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Abstract

A convolutional neural network for image segmentation of black-and-white aerial
images is presented. The network can segment the images into ecological relevant
segments for further analysis on river ecology from the 1940s to the 2000s. The
main contributions of this thesis are 1: A convolutional neural network model
for image segmentation. 2: A manually annotated dataset having 7234 512x512
pixel images covering 76 km2 of land. The model got a mean intersection over
union of 71% on the test set from the same river as it was trained on, and a mean
intersection over union of 77% on a test set from a river that it did not train on.

Norwegian abstract: Et konvolusjonelt nevralt nettverk for bildesegmentering
av svart-hvitt luftfoto er presentert. Nettverket kan segmentere bildene i økolo-
giske relevante segmenter for videre analyse av elveøkologi fra 1940- til 2000-tallet.
Hovedbidragene til denne oppgaven er 1: A konvolusjonelt nevralt nettverk mod-
ell for bildesegmentering. 2: Et manuelt merket datasett med 7234 512x512 piksel
bilder som dekker 76 km2 land. Modellen fikk et gjennomsnittlig snitt over union
p̊a 71% p̊a testsettet fra samme elv som den ble trent p̊a, og et gjennomsnittlig
snitt over union p̊a 77% p̊a et testsett fra en elv som den ikke trente p̊a.
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Chapter 1

Introduction

Mapping the ecological conditions of rivers is a slow and expensive process when
done in the field and it often misses the bigger picture. Automated methods such
as using drones to get high resolution images requires extra resources and time to
setup the drones and flight paths (Casado [2015]). Both methods lack the ability
to be used on a large scale making it difficult for use in a global or even national
ecological analysis. In addition, these techniques for data gathering lacks the
ability to take information from past years into account to see the changes over
time and the effects of human development on the ecological conditions in rivers.

The data available from before year 2000 in Norway is black-and-white aerial
images (Kartverket [2019a]). These are scanned versions of analog images and
they have a resolution of 0.2 meters. They cover large areas of Norway from the
years 1935 to the 2000s.

With the rise of powerful new techniques for image segmentation using deep
convolution networks there are new opportunities for making segmentation mod-
els that takes advantage of the context as well as individual pixel values. This
allows for data with low level of information per pixel to be used.

This study presents a software system for automatically segmenting rivers
from black-and-white aerial images and experiments for determining the best
model.

1.1 Background and Motivation

Doing manual ecological analysis using field trips takes time and resources and
covers only small sections of rivers in a working day. It also runs the risk of missing
the bigger picture by only focusing on a small part of a single river. Some work
has been done at making systems that automatically can segment rivers using

1



2 CHAPTER 1. INTRODUCTION

satellite images Murray et al. [2019], but they lack the high resolution that aerial
imagery offers and they don’t go as far back in time as aerial images does. Using
historical black-and-white aerial images has both a high resolution and exists for
the time periods that are interesting for a historical analysis. In order to do
analysis on a large scale an automated system is needed.

Goals and Research Questions

The aim of my research will be to create a machine learning system that can map
the ecological conditions of rivers, based on widely available aerial images that
covers large geographical areas and different time periods.

The goal is defined as the overall goal that the research question RQ1 will
can help answer. Other approaches for achieving the goal could be possible, but
this thesis will focus on RQ1.

Goal Find out if and how ecological analysis of rivers can be automated.

• RQ1: Can an approach using black-and-white aerial images and neural
networks divide rivers into ecological segments?

– RQ1.1 What work have been done on black and white image segmen-
tation?

– RQ1.2 What is the best model architecture for the segmentation?

1.2 Research Method

The focus of this thesis is to answer RQ1. A literature review (see Section 2.2)
was conducted to set this work into context with previous works and to influence
the model and data processing steps. The literature review will answer RQ1.1.

An automatic system to divide rivers into ecological segments were made. A
image is segmented by doing a per pixel classification into one of 5 classes (see
Table 1.1 for the class definitions). The class definitions were developed in co-
operation with domain experts. Experiments to find the best model architecture
were done and validated with a dedicated validation set. The best models accord-
ing to the scores on the validation set was used to expand the dataset and train a
new set of models. The best model from the new set of models according to the
validation set was selected for testing on the test sets. The test was conducted
to determine how and if the model could be used for ecological analysis, as well
as determine its strengths and weaknesses.
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Class name Description
Water Surface water
Gravel Fine and coarse gravel and sand
Vegetation Natural vegetation
Farmland Land used for crops or livestock
Human-constructions Buildings, roads or other man-made constructions
Unknown All areas not marked as another class

Table 1.1: Definition of each class.

1.3 Contributions

The contributions of this thesis are a software system to answer RQ1 and a
dataset containing handmade annotations covering 76 km2. The dataset was
used for training and testing of the models. For more details on the contributions
of this work see Section 6.3.

1.4 Thesis Structure

In Chapter 2 the background material for the rest of the thesis will be covered.
A literature review will also be presented in Chapter 2.

The dataset collected will be presented in Chapter 3 as well as the details
regarding how the annotations were made.

In Chapter 4 the system architecture will be shown. This includes the pre-
processing steps and the model used, as well as validation and testing processes.

The experiments and their results will be covered in Chapter 5.
Finally the results will be discussed in Chapter 6 and some suggestions for

future work will be presented.
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Chapter 2

Background Theory

This chapter will cover the necessary background theory to understand the models
and methods presented later in the thesis. A structured literature review process
is presented, and related work is covered to put this thesis into context with other
works.

2.1 Background Theory

This section will explain the background theory for this thesis. First regular
feed forward neural networks will be presented and after that convolutional neu-
ral networks will be explained. Finally, a decoder encoder architecture will be
presented.

2.1.1 Machine learning

Machine learning is the process of making a machine improve its performance by
learning from data. For example, a machine can learn to improve the accuracy
of classifying images of cats by training the machine on a large amount of cat
images.

Machine learning is divided into two main subcategories, supervised and un-
supervised learning. In supervised learning the machine is given an input data x
to make predictions on and a ground truth y that is the correct prediction for x.
The goal of the machine in this case is to learn the function f(x) = y for new x
and y pairs.

In unsupervised learning the machine is given an input x and has to group it
with similar data. Unsupervised learning was not used in this thesis and will not
be covered in more detail.

5



6 CHAPTER 2. BACKGROUND THEORY

A model in context of supervised learning is a function that makes a prediction
given a input. It is the function f . Many choices for models exist. A few of
the most common models are Support Vector Machines (SVM), Decision Trees,
Random forest and Neural Networks (NN). All of these models will adapt them
self to a set of training data.

2.1.2 Neural networks

A neural network (NN) is made up by one or more layers of neurons. An input
vector is given to the first layer of the neural network. This first layer is called
the input layer. The elements of the input vector are denoted as xi. Each neuron
has an edge to each of the neurons in the next layer. Each of these edges has a
trainable weight wi,j,l, where i is the index for the neuron in layer l − 1 and j
is the index of the node in the l layer. l specifies the layer, starting at 0 for the
input layer. The last layer is called the output layer. In Figure 2.1 an example
of a neural network with one hidden layer are shown. Note that neural networks
for real life problems usually are a lot larger, with more neurons in the hidden
layer and multiple hidden layers.

The activation for neuron j in layer l is defined as

aj,l = f(

λ(l−1)∑
i=1

(wi,j,l · ai,l−1) + θj,l) (2.1)

where λ(l) is the number of neurons in layer l, θj,l is a trainable bias term
for neuron j in layer l. f is the activation function, for example ReLU. (ReLU is
defined as f(x) = max(0, x))

For the input layer the activation is defined as

aj,0 = xj

, where xj is the j-th element from the input vector.

Training

The training process for a NN is as follows:

1. Initialize the NN with random weights

2. Use the model to make a prediction for an input image/vector

3. Calculate the loss from the prediction using a ground truth, and adjust the
weights using backpropagation
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4. Repeat step 2 and 3 with new images/vectors until all images/vector are
have been used

5. Repeat step 2, 3 and 4 until a minimum loss is reached

The loss function is a measure of the error of the model and the goal is to min-
imize the loss function. A common loss function for classification is Categorical
Cross-Entropy (CCE).

CCE = −
C∑
i

ti · log(ai,L) (2.2)

where C is the number of classes, ti is the ground truth for class i and ai,L
is the softmax score from the NN for class i. The softmax activation function is
defined as

f(s)i =
esi∑C
j e

sj
(2.3)

for class i. Note that f(s)i ∈ [0, 1] and
∑C
i f(s)i = 1. The output after a

softmax can therefore be thought of as a pseudo-probability of the class i being
the true class (ti = 1).

Backpropagation is a method to calculate how the weights of the layers before
the last layer contributed to the loss and in what direction the weights should be
adjusted.

To adjust the weights in a way that minimizes a loss function we can use the
partial derivatives ∂C

∂w for each weight in the neural network. The strategy is then
to adjust the weight wi,j,l by

wi,j,l := wi,j,l − α
∂C

∂wi,j,l

, where α is the learning rate and C is the loss function.
To calculate the partial derivative ∂L

∂w we need a few equations from back-
propagation. These equations are Equations (2.4) to (2.7) and they are taken
from Nielsen [2015].

δj,L =
∂C

∂aj,L
· σ′(zj,L) (2.4)

δj,l =
∑
i

wl+1
i,j · δ

l+1
i · σ′(zlj) (2.5)
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Figure 2.1: An example of a feed forward neural network with one hidden layer.

∂C

∂θj,l
= δlj (2.6)

∂C

∂wi,j,l
= al−1i · δj,l (2.7)

where zj,l is the weighted input to neuron j in layer l, σ is the activation
function, C is the loss function. δlj is the error for neuron j in layer l.

zj,l =

m∑
i=1

(wi,j,l · ai,l−1) + θj,l

Equation (2.4) gives us a way to compute the error for neurons in the output
layer, and Equation (2.5) allows us to calculate the error for layer l if we have
the errors for layer l + 1. When both equations are combined, we can calculate
the errors for every layer by starting at the output layer and working backwards.
When we have all the errors we can calculate the gradient for the bias θ using
Equation (2.6). Lastly the gradient can be calculated by using the activation
computed in the forward pass and the error found in the backward pass in Equa-
tion (2.7). This process is called backpropagation.

2.1.3 Convolutional neural networks

Convolutional neural networks (CNN) have made huge advances and are now the
most powerful techniques in computer vision. This section will cover how they
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work.
CNNs were first presented in Fukushima [1988] but have had their break-

through in computer vision with ImageNet (Krizhevsky et al. [2012]) outper-
forming traditional computer vision methods by a large margin. Deep CNNs are
made by chaining multiple layers, where each layer extracts features from the
image or changes the image size. The last layer is usually a softmax layer that
assigns each class with an estimated probability, and the prediction is then the
class with the highest estimated probability. In the following subsections three
different kinds of layers are presented and explained. In Chapter 4 an architecture
using the layers introduced in this section is presented.

2.1.4 Convolution Layer

A convolutional layer in a neural network have a set of filters. A filter is a 2
dimensional array with trainable weights wi,j . A filter is applied on a input
image (or feature map) by sliding the filter such that each of the pixels pi,j in
the input image is in the center of the filter once. The filter is activated on each
new location by computing this formula:

output(x, y) =

xStop∑
i=xStart

yStop∑
j=yStart

pi,j · wi−xStart,j−yStart (2.8)

where
xStart = x− bfSize/2c
xStop = x+ bfSize/2c
yStart = y − bfSize/2c
yStop = y + bfSize/2c

, fSize is the size of the filter and is the dimension of the filter (often 3 or 5)
and x, y is the location of the center pixel.

A new image is created with the same size as the input image but with
output(x, y) as the new pixel values. This new image is called a feature map.
Each filter in the convolution layer creates a new feature map and each filter
might have different weights producing different feature maps from the same
input image. If the input to the convolutional layer have multiple channels,
such as with RGB images or feature maps from previous layers, the filters of the
convolutional layers will have the same number of channels. Let Z be the number
of channels, then the filter activation is defined as

output(x, y) =

Z∑
z

xStop∑
i=xStart

yStop∑
j=yStart

pi,j,z · wi−xStart,j−yStart,z (2.9)
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(a) 1st activation (b) 2nd activation

(c) 3rd activation (d) 4th activation

Figure 2.2: Example of an filter activation on the top row of a 4x4 input image
with padding. The input image is shown on the left side of each subfigure and
the output image is shown on the right.

where pi,j,z is the pixel at location i, j in layer z and wi,j,z is the weight at loca-
tion i, j in layer z. The rest of the variables are as they were defined in Equation
2.8.

After the filters have been applied an activation function is used on the output
from the filter activation. For each pixel Equation 2.10 is used.

activation output(x, y) = a(output(x, y) + b) (2.10)

where x, y is the pixel location, a(z) is the activation function, b is a trainable
bias term and output(x, y) is the result from the filter application defined in
Equation 2.8 and 2.9.

Common activation functions are Rectified Linear Unit (ReLU) and tanh.
ReLU(x) = max(0, x) Activation functions are used to add non-linearity to the
network.

2.1.5 Pooling layer

A pooling layer takes an input image and returns a down sampled version of
the image. There are two main types of pooling layers, max pooling and aver-
age pooling. A max pooling layer slides a n x n window over the input image
by moving the window n pixels at a time. A window is activated before each
movement and in the case of max pooling the maximum value in the window is
returned. The return value is saved as one of the pixels of the output image. The
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Figure 2.3: The pooling operation using a 2x2 window. The input is on the left
side, the result after max pooling is in the top right and the result after average
pooling is in the bottom right.

difference in average pooling is that the average value in the window is returned.
See Figure 2.3 for an example of the pooling operation.

Max pooling has the advantage of preserving shapes more clearly than average
pooling since the most prominent pixel in the window is passed on without loss
in value. Average pooling losses the shapes by smoothing out the pixels in the
window into a new value.

2.1.6 Transpose convolution

The purpose of a transpose convolution (as used in this study) is to provide a
trainable upsampling method.

A transpose convolution has a set of filters just like the convolution operation,
but they are used in a different way. Each pixel in the input image makes a
projection using the filter (see Equation (2.11)), and that projection is added to
some of the pixels of the output image.

Projectioni,j = W · pi,j (2.11)
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where Projectioni,j is the projection from input pixel pi,j at the location
(i, j). W is the filter weights in matrix form. ” · ” here is an element wise mul-
tiplication, so that each element of W is multiplied by pi,j .

The Projectioni,j is added to the output image by having the center of the
projection added to the output pixel oi,j , and the other values of the projection
added to the corresponding adjacent pixels.

For example, given a input image with size n x n (n > 1) and the value 1 in
the top left corner, a filter with size 3x3 with values 1. Then the Projection0,0
would be a 3x3 matrix with 1s in each cell. When applied to the corresponding
output pixel o0,0, would be set to the value of the center of Projection0,0, which
is 1. Adjacent output pixel will also be set to new values. o1,0 would be set to
the value to the right of the center in Projection0,0, which in this case is also 1.
The same would happen for o0,1 and o1,1 and they would both be set to 1. For
values outside the bounds of the output image like (−1, 0) no values would be set
and they are simply ignored.

Since each projection from the input image is added to its corresponding
output pixel, o0,0 would get a contribution from Projection0,1, Projection1,0
and Projection1,1 as well. These contributions are added together to give the
final value for o0,0. The same applies for the other output pixels.

Using strides of more than 1 gives a transpose convolution the upsampling
effect. The filter is moved by the stride number after each activation, so that
instead of projectioni,j being applied to output pixel oi,j it is now applied to
os·i,s·j , where s is the stride (s ∈ Z+). This distributes the input image more,
resulting in a upsampled image as the output. When using padding = ”same”
output pixels are added in positive x and y directions so that the output image
size is s · i x s · j. For example, a stride of 2 will take a input image of size n x n
and output a image of size 2n x 2n. In Figure 2.4 this is shown for a 4x4 input
image that gets upsampled to an 8x8 image by using a stride of 2.

2.1.7 Encoder decoder convolutional neural networks

A common way to use neural networks for image segmentation is to use an encoder
decoder architecture. Image segmentation is the task of assigning a class to each
of the pixels in the input image. The architecture was for example used in (Xu
et al. [2019] and Wang et al. [2019]). This architecture is made up of two main
parts, an encoder and a decoder.

The encoder part is a of the network extracts features and downsamples the
data. Feature extraction is done by convolutional layers and the downsampling
is done by pooling layers. Between the encoder and decoder there is a bottleneck
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(a) 1st activation (b) 2nd activation

(c) 3rd activation (d) 4th activation

Figure 2.4: Example of an transpose convolution activation on the top row of a
4x4 input image. The stride is 2 and ”same” padding is used. The input image
is shown on the left side of each subfigure and the output image is shown on the
right. The filter used is a 3x3 with each weight set to 1.
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layer, this can be either a convolution layer or a feed forward fully connected
layer. In the bottleneck we have a small latent representation of the input image.

The decoder part of the network takes the output from the bottleneck layer
and interprets the features. The decoder also upsamples the data to the original
size, and finally it produces a mapping of each pixel in the input to a class.

The U-net architecture is an encoder decoder architecture that was first pub-
lished in (Ronneberger et al. [2015]) were it was used for image segmentation for
the medical domain. The U-net architecture has an encoder part that is orga-
nized into blocks. The output form one block is used as the input to the next
block. Each block consists of one or more layers convolutional layers followed by
a pooling layer. A block can for example be two convolutional layers followed by
a pooling layer. In U-net the blocks are made up of several convolution layers
followed by a pooling layer. The output of the last convolution layer is stored for
use in the decoder part of the network. This is called a skip connection since it
allows some data to skip the rest of the encoder and be passed directly to a part
of the decoder.

The decoder is also organized into blocks were each block starts with an up-
sampling layer (for example a transpose convolution layer with stride 2) followed
by one or more convolution layers. A skip connection is used to concatenate the
output of the upsampling layer with the stored value from the encoder part with
the same image height and width as the output of the upsampling layer in the
decoder. The output from a block is used as the input for the next block.

The advantage of using skip connections is that we avoid the loss of high-
resolution information that usually happens in the encoder because of the down-
sampling process. This allows a high-resolution segmentation mapping to be
produced by the decoder. Another advantage with using skip connections is that
the path from the weights in the encoder to the output layer of the network is
shorter. This shorter path allows more direct feedback form the loss calculated
in the output layer when training the network, providing a more efficient training
process.

2.2 Structured Literature Review Protocol

For the literature review Structured Literature Review (SLR) was used to create
a reproducible literature review process as well as having a more focused and
reliable way to cover related work. In addition to the studies found using struc-
tured literature review some other studies was used. They were included as they
are important studies in the field of image segmentation and cited by most of the
studies gathered in the structured literature review.

The SLR technique works by dividing concepts about the topic into groups.
Each group was filled with keywords that represents this concept. The groups
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Concept 1 Concept 2 Concept 3
Term 1 Neural Network Segmentation black and white
Term 2 Artificial neural network ... B&W
Term 3 Deep learning ... greyscale
Term 4 ... ... grayscale

Table 2.1: A table showing the keywords associated with concept 1,2 and 3

Concept 4 Concept 5
Term 1 river aerial
Term 2 waterway orthophoto
Term 3 ... orthophotograph

Table 2.2: A table showing the keywords associated with concept 4 and 5

and keywords are shown in Table 2.1 and 2.2. Multiple concepts are entered
at a time into the search engine with an OR operator between keywords of the
same group/concept and an AND operator between different concepts. Different
combinations of concepts were searched for to get a manageable amount of results
before the filtering step. The combinations are shown in table 2.3.

The search results are filtered on a set of inclusion criteria. These are shown
in table 2.4. All of them must be true for the study to be selected. If a study
satisfies all the inclusion criteria, then it will be selected for further reading.

The first search including all concepts on google scholar yielded 395 results.
After applying the inclusion criteria to their titles (and in some cases abstracts)
only one study satisfied the criteria. The study found in this search was Richard
et al. [2018]. This first search was done during the fall project. Because of the
low relevance of the papers found future searches were made using Scopus.

Search two was conducted using the Scopus database. The concepts were
searched for in the title, abstract and keywords. The search with all concepts
included yielded zero results.

Search three used concept 1, 2 and 3 to find studies regarding the technical
approach to image segmentation with black-and-white images. The search was
further limited to only conference papers and articles. This search yielded 140
results. 35 papers satisfied inclusion criteria 1, 2 and 3.

The papers found that passed the inclusion criteria was then ranked according
to the quality criteria (see Table 2.5). Each quality criteria is worth one point
and the sum of all the points for a study is used to rank it. All the studies with
a score greater or equal to 7.5 were selected for further reading. This resulted in
12 studies shown in Figure 2.5.
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Search number Concepts Search engine Number of results
1 All Google Scholar 395
2 All Scopus 0
3 1, 2, 3 Scopus 258

Table 2.3: A list of the concept combinations used in the search phase of the
literature review.

ID Description
IC1 The study focuses on image segmentation
IC2 The study uses black-and-white images
IC3 The study presents a solution using neural networks

Table 2.4: The inclusion criteria for the literature review.

ID Description
QC1 Is there a clear statement of the aim of the research?
QC2 Is the study put in context of other studies and research?
QC3 Are system or algorithmic design decisions justified?
QC4 Is the experimental procedure thoroughly explained and

reproducible?
QC5 Is it clearly stated in the study which other algorithms

the study’s algorithm(s) have been compared with?
QC6 Are the performance metrics used in the study explained

and justified?
QC7 Does the test evidence support the findings presented?
QC8 Is the data used in the study openly available?

Table 2.5: Quality criteria used in the structured literature review.
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Figure 2.5: The studies selected for further reading in search 3.
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2.3 Related work

In this section related work for black-and-white image segmentation will be pre-
sented. This is relevant to answering RQ1.1.

A lot of work has been done on black-and-white image segmentation in the
medical domain (Tang et al. [2018]; Xia and Yin [2019]; Wang et al. [2019]; Ross-
Howe and Tizhoosh [2018]). Image segmentation of overhead images has also
been done on both modern color aerial images (Xu et al. [2019]; Iglovikov and
Shvets [2018]) and multi-spectrum satellite images (Murray et al. [2019]). In my
work I only found a single article that used machine learning to do image seg-
mentation on black-and-white aerial images (Richard et al. [2018]).

In Richard et al. [2018] a system for image segmentation of black-and-white
aerial images from 1955 into 14 classes were presented. The dataset they used
had images covering 1200 km2 of land. They used a dataset from 2015 that
was transferred to the 1955 image style using neural network methods to make
a dataset to pre-train the model on, then they fine-tuned the CNN model using
hand-labeled data from 1955. They got a Mean Intersection over Union (miou)
of 58.6% for their best model on the 1955 dataset and a miou of 65% on the 2015
dataset.

In Tang et al. [2018] they used the DeepLab CNN architecture (Chen et al.
[2017]) to segment a black-and-white image of a liver from its surroundings.
VGG16 (Simonyan and Zisserman [2014]) was used as the encoder, pretrained on
the ImageNet (Krizhevsky et al. [2012]) dataset. They achieved state of the art
results using this approach.

In Wang et al. [2019] blood vessels from color images were identified and then
feed to a CNN U-net model (Ronneberger et al. [2015]). Fundus images where
feed separately to a U-net model. This resulted in 2 segmented images that were
then combined, and this combined image was feed to a U-net model to produce
a final segmentation. Different versions of U-net are used for the different steps.
They got an Intersection over Union (IoU) of 89% when using the 3 different
U-net models compared to 87% IoU when only using a single U-net model.

In Xu et al. [2019] they used a U-net model to segment buildings from color
aerial images on the Inria aerial image labeling benchmark (Maggiori et al.
[2017]). They used a U-net model with the ResNeXt50 architecture as the en-
coder. The model got a miou of 82%.

In Xia and Yin [2019] they used Dense Net 121 (Huang et al. [2016]) to seg-
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ment livers in black-and-white images.
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Chapter 3

Datasets

This chapter will explain the datasets used and how they were made or collected.
Section 3.1 will describe how an initial dataset was made. In Section 3.2 the
method for making a new dataset using a model trained on the initial dataset
will be explained. Lastly in Section 3.3 three test sets made to test model perfor-
mances on different rivers or the same rivers at different times will be described.

3.1 Initial dataset

This section will describe how the initial dataset was made. First the aerial
images were downloaded as described in Section 3.1.1. The images were manually
annotated (see Section 3.1.2) and then divided into smaller images suitable for
machine learning (see Section 3.1.3). The small images were filtered so that
only the images of high quality from a machine learning perspective were kept
(see Section 3.1.4). Finally, the images were split into disjoint training, test and
validation datasets. Figure 3.1 gives an overview over the process of making the
initial dataset.

3.1.1 Black-and-white aerial images

The image data available for Norwegian rivers before the 2000s were black-and-
white analog aerial images. They were scanned from their analog format into
digital images and made available at Kartverket [2019b]. Retrieval of the images
were done manually by making a bounding box around the rivers that we wanted
to use for the dataset. The web service norgeibilder (Kartverket [2019b]) provided
images of the size 6000x8000 pixels that overlapped with the bounding box. After
this step we had a dataset of raw aerial images of the Gaula and Lærdal rivers in

21
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Figure 3.1: An overview over the process to make the initial dataset.
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River Year Total number of images Number of images with annotations
Gaula 1963 206 66
Lærdal 1976 50 38

Table 3.1: The size of the dataset for each river. (An image here means a
6000x8000 pixel image.)

Norway. See Table 3.1 for the size of the dataset for each river. The resolution
of the images were 0.2 meters.

3.1.2 Annotations

A subset of the images was manually annotated by a mix of domain and non-
domain experts. This was done by giving each of the experts a set of classes
to identify and letting the experts segment and annotate those areas on the
aerial images. The experts marked areas within 200 meters of the river. The
annotations were saved as shapefiles, one file for each class for each river. The
shapefiles were georeferenced and used the ETRS:25833 reference system. The
Geographical Information System QGIS (QGIS Development Team [2020]) was
used for making the annotations.

The classes annotated were water, gravel, vegetation, farmland and human-
constructions. See Table 1.1 for the class definitions.

3.1.3 Dividing the images

For the images to be usable for machine learning they had to be divided into
smaller images of size 512x512 pixels. This is done by dividing a 6000x8000
image into a grid of 512x512 images as shown in Figure 3.3.

Each 6000x8000 image gives 192 512x512 images. In total this gives 192·104 =
19968 small images before filtering.

3.1.4 Image filtering

Of the 19968 images only 1694 remained after filtering. The filtering process is
as follows:

1. Remove images with more than 10% of the unknown class.

2. Remove images with only a single class

The filtering step is necessary to make sure only images with a good labeling
are used. This is done by the 1st filtering step. The 2nd filtering step is done
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(a) Aerial image

(b) Manual annotations

Figure 3.2: A 5 km tall image of Gaula with and without manual labels. The
labels for image b is blue:water, black:unknown, light green: farmland, dark
green: vegetation, pink: human-constructions, brown: gravel
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Figure 3.3: A 6000x8000 pixel image from Gaula 1963. The red squares show
how the 512x512 pixel images are divided.

to reduce class imbalance and to have images that needed segmentation instead
of just classification. 15109 of the images were 100% of the unknown class and
they were removed. 935 of the images were of only a single class (other than the
unknown class) and they were also removed. 2230 of the remaining images had
more than 10% of the unknown class and were removed. This left 1694 images
with good labels remaining as the dataset used for machine learning.

3.2 Using the model to extend the dataset

To increase the size of the training dataset a new dataset was made after the
initial dataset. This new dataset was made by using a model trained on the
initial dataset to make predictions on images from the Surna river from 1963.
This river was not part of the initial dataset. The predictions were manually
corrected in by a non-domain expert. This new dataset had 75 big images and
when divided into 512x512 pixel images and filtered the same way as the initial
dataset this dataset had 4613 512x512 images from Surna. The total size of the
extended dataset was then 6307 images, from Surna 1963, Gaula 1963 and Lærdal
1976.

The new images from Surna were added to the training and validation sets and



26 CHAPTER 3. DATASETS

Configuration val miou val acc val loss
no image aug, freeze all 0.5672 0.8405 0.4951
no image aug, freeze first 0.5576 0.8321 0.5133
image aug, freeze all 0.6035 0.8535 0.4537
image aug, freeze first 0.6178 0.8614 0.4332

Table 3.2: The results of experiment 1. val miou: Validation mean intersection
over union. val acc: validation accuracy. val loss: The validation loss, were the
loss function was sparse categorical cross entropy.

used to train a new model. 80 % was used for training and 20 % for validation.
The test set remained unchanged and only included images from Gaula and
Lærdal. The images of the extended dataset covered 66 km2.

3.2.1 Model for extending the dataset

To find the best model four different configurations of parameters was tried. Two
parameters were changed, the ”frozen” parameter that determined how many
of the blocks in the model was untrainable. The second parameter was image
augmentation. Each parameter was tried with two values, so in total there were
22 = 4 configurations. For configurations with the frozen parameter set to ”all”,
all the weights of the encoder were frozen, meaning the weights did not change
during training. For configurations with the frozen parameter set to ”first”, the
first 4 convolution blocks of the encoder were frozen, and the last convolution
block was trainable. For all configurations the decoder was trainable. The model
architecture is described in Section 4.2.

Early stopping was used with a patience of 10 epochs and it monitored the
validation loss. Model checkpointing was used to save the best model according
to validation loss during training. All results are from the model with the lowest
validation loss during training of each configuration.

For configurations with data augmentations the training dataset was aug-
mented by adding rotated, horizontal- and vertical mirrored images to the train-
ing set. This data augmentation resulted in 11 additional images for each original
image in the training set. Image augmentation was never used on the validation
or test set to keep them as true to the real data as possible.

The configurations and the performance of the model corresponding to those
configurations are shown in Table 3.2. The best configuration according to all
the measured metrics was using image augmentation and freezing only the first
layers of the encoder. This is the model that was used for extending the dataset.
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3.3 Test sets

To get an objective evaluation of a model, the model was tested on test sets from
different rivers and at different times. Four different test set were used, and they
will be described in this section.

A test set from Nea 1962 was used to evaluate the performance of the model
on a river that were not included in the training or validation sets, to see how
the model performs on an unseen river from the same time period.

A test set from Gaula 1998 was used to evaluate the performance of the model
on a river that was included in the training data but for a different time period.

A test set from Gaula 1963 from a part of the river that was not included
in the training or validation sets. This was done to evaluate the performance
for the same river and the same time period as the training data. This will
be especially useful when comparing the performance amongst the different test
sets. The comparison with the different test sets can reveal if the model is able
to generalize to different rivers and time periods.

The Nea 1962, Gaula 1963 and Gaula 1998 test sets were made by using the
best model from Section 5.3 to make segmentations and manually correcting the
errors in the segmentations. The use of the model was done to make the test sets
faster than if the entire images had to be manually segmented. However, this can
introduce a bias in the data since the edges will match with the predictions while
in a manually made test set the edges would be strait lines. Also, in some cases
where it was difficult for an expert to make a segmentation, the segmentation
from the model might be accepted as correct while in a manually made dataset
it might have been segmented as another class under uncertainty.

Lastly a test set made up of images randomly selected when making the test,
validation and training sets was used. This dataset included images from Gaula
1963 and Lærdal 1976 that are right next to the images in the train and validation
sets. The performance of the model on this set might be misleading because the
images are similar to the training data. The images were manually labeled using
the process described in Sub section 3.1.2. When referring to test sets this test
set it is called the initial test set.

The number of images for each of the test sets are shown in Table 3.4 and
the class distribution for the ground truth (corrected predictions) are shown in
in Table 3.3. In total the test sets covered 9.7 km2.

In Figure 3.4 the areas for the test sets are shown.
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(a) The test area for Gaula 1963

(b) Test area for Gaula 1998

(c) Test area for Nea 1962

Figure 3.4: Test areas for Gaula 1998, Gaula 1963 and Nea 1962. The test area
is defined by the red bounding polygon.
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W G V F H
Nea 1962 18.05% 2.18% 23.99% 50.93% 4.85%

Gaula 1998 27.89% 2.47% 22.05% 28.02% 19.57%
Gaula 1963 17.11% 8.40% 36.62% 15.25% 3.21%

Table 3.3: The class distribution for the ground truth (corrected predictions) for
the test sets.

Nea 1962 Gaula 1998 Gaula 1963 Initial test set
Images* 385 112 90 340

Table 3.4: Number of images in each test set. *The test set areas are defined
using a polygon, so the number of images shown here are calculated by dividing
the total number of pixels in the test area by the number of pixels in an image
(5122)
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Chapter 4

Architecture and Model

This chapter will cover the system architecture for making predictions and train-
ing models (see Section 4.1). The goal of the system is to automatically segment
black-and-white aerial images into one of the classes in Table 1.1. The CNN
model used will be explained in Section 4.2.

4.1 System architecture

For the images to be used by the CNN model they first have to be pre-processed.
This applies to both training the model and to making predictions. The pre-
processing will be explained in detail in Section 4.1.1. The training process
will be described in Section 4.1.2 and how the predictions were made will be
described in Section 4.1.3. The overall system process flow for the system is
shown in Figure 4.1. The code for the system can be found on https://github.

com/arildsd/river-segmentation.

4.1.1 Pre-processing

The pre-processing step takes datasets of black-and-white images, where each
image is 512x512 pixels (102.4m x 102.4m) as input. The process of making the
input datasets are covered in Section 3.1. The datasets are made up of three
disjoint datasets, a training dataset, a test dataset and a validation dataset. An
overview of the pre-processing steps are shown in Figure 4.2.

Each pixel value in the images were an integer between 0 and 255. Images were
normalized by dividing each pixel by 255, so that the new values were between 0
and 1.

31
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Figure 4.1: The overall process flow for the system.
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Then the pixels with the unknown class is replaced with the class of the pixel
that is closest that has a non-unknown class.

The next pre-processing step was to duplicate the black-and-white channel to
get images with 3 channels. Each channel was a copy of the original black-and-
white channel and this step was done because the pretrained part of the model
was trained on a RGB dataset and expects an input with 3 channels. This allows
us to take advantage of a model trained on over a million images (see Section 4.2
for more detail on the pretrained model). A drawback of this approach is that
the space used to store the dataset in memory is 3 times the original size.

After the duplication step the validation and test sets was ready to be pre-
dicted on by the model. The training dataset was augmented by adding rotated
and flipped versions of the original images to the dataset. Rotation with 90◦,
180◦and 270◦was applied. Horizontal and vertical flipping was used, and rota-
tions were applied to the flipped images as well. This resulted in 11 additional
images for each original image in the training dataset.

Image augmentation was used to help avoid the model memorizing the specific
details in the training data instead of learning how to segment rivers in general.
For example if the training data had a river going from the top (north) to the
bottom (south) with vegetation on the left (west) side of the river, the model
might learn that all rivers must be to the right of vegetation. With rotated and
flipped images the training data would also contain images were the vegetation
were on the right, on the top and at the bottom of the river. This would remove
the problem of river always being on the right of vegetation in the dataset.

After the training data was augmented all the data was ready for use by the
model.

4.1.2 Training the model

The model is trained by letting it make predictions, calculate the loss using the
ground truth and then correcting the weights for the model (see Section 2.1.2 for
more detail). An epoch is when all the training images has been used for making
predictions. After each epoch the model made predictions on the validation set
and calculated the validation loss.

Early stopping was used to stop the training process if the validation loss
did not decrease in 10 epochs. This was done to prevent overfitting, that is to
prevent the model to only learn the specifics of the training dataset and not the
general properties of rivers images. Generally, when overfitting starts to happen
the training loss will continue to decrease, but the validation loss will start to
increase.

Model checkpointing was used to save the best model according to the vali-
dation loss.
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Figure 4.2: The pre-processing steps.
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4.1.3 Making predictions

To make a prediction using a trained model requires the input data to be pre-
processed the same way as when pre-processing the training data. After the input
data is pre-processed the model can make predictions on it.

4.2 Model

The model used for making predictions was a deep CNN U-net model. It had an
encoder part that extracts features from the input image and downsamples the
images. It also had a decoder part decodes the downsampled feature maps from
the encoder part. The decoder part also upsamples the feature maps to create
an output segmentation mask with the same size as the input image. For more
details on this type of model architecture see Section 2.1.7.

When an image is given to the model the image is first processed at the
first convolution layer in the first block in the encoder part. The results from
this layer is passed on to the 2nd layer and more features are extracted. This
process of extracting features and passing them on to the next layer continues
for all the layers in the CNN. The output of the last convolution layer in each
block in the encoder is saved for use in the corresponding block in the decoder
layer. The decoder layers interpret the feature maps from the previous layer. The
architecture of the model is shown in Figure 4.3.
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Figure 4.3: The model architecture. The number under each box gives the number of channels for the output
feature map. The tilted number at the end of each block is the image size for that block. Light brown boxes are
convolution layers, red boxes are max pooling layers. Light blue boxes are transpose convolution layers and dark
blue boxes are concatenation between the skip connection from the encoder and the previous transpose convolution.
The last layer is a softmax layer.
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4.3 Encoder

The VGG16 model (Simonyan and Zisserman [2014]) is used as a pretrained
encoder for this model. VGG16 had 13 trainable convolution layers as well as
5 pooling layers. The layers are arranged as 5 convolution blocks, where each
block has 2-3 convolution layers followed by a pooling layer. VGG16 was used
on the ImageNet(Krizhevsky et al. [2012]) dataset for image classification. When
used on the ImageNet dataset it had a fully connected classification part after
the encoding part. This part classified the input image as one of the 1000 classes
in the ImageNet dataset. For this model the classification part of VGG16 was
removed and only the convolution/pooling part was used.

The advantage of using a pretrained encoder like VGG16 is that many of the
basic features can be extracted using the first blocks of the pretrained network.
These basic features can for example be edges and simple shapes. These features
will be useful for almost all image classification/segmentation problems and will
therefore be learned for most datasets. Since the encoder already know how to
extract the basic features the training process can focus on learning the specific
features needed for the segmenting river ecology.

To determine how many of the blocks of the that encoder should be trained
a few different models were trained with a different number of blocks marked as
untrainable for each model. The best model according to the validation set was
chosen. This ensures that only the blocks that extract useful features for the
river ecology domain are used without further training.

4.4 Decoder

The decoder part of the network had 5 upsample blocks and 1 convolution block
directly after the encoder (see Figure 4.3). The upsample blocks had a transpose
convolution layer with a stride set to 2, this layer would upsample the image/fea-
ture map. Following the transpose convolution layer there were two convolution
layers. The convolution layers extracted features from the previous layer without
changing the shape of the input image/feature map.

After each transpose convolution layer, the feature maps from the correspond-
ing downsample block are concatenated to the channels of the output from trans-
pose convolution. This is called a skip connection since the feature map that is
concatenated skips part of the downsample-upsample process.

The last layer in the decoder was a softmax layer that assigns a pseudo proba-
bility for each class for each pixel. The class with the highest value of the pseudo
probability for the pixel is the classification for that pixel.
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Chapter 5

Experiments and Results

This chapter will cover the experiments that were done and the results from
those experiments. The goal of the experiments is to determine the best model
for image segmentation of rivers using black-and-white aerial images.

5.1 Experimental Plan

First a model was trained on the extended dataset (see Section 5.3) and tested
on a some test sets. The model architecture could then be evaluated in rela-
tion to RQ1.2 ”What is the best model architecture for the segmentation?” in
Section 6.2.

In Section 5.4 a pre-processing step that adjusts for light intensity differences
was tried, and this experiment is also relevant to RQ1.2.

5.2 Experimental Setup

The experiments were performed on the NTNU IDUN computing cluster (Själan-
der et al. [2019]). The cluster had more than 70 nodes and 90 GPGPUs. Each
node contained two Intel Xeon cores, at least 128 GB of main memory, and was
connected to an Infiniband network. Half of the nodes were equipped with two
or more Nvidia Tesla P100 or V100 GPGPUs. All the models were implemented
in Tensorflow 2.0 (Abadi et al. [2015]) for python 3.7 (Van Rossum and Drake
[2009]). Numpy 1.8 (Oliphant [2006]) and Gdal 3.0 (GDAL/OGR contributors
[2020]) was used for data pre-processing.

The models is described in Chapter 4 and the dataset is described in Chapter
3.
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The models are measured on a set of metrics. These are Mean Intersection
over Union (miou), Accuracy, Precision, Recall and loss. The metrics are defined
in Equations (5.1) to (5.6). miou is used to measure how well the segments from
the model overlaps with the ground truth. Accuracy is included as it is an easily
interpretable metric, but since the dataset is unbalanced it can be misleading so
it should be combined with other metrics. Recall for a class c is how many of the
pixels for c in the ground truth did the model actually segment as c. Precision
for a class c is how many pixels the model segmented as c was actually c in the
ground truth.

Notation: C is the set of classes, predc is the predicted true pixels for class c,
truec is the true pixels for the class c and truec is the pixels that is not class c.

miou =
1

|C|
∑
c∈C

|predc ∩ truec|
|predc ∪ truec|

(5.1)

Accuracy =
correctly segmented pixels

total number of pixels
(5.2)

Precisionc =
|predc ∩ truec|

|predc ∩ truec|+ |predc ∩ truec|
(5.3)

Average Precision =
1

|C|
∑
c∈C

Precisionc (5.4)

Recallc =
|predc ∩ truec|
|truec|

(5.5)

Average Recall =
1

|C|
∑
c∈C

Recallc (5.6)

Tables and figures in this chapter uses the abbreviations and color coding
defined in Table 5.1.
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Class name Abbreviation Color
Water W Blue
Gravel G Brown

Vegetation V Dark green
Farmland F Light green/ yellow

Human-constructions H Red
Unknown U Purple

Table 5.1: Abbreviations and colors for the different classes.

5.3 Experiment 1: Training models with an ex-
tended dataset

In this experiment six different configurations for the model was tried. The
dataset consisted of images from Gaula 1963, Surna 1963 and Lærdal 1976. The
models trained in this experiment were trained on the extended dataset. See
Section 3.2 for the details on how the extended dataset was made.

The same model architecture as when making the extended dataset was used,
and the same pre-processing and image augmentation methods were used. As
images augmentation yielded the best results in when extending the dataset this
was used for all the configurations in this experiment. See Chapter 4 for the
system and model architecture.

Early stopping was used with a patience of 10 epochs and monitoring the
validation loss. Model checkpointing was used to save the model with the lowest
validation loss. The model with the highest mean intersection over union on the
validation set was chosen for further testing.

In Table 5.2 the validation scores for the different configurations are shown.
The ”Freeze 2” configuration was the best one according to both validation miou
and accuracy, and the ”Freeze 1” configuration was best according to the vali-
dation loss. In the freeze 2 configuration the first two convolution blocks in the
encoder part of the model are untrainable. In the freeze 1 configuration the first
convolution block of the encoder was untrainable. Since the freeze 2 configura-
tion had more of the weights frozen overfitting to the validation set was less of
a problem since the learnable weights were fewer. This combined with the best
scores on two of the metrics made this configuration the best one and the one
that was used on the test sets.

The model trained with the freeze 2 configuration was used to predict on the
test sets. The results for each test set are shown in Table 5.3. The confusion
matrices are shown in Figures 5.1 and 5.2. The confusion matrices show the
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Configuration val miou val acc val loss
freeze all 0.7006 0.8919 0.3102

freeze first 0.7414 0.9064 0.2765
freeze 3 0.7463 0.9078 0.2726
freeze 2 0.7627 0.9107 0.2653
freeze 1 0.751 0.9076 0.2625

freeze none 0.7513 0.9073 0.2661

Table 5.2: The validation scores from experiment 1.

relationship between the predicted class and the true class for each class. A
perfect model would give a confusion matrix with 100% along the diagonal and
0% for every other cell in the matrix. The unnormalized confusion matrices are
included in Section 6.5 in the appendix.

The images from Gaula 1998 were brighter than the images in the training
data. This caused some issues for the model as gravel is over predicted as shown
in Figure 5.3, where some farmland is wrongly segmented as gravel.

The model correctly segmented the water as water with almost no errors (see
Figure 5.4). This fits with the high recall for water, 89.8%, in the test set. (Shown
in Figure 5.1c).

For Gaula 1998 human constructions were mostly correctly segmented with a
recall of 85.7% and a precision of 89.22%. This can also be seen in Figure 5.5.

The model predicted 17.88% of the vegetation as water. This is an error
unique to the Gaula 1998 images, and a possible explanation for this is the higher
light level in the Gaula 1998 images. The high light level makes the usually dark
vegetation look more like the slightly lighter water texture. An example of vege-
tation predicted as water is shown in Figure 5.6.

In Figure 5.7 a representative example of the predictions on Gaula 1963 are
shown. Some sections of the water was wrongly predicted as farmland as shown
in Figure 5.8.

The images from Gaula 1947 was the oldest images used in this project, and
the results on these images will be useful in evaluating how good the model is at
old images. The images were darker than the images in the training data, and
this probably resulted in a worse performance.

The model was able to correctly segment vegetation, as shown in Figure 5.9,
but struggled with predicting gravel correctly. Gravel was often predicted as wa-
ter (see Figure 5.10) Farmland was in many areas not recognized correctly and
it was wrongly segmented as water and gravel as seen in Figure 5.11.



5.3. EXPERIMENT 1: TRAININGMODELSWITH AN EXTENDEDDATASET43

Test set miou Accuracy Average Precision Average Recall
Nea 1962 77.49% 93.40% 91.61% 83.76%

Gaula 1998 53.81% 73.17% 69.77% 72.07%
Gaula 1963 71.30% 87.60% 81.24% 84.72%

Table 5.3: Test scores for each test set using the best model from experiment 1.
miou: Mean intersection over union.

In Figure 5.13 from Nea 1962 we can see that the model has segmented some
vegetation as water. Here the vegetation was difficult to see because of shadows
and the model did not have any information about the surrounding area, only
the part inside the red rectangle.
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(a) Nea 1962

(b) Gaula 1963

(c) Gaula 1998

Figure 5.1: Row normalized confusion matrix for the model predictions on the
test sets. The values along the diagonal are the recall for that class. See Table 5.1
for the link between classes and abbreviations.
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(a) Nea 1962

(b) Gaula 1963

(c) Gaula 1998

Figure 5.2: Column normalized confusion matrix for the model predictions on
the test sets. The values along the diagonal are the precision for that class. See
Table 5.1 for the link between classes and abbreviations.
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(a) Image (b) Image with predictions

Figure 5.3: Example from Gaula 1998. Farmland predicted as gravel.

(a) Image (b) Image with predic-
tions

Figure 5.4: Example from Gaula 1998. Water predictions.
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(a) Image

(b) Image with predictions

Figure 5.5: Example from Gaula 1998. Constructions with bridge.

(a) Image (b) Image with predic-
tions

Figure 5.6: Example from Gaula 1998. Vegetation segmented as water.
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(a) Image

(b) Image with predictions

Figure 5.7: Generic example from Gaula 1963.

(a) Image (b) Image with predictions

Figure 5.8: Example from Gaula 1963. Water segmented as farmland.
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(a) Image (b) Image with predictions

Figure 5.9: Example from Gaula 1947. Correctly segmented vegetation.

(a) Image (b) Image with predictions

Figure 5.10: Example from Gaula 1947. Gravel predicted as water.
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(a) Image (b) Image with predictions

Figure 5.11: Example from Gaula 1947. Wrongly segmented farmland.

(a) Gaula 1947 (b) Gaula 1963 (c) Gaula 1998

(d) Gaula 1947 predic-
tions

(e) Gaula 1963 predictions (f) Gaula 1998 predictions

Figure 5.12: The same geographical area of the Gaula river with predictions for
1947, 1963 and 1998. The 1947 and 1998 predictions are intensity adjusted.
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(a) Image (b) Image with predictions

Figure 5.13: Example from Nea 1962. Vegetation segmented as water. The red
rectangle shows the limits of the image that the model had as input.

5.4 Experiment 2: Light intensity adjustment

A problem encountered when predicting on new datasets was that the light inten-
sity was different than the light intensity in the training data. This was especially
problematic for the Gaula 1998 test set, as it had a mean light intensity of 133
and the training data had a mean light intensity of 77.

In this experiment the light intensity was adjusted for to make the mean
light intensity of the datasets equal to the mean light intensity of the training
set. This was done as a pre-processing step when making predictions by adding
the difference in light intensity means (∆µ) to each pixel in the dataset (see
Equation (5.7)). The best model from experiment 1 was then used to make
predictions on the dataset.

∆µ = µtrain − µdataset (5.7)

where µtrain is the mean light intensity of the training data and µdataset is
the mean light intensity of the dataset that is predicted on.

The metrics for the predictions for this experiment is shown in Table 5.4.
For Gaula 1998 the miou changed from 53.81% without intensity adjustments to
65.18% with intensity adjustments, a quite significant amount. Nea 1962 had a
mean light intensity of 90, and the intensity adjusted predictions were slightly
worse, 74.95% miou compared to 77.49% miou for the predictions made without
intensity adjustment.
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miou accuracy precision recall
Nea 1962 77.49% 93.40% 91.61% 95.36%

Nea 1962 intensity adjusted 74.95% 92.39% 90.75% 81.71%
Gaula 1998 53.81% 73.17% 69.77% 89.20%

Gaula 1998 intensity adjusted 65.18% 85.24% 75.85% 76.73%

Table 5.4: Test scores for the Nea 1962 test set and the Gaula 1998 test set, with
and without light intensity adjustments. Precision is average precision and recall
is average recall.

In Figure 5.14 we can see that the model segments farmland as gravel with
the normal predictions while it segments it as partially water in the case of the
intensity adjusted predictions. The gravel texture is brighter, so it is more likely
to be predicted in the bright non adjusted image, while the water texture is
darker and is more likely to be predicted in the adjusted darker image. Another
observation from Figure 5.14 is that the wrong predictions is in generally the
same area of the images, indicating high uncertainty from the model in that area
regardless of the brightness.

In Figure 5.15 the model correctly found the gravel island and the surrounding
water for both normal predictions and the intensity adjusted predictions. Veg-
etation is wrongly segmented as water (bottom right corner) and as farmland
(top left corner) in the prediction without intensity adjustments. Vegetation has
a dark texture in the training data and when the bright images were not ad-
justed it became too bright to be segmented properly. In the intensity adjusted
predictions both areas were correctly segmented as vegetation.
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(a) Image (b) Predictions (c) Intensity adjusted

Figure 5.14: Gaula 1998. Comparison of predictions with and without intensity
adjustments. Images of wrongly segmented farmland.
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(a) Image (b) Predictions (c) Intensity adjusted

Figure 5.15: Gaula 1998. Comparison of predictions with and without intensity
adjustments. Images of a gravel island.



Chapter 6

Evaluation and Conclusion

In this chapter the work in this thesis will be discussed, the contributions will be
presented and some avenues for future work will be shown.

6.1 Evaluation

Four different test set was used to evaluate the performance of the model on
different rivers and at different time periods. This made it possible to compare
determine if the model generalized to other rivers than the training rivers. An
issue with the light intensity was discovered due to this testing on Gaula 1998
and a solution was proposed and tested in Section 5.4. If this work had only used
a randomly sampled test set from the original dataset then the comparison to
different rivers would have been a lot weaker.

This thesis did not compare the performance of the CNN models to a simple
baseline algorithm. This makes it difficult to determine if machine learning was
needed or if the same results could have been archived by a simple baseline. The
reason neural networks were chosen as the model was that rivers can have a huge
variety in shapes and textures, and in order to capture the features for rivers in
general a model that could adapt itself to fit many different datasets was needed.
This is also the reason for training the model on images from more than one river.

6.2 Discussion

This section will discuss the results presented in Chapter 5. The predictions were
made on images of the Gaula river from 1947, 1963, 1998 and from Nea 1962.
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The aim of this discussion is to find the strengths and weaknesses of the model
and determine how the model can be used for automatic ecological analysis.

An issue encountered when applying the model to the Gaula 1998 test set
was that the light intensity was different from the light intensity in the training
data. In Section 5.4 predictions were made after first adjusting the light intensity
of the images. For the Gaula 1998 test set the mIoU increased from 53.81%
without intensity adjustment to 65.18% with intensity adjustments. This is a
major improvement, but the results are however still below that of the results
on the other test sets (see Table 5.3). This suggests that only adjusting the
light intensity mean is not enough to compensate for the differences among the
datasets.

The model has a high performance (71.3% mIoU) on the test set from Gaula
1963 for all the different classes except human-constructions. On water, vegeta-
tion and farmland both recall and precision are above 80% for the Gaula 1963
test set (see Table 5.3 and Figures 5.1b and 5.2b). For this data the model could
be used to look large scale changes in land if gravel and human-constructions are
manually checked and if needed corrected.

Surprisingly the model performed better on the test set for Nea 1962 than
for the Gaula 1963 test set with 77.49% mIoU for Nea 1962 compared to 71.3%
for Gaula 1963. In the Nea 1962 test set the recall for the gravel class was only
53.15% while its precision was 94.34%. This means that almost half of the gravel
in the images was not segmented as gravel by the model, but for those areas that
was segmented as gravel 94% was actually gravel. For all other classes both recall
and precision was above 80% (see Table 5.3 and Figures 5.1a and 5.2a). For this
dataset manually segmenting the gravel areas that the model missed would allow
for large scale analysis of the river.

For some parts of the datasets it was difficult to make a segmentation based
on the local features in the image. An example of this is shown in Figure 5.13. In
this example some vegetation is covered by a shadow so it is almost impossible
to make a correct segmentation based only on the local information. With the
current model this area was wrongly segmented as waters. This is caused by
a limitation in the model. The limitation is that the model does not use any
of the context around the input image, it only uses the 512x512 input image
that it is given to make the output segmentation. If the model was able to
combine the local features with the context around the local features, it could
have been possible to correctly segment the shadow area as vegetation because
all the surrounding area was correctly segmented as vegetation.

To answer RQ1 ”Can an approach using black-and-white aerial images and
neural networks divide rivers into ecological segments?”, a neural network model
can divide a river into ecological segments. The model can be used to make
predictions for new rivers from the same time periods as the training data as
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well as for different time periods. When using the model on images that are
either much brighter or much darker than the training images light intensity
adjustments should be made. Before the predictions from the model are used
for analysis a manually qualitative assessment should be made, to detect issues
with certain classes. The tests done in this thesis indicate that for some datasets
gravel can be wrongly segmented.

6.3 Contributions

The first contribution is a training/validation dataset containing 6307 images
covering a 66 km2 area from Gaula 1963, Surna 1963 and Lærdal 1976. As well
as a test set of in total 927 images covering a 9.7 km2 area. This dataset will
be published with a later publication. 24.5% of the dataset was made during fall
project. The rest of the dataset was made during the work for the master thesis.

Another contribution is the CNN model that can be used to segment black-
and-white aerial images of rivers into ecological segments that can be used for
large scale ecological analysis. The model and code for using the model can be
found on https://github.com/arildsd/river-segmentation.

A short communication for the River Research and Applications journal is
being made in parallel with this thesis by Knut Alfredsen. The short communi-
cation uses the work done in this thesis to demonstrate how neural networks can
be used for remote sensing applications on rivers.

6.4 Future Work

Try with a lower resolution of for example 0.5 meters instead of 0.2 meters. This
would allow for more aggressive data augmentation methods to be used without
using a huge amount of memory. The loss in detail for images would be small,
since the main limiting factor is the quality of the physical images that were
scanned.

To overcome the light intensity issue presented in Section 5.4 a more elegant
solution would be to use standardization as pre-processing step when training
the model as well as when making predictions using the model.

Different models like Dense Net 121 (Huang et al. [2016]) could be a better
candidate for transfer learning because it has fewer trainable weights, but still
has a good performance on the image net dataset. It was not done for this thesis
because Dense Net is conceptually more complex and more difficult to implement
than VGG16.

Using a model that can use information about the surrounding areas of an
image would allow high quality segmentation to be made even when the local

https://github.com/arildsd/river-segmentation
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features are hard to use.
Using post-processing to remove some errors like farmland predicted in the

middle of the river that is completely surrounded by water.
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Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster,
M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning
on heterogeneous systems. Software available from tensorflow.org.

Casado, M.R.; Gonzalez, R. K. T. V. A. (2015). Automated identification of river
hydromorphological features using uav high resolution aerial imagery. Sensors.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017).
Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis
and machine intelligence, 40(4):834–848.

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of
visual pattern recognition. Neural networks, 1(2):119–130.

GDAL/OGR contributors (2020). GDAL/OGR Geospatial Data Abstraction soft-
ware Library. Open Source Geospatial Foundation.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2016). Densely
connected convolutional networks.

Iglovikov, V. and Shvets, A. (2018). Ternausnet: U-net with vgg11 encoder pre-
trained on imagenet for image segmentation. arXiv preprint arXiv:1801.05746.

Kartverket (2019a). Kartverket. https://www.kartverket.no/en. Accessed:
2019-11-23.

Kartverket (2019b). Norge i bilder. https://www.norgeibilder.no. Accesed:
2019-11-23.

59

https://www.kartverket.no/en
https://www.norgeibilder.no


60 BIBLIOGRAPHY

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Pereira, F., Burges, C. J. C.,
Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc.

Maggiori, E., Tarabalka, Y., Charpiat, G., and Alliez, P. (2017). Can semantic
labeling methods generalize to any city? the inria aerial image labeling bench-
mark. In 2017 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), pages 3226–3229.

Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M. B.,
Clinton, N., Thau, D., and Fuller, R. A. (2019). The global distribution and
trajectory of tidal flats. Nature, 565(7738):222–225.

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.

Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trelgol Publishing USA.

QGIS Development Team (2020). QGIS Geographic Information System. Open
Source Geospatial Foundation.

Richard, A., Benbihi, A., Pradalier, C., Perez, V., Durand, P., and Van Couwen-
berghe, R. (2018). Automated segmentation and classification of land use from
overhead imagery.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In Navab, N., Hornegger, J., Wells, W. M.,
and Frangi, A. F., editors, Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, pages 234–241, Cham. Springer International
Publishing.

Ross-Howe, S. and Tizhoosh, H. R. (2018). The effects of image pre-and post-
processing, wavelet decomposition, and local binary patterns on u-nets for
skin lesion segmentation. In 2018 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition.
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Appendices

6.5 Confusion matrices

This section contains unnormalized confusion matrices. The values in the matri-
ces are pixels.

Figure 6.1: Gaula 1963 raw data confusion matrix.
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Figure 6.2: Gaula 1998 raw data confusion matrix.

Figure 6.3: Gaula 1998 raw data confusion matrix. Intensity adjusted predictions.

Figure 6.4: Nea 1962 raw data confusion matrix.

Figure 6.5: Nea 1962 raw data confusion matrix. Intensity adjusted predictions.
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