples per class. This indicates that
CapsNets can perform better with a higher reconstruction loss coefficient for datasets with
few samples. This observation is backed up by the fact that the reconstruction loss flat-
tens after 20 samples per class in the experiment, indicating that the reconstruction is not
prioritised over correct classification of a few training samples.

Figure 6.6 show that the CapsNet outperforms the baseline CNN in every run. Compar-
ing this to the results in Schlegel et al. (2018), their CNN1 model, which is also modeled
after the baseline in Sabour et al. (2017), performed better for SPC=1 and SPC=5 and
approximately on-par with our CNN for SPC=10,20,30,50,100. The results produced by
the capsule network in Experiment 1, on the other hand, achieved great test accuracies. It
performed better than both the Capsule network and CNNs in Schlegel et al. (2018), which
suggest that even though the implementation is intended to be identical, the model might
be sensitive to small deviations. The average difference in accuracy between the CapsNet
and the CNN baseline for SPC of 1,5,10, and 20 is 7%.

CNN
SPC Tr.loss Tr.acc Te.loss Te.acc
1 31.71 100.00% 42.35 50.53%
5 31.71 100.00% 36.98 75.54%
10 31.92 99.00% 35.13 84.07%
20 31.92 99.00% 34.16 88.66%
30 32.72 95.33% 33.94 89.70%
50 32.19 97.80% 33.12 93.46%
100 32.25 97.50% 32.82 94.80%

Table 6.1: Training and testing results of the CNN baseline on the MNIST dataset with different
number of samples from each class. The experiment is carried out with a learning rate of 0.0001,
and with BS=1.

42

6.4 Experiment 1: Few samples per class

Capsule
SPC Epochs Tr.loss Tr.acc Rec.loss Te.loss Te.acc
1 500 44.88 100.00% 3.12× 10−2 54.66 61.67%
5 500 44.94 100.00% 2.82× 10−2 50.23 85.46%
10 500 44.72 100.00% 2.80× 10−2 48.60 87.37%
20 500 44.75 100.00% 2.70× 10−2 47.35 92.33%
30 500 44.73 100.00% 2.74× 10−2 46.57 94.45%
50 500 44.75 100.00% 2.71× 10−2 45.98 95.88%
100 500 44.74 100.00% 2.72× 10−2 45.74 96.96%

Table 6.2: Training and testing results of the CapsNet model on the MNIST dataset with different
number of samples from each class. The experiment is carried out with a learning rate of 0.001, and
with BS=1.

Samples per class

Te
st

 a
cc

ur
ac

y
(%

)

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100

CNN CapsNet

Figure 6.6: Test accuracy for CNN and CapsNet trained for 500 epochs with different number of
samples per class on the MNIST dataset. The results are extracted from Table 6.1 and Table 6.1 for
better comparison.

43

Chapter 6. Experiments and results

6.5 Experiment 2: Many classes

Experiment 2 is designed to answer the second research question: Will CapsNets perform
better than a CNN baseline on datasets with many classes? The experiment is interesting
as there aren’t any studies that apply capsule network to image classification with more
than 1623 classes. The experiment applies a modified version of the capsule network
alongside a modified version of the baseline CNN on subsets of the Omniglot dataset with
different number of classes.

6.5.1 Model adaptations to different sizes of input and output

During the course of the experiment 105 × 105 gray-scale images are used. The initial
feature extractor in both the baseline model and the Capsnet are created for a fixed input
size, and must therefore be modified to fit the 105×105 images. The baseline and CapsNet
feature extractor have slightly different task. The baselines feature extractor maps the
28 × 28 input to 128 16 × 16 feature maps while the feature extractor in the Capsnet
maps the input to 256 20 × 20 feature maps. It is decided to keep the dimensions of the
mapping of the feature extractors constant. However, the feature extractors are modified
to be compatible with the 105× 105 input.

The CNN baseline feature extractor for 105 × 105 images has 3 convolutional layers
with 256, 256 and 128 channels. The kernel size is 9× 9, 9× 9 and 6× 6. The stride is 2,
2, 1. The feature extractor for 28× 28 input contains 2.46M parameters, while the feature
extractor for 105× 105 input contains 6.51M parameters.

The CapsNet feature extractor for 105 × 105 images has 3 convolutional layers, all
with 256 channels. The kernel size is 9 × 9,9 × 9 and 2 × 2. The stride is 2, 2, 1. The
feature extractor for 28× 28 input contains 0.02M parameters, while the feature extractor
for 105× 105 input contains 5.59M parameters.

In addition to being dependent on a fixed size of input, the models also return output
of a given size. The experiment requires the networks to handle the wide span of 2 to
1623 classes, thus requiring the models to produce outputs of different sizes. To achieve
that, the models’ classifier must be modified so that the number of output neurons/capsules
matches the number of classes

The baseline model is not notably affected by the modifications; They lead to a 3%
increase in parameters. With a 10-classes output, the classifier require 10.8M parameters.
With a 1623-classes output, the classifier require 11.1M parameters. Table 6.3 display the
number of parameters required by different layers for two different outputs. The figure
makes it clear that only the number of parameters in the final layer is affected by the
modification.

The modifications have a bigger impact for the CapsNet, as Table 6.4 shows. For
both models the parameters in the last layer grow linearly with respect to the number of
classes. However, the magnitude of the number of parameters in the Capsnet is 3 times the
magnitude of paramteres in the baseline (198 neurons for the baseline vs 147456 neurons
in the CapsNet). This causes the total increase of parameters in the two networks to be very
different with increasing number of classes. The difference is made clear by comparing
Table 6.3 to Table 6.4.

44

6.5 Experiment 2: Many classes

CNN baseline classifier
classes 1st layer 2nd layer 3rd layer
10 10.75M 0.06M 0.00M
1623 10.75M 0.06M 0.31M

Table 6.3: The table consist of the number of parameters required by the layers of the CNN base-
line’s classifier with respect to different output/categories to classify. The increase in output classes
only affect the number of parameters in the last layer.

CapsNet classifier
classes Primary capsules Class capsules Reconstruction network
10 5.31M 1.47M 11.91M
1623 5.31M 239.32M 25.12M

Table 6.4: The table consist of the number of parameters required by the layers in the CapsNet’s
classifier with respect to different output/categories to classify. The increase in output classes only
affect the number of parameters in the last layer, as well as the first layer of the reconstruction
network.

The class capsules are already quite big before they are modified to handle approxi-
mately 160 times more classes. The model increases 785% in parameters when adapted
to 1623 classes compared to 2 classes. The vast number of parameters when dealing with
1623 classes causes the model to try allocate more resources than available (16GiB) in
the GPU. This is a practical problem with regards to running the model on the resources
available in this thesis. To tackle this problem, an alternative model is used for the dataset
with 1623 classes; The dimension of the capsules in the Class capsules layer is reduced
to 10. This hampers the experiment which on all other runs will use 16 dimension Class
capsules like in Sabour et al. (2017). Note that the decoder increase both due to increased
input and output as it also needs to reconstruct a bigger image.

6.5.2 Hyperparameters and experimental setup

The number of model parameters (MP) for the models are reported in Table 6.5 and Table
6.6 as the different models scales very differently. The batch size is set to 7 across the
experiment as the capsule network has limited GPU memory and the priority is to keep
the class capsules dimensions as high as possible. It is assumed that the finding presented
in Figure 6.5 holds, namely that the models are insensitive to the tuning of batch size.
As in Experiemnt 1, the learning rate for the capsule network is set to 0.001, while the
learning rate for the CNN is 0.00001. It is thus assumed that the optimal learning rate does
not depend on the number of classes. Throughout the experiment, all classes contains 12
samples in the training set.

The experiment train the models for 200 epochs on samples of the Omniglot datasets
with 2,10,100,400 and 1623 samples per classes.

45

Chapter 6. Experiments and results

6.5.3 Results
The results of the experiment are presented in Table 6.5 and Table 6.6. For easier compar-
ison, the test accuracy is displayed in Figure 6.7. Furthermore, the number of parameters
are visualized in Figure 6.8.

Table 6.5 and Table 6.6 show that the CapsNet once again scores very high on training
accuracy compared to the CNN. It does not follow the trend in test accuracy like the results
from the CNN. This indicates that the CapsNet not only overfits too some degree on small
datasets, but also on larger datasets. However, this could be a affected by the few number
of samples per class, as the Omniglot datasets only contains 12 training samples per class.

The tables, but more clearly Figure 6.7, show that the CNN baseline performs sub par
compared to capsule network on all number of classes, except from on 1623 classes. When
dealing with 1623 classes, the capsule network collapsed in performance. As explained
previously, the capsule model was modified before it was applied to the dataset with 1623
classes due to limited computational resources. That is a very probable cause of the col-
lapse. The capsule network provides much better test accuracy on 400 classes than the
baseline CNN. On the other hand, the CNN scales much better to an increase in number of
classes as its model has 79.5% less parameters than a capsule network for 400 classes and
a whole 90.3% for 1623. Figure 6.8 illustrates the vast difference between the models.

The most notable result in this experiment is the capsule network’s 52.12% test accu-
racy in contrast with the CNN baseline with a 20.63% test accuracy for 400 classes on the
Omniglot dataset.

CNN
NC MP GPU Tr.loss Tr.acc Te.loss Te.acc
2 17.3M 1.51GiB 6.803 100.00% 6.802 100.00%
10 17.3M 1.51GiB 31.74 100% 33.49 92.50%
100 17.3M 1.51GiB 86.33 64.33 90.57 45.75
400 17.4M 1.52GiB 124.5 29.47% 125.7 20.63%
1623∗ 17.6M 1.53GiB 159.6 3.877% 159.9 2.596%

Table 6.5: Many classes experiment. NC stands for number of classes, MP for million of parameters.
The experiment is carried out with a learning rate of 0.00001. The (*) on NC=1623 is because the
model trained only 100 epochs, the reason being limited resources.

46

6.5 Experiment 2: Many classes

Capsule
NC MP GPU Tr.loss Tr.acc Rec.loss Te.loss Te.acc
2 23.0M 1.3GiB 22.22 100.00% 3.73× 10−2 26.73 100.00%
10 24.3M 1.4GiB 44.85 100.00% 3.68× 10−2 46.47 93.75
100 38.3M 2.9GiB 76.71 99.92% 3.84× 10−2 78.39 74.00%
400 85.0M 6.7GiB 202.9 97.39 3.99× 10−2 204.7 51.12%
1623∗ 180M 16GiB∗ 538.7 0.1027% 4.11× 10−2 538.5 0.1078%

Table 6.6: Many classes experiment. NC stands for number of classes, MP for million of parameters.
The experiment is carried out with a learning rate of 0.00001. The (*) on NC=1623 is because the
model trained only 100 epochs, the reason being limited resources.

Samples per class

Te
st

 a
cc

ur
ac

y

0

10

20

30

40

50

60

70

80

90

100

5 10 50 100 500 1000

CNN CapsNet

Figure 6.7: Test accuracy for CNN and CapsNet trained for 200 epochs with different number of
number of classes on the MNIST dataset. The results are extracted from Table 6.5 and Table 6.6 for
better comparison.(PS: the X-axis har nothing to do with samples per class)

47

Chapter 6. Experiments and results

Samples per class

M
ill

io
ns

 o
f p

ar
am

et
er

s

0

50

100

150

200

2 4 6 8 10 20 40 60 80 10
0

20
0

40
0

60
0

80
0

10
00

CNN CapsNet

Figure 6.8: Number of model parameters for CNN and CapsNet trained for 200 epochs with dif-
ferent number of number of classes on the MNIST dataset. The results are extracted from Table 6.5
and Table 6.6 for better comparison.(PS: the X-axis har nothing to do with samples per class)

48

6.6 Summary

6.6 Summary
Preliminary experiments determined the learning rate in Experiment 1. The LR was set
to 0.0001 for the CNN model and 0.001 for the Caps net. The batch size is assumed
model-independent and insensitive to different datasets.

Experiment 1 shows that the implemented Capsnet outperforms the baseline CNN for
all tested number of samples per class. The capsule network implemented in this thesis
also outperformed the results given in Schlegel et al. (2018).

When planning experiment 2 the problem of large number of parameters in the capsule
network for high number of classes had to be addressed. It was decided to adjust the final
layer, so that it only had 10 dimensional capsules (instead of 16).

Experiment 2 reveals that the Capsnet outperformes the baseline CNN for all number
of classes except for 1623 classes, for which the Capsnet collapsed in performance. The
collapse might be due to the modification that was made to the final layer. The results
from Experiment 2 highlights the computational challenges when using capsule networks
on datasets with large number of classes.

49

Chapter 6. Experiments and results

50

Chapter 7
Discussion

This chapter presents a discussion about the major findings from the carried out exper-
iments and how they answer the research questions. The limitations of the conclusion
that can be drawn are considered, unexpected or inconclusive results are discussed and
suggestions for further research are given.

The results from Experiment 1, presented in Figure 6.6, show that the capsule net-
work consistently beats the test accuracy of the CNN baseline. Compared to the study by
Schlegel et al. (2018), the CapsNet in this experiment did better for the dataset with 1,5,
10 and 20 samples, while the CNN baseline had approximately the same results but bigger
deviations with fewer samples. A possible explanation is that the random samples matter
more to the outcome when they are one of few contrary to one of many.

The experiment in the article by Schlegel et al. (2018) and the experiments in this thesis
implemented a replica of the CapsNet from Sabour et al. (2017). The differences in results
are biggest for few samples per class. But the results evens out at 100 samples. Possible
explanations for the differences could be variations in implementation or the way they
implemented early stopping and define convergence, a description of this is not included
Schlegel et al. (2018). Another explanation is as mentioned the fact the datasets draws
random samples that causes these semi-consistent differences.

Some hyperparameters in the models in Experiment 1 were determined by limited pre-
liminary experiments. However, they were not tuned to fit each application. Other hyper-
parameters, as the reconstruction loss coefficient, were simply set. To find the optimal
combination of hyper parameters crass-validation on a multidimensional grid of hyper-
parameters should ideally be carried out. However, as is the case with most models with
many hyper-parameters, this is not feasible due to time and computational constraints. A
thorough investigation of hyperparameters could lead to different results.

The results of Experiment 1 suggests that especially the reconstruction loss coefficient
should be tuned. The experiment shows that the capsule model has a very high train
accuracy compared to the baseline. This indicates that the CapsNet overfits on the training
data. If that is the case, the results could benefit greatly from increasing the coefficient.
However such an investigation is not within the scope of this thesis.

51

Chapter 7. Discussion

The results from Experiment 2, presented in Figure 6.7, indicate that the Capsule net-
work outperform the baseline CNN for all number of classes except for 1623. However,the
originally thought out experiment with 16 dimensional class capsules could not be per-
formed on the 1623 classes. Instead the dimensions of the class capsules were reduced
to 10, decreasing the models capacity of approximating functions. Setting aside the re-
sults from 1623 classes, the CapsNet achieved consistently better test accuracy on ≤ 400
classes compared to the CNN.

The hyperparameters in Experiment 2 is simply determined in the same manner as in
Experiment 1. Thus, the previous discussion of hyperparameters in Experiment 1 holds
for Experiment 2 as well. CapsNets training accuracy was also very high in Experiment
2 compared to the CNN baseline, indicating that an increase in the reconstruction loss
coefficient would help the network perform better on many classes.

Whether a general capsule network architecture is a better option than CNNs for
datasets with many classes is linked to a question of resource efficiency. The capsule
network scales very badly as is, and guzzle GPU memory as shown in Table 6.6 due to
the increase in parameters. The CNN’s GPU memory load hardly increase with an in-
crease < 1% from 2 classes to 400 classes, compared to CapsNet’s 515% increase in GPU
memory load. If one was to conduct an experiment with a CNN that has equally many
parameters as the capsule network, the CNN would likely perform comparatively to the
capsule network on dataset with many classes. Increasing expressive power (increasing
the number of parameters) as a dataset becomes more complex is a textbook move.

The results from Experiment 2 imply that capsule networks are good at classifying
datasets with many classes. As CapsNet’s feature extractor consists of a regular convolu-
tional network, it scales similarly to CNNs for bigger images. However, for datasets with
many classes CapsNet scales much worse than CNNs. Related work that could help scale
for bigger outputs are class-independant capsules in the last layer, similar to Rawlinson
et al. (2018); Rajasegaran et al. (2019). The idea is that class-independent capsules can
increase the expressive power of the channels as the same attributes like rotation does not
need to be learned for each capsule. This way much less parameters would be needed
in the last layer, while keeping, even increasing, the expressive power of the last layer,
making scaling more comparable to the CNN baseline.

A possible explanation for CapsNets comparably better performance than CNN is that
the there are only 12 samples per class in the Omniglot dataset. The results from the
previous experiment suggests a capsule network performs better than the baseline CNN in
the 10-20 samples per class range.

52

Chapter 8
Conclusion

Capsule networks are developed to tackle the problem of spatial relationships in images.
The field is relatively new, but many promising applications, such as processing CT scans
from COVID-19 patients have been seen. The thesis examined the performance of capsule
networks on different applications, guided by two research questions.

Experiment 1 aimed to answer the first research question; Will CapsNet perform better
than a CNN on a datasets with few samples per class? The Capsule network architecture
from Sabour et al. (2017) performed better than the baseline CNN network on datasets
with fewer samples. The test accuracy gap between the models was on average 7% for the
lowest number of samples(1 to 20). These results are in conflict with other Schlegel et al.
(2018).

Experiment 2 aimed to answer the second research question;Will CapsNets perform
better than a CNN baseline on datasets with many classes? The modified CapsNet achieved
a 52.12% test accuracy on the Omniglot dataset with 400 classes, in contrast with the CNN
baseline with a 20.63% test accuracy. These results where overshadowed by CapsNets
poor scaling to larger outputs. The CapsNet model modified for 400 classes is compared
in this paragraph had 489% more model parameters than the compared CNN baseline. Be-
cause of this discrepancy between the models the results from this experiment is somewhat
undermined.

A further investigation of capsule networks on datasets with few samples as there are
conflicting view on whether capsule networks show promise in the field. In addition, a
thorough investigation of the hyperparameters of capsule networks should be undertaken,
however this requires large resources. It would also be interesting to further investigate
capsule networks with fewer parameters for many classes, as the version testet in this
thesis does not scale well.

Relevant work for addressing the scaling problem is the work of Bahadori (2018) and
Rajasegaran et al. (2019), whom both suggested class-independent decoder.

Hopefully the experiments in this thesis can supplement the field in better understand-
ing the properties of capsule networks with datasets with few samples and many classes.

53

Chapter 8. Conclusion

54

Bibliography

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N.,
Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., Bengio, Y., Bergeron, A., Bergstra, J.,
Bisson, V., Bleecher Snyder, J., Bouchard, N., Boulanger-Lewandowski, N., Bouthillier,
X., de Brébisson, A., Breuleux, O., Carrier, P.L., Cho, K., Chorowski, J., Christiano,
P., Cooijmans, T., Côté, M.A., Côté, M., Courville, A., Dauphin, Y.N., Delalleau,
O., Demouth, J., Desjardins, G., Dieleman, S., Dinh, L., Ducoffe, M., Dumoulin, V.,
Ebrahimi Kahou, S., Erhan, D., Fan, Z., Firat, O., Germain, M., Glorot, X., Goodfel-
low, I., Graham, M., Gulcehre, C., Hamel, P., Harlouchet, I., Heng, J.P., Hidasi, B.,
Honari, S., Jain, A., Jean, S., Jia, K., Korobov, M., Kulkarni, V., Lamb, A., Lam-
blin, P., Larsen, E., Laurent, C., Lee, S., Lefrancois, S., Lemieux, S., Léonard, N.,
Lin, Z., Livezey, J.A., Lorenz, C., Lowin, J., Ma, Q., Manzagol, P.A., Mastropietro,
O., McGibbon, R.T., Memisevic, R., van Merriënboer, B., Michalski, V., Mirza, M.,
Orlandi, A., Pal, C., Pascanu, R., Pezeshki, M., Raffel, C., Renshaw, D., Rocklin,
M., Romero, A., Roth, M., Sadowski, P., Salvatier, J., Savard, F., Schlüter, J., Schul-
man, J., Schwartz, G., Serban, I.V., Serdyuk, D., Shabanian, S., Simon, E., Spieck-
ermann, S., Subramanyam, S.R., Sygnowski, J., Tanguay, J., van Tulder, G., Turian,
J., Urban, S., Vincent, P., Visin, F., de Vries, H., Warde-Farley, D., Webb, D.J., Will-
son, M., Xu, K., Xue, L., Yao, L., Zhang, S., Zhang, Y. (Theano Development Team),
2016. Theano: A Python framework for fast computation of mathematical expressions.
arXiv e-prints abs/1605.02688. URL: http://deeplearning.net/software/
theano/tutorial/conv_arithmetic.html.

Bahadori, M.T., 2018. Spectral capsule networks .

Bjørnøy, H., 2020. Source code for the project. URL: https://github.com/
hbjornoy/capsnet.

Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin
classifiers, in: Proceedings of the fifth annual workshop on Computational learning
theory, pp. 144–152.

Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J., 2011.

55

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
https://github.com/hbjornoy/capsnet
https://github.com/hbjornoy/capsnet

High-performance neural networks for visual object classification. arXiv preprint
arXiv:1102.0183 .

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. ImageNet: A Large-
Scale Hierarchical Image Database, in: CVPR09.

Edraki, M., Rahnavard, N., Shah, M., 2020. Subspace capsule network. arXiv preprint
arXiv:2002.02924 .

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y., 2014. Generative adversarial nets, in: Advances in neural
information processing systems, pp. 2672–2680.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition,
in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778.

Hinton, G.E., Krizhevsky, A., Wang, S.D., 2011. Transforming auto-encoders, in: Inter-
national Conference on Artificial Neural Networks, Springer. pp. 44–51.

Hinton, G.E., Sabour, S., Frosst, N., 2018. Matrix capsules with em routing https:
//openreview.net/pdf?id=HJWLfGWRb.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected
convolutional networks, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708.

Iwasaki, K., 2018. A barebones cuda-enabled pytorch implementation of the capsnet ar-
chitecture in the paper ”dynamic routing between capsules” by kenta iwasaki on behalf
of gram.ai. URL: https://github.com/gram-ai/capsule-networks.

Johnson, A.E., Pollard, T.J., Shen, L., Li-wei, H.L., Feng, M., Ghassemi, M., Moody, B.,
Szolovits, P., Celi, L.A., Mark, R.G., 2016. Mimic-iii, a freely accessible critical care
database. Scientific data 3, 160035.

Kelley, H.J., 1960. Gradient theory of optimal flight paths. Ars Journal 30, 947–954.

Kim, J., Jang, S., Park, E., Choi, S., 2020. Text classification using capsules. Neurocom-
puting 376, 214–221.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Kosiorek, A., Sabour, S., Teh, Y.W., Hinton, G.E., 2019. Stacked capsule autoencoders,
in: Advances in Neural Information Processing Systems, pp. 15486–15496.

Krizhevsky, A., Hinton, G., 2009. Learning multiple layers of features from tiny images.
Technical Report. Citeseer.

56

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://openreview.net/pdf?id=HJWLfGWRb
https://openreview.net/pdf?id=HJWLfGWRb
https://github.com/gram-ai/capsule-networks

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep con-
volutional neural networks, in: Advances in neural information processing systems, pp.
1097–1105.

Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B., 2015. Human-level concept learning
through probabilistic program induction. Science 350, 1332–1338.

LaLonde, R., Bagci, U., 2018. Capsules for object segmentation. arXiv preprint
arXiv:1804.04241 .

LaLonde, R., Xu, Z., Jain, S., Bagci, U., 2020. Capsules for biomedical image segmenta-
tion. arXiv preprint arXiv:2004.04736 .

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al., 1998. Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86, 2278–2324.

LeCun, Y., Huang, F.J., Bottou, L., et al., 2004. Learning methods for generic object
recognition with invariance to pose and lighting, in: CVPR (2), Citeseer. pp. 97–104.

Mobiny, A., Cicalese, P.A., Zare, S., Yuan, P., Abavisani, M., Wu, C.C., Ahuja, J.,
de Groot, P.M., Van Nguyen, H., 2020. Radiologist-level covid-19 detection using ct
scans with detail-oriented capsule networks. arXiv preprint arXiv:2004.07407 .

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y., 2011. Reading digits in
natural images with unsupervised feature learning .

Olson, M., Wyner, A., Berk, R., 2018. Modern neural networks generalize on small data
sets, in: Advances in Neural Information Processing Systems, pp. 3619–3628.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., Lerer, A., 2017a. Automatic differentiation in pytorch .

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., Lerer, A., 2017b. docs for torch.nn. URL: https://pytorch.org/
docs/stable/nn.html#torch.nn.MaxPool2d.

Peer, D., Stabinger, S., Rodriguez-Sanchez, A., 2018. Training deep capsule networks.
arXiv preprint arXiv:1812.09707 .

Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S., Rodrigo,
R., 2019. Deepcaps: Going deeper with capsule networks, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 10725–10733.

Rawlinson, D., Ahmed, A., Kowadlo, G., 2018. Sparse unsupervised capsules generalize
better. arXiv preprint arXiv:1804.06094 .

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedi-
cal image segmentation, in: International Conference on Medical image computing and
computer-assisted intervention, Springer. pp. 234–241.

57

https://pytorch.org/docs/stable/nn.html#torch.nn.MaxPool2d
https://pytorch.org/docs/stable/nn.html#torch.nn.MaxPool2d

Sabour, S., Frosst, N., Hinton, G.E., 2017. Dynamic routing between capsules, in: Ad-
vances in neural information processing systems, pp. 3856–3866. http://papers.
nips.cc/paper/6975-dynamic-routing-between-capsules.pdf.

Schlegel, K., Neubert, P., Protzel, P., 2018. Comparison of data efficiency in dynamic
routing for capsule networks .

Srivastava, S., Khurana, P., Tewari, V., 2018. Identifying aggression and toxicity in com-
ments using capsule network, in: Proceedings of the First Workshop on Trolling, Ag-
gression and Cyberbullying (TRAC-2018), pp. 98–105.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R., 2013. Regularization of neu-
ral networks using dropconnect, in: International conference on machine learning, pp.
1058–1066.

Xi, E., Bing, S., Jin, Y., 2017. Capsule network performance on complex data. arXiv
preprint arXiv:1712.03480 .

Xia, C., Zhang, C., Yan, X., Chang, Y., Yu, P.S., 2018. Zero-shot user intent detection via
capsule neural networks. CoRR abs/1809.00385. URL: http://arxiv.org/abs/
1809.00385, arXiv:1809.00385.

Xiao, H., Rasul, K., Vollgraf, R., 2017. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 .

Zhang, L., Edraki, M., Qi, G.J., 2018. Cappronet: Deep feature learning via orthogonal
projections onto capsule subspaces, in: Advances in Neural Information Processing
Systems, pp. 5814–5823.

Zhao, W., Ye, J., Yang, M., Lei, Z., Zhang, S., Zhao, Z., 2018. Investigating capsule
networks with dynamic routing for text classification. arXiv preprint arXiv:1804.00538
.

58

http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf
http://arxiv.org/abs/1809.00385
http://arxiv.org/abs/1809.00385
http://arxiv.org/abs/1809.00385

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Håvard Bjørnøy

Investigating the Effect of Samples per
Class and Number of Classes for
Capsule Networks' Performance

Master’s thesis in Computer Science

Supervisor: Keith Downing

June 2020

	Summary
	Sammendrag
	Preface
	Table of Contents
	Introduction
	Background and motivation
	Research goals and questions
	Research approach
	Datasets
	Contributions
	Report overview
	Summary

	Background Theory
	Artificial Neural Networks
	Regularization
	L1 and L2 regularization
	Dropout

	Convolutional neural networks
	Capsule network
	Dynamic routing
	Loss function

	Summary

	Structured Literature review
	General goals
	Criteria for relevance
	Searching
	Sources
	Execution

	State of the art
	Dynamic routing between Capsules
	Further development
	Large and complex images
	Non-image applications
	Few samples per class
	Many classes
	Summary

	Models
	Baseline
	Capsnet
	Regularization network

	Experiments and results
	Datasets
	Optimization and hyperparameters
	Technology
	Experiment 1: Few samples per class
	Hyperparameter and experimental setup
	Results

	Experiment 2: Many classes
	Model adaptations to different sizes of input and output
	Hyperparameters and experimental setup
	Results

	Summary

	Discussion
	Conclusion
	Bibliography

