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Abstract

In recent years, Constrained Multi-Objective Problems (CMOPs) have gained a con-
siderable focus by the research community as the existence of constraints provide
challenges the field is struggling to solve. To overcome this obstacle, research has
delved into the development of artificial problems to simulate their real-world coun-
terparts and extending Multi-Objective Evolutionary Algorithms (MOEAs) with
Constraint-Handling Methods (CHMs) to solve these problems. In general, CHMs
within the field are influenced by information extracted from the current popu-
lation alone. Thus, little work gathers knowledge during the search to influence
the optimisation of the CMOP. Multiple objectives in conjunction with constraints
add difficulty in converging towards optimal solutions, as well as coverage of all
solutions fulfilling the constraints. Recent advances within this field introduced
a biphasic framework, called Push and Pull Search (PPS). The original PPS ig-
nores constraints during the first phase of the search to focus on exploration of
the whole search space and approximating the unconstrained Pareto-optimal Front
(PF). During the second phase, constraints are considered and previously infeasible
solutions are evolved to become feasible in an effort to approximate the constrained
PF. Splitting the Constrained Multi-Objective Evolutionary Algorithm (CMOEA)
into two phases to meet the challenges of exploration and exploitation, this thesis
further explores the use of landscape knowledge to enhance the newly developed
PPS framework. The effect on search performance, different problem characteristics
behaviour, traversal through constrained space and bias towards certain parts of the
search space, introduced by Boundary Search (BS), are analysed and discussed.
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Sammendrag

Den siste tiden har forskning fokusert p̊a Beskrankede Flerkriterie-Problemer (BF-
Per) ettersom beskrankninger byr p̊a krevende utfordringer som må løses. For å
overkomme denne utfordringen har nye kunstige testproblemer blitt utviklet for å
simulere problemer fra den virkelige verden. I tillegg har Flerkriterie Evolusjonære
Algorithmer (EAer) blitt utvidet med Beskrankningsh̊andtering-metoder (BHMer)
for å løse disse problemene. Vanligvis er oppførselen til BHMer kun p̊avirket av
informasjon om selve populasjonen. Det har har vært lite bruk av informasjon
innhentet under søket for å p̊avirke optimeringen av BFPer. Flere kriterier sammen
med beskrankninger øker utfordringen med å konvergere mot optimale løsninger i
tillegg til å oppn̊a en høy dekningsgrad av løsninger som oppfyller beskrankningene.
Nyere forskning har brakt frem et to-fase rammeverk kalt Push and Pull Search
(PPS). PPS ignorerer beskrankninger under den første fasen av søket og fokuserer
p̊a å utforske en større del av søkerommet. Under den andre fasen av søket blir
beskrankninger tatt med i beregningen og målet er da å finne optimale løsninger som
ikke bryter beskrankningene til problemet. Denne avhandlingen utforsker bruken
av informasjon innhentet under søket for å videreutvikle det nye rammeverket PPS.
Herunder utforskes hvordan Grensesøk (GS) p̊avirker ytelse, h̊andtering av ulike
problemkarakteristikker, traversering gjennom landskapet, og om hvordan visse deler
av søkerommet blir foretrukket fremfor andre.
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Chapter 1

Introduction

This chapter presents the background and motivation for this thesis in section 1.1.
Section 1.2 explains the goal and research questions. The research method is elab-
orated in section 1.3. Finally, the structure of this thesis is outlined in section 1.5.

1.1 Background and Motivation

When designing the layout of a new city, constructing aeroplanes or scheduling trains
it is paramount to consider every option carefully before making a decision. This is
no simple task as there is seldom one best option but rather a set of possible solutions
with varying trade-offs. Often, certain restrictions are evident such as time, budget
or resources complicating things further. Such problems are called Constrained
Multi-Objective Problems (CMOPs) and finding the set of desired solutions to these
problems is inherently hard.

An option to solve CMOPs is by applying Evolutionary Algorithms (EAs). EAs
are based on the Darwinian theory of evolution. These algorithms evolve a popu-
lation over generations to produce better and better solutions for a problem. EAs
lend themselves well to solving problems not solvable by deterministic polynomial
algorithms [Back, 1996]. Specifically, one class of EAs called Multi-Objective Evo-
lutionary Algorithms (MOEAs) has proved to be capable of solving CMOPs by
introducing some form of Constraint-Handling Method (CHM).

Recently, Fan et al. [2019b] proposed a two-stage framework called Push and Pull
Search (PPS) to solve CMOPs. The framework splits the search into two stages.
The first phase (Push stage) ignores constraints, allowing the population to roam
unhindered by infeasible regions. During the second phase (Pull stage), constraints
are considered. The first stage lends itself to gathering landscape information as
the population is unhindered by infeasible regions, enabling it to cover a larger part
of the search space. This information may then be used during the second stage to
approximate the optimal solutions.

The following work is situated within the field of biologically inspired optimi-
sation and explores the use of landscape information to handle constraints. The
proposed approach enhances the promising framework PPS used to solve CMOPs.
Landscape information is used to perform Boundary Search (BS) to search around
the boundary between feasible and infeasible regions of the problem.

1



2 CHAPTER 1. INTRODUCTION

1.2 Goals and Research Questions

This section describes the goal and the Research Questions (RQs) of this thesis. The
research goal of this thesis is as follows:

Goal Investigate how landscape information can increase the performance of PPS
when solving CMOPs.

The population moves freely, unaffected by infeasible regions, during the Push
stage. Therefore, this stage naturally lends itself to exploration and information
gathering. The information gathered can then be utilised during the Pull stage to
approximate the desired solutions. Thus, efforts are focused on investigating which
information is useful for solving CMOPs, how this information should be gathered
and finally how it should be applied during the Pull stage to benefit PPS. An increase
in convergence, coverage and efficiency is sought. If this is not achieved, the goal is
to understand why the proposed improvements are not beneficial to the framework.

The following research questions are explored:

RQ1 What landscape information extracted during the evolutionary search can ben-
efit PPS to increase convergence to and coverage of the constrained Pareto-
optimal Front (PF)?

RQ2 How do different problem characteristics affect the performance of BS?

RQ3 How does the use of BS affect the traversal to the constrained PF through
infeasible space?

RQ4 How can BS introduce a bias towards certain areas of the objective space?

1.3 Research Method

The research method applied has been an analytical process. A structured literature
review was conducted to identify potentially useful landscape information. Further,
methods to incorporate this information into PPS were analysed to identify how the
performance of the framework could be improved.

The knowledge accumulated from the literature review was then used to justify
the selection of landscape information and how to utilise it. A visualisation and
logging tool was developed to monitor the performance of the model. Results from
both the literature review and the preliminary testing justified the design decisions of
the algorithmic model. An experimental plan was developed and executed to answer
the RQs described in section 1.2. The results of the experiments were analysed and
discussed. Next, an assessment was performed of the extent to which the research
goal was answered. Finally, the contributions of this thesis were elaborated together
with future work to further research the use of landscape information in solving
CMOPs.
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1.4 Research Process

The research process was divided into three distinct phases:

1. The initial literature search to find a topic for the master thesis.

2. Creating a structured literature review protocol to find relevant literature and
reduce the scope of the search.

3. Conducting a structured literature review of the literature found and placing
this work in context of the state-of-the-art.

These phases are discussed below.

1.4.1 Initial Literature Search

Due to an open project description and little to no restrictions put upon the work,
the initial literature search was the process of finding various topics related to bio-
logically inspired Artificial Intelligence (AI). To do so, search engines such as Google
Scholar and IEEEXplore were used. Also, recent work of known researchers such as
Kalyanmoy Deb and Carlos A. Coello Coello was reviewed. Through an iterative
process of discovering new research topics in different sub-fields a research objective
emerged. This process is illustrated in figure 1.1 and further elaborated below.

The initial idea was to research the field of Multi-Objective Optimisation (MOO).
Inspired by Baug et al. [2019], the search delved into the use of adaptive Parallel
Genetic Algorithm (PGA) to solve bin-packing problems. A novel approach using
Ant Colony Optimisation (ACO) on top of Island Genetic Algorithm (IGA) was pro-
posed. The idea was to evolve the island topology by strengthening and weakening
connections between sub-populations based on the impact of migration. After some
research the approach seemed too complex as simpler ones have already produced
good results.

The search shifted focus to finding a suitable application area. Norsk Kylling1

was introduced as a potential collaborator. This gravitated the search towards
literature regarding biologically-inspired AI in Supply Chain Management (SCM).
Reading the literature evolved a better understanding of Differential Evolution (DE),
a simple EA not burdened by extensive parameter-setting which has achieved good
results. Exploring applications of DE, a paper by Jevne et al. [2012] inspired the
search to focus on DE used to solve portfolio optimisation. It was realised that
a specific application area was not as motivating or important. Instead, it was
preferred to focus more on techniques for solving MOOs.

The search returned to the field of MOO. The research uncovered that most
approaches to MOEAs use a “convergence first, diversity second” approach [Liu
et al., 2017]. In addition, two techniques were further investigated: Opposition
Based Learning (OBL) [Talukder et al., 2016] and PPS Fan et al. [2019b]. Using
OBL together with PPS to alter the balance between convergence and diversity was
pursued. Most research on OBL address the enhancement of convergence, therefore,

1Norsk Kylling

http://www.norsk-kylling.no/om-oss/
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Figure 1.1: Flowchart illustrating the initial literature search.

exploring new ways of utilising the technique could be beneficial. However, OBL
was later deemed to not be a good fit for PPS in regards to diversity.

Driven by the interest in PPS, constraint handling in MOO was reviewed. It
was found that CMOEAs have received little focus compared to constraint-handling
for Single-Objective Optimisation Problems (SOPs) [Del Ser et al., 2019]. Thus, it
was decided to define the research objective as using landscape information to solve
CMOPs.



1.4. RESEARCH PROCESS 5

1.4.2 Structured Literature Review Protocol

The structured literature review protocol was created to find relevant literature for
the thesis. Literature Review Questions (LRQs) were defined to control the scope
of the review. Due to the open nature of the project the research questions have
changed over time. Initially, the focus was on the use of adaptivity in MOO. Over
time, this changed to how information gathered during the search could help solving
problems and MOO changed to Constrained Multi-Objective Optimisation (CMO).

With the research objective narrowed down, the following LRQs were defined:

• LRQ1: What information could be beneficial to gather during the search and
how should it be gathered?

• LRQ2: What should the gathered information be utilised for and how should
it be used?

Search terms were defined to help answer these questions. To find publica-
tions, the search engines Google Scholar, IEEEXplore and Web of Knowledge were
used. To reduce the amount of literature to be reviewed, some selection criteria
were set: Qualifying-, Evaluation- and Inclusion Criteria. These factors have been
summarised in table 1.1.

Search
Terms

Search space analysis, landscape information, surrogate model,
BS, Fitness Landscape Analysis (FLA), MOEA, CMOEA,
constraint-handling, two phase, biphasic.

Qualifying
Criteria

• Literature should be related to the field of Evolutionary Com-
putation (EC).
• Article seems relevant after reading abstract and conclusion.
• Should provide results or proof of strengths.

Evaluation
Criteria

• Models or algorithms should be reproducible.
• The research should be comparable with other approaches or
models.
• The authors justify their design choices.

Inclusion
Criteria

• The work needs to be published by trusted researchers or jour-
nals.
• The work needs to be dated post the year 2000.

Table 1.1: Search terms and selection criteria for articles used when performing the
structured literature review.

1.4.3 Structured Literature Review

The third and final phase of the research process encompassed using the structured
literature review protocol to find relevant work. The first step was to map previous
efforts to constraint-handling when solving Multi-Objective Optimisation Problems
(MOPs). In addition, methods for using information gathering were evaluated.
Subsequently, a review of the results was conducted to find approaches that could
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lend themselves to PPS. This led to the discovery of fitness landscape analysis,
surrogate models and boundary search. The remainder of the literature review was
dedicated to further evaluating and researching these methods.

1.5 Thesis Structure

The structure of this thesis is as following: chapter 2 introduces relevant informa-
tion and concepts required to understand the research. Then, chapter 3 describes
the motivating factors for doing the research and the state-of-the-art is highlighted.
After that, chapter 4 describes the proposed model, and important design decisions.
Finally, chapter 5 contains the experiments and results of the proposed model and
chapter 6 discusses the results gathered as well as possible further work and con-
cluding remarks.



Chapter 2

Background Theory

This chapter lays the theoretical foundation needed to understand the contributions
of this thesis. Theory on optimisation, constraint handling and EAs is given.

2.1 Optimisation

The purpose of optimisation is to solve a task by finding the optimal solution(s) out
of a set of possible solutions. This is achieved by finding the input variables that
minimise or maximise, depending on the problem at hand, the output of a function.
Without the loss of generality, only minimisation functions are assumed. Normally,
the optima of the function, in real-world problems, is not known before-hand and
may require extensive search to be found. Formally, SOPs may be defined as in
[Coello et al., 2007] as:

Definition 2.1.1. SOP A SOP is defined as minimising the scalar f(x) where x is
an n-dimensional decision variable vector x = (x1, ..., xn) from some universe Ω.

f(x) is often called the objective function and the output is called the fitness
of x. The output of the objective function is minimised for all possible solutions x
having n decision variables. The range of fitness values is known as the objective
space while the search space, Ω, is the range of values for the decision variables.

Figure 2.1 illustrates a simple optimisation problem with only one decision vari-
able x. The global extremum is highlighted by a green circle whilst the local ex-
tremum are highlighted by a blue square. This simple example illustrates that there
are multiple values for x that give locally optimal solutions, but only one results in
the global optimal. Also, notice that going from a local minima to the global is not
always easy due to how the landscape between the points may look like.

2.2 Metaheuristics

Stochastic Optimisation is a class of algorithms and techniques that employ some
degree of randomness to find solutions to some problem. The most general of these
algorithms are called metaheuristics. Metaheuristics are applied to problems where
the optimal solution is unknown, there is no structured approach to finding it,

7
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Figure 2.1: Single-objective optimisation example.

there is little heuristic information available and brute force is not a viable option.
However, given a candidate solution to the problem, it is possible to test it and
assess the quality of the solution.

It is common for metaheuristics to use a combination of exploration and exploita-
tion to solve a problem. The aim of exploration is to find promising regions in the
search space, focusing on global search. Exploitation on the other hand focuses on
search near already found promising solutions, focusing on local search.

2.3 Evolutionary algorithms

EAs are metaheuristics inspired by biological evolution. These algorithms typically
consist of a population of candidate solutions that are mutated and recombined in
some way to improve the population, until a sufficient solution is reached.

2.3.1 Differential Evolution

Differential Evolution (DE) is one type of EA. The approach has shown an ability
to solve several real world problems [Neri and Tirronen, 2010]. The flow of DE is
illustrated in Figure 2.2 and further elaborated in this section.

2.3.1.1 Initialisation

The first step in DE is to initialise the population. A common approach to this is
simply to initialise each individual at random. If no prior knowledge of the topology
of the search space or the viability of each solution, random initialisation encourages
diversity and the population covers a large portion of the search space. However,
using heuristics or knowledge of the problem domain may lead to better starting
conditions and therefore also a better convergence. On the other hand, heuristics
and domain knowledge may thwart the search by limiting exploration of the whole
search space leading to premature convergence.
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Start
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Figure 2.2: Flowchart of DE.

2.3.1.2 Mutation

During each generation, DE generates a mutation vector (donor vector) for each
individual (target vector) in the population. The exact method may vary, but the
simplest approach commonly used is described in equation (2.1):

di = xr1 + F ∗ (xr2 − xr3) (2.1)

where i ∈ 1, ..N , N is the population size and i 6= r1 6= r2 6= r3. F is a scaling
factor, usually in the range (0, 1]. di is the produced donor vector later used during
crossover. xr1 , xr2 and xr3 are random distinct individuals from the population.

There are different approaches, either exploiting knowledge regarding the best
known individuals or focusing more on random exploration.

2.3.1.3 Crossover

The DE crossover implements a recombination of the created donor vector, di and
the corresponding target vector pi to create a trial vector. A common approach to
crossover is defined below:

ti,j =

{
di,j if rand < CR or j == jrand

pi,j otherwise

ti = {ti,1, ...., ti,d}
(2.2)

where ti is the trial vector created from the target and donor vectors. d is the
size of the vectors and j ∈ [0, d]. CR is the crossover rate, which is a predefined
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value in the range [0, 1]. rand is a random number computed for each j in the range
(0, 1). Finally, jrand is a random integer computed once for each individual in the
range [0, d].

In the case that a value ti,j violates the boundary constraint put upon the value,
it is reset using some form of repair function.

2.3.1.4 Selection

Selection is the process of deciding which individual of the target vector in the
population and the newly created trial vector should survive to the next generation.
Some sort of fitness function or ranking operator is used to describe how good
each individual is with respect to the given problem and each other. For SOPs,
some numerical value that can be directly comparable to another is sufficient to
distinguish the quality of the individuals. For MOPs more advanced evaluation
and sorting techniques are needed to compare individuals, like Pareto Dominance
(definition 2.4.2).

2.3.1.5 Termination

At the end of each generation the algorithm checks for a certain stop condition
being met. If this is the case, the termination of the algorithm happens. If not, the
algorithm continues the evolution. The condition may be any single or combination
of the following:

• A certain number of generations has been iterated.

• A certain number of computations has been performed.

• A certain fitness or evaluation score has been met.

2.4 Multi-Objective Optimisation

In addition to SOPs, there exist problems which have more than one objective to
optimise. These problems are subject to MOO. A simplified example of this is
minimising cost while maximising quality when buying a product. Most real-world
optimisation problems are more comparable to MOPs than SOPs. Formally, MOP
may be defined as [Coello et al., 2007]:

Definition 2.4.1. Multi-Objective Optimisation Problem
A MOP is defined as minimising f(u) = [f1(u), f2(u), ..., fk(u)] subject to u ∈ Ω.

F (u) is a vector with k objectives where u = [u1, u2, ..., un] is an n-dimensional
decision variable vector in some universe Ω.

In MOPs, the concept of “optimum” changes due to having multiple objective
functions. This is because the aim is not to find a single global optimum, but
rather to find good “trade-offs” between the different objective functions. The most
commonly adopted notion of “optimum” is Pareto optimum.

Below, a set of Pareto definitions are presented [Coello et al., 2007]. The purpose
of these definitions is to simplify explanation in later parts of this thesis:
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Definition 2.4.2. Pareto Dominance
A vector u = (u1, ..., uk) is said to dominate another vector v = (v1, ..., vk) if

and only if ∀i ∈ {1, ..., k}, ui ≤ vi ∧ ∃i ∈ {1, ..., k} ui < vi. This notion is denoted
u � v.

Definition 2.4.3. Pareto Optimality
A solution vector u ∈ Ω is Pareto Optimal with respect to Ω if and only if there

is no solution vector v ∈ Ω for which v � u.

Definition 2.4.4. Pareto-optimal Set (PS)
For a given MOP, the PS is defined as:

PS = {u ∈ Ω | ¬∃v ∈ Ω v � u} (2.3)

The PS is the set of solutions that are not dominated by any other solution in the
search space.

Definition 2.4.5. PF
For a given MOP and PS, the PF is defined as:

PF = {f(u) | u ∈ PS} (2.4)

The PF is the PS plotted in the objective space.

Figure 2.3 illustrates many of the concepts defined above. The problem is a
minimisation problem of the two objectives f1 and f2. The circles are points be-
longing to the true PF as per definition 2.4.4. The other sets of points, denoted by
different shapes, are sets of non-dominating points with different ranks or belonging
to different non-dominating sets. The rank of a point is dependent of how many
non-dominating sets which dominate it. All the squares dominate the triangles and
diamonds, while all the triangles dominate the diamonds.

f1

f 2

1
1−e−x − 1

Pareto Optimal
Low Rank

Medium Rank
High Rank

Figure 2.3: Multi-objective optimisation example.

In general, it is not a simple task to find an analytical expression of the line or
surface which is the PF. One approach is to compute multiple points in Ω and their
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corresponding f(Ω). When a sufficient number of points have been computed it is
possible to determine the PS and then determine the PF. This is done by finding
more and more solutions which either dominate or belong to the current set of non-
dominating solutions of the lowest rank. Note that the best known solutions are not
necessarily a part of the actual PF, this is however the end goal.

At a certain point, the search is ended. This may be the result of the solutions
being of a certain calibre, a predefined time has passed, or the improvement in
points found is halted. Note that at the end of the search, a specific solution has
not been selected. The result of the search is a set of options to choose from, which
are believed to be the best alternatives. The task at hand is thus to select one of
the solutions. This is done through a decision maker, which may either be a person
or some automated process.

2.4.1 Multi-Objective Evolutionary Algorithm based on De-
composition

λ1

λ2

λ3

λ4

λ5

λ6

λ7

f1

f 2

Neighbourhood
Weight
Optimal

(a) Aggregation coefficient vectors.

z∗

f(x)

|f(
x)
− z
∗ |

f1

f 2

Optimal
Ideal point
Individual

(b) Distance between the individual xi and an
ideal point z∗.

xj

y

z∗

λj

f1

f 2

gte(x|λj, z∗)
Weight
Optimal

Individual

(c) The calculated Tchebycheff values for xi and
y against the subproblem defined by λj and z∗.

Figure 2.4: Different aspects of MOEA/D.
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Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D)
decomposes a MOP into N scalar optimisation subproblems. A scalar aggregation
function defines these subproblems. One way of defining such a subproblem is to
use the Tchebycheff approach, as defined in equation (2.5).

minimise gte(x|λ, z∗) = max
1≤i≤m

{λi|fi(x)− z∗i |}

subject to x ∈ Ω
(2.5)

where z∗ = (z∗1 , ..., z
∗
m)T is the reference point, i.e. z∗i = min{fi(x)|x ∈ Ω} for

each i = 1, . . . ,m. The reference point, z∗, is updated with every newly generated
offspring. This allows the point to move further towards origin as the individ-
uals within the population improve. λi is aggregation coefficient vector defining
the subproblems weight towards an area of the search space. Each subproblem is
solved simultaneously by evolving a population of solutions where primarily informa-
tion from the neighbourhood of subproblems is used. The neighbourhood relations
among the subproblems are defined based on the distances between their aggrega-
tion coefficient vectors as visualised in figure 2.4a. A uniformly distributed vector
set allows a uniform distribution among the subproblems.

The fundamental mechanic of the Tchebycheff approach is the prioritisation of
individuals closest to z∗ as visualised in figure 2.4b. The goal of the algorithm is
to find one individual that performs superior to all others within a subproblem.
An essential key to the algorithm is, therefore, an equal amount of individuals as
there are subproblems. The work by Zhang and Li [2007] generates the aggregation
coefficient vector from a defined set

{
0
H
, 1
H
, . . . , H

H

}
. H thus needs to be defined

and is the controlling parameter for the population count. One generation of the
algorithm involves iterating over each subproblem, producing an offspring from ran-
domly selected individuals within the neighbourhood, defined as y. The offspring is
then compared against all individuals within the neighbourhood, taking the place of
inferior individuals as defined in equation (2.6), where j is the index of each vector
in the neighbourhood.

xj =

{
y if gte(y|λj, z∗) ≤ gte(xj|λj, z∗)
xj otherwise

(2.6)

Figure 2.4c visualises the comparison between y against xj within the subproblem
defined by λj. y has a lower, and therefore better, score visualised by the shorter
solid line expanding from the nodes in the figure. In this example, y takes the place
of xj.

2.5 Constrained Optimisation

In most real-world optimisation problems there may exist restrictions either due
to characteristics of the environment or available resources. To achieve acceptable
solutions, these restrictions need to be satisfied. In general, these restrictions are
called constraints. Usually, these constraints are expressed through mathematical
inequalities or equalities as described in equation (2.7).
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gi(x) ≤ 0 for i = 1, ...,m

hj(x) = 0 for j = 1, ..., p
(2.7)

where x are decision variables, m is the number of inequality constraints and p is
the number of equality constraints. Greater-than-or-equal-to inequality constraint
(gj(x) ≥ 0) may be accommodated by multiplying the left side by −1.

Both definitions of SOPs and MOPs can be expanded with these constraints
turning them into Constrained Single-Objective Optimisation Problems (CSOPs)
and CMOPs respectively.

f1

f 2

Feasible Individuals
Infeasible Individuals

Infeasible Regions

Figure 2.5: Search space with feasible and infeasible individuals.

Constraints of a problem define infeasible regions in the decision space. This is
illustrated in figure 2.5. Solutions that violate constraints are known as infeasible
individuals and are located inside these regions - the squares. Solutions that do not
violate constraints are called feasible individuals - the circles.

Depending on where these regions are located in the objective space, they affect
the search for the PF in different ways. These can be grouped into three different
categories:

• Infeasible regions block the way to the PF.

• Infeasible regions cover the whole PF.

• Infeasible regions cover parts of the PF.

Figure 2.6a illustrates the first category where infeasible regions cover a large
area of the search space. In these cases, the PF are not directly affected or altered
by the constraints. With infeasible regions blocking the way to the PF, the challenge
is to get passed these regions.

Figure 2.6b illustrates the instance where the whole PF is covered by infeasible
regions. In this case the notion of PF is divided into two types: unconstrained PF
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f1

f 2
Pareto Front

Infeasible Region

(a) Infeasible region blocking the way to the PF.

f1

f 2

Unconstrained PF
Constrained PF
Infeasible Region

(b) Infeasible region covering the whole PF.

f1

f 2

Unconstrained PF
Constrained PF
Infeasible Region

(c) Infeasible regions covering parts of the PF.

Figure 2.6: Different ways infeasible regions may affect the PF.

illustrated by the blue thin line and constrained PF illustrated by the thick green
line. The goal is to approximate the constrained PF.

Figure 2.6c illustrates the third instance where the PF is partially covered by
infeasible regions. Here the constrained PF is made up of parts from the uncon-
strained PF and the boundary between feasible and infeasible space, created by
infeasible regions.

In figures 2.6b and 2.6c the constrained PF is located on the border between
feasible and infeasible space. The constraints creating the infeasible space which
separate the unconstrained from the constrained PF are called active constraints.
The definitions of what an active constraint is varies. In this work definition 2.5.1
is used:

Definition 2.5.1. Active Constraint
A constraint is said to be active if the boundary of the infeasible region it creates

in the objective space intersects the constrained PF. In the case that a problem has
any active constraints, an individual that lies on the constrained PF will have a
constraint value of 0 for one or multiple active constraints.

Conversely, a inactive constraint is a constraint which does not intersect with the
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constrained PF. Inactive constraints thus have no direct effect on the constrained
PF, however, they may still affect the search as they also produce infeasible regions
in the objective space.

2.5.1 Constraint-Handling

When solving CMOPs, some form of constraint-handling is required. The purpose
of constraint-handling techniques is to guide the search towards the constrained PF
opposed to the unconstrained PF.

One such approach is to use penalty functions. Using this approach, the con-
strained optimisation problem is turned into an unconstrained one. This is achieved
by expanding the objective function to be optimised as defined in equation (2.8):

fitness(x) = f(x) + φ(x)

where

{
φ(x) = 0, if x ∈ F
φ(x) > 0, if x 6∈ F

(2.8)

fitness(x) is the expanded objective function. f(x) is the original objective func-
tion and φ(x) represents a penalty for an infeasible individual x, or the cost for
making it feasible. The penalty is 0 if x is in feasible space F , and greater than 0
if not. The penalty should be kept as low as possible, but still prohibit infeasible
solutions to be seen as optimal. This notion is conceptually simple, however, in
practice it is difficult to implement this rule. The difficulty is due to that the exact
location of the boundary between the feasible and infeasible regions is unknown in
most problems.

Takahama and Sakai [2005] proposed a constraint-handling method called ε-
Constraint-Handling (εCH). The method builds on the idea of penalty and similarly
computes a constraint violation as follows:

φ(x) =
∑
i

max(0, gi(x))p +
∑
j

(hj(x))p (2.9)

where φ(x) is the sum of all constraint violations defined in equation (2.7) and
p is a positive number. The difference here is that the fitness is not expanded by φ.
Instead, the two following concepts are used:

The two main components of the method are:

• A relaxation of the limit to consider a solution feasible, based on its constraint
violation.

• A lexicographical ordering mechanism where the minimisation of the constraint
violation precedes the minimisation of the objective function called the ε level
comparison.

Assuming fi and φi are the function values and the constraint violation of an
individual i respectively. Then, for any ε ≥ 0, ε level comparisons <ε and ≤ε between
two points are defined as follows:
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(f1, φ1) <ε (f2, φ2)⇐⇒


f1 < f2, if φ1, φ2 ≤ ε

f1 < f2, if φ1 = φ2

φ1 < φ2, otherwise

(2.10a)

(f1, φ1) ≤ε (f2, φ2)⇐⇒


f1 ≤ f2, if φ1, φ2 ≤ ε

f1 ≤ f2, if φ1 = φ2

φ1 < φ2, otherwise

(2.10b)

An optimisation problem solved using the ε-constraint handling method is de-
fined as follows:

(P≤ε) minimise≤ε f(x)

subject to φ(x) ≤ ε
(2.11)

where minimise≤ε denotes the minimisation based on the ε level comparison ≤ε.
During the evolution, the ε level is controlled using equation (2.12).

ε(0) = φ(xθ)

ε(t) =

{
ε(0)× (1− t

Tc

cp
), if 0 < t < Tc

0, t ≥ Tc

(2.12)

where ε(0) is the initial ε level set to the constraint violation of some individual
xθ. The selection of xθ can either be random or based on some specific criteria,
for instance the individual with the largest constraint violation. Tc is some control
generation where the updating of the ε level is halted and set to 0. Finally, cp
is a parameter used to control the speed of reducing the relaxation of constraints.
Controlling the ε level forces the population further and further out of the infeasible
regions of the search space.

2.6 Informed Search

Informed search is the notion of using some form of information to guide the search
in a desired direction. This can for instance be to explore specific regions of the
search space believed to contain good solutions, or it can be to force the exploration
of new regions.

The specific information used, and how it is used may vary. Some approaches
are introduced below.

2.6.1 Surrogate Models

For many problems, the objective functions being minimised may prove challenging.
This can either be in the form of heavy computations or simply the produced ob-
jective landscape being difficult to traverse. A surrogate model is an approximation
of the objective function used to construct simpler and lower computational cost
models, and is defined in equation (2.13).
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f ′(x) = f(x) + e(x) (2.13)

Where f(x) is the original objective function and e(x) is an approximated error.
Using individuals and their respective fitness evaluation, these models can generate
simpler representations that capture relations between the search space and objective
space, and not the underlying process. A benefit with this approach is that there
is no need to understand the internal behaviour of f(x), only the input/output
behaviour is required.

Shi and Rasheed [2010] grouped the use of surrogate models in EAs into two
types: Direct Fitness Replacement (DFR) and Indirect Fitness Replacement (IFR).
DFR is an approach that uses the surrogate model to asses the solutions directly
in the evolutionary process. This approach assumes that the achieved fitness of
the surrogate model are comparable to the fitness achieved by the original objective
function. IFR approaches do not use the surrogate model directly in the evolutionary
process. Instead, the original objective function is used by the MOEA for a coarse
grained search. The surrogate model is used for exploitation in the form of local
search.

2.6.2 Fitness Landscape Analysis

A fitness landscape can be described by equation (2.14).

FL = (f, d) (2.14)

where the fitness landscape, FL, is described by f defining the objective value
and d defining the distances between individuals in the search space. This makes
the fitness landscape not only dependent upon the problem, but also the selected
representation and how operators are used for recombination of individuals.

The purpose of FLA is to gain a better understanding of how a heuristic algo-
rithm performs and progresses through the landscape of the objective space. One
approach is to perform a walk through the landscape. This is done by moving, or
evolving, individuals while keeping an eye on the development of the fitness. Using
this technique, fitness landscapes can be explored with a bias towards the fitter
regions by forfeiting details in lower quality and thus less explored regions.

2.6.3 Boundary Search

As discussed in section 2.5, constraints can affect the PF in various ways. Often,
this leads to the PF being located on the border between feasible and one or more
infeasible regions. BS is based on this assumption and uses special operators to
approximate the border between infeasible and feasible search space. One interesting
characteristic of BS is the reduction of the search space. The reduction is due to
exploration focusing on the part of the search space where feasible and infeasible
space is bordering. Several methods for BS have been proposed

Metkar and Kulkarni [2014], viewed every constraint as an extra objective. In
this approach, the closer an individual is to a constraint border the less the fitness



2.7. BENCHMARKS 19

of the individual is impacted. One downside with this approach is that inactive
constraints may impact the fitness of individuals in a negative manner.

2.7 Benchmarks

To evaluate optimisation algorithms, benchmarks are often used. Benchmarks al-
low for a controlled setting to find both strengths and weaknesses of an algorithm.
With benchmarks, the optimal solution(s) are known beforehand and the functions
themselves are often computationally inexpensive. However, benchmarks have diffi-
culties capturing the challenging nature of real-world problems. For MOO, the true
PF for the test problem is visualised together with the PF found by the algorithm.
There are some typical problem characteristics which benchmarks try to emulate.
These characteristics include unimodal vs. multimodal, convex vs. concave, and
differentiable vs. non-differentiable.

Test suites are a set of test functions which include a mix of different character-
istics. By applying an algorithm to the complete test suite one can see which types
of problems an algorithm handles well and which types of problems are challenging.
Test suites ensure that testing is performed on an assortment of test functions and
not only a certain type of problems.

2.8 Multi-Objective Performance Metrics

MOPs produce a set of solutions. Different performance metrics are used to evaluate
the quality of these solutions. Usually, these metrics give a numerical value which
represents the quality of a given solution or set of solutions. This section describes
a few common performance metrics that will be used to evaluate the results of the
experiments in this thesis.

2.8.1 Feasibility Rate

The CMOP Feasibility Rate (FRc) describes the ability of an algorithm to obtain
feasible solutions to a CMOP as described by equation (2.15).

frc =
Q

n
(2.15)

Where Q is the number of runs where the algorithm discovered at least one
feasible solution and n is the total number of runs. The value is in the range [0, 1]
where 1 is the desired value and represents the reliability of the algorithm to find
feasible solutions.

2.8.2 Feasibility Ratio

The Population Feasibility Ratio (FRp) is the ratio between feasible and infeasible
individuals within the population. The Population Feasibility Ratio (FRp) can is
defined by the equation (2.16)
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frp =
F

n
(2.16)

Where F is the number of feasible individuals and n is the population size. If
the Population Feasibility Ratio is 1, all of the individuals is feasible.

2.8.3 Inverted Generational Distance

Inverted Generational Distance (IGD) is a metric which measures the distance be-
tween the known PF and the true PF by looking at the distance of each solution in
PFtrue to the closest point in PFknown. The performance metric not only measures
the convergence of the known PF, but also the coverage of the true PF. Due to the
point of view being from the true PF, a population which has converged to a small
part of the true PF will give a poor score for IGD. Equation (2.17) illustrates how
IGD is computed:

IGD(PFknown,PF true) =
calculateDistance(PFknown,PF true)

|PF true|
calculateDistance(PFknown,PF true) =

∑
p∈PFtrue

d(p,PFknown)
(2.17)

Where PFknown is the PF found by the algorithm and PFtrue is the PF of the
problem. calculateDistance is the method used to calculate the distance. In the
case of equation (2.17), a simple summation over the distance is used. d is some
predefined function to calculate the distance between a point, p, in PFtrue and the
PFknown. The closer IGD is to 0, the better. Obtaining a measure of 0 is optimal,
and indicates that the known PF is evenly spread out over the true PF.

2.8.4 Hypervolume

Zitzler and Thiele [1998] was the first to propose Hypervolume (HV) as a per-
formance measure. They identified it as the size of the space covered or size of
dominated space. The HV is obtained using equation (2.18).

HV (PFknown) = L

( ⋃
p∈PFknown

[f1(p), z
r
1]× ...× [fm(p), zrm]

)
(2.18)

where zr = (zr1, ...z
r
m)T is a reference point used to bind the objective space. m

is the number of objectives. The measure prefers convex to non-convex regions. In
other words, the measure is used for maximisation problems, but works on minimi-
sation problems if the PF is inverted prior to calculating the HV. L is called the
Lebesque measure.

Some calculations of HV in this thesis will be performed on problems with char-
acteristics similar to figures 2.6b and 2.6c where the reference point is defined as the
nadir point of the constrained PF. A population thus has the possibility of being
located on the unconstrained PF. As the unconstrained PF might be located further
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from the reference point than the constrained PF, a population located closer to the
unconstrained PF will perform better. In these cases the HV metric will be mis-
leading with regards to the true PF and a infeasible population will seem superior
to a feasible population.

2.8.5 Crowding Distance

The Crowding Distance (CD) defines the space in between an individual and it’s
neighbouring individuals. The concept assumes that the individuals in the neigh-
bourhood are not dominated by the individual. The metric is meant to give an
indication of diversity or coverage, where an individual with a larger CD typically
can be seen as more diverse. The metric is defined in equation (2.19)

CD(j) =
M∑
i=1

dji
fmaxi − fmini

(2.19)

Where dji = |f j+1
i − f j−1i | is the distance between the ith objectives of individ-

ual the neighbouring individuals j + 1 and j − 1. fmaxi is the highest objective
value achieved within the population, correspondingly fmini is the lowest objective
value. The outermost individuals in the population has their CD set to ∞ as these
individuals only has a single neighbour in a given objective dimension.

When CD is referred to in the context of a population, the sum of crowding
distances of all individuals in the population is implied. When calculating the sum,
the outermost individuals are removed as ∞ cannot be summed.



22 CHAPTER 2. BACKGROUND THEORY



Chapter 3

Motivation and State of the Art

This chapter presents the state of the art and the motivation for this thesis. First,
the recent advances in CMOPs are presented in section 3.1 with emergent challenges.
Then the PPS framework used for CMO is elaborated in section 3.2. Finally the
fields of informed search and BS in sections 3.3 and 3.4 are presented as possible
extensions to the PPS framework.

3.1 Constrained Multi-Objective Problems

Algorithms have been essential to solving emerging problems in the modern world.
Where humans are incapable of solving these problems directly, algorithms have
been developed as a tool to help solve the issues at hand. As the modern world
evolves and becomes more complex, so do the problems that need to be solved
[Tanweer et al., 2016; Bonyadi et al., 2013]. From SOPs to MOPs, the complexity
increases as conflicting criteria must be taken into consideration. Similarly CMOPs
increase the complexity further by adding constraints. CMOPs can be seen in the
real world infrastructure and applications as water distribution networks [Monsef
et al., 2019], scheduling and vehicle routing problems [Paraskevopoulos et al., 2017].

3.1.1 Artificial Problems

To help develop algorithms suited to solve CMOPs, benchmarks are created. In
recent years, real-world problems have been studied and benchmarks currently used
have been criticised for not being lifelike enough and not consisting of the same
characteristics as real-world problems [Ma and Wang, 2019].

Several benchmarks for testing CMOEAs have been solved without the use of
CHM [Tanabe and Oyama, 2017]. The reason is that the constrained PF being
unchanged from the unconstrained PF. This is the case for problems where infeasible
regions block the way to the PF, described in section 2.5. Thus, approximating the
unconstrained PF will produce similar results as approximating the constrained PF
[Tanabe and Oyama, 2017].

New constraint composition methods have been created to produce new test
suites. The aim of these test suites is to better analyse the performance of CMOEAs
using benchmarks that better mimic real-world problems. Li et al. [2016] proposed

23
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a set of new benchmarks where the constrained and unconstrained PF were sepa-
rated. Similarly, Fan et al. [2019a] and Ma and Wang [2019] created new constraint
composition methods to create their own test suites which they called LIR and MW
respectively. These test suites are also dominated by problems where the constrained
and unconstrained PF are either completely separated or only partially overlapping.
Having the two fronts partially or completely separated enhances their capability to
accurately evaluate the performance of a CMOEA, as a MOEA without any CHM
will have problems producing similar results [Tanabe and Oyama, 2017].

Another aspect of real-world problems which has been neglected by many test
suites is that problems often have small feasible regions and a low complexity of the
boundary of feasible and infeasible regions [Ma and Wang, 2019]. Both LIR and
MW feature problems with small feasible regions reducing the likelihood of MOEAs
with no CHM identifying feasible individuals. LIR allows for setting the PF as either
convex of concave. Also, it has the ability to make convergence more difficult by
applying scaling factors to the objective functions. MW allows for more granulated
control and uses constraints to affect that shape and size of the PF to a much larger
extent than Fan et al. [2019a].

A downside to the test suite created by Li et al. [2016] is that the problems are
nearly identical. The size of the feasible space and the continuity of the PF are the
only differences. In contrast, LIR and MW contain different problems. This is in
regards of where the feasible and infeasible regions lie in the objective space, the
number of objectives and constraints, and the difficulty of the objective functions.
Thus, the test suites are more suitable to evaluate the generality of a CMOEA due
to their varying characteristics.

Benchmarks problems do not provide sufficiently complex problems. Hence,
they are not applicable as replacements for their real-world counterparts and it is
therefore difficult to accurately evaluate a CMOEA when all results are good. MW
show a much more complex structure as opposed to LIR. Due to them being more
complex, MW are better suited to test the CMOEA as a whole. However, LIR is
well suited to analyse the performance of CHMs as the main focus of this test suite
is the constraints and the difficulty of handling them.

3.2 The Push and Pull Search Framework

After creating the LIR test suite, Fan et al. [2019b] created a new biphasic CMOEA
called PPS. The framework performed well on LIR when compared to other state-
of-the-art algorithms. However, it has not been tested on other CMOPs.

The framework splits the search into two different stages in an effort to balance
objective minimisation and constraint handling. During the first stage, the popu-
lation is pushed toward the unconstrained PF without considering any constraints.
In the pull stage, the population is pulled towards the constrained PF using an
Improved ε-Constraint-Handling (IεCH) approach.

Results from the experiments highlight two key features of the framework [Fan
et al., 2019b]: It has the ability to get across large infeasible regions and it facilitates
information gathering. Due to constraints being ignored during the push phase, the
population can move unhindered by infeasible regions. Also, not being restricted
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by infeasible regions allows the population to traverse a larger part of the objective
space. Thus, information about the landscape may be collected and then used.

As mentioned in section 2.5, infeasible regions may interact with the PF in three
distinct ways [Fan et al., 2019b]:

1. Infeasible regions are blocking the way towards the PF, as illustrated in fig-
ure 2.6a. In this case, the unconstrained PF and the constrained PF identical.
The infeasible regions have no effect during the push phase of PPS due to
constraints being ignored. The true PF is approximated during the first stage
due to the constrained and unconstrained PFs being the same. Therefore, the
pull stage will have little to no effect on the working population.

2. Infeasible regions cover the entire unconstrained PF, as illustrated in fig-
ure 2.6b. Due to the unconstrained PF being covered by infeasible regions, the
constrained PF lies on some constraint boundary. In this case, PPS will ap-
proach the unconstrained PF during the push phase, passing the constrained
PF. When the pull stage is commenced, the working population is pulled away
from the unconstrained PF and towards the true (constrained) PF.

3. Infeasible regions cover parts of the unconstrained PF, as illustrated in fig-
ure 2.6c. In this case, PPS will approximate some of the true PF during the
push stage. Later, when the pull stage is commenced, the rest of the true PF
will be approximated.

A critical part of the framework is the mechanism to switch between phases. It is
beneficial for the framework to stay in the push phase for a sufficient amount of time
to either reach or pass the constrained PF. This is to allow the CHM to start the pull
phase with an optimal population, effectively guiding the population from optimal
infeasible solution, to optimal feasible solutions. By the original work proposed,
a detection mechanism taking all the three previously mentioned situations into
account is suggested:

rk = max{rzk, rnk} ≤ ε (3.1)

rzk = max
i=1,...,m

{
|zki − zk−li |

max{|zk−li |,∆}

}
(3.2)

rnk = max
i=1,...,m

{
|nki − nk−li |

max{|nk−li |,∆}

}
(3.3)

rzk represents the largest change of the ideal points for the last l generations,
at generation k. rnk represents the largest change of the nadir points for the last
l generations, at generation k. ∆ is a small non-negative number to avoid division
by zero. rk represents the largest change in either ideal or nadir points. If rk is
below a certain threshold, ε, then the population is assumed to have approximated
the unconstrained PF, and thus stagnated. Following this, the frameworks changes
to the pull stage to approximate the constrained PF.
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Fan et al. [2019b] tested PPS with two different CHMs: εCH and IεCH. IεCH is
an extension of εCH. While εCH simply reduces the constraint relaxation during the
whole run as described by equation (2.12), IεCH allows for the constraint relaxation
to be increased again, as shown in equation (3.4).

ε(k) =

{
(1− τ)× ε(k − 1), if rfk < α

ε(0)× (1− k
Tc

)cp, if rfk ≥ α
(3.4)

where ε(k) is the ε level at generation k and ε(0) is set to the max constraint
violation of the run at the point of initialisation of the CHM. rfk is the ratio of
feasible to infeasible individuals in the population and α is a value in the range
[0, 1]. τ is used to control the speed of reducing the constraint relaxation when
rfk < α. cp is similarly used when rfk ≥ α. Just like in εCH, IεCH updates the ε
level until the current generation k reaches Tc.

During all phases, an archive NS is kept to store non-dominated and feasible so-
lutions. The archive is updated as described in NSGA-II Deb et al. [2002], calculated
from the union of the existing NS and the population. The union set is categorised
into fronts by performing non dominant ranking. The ranked fronts are appended
to NS iteratively as long as the size of NS is not overflowed by the addition of the
front. If appending the front will overflow NS, the individuals from the front are
selected based on crowding distance.

Due to the biphasic nature of PPS, the framework lends itself well to informa-
tion gathering. During the first phase, constraints are ignored and the population
traverses the search space unhindered. In the original work, the framework utilises
the known largest constraint violation to initialise the CHM. Other than this infor-
mation, the framework does not utilise the benefit of exploring a larger area before
performing a more concentrated search towards the constrained PF.

3.3 Informed Search

General algorithms have the benefit of being applicable to a vast range of problems.
Specialised algorithms, using knowledge about the problem being solved, may pro-
duce better results but can only be applied to one specific problem [Burke et al.,
2007]. Being able to incorporate problem specific knowledge while keeping the ap-
proach general may greatly enhance an algorithm.

A common approach is to incorporate preferences into the model, provided by
some domain expert or decision maker. These preferences may either restrict the
search space [Calborean and Vinţan, 2011] forcing the CMOEA to search through
a smaller area or it can guide the search into a smaller area without directly con-
straining it [Jain and Deb, 2014].

Manually inserting rules or preferences requires some previous knowledge of the
problem at hand. This may not always be the case, and this approach is a highly
specialised one making the model less applicable to other problems. Jahr et al.
[2012] used data mining methods to extract information from previous problems and
then used a decision tree model to implement them in solving new ones. The results
showed an increase in both convergence and HV values when using the automatically
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generated information. Similarly, Lim et al. [2016] used decision trees to implement
previously extracted information when solving new problems. Their results also
showed an increase in performance compared to other state of the art algorithms.

Depending on the problem, the act of extracting information may be time con-
suming and computationally or manually heavy [Lim et al., 2016]. Also, there is no
guarantee that the information extracted will be useful when solving another prob-
lem. Thus, it may not always be worth exerting effort in solving different problems
and applying information from them to solve another one. Finally, there might not
be any problems similar to the one to be solved. For this reason, it may be difficult
extracting relevant information which may help the search. To avoid these problems
one can instead extract information from the current problem being solved and use
that during the search. In their work, Handoko et al. [2010] showed that utilising
information gathered during search resulted in better performance and increased
efficiency. This coincides with the review by Dı́az-Manŕıquez et al. [2016] which
highlight the potential increase in efficiency from using surrogate models.

Gathering information may add complexity without increasing performance [Ban-
daru et al., 2017]. This may be the case if the incorrect assumptions are made or
the information used is pushing the search away from optimal solutions leading to
premature convergence or stagnation. In the work of Pilat and Neruda [2011] it was
shown that using surrogate models resulted in problems with the later phases of the
evolution. Therefore, effort should be put into making sure that useful information
is gathered and that it does not excessively control the search. Jahr et al. [2012] im-
plemented domain knowledge into the mutation operator that would directly affect
the transformation performed on individuals during evolution. Jain and Deb [2014]
used a different approach where the domain knowledge was implemented as refer-
ence points in the landscape where the user would prefer the search to be conducted.
Both approaches aim to reduce the negative impact of the knowledge restricting the
search by focusing too much on specific areas. The knowledge used by Jahr et al.
[2012] would have a higher probability of being used in the early stages of the search.
Jain and Deb [2014] differ in that the knowledge is used through the whole search.
However, in their approach the preference does not directly restrict the exploration
of other areas.

3.3.1 What Knowledge Should be Used?

The more complex the problem is, the more difficult it becomes implementing in-
formation into the model that correctly represents the information of the domain
expert [Calborean and Vinţan, 2011]. This may result in the domain knowledge
negatively interfering with the evolution. By utilising a simpler model, surrogate
models aim to increase efficiency by allowing more computations may be performed
at a lower cost on a simpler model than the original objective functions. In their
review, Dı́az-Manŕıquez et al. [2016] show the potential usefulness of surrogate mod-
els where several approaches have outperformed models using the original objective
functions directly.

A problem with surrogate models is that they are prone to inaccuracy if the
proper model is not selected or it is poorly constructed [Dı́az-Manŕıquez et al.,



28 CHAPTER 3. MOTIVATION AND STATE OF THE ART

2016]. If too much trust is put into the model, the population may converge to a
false PF. As shown by Pilat and Neruda [2011], relying too much on the surrogate
model stagnates convergence. This may be circumvented by using a mechanism for
switching between the use of the surrogate model and the actual objective function.
Using such a mechanism is heavily reliant on the switchback parameter, and poor
parameter setting may produce bad results [Dı́az-Manŕıquez et al., 2016]. Another
approach is to switch between several surrogate models preferring to use the one
which performs the best [Rosales-Perez et al., 2013]. This increases the changes
of constructing a model which performs well in regards to the original objective
functions. However, with increased number of models, there is an increased cost of
constructing, using and evaluating them. Thus, the overall benefit of using a simpler
model may be lost.

Instead of trying to capture the relationship between the search space and ob-
jective space it is possible to analyse how fitness changes in the landscape. This
approach, known as FLA, has been used to gain a better understanding of the per-
formance on a set of problem instances. Due to FLA being resource heavy, a question
about the usefulness of the method can be raised and whether it is more beneficial
to simply solving the problem [Pitzer and Affenzeller, 2012]. The research into FLA
has focused mostly on neural network training and the relationship between the
objective function and possible designs of the neural network [Bosman et al., 2017;
Van Aardt et al., 2017]. FLA is used to get a deeper understanding of a whole
problem class, and when wanting to find common aspects and differences between
other problem classes [Pitzer and Affenzeller, 2012]. Other than understanding the
underlying problem FLA is used for selecting a fitting solver or parts of the solver
for a problem. An example of this is the use of FLA for algorithm selection for
black-box optimisation problems Wang et al. [2018]. Using a low-cost framework
their results show the validity of basing the choice of algorithm on the analysis of
the landscape. Little to no work has been found where FLA is used in an online
manner to control parameters or searching preference.

When solving CMOPs optimal regions are often located close to the boundary
between feasible and infeasible regions [Handoko et al., 2010]. Knowing where these
boundaries are located may be beneficial when trying to locate the PF. A potential
benefit of knowing where these boundaries are located is that it reduces the search
space, to a potentially much smaller area [Leguizamón and Coello, 2009]. However,
when optimal solutions are not located on the boundary between feasible and infea-
sible regions, focusing solely on a too small region around the boundaries of feasible
and infeasible space may thus alienate the search from the PF. Therefore, proper
mechanisms are needed.

3.4 Boundary Search

BS is a method based on the assumption that optimal solutions often lie on the
boundary between feasible and infeasible space. BS can either be in the form of a
CHM or a specialised search. The common aspect is that it uses special operators
to approximate these boundaries. Over the years, several BS methods have been
applied. This section discusses some of them and how they handle different aspects
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of constraint handling.

3.4.1 Selecting Constraint Boundaries to Approximate

It is not necessarily the case that all constraint are active at the PF. This makes it
preferable to approximate some borders between feasible and infeasible space over
others.

When solving CMOPs there can either be one or multiple constraints. When
there are multiple constraints, some form of selection can be incorporated to decide
which constraints should be approximated and which should not. Three possible
ways of handling multiple constraint with BS are [Leguizamón and Coello Coello,
2009]:

1. Focus on one constraint through the whole run.

2. Focus on all the constraints.

3. Focus on all the active constraints.

The simplest approach is to focus on a single constraint through the whole search
as there is no need for any control logic to switch between which constraint is being
focused by the Binary Search (BiS) method. Additionally, effort is not put into
approximating multiple constraint boundaries which are not active at the PF.

The major downside with this approach is that it requires the selected constraint
to be active, which is not guaranteed unless some information about the problem is
known beforehand as discussed in section 2.6. If the selected constraint is not active
at the PF, the search may be alienated from promising regions. Research shows
that in the case of multiple constraints being active, this approach performs poorly
compared to the other two [Leguizamón and Coello Coello, 2009].

Focusing on all the constraints is by far the most common way of handling
multiple constraint. This approach has the benefit of not ignoring any constraints.
Therefore, no active constraints are missed, and no parts of the PF is actively
excluded from the search. A common approach is to incorporate all constraints into
the objective value in the form of a penalty function as described in section 2.5.1.
This approach to BS has shown to improve the results when solving CMOPs [Metkar
and Kulkarni, 2014; Woldesenbet et al., 2009].

If not all constraints are active, then considering all constraints results in using
resources on approximating boundaries not close to the PF. Focusing only on the
active constraints removes the problem of focusing the search in less promising areas
along the boundaries of inactive constraints. However, this approach requires some
knowledge about which constraints are active or not. This needs to be known
before-hand or extracted through some automated process and implemented into
the model. It has been shown that the best and most stable results are achieved
when approximating constraint boundaries of only active constraints [Leguizamón
and Coello Coello, 2009]. Similar results have been shown by Roald and Molzahn
[2019] and Sallam et al. [2017]. Leguizamón and Coello Coello [2009] knew all the
active constraints a priori. This differs from the work of Roald and Molzahn [2019]
and Sallam et al. [2017] where the active constraints were identified during the
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evolution. The methods showed the ability to identify active constraints, but they
also heavily rely on correctly identifying them. Even still, with the added cost of
identifying the active constraints, better performance was achieved in both cases.
However, contradicting results have also been found in the work of Bonyadi and
Michalewicz [2014]. Considering only active constraints proved to perform worse
than considering both active an inactive constraints.

When approximating multiple constraint-boundaries there is an option to either
approximate a single or multiple constraints at a time.

In the case of considering one constraint at a time, there is a need for some logic
to control which constraint should be approximated. A simple approach to this is
to allocate a certain number of generation to each constraint going in a round-robin
fashion [Leguizamón and Coello, 2009]. Other than this work, no other contributions
only focusing at a single constraint at a time has been found.

The most common approach is to implement the constraint handling as a part
of the evolutionary process. This is done either through the use of penalty functions
[Woldesenbet et al., 2009] or some sort of ranking based on the objective function and
the constrain values [Metkar and Kulkarni, 2014]. Common with both approaches is
that there is no need for any extra control logic, and different variations have shown
that they have consistently good performance. Different variations also exist where
either some form of weighing or extraction of a subset to focus on is used [Bonyadi
and Michalewicz, 2014].

3.4.2 Approximating Boundaries

A characteristic of BS is the reduction of the search space. This is due to the focus
on the intersection between feasible and infeasible regions. It is therefore paramount
to select a suitable method of approximating these areas.

By turning the constraints into objective values for optimisation the constraint
handling is incorporated into the evolutionary process. By basing the selection of
individuals on a ranking system using the objective values, individuals closer to
borders are preferred over those further away [Metkar and Kulkarni, 2014]. This
approach is simple, and the population is naturally drawn towards the boundary
regions. Both Sallam et al. [2017] and Bonyadi and Michalewicz [2014] reduced the
search space by creating a boundary around the constraints borders. The difference
between the two is that Sallam et al. [2017] would only focus constraints identified
as active, while Bonyadi and Michalewicz [2014] showed that also considering in-
active constraints yielded good results. Similarly to the approach of Metkar and
Kulkarni [2014], the use of boundaries would naturally push the population towards
the desired regions during the evolutionary process.

The boundaries can either be static [Bonyadi and Michalewicz, 2014] or they can
gradually shrink [Sallam et al., 2017]. By reducing the boundary size, the population
will edge closer and closer towards the border between feasible and infeasible regions.
For this method to be efficient, it is necessary to have proper parameter setting for
the reduction of the boundary. If the boundary shrinks too slowly, the population
may have problems approximating the PF properly. Conversely, if it shrinks too
fast, the population may pass by, or be hindered in reaching optimal locations.
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Similarly, with static boundary sizes proper parameter setting is key. With too large
boundaries, it is easier to find feasible individuals, however the selection pressure
towards the constraint boundary is reduced. On the other hand, with a too small
boundary the population will have greater difficulty with locating feasible solutions.

Leguizamón and Coello [2009] differ in their approach from the ones discussed
above in that a BiS operator was used to close in on the border between feasible
and infeasible space. This method does not shrink the search space like the ones in
[Sallam et al., 2017] and [Bonyadi and Michalewicz, 2014], but pairs up feasible and
infeasible individuals and moves them closer and closer to each other. For this to be
possible, population must consists of both feasible and infeasible individuals. This
method also requires more logic, in addition to the normal evolutionary process.
Finally, some method of handling overlapping infeasible areas is required for the
BiS method to work properly.

3.5 Binary Search

Leguizamón and Coello Coello [2009] proposed an operator using binary search
between pairs of individuals. Given a pair x and y, where x is in the feasible space
and y is in the infeasible space, the middle point m is calculated. If m is located in
feasible space, then x is moved to m and conversely if m is in infeasible space. This
continues until some stop condition is met.

y1

x1

b1

y2

b2
m2

x2F

U

Figure 3.1: Boundary search using binary search between pairs of points.

This binary search approach is illustrated in figure 3.1. U denotes the feasible
space and F denotes the infeasible space. xi and yi denote pairs of feasible and
infeasible points with bi being the point on the border between the two points. The
goal is to approximate bi for each pair. For the pair x2 and y2 we see that the
middle point m2 has been calculated. Due to it being feasible, x2 is moved to m2 as
illustrated with the arrow. This continues for each pair until the stopping condition
is met. The condition used is defined in equation (3.5).

DtB(m) ≤ ξ AND feasible(m) (3.5)

where DtB(m) is the distance from the middle point to the boundary and ξ is a
user defined parameter. feasible(m) denotes that the point is feasible or not.
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3.6 Reduced Search Space
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(a) Feasible space surrounded by three con-
straints.
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(b) Reduced search space round constraint bor-
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(c) New feasible space defined by reduced search
space around active constraints.

Figure 3.2: Reduced search space.

Sallam et al. [2017] reduced the search space to only focus on active constraints.
Figure 3.2 illustrates the method of reducing the search space. A, B, and C are
constraint boundaries surrounding the feasible space, as illustrated in figure 3.2a. To
create the reduced search space, a border around the constraint boundaries is created
as illustrated in figure 3.2b. Assuming that only A and B are active constraints,
the reduced search space around C is ignored. Now, the new feasible space is in the
cross section between A and B as illustrated in figure 3.2c.

A more in-depth explanation of the steps is given below.

3.6.1 Active Constraints Detection

Active Constraints Detection (ACD) is the act of identifying constraints that may
be active. It is important to note that even though a constraint is identified as active
by Reduced Search Space (RSS) it is not guaranteed to actually be that.

A random individual from the lowest rank in the population is selected. The
distance of this individual to the boundary of each infeasible space is then used to
determine if the constraint is active or not, as shown in equation (3.6) [Sallam et al.,
2017] :
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ai =

{
true if 0 ≤ |gi(x)| ≤ V al

false else
(3.6)

where ai denotes if constraint gi is active. gi(x) is the constraint value of individ-
ual x for the constraint gi. V al is a predefined value, usually low. ACD is concerned
with the distance of an individual to the constraint boundary and not whether or
not the constraint is upheld. For this reason the absolute constraint value is used.
The constraints that are not viewed as active are ignored during the constraint han-
dling. ACD is performed at a certain interval defined by a user-specified parameter.
Each time ACD is performed, a new individual is selected.

3.6.2 Creating Boundary Areas

After ACD is performed, a boundary area is created for each active constraints.
This way, the search space is reduced, focusing on these boundary areas. Each area
is defined by equation (3.7) below:

−δin ≤ gi ≤ δout (3.7)

(3.8)

where δout is used to include parts of the infeasible regions around the active
constraint gi. δin is used to include regions of the feasible space around the active
constraint.

The initial value of δout depends on the feasibility ratio of the population. If
less than 20% of the population is feasible, then the initial δout value is set to the
maximum constraint violation of the top 20% of the population. If more than 20%
of the population is feasible, the initial δout value is set to 1.

δin is simply initialised to be a large value to avoid alienating the feasible regions
from the search.

3.6.3 Shrinking the Boundary Areas

Both δout and δin are updated during evolution. This is to focus the search closer and
closer to the boundary between feasible and infeasible space. For each generation
during the pull stage, the deltas are updated as described in equation (3.9) and
equation (3.10).

δout(t) =

{
δout(0)× (1− cfe

FESc
)z, cfe ≤ FESc

0, cfe > FESc
(3.9)

where δout(t) is the size of the boundary areas on the infeasible side, at generation
t. δout(0) is the initial delta value. cfe is the current number of function evaluations
performed during a run and FESc is a user defined value representing the maximum
number of function evaluations before shrinking the boundary area on the infeasible
side to 0. Dividing cfe by FESc creates a non-negative number below 1 which then
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allows the boundary to be shrunken for each generation. z is a parameter used to
control the reduction of δout.

δin(t) =

{
δ′in = δin(0)− cfe× δin(0)−δminin

MAXFES
, δ′in < δminin

δminin , δ′in ≥ δminin

(3.10)

where δin(t) is the size of the boundary area from the feasible side at generation
t. δin(0) is the initial delta value set when changing to the pull stage. cfe is the
current number of function evaluations performed and δminin is the minimum allowed
value for δin set to 0.002 × δin(0). MAXFES is the maximum number of function
evaluations before evolution is stopped. δminin is used to prevent δin from ever reaching
0, while still keeping the boundary close to this value. If the boundary is set to be
exactly on the border between feasible and infeasible space, then the search space
will be reduced to an extremely small area making evolution difficult. δout on the
other hand is eventually set to 0 as the final solutions need to be feasible. This is
to increase the selection pressure towards feasible individuals at the end of the run.



Chapter 4

Model

This chapter describes the proposed algorithmic model based on the research into
the state og the art described in chapter 3. Section 4.1 introduces the extensions
made to PPS and explains design decisions made regarding the use of Boundary
Search (BS). Then, section 4.2 illustrates the flow of the general model, using several
flowcharts. The first flowchart shows a high-level overview of the model and each
phase is described in more detail. A simulator developed as part of this thesis is
outlined in section 4.3. Finally, an overview of the relevant parameters for PPS, BiS
and RSS is given in section 4.4.

4.1 Extending PPS with BS

The original PPS framework has the ability to gather information during the initial
phase, without the information affecting the population. The information could be
utilised for better initialisation and parameterisation of the later phases, increasing
the total performance of the algorithm. This work extends PPS with two different
Boundary Search (BS) methods.

The first approach, described in section 4.2.8, adds a third phase in between the
push and pull phase. The binary phase aims at moving the population closer to the
boundary between feasible and infeasible space before the pull phase is initialised.
The second approach replaces the CHM in the pull phase with a method approxi-
mating the boundary between feasible and infeasible space. This approach is further
elaborated in section 4.2.10.

In addition to the extension of the functionality of framework by BS, visualisation
and logging tools have been implemented to aid in analysing the framework and
the suggested extensions. To differentiate between the different approaches, the
following names and corresponding acronyms have been given to them:

• Push Pull Epsilon (PPS-E): The original PPS framework, using εCH.

• Push Pull Improved Epsilon (PPS-IE): The original PPS framework, using
IεCH.

• PPS: Refers to both PPS-E and PPS-IE.

35
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• Push Binary Pull Epsilon (BiS-E): The original PPS framework, using εCH,
extended with BiS.

• Push Binary Pull Improved Epsilon (BiS-IE): The original PPS framework,
using IεCH, extended with BiS.

• Push Binary Pull Search (PBPS): Refers to both BiS-E and BiS-IE

• Push Pull Reduced Search Space (PPS-RSS): The original PPS framework,
extended with RSS.

These abbreviations are used in the subsequent chapters when discussing the
different model specifications tested.

4.2 Proposed Framework Flowchart

Start Initialise

Phase Iteration Log

Terminate
Run?

Stop

Change
Phase?

Next
Phase

Yes

NoYes

No

Figure 4.1: Flowchart illustrating the proposed model.

Figure 4.1 presents an overview of the PPS framework. Each node in the
flowchart represent a step in the algorithm and is explained further in this section.

4.2.1 Initialise

The first step is to initialise the framework. The initialisation entails setup of which
phases will be performed, the underlying MOEA and the selected CHM. Parameters
for the framework are set (see section 4.4), and an initial random population is
generated.
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The setup of phases is simply an ordered list of all the phases to be entered
during the run. MOEA/D (see section section 2.4.1) is implemented as the MOEA.
As previously mentioned in section 2.4.1, the population count in MOEA/D is equal
to the number of weights. The implementation of MOEA/D in this thesis initialises
the weights according to the approach by [Zhang and Li, 2007], where weights are
generated from the values in the set

{
0
H
, 1
H
, . . . , H

H

}
. H needs to be defined to

generate the set, and is the controlling parameter for the population size.
In the original implementation of PPS [Fan et al., 2019b], the decomposition

strategy is implemented as gte(x|λi, z∗) = maxj=1,...,m
|fj(x)−z∗j |

λij
unlike the equation

defined by Zhang and Li [2007] (see equation (2.5)). If using the original weight
generation approach, at least one weight would yield the number 0 for the denom-
inator in the decomposition equation. Modifications to the original approach are
made by removing the values that would cause vectors containing the number 0.
The implementation generates weights from the set equation (4.1).{

1

H
, . . . ,

H − 1

H

}
(4.1)

The population count can be calculated by a defined H, and the number of
objectives m, by equation (4.2).

N =

(
H − 3 +m

m− 1

)
(4.2)

Further description of the framework will assume that the weights are initialised.

4.2.2 Phase Iteration

After initialisation, the evolutionary process begins. How a generation is evolved
depends on the current phase and requires different explanations. The evolution
during the push phase is explained in section 4.2.7. The binary phase is elaborated
in section 4.2.8. Finally, the pull phase is elaborated in section 4.2.9. Note that
the model allows any and all of the phases to be used, creating the opportunity for
different combinations.

4.2.3 Log

When logging is utilised, the framework logs relevant data for each generation. This
information may include the current FRp, IGD and HV of the current population and
the archive. In addition, the framework saves a plot of the current generation used
to create a video of the whole evolutionary run. The main purpose of the logging
functionality has been to aid in the analysis of the new framework. However, it may
also be used as a live feed of how the run is performing.

4.2.4 Terminate Run?

After the logging step, the framework checks if the halting condition has been met.
This is the case if Tmax (see table 4.1) has been reached. If it is time to terminate the
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run, the framework exports a video from all the plots created during the evolutionary
run, and returns the resulting archive of the current generation.

4.2.5 Change Phase?

If the run is not terminated, the framework checks if it should change phases. The
run terminator is a parameter (see section 4.4) and is global. Phase termination is
local for each phase, and the condition for changing phases depends on the current
phase. The termination of each phase is elaborated in more detail during the descrip-
tion of each phase. If the condition for changing phases is not met, the framework
continues with the next generation.

4.2.6 Next Phase

In the case that the phase should change, the next step is to change phases. All
phases are stored in a common list and the Next Phase step simply changes the
current phase to the next. Then, the evolution carries on to the next generation,
evolving the population as dictated by the new phase.

4.2.7 Push Phase

Start

Update ideal
and

nadir points
gen ≥ l Calculate rk

rk ≤ εUnconstrained evolution

Next Phase

no

yes

no

yes

Figure 4.2: Flowchart illustrating the push phase.

Figure 4.2 illustrates the flow of the push phase, which remains unchanged from
the original work of Fan et al. [2019b]. The goal of this phase is to reach the
unconstrained PF before proceeding to the next phase.
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The first step is to update the ideal and nadir points which are required for
the break condition (see equation (3.1)). At the beginning of the run, the ideal and
nadir points are calculated using the initial population. Every subsequent generation
uses the newly evolved population to update the ideal and nadir points.

gen ≥ l signifies that l generations have passed since the initiation of the run.
If this is this is the case, then rk is calculated according to equation (3.1). In the
case that rk is less than or equal to a predefined ε, the framework identifies the push
phase as complete and initiates the next phase.

If either gen ≤ l or rk > ε, then the framework remains in the push phase and
evolves the population. As long as the break condition for the phase is not met, the
phase proceeds to Unconstrained evolution which evolves the population without
taking constraints into consideration. Exactly how the population is evolved to the
next generation depends on the underlying MOEA. In the implementation of this
thesis, MOEA/D (see section 2.4.1) is implemented as the CMOEA.

4.2.8 Binary Search Phase

The push phase is terminated when the change in nadir- and ideal points is less
than some threshold, as described in equation (3.1). Figure 2.6b visualises problems
where the unconstrained and constrained PFs have a significant gap when switching
from unconstrained to constrained optimisation. For problems sharing this char-
acteristic, individuals have to gradually evolve back through explored space during
the pull phase, before reaching the desired boundary between the constrained and
unconstrained space. To reduce the search in infeasible space, a guided search to-
wards the boundary is proposed, by exploiting an archive of feasible solutions. This
approach is implemented to be used as a phase between the original push and pull
phases. This phase is called BiS.

To allow the population to move towards the constrained PF, two sets are used.

1. A feasible set, containing feasible individuals.

2. An infeasible set, containing infeasible individuals.

The feasible set is a copy of the archive used in PPS (see section 3.2). The archive
is updated during the push phase and contains the discovered feasible individuals
closest to the constrained PF when BiS is initialised. The infeasible set will contain
the infeasible individuals in the population.

Figure 4.3 illustrates the phase iteration during the binary phase. The first
step of BiS is to Create Pairs of feasible and infeasible individuals. This is only
performed once at the start of the phase. This step is elaborated in section 4.2.8.1.
The next step is to Move Individuals closer to the boundary between feasible and
infeasible space by performing BiS. Section 4.2.8.2 elaborates this step. Then, a
check is performed to verify if the stop condition is met. If this is not the case, then
the algorithm Removes Pairs within a certain distance measure from the BiS, as
described in section 4.2.8.2. Furthermore, the process of moving the remaining pairs
of individuals is repeated. Finally, section 4.2.8.3 elaborates how the model Selects
Individuals to become the new population for future generations in the pull phase
when the stop condition is met.
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Figure 4.3: Flowchart illustrating the proposed binary phase.

4.2.8.1 Pairing Strategy

When pairing feasible and infeasible individuals two strategies are discussed with
the goal of improving convergence towards the PF while taking diversity and spread
of the population into account.

1. Random allocation

2. Closest neighbour allocation

To make the discussion comprehensible, a few definitions are required. The size
of the the feasible set is defined as Nf and the size of the infeasible set as Ni. Pairs
where the feasible individual is only paired with a single infeasible individual, are
referenced to as exclusive pairs. Pairs where the feasible individual is paired with
multiple infeasible individuals are referenced to as open pairs.

A

(a) Random allocation.

B

(b) Closest neighbour allocation.

Figure 4.4: Visualisation of pairing strategies.

The random allocation strategy is performed by iterating over the infeasible set
and pairing each index in the set with a randomly selected individual in the feasible
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set. Figure 4.4a visualises a feasible set with 4 individuals and an infeasible set
with 5 individuals. For the exclusive pairs, the intersection between the dashed
line highlighting the pair, and the boundary, shows where the individuals will reach
the boundary. As seen in the figure, two infeasible individuals share the feasible
individual A, which is described as an open pair. This pair will not reach the
boundary on the intersection, as the individual A will be affected by both of the
individuals in the open pair. Based on this observation, many exclusive pairs would
yield a better coverage when all pairs have reached the boundary. Having few
open pairs would mean clustering towards a single point. It is thus believed that
minimising the number of open pairs should be a priority.

The closest neighbour allocation strategy ensures the closest individuals from
each set to be paired. All distances between individuals are evaluated before pairing
the infeasible individual with the closest feasible individual. As mentioned by Fan
et al. [2019b], the PPS framework is prone to problems where the unconstrained
PF has one optima and individuals are converging towards a single point. In this
scenario, all infeasible individuals would have the same distance to a given feasible
individual, as their position in the infeasible space would be equal. The result of
this would be a single open pair where all infeasible individuals share the same
feasible individual. A similar scenario may occur, as visualised in figure 4.4b. The
figure shows multiple infeasible individuals sharing an open pairing with the feasible
individual B. This scenario is also possible with the random allocation strategy.
However, using random allocation makes this less likely.

Based on this short discussion, it is clear that open pairs is possible for both
strategies. However, section 5.1.1.3 further shows that the earlier hypothesised
downside of open pairs could be neglectable. The random allocation is a more effi-
cient approach, as calculating the distances prior to pair allocation is unnecessary.
Additionally, the random allocation is better suited to pair infeasible individuals
with multiple feasible for scenarios mentioned earlier with a single optima. This
work implements the random allocation strategy, but proposes the possibility of
utilising closest neighbour.

4.2.8.2 Distance Measure

Different approaches for evaluating similarity between individuals could be utilised
as a measure for the difference between the individuals within a BiS pair. A simple
approach is calculating the distance between the pair,and stop updating the pair
when some distance is reached. The model assumes that the feasible set is close
to the boundary and that a distance between the pair being within a threshold, γ,
in euclidean distance is a sufficient measure. Distances in two different spaces are
discussed with the goal of finding the most promising measure to stop the search as
close to the boundary as possible.

1. Distance in search space

2. Distance in objective space

In the case of measuring the distance in search space, there exists cases where
two genotypes are close, but the objective values have a significantly wider gap. Ad-
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ditionally, the search space usually consists of more dimensions than the objective
space, meaning a higher cost of calculation. For problems with decision constraints
[Liu and Wang, 2019], this space might be required to search through as the bound-
ary is defined in the search space. This work focuses on solving CMOPs with
objective constraints and the goal is to reach some distance in the area of feasible
space which is defined by objective constraints. The distance measure implemented
in this work is therefore measured in objective space.

The distance between the feasible individual xa and the infeasible individual
xb in the objective space Rm is measured in euclidean distance as described in
equation (4.3).

dist(xa, xb) =

√√√√ m∑
i=1

(fi(xa)− fi(xb))2 (4.3)

The distance is used to evaluate if the pairs are close enough to stop the phase
and proceed to the pull phase. One iteration of the BiS phase iterates over every
pair. The distanced between each pair is measured and if the distance is greater
than γ, an offspring is created by calculating the midpoint between the genotype of
the two individuals. If the distance is less than or equal to γ, the pair between the
individuals is removed and no new offspring is produced from the individuals. The
feasible or infeasible individual is overwritten if the offspring is feasible or infeasible
respectively. The phase stops if no pair has been updated to a new position.

4.2.8.3 Selection Strategy

When the BiS of the phase is stopped, the union size of the two sets will be greater
than the allowed population size. To aggregate the sets to an appropriate size,
some individuals must be selected to the pull phase population and some must be
discarded. At the end of the BiS the two sets consist of feasible individuals with a
size of Nf and infeasible individuals with size Ni. Different weighting of selecting
feasible and infeasible individuals will result in different diversity in the population at
the start of the pull phase. The selection strategy proposed for selecting individuals
for the population P with size Np, from the feasible set X and the infeasible set Y ,
where X = (x1, . . . , xNf ), Y = (y1, . . . , yNi) is described in equation (4.4)

pi =

{
xi, if r ≤ κNp

Nf
and i ≤ Nf

yi, otherwise
(4.4)

Selection in EAs is usually performed by randomly selecting elements with a
given probability (see section 2.3.1.3). The goal of the selection at the end of BiS is
to provide the population with some FRp. κNp

Nf
defines the probability of selecting

feasible individuals out of Np pulls such that the population will have approximately
the FRp κ. Figures 4.5a and 4.5b visualise the effect of the selection parameter for
two different feasible sets.
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(a) Feasible set with size 40 and the resulting
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(b) Feasible set with size 80 and the resulting
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Figure 4.5: Effect of κ
Np
Nf

, visualised with κ = 0.2, Np=100.

After selection is finished, the max constraint violation is updated to the max
violation of population after selection. IεCH and εCH with a high max violation
would pull the population far away from the PF at the start of the pull phase. The
update allows exploration in the area around the boundary.

4.2.9 Pull Phase

Start

Initialise
CHM

Constrained evolution Terminate? Stop

Update ideal
and

nadir points

Update
constraint threshold

Yes

No

Figure 4.6: Flowchart illustrating the pull phase.

The third and final phase is the pull phase. The phase is illustrated in figure 4.6.
The first step of the phase is to initialise the CHM. In the implemented frame-

work, the three possibilities are εCH, IεCH and RSS. For all methods, initialisation
entails setting the initial constraint relaxation. For RSS, an additional step is per-
formed: ACD, which is described in section 4.2.10.1.

The next step is Constrained evolution which evolves the population with
constraints taken into consideration. Similarly as in the push phase, the underlying
MOEA dictates exactly how the population is evolved. MOEA/D (section 2.4.1) is
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implemented as the MOEA in this work. As constraints are considered in this phase,
MOEA/D requires to be extended. This work extends MOEA/D with IεCH and
εCH according to the implementation in Fan et al. [2019b]. Additionally MOEA/D
with RSS is proposed, further explained in section 4.2.10.

The phase continues until Tmax is reached. If the halting condition has not been
met, the ideal and nadir points are updated using the newly evolved popu-
lation. Then, the next step is to update the CHM. For εCH this simply entails
shrinking the allowed constraint violation as described in section 2.5.1. IεCH will
either shrink the allowed constraint violation, or it will relax it further as described
in section 3.2. Similarly, RSS will shrink the boundaries around the active con-
straints to continuously force the population closer to the border between feasible
and infeasible regions. When Tc or FESc is reached (see section 4.4, the relaxation
of constraint is set to 0.

Below is an in-depth explanation of the RSS method implemented in this work
and how it affects the search in the pull phase. The implementation is based on the
work of Sallam et al. [2017]. Design decisions and changes are highlighted herein.

4.2.10 Boundary Search with Reduced Search Space

RSS replaces the CHM during the pull phase. RSS uses both information about
which constraints are active at the constrained PF and the amount of constraint
violation to reduce the search space. RSS creates a new border around the edge
between feasible and infeasible space for the active constraints (see figure 3.2b).
After creating the borders, individuals outside them are considered infeasible and
individuals inside are considered feasible. This results in a priority of individuals
that are close to the boundary between feasible and infeasible regions. The new
feasible space is gradually shrunken to focus the search.

4.2.10.1 Active Constraints Detection

ACD is performed as described in section 3.6.1. However, a few changes were made
to make the work of Sallam et al. [2017] fit better with the PPS framework:

• ACD is only performed once.

• Multiple individuals are used for ACD.

PPS ignores constraints during the first phase of the framework. As the popu-
lation moves unhindered by infeasible regions, it is likely that multiple constraint
boundaries are approached and passed during this phase. Due to constraints being
ignored, information regarding which constraint boundaries the population is close
to is not needed. Also, performing ACD during this part of the search will waste
computations as the knowledge of which constraints the population is close to is not
used until constraints are being considered. For these reasons, it was decided to only
perform ACD once, when switching from the push phase to the pull phase. It would
have been possible to perform ACD multiple times during the pull phase. However,
when PPS switches from the push to the pull phase, the population is assumed to
have approximated the unconstrained PF. If the constrained PF is not the same
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as the unconstrained one, then the infeasible region(s) separating the two PFs will
likely have a boundary close to the unconstrained PF and the need for re-evaluating
which constraints are active and not is reduced.

When performing ACD only once, there is a strong bias created due to the
dependency of the single individual selected for ACD. With a single random indi-
vidual selected, the approximation of constraint boundaries and the performance
of the search is highly dependent on this single individual. To reduce this depen-
dency, multiple individuals are used. First non-dominating sort is performed on
the population, then from the ranked population a set of NumACD individuals are
selected beginning with the lowest rank. Then ACD is performed as described by
equation (4.5):

ai = true if ∃x ∈ S, 0 ≤ |gi(x)| ≤ V al (4.5)

where ai denotes if constraint gi is active. x is some individual in the set of
individuals, S, selected for ACD. This way, only constraints which none of the
individuals are close enough to will be classified as inactive. If the original ACD
method was used, as described in equation (3.6), then the last individual used for
ACD would potentially override the information of the previously used individuals.

Applying the changes explained above, there is a larger possibility for multiple
active constraints to be identified, as the individuals selected will cover a larger
part of the search space. Furthermore, the probability of incorrectly classifying
active constraints as inactive is reduced. However, there is also a larger probability
of classifying inactive constraints as active. The reason is that individuals will be
located in different areas of the landscape and thus there is a larger probability of
them being closer to inactive constraints. This is viewed as less of a problem, as
false positives are preferred over false negatives. They are preferred due to them
making the search space larger than it could have been, while false negatives removes
possibly optimal locations from the search space.

4.2.10.2 Creating Boundary Areas

After ACD, a boundary area is created around each identified active constraint as
described in section 3.6.2.

If ACD did not identify any constraint as active, then the model does not re-
duce the search space. The total constraint violation is used in combination with
feasibility rules to select individuals for the next generation. The lack of constraint
relaxation is due to the assumption that if no active constraints are identified then
the unconstrained and constrained PF is the same. There is also a possibility of V al
being set to a too low value, and thus the active constraints are not identified cor-
rectly using equation (4.5). However, no method for guarantying no false negatives
exists.

4.2.10.3 Shrinking the Boundary Areas

Initially, when changing from the push phase to the pull phase, both delta values,
δout(0) and δin(0), are set to the be maximum constraint violation of an individual
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in the working population. This differs from the work of Sallam et al. [2017] as
described in section 3.6.2. It is assumed that the population has approximated
the unconstrained PF when the push phase is over. Thus, a reasonable size for
the boundary is the current largest distance of an individual in the population
to a constraint boundary. This way, the population will not keep moving further
into constrained space, but rather be forced to move towards feasible space. Also,
the applicability of setting of the boundary to 1 by Sallam et al. [2017] is highly
dependant on the problem at hand, where a boundary size of 1 may either be either
too large or small.

Both δout and δin are updated during evolution. This is to focus the search closer
and closer to the boundary between feasible and infeasible space. The updating
scheme follows the work of Sallam et al. [2017] as described in section 3.6.3.

The two borders are updated differently to put more selection pressure on feasible
individuals. This is achieved by shrinking δin much slower than δout.

4.2.10.4 Evaluating Feasibility

If the problem has no active constraints, the feasibility of an individual is determined
by the total constraint violation as described in equation (4.6).

Ψ(x) =
m∑
i=1

gi(x) (4.6)

where Ψ(x) denotes the total constraint violation of the individual x. gi(x) is the
violation of constraint gi by individual x and m is the total number of constraints.

In the case that the problem has active constraints the constraint violation is
calculated as described in equation (4.7):

ΨR2S(x) =
m∑
i=1

{
min(|L|, |R|), if C

0, else
(4.7)

L = δin − |min(0, gi(x))| (4.8)

R = δout −max(0, gi(x)) (4.9)

C = 0 ≥ L > δin and 0 ≥ R > δout (4.10)

where ΨR2S(x) denotes the total constraint violation of the individual x. L
denotes the distance individual x is from the border on the feasible side and R
denotes the distance individual x is from the border on the infeasible side. C is
a condition used to determine whether x is withing the boundaries set by δin and
δout. If the condition is upheld, then x is outside the boundaries and the constraint
violation of the individual is increased. If the condition is not upheld, the individual
is inside the boundaries, and the constraint violation should not be increased.

4.3 Simulator

A simulator has been created for the proposed framework to be tested. The simula-
tor consists of seven different modules, as illustrated in figure 4.7. The simulator has
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been designed to be a modular system using interfaces for the various modules to
accommodate multiple different implementations. The interfaces define the common
methods required for the model to work, but does not specify a specific implemen-
tation itself. This results in the inner workings of each interface being independent
of each other, making the system flexible and open for later additions or changes.
Each module is described below.

Simulator

PPSPlotter Data Writer

MOEA Phase

Individual CMOP

CHM

Figure 4.7: Overview of simulator modules.

The Simulator module is at the highest level, and is the module that the user
interacts with. This module works as a wrapper around the whole system to set up,
run and tear down simulations. Each simulation starts with the initialisation of the
Simulator module using the user-defined parameters described in table 4.1.

The simulator is built to be initialised with a test suite of problems, where each
problem is run a set amount of times and the result archive for each run is extracted.
The simulator initialises every PPS module concurrently and each PPS module is
able to run in parallel for enhanced performance utilising multiple CPU cores.

The PPS module performs a single run of a problem and communicates with the
Data Writer and the Plotter to gather information about the population during
the run and store this information. This module also communicates with the MOEA
module which handles evolution of the population and the Phase determining which
phase the algorithm is in at different stages of the run.

The Plotter allows the simulator to plot the population in the objective space as
it evolves. This is achieved through the two exposed methods Plot() and ExportV ideo().
In this work, the plotter plots the current population at each generation and exports
it as an image. At the end of each run of PPS a video showing how the evolution
transpired is exported using all images generated from the run.
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The Data Writer module handles data gathered from the population at each
generation and stores them in a text file. This data can then be used for analysis
of the module with the given parameters. In this work, the Data Writer stores the
generation count, phase, FRp, IGD and HV. The last three values can be stored
both for the population and for the archive, during the run. This way, both the
evolution itself can be monitored, and the achieved best feasible solutions.

The MOEA module defines the required methods to evolve the population. The
MOEA module does not handle constraints directly. CHM is handled in a dedicated
module which interacts with the MOEA module. In this work, only MOEA/D has
been implemented. It is however possible to incorporate other MOEAs as long as
they implement the interface defined by the simulator.

The Phase module keeps track of which phases the run consists of. The simulator
takes in a set of phases that changes the behaviour of the algorithm when different
criteria are fulfilled. This work has implemented the three phases: Push, Binary
and Pull as described above.

The Individual module represent the population individuals. Having the func-
tionality of the individuals separated into a module allows for different representa-
tions of individuals or solutions to the specified problem.

The CMOP module allows for different problems to be designed and imple-
mented. It has been used during preliminary and experimental testing to test the
model on multiple different benchmarks. All relevant information about the prob-
lem is fetched from this module. In this work the following test suites have been
implemented: LIR1-12 and MW5, MW6, MW9, MW10, MW11, MW13. These are
are elaborated in section 2.7.

The CHM module allows for different CHM to be implemented. In this work,
three different methods have been implemented and are readily available to be used.
These three are the εCH- IεCH- and RSS methods. The CHM module allows the
model to handle constraints during the Pull phase.

4.4 Parameters

The parameters of the model are presented and explained in table 4.1. The table
contains the relevant parameters for the experiments performed and detailed in
chapter 5.

PPS Parameters
Tmax The maximum number of function evaluations. Acts as the halting

condition for the search.
Tc The control generation where the relaxation of constraints is set to

0.
α A parameter used to control the searching preference between feasible

and infeasible regions during the pull phase.
τ A parameter used to control the speed reducing the constraint re-

laxation in the case that the ratio of feasible individuals is less than
α.
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cp A parameter used to control the speed of reducing the constraint
relaxation in the case that the ratio of feasible solutions equals or is
greater than α.

l The number of generations to look at the rate of change between ideal
and nadir points when checking if the framework should terminate
the push phase.

∆ A small number used to avoid division by 0 when calculating the
change in ideal and nadir points.

ε A parameter used to change from the push phase to the next. If
the change in ideal and nadir points is less than ε, the push phase is
ended.

H The parameter defining the distribution of weights. The weights are
generated according to the original work in [Zhang and Li, 2007] with
a slight adjustment described in section 4.2.1.

T The neighbourhood size.
CR The crossover rate which control the number of parameter values

copied from the mutant vector during crossover.
F A parameter used to scale the differential variation during mutation.
δ a number defining the the probability of selecting the closest t sub-

problems, or all subproblems, to evaluate the inclusion of offspring
individuals.

nr The maximum number of individuals being replaced by a child.
di The distribution index for the polynomial mutation operator defined

in Deb [2000].
pm The mutation probability.

BiS
κ The selection probability of feasible individuals of the resulting pop-

ulation after BiS. With κ = 0.3, the population will aim to have a
feasibility ratio of 30% after BiS.

γ The minimum distance to dissolve pairing between feasible and in-
feasible individuals. When the distance between a pair of individuals
reach the value of γ, they are excluded from further BiS.

RSS
FESc The number of function evaluations performed before δout is set to 0

and δin is ignored. Similar to Tc in PPS used to set the constraint
relaxation to 0.

numACD The number of individuals used for ACD. For each individuals, the
distance to each constraint border is checked.

V al The value used to identify a constraint as active or not. Usually set
to a small number. If the distance to the constraint border is larger
than V al then the constraint is deemed inactive.

Z The parameter used to control the speed of shrinking the boundary
from the infeasible region side. A larger Z leads to faster shrinking.

Table 4.1: Model Parameters.
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Chapter 5

Experiments and Results

This chapter presents the experiments conducted to evaluate the proposed model.
Testing has been divided into two parts: preliminary and experimental. First, pre-
liminary testing lay the basis for the experimental phase. The experimental testing
aims to answer the research questions defined in section 1.2. An experimental plan
presenting the tests conducted and which questions they aim to answer have been
created. Finally, the results are presented.

5.1 Preliminary Testing

The preliminary testing was conducted both during and after the development of
the proposed model. During the development of the model, tests were conducted to
aid with design decisions. At the end of the preliminary testing, a parameter sweep
was conducted to identify suitable parameters for the experimental phase.

5.1.1 Initial Testing

The first step of the preliminary testing was to replicate the work of Fan et al.
[2019b]. Implementing the original framework and test suite, LIR (section 2.7),
would ensure that PPS was correctly implemented and ready to be further developed.

Videos showing the search were generated to aid in evaluating the behaviour
of the PPS framework and possible improvements. This contibuted in analysing
evolution and the movement of the population in the original work by Fan et al.
[2019b].

Figure 5.1 depicts four frames from a video of PPS solving LIR8. The plots
consist of points visualising the population, archive and the PF. The population
contains all the individuals in the current generation. The archive is a set of the
most optimal feasible individuals identified during the run of the algorithm. This
archive is returned as the set of solutions found, at the end of the run. The con-
strained PF is visualised as a green line in the objective space. In figure 5.1a the
framework is still in the push phase, and constraints are ignored. For the visualised
problem, the constrained PF is defined by the boundary between feasible and infea-
sible space. The unconstrained PF exists within the constrained space and closer
to the origin than the constrained PF. In figure 5.1b, the population has passed

51



52 CHAPTER 5. EXPERIMENTS AND RESULTS

(a) Push phase: generation 40.
(b) Last generation of push phase: generation
192.

(c) Pull phase: generation 197. (d) Final generation: generation 999.

Figure 5.1: PPS finding feasible individuals during the push phase on LIR8.

the constrained PF, and approximated the unconstrained PF by the MOEA/D op-
timiser exclusively evaluating objectives and ignoring constraints. In addition, the
framework has found many feasible solutions during the push phase close to the
constrained PF, which are saved in the archive. These are highlighted as red circles
in the figure. Figure 5.1c shows the framework in the pull phase edging closer to the
constrained PF. Simultaneously, the archive is updated as more feasible individuals
dominating previous members of the archive are discovered. At the same time, the
archive is updated as more feasible individuals that dominate previous members of
the archive are discovered. Finally, figure 5.1d shows the final generation where the
constrained PF has been approximated.

Figure 5.1 shows that the framework is able to locate feasible individuals close
the the unconstrained PF during the push stage. Running similar tests on the other
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LIR benchmarks showed that this was the case for problems with moderate to large
feasible regions. For problems with small feasible regions, it was more uncommon
due to the low probability of crossing these regions when ignoring constraints. How-
ever, the use of this knowledge is not utilised by the original framework to guide the
search, as it relies solely on the CHM to guide the population in the right direction
during the pull stage.

5.1.1.1 Alternating Between Binary Search and Improved ε-Constraint-
Handling

During the pull phase, PPS uses IεCH to handle constraints [Fan et al., 2019b].
IεCH raises the allowed constraint violation of the population whenever the ratio of
feasible points in the population, FRp, is above some threshold, see section 2.8.2.
During the initial testing, it was hypothesised that the performance of PPS could
be enhanced by combining BiS and IεCH by alternating between the two methods.
The idea was to perform BiS whenever the FRp was below a certain threshold, and
IεCH whenever the FRp was above a certain threshold.

Experiments showed that at the beginning of the pull phase, BiS would pull
the population quickly towards the constrained PF as visualised in figure 5.2a. As
the FRp quickly rose, IεCH would immediately pull the population away from the
constrained PF again as visualised in figure 5.2b. This resulted again in BiS pulling
the population back towards the constrained PF, creating a tug of war without the
population being able to explore the boundary region between feasible and infeasible
space. To avoid this tug of war, BiS was implemented as a new phase itself. This
phase would be entered after the push phase and before the pull phase to produce
an improved initial state for the pull phase.

f1

f 2

Feasible space

Population

(a) Low FRp: BiS closes the gap to feasible
space.

f1

f 2

Feasible space

Population

(b) High FRp: IεCH pushes individuals out
of feasible space.

Figure 5.2: Illustration of interaction between BiS and IεCH.
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5.1.1.2 Initial Constraint Threshold

In the original framework, the initial threshold for IεCH was set to be the maximum
violation of the working population during the change from push to pull phase [Fan
et al., 2019b]. However, this would yield complications when using the new BiS
phase.

(a) Binary phase: generation 142. (b) Pull stage: generation 143.

(c) Pull stage: generation 192. (d) Pull stage: generation 205.

Figure 5.3: Too large initial constraint violation on LIR1.

First, the population would immediately be pushed away from the constrained
PF after entering the pull phase. This was due to the constraint relaxation being
much larger than the constraint violation of the individuals after the BiS. Thus, the
quick jump towards the constrained PF would be lost. This effect can be viewed in
figure 5.3. In figure 5.3a the search is in the final generation of the BiS phase and
has closed in the gap to the constrained PF. Up until generation 192, the population
moves away from the constrained PF, as evident in figures 5.3b and 5.3c. At this
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point, the constraint threshold used by IεCH is reached and the population starts
moving towards the constrained PF again as shown in figure 5.3d.

Another disadvantage of using the original initialisation of the max constraint
violation is when IεCH is relaxing the allowed threshold. This may be seen in fig-
ure 5.4. In figures 5.4a to 5.4c the population traverses back to the unconstrained
PF due to the relaxation of the constraint threshold being too high. It is not until
several generations later that the population has closed the gap to the constrained
PF again, as seen in figure 5.4d. This phenomenon repeated itself several times dur-
ing the evolutionary process. As a result, several generations are wasted traversing
back and forth between the unconstrained and constrained PF.

(a) Pull phase: generation 433. (b) Pull phase: generation 438.

(c) Pull phase: generation 468. (d) Pull phase: generation 513.

Figure 5.4: Too large relaxation of constraint threshold on LIR1.

To circumvent this, instead of using the max constraint violation identified, the
max constraint violation of the generation at the change of phases was selected. The
experiments resulted in resetting the max violation after the BS. Thus, the initial
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allowed constraint violation fit better to the current population after the switch from
binary phase to pull phase.

5.1.1.3 Archive Size

(a) Push stage: generation 2. (b) Push stage: generation 7.

(c) Push stage: generation 110. (d) Pull stage: generation 213.

Figure 5.5: PPS not finding feasible individuals during the push phase on LIR1.

For problems with small feasible regions, PPS is either unable to or finds few fea-
sible individuals during the push stage. This can be seen in figure 5.5. Figures 5.5a
to 5.5c show the population during the push phase. As it moves past the constrained
PF in figure 5.5b no feasible individuals are found. This is evident as no red circles
are plotted. Due to no feasible individuals being found, BiS is never performed and
the framework enters the pull phase immediately after the push phase. It is not
until several generations into the pull stage that the population starts to become
feasible, as seen in figure 5.5d.
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These results show that the proposed BiS method may not be applicable for all
types of problems. This is due to the lack of feasible individuals found during the
push phase. Thus, BiS has no set of feasible individuals to form pairs with and the
binary phase is skipped.

The fact that the framework is not guaranteed to find feasible individuals during
the push phase raised a question regarding the size of the archive. If the framework
finds few feasible individuals during the push phase, the archive will be small. Thus,
the population may cluster to a small region of the search space when using BiS.
This could hinder the population in covering the whole constrained PF.

PPS-IE BiS-IE

Mean SD Mean SD

LIR1 7.76e-03 1.69e-03 5.20e-03 2.95e-03

LIR2 4.85e-03 1.11e-03 2.36e-03 6.55e-05

Table 5.1: Comparison of IGD between PPS-IE and BiS-IE on problems with small
feasible regions.

Table 5.1 shows the result of four runs of PPS-IE and four runs of BiS-IE on
problems LIR1 and LIR2. For each run of BiS-IE, BiS was performed due to finding
one feasible individual during the push phase. The binary phase has thus never
been skipped due to not finding any feasible individuals during the push phase.
Note that the number of runs is small. However, it still shows that the applicability
of BiS may not be reliant on the size of the archive. This contradicts the initial
hypothesis of having few feasible individuals to pair with during BiS would reduce
the performance of the algorithm.

Figure 5.6 shows one of the runs BiS-IE on LIR1 used to generate the results
in table 5.1. Figure 5.6a shows the population the last generation before entering
the binary phase. The population has spread itself out over the unconstrained PF,
and a single feasible individual has been found during the push stage. This is the
only individual in the archive, denoted by the red circle. As shown in figure 5.6b,
after only seven generations in the binary phase, the population has crossed the
infeasible region blocking the way to the constrained PF. The population is now
clustered around the single feasible point in the archive. Nonetheless, the BiS-IE
is still able to produce competitive results even though the population had a low
diversity when entering the pull phase. This can be seen in figures 5.6c and 5.6d.

In some cases PBPS with a small archive would outperform PPS as is evident
in table 5.1. This is due to the framework using fewer generations moving through
infeasible regions to reach the boundary. This can be seen when comparing figure 5.5
and figure 5.6. As shown in figures 5.5c and 5.5d, the population takes around one
hundred generations to reach the constrained PF. figure 5.6a show that the binary
phase only requires seven generations to traverse the same distance. Taking a leap
towards feasible regions as shown in figures 5.6a and 5.6b allows for a longer search
along the boundary between feasible and infeasible regions. Thus, more generations
are spent searching promising regions rather than traversing towards them. Based
on these results, it was decided to not restrict the use of BiS based on the size of
the archive. Even if only a single feasible individual is found during the push phase,
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(a) Push phase: generation 101. (b) Binary search phase: generation 108.

(c) Pull phase: generation 142. (d) Pull phase: generation 359.

Figure 5.6: Reduced diversity after binary phase on LIR1.

the binary phase will be entered and BiS be performed.

5.1.2 Parameter Sweeping

Sections 5.1.3 to 5.1.5 present tests to identify parameters for the two BS methods
BiS and RSS. All problems containing two objectives in the LIR test suite have
been selected for the sweep. Additionally, the following MW problems have also
been used: MW5, MW6, MW10, MW13, MW9 and MW11 from Ma and Wang
[2019].

In section 5.1.3, only the MW problems are used. The LIR problems are selected
for comparison to the original work of Fan et al. [2019b]. The MW problems are
selected to evaluate the original and the proposed models on untested problems.
All problems were run 8 times with a selected parameter combination, and the FRc,
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IGD and HV were calculated. The metrics calculated are described in sections 2.8.1,
2.8.3 and 2.8.4 respectively.

5.1.3 Parameter Sweeping for MW Problems

The parameter sweep is split into two phases:

• Optimiser values
The CR and F values for MOEA/D, the crossover rate and differential weight
respectively, see sections 2.3.1.2 and 2.3.1.3.

• Constraint handling values
The τ , α and cp values for IεCH, mentioned in equation (3.4).

5.1.3.1 Optimiser Values

During initial testing, the parameters from the original work proved to be incapable
of solving the objective functions for the introduced MW problems. The MOEA/D
optimiser implemented herein utilise DE crossover (see section 2.3.1) to produce
new offspring. When an offspring is created, a mutation operator is used on the
newly generated individual to slightly modify the genotype of the individual. The
mutation operator aims to mutate offspring within the vicinity of the generated
individual [Deb, 2000]. Based on this information it was concluded that changing
the parameters of CR and F would have the greatest impact. The values for CR
and F was tested in the range CR,F ∈ [0, 1].

Table 5.2 shows the results of the parameter sweep. The table contains the best
results for each problem in the MW test suite. The parameter combinations have
been selected by first looking at the highest values of FRc. Then, IGD has been
selected to break ties between FRc values. Finally, HV has been used to break
potential ties in IGD.

The IGD and HV values are the mean calculated from the feasible runs. The
reference point used to calculate the HV metric is set to the nadir point of the PF
multiplied by 1.1. The value of 1.1 is gathered from the CEC2020 competitions
evaluation criteria [Wang et al., 2020].

In the case where FRc was 0% the IGD and HV were not calculated. Also, for
runs with an archive where no points dominated the reference point, HV was not
calculated.

No set of CR and F gave the best result for multiple problems. This is evident in
table 5.2 as the CR and F values are different for each problem. The only exceptions
are MW13 and MW11 which both have CR = 0.3, and MW6 and MW11 where both
have F = 0.3. However, some sets of parameters gave a FRc of 100% for all problems
showing that they were consistently able to solve the CMOPs.

PPS was unable to consistently solve MW10 with any combination of parameters.
This is evident in table 5.2, where the FRc is 75%.

Table 5.3 shows the set of parameters where a FRc of 100% was achieved for all
CMOPs, except MW10. Any of these parameter sets should be able to solve the
problems consistently. The parameter set CR = 0.9 and F = 1.0 performed the
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Problem CR F FR Mean IGD Mean HV

MW5 0.7 0.8 100% 8.23e-03 0.38
MW6 0.2 0.3 100% 3.34e-01 0.23
MW9 0.4 0.9 100% 7.34e-03 0.48
MW10 0.1 0.6 75% 3.59e-01 0.32
MW11 0.3 0.3 100% 7.38e-03 2.28
MW13 0.3 1.0 100% 1.63e-01 2.78

Table 5.2: Best parameters for each problem.

best in both mean IGD and mean HV across all problems. Therefore, CR = 0.9
and F = 1.0 will be used for comparisons and testing for the BS tests on all MW
problems.

Additional fine tuning of parameters, such as the neighbourhood size of MOEA/D,
T , (see section 2.4.1) could be tested further. However, prior work by Fan et al.
[2019b] reported no significant difference when tuning this parameter. Other pa-
rameters for the mutation operator could also be tested for increased performance.
However, as the main contribution of this thesis is the use of BS, the work by Fan
et al. [2019b] was used to select values for the remaining parameters. The goal of
the preliminary test is not to find the optimal values for all parameters, but a set
of parameters that is able to solve the problem and thus allows further testing with
BS and RSS. Therefore, no further sweeping of parameters unrelated to constraint
handling or BS is performed.

CR F Mean IGD Mean HV

0.1 0.7 3.08e-01 1.08
0.1 1.0 2.18e-01 0.70
0.2 0.7 2.57e-01 1.32
0.2 0.8 1.98e-01 1.19
0.2 0.9 2.13e-01 1.13
0.2 1.0 1.82e-01 1.03
0.3 0.8 1.99e-01 1.18
0.4 0.8 1.85e-01 1.01
0.4 0.9 1.52e-01 1.45
0.4 1.0 1.65e-01 1.46
0.5 0.9 2.16e-01 1.15
0.6 0.8 1.82e-01 1.41
0.6 0.9 1.96e-01 1.21
0.7 0.9 2.05e-01 1.20
0.7 1.0 1.73e-01 1.45
0.9 1.0 1.49e-01 1.46

Table 5.3: Parameters with 100% FRc over all problems.

5.1.3.2 Constraint Values

Section 5.1.3.1 and table 5.2 show poor IGD results for MW6, MW10 and MW13,
caused by the solution archive being far from the PF.
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(a) Push stage: generation 141. (b) Pull stage: generation 402.

(c) Pull stage: generation 765. (d) Final generation: generation 1000.

Figure 5.7: PPS unable to properly solve MW6.

Figure 5.7 shows a run of PPS trying to solve MW6. In figure 5.7a the final gen-
eration of the push phase is shown. At this generation, the population has stagnated
before the pull phase is initialised. The MOEA/D optimiser was unable to locate
any part of the constrained PF during the push phase. In stead the population
has converged to a local optima surrounding the true PF. As seen in figure 5.7b,
the pull phase is initialised believing the unconstrained PF has been found during
the push phase. The population is evolved with constraints considered and approx-
imates similar disjoint segments that constitute the constrained PF. However, the
population is unable to get any closer to the constrained PF. Figures 5.7c and 5.7d
shows relaxation and then the reduction of the constraint threshold performed by
IεCH. As seen, the population is not evolved further towards the PF, but along the
shape of the local optima.

PPS was able to find good solutions for the MW5, MW9 and MW11 CMOPs
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using the original constraint handling parameters of α = 0.95, τ = 0.1, cp = 2.0 from
Fan et al. [2019b]. As a comparison to the earlier mentioned difficulties of finding
the unconstrained PF of MW6 - figure 5.8a shows PPS finding the unconstrained
PF of MW5 during the push phase. Figure 5.8b shows the final generation where
all the feasible disjoint sections on the PF have been discovered.

(a) Push stage: generation 500. (b) Pull stage: generation 1000.

Figure 5.8: PPS finding the unconstrained PF of MW5.

The original work by Fan et al. [2019b] assumes that when switching phases from
push to pull the population has reached the unconstrained PF and the change in
nadir and ideal point have been brought to a halt (see section 3.2). If this is not
the case, then the introduction of a CHM in the evolutionary process will have little
effect on the ability of the framework to locate the constrained PF.

From this testing it was concluded that the problem in approximating the uncon-
strained PF of MW6, MW10, MW13 was caused by the selected optimiser not being
able to solve the objective functions. Inability to approximate the unconstrained
PF in turn results in inability to approximate the constrained PF.

Analysing which MOEA is best suited to solve the underlying MOP for these
problems is outside the scope of this thesis. Tuning the parameters of the CHM
would not improve the ability of the framework to approximate the unconstrained
or constrained PF. Therefore, additional experiments to find parameters for IεCH
were not conducted and the values from [Fan et al., 2019b] were used.

5.1.4 Parameter Sweep for Binary Search Phase

Parameters for BiS are described in section 4.4. κ and γ were tested in the ranges
[0.01, 0.2] and [0.1, 0.5] respectively.

The LIR problems ran using the original values CR = 1.0 and F = 0.5 [Fan et al.,
2019b]. The MW problems ran with the values CR = 0.9 and F = 1.0 discovered
in section 5.1.3.1. The best runs for each problem are presented in table 5.4.
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Problem κ γ FR IGD HV

LIR1 0.5 0.02 100% 5.80e-03 0.65
LIR2 0.5 0.03 100% 3.91e-03 0.98
LIR3 0.4 0.10 100% 5.26e-03 0.54
LIR4 0.1 0.05 100% 3.27e-03 0.78
LIR5 0.5 0.04 100% 1.54e-03 1.03
LIR6 0.5 0.05 100% 2.13e-03 0.70
LIR7 0.1 0.01 100% 2.81e-03 2.04
LIR8 0.5 0.01 100% 2.68e-03 2.04
LIR9 0.1 0.20 100% 1.90e-03 2.78
LIR10 0.5 0.03 100% 1.96e-03 2.56
LIR11 0.5 0.20 100% 3.06e-03 3.44
LIR12 0.3 0.04 100% 3.35e-02 4.26
MW5 0.5 0.02 100% 4.31e-03 0.39
MW6 0.1 0.03 100% 5.96e-01 -
MW10 0.2 0.04 37.5% 5.93e-01 0.15
MW13 0.1 0.01 100% 2.05e-01 2.59
MW9 0.2 0.20 100% 1.21e-02 0.47
MW11 0.4 0.20 100% 7.84e-03 2.27

Table 5.4: Best binary sweep runs for all problems.

No set of parameters was able to achieve 100% FRc on MW10. Parameters
that were able to achieve 100% FRc on all problems are gathered and presented in
table 5.5. These parameters proved to perform sufficiently for all tested problems.
The mean IGD and HV are calculated from the results of all problems, excluding
MW10. No parameter set was superior in both IGD and HV. However κ = 0.1, γ =
0.03 performed best in IGD and second best in HV. κ = 0.1, γ = 0.01 performed best
in HV and second best in IGD. As a goal of BiS in this thesis is to approximate the
boundary and bring the population within the proximity of the PF, the parameters
κ = 0.1 and γ = 0.03 are selected for further experiments.

κ γ Mean IGD Mean HV

0.1 0.01 6.94e-02 2.03
0.2 0.01 9.95e-02 1.81
0.4 0.01 7.04e-02 1.92
0.1 0.03 6.40e-02 1.93
0.1 0.05 9.45e-02 1.83
0.2 0.05 6.99e-02 1.92
0.1 0.10 1.01e-01 1.82
0.4 0.10 7.66e-02 1.92
0.5 0.10 7.31e-02 1.92

Table 5.5: Mean IGD and Mean HV for all successful parameter sets.
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5.1.5 Parameter Sweep for Reduced Search Space Operator

Parameters for the RSS operator are described in section 4.4. The parameters tested
are highlighted in table 5.6.

Parameter Min Value Max Value Step Size

numACD 10 50 10

V al 0.05 0.15 0.01

Z 0.5 3.0 0.5

Table 5.6: RSS parameter sweep overview.

In addition to the metric mentioned in section 5.1.2, for each combination of
parameter values, the success rate of ACD was logged. This was to get insight into
the degree of how RSS affected the performance using the different combination of
parameter values. In the case of unsuccessful ACD, RSS is not used during the
search as no constraints are viewed as active.

Table 5.7 highlights the highest achieved ACD rate for each value of V al over
all problems. Intuitively, the larger values achieve better results, as larger values of
V al allows individuals to be further away from constraint boundaries and still view
them as active. Also, a larger number of individuals being used for ACD results
increases the probability of one of them being close to a boundary. Note that no
combination of values achieve 100% success rate. This is due to LIR1 and LIR2.
For these two problems, the constraint boundary is simply too far away. Out of
all runs, only one single run managed to identify an active constraint when solving
LIR1. The distance from the population to the constraint boundary is simply larger
than the value range tested for V al.

The aim is to analyse how RSS affects the performance of PPS. As the effect
of RSS is dependent on it actually identifying some constraint as active it was de-
cided that further experiments would use values 0.15 and 50 for V al and NumACD
respectively. For testing LIR1 and 2, V al = 0.25 was selected based on a manual
testing showing that this was approximately the distance to the constraint bound-
aries at the end of the push phase.

Val NumACD ACD successful

0.05 50 71.83%

0.06 50 73.24%

0.07 50 75.23%

0.08 50 75.23%

0.09 40 86.74%

0.10 50 87.68%

0.11 50 88.03%

0.12 50 88.26%

0.13 50 88.50%

0.14 50 88.85%

0.15 50 88.95%

Table 5.7: Highest rate of successful ACD for different V als.
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A parameter sweep was conducted for all combinations of values for the three
parameters numACD, V al and Z. However, after selecting values for numACD
and V al, the amount of data needed to be analysed to select a value for Z was
greatly reduced. Table 5.8 summarises the results from this analysis. For each Z
value the table highlights the mean IGD HV, in addition to the standard deviation
of both metrics. The results are based on all eight runs for all problems. No value
performed strictly better in all categories. Due to the overall well performance,
Z = 2 was selected as the parameter value for later experiments.

Z Mean IGD STDEV IGD Mean HV STDEV HV

0.5 1.23e-01 2.20e-01 1.65 1.25

1.0 8.71e-02 1.84e-01 1.82 1.21

1.5 1.05e-01 1.63e-01 1.56 1.26

2.0 7.98e-02 1.66e-01 1.82 1.21

2.5 1.36e-01 2.11e-01 1.56 1.26

3.0 1.06e-01 1.88e-01 1.82 1.23

Table 5.8: The effect of Z-values on the performance of the framework.

5.2 Experimental Plan

In order to answer the RQs presented in section 1.2 an experimental plan was de-
veloped and executed. The plan is split into four phases, each aiming to answer one
of the RQs. Each phase is further elaborated below.

5.2.1 Plan Phase T1

RQ 1: What landscape information extracted during the evolutionary search can
benefit PPS to increase convergence to and coverage of the constrained PF?

Hypothesis: It is expected that PBPS will result in better or on par convergence
and coverage with PPS. Also, it is expected that PPS-RSS will perform on
par with PPS-E.

Test Overview

T1.1 Testing convergence and coverage for PPS.

T1.2 Testing convergence and coverage for PBPS.

T1.3 Testing convergence and coverage for PPS-RSS.

5.2.2 Plan Phase T2

RQ 2: How do different problem characteristics affect the performance of BS?

Hypothesis: It is expected that PPS-RSS will perform poorly on problems with
disconnected PFs. It is also expected that PBPS will perform better on prob-
lems with large infeasible regions than both PPS and PPS-RSS.
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Test Overview

T2.1 Testing PPS on convex problems.

T2.2 Testing PPS on concave problems.

T2.3 Testing PPS on problems with connected PFs.

T2.4 Testing PPS on problems with disconnected PFs.

T2.5 Testing PPS on problems with small feasible space.

T2.6 Testing PBPS on convex problems.

T2.7 Testing PBPS on concave problems.

T2.8 Testing PBPS on problems with connected PFs.

T2.9 Testing PBPS on problems with disconnected PFs.

T2.10 Testing PBPS on problems with small feasible space.

T2.11 Testing PPS-RSS on convex problems.

T2.12 Testing PPS-RSS on concave problems.

T2.13 Testing PPS-RSS on problems with connected PFs.

T2.14 Testing PPS-RSS on problems with disconnected PFs.

T2.15 Testing PPS-RSS on problems with small feasible space.

5.2.3 Plan Phase T3

Phase T3 focuses on how the population moves after the push phase, while the
constrained PF is approximated. Herein the traversal of the population will be
evaluated. The term is used herein to describe the movement of the population in
the objective space and will be used during the discussion in section 5.4.2.

RQ 3: How does the use of BS affect the traversal to the unconstrained PF through
infeasible space?

Hypothesis: It is expected that PPS and PPS-RSS will achieve similar results. In
addition, it is expected that PBPS will achieve better results than both PPS
and PPS-RSS.

Test Overview

T3.1 Testing traversal of PPS.

T3.2 Testing traversal of PBPS.

T3.3 Testing traversal of PPS-RSS.
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5.2.4 Plan Phase T4

Phase T4 focuses on where the population moves after the push phase, while the
constrained PF is approximated. Herein the term bias will be used as a description
of focusing the search in a specific area, or a preference towards or inability to escape
local minima.

RQ 4: How can BS introduce a bias towards certain areas of the objective space?

Hypothesis: It is expected that PBPS will produce a less diverse population. This
is due to the focus on small areas of the search space. Also, it is expected that
PPS-RSS will produce a similarly diverse population as PPS. It is expected
that both PBPS and PPS-RSS will show similar ability to avoid local minima
as PPS.

When looking for a potential bias towards certain areas of the objective space
CD and IGD of the population is used. This is due to the assumption that a low
CD implies that the population is clustered around the same area, while a high CD
means that the individuals are spread more out. Whether or not a high or low CD
is beneficial will depend on the problem, and will be discussed if necessary. Also,
the IGD may indicate if the population is prone to finding local minima instead of
approaching the constrained PF.

Test Overview

T4.1 Test diversity in population when using PPS.

T4.2 Test diversity in population when using PBPS.

T4.3 Test diversity of population when using PPS-RSS.

5.3 Experimental Setup

The following section describes the experimental setup for the different phases of
the experimental testing. First, a general setup for the whole experimental testing
phase is given. Then, experimental setup specific for each phase is elaborated.

Table 5.9 highlights all benchmarks used during the experimental testing. Fig-
ure 5.9 shows the LIR problems [Fan et al., 2019a]. For LIR1-4, the feasible space is
highlighted by a green overlay. For the rest of the problems, feasible space is white.
Note however that the legend for LIR5 is wrong: the grey areas are infeasible space,
not feasible. The unconstrained PF is highlighted by a red line in all problems,
and the constrained PF is identified by blue circles. Figure 5.10 shows the MW
problems [Ma and Wang, 2019]. The feasible space is greyed out while infeasible
space is white. Note, this is the opposite as in figure 5.9. The unconstrained PF is
highlighted in blue, while the constrained PF is highlighted in red.

A specialised test suite has been created for each phase of the testing, testing
different aspects of the models created. Each test suite is described in tables ta-
bles 5.13 to 5.15. For each benchmark, the original name is given. Further, relevant
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Benchmark Objective
Functions

Constraints Decision
Variables

Search
Space
Range

LIR1 2 2 30 0 ≤ x ≤ 1

LIR2 2 2 30 0 ≤ x ≤ 1

LIR3 2 3 30 0 ≤ x ≤ 1

LIR4 2 3 30 0 ≤ x ≤ 1

LIR5 2 2 30 0 ≤ x ≤ 1

LIR6 2 2 30 0 ≤ x ≤ 1

LIR7 2 3 30 0 ≤ x ≤ 1

LIR8 2 3 30 0 ≤ x ≤ 1

LIR9 2 2 30 0 ≤ x ≤ 1

LIR10 2 2 30 0 ≤ x ≤ 1

LIR11 2 2 30 0 ≤ x ≤ 1

LIR12 2 2 30 0 ≤ x ≤ 1

MW5 2 3 25 0 ≤ x ≤ 1

MW6 2 3 25 0 ≤ x ≤ 1.1

MW10 2 1 25 0 ≤ x ≤ 1

MW13 2 2 25 0 ≤ x ≤ 1.5

MW9 2 1 25 0 ≤ x ≤ 1

MW11 2 4 25 0 ≤ x ≤
√

2

Table 5.9: Benchmarks used for experimental testing.

characteristics are highlighted: Shape describes whether the unconstrained and con-
strained PF are convex (CV) or concave (CC). The values can be any combination
of ”CV” and ”CC”, separated by a ”/”. The first abbreviation denotes the shape
of the unconstrained PF and the abbreviation after ”/” denotes the shape of the
constrained PF. Region Size shows the size of the feasible and infeasible regions
respectively. The possible values are S, M, and L which stand for small, medium,
and large. Overlapping PFs highlights to what degree the unconstrained and the
constrained PF are overlapping. “N” signifies no overlap, “F” signifies a full over-
lap, and “P” signifies partial overlap. Finally, Disconnected PF highlights the
benchmarks where the constrained PF consists of disconnected segments.

Table 5.10 shows the general parameter setting for each phase. A full list of
parameters with descriptions can be found in section 4.4.

All phases and their corresponding test runs have been run on a computer with
the specifications described in table 5.12. All the cores were used to run the exper-
iments. Each benchmark has been run 30 times for each model.

When discussing the results, several tools will be used. T-tests will be performed
to analyse if there is a significant difference in performance (P < 0.05). The results
of the T-tests will be presented in tables containing only the problems where a signif-
icant difference is present. Boxplots will be used to visualise the mean performance
either in regards to IGD or HV over the 30 runs for a problem. The boxplots will
also highlight the Standard Deviation (SD) for the 30 runs. In addition, line chart
will be used. The line charts may highlight IGD, HV, FRp or CD. These values will
be shown over a span of generations from either a single run or the median over
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Figure 5.9: LIR problems used during experimental testing [Fan et al., 2019a].

several runs. Finally, line charts will also be used to look at the end performance for
several runs as illustrated in figure 5.11. The red line represents the number of gen-
erations where BiS was performed for each of the 30 runs. This is used to indicate
how many and which runs BiS was performed for the 30 runs. A spike in the red
line indicates that BiS was performed for a run, while a flat line at 0 indicates that
BiS was not performed. The blue line indicates the HV and the green line the IGD
achieved for each run. Note that the y-axis does not represent any exact value as
the point of these plots is to highlight the correlation between BiS and performance.
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(a) MW5 (b) MW6

(c) MW9 (d) MW10

(e) MW11 (f) MW13

Figure 5.10: MW problems used during experimental testing [Ma and Wang, 2019].

5.3.1 Setup Phase T1

T1 aims to answer RQ1. In order to accurately answer this question, the results
of the PPS and PPS with BS approaches will be compared. PPS has previously
shown good results on the selected benchmarks. The reason for choosing the same
problems is to see if the previous success can be further enhanced. Also, it should
be easier to see if Boundary Search is not beneficial to PPS. Each model will be run
30 times on the problems described in table 5.13.

To test the convergence of the different models, the IGD metric is calculated, (see
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PPS

LIR MW

Tmax 3e+05 1e+05

Tc 800 800

α 0.95 0.95

τ 0.1 0.1

cp 2.0 2.0

l 20 20

∆ 1e-05 1e-05

ε 1e-03 1e-03

H 301 101

T 30 30

CR 1.0 0.9

F 0.5 1.0

δ 0.9 0.9

nr 2 2

di 20 20

pm 1
30

1
25

BiS

LIR MW

κ 0.1 0.1

γ 0.03 0.04

RSS

LIR MW

FESc Tmax × 0.9 Tmax × 0.9

numACD 50 50

V al 0.15 0.15

Z 2.0 2.0

Table 5.10: Common parameter setup.

RSS

V al 0.26

Table 5.11: Parameters for LIR-CMOP1 and LIR-CMOP2.

Attribute Description/Value

Model Name Intel(R) Core(TM) i7-4770 CPU 3.40GHz

Architecture x86 64

CPU Cores 8

Threads per Core 2

RAM 16GB

Table 5.12: Computer Specifications.

section 2.8.3). The IGD metric measures the distance between the true PF and the
solution set produced by the model. A lower score implies better convergence than
a higher score. The IGD will be calculated from the archive of feasible individuals
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9 13 29

0

Run

Generations HV IGD

Figure 5.11: Example linechart comparing performance over several runs.

Benchmark Shape Region Size
(Feasible/Infeasible)

Overlap Disconnected

LIR1 CV/CV S/L N -

LIR2 CC/CC S/L N -

LIR3 CV/CV S/L N X

LIR4 CC/CC S/L N X

LIR5 CC/CC L/M F -

LIR6 CV/CV L/M F -

LIR7 CC/CV M/M N -

LIR8 CV/CV M/M N -

LIR9 CV/CV M/L P X

LIR10 CC/CC M/L P X

LIR11 CC/CC M/L P X

LIR12 CV/CC M/L P X

Table 5.13: T1 Test Suite.

produced from the model, (see section 3.2). Calculating the IGD from an empty
archive is impossible. In the cases where no feasible individuals are discovered,
the total number of runs will be reduced when calculating the mean value, as the
infeasible runs would be undefined. Mean values will be compared and equal sample
sizes is beneficial when performing the comparison. The consistency proved by the
accomplishment of finding feasible individuals in every run is more desirable than
high performance but low consistency. Thus the CMOP Feasibility Rate (FRc) (see
section 2.8.1) was given a high priority and a FRc of 100% a criteria for inclusion in
the results.

To test the coverage of the different models, the HV metric is calculated, (see
section 2.8.4). The HV metric measures the volume created between the population
and a reference point. The reference point for all calculations is the nadir point of
the true PF multiplied by 1.1. Any multiplier value can be used when calculating
HV, however this work follows the evaluation criteria defined in Wang et al. [2020].
A higher HV score implies better coverage than a low score. In addition to removing
results not achieving 100% FRc as mentioned above, results containing a run where
no solution dominates the reference point is discarded. The calculation of HV re-
quires individuals to dominate the reference point, and no domination results in an
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undefined HV.
Both metrics require information about the true PF to be calculated. Data about

the true PF of the LIR problems are gathered from Fan [2017]. Data for the MW
problems are gathered from Wang et al. [2020].

5.3.2 Setup Phase T2

T2 aims to answer RQ2 These tests focus on how the two BS perform on different
problems. The aim here is to identify which problem characteristics the methods
may be suited for and which pose a challenge for them and why. The two methods
are tested on the benchmark problems listed in tables 5.13 and 5.14. The problems
have been chosen due to their different characteristics such as problems with both
convex and concave PFs. Also, problems from the MW test suite are added to
increase the pool of problems with both similar and different characteristics.

Benchmark Shape Region Size
(Feasible/Infeasible)

Overlap Disconnected

MW5 CV/CV M/M P X

MW6 CV/CV S/L P X

MW9 CC/CV M/L N -

MW10 CV/CC S/L P X

MW11 CV/CC M/L P X

MW13 CC/CC M/L P X

Table 5.14: T2 Test Suite.

5.3.3 Setup Phase T3

T3 aims to answer RQ3. To accurately answer this question the evolutionary process
during the binary- and the pull phase will be analysed. Table 5.15 highlights the
problems used during this phase. The problems in the test suite were chosen due
to them having an infeasible region between the unconstrained and the constrained
PF.

To evaluate the traversal between the constrained and unconstrained PFs, the
median of the populations IGD value will be presented when the populations are at
the following states:

1. Last generation of push phase

2. First generation of pull phase

3. Last generation of pull phase

The last generation of the push phase defines the starting point of either BS
method. The first generation of the pull phase will be used to showcase the effect
of the BiS phase. In models not containing a BiS phase, the first pull generation
is simply the next generation after the last push generation. The last generation of
the pull phase allows comparison of how the CHM performed during the pull phase.
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The HV and initial allowed constraint violation from these generations are also
presented for selected problems to support the discussion. The development of FRp

is also plotted for selected problems to support the discussion.

Benchmark Shape Region Size
(Feasible/Infeasible)

Overlap Disconnected

LIR1 CV/CV S/L N -

LIR2 CC/CC S/L N -

LIR3 CV/CV S/L N X

LIR4 CC/CC S/L N X

LIR7 CC/CV M/M N -

LIR8 CV/CV M/M N -

LIR11 CC/CC M/L P X

LIR12 CV/CC M/L P X

MW9 CC/CV M/L N X

MW11 CV/CC M/L P X

MW13 CC/CC M/L P X

Table 5.15: T3 Test Suite.

5.3.4 Setup Phase T4

T4 aims to answer RQ4. To accurately answer this question, the evolutionary pro-
cess during the binary and the pull phase will be analysed. The IGD and CD will
be logged and analysed to see how the diversity of the population changes. Visuali-
sations of the population in the objective space is presented to show the populations
behaviour. Benchmarks from the previous experimental phases are selected for dis-
cussion based on the results achieved, where the aim is to analyse why good and
bad results occur.

5.4 Experimental Results

The following section discusses the results from the experimental testing described
in sections 5.2 and 5.3. After performing Plan Phase T1 and and Plan Phase T2, it
was realised that the results from these two phases would be more easily discussed
together rather than separately. For this reason, section 5.4.1 discusses the results
from phase T1 and phase T2. Then, section 5.4.2 discusses the results from phase
T3. Finally, the results from phase T4 are elaborated in section 5.4.3.

5.4.1 Results Phase T1 and Phase T2

Tables 5.16 and 5.17 show a sample of the results from the experiments described in
sections 5.2.1 and 5.2.2. Given the importance of comparison between the models,
rather than the exact values of IGD and HV, the full tables of results have been
placed in appendix .1. Table 1 shows the exact IGD and table 2 shows the exact
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Problem BiS-IE PPS-IE BiS-E PPS-E PPS-RSS

MEAN 1.1045e-02 8.8040e-03 8.1249e-02 1.0060e-01 1.1054e-01
LIR1

STD 7.9447e-03 4.1645e-03 5.9163e-02 4.0359e-02 4.4406e-02

MEAN 2.5340e-02 7.5015e-03 1.1112e-01 1.2076e-01 1.3406e-01
LIR3

STD 6.8518e-02 4.0834e-03 5.1968e-02 5.1519e-02 6.9498e-02

MEAN 3.1774e-03 2.9001e-03 3.2108e-03 3.0568e-03 3.1797e-03
LIR7

STD 1.1356e-03 7.8821e-05 7.5886e-04 1.4729e-04 1.0240e-04

MEAN 2.0151e-01 1.9068e-01 1.8612e-01 2.6728e-01 2.8065e-01
MW9

STD 5.1044e-03 3.1373e-03 4.2815e-03 6.0034e-03 9.7723e-03

Table 5.16: Sample of IGD results of BiS-IE, PPS-IE, BiS-E, PPS-E and PPS-RSS. Best
performance is highlighted for each problem.

Problem BiS-IE PPS-IE BiS-E PPS-E PPS-RSS

MEAN 6.4321e-01 6.4678e-01 5.6248e-01 5.4716e-01 5.3873e-01
LIR1

STD 1.6697e-02 2.7374e-03 5.8156e-02 3.8310e-02 4.3014e-02

MEAN 5.2058e-01 5.3681e-01 4.4402e-01 4.3296e-01 4.2586e-01
LIR3

STD 6.4708e-02 2.9635e-03 4.9291e-02 4.5763e-02 5.9883e-02

MEAN 2.0368 2.0402 2.0370 2.0396e 2.0392e
LIR7

STD 8.3316e-03 1.5486e-03 6.7472e-03 1.7812e-03 1.2675e-03

MEAN 4.5257e-01 4.6663e-01 4.6161e-01 4.5543e-01 4.3263e-01
MW9

STD 7.4792e-03 6.4746e-03 6.7706e-03 7.4763e-03 9.8116e-03

Table 5.17: Sample of HV results of BiS-IE, PPS-IE, BiS-E, PPS-E and PPS-RSS. Best
performance is highlighted for each problem.

HV achieved by the models on the LIR problems. Similarly, tables 3 and 4 show
the exact IGD and HV achieved for the MW problems.

Tables 5.16 and 5.17 show that there is a tendency for the PPS models to outper-
form their BiS counterparts and PPS-RSS. To get a deeper insight into the results
and the trend they are showing, T-tests have been performed between the different
models. These are shown in tables 5.20 and 5.23 to 5.25. The tables show the
problems where there is a significant difference in performance. The Model column
signifies which model performed significantly better (P < 0.05).

BiS-IE will primarily be compared against PPS-IE and BiS-E against PPS-E to
analyse how BiS may affect performance. The reason for this is that BiS-IE and
PPS-IE are similar except the addition of BiS in BiS-IE. Thus, it is likely that a
difference in performance is caused by BiS, as there is no other dissimilarity between
the models. This is the same for BiS-E and PPS-E. Finally, PPS-RSS is evaluated
both against PPS-IE and PPS-E.

5.4.1.1 Binary Search

Table 5.20 shows the LIR problems where there was a significant difference in per-
formance between BiS-IE and PPS-IE (table 5.18) and between BiS-E and PPS-E
(table 5.19). LIR7 and LIR8 both have a medium to large infeasible area between
the unconstrained and constrained PF. LIR9 and LIR12 both have overlapping un-
constrained and constrained PFs.
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Problem
IGD HV

P Value Model P Value Model
LIR7 0.30 - 0.04 PPS-IE
LIR8 0.00 BiS-IE 0.30 -
LIR9 0.01 PPS-IE 0.11 -
LIR12 0.23 - 0.01 PPS-IE

Table 5.18: T-test comparing BiS-IE and PPS-IE.

Problem
IGD HV

P Value Model P Value Model
LIR8 0.03 BiS-E 0.01 BiS-E
LIR9 0.12 - 0.02 PPS-E
LIR12 0.01 PPS-E 0.02 BiS-E

Table 5.19: T-test comparing BiS-E and PPS-E.

Table 5.20: T-tests comparing BiS-IE with PPS-IE and BiS-E with PPS-E on LIR
problems.

Problem
IGD HV

P Value Model P Value Model

MW9 0.00 PPS-IE 0.00 PPS-IE
MW11 0.00 BiS-IE 0.00 BiS-IE

Table 5.21: T-test comparing BiS-IE with PPS-IE.

Problem
IGD HV

P Value Model P Value Model

MW9 0.00 BiS-E 0.00 BiS-E
MW11 0.00 BiS-E 0.00 BiS-E

Table 5.22: T-test comparing BiS-E with PPS-E.

Table 5.23: T-tests comparing BiS-IE with PPS-IE and BiS-E with PPS-E on MW
problems.

Table 5.23 illustrate the same as table 5.20, however for the MW problems.

Tables 5.20 and 5.23 show that there is a significant difference in performance
only on a few of the problems from the test suites used (see tables 5.13 and 5.14).
Thus, even though tables 5.16 and 5.17 indicate that PPS outperforms the BiS
models the difference is not significant. To get a better understanding of these re-
sults, further analysis was performed. The following discussion has been divided into
three sections focusing on different problem characteristics: Small Feasible Regions,
Disjoint PFs, and Convex and Concave PFs.

Small Feasible Regions

LIR1 and LIR2 are two problems with small feasible regions. Figure 5.12 shows that
PPS-IE outperforms BiS-IE in regards to both IGD and HV on LIR1 and LIR2.
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Figure 5.12: Comparison of mean IGD and HV between BiS-IE and PPS-IE on LIR1
and LIR2.

Figure 5.12a shows that PPS-IE achieves a better IGD and a lower SD. Similarly,
figure 5.12b shows that PPS-IE achieves better HV and a lower SD than BiS-IE.
This was unexpected as the introduction of BiS was thought to improve performance
on problems where the unconstrained and constrained PF were separated by an
infeasible region. Based on the results from the preliminary testing (see table 5.1)
it was expected that small feasible regions would not have a negative effect on the
performance of BiS. It was thus expected that BiS-IE would perform better or on par
with PPS-IE on these problems. The T-test (P < 0.05) showed that no significant
difference between the two models is detected on these problems.
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Figure 5.13: Comparison of mean IGD and HV between BiS-E and PPS-E on LIR1 and
LIR2.

Figure 5.13 shows the performance of BiS-E compared to PPS-E on LIR1 and
LIR2. Similarly to BiS-IE, BiS-E is outperformed on LIR2 in regards to IGD and
HV as shown in figures 5.13a and 5.13b respectively. However, BiS-E performs
better than PPS-E on LIR1 achieving a lower IGD and a higher HV. Note however
that the SD for BiS-E is larger than for PPS-E on LIR1.

To understand why the addition of BiS did not improve the performance on
problems with small feasible regions, each of the 30 runs were further analysed. In
order to accomplish this all runs of the models were plotted in figures 5.14 and 5.15.

The preliminary tests in section 5.1.1.3 discussed that having a feasible set con-
taining only a single individual, BiS would be able to develop a high diversity and a
good performance, indicated by a low IGD and a high HV. However, further exam-
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Figure 5.14: Effect of BiS on IGD and HV for BiS-IE on LIR1 and LIR2.

ination shows that this may not always be the case. Figure 5.14a shows that only
one of the 30 runs of BiS-IE performed BiS on LIR1, as indicated by the spike in the
generations line for run 11. The blue line shows a noticeable dip in HV for this run.
Similarly, the green line shows an increase in IGD. For LIR2, BiS was performed for
run 3 and run 22 shown in figure 5.14b. In run 3, the introduction of BiS resulted
in an inferior performance just as in run 11 for LIR1. On the other hand, run 22
for LIR2 showed a better performance both in HV and IGD. Run 22 managed to be
the best performing of all 30 runs on LIR2. Figure 5.15a show the 30 runs of BiS-E
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Figure 5.15: Effect of BiS on IGD and HV for BiS-E on LIR1 and LIR2.

on LIR1. In run 9, 13 and 29 BiS was performed. In all cases, the introduction of
BiS produced better results than when BiS was not performed. For LIR2, BiS was
performed for run 17, 19 and 24 as shown in figure 5.15b. For run 17 and 19 the
performance was increased. For run 24 the performance was not increased, however
the introduction of BiS did not reduce performance to the same extent as the cases
in figure 5.14. The results in figure 5.15 show that BiS improves the performance
more often than reducing it, contradicting what is seen in figure 5.14 where the
opposite is the case. The preliminary testing indicated that BiS would still perform
well even when problems had small feasible regions and the number of feasible in-
dividuals found during the push phase was low (see section 5.1.1.3). The results
from experimental testing however show that BiS may have a negative impact on
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performance after all.
It is clear from figures 5.14 and 5.15 that BiS was performed a total of 3 times

for BiS-IE on these two problems, and a total of 6 times for BiS-E. The lack of runs
where BiS was performed is due to the small feasible regions making it unlikely to
find feasible individuals during the push phase. With no feasible individuals found,
the BiS is skipped, and the model goes straight into the pull phase. The low number
of runs where BiS was performed for these two problems makes it impossible to draw
any definitive conclusions. To be able to better analyse the performance of BiS on
problems with small feasible regions, more runs where BiS was performed is needed.
A possibility would be to perform runs until 30 runs with BiS was obtained for
both models. This would allow for a more clear analysis of the performance of BiS
on problems with small feasible regions. However, the lack of occurrences of BiS
implies that the consistency of the model is low and the likelihood of it initiating is
unpredictable. Thus, BiS is not suited for problems with small feasible regions.

In figure 5.14 the fluctuation in performance over the 30 runs is less, with BiS-
runs introducing most change. In figure 5.15, the performance for each run varies
more, even when BiS is not performed. This is likely due to the IεCH method which
periodically increases the constraint relaxation in BiS-IE (see equation (3.4)). Thus,
the population is able to move away from the constrained PF creating diversity in
the population and then finding new parts of the PF. εCH on the other hand has
only a single opportunity to approach the PF. As there is no increase in constraint
relaxation, the population may lack the diversity needed to properly move around
in the search space. Thus, depending on the initial approach to the constrained PF,
the performance may vary. The difference in stability can also be seen in tables 5.16
and 5.17 where the exact SD for LIR1 is listed.
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Figure 5.16: Effect of BiS on IGD and HV for BiS-IE on LIR3 and LIR4.

LIR3 and LIR4 are two problems with disjoint PFs in addition to small feasible
regions. Figures 5.16 and 5.17 show the same information as figures 5.14 and 5.15
respectively, but for LIR3 and LIR4.

The figures show that BiS was performed even fewer times than on LIR1 and
LIR2. This was expected due to the disjoint nature of the constrained PF and
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making feasible area of these problems even smaller than those of LIR1 and LIR2
(see figure 5.9). Therefore, the models would have greater problems identifying any
feasible individuals during the push phase.

For all the occurrences of BiS in both models, the performance was reduced.
This can clearly be seen in figure 5.16a where the IGD is increased and the HV
is reduced for run 21 and 23, and in figure 5.16b for run 5, 11 and 23. The same
is shown in figure 5.17a where run 15 had one of the worst performances of the
30 runs and in figure 5.17b where run 1 shows a clear dip in HV and increase in
IGD resulting in the worst run. LIR1 and LIR3, and LIR2 and LIR4 would be
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Figure 5.17: Effect of BiS on IGD and HV for BiS-E on LIR3 and LIR4.

identical if LIR3 and LIR4 did not have disjoint PFs. Thus, the reason for the poor
performance of BiS on these problems is attributed to this difference and how the
BiS models work. The disjoint nature of the PF makes it not only more difficult to
identify feasible individuals during the push phase, but it also makes it more difficult
for the population to identify all different sections of the PF. For BiS to be able to
approximate all the disjoint sections of the constrained PF a feasible individual must
have been found in all of them. If only a single individual in a specific section of the
PF is identified during the push phase, BiS will move the whole population to this
section. In addition, the reduced initial constraint relaxation (see section 5.1.1.2)
makes it difficult for the population to locate the other sections of the constrained PF
by prohibiting the population to move too far away from the feasible area. Again,
it is evident that the results of BiS-IE are fluctuating less than BiS-E as seen i
figures 5.16 and 5.17.

LIR9-12 also have disjoint sections. Figure 5.18 shows that BiS-IE is outper-
formed on LIR9 and LIR12. For LIR10, the performance of BiS-IE is similar to that
of PPS-IE as shown in figures 5.18a and 5.18b.

Figure 5.19 shows the performance of BiS-E and PPS-E on LIR9, LIR11 and
LIR12. Similarly to BiS-IE in figures 5.18a and 5.18b, BiS-E is outperformed on
LIR9 as shown in figures 5.19a and 5.19b. Figure 5.19c shows that opposite to BiS-
IE and PPS-IE, the performance of BiS-E on LIR11 is poorer than BiS-E and the
performance on LIR12 is more similar.

BiS-IE and BiS-E show a noticeable SD for these problems. Figures 5.18a
and 5.18b show that it is especially the case on LIR9 for both models. To better
understand why the performance was so unstable for the problems in figures 5.18
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Figure 5.18: Comparison of mean IGD and HV between BiS-IE and PPS-IE on LIR9,
LIR11 and LIR12.

LIR9

0.002

0.002

IG
D

BiS-E PPS-E

(a) IGD comparison.

LIR9

2.783

2.783

H
V

BiS-E PPS-E

(b) HV comparison.

LIR11 LIR12

0.004

0.006

0.008

IG
D

BiS-E PPS-E

(c) IGD comparison.

LIR11 LIR12

3.5

4

H
V

BiS-E PPS-E

(d) HV comparison.

Figure 5.19: Comparison of mean IGD and HV between BiS-E and PPS-E on LIR9,
LIR11 and LIR12.

and 5.19, the 30 runs for each of them were plotted similarly as with LIR3 and
LIR4. These plots showed that there were no clear correlation between the number
of generations the search was in the binary phase and the performance of the model.
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Figure 5.20 has been included to convey this. The red line shows that nearly all of
the 30 runs performed BiS as run 7 was the only one where BiS was performed for
0 generations. Also, as the graph shows, there is no clear correlation between the
BiS search and the performance of the model. Similar graphs were generated for all
the problems, however they are left out as they show similar behaviour. The lack
of correlation between BiS is dissimilar to LIR1-4 where a clearer dip or spike in
performance can be seen in figures 5.14 to 5.17.

Run

Generations HV IGD

Figure 5.20: LIR9: Comparison of 30 runs of BiS-E.

In addition to having a disjoint PF, LIR9 also has overlapping PFs (see fig-
ure 5.9). During the push phase, the population ignores constraints and is approx-
imating the unconstrained PF. Assuming that the population reaches the uncon-
strained PF then most, if not all, of the disjoint segments of the constrained PF
will have been found. Thus, the feasible set produced by BiS should contain feasible
individuals located in all of the disjoint segments. However, this does not seem
to show any performance increase, as PPS-IE performed significantly better than
BiS-IE on LIR9 in regards of IGD as seen in table 5.18.

Figures 5.18 and 5.19 show that there is a high SD for several of the problems.
Due to the larger feasible areas evident in LIR9-12 (see figure 5.9) compared to
LIR1-4, it was expected that several feasible individuals would be found during the
push phase and thus both BiS models would outperform PPS. This does however
not seem to be the case for all these problems. As seen in tables 5.18 and 5.19, only
LIR9 and LIR12 show a significant difference in performance between BiS-IE and
PPS-IE, and BiS-E and PPS-E.

Convex and Concave PFs

It was believed that BiS-IE and BiS-E would be superior on LIR7 and LIR8. This
was hypothesised due to the sizeable feasible area close to the boundary making it
more likely to identify feasible individuals during the push phase. However, they
only significantly enhanced the performance on LIR8 as seen in tables 5.18 and 5.19.

MW9 has similar characteristics as LIR7: a concave unconstrained PF and a
convex constrained PF (see figures 5.9 and 5.10). Figures 5.21 and 5.23 show that
BiS-IE performed worse than PPS-IE on LIR7 and MW9. BiS-E on the other hand
performed better than both BiS-IE and PPS-E on MW9 as seen in figure 5.23. Also,
table 5.19 shows that there is a significant difference in both IGD and HV between
BiS-E and PPS-E. The results may indicate that BiS is only beneficial where the
constrained and unconstrained PF have the same shape. However, this can not be
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Figure 5.21: Comparison of mean IGD and HV between BiS-IE and PPS-IE on convex
problem (LIR7) and concave problem (LIR8).
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Figure 5.22: Comparison of mean IGD and HV between BiS-E and PPS-E on convex
problem (LIR7) and concave problem (LIR8).

said for certain without a more thorough investigation into these characteristics of
the PF. Such an investigation is outside the scope of this thesis, thus future work
should look into this topic.

Figure 5.24 shows a noticeable difference between BiS-IE and PPS-IE, and BiS-E
and PPS-E respectively. The models utilising BiS show better performance on these
problems which is backed up by the T-tests in tables 5.18 and 5.19. In addition
to the larger feasible area mentioned in section 5.4.1.1, this is likely caused by the
initial constraint relaxation being set by the BiS phase. It is believed that the
reduced initial constraint relaxation results in a superior initial position and more
generations to explore the PF during the pull phase, as discussed in section 5.1.1.2.

5.4.1.2 Push Pull Reduced Search Space

Tables 5.24 and 5.25 show T-test comparisons between PPS-RSS and the two PPS
models. Problems yielding a significant difference in performance for either IGD
or HV have been omitted. The tables clearly display that PPS-RSS had problems
performing on par with the other models which substantiates the trend seen in
tables 5.16 and 5.17. PPS-RSS was significantly worse than both PPS-IE and PPS-
E for almost all problems in the test suite.

Table 5.24 gives a clear picture of PPS-RSS being outperformed. An analysis of
the performance is outlined to understand these results. The discussion will follow
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Figure 5.23: Comparison of mean IGD and HV between BiS-IE, PPS-IE, BiS-E and
PPS-E on a convex problem (MW9).
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Figure 5.24: Comparison of mean IGD and HV between BiS-IE, PPS-IE, BiS-E and
PPS-E on MW11.

Problem
IGD HV

P Value Model P Value Model
LIR1 0.00 PPS-IE 0.00 PPS-IE
LIR2 0.00 PPS-IE 0.00 PPS-IE
LIR3 0.00 PPS-IE 0.00 PPS-IE
LIR4 0.00 PPS-IE 0.00 PPS-IE
LIR5 0.00 PPS-IE 0.00 PPS-IE
LIR6 0.56 - 0.00 PPS-IE
LIR7 0.00 PPS-IE 0.01 PPS-IE
LIR8 0.00 PPS-IE 0.00 PPS-IE
LIR9 0.00 PPS-RSS 0.00 PPS-RSS
LIR10 0.03 PPS-IE 0.00 PPS-IE
LIR12 0.00 PPS-RSS 0.00 PPS-RSS

Table 5.24: T-test comparing PPS-RSS and PPS-IE for the LIR problems tested. The
model column signifies which model performed significantly better (P < 0.05).

the same layout as in section 5.4.1.1. The line charts used in section 5.4.1.1 are not
used as their goal was to analyse the impact of the new binary phase. PPS-RSS
does not incorporate a new phase but changes the CHM method used. Therefore,
looking at the results of all the 30 runs will not give more insight than looking at
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Problem
IGD HV

P Value Model P Value Model

LIR4 0.03 PPS-E 0.03 PPS-E
LIR5 0.00 PPS-E 0.00 PPS-E
LIR6 0.16 - 0.00 PPS-E
LIR7 0.00 PPS-E 0.28 -
LIR8 0.00 PPS-E 0.05 PPS-E
LIR9 0.00 PPS-RSS 0.44 -
LIR10 0.00 PPS-E 0.00 PPS-E

Table 5.25: T-test comparing PPS-RSS and PPS-E for the LIR problems tested. The
model column signifies which model performed significantly better (P < 0.05).

the bar charts highlighting the mean IGD and HV together with SD values.
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Figure 5.25: Comparison of mean IGD and HV between PPS-RSS, PPS-IE and PPS-E
on LIR5 and LIR6.

It was expected that all models would perform close to identical on LIR5 and
LIR6. This was due to the likelihood of discovering the whole constrained PF
during the push phase due to the unconstrained and constrained PF being identical.
However, figure 5.25a shows that PPS-RSS achieves a larger IGD than the PPS
models. This is a result of the problem having large infeasible regions blocking the
way to the PF (see section 2.5 and figure 5.9). The population is able to locate
the constrained PF during the push phase. When the CHM kicks in during the
pull phase, the population is pulled away from the PF and towards the boundary
between feasible and infeasible space. PPS-RSS behaves similarly when solving
LIR6. However for LIR6, PPS-RSS performed similarly to PPS-IE and PPS-E as
seen in figures 5.25a and 5.25b highlighting the achieved IGD and HV on LIR5 and
LIR6. This indicates that the initialisation of δin is dependent on the problem, and
may hinder the population in properly exploring the constrained PF if it is too low.
This behaviour of PPS-RSS during the evolutionary process is discussed in more
detail in section 5.4.3.2.

Note the HV achieved by PPS-IE, PPS-E and PPS-RSS on LIR5 and LIR6.
Figure 5.25b indicates that the coverage is nearly identical, even with the greater
difference in IGD shown in figure 5.25a. The behaviour causing this will be discussed
in section 5.4.3.2
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Figure 5.26: Comparison of mean IGD and HV between PPS-RSS, PPS-IE and PPS-E
on LIR7 and LIR8.

Figure 5.26 shows that PPS-RSS is outperformed on LIR7 and LIR8. It was be-
lieved that the performance of PPS-RSS would be similar to that of the PPS models
due to the similarities between how PPS-RSS and PPS-E shrink their boundaries.
The reason for the poor performance is attributed to the fact that PPS-RSS shrinks
the boundaries much slower than PPS-IE and PPS-E. Thus, the population requires
more generations to cross the infeasible region between the unconstrained and con-
strained PF. Using more generations to cross this region reduces the number of
generations the population explores the boundary region between feasible and in-
feasible space, where the constrained PF is located. Therefore, the ability of the
population to properly explore the constrained PF is reduced.
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Figure 5.27: Comparison of mean IGD and HV between PPS-RSS, PPS-IE and PPS-E
on LIR1 and LIR2.

Figure 5.27 shows the performance of PPS-RSS compared to PPS-IE and PPS-
E on two problems with small feasible areas. From the bar charts it is clear that
PPS-IE outperforms PPS-RSS on both the problems. The performance of PPS-RSS
and PPS-E is more similar. This is believed to be due to the similar approach of
shrinking the boundaries. PPS-IE allows the relaxation of constraints to increase if
a certain FRp is reached (see equation (3.4)), helping it approach the small feasible
space of the problems multiple times. PPS-E and PPS-RSS do not increase the
constraint relaxation again, strictly shrinking it. Thus, the two methods have a
harder time exploring the small feasible regions of these problems.
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Figure 5.28: Comparison of mean IGD and HV between PPS-RSS, PPS-IE and PPS-E
on LIR3 and LIR4.
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Figure 5.29: Comparison of mean IGD and HV between PPS-RSS, PPS-IE and PPS-E
on LIR9 and LIR10.
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Figure 5.30: Comparison of mean IGD and HV between PPS-RSS, PPS-IE and PPS-E
on LIR11 and LIR12.

Figure 5.28 shows the performance of PPS-RSS compared to PPS on two prob-
lems with disjoint PFs and small feasible regions. Also, figures 5.29 and 5.30 show
the performance on several problems with disjoint PFs. Due to the poor perfor-
mance of PPS-IE on LIR12, PPS-IE is not shown in figure 5.30a. PPS-IE is omitted
to enhance readability in the graph and make the difference between the methods
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more prominent. The figures show that PPS-RSS performs similarly to PPS-E on
most of them. Figure 5.28 shows similar performance on LIR3 however a large SD
is present. For LIR4 there is a more notable difference in performance which is
affirmed by table 5.25 highlighting that PPS-E performed significantly better than
PPS-RSS on this problem. Similarly, figure 5.30a shows a clear difference in per-
formance on LIR11 and PPS-RSS has a large SD. For LIR12, the IGD is similar,
however PPS-RSS has a large SD compared to PPS-E.

Initially, the poor performance of PPS-RSS on problems LIR3, LIR4 and LIR11
was assumed to be a result of how the infeasible regions are oriented in the objective
space. For LIR3 and LIR4, the disjoint nature of their PFs is created by having one
or several constraints splitting it into several pieces. Thus, these constraints will be
active at certain points of the constrained PF. However, they will not be the only
active constraints, and they will not be active along the whole constraint boundary.
It was hypothesised that in the case that only these constraints were detected as
active constraints during ACD (see section 4.2.10.1), the population would simply
oscillate in-place instead of moving closer to the constrained PF. However, due to
the value of V al specifically used for LIR1-4 (see table 5.11) this was not the case.

It was later hypothesised that the initialisation of the constraint boundaries was
the reason for the poor performance on LIR3 and LIR4. To investigate this, a new
set of experiments were performed logging the max constraint violation used for the
initial constraint boundaries for eight runs on LIR3 and LIR4. Table 5.26 shows that
the constraint violation is large for these two problems. The preliminary testing
found that V al = 0.26 was appropriate for these problems. This indicates that
0.26 is a suitable estimate of the distance between the population and a boundary
between feasible and infeasible regions. The values in table 5.26 clearly show a larger
max constraint violation than 0.26. This indicates that using the max constraint
violation of the population to initialise constraint boundaries may not always be
suitable. In the case of these problems, the boundary values are too large and the
shrinking of the boundaries is not sufficiently fast to make up for this.

Mean SD

LIR3 7.75e+01 1.25e+01

LIR4 7.02e+01 1.71e+01

Table 5.26: Mean max constraint violation for 10 runs of LIR3 and LIR4.

LIR9-LIR12 have either overlapping unconstrained and constrained PFs or they
are close to each other (see figure 5.9). Therefore, it is highly likely that RSS
is able to detect the active constraints consistently. The ACD process is among
other aspects dependent on the value of V al and the distance of the population to
the different borders between feasible and infeasible areas created by constraints.
Assuming that the population has been able to approximate the unconstrained PF,
if the problem has overlapping PFs, then the distance to the active constraints will
be small. Also, for the problems with the unconstrained and constrained PF close to
each other, V al should be sufficiently large. Thus, RSS detects the segments on the
disconnected PF consistently, and performs best among all models on LIR9. The
cause of this improved behaviour will be discussed in section 5.4.3.2.
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5.4.1.3 Summary

Section 5.4.1 has discussed the results from executing the experimental plans in
sections 5.2.1 and 5.2.2.

The T-tests performed show that BiS-IE and BiS-E perform similarly to PPS-IE
and PPS-E respectively. It was hypothesised that the BiS models would outperform
the PPS models on problems with infeasible regions separating the unconstrained
and constrained PF. This was the case for LIR8 and MW11 where both BiS models
outperformed their PPS counterparts. In addition, BiS-E significantly outperformed
PPS-E on MW9.

After taking a closer look at the behaviour of BiS the performance was seen
to both improve and reduce performance on problems with small feasible regions.
For problems with disjoint PFs, the introduction of BiS reduced the performance
on several of the problems. For LIR9, BiS-IE was significantly outperformed in
regards to IGD and BiS-E was significantly outperformed in regards to HV. PPS-IE
significantly outperformed BiS-IE on LIR12 in regards to HV, unlike PPS-E which
was significantly outperformed by BiS-E on the same problem in regards to the same
metric. However, PPS-E managed to significantly outperform BiS-E in regards to
IGD.

The T-tests performed show that PPS-RSS is outperformed on nearly all the
benchmark problems. It was hypothesised that PPS-RSS would perform on par
with PPS however this was not the case. To better understand the results, a more
thorough analysis was performed. The analysis shows that PPS-RSS performs sim-
ilarly to PPS-E. This is credited to the fact that their CHM operate similarly. Also,
the shrinking of boundaries in PPS-RSS is slower than PPS giving the population
fewer generations to explore the constrained PF as more generations are used to
cross infeasible regions.

5.4.2 Results Phase T3

Section 5.4.1 focuses on the end performance, looking at the archive returned at
the end of each run. To further analyse the behaviour of the two Boundary Search
methods during the evolutionary process, section 5.4.2 focuses on the behaviour
and evolution of the population during the evolutionary process. Therefore, the
results from section 5.4.2 highlight the population, not the archives of the different
models. To evaluate the traversal of BiS models, the difference in median IGD
between the last generation of the push phase and the first generation of the pull
phase is calculated. For the RSS model, the difference between the last generation
of the push phase and the last generation of the pull phase is used. The median is
calculated for two generations and then the difference between them is calculated.
The median is selected over the mean due to different runs initialising the phases at
different generations which may introduce anomalies in the data when using mean
values. The exact values may be found in the appendix (see table 5).
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Problem BiS-IE PPS-IE

LIR7 61.30% 50.89%
LIR8 49.71% 30.76%
LIR11 11.91% 0.02%
LIR12 18.72% 11.29%
MW9 13.89% 0.00%
MW11 25.08% -0.02%

Table 5.27: Percentage increase in median IGD performance between the end of push
phase and the start of the pull phase for BiS-IE and PPS-IE.

5.4.2.1 Binary Search

The difference in median IGD between the end of the push phase and the start of
the pull phase is calculated and presented as percentages in table 5.27. The table
contains the problems where BiS-IE had a higher increase than PPS-IE as these
results give a clear comparison of the difference in incorporating BiS or not.

The results in table 5.18 highlight that BiS-IE increases end performance for
LIR8, but not LIR7. Table 5.27 shows that BiS does in fact increase the conver-
gence during the evolutionary process for both problems. The reason why the end
performance is not increased when the convergence during evolution is increased is
further analysed.

Figure 5.31 shows the IGD achieved during the first generation of the pull phase
for all the 30 runs of LIR7 and LIR8. The performance of BiS-IE is highlighted by
a red line and the performance of PPS-IE by a blue line.
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Figure 5.31: First generation of pull phase: Comparison of IGD between BiS-IE and
PPS-IE on LIR7 and LIR8.

Figures 5.31a and 5.31b show a trend of BiS-IE achieving a better IGD than PPS-
IE. This is apparent as the red line is plotted below the blue one. Figure 5.31b shows
a more noticeable gap than figure 5.31a between the two models. This indicates that
the effect of BiS is greater for LIR8 than LIR7. From these result, it is unclear why
the ending result did not yield a better performance for both problems as figure 5.31
indicates improved performance for both problems.

It was hypothesised that the increased performance seen in figure 5.31 could come
at the cost of coverage and that BiS reduced exploration. The reduced exploration
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Figure 5.32: First generation of pull phase: comparison of HV between BiS-IE and
PPS-IE on LIR7 and LIR8.

would in that case result in poor end results. Figure 5.32 shows the HV metric for
LIR7 and LIR8. At first glance, the low value for BiS-IE would indicate that the
increased convergence comes at the cost of coverage, as a higher score indicates better
coverage. This is however not necessarily the case for these two problems because of
the unconstrained PF being further away from the reference point used to calculate
HV, (see section 2.8.4). As a result, a higher HV in this case could mean higher
coverage, but also a larger gap to the PF, depending on the populations position
in the objective space. As seen from the IGD metric, the population of BiS-IE has
moved further towards the constrained PF. Detecting if the improved convergence
comes at the cost of coverage can not be established from HV alone, and will be
further analysed in section 5.4.3.

Analysing the data gathered from BiS-IE does not provide any answers to why
the convergence of the end result was not enhanced. Understanding why PPS-IE
performs well is required to determine the cause. The performance of PPS-IE listed
in table 5.27 shows a large difference in IGD for LIR7, LIR8 and LIR12 between
the end of the push phase and start of the pull phase. The increase in IGD was
measured to 50.89%, 30.76% and 11.29% respectively. These results were unexpected
as there is only a single generation separating the last generation of the push phase
and first generation of the pull phase for PPS-IE. An increase similar to those
for LIR11, MW11 and MW9 was expected for these problems as the population in
PPS-IE does not know of the feasible areas and must discover these from exploration
using MOEA/D with IεCH. The results indicate that minimal constraint handling is
required to move the population out of infeasible regions and towards the constrained
PF. A lower performance increase can be seen for LIR12 than LIR7 and LIR8, which
suggests that the disjoint segments increase the difficulty of the problem. However,
this can not be the only reason for the difference as MW9 does not have a disjoint PF
and table 5.27 does not show any indication of a large leap towards the constrained
PF for MW9. In an attempt to understand the cause for this behaviour, additional
tests were run for these problems to gather more information. Since the traversal for
PPS-IE was so high, the allowed constraint violation at the first pull generation was
believed to be an important factor. A new set of experiments were run to gather
this data. This data is thus not based on the experiments presented in table 5 but
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a new set of 30 runs of MW9 and LIR7. These problems were selected as both have
similar PF shape characteristics (see figures 5.9 and 5.10). The results from this
experiment are presented in table 5.28, which shows the allowed constraint violation
of the first pull phase generation.

Problem BiS-IE PPS-IE

MW9
MEAN 5.24e-02 6.97e+04
STD 4.75e-02 7.06e+03

LIR7
MEAN 3.20e-02 1.00e-01
STD 1.44e-02 6.23e-07

Table 5.28: Mean initial allowed constraint violation threshold of BiS-IE and PPS-IE on
MW9 and LIR7.

Comparing the values between BiS-IE and PPS-IE gains insight into the range
of constraint violation in the objective space. PPS-IE uses the maximum achieved
constraint violation during the search (see section 3.2), whereas BiS-IE selects the
value from the max violation within the population after the selection strategy (see
section 4.2.8.3). The results indicate that the degree of constraint violation near the
boundary in MW9 and LIR7 is similar. On the other hand, the maximum possible
degree of constraint violation in the objective space is much greater for MW9 than
of LIR7. Calculating the difference between the mean initial allowed constraint
threshold for BiS-IE and PPS-IE shows the approximate range of constraint violation
for the problems. The difference is 6.80e-02 for LIR7 and 6.97e+04 for MW9. The
difference for MW9 is remarkably higher than LIR7. As can be seen from the SDs
on MW9, the constraint violation fluctuates heavily for PPS-IE, but remains more
stable for BiS-IE. From this, it is believed that the enhancements of BiS depends
on the range of constraint violation throughout the search space and not just the
characteristics alone.

To visualise the effect of the different initial values used by IεCH in BiS-IE and
PPS-IE, figure 5.33 shows the progression of feasible individuals within the pop-
ulation for MW9. PPS-IE shows little transition from a predominantly infeasible
population to a feasible one, until generation 800 when the allowed constraint re-
laxation is set to 0. BiS enables the population to leap towards the feasible space
and IεCH is initialised with a smaller constraint relaxation. This results in a quicker
transition population with predominantly feasible individuals in BiS-IE. The same
thing can not be said for PPS-IE, as it struggles to reduce the allowed constraint
violation threshold enough to discover feasible individuals. PPS-IE peaks to 1 at
generation 800 caused by the constraint violation threshold being forced to zero.

To further support the discussion, the same comparison as table 5.27 is presented
in table 5.29, but between BiS-E and PPS-E. The results support the claim that BiS
enhances the convergence for some problems and that PPS-E is able make significant
progress in the one generation gap between the last generation of the push phase and
the first generation of the pull phase. Two runs using BiS-E and PPS-E on MW11
were extracted to further examine the difference between utilising the constraint
violation near the boundary and the maximum constraint violation in the objective
space. The problems were evaluated based on IGD of the end result, where the
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Figure 5.33: Comparison of median FRp between BiS-IE and PPS-IE on MW9

Problem BiS-E PPS-E

LIR7 61.46% 53.00%
LIR8 49.91% 41.96%
LIR11 13.57% 2.62%
LIR12 18.95% 11.44%
MW9 12.61% -0.01%
MW11 25.34% -0.01%

Table 5.29: The percentage increase in median IGD performance between the last gen-
eration of push phase and the first generation of the pull phase for BiS-E and PPS-E.

lowest IGD was selected. These runs were selected to compare two problems that
presented the best result in terms of convergence. Using a single run enables the
highlighting of the generations where the models switch phases. Either IGD or HV
could have been used as a selection preference, as BiS-E performed significantly
better in both metrics. From this run, the progress of FRp through the evolutionary
process was plotted in figure 5.34.

0 100 200 300 400 500 600 700 800 900 1,000
0

0.5

1
PullBiS

Generation

F
R

p

BiS-E PPS-E

Figure 5.34: Comparison of FRp between BiS-E and PPS-E on MW11.

To increase readability and understanding of the following discussion it is advised
to examine figure 5.10c to get an overview of the objective space of MW9. As seen
in figure 5.34, small spikes at generations 100 to 200 are evident for PPS-E and BiS-
E. This increase in FRp is caused by the population passing through feasible space
towards the unconstrained PF. The feasible areas discovered are not overlapping
with the unconstrained PF so the population moves out of this feasible space and
into infeasible space towards the unconstrained PF. The two models then move the
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populations through infeasible space until the end of the push phase, marked by
the dotted arrows in the figure. Similarly to how IεCH is not able to reduce the
constraint relaxation fast enough for MW9 in figure 5.33, εCH is unable to decrease
the relaxation enough for the FRp to increase. This can be seen by the flat pink
plot after the initialisation of the pull phase, highlighted by the pink arrow. The
result is minimal exploration within feasible space before any constraint violation is
prohibited at generation 800. The purple plot visualising the behaviour of BiS-IE
shows an increase in FRp shortly after the BiS phase. For this problem, the BiS
phase lasted 10 generations and it is apparent that the inclusion of it is crucial for
increasing FRp and solving the problem, as a significant increase in performance can
be seen for both BiS-IE and BiS-E in table 5.23. The use of a lower initial constraint
violation for εCH seems to give the population a more efficient search range and it
is successfully able to gradually traverse into feasible space.

5.4.2.2 Push Pull Reduced Search Space

Problem PPS-RSS PPS-IE PPS-E

LIR1 55.37% 64.22% 56.22%
LIR2 60.45% 65.63% 62.12%
LIR3 54.14% 62.72% 54.23%
LIR4 56.03% 65.11% 59.80%
LIR7 65.81% 65.98% 65.76%
LIR8 51.86% 52.00% 51.93%
LIR11 9.16% 9.37% 9.14%
LIR12 36.29% 36.65% 36.65%
MW9 -5.00% 14.27% 12.30%
MW11 -3.00% 30.71% 30.11%
MW13 0.66% -4.39% -4.88%

Table 5.30: The percentage increase in median IGD between the end of the push and
pull phase for PPS-RSS, PPS-IE and PPS-E.

Table 5.30 shows the difference between the last generation of the push phase
and the last generation of the pull phase as a percentage for PPS-RSS, PPS-IE and
PPS-E. Note the contrarily, tables 5.27 and 5.29 illustrate the difference between
the last generation of the push phase and the first generation of the pull phase is
highlighted. Again, it is clear that the behaviour of PPS-RSS resembles that of
PPS-E more than PPS-IE.

PPS-RSS performs similarly to the PPS models on several problems. For these
problems, the state that the population is in at the end of the push phase may
affect the overall performance seen in table 5.30. Runs with low performance at the
end of the push phase will likely have a larger increase in performance at the end
of the pull phase than those where the performance at the end of the push phase
is good. Future work should look closer into this aspect of the experiments. A
possibility would be to log the results at the end of the push phase together with
the performance increase at the end of the pull phase to gain more insight into the
effect of RSS.
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Figure 5.35: Comparison of median FRp between PPS-RSS, PPS-IE and PPS-E on
LIR7.
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Figure 5.36: Comparison of median CD between PPS-RSS, PPS-IE and PPS-E on LIR7.

Figures 5.35 and 5.36 show the traversal of PPS-RSS, PPS-IE and PPS-E. Fig-
ure 5.35 illustrates how quick PPS-IE is to approach the constrained PF moving
from the unconstrained one. PPS-RSS and PPS-E are slower, with PPS-RSS being
the slowest. This is due to the CHM in PPS-RSS reducing the allowed constraint
violation at a lower speed than the two other methods. Thus, PPS-RSS spends more
time crossing the infeasible space between the constrained and unconstrained PF.

Figure 5.36 highlights an interesting difference between the models: PPS-RSS
has more stable CD during the search than the two PPS methods. Note that the
graph aggregates the CD of 30 runs, and not one specific run. In other words, the
runs of PPS-IE and PPS-E do not necessarily experience such a change for each
run. Still, PPS-RSS displays a more stable CD over the 30 runs. The exact reason
for this is unknown, but it is hypothesised that this is due to the slow reduction
in constraint relaxation. Reducing the constraint relaxation slowly may result in a
controlled sweep of the search space when traversing between the unconstrained and
constrained PF. Similar results were found for other problems in the test suite.

5.4.2.3 Summary

Section 5.4.2 has discussed the results from executing the experimental plan in
section 5.2.3.

The BiS models have proved to introduce faster traversal during the evolutionary
process for certain problems. The model did not improve the traversal for LIR1-4,
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where few runs performed BiS. The results indicate that BiS performs well when the
maximum possible constraint violation for a problem is large. BiS determines the
initial allowed constraint violation for the CHM from the approximated boundary,
which allows a better traversal between the unconstrained and constrained PF.

RSS has a slower traversal through the objective space than both PPS mod-
els. The slow traversal results in a more gradual and controlled evolution of the
population.

5.4.3 Results Phase T4

To evaluate if Boundary Search may introduce a bias towards certain areas of the
search space, IGD, CD and FRp metrics are analysed. The metrics highlight prop-
erties of the population during the search. The development of the archive will also
be presented with the population to highlight differences in their behaviour. Finally,
plots from runs will be visualised to highlight certain concepts identified from the
metrics.

5.4.3.1 Binary Search

For the discussion of BiS, three problems where BiS-IE performed significantly worse,
significantly better and not significantly different are selected. MW5, MW9 and
MW11 have been selected based on the results in table 5.21. The results of BiS-IE
are selected over BiS-E as BiS is part of both models, and only one is required for
this discussion. To increase readability, the graphs start at the 500th generation.
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Figure 5.37: Comparison of median IGD of the population and the archive between
BiS-IE and PPS-IE on MW9.

MW9 introduces a high likelihood of finding a diverse feasible set of individuals
during the push phase. This can be seen from the large continuous feasible area
surrounding the constrained PF in figure 5.10c. In table 5.21 it was shown that
PPS-IE performed significantly better than BiS-IE on this particular problem. The
problem shows an interesting trait: the population of PPS-IE is generally further
away from the PF than BiS-IE. Figure 5.37a highlights this by the blue plot having
a higher IGD than the red plot for the majority of the generations. The archive of
PPS-IE is closer than BiS-IE to the PF and the distance is progressively reduced
as seen in figure 5.37b, where the blue plot shows a lower IGD than the red plot.
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Thus, even though PPS-IE is exploring the search space seemingly further away from
the optimal solutions, the end result is significantly better than BiS-IE. A notable
trend in the chart is the low vertical change of BiS-IE, indicating that change in the
population happens at a low frequency. This may be due to the population crowding
together around a small region.

(a) Generation 509. (b) Generation 516. (c) Generation 528.

Figure 5.38: PPS-IE MW9.

(a) Generation 380. (b) Generation 383. (c) Generation 386.

Figure 5.39: BiS-IE MW9.

The higher initial IGD for PPS-IE in figure 5.37a is caused by the greater distance
to the PF than BiS-IE, however the distance is gradually reduced. The gradual re-
duction allows greater exploration of the search space and enables PPS-IE to spread
the population along the PF. Figure 5.38 shows this effect over the span of 19 gen-
erations (generation 509 to 528). The population is gradually traversing from the
unconstrained PF to the constrained. Figure 5.38a shows that the individuals in
the middle of the population start the traversal towards the constrained PF. This is
due to the constraint violation being higher in the centre of the unconstrained PF.
Gradually the individuals close to the edges move closer towards the constrained PF
as seen in figures 5.38b and 5.38c. Figure 5.39 shows the development of the popula-
tion for BiS-IE over the span of 6 generations (generation 380 to 386). Figure 5.39a
shows having converged towards the unconstrained PF. BiS is performed during the
following generations and the population performs a leap towards the constrained
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PF as shown in figures 5.39b and 5.39c. The population of BiS-IE reaches the con-
strained PF in only 6 generations, compared to PPS-IE not converging even after
19 generations.
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Figure 5.40: Comparison of the median CD between BiS-IE and PPS-IE on MW9.

To determine if the rapid convergence on MW9 causes clustering of the popula-
tion, figure 5.40 is analysed. The figure shows the progress of CD, which represents
the total distance between all individuals of the population. From figure 5.37a the
IGD is comparable between BiS-IE and PPS-IE around generation 600. Figure 5.40
shows that the CD is higher for PPS-IE than BiS-IE for the same generations where
the IGD is comparable in figure 5.37a. This indicates that there is a higher spread
within the population and the individuals thus cover a larger part of the objective
space. A lower CD indicates that BiS-IE may be prone to stagnation in a local
optima for this problem. This may explain the lack of improvement in IGD for
BiS-IE shown in figures 5.37a and 5.37b. The reason seems to be BiS, as PPS-IE
does not have the same problem. The constrained PF is continuous and therefore
exploration over a larger area is required to cover it completely. BiS introduces
rapid convergence towards the boundary. However, there is also less exploration
along the constrained PF. The lower exploration for BiS-IE is possibly caused by
the lower initial constraint violation introduced, potentially hindering the ability of
the population to explore the edges of the PF.

IGD BiS-IE PPS-IE

MEAN 1.3022e-02 1.4226e-02

STD 3.1653e-03 3.0128e-03

HV BiS-IE PPS-IE

MEAN 3.7836e-01 3.7637e-01

STD 4.3910e-03 4.3443e-03

Table 5.31: IGD and HV results on MW5 from section 5.4.1.

Table 5.31 shows the IGD and HV gathered from the results of section 5.4.1,
where BiS-IE proved to be slightly better than PPS-IE. However, no significant
difference could be detected for either metric in table 5.21. In MW5, the two PFs
are overlapping (see figure 5.10a). Figure 5.41 shows the change in IGD and CD for
BiS-IE and PPS-IE when solving MW5. Trendlines are highlighted in figure 5.41b
as the CD is fluctuating and difficult to read. An interesting development can be
seen in figure 5.41a where PPS-IE initially is ahead in terms of IGD. During the
evolutionary process, BiS-IE is able to pass PPS-IE around generation 700 and as
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Figure 5.41: Comparison of median IGD of the population, median CD of the population
between BiS-IE vs PPS-IE on MW5.

the populations reach generation 800, BiS-IE has achieved a better IGD than PPS-
IE. Figure 5.41b shows that the CD of BiS-IE was high during the same generations
as IGD was high.

It is uncertain if the same clustering effect is present in MW5 as in MW9. Dis-
playing the potential clustering as a plot similar to figures 5.38 and 5.39 for this
particular problem is difficult as it requires zooming in on the segments, which
is not implemented. However, the problem contains disconnected segments, and
crowding together is thus a natural reaction from any population, as the individuals
aim to fit into the feasible segments of the PF.

To show an indication of BiS-IE clustering within segments, the FRp of BiS-IE is
presented in figure 5.42. The figure illustrates the number of individuals contained
within feasible segments. The FRp for BiS-IE is rising at a faster rate than PPS-IE.
At generation 800, the last generation before the constraint relaxation is set to 0, the
FRp for PPS-IE was 0.79. BiS-IE was able to achieve an FRp of 0.79 at generation
593, before dipping slightly, then reaching 0.79 again at 631. It is apparent that
BiS places more individuals within feasible space early in the evolution, allowing
more generations to explore the feasible segments. This could also be the reason for
the early low IGD seen in PPS-IE as well as the increasing CD as the population
approaches generation 800.
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Figure 5.42: Comparison of median FRp between BiS-IE and PPS-IE on MW5.

Two relatively large segments with a small feasible area in between make up
the PF in MW11 (see figure 5.10e. As seen in figure 5.43a, at generation 500
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Figure 5.43: Comparison of median IGD of the population and median CD of the
population on MW11.

BiS-IE is ahead of PPS-IE in terms of IGD. PPS-IE has difficulties discovering
both segments when traversing back from the unconstrained PF, resulting in a poor
distribution among the two feasible segments.BiS on the other hand has numerous
archived feasible individuals available to guide the population back to both segments.
Quickly moving multiple individuals towards both of the segments increases the
exploration inside the feasible areas. This can be seen particularly well when looking
at the CD in figure 5.43b. The figure shows that the accumulated distance between
individuals is very low, as most of the individuals are contained within feasible
segments. Figure 5.44 shows this at generation 800. BiS-IE has spread its population
within the feasible segments, where PPS-IE is still exploring the infeasible area.

(a) BiS-IE generation 800. (b) PPS-IE generation 800.

Figure 5.44: Plots of BiS-IE and PPS-IE at generation 800 for MW11.

Results on MW5, MW9 and MW11 indicate that some connection from the PF
shape. The constrained PF in MW9 is continuous and requires an even spread in
the population to achieve a diverse solution set. The constrained PF in MW5 is
disconnected with several segments and identifying the location o all the segments
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is required. Lastly, MW11 is disconnected with few segments which require a com-
bination of the two. It may seem from this that the fewer the segments, the better
the performance of BiS. There is, however, a requirement of the feasible segments
not extending too far from where the individuals end up after BiS. The continuous
PF seemed to be difficult to cover completely. It is believed that this is caused by
a clustering effect introduced by BiS.

5.4.3.2 Reduced Search Space

Tables 5.24 and 5.25 show that PPS-RSS is significantly outperformed on nearly
all problems. However, when solving LIR9 PPS-RSS showed a significant increase
in convergence. To gain a better understanding of why PPS-RSS performed well
on this specific problem, the behaviour of the population during the evolutionary
process was analysed.
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Figure 5.45: Comparison of median IGD of the population and median IGD of the
archive between PPS-RSS and PPS-IE on LIR9.

Figure 5.45 shows the IGD achieved by the population and the archive of PPS-
RSS on LIR9, during the last 300 generations. Figure 5.45b shows that PPS-RSS
outperforms PPS-IE, as discussed in section 5.4.1.2. More interestingly, figure 5.45a
shows that the IGD for PPS-RSS increases for the last 300 generations of the run.
It is not before generation 900 that the IGD decreases again.

Initially, it was hypothesised that the results in figure 5.45 were a product of
a mistake in the implementation of the model. However, further analysis of these
results suggests an interesting interaction between the boundary created for the
feasible space and the disjoint nature of the constrained PF.

The evolutionary process of PPS-RSS is visualised in figure 5.46. Figure 5.46a
shows that at generation 700 the population is covering the entire constrained PF.
As the evolutionary process continues, δin is shrinking and eventually becomes so
small that the population is forced out to the edges of each segment as shown in
figure 5.46b. This is what creates the increase in IGD shown in figure 5.45a. It
is not until generation 900 when FESc number of function evaluations is reached
(see section 4.4) that δin is ignored. At this point, the population begins to cover
each segment of the disconnected PF fully again as shown in figure 5.46c. The
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(a) Generation 700. (b) Generation 899.

(c) Generation 920.

Figure 5.46: Boundaries shrinking over the PF on LIR9.

consequences of this behaviour is uncertain. However, figure 5.45b shows that during
this event, the archive keeps improving the IGD. It is not unlikely that shrinking the
search space along the tangent of the PF creates a form of scanning effect, forcing
the population to search the whole segment for optimal solutions.

Similar behaviour can be seen for other benchmarks. LIR6 is another benchmark
where RSS seems to enhance the performance. LIR6 does not have a disjoint PF,
however, the unconstrained and constrained PF are the same. For this problem,
the same interaction with the boundary for the feasible space is encountered as
illustrated in figure 5.47. Figure 5.47a shows the population before δin becomes
sufficiently to start pulling the population away from the PF. Following this, the
population moves towards the infeasible space as shown in figures 5.47b and 5.47c.
Finally, figure 5.47d shows when FESc generations is reached and the population
begins approximating the PF again. Figure 5.48 shows the IGD increasing until
generation 900. This behaviour is similar to the one seen in figure 5.45a and fits
with the plots in figure 5.47 where the population moves away from the constrained
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(a) Generation 245. (b) Generation 640.

(c) Generation 899. (d) Generation 900.

Figure 5.47: Boundaries shrinking over the PF on LIR6.
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Figure 5.48: Comparison of median IGD of the population between PPS-RSS and PPS-
IE on LIR6.

PF until generation 900. It can clearly be seen from this that RSS has a tendency to
favour the boundary between feasible and infeasible space. However, as previously
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mentioned in section 5.4.1, RSS depends largely on the constraints determined as
active during ACD and the initial constraint violation used to initialise δout and δin.

5.4.3.3 Summary

Section 5.4.3 has discussed the results from executing the experimental plan de-
scribed in section 5.2.4. After analysing the IGD, FRp and CD of the population
during the evolutionary process the following was found:

It is hypothesised that BiS may be more prone to stagnating in local minima.
This is due to the clustering of the population after BiS has been performed. In
addition, the reduced initial constraint violation used for constraint handling after
BiS may reduce the ability of the population to properly explore the search space
and the entire PF. BiS has shown bias towards feasible areas discovered in the push
phase, thus detecting undiscovered regions is less prioritised.

RSS has shown bias towards the border between the feasible and infeasible space.
If δin becomes too small, the population may be forced closer to the border between
feasible and infeasible space. Thus, the population be alienated from part of, or
the entire, constrained PF on problems with disjoint PFs or problems where the
constrained PF is not located on the border between feasible and infeasible space.



Chapter 6

Evaluation and Conclusion

The following chapter presents a discussion and evaluation of the goal and RQs in
section 6.1. Furthermore, section 6.2 presents an overview of the contributions of
this thesis. Finally, future work is elaborated in section 6.3 concluding this thesis.

6.1 Evaluation

The objective of this thesis was to Investigate how landscape information can in-
crease the performance of PPS when solving CMOPs. Four RQs were formulated to
reach the goal. These RQs are discussed below:

RQ1 What landscape information extracted during the evolutionary search can ben-
efit PPS to increase convergence to and coverage of the constrained PF?

During the course of this thesis, RQ1 was taken into account during the literature
review, the design of the model and the experimental testing. From the literature
review, three main approaches were investigated: surrogate models, Fitness Land-
scape Analysis and Boundary Search (BS). Further research focused on the use of
BS. Two specific methods were evaluated during the experimental testing: BiS and
RSS.

BiS exploits information regarding the best known feasible individuals in regards
to Pareto dominance. The goal is to approximate the boundary of infeasible and
feasible space by moving pairs of infeasible and feasible individuals closer together.
The method has shown the ability to increase both convergence and coverage of the
constrained PF. However, the applicability is highly dependent of the problem at
hand.

The intention of the two PBPS models is to exploit the ability of BiS to quickly
focus the search on the border between feasible and infeasible regions. Results
show that this method is beneficial when the population has passed the constrained
PF during the push phase, and found feasible individuals close to it. By reducing
the number of generations used to cross infeasible regions and approximate the
boundary between feasible and infeasible space, the population is allowed to explore
the constrained PF for more generations. Thus, the performance in regards to IGD
and HV may be improved, as was the case for LIR8. However for most problems, the

105
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performance was neither significantly increased nor decreased by the introduction
of BiS.

RSS exploits information regarding which constraints are active at the con-
strained PF. By focusing on these constraints and the area around their borders,
the search space may be drastically reduced.

The results in section 5.4.1 show that RSS has problems performing on par with
the original PPS framework. Most notably is the difference between PPS-RSS and
PPS-IE. This is attributed to the difference in constraint relaxation and the fact
that IεCH allows for an increase in constraint relaxation, whilst RSS does not.

Having different approaches to the constraint relaxation complicate drawing any
definitive conclusions about the usefulness of knowledge regarding the active con-
straints of a problem. If PPS-RSS used εCH (see equation (2.12)) and IεCH (see
equation (3.4)) when comparing results with PPS-IE and PPS-E respectively, it may
have been easier to see the effects of focusing only on active constraints. Thus, no
conclusion is drawn about the usefulness of active constraint knowledge.

RQ2 How do different problem characteristics affect the performance of BS?

The benchmarks used for the experimental testing have several different character-
istics. This work chose to focus on the following ones: small feasible areas, disjoint
PFs, and convex and concave PFs. The benchmarks exhibit other characteristics as
well, however they were not the focus of this thesis. Note that when discussing the
results, other characteristics such as large infeasible areas may be drawn attention
to due to them possibly affecting performance.

The results from the experimental testing show that BiS performs well on prob-
lems where the unconstrained and constrained PF are separated by an infeasible
region. BiS allows the population to quickly traverse the space between the two
fronts. The method is however dependent on finding feasible individuals to create
pairs with the individuals in the population (see section 4.2.8.1). BiS performed bet-
ter on problems where the feasible area around the constrained PF was sufficiently
large. The reason for this is that larger areas making it likely for several feasible
individuals to be found during the push phase. Problems with small feasible areas
may pose a greater challenge due to the reduced likelihood of finding feasible in-
dividuals during the push phase. The experiments show that BiS has potential to
perform well, even when few feasible individuals are available for pairing. However,
with small feasible areas, the likelihood of finding feasible individuals is reduced.
Thus, BiS may not be executed for these problems. Therefore, BiS may not be
suited for problems with small feasible regions.

BiS produced varying results on problems with disjoint PFs. The max constraint
violation used as a result of performing BiS may in some cases be too low. As a
result, the population is unable to fully discover all feasible segments along the PF.
This was most apparent for problems with small feasible regions or problems where
the disjoint parts of the PF were far away from each other. Additionally, problems
where the shape of the constrained and unconstrained PFs had opposing shapes, as
seen in LIR7, gave poor results.

PPS-RSS performed poorly compared to the other models on most problems.
First, this was evident on problems where the unconstrained and constrained PF are
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separated by a large infeasible area. The reason for the poor performance is due to
the slow shrinking of constraint relaxation. The slow shrinking forces the population
to use more generations traversing the infeasible regions before it may explore the
constrained PF. PPS-RSS did not seem to have difficulty solving problems or excel at
solving them due to small feasible regions or disjoint PFs. Rather, the experiments
indicate that the reason for the poor performance is the necessity for specialised
parameter tuning. The parameters of the model are required to fit the problem as
the ACD method and the shrinking of constraint boundaries are highly dependent
on the problem at hand. The parameter sweep in this thesis focused on finding
parameters that would fit several different problems.

RQ3 How does the use of BS affect the traversal to the constrained PF through
infeasible space?

In terms of traversing to the constrained PF through infeasible space it was
shown that BiS had a positive impact on most problems. The problems where no
enhanced traversal was detected, were LIR1-4, where the small feasible area was
not discovered during the majority of the runs. This is therefore dependent on the
size of the regions. For problems with medium and large sized feasible regions, BiS
was consistently initiated and would allow BiS to produce a large leap through the
infeasible region. For problems with small feasible regions, the effect of BiS is less
consistent. When no feasible individuals are found during the push phase, BiS is
not initiated and thus has no effect on the performance of the framework. BiS is
an appropriate solution to problems with a large difference between the maximum
constraint violation in the search space and the constraint violation close to the
boundary. The initial allowed constraint violation determined by BiS allows εCH
and IεCH to start the gradual decrease of allowed constraint violation, with values
gathered from the approximated boundary. This could be beneficial for problems
where parameterisation of the IεCH and εCH is difficult, caused by large variations
in constraint violation throughout the objective space.

RSS exhibits similar traversal to PPS-E. However, RSS moves slower through
the infeasible area spending several generations traversing towards the constrained
PF. This slow evolution reduces the number of generations the population has at
exploring the constrained PF. Despite this, it may also allow for a thorougher sweep
of the landscape.

RQ4 How can BS introduce a bias towards certain areas of the objective space?

BiS showed indication of the population crowding together. The reduced max vi-
olation created difficulties in fully covering the PF for continuous PFs. As the
disjoint PFs require the population to crowd together within the feasible segments,
it is unclear if this behaviour is causing negative effects in problems with disjoint
PFs. However, the results indicate that this may be the case, where problems with
less segments seem to be more easily solved. From this, bias towards feasible ar-
eas discovered in the push phase is evident and detecting undiscovered segments is
neglected by BiS.

RSS showed interesting behaviour due to the δin becoming too small for some
problems. This led to the population being forced towards the border between
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feasible and infeasible space, ignoring the fact that the PF and the border may not
overlap. PPS-RSS was able to perform well on the problems where this occurred, but
this was largely a result of the population locating the constrained PF before being
alienated from it. If the population locates the constrained PF before δin becomes
too small, this bias towards the border between infeasible and feasible space may
reduce performance.

6.2 Contributions

From this work, the use of landscape information has successfully been incorporated
into PPS to create three new algorithmic models. These models have proved to be
able to solve several CMOPs. Also, they show the ability to perform competitively
with the original PPS models:PPS-IE and PPS-E.

Two types of landscape information have been utilised to perform two different
forms of Boundary Search: the location of best feasible individuals in terms of Pareto
dominance to perform Binary Search (BiS) and the location of active constraints to
utilise the Reduced Search Space (RSS) method.

The use of BiS has shown to be advantageous when solving problems where the
unconstrained and constrained PF are separated by infeasible regions. Using the
last known feasible individuals allows the population to perform a leap in the search
space, reducing the generations spent traversing infeasible regions.

The use of RSS has shown to perform similarly to PPS-E. Focusing on active
constraints allows the search space to be reduced, however there seems to be little
performance increase using this information.

In addition to analysing the performance change by implementing these two BS
methods, it was also found that:

• BiS improves convergence of the population for problems where the constrained
and unconstrained PFs are not overlapping.

• BiS may not be suitable for problems with small feasible regions due to the
low likelihood of BiS being performed.

• Using the max constraint violation of the population after BiS to initialise
IεCH may allow the population to better explore the PF. However, for disjoint
PFs this may reduce the exploration capabilities of the population, alienating
it from detecting undiscovered segments. For continuous PFs, this may reduce
the coverage of the PF.

• The slow reduction in constraint relaxation may enable a thorough sweep of
the search space as the population moves towards feasible space.

• RSS may alienate the population from the constrained PF if it is not located
on the border between feasible and infeasible space.
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6.3 Future Work

The following section presents potential future work used to further research the use
of landscape information in solving CMOPs.

6.3.1 Surrogate Model

During the structured literature review, surrogate models were researched. How-
ever, after the literature review surrogate models were not implemented into the
model in favour of implementing two BS methods. Surrogate models have shown
their usefulness in increasing efficiency [Dı́az-Manŕıquez et al., 2016]. The mod-
els showed difficulties finding good results on the MW problems. Implementing a
surrogate model to extract underlying information about the problem could prove
beneficial when trying to solve inherently difficult objective functions. By enhancing
efficiency, the computational cost for the same number of generations may be re-
duced and thereby enabling a longer search by increasing the number of generations
possibly enhancing performance. The PPS framework is suited for this by building
the surrogate based on information gathered during the push phase, then utilising
the model fully during the pull phase. The research should look at the different
classifications of surrogate models, defined by Dı́az-Manŕıquez et al. [2016] and how
they perform together with PPS.

6.3.2 Fitness Landscape Analysis

FLA was also explored during the literature review. There has been little research
on the use of FLA during the run of an algorithm. The common approach is to
perform two separate runs, using the first one to accumulate information which may
be used for the second run. Due to the majority of metaheuristic-approaches aiming
to solve the problem in one run, and the complexity of FLA, FLA has not been
extensively used in the field [Malan and Engelbrecht, 2013]. The biphasic nature
of PPS allows the population to explore the landscape unhindered during the push
phase. RQ1 has been addressed by looking at the use of landscape information
regarding the location of the last known feasible space (BiS) and which constraints
are active (RSS). However, this topic should be further analysed. Analysing how the
biphasic nature of PPS can be combined with FLA to produce a landscape analysis
exploited in the pull phase is an interesting topic that should be researched. This
can for instance be used to focus the search in specific areas, or to decide which
CHM should be used to better fit the problem at hand when entering the pull
phase. Analysing the use of FLA in conjunction with PPS may unveil new ways to
use FLA as part of the search directly and not as a separate search of the landscape
before attempting to solve the problem.

6.3.3 Combining Different Landscape Information

This thesis has looked at the use of two different types of landscape information: the
location of feasible regions and the location of active constraints. However, different
landscape information has not been combined in this work. A possible approach
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building on the work of this thesis is to use the archive of feasible individuals when
performing ACD. For instance, instead of using a predefined value for V al, the
distance between the population and the archive could be used instead. Another
approach could be to look at the distance from the archive to the constraints, rather
than the working population. Another possibility is to incorporate active constraints
when pairing individuals, grouping them into feasible and infeasible based on the
violation of only active constraints and not all constraints. Also, other landscape
information should be identified as potential additions to the model and used in
combination.

6.3.4 Parameter Setting

This work has used one set of parameters for all benchmarks tested, with the excep-
tion of LIR1 to LIR4. This was due to the large difference in V al needed to identify
an active constraint. It would be interesting to see how the two BS methods perform
when the parameters have been tuned for each problem. Specifically, for RSS, the
preferred value of V al is highly problem dependent. The location of the population
when the search stagnates in the push phase may vary from problem to problem,
and thus the appropriate V al value will change. Investigating the effect of RSS with
tuned parameters could provide greater insight into the potential of the method.

6.3.5 Additional Experiments

During the experiments of this work, new questions continuously emerged from the
results of previous experiments. Sections 5.4.2 and 5.4.3 shows that BiS-IE is able to
increase the convergence in less generations than PPS-IE for certain problems. How-
ever the results in section 5.4.1 do not show that BiS-IE achieves better end results.
Thus more experiments with reduced function evaluations should be conducted to
see if there exists a higher difference between the two models.
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Appendices

.1 Appendix A

Problem BiS-IE PPS-IE BiS-E PPS-E PPS-RSS
MEAN 1.1045e-02 8.8040e-03 8.1249e-02 1.0060e-01 1.1054e-01

LIR1
STD 7.9447e-03 4.1645e-03 5.9163e-02 4.0359e-02 4.4406e-02
MEAN 5.4212e-03 5.0375e-03 7.4021e-02 5.8354e-02 6.5206e-02

LIR2
STD 2.8561e-03 1.2346e-03 5.6062e-02 2.8691e-02 2.6475e-02
MEAN 2.5340e-02 7.5015e-03 1.1112e-01 1.2076e-01 1.3406e-01

LIR3
STD 6.8518e-02 4.0834e-03 5.1968e-02 5.1519e-02 6.9498e-02
MEAN 2.3902e-02 3.9279e-03 8.4656e-02 7.8273e-02 1.0115e-01

LIR4
STD 6.7865e-02 1.5441e-03 5.0944e-02 3.7611e-02 4.2529e-02
MEAN 1.5674e-03 1.5398e-03 1.5667e-03 1.5429e-03 1.9538e-03

LIR5
STD 6.2003e-05 4.5873e-05 4.3362e-05 4.8351e-05 7.4783e-05
MEAN 2.1965e-03 2.1795e-03 2.2184e-03 2.2046e-03 2.1527e-03

LIR6
STD 1.2423e-04 1.3155e-04 1.0416e-04 9.0404e-05 2.0067e-04
MEAN 3.1774e-03 2.9001e-03 3.2108e-03 3.0568e-03 3.1797e-03

LIR7
STD 1.1356e-03 7.8821e-05 7.5886e-04 1.4729e-04 1.0240e-04
MEAN 2.7237e-03 2.7605e-03 2.8538e-03 2.9574e-03 3.1135e-03

LIR8
STD 6.3532e-05 5.7866e-05 5.3935e-05 7.1103e-05 9.0984e-05
MEAN 2.9368e-02 2.3036e-03 1.7827e-03 1.7474e-03 1.4681e-03

LIR9
STD 9.2398e-02 7.5685e-04 5.3131e-05 5.1536e-05 1.0368e-04
MEAN 1.9999e-03 1.9834e-03 1.9797e-03 1.9611e-03 2.0142e-03

LIR10
STD 7.4514e-05 6.0702e-05 7.4345e-05 6.8928e-05 4.7319e-05
MEAN 1.0355e-02 1.0262e-02 4.9267e-03 3.8463e-03 4.8417e-03

LIR11
STD 2.1019e-02 2.8192e-02 2.7023e-03 2.0510e-03 3.3240e-03
MEAN 9.2983e-02 4.7764e-02 2.8288e-03 2.8018e-03 2.9553e-03

LIR12
STD 5.5371e-02 6.0262e-02 1.0025e-04 1.0748e-04 9.9693e-04

Table 1: IGD results of BiS-IE, PPS-IE, BiS-E, PPS-E and PPS-RSS on LIR problems.
Best performance is highlighted for each problem.
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Problem BiS-IE PPS-IE BiS-E PPS-E PPS-RSS
MEAN 6.4321e-01 6.4678e-01 5.6248e-01 5.4716e-01 5.3873e-01

LIR1
STD 1.6697e-02 2.7374e-03 5.8156e-02 3.8310e-02 4.3014e-02
MEAN 9.8076e-01 9.8116e-01 8.8204e-01 9.0986e-01 8.9592e-01

LIR2
STD 3.6760e-03 1.5973e-03 8.5820e-02 3.7632e-02 3.9486e-02
MEAN 5.2058e-01 5.3681e-01 4.4402e-01 4.3296e-01 4.2586e-01

LIR3
STD 6.4708e-02 2.9635e-03 4.9291e-02 4.5763e-02 5.9883e-02
MEAN 7.5277e-01 7.7470e-01 6.7843e-01 6.8531e-01 6.4851e-01

LIR4
STD 7.5395e-02 1.8649e-03 5.8162e-02 5.1531e-02 6.5302e-02
MEAN 1.0340e+00 1.0340e+00 1.0340e+00 1.0340e+00 1.0332e+00

LIR5
STD 2.0930e-04 1.8233e-04 1.7173e-04 2.7266e-04 2.0096e-04
MEAN 7.0103e-01 7.0112e-01 7.0108e-01 7.0113e-01 6.9985e-01

LIR6
STD 2.0075e-04 1.5016e-04 1.1829e-04 1.5522e-04 5.6906e-04
MEAN 2.0368e+00 2.0402e+00 2.0370e+00 2.0396e+00 2.0392e+00

LIR7
STD 8.3316e-03 1.5486e-03 6.7472e-03 1.7812e-03 1.2675e-03
MEAN 2.0410e+00 2.0412e+00 2.0407e+00 2.0402e+00 2.0399e+00

LIR8
STD 7.6797e-04 6.3639e-04 5.9258e-04 6.3808e-04 5.5204e-04
MEAN 2.7394e+00 2.7793e+00 2.7825e+00 2.7827e+00 2.7826e+00

LIR9
STD 1.3591e-01 4.0266e-03 2.2780e-04 2.2968e-04 9.2848e-04
MEAN 2.5562e+00 2.5562e+00 2.5562e+00 2.5562e+00 2.5559e+00

LIR10
STD 2.3280e-04 1.9190e-04 2.2572e-04 2.2732e-04 1.4858e-04
MEAN 3.4283e+00 3.4241e+00 3.4451e+00 3.4451e+00 3.4442e+00

LIR11
STD 5.0879e-02 8.8182e-02 2.9840e-04 2.7036e-04 4.6463e-03
MEAN 4.0776e+00 4.2165e+00 4.3543e+00 4.3543e+00 4.3529e+00

LIR12
STD 1.6975e-01 1.8410e-01 5.3795e-05 5.2563e-05 7.0742e-03

Table 2: HV results of BiS-IE, PPS-IE, BiS-E, PPS-E and PPS-RSS on LIR problems.
Best performance is highlighted for each problem.

Problem BiS-IE PPS-IE BiS-E PPS-E PPS-RSS
MEAN 1.3022e-02 1.4226e-02 1.3678e-02 1.5440e-02 2.8637e-02

MW5
STD 3.1653e-03 3.0128e-03 5.0086e-03 3.0914e-03 5.4167e-03
MEAN - 5.7230e-01 - - -

MW6
STD - 1.6805e-01 - - -
MEAN - - - - -

MW10
STD - - - - -
MEAN 2.0151e-01 1.9068e-01 1.8612e-01 2.6728e-01 2.8065e-01

MW9
STD 5.1044e-03 3.1373e-03 4.2815e-03 6.0034e-03 9.7723e-03
MEAN 9.2972e-03 1.1489e-02 9.7784e-03 1.7721e-02 1.2079e-01

MW11
STD 9.0567e-04 1.4772e-03 8.8466e-04 6.8115e-03 1.0526e-01
MEAN 2.0221e-02 1.2308e-02 1.3782e-02 2.1423e-02 3.8627e-02

MW13
STD 6.8724e-02 5.0990e-02 3.0443e-02 2.9623e-01 1.3489e-01

Table 3: IGD results of BiS-IE, PPS-IE, BiS-E, PPS-E and PPS-RSS on MW problems.
Best performance is highlighted for each problem.
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Problem BiS-IE PPS-IE BiS-E PPS-E PPS-RSS
MEAN 3.7836e-01 3.7637e-01 3.7673e-01 3.7457e-01 3.5261e-01

MW5
STD 4.3910e-03 4.3443e-03 7.6587e-03 4.4631e-03 8.1659e-03
MEAN - - - - -

MW6
STD - - - - -
MEAN - - - - -

MW10
STD - - - - -
MEAN 4.5257e-01 4.6663e-01 4.6161e-01 4.5543e-01 4.3263e-01

MW9
STD 7.4792e-03 6.4746e-03 6.7706e-03 7.4763e-03 9.8116e-03
MEAN 2.2725e+00 2.2652e+00 2.2710e+00 2.2539e+00 2.0251e+00

MW11
STD 2.1890e-03 5.2507e-03 2.4293e-03 1.4626e-02 1.7317e-01
MEAN 2.6029e+00 2.6424e+00 2.6600e+00 - 2.3439e+00

MW13
STD 2.6198e-01 2.0884e-01 1.2866e-01 - 3.0052e-01

Table 4: HV results of BiS-IE, PPS-IE, BiS-E, PPS-E and PPS-RSS on MW problems.
Best performance is highlighted for each problem.
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.2 Appendix B

Problem State BiS-E BiS-IE PPS-E PPS-IE PPS-RSS
Push End 6.7853e-01 6.7953e-01 6.7994e-01 6.7858e-01 6.7577e-01
Pull Start 6.7766e-01 6.7963e-01 6.7997e-01 6.7883e-01 6.7608e-01LIR1
Pull End 7.7875e-02 3.7187e-02 8.5589e-02 3.8286e-02 3.0488e-01
Push End 6.8200e-01 6.8159e-01 6.8219e-01 6.8215e-01 6.8173e-01
Pull Start 6.8204e-01 6.8169e-01 6.8223e-01 6.8220e-01 6.8185e-01LIR2
Pull End 8.9656e-02 2.8349e-02 7.6180e-02 2.8225e-02 3.4103e-01
Push End 6.7734e-01 6.7788e-01 6.7651e-01 6.7624e-01 6.7806e-01
Pull Start 6.7755e-01 6.7798e-01 6.7675e-01 6.7637e-01 6.7833e-01LIR3
Pull End 1.2980e-01 6.2230e-02 1.1941e-01 5.0824e-02 6.4845e-01
Push End 6.8090e-01 6.8041e-01 6.8056e-01 6.8078e-01 6.8096e-01
Pull Start 6.8097e-01 6.8040e-01 6.8071e-01 6.8082e-01 6.8096e-01LIR4
Pull End 8.6667e-02 2.8982e-02 7.8573e-02 3.8150e-02 6.6647e-01
Push End 6.6196e-01 6.6274e-01 6.6038e-01 6.6163e-01 6.6220e-01
Pull Start 4.9537e-02 4.2009e-02 1.4339e-01 1.5201e-01 1.4412e-01LIR7
Pull End 3.3094e-03 3.0336e-03 3.3380e-03 3.1632e-03 3.8119e-03
Push End 5.2268e-01 5.2216e-01 5.2238e-01 5.2290e-01 5.2349e-01
Pull Start 2.2378e-02 3.0526e-02 1.1147e-01 2.1388e-01 9.8379e-02LIR8
Pull End 3.0673e-03 2.8666e-03 3.2346e-03 3.0331e-03 3.6513e-03
Push End 1.7694e-01 1.7563e-01 1.7943e-01 1.7466e-01 1.8158e-01
Pull Start 8.8607e-02 5.6299e-02 1.4646e-01 1.7465e-01 1.8212e-01LIR11
Pull End 8.6606e-02 8.6775e-02 8.6572e-02 8.6738e-02 8.8061e-02
Push End 3.7148e-01 3.7179e-01 3.7051e-01 3.6650e-01 3.7055e-01
Pull Start 1.8247e-01 1.8077e-01 2.5000e-01 2.4447e-01 3.7016e-01LIR12
Pull End 3.7242e-03 4.0594e-03 3.8166e-03 3.8696e-03 3.3414e-03
Push End 1.3710e-01 1.4017e-01 1.3853e-01 1.3514e-01 1.3496e-01
Pull Start 2.7885e-01 2.7022e-01 1.3825e-01 1.3526e-01 1.3497e-01MW13
Pull End 1.7345e-01 1.7188e-01 1.8038e-01 1.7615e-01 1.2980e-01
Push End 1.6382e-01 1.7627e-01 1.8154e-01 1.7366e-01 1.8280e-01
Pull Start 4.0312e-02 4.0395e-02 1.8252e-01 1.7411e-01 1.8332e-01MW9
Pull End 2.7909e-02 2.9475e-02 5.0248e-02 3.7414e-02 7.2069e-02
Push End 3.2558e-01 3.2148e-01 3.2131e-01 3.2250e-01 3.2098e-01
Pull Start 7.5224e-02 7.1553e-02 3.2199e-01 3.2262e-01 3.2118e-01MW11
Pull End 1.5761e-02 1.4872e-02 1.7739e-02 1.7568e-02 3.4906e-01

Table 5: Median IGD values from end of push phase, start of pull phase and end of
pull phase. High difference between start and end of pull shows great traversal between
constrained PF and unconstrained PF.
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