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Abstract

Given an undirected multigraph, G = (V,E), without self-loops, and
a subset of terminals, T < V, a path between two distinct termi-
nals, with all path-internal vertices being non-terminals, is called a
T-path. Given this definition, Gallai formulated the edge-disjoint T-
paths problem, later popularized by Mader, which is concerned with
finding maximum-cardinality sets of pairwise edge-disjoint T-paths,
given arbitrary graphs and subsets of terminals.

At SODA 2020, Iwata and Yokoi presented a new combinatorial
algorithm for the edge-disjoint T-paths problem, employing a simi-
lar strategy to the one used by Edmonds in his blossom algorithm
for the maximum matching problem. This master’s thesis presents a
handful of either slightly mishandled or unhandled edge cases discov-
ered while working with and implementing the Iwata—Yokoi algorithm.
The edge cases discussed in this master’s thesis are all found in the
augmentation procedure of the Iwata—Yokoi algorithm, concerning re-
dundant self-loops, invalid shortcuts, illegal double usage of labeled
edges and the appearance of cycles in the T-paths. Each of these edge
cases are discussed and appropriate modifications to the algorithm, to
mitigate each edge case individually, are presented and proven. The
modifications and edge cases are also discussed in the context of the
improvements suggested to the, then unpublished, Iwata—Yokoi algo-
rithm in the preliminary project for this master’s thesis. Additionally,
some minor discussion on efficiency and suggestions for modifications
based on predicted empirical efficiency are included.






Sammendrag

Gitt en urettet multigraf, G = (V, E), uten lgkker, og en delmengde ter-
minaler, T <V, kalles en sti mellom to distinkte terminaler, hvor alle
interne noder i stien ikke er terminaler, en T-sti. Gitt denne defin-
isjonen formulerte Gallai kantdisjunkte-T-stier problemet, som senere
ble popularisert av Mader. Dette problemet handler om, for arbiteerer
grafer og mengder av terminaler, & finne maksimale mengder, med
hensyn til kardinalitet, av parvis kantdisjunkte T-stier.

Pa SODA2020 presenterte Iwata og Yokoi en ny kombinatorisk
algoritme for kantdisjunkte-T-stier problemet. Denne algoritmen an-
vender en lignende strategi som Edmonds’ blomstringsalgoritme for
maksimal matching problemet. Denne masteroppgaven presenterer
en handfull spesialtilfeller, oppdaget under implementasjon av Iwata—
Yokoi algoritmen, som enten er uhandtert eller delvis feilhandtert i
algoritmen. Disse tilfellene finner alle sted i forgkningsprosedyren til
algoritmen, og tar tak i overfladige lpkker, ugyldige snarveier, ulovlig
dobbel bruk av kanter samt opptredener av sykler i T-stier. Hvert
av disse spesialtilfellene blir diskutert og passende endringer av algo-
ritmen blir presentert og far sin korrekthet bevist. Endringene og de
problematiske tilfellene blir ogsa diskutert i sammenheng med endrin-
gene som ble foreslatt til, den da upubliserte, Iwata—Yokoi algoritmen
i forprosjektet til denne masteroppgaven. I tillegg inneholder mas-
teroppgaven noen foreslatte endringer og diskusjon knyttet til empirisk
ytelse.






Table of Contents

Table of Contents

List of Figures

List of Tables

1 Introduction
2 Background
2.1 Definitions, Notation and Figures . . . .. ... ... ... .. .. ..
2.2 The Edge-Disjoint T-Paths Problem . ... .. ... .........
2.3 The Iwata—Yokoi Algorithm . ... ... ... .. .. .. .......
2.3.1 The Search Procedure . ... ... ...... ... . ....
2.3.2 The Augmentation Procedure . . . . ... ... .. ... ...
2.3.3 Time Complexity . . .. ... ... .. ... .. . ... .
2.3.4 Improvements From the Preliminary Project . . . . . . . ..
3 Redundant Self-Loops
4 The Shortcut Operation
4.1 Sample situations . . . . .. ... L
4.2  Changing the Shortcut-Finding Procedure . .. ... ... ... ..
4.3 Shortcuts and Self-loops . . . . .. .. ... L o
5 The Partial Symmetric Difference Operation
6 Cycles in T-Paths
6.1 Immediate Cycle Removal . . .. ... ... ... ... .. ......
6.2 Delayed Cycle Removal . . .. ... ... ... .............
6.3 Cycle Removal Efficiency . . . .. ... ... ... ... ... ...
7 Concluding Remarks and Future Work
References

iii

21

29
29
33
37

41

45
48
65
73

75
79



ii



List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
3.1

3.2

4.1

4.2

5.1

5.2

6.1

6.2
6.3
6.4

Project timeline for a practical approach to the T-paths problems 2
Example graphs to show the notation used in this thesis . . . . . . 7
Example of the search procedure . . ... ... ... ... ....... 11
Example of the creation of a blossom . . . . .. ... ......... 12
Example of a blossom expansion. The interior edge that created

the blossom is dashed. . . . . .. ... ... .. ... ... ... 13
Examples of shortcut types 3and 4. . ... ... ... ... ... 14
Example of the shortcut operation . . ... ... ... ... ..... 15
Example of the partial symmetric difference operation . . ... .. 16
Example of the partial symmetric difference operation with un-

CTOSSINE . . . . . . o e 17
Example of a situation where the shortcut operation can result in

the augmenting walk having a redundant self-loop. . ... ... .. 22
Example of a situation where the partial symmetric difference op-
eration results in redundant self-loops in the augmenting walk. . . 23

An example of a situation where the algorithm for finding shortcuts
in the Iwata-Yokoi algorithm fails. . . .. ... ... ... .. .. .. 30
A possible forest expansion in the search procedure . . . . ... .. 32

Example situation where the partial symmetric difference opera-

tion produces an invalid augmenting walk. . . ... ... ... ... 42
Example of the modification to the partial symmetric difference
operation. . . ... ... e 43

Example situation where cycles may occur on a T-path, and the

length of a T-path may increase beyond the number of vertices. . 46
Example of a problematic situations with cycles in T-paths . ... 47
Example of a simple case with one Pj-segment in the resulting cycle. 49
General examples of the five nontrivial classes of cycles on a T-path 50

iii



6.5

6.6
6.7

7.1

Results of handling the different nontrivial classes of cycles on a

T-path . . . . 52
Handling type 2c . . . . . . . .. 55
Example of a Pj-segment that partially overlaps with a cycle . .. 58

Project timeline for a practical approach to the T-paths problems 77

iv



List of Tables

4.1 Table of data in step 4 in the shortcut-finding procedure



Vi



Chapter 1

Introduction

Given an undirected multigraph, G = (V, E), without self-loops, and a subset of
terminals, T <V, a path between two distinct terminals, with all path-internal
vertices being non-terminals, is called a T-path. In 1961 Gallai posed a question
regarding how many T-paths could be packed into an arbitrary graph with a given
set of terminals [1]. There are two versions of the problem, the edge-disjoint T-
paths problem and the vertex-disjoint T-paths problem. They regard finding, re-
spectively, maximum-cardinality sets of pairwise edge-disjoint and vertex-disjoint
T-paths. This thesis will focus on the edge-disjoint T-paths problem.

In 1978 Mader presented formulas for both versions of the T-paths problem [2,
3]. Both formulas apply a similar iterative approach, over all possible divisions of
the given graph, counting the number of possible paths between the components
of the divided graph. While Mader’s formulas provided a way to calculate the
correct number of edge-disjoint T-paths in a maximum-cardinality set, they did
not offer a way to construct such sets. In the 40 years since the publication
of Mader’s papers, several different algorithms have been presented for the two
versions of the problem, employing a wide variety of algorithmic concepts. While
there exist many different algorithms for the problem, most solve generalized or
slightly modified versions of the T-paths problems, e.g., minimum-cost. These
algorithms can usually be directly applied to the T-paths problems through simple
reductions.

The most recent algorithm, presented by Iwata and Yokoi at SODA 2020, is a
deterministic algorithm employing a similar strategy to that of Edmonds’ blossom
algorithm [4, 5]. The Iwata—Yokoi algorithm achieves the best time complexity
of all known deterministic solutions, O (VE?). Additionally, there exists a ran-
domized algorithm achieving better time complexity for non-dense graphs. The
algorithm employs a reduction, discovered by Schrivjer, to the linear matroid
parity problem [6]. Using Cheung, Lau and Leung’s randomized algorithm for
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Figure 1.1: Project timeline for a practical approach to the T-paths problems

the linear matroid parity problem, it is possible to achieve a time complexity of
O (E?), where w is the matrix multiplication factor, currently at approximately
2.373 [7, 8]. For a more in-depth discussion on the different algorithms, including
the ones not mentioned here, see the preliminary project for this master’s thesis
[9]. Alternatively, the introduction of Iwata and Yokoi’s paper provides a short
historical timeline of the state of the problem.

So far, all research on the T-paths problems has been completely theoretical,
with no focus on comparison and evaluation of efficiency outside of complexity
theory. Aiming at expanding the research on the topic with a practical approach,
eventually performing empirical evaluation of the different algorithms, and com-
parison based on empirically measured efficiency, the preliminary project and this
master’s thesis focus on required initial surveying and evaluation of correctness.
Figure 1.1 places these two technical reports on the timeline for the practical
approach as a whole. The preliminary project contains a general survey of the
edge-disjoint T-paths problem. Additionally, it contains an initial look at im-
plementation details of the Iwata—Yokoi algorithm, with suggested changes to
achieve a slightly better time complexity. This master’s thesis was supposed to
further the practical approach, looking at implementation and initial emperical
evaluation of the Iwata—Yokoi algorithm. However, due to the discovery of sev-
eral unhandled edge-cases in the Iwata—Yokoi algorithm, of varying degrees of
non-triviality, the thesis has moved towards a more in-depth theoretical evalua-
tion of the Iwata—Yokoi algorithm, inspecting its correctness. While the general
concepts of the algorithm work properly, we will show a handful of edge-cases
that are either not covered by or not correctly handled by Iwata and Yokoi. Ap-
propriate modifications to mitigate these non-trivial edge-cases will be presented,
accompanied by correctness proofs.

The thesis is structured as follows. Chapter 2 provides an introduction to
the required knowledge about the edge-disjoint T-paths problem, as well as an



in-depth guide to the Iwata—Yokoi algorithm. Additionally, it touches on the no-
tation, terms and style of figures used throughout the thesis. Chapters 3 through
6 each focuses on either distinct parts of the algorithm or types of edge cases.
Each of the chapters introduces a mis- or unhandled edge case, proving the occur-
rence of the edge case, and suggesting and proving correctness of modifications to
the algorithm to mitigate the missing handling of the case. Chapter 3 discuss the
appearance of so-called redundant self-loops. Chapter 4 describes two cases in
which the shortcut-finding procedure discovers shortcuts when none is possible.
Chapter 5 introduces a case in which the partial symmetric difference operation
creates invalid augmenting walks. Finally, Chapter 6 shows the appearance of
cycles in T-paths, providing two distinct removal approaches. Chapter 7 contains
concluding remarks and discussion on future work.






Chapter 2

Background

This chapter covers the background information required to understand the main
contents of this thesis. Section 2.1 contains information about the definitions
and notation used in this thesis, along with an explanation of how to read the
drawn graphs. Then, in Section 2.2, a general introduction to the edge-disjoint
T-paths problem is given, with Section 2.3 containing a thorough explanation
of the Iwata—Yokoi algorithm. This thesis is only concerned with this algorithm
and thus does not touch on any of the other existing algorithms. For discussion
on all known algorithms, as well as a general survey of the edge-disjoint T-paths
problem, see the report from the preliminary project for this thesis [9].

2.1 Definitions, Notation and Figures

We define a graph, G = (V,E), as a set of vertices and a set of edges connecting
pairs of vertices. All graphs are assumed to be undirected unless otherwise stated,
that is, all edges can be used in both directions. A graph is said to be simple if
there is at most one edge between any pair of vertices, otherwise it is called a
multigraph. The vertices an edge connects are called the adjacent vertices of the
edge. If an edge only has one adjacent vertex it is called a self-loop, connecting
a vertex to itself. In a graph, a walk is defined as an ordered list of edges and
vertices, vy, er, V1,...,en, Uy, where edge e; connects vertices v;—; and v;. A walk
is called a path if each vertex in the graph appears at most once, that is, there are
no cycles in the walk. All vertices on the walk except for vy and v, are called the
internal vertices of the walk. We say that e; is walked in the direction from v;_;
to v;. If a walk contains a cycle, we call the vertex visited twice in the cycle the
connecting vertex of the cycle. A walk in a graph with vertices a,b,...,z,1,2,3,...
can be denoted by a—1-3—-2-c, the sequence of vertices visited by the walk,



if it is unambiguous which edges are used by the walk. Not to be confused with
the later introduced notation of symbols on a walk (introduced in Section 2.3),
abcbcb.

A graph is said to be a tree if there is exactly one possible walk between any
pair of vertices in the graph. A tree is said to be rooted if a single vertex in the
tree has been designated as a root node. A graph consisting of components that
are all trees is called a forest. Note that a single vertex forms a tree, so a forest
can also be defined as a graph where there for any pair of vertices exists at most
one walk between the vertices, i.e., an acyclic graph. In the context of expanding
a rooted forest, an edge is called a frontier edge if inserting it into the forest
results in combining a single-vertex tree with a rooted tree. In this context, all
other edges are called interior edges.

For T-paths and the concepts of the Iwata—Yokoi algorithm, we adopt a similar
notation as the one used by Iwata and Yokoi. We define P to mean a set of edge-
disjoint T-paths, if not otherwise specified. P; is defined to be the j-th T-path
in P. P; may be used to denote an arbitrary T-path, without any references to
P; in these cases it should follow from context what T-path P; is referring to.
Further notation related to the concepts of the Iwata—Yokoi algorithm will be
introduced, together with the underlying concepts, in Section 2.3.

Tllustrating the edge-disjoint T-paths problem requires drawing graphs with
properties that are not found in standard graphs. We thus, in this thesis, employ
a color-coding of edges and vertices to distinguish their properties. While normal
vertices in a graph will be drawn in black, terminals will be drawn in orange.
Both terminals and non-terminals may be labeled in a graph; in these cases
terminals will always be labeled by letters, while non-terminals will be labeled
by numbers. Edges are normally drawn in black; however, if they belong to a
T-path they will be drawn in orange (light gray in black and white). For the
case of the Iwata—Yokoi algorithm (see Section 2.3), an augmenting walk will
have its edges drawn in blue (dark gray in black and white) besides the already
drawn edges in the graph. If an edge is labeled in the Iwata—Yokoi algorithm,
the labeling is given close to each end of each edge. The labeling will in some
cases be omitted to simplify the figures. While the edge-disjoint T-paths problem
deals with undirected graphs, edges in T-paths may at times be drawn as directed
edges. This is to indicate the order of the edges in the T-paths when there are
cycles present in them. Additionally, edges in T-paths may be drawn as dotted
or dashed lines to differentiate between distinct T-paths. Dashed edges in the
augmenting walk indicates that the augmenting walk continues outside of the
drawn part of the graph. Figure 2.1 contains examples of graphs drawn in the
style described above.

When referring to time complexity, as in O (E), E and V refer to, respectively,
the number of edges and vertices in the given graph. Additionally, in this context
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Figure 2.1: Example graphs to show the notation used in this thesis

Q and P; refer to the maximum length of, respectively, the augmenting walk and
a T-path.

For pseudocode, a similar style to the one employed by Cormen, Leiserson, et
al. in their introductory book on algorithms [10] will be used. Generally, indents
will be used to separate logical scopes of code (if/else, for/while, etc.). Variables
defined in one scope is available in all other scopes of a procedure, but not across
procedures. Variables are either simple values (integer, boolean, byte, etc.) or
treated as objects. An object is here a collection of variables, each accessible
through dot notation, e.g., e.src. Accessing and slicing lists is considered in the
same way that Julia does (similar to the pythonic way), using bracket notation,
colon for slicing, end to mean the index of the last element in the list and 1-
indexing. Finally, the functions ENUMERATE and FILTER are assumed to exist,
respectively turning a list of values into a list of tuples, (index, value), and filtering
a list on a given condition.

2.2 The Edge-Disjoint T-Paths Problem

Let G = (V,E) be a multigraph without self-loops, and let T €V be a set of
terminals. Then a T-path in G with regards to T is a path in the graph, that
starts and ends in distinct terminals, with each internal vertex of the path not
in T. A set P of T-paths is said to be edge-disjoint if and only if the T-paths
in the set are all pair-wise edge-disjoint. Given a multigraph G = (V, E) without
self-loops and a set of terminals, T € V, the edge-disjoint T-paths problem asks to
find any maximum-cardinality set of edge-disjoint T-paths. For any such graph
and set of terminals, there may exist more than one solution to the edge-disjoint
T-paths problem.

While the edge-disjoint T-paths problem is concerned with finding a maximum-
cardinality set of edge-disjoint T-paths, the initial work on a solution was made by
Mader [2]. He derived a formula for finding the size of a maximum-cardinality set



of edge-disjoint T-paths. While this thesis is only concerned with the Iwata—Yokoi
algorithm, we will include Mader’s theorem in addition to a short description of
its workings. This theorem provides a different way of viewing the problem, which
might help illustrate the complexity of the problem and its algorithms. Mader’s
theorem is repeated below, in Theorem 2.1. The formulation of the theorem here
is the same as used in the preliminary project for this thesis, that is the afore-
mentioned survey [9]. This formulation builds on the works of Schrivjer, Iwata
and Yokoi, and Keisjper et al. [4, 6, 11].

Theorem 2.1 (Mader’s theorem) Given a multigraph G= (V,E) and a subset
T <V, then the maximum number of edge-disjoint T-paths for graph G and T,
MT;@G), is given by

)L(T;G):min1 Y d(Xy) - odd(G\ X)
X 2 \ier
where X is a collection of |T| disjoint subsets, X; €V such that each X;
contains a single terminal t€ T. d(S) denotes the number of edges going out of
a subset SCV to G\S, and odd(G\ X) denotes the number of components C; of
G\ X with d(C;) odd.

To understand what Mader’s theorem does, one has to consider a graph as a
set of components connected by edges, that is, a graph can be divided into disjoint
sets of vertices in any number of ways. For the edge-disjoint T-paths problem,
one can consider the graph to be divided by |T| such disjoint sets of vertices, with
each set containing a single terminal and zero or more non-terminals. For any
such division of the graph, a T-path must use the edges between the components
of the graph, with one for each of the two components with terminals it will visit.
For visited components without terminals, an even number of these external
edges must be used. What Mader’s theorem does is to iterate over all such
possible division of the graph, finding the most restrictive one based on the
number of edges going between the components. This division of the graph finds
the choke points for the T-paths, and thus the most restrictive division gives
an approximation to the size of the maximum-cardinality sets of T-paths. The
reasoning behind this, is that while the less restrictive division may seem to be
able to pack more T-paths, the counting of edges does not take into consideration
how many components a T-path must visit on its way between the components
with terminals. A full proof of the theorem will not be given here. The interested
reader can refer to any of the four aforementioned works for a detailed proof.



2.3 The Iwata—Yokoi Algorithm

Here, an in-depth description of the Iwata—Yokoi algorithm is given. The entire
algorithm will be covered, but the level of detail of the different components will
differ based on what and how much is required in order to understand the later
discussion.

In 2020 Iwata and Yokoi published a paper detailing a new deterministic
algorithm for the edge-disjoint T-paths problem, building on a similar scheme
to that of Edmonds’ famous blossoming algorithm for the maximum matching
problem [4, 5]. While their algorithm was not given a specific name, we will in this
thesis refer to the algorithm as the Iwata—Yokoi algorithm, as was also done in the
preliminary project. The Iwata—Yokoi algorithm is an iterative algorithm, where
each iteration takes a set of n edge-disjoint T-paths as input, and either returns
a set of n+1 edge-disjoint T-paths or guarantees that the set of n edge-disjoint
T-paths is a set of maximum cardinality.

A central concept in the Iwata—Yokoi algorithm is the so-called labeled graph.
For an instance of the edge-disjoint T-paths problem, the labeled graph is a
modified copy of the underlying graph, where the modifications are dependent
on the current state of the algorithm, that is, the modifications depend on the
currently found T-paths. A labeled graph is thus defined on a graph, G, and a set
of T-paths, P. In the labeled graph, each terminal is given a unique label. Going
from terminal s to terminal ¢ on a T-path, the first end of each edge is labeled
by s, while the second end is labeled by t. Additionally, a self-loop is created on
each of the internal vertices of the T-path. These self-loops are labeled in the
same way as the normal edges. Note that the order in which the symbols are
added to a self-loop does not matter, as long as the order is fixed after creation.
Both the self-loops and the edges of a T-path are said to be labeled, while all
other edges are called free. An example of this can be seen in Figure 2.1b, where
an example of a labeled graph, with a single T-path, is shown.

For any walk, W, in the labeled graph, the symbols on the walk, denoted by
Y(W), are the ordered string of symbols that appear on the vertices and edges of
the walk, going from vy to v,. Using this definition of symbols on a walk, another
central concept of the Iwata—Yokoi algorithm can be introduced. An augmenting
walk is a walk in the labeled graph, where the following properties hold.

(i) The walk is between two terminals (vg and v,), with all internal vertices of
the walk being non-terminals.

(ii) In the symbols on the walk, there are no consecutive appearances of the
same symbol.



(iii) The walk uses each free edge and self-loop at most once, with all other
labeled edges being used at most once in each direction.

While we will not cover the reasoning behind these properties in detail, note
that when there are no labeled edges in an augmenting walk, the augmenting
walk forms a T-path that is pair-wise edge-disjoint with all other T-paths in the
labeled graph. In general, the current augmenting walk in the algorithm will
be denoted by Q. Also, note that it can be shown that a set of edge-disjoint
T-paths has maximum cardinality if and only if it is impossible to construct any
augmenting walk in the labeled graph.

Each iteration of the Iwata—Yokoi algorithm consists of two procedures, the
search procedure and the augmentation procedure. The search procedure tries
to find an augmenting walk, guaranteeing that if it does not find an augmenting
walk, it is impossible to construct one in the labeled graph. If the search proce-
dure finds an augmenting walk, then the augmentation procedure applies a set
of sub-procedures iteratively modifying the augmenting walk and T-paths until
the augmenting walk no longer contains any labeled edges. Then, the algorithm
creates a new set of T-paths, containing the modified T-paths and the augment-
ing walk. By iterating until the search procedure does not return an augmenting
walk, the algorithm expands a set of edge-disjoint T-paths, guaranteeing that the
found set has maximum cardinality at the termination of the algorithm.

2.3.1 The Search Procedure

The search procedure tries to find an augmenting walk in the labeled graph. This
is done through a forest expansion process, where a forest is iteratively expanded
using vertices and edges from the labeled graph. An example of this process is
shown in Figure 2.2. Initially, the forest consists of a set of single-vertex rooted
trees, one for each terminal in the labeled graph. This can be seen in Figures 2.2a
and 2.2b, where the underlying labeled graph and the initial forest are shown.
Then, through adding edges (and vertices) to the graph, the rooted trees are
expanded. The point here is to create a forest under certain restrictions. This,
such that adding any interior edge in the forest that suffice certain properties will
result in the interior edge along with the paths from the adjacent vertices of the
interior edge to their respective terminals (root vertices) forms an augmenting
walk. The algorithm guarantees this by limiting which edges can be used in the
expansion of the forest.

The forest expansion consists of a two step process, repeated until either an
augmenting walk is found or it runs out of edges. For any part of the process, an
edge is only considered if for each of its adjacent vertices, the symbol on the edge
closest to the vertex is distinct from the label of the vertex, or if the vertex does
not have a label the first symbol on the walk from the vertex to root. The reason

10
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Figure 2.2: Example of the search procedure

behind this, is that to able to find an augmenting walk, one must guarantee that
property (ii) holds. Thus the forest is expanded in such a way that this property
holds for the walks from any vertex to its respective root vertex.

The first step of the forest expansion is the addition of frontier edges. Here,
frontier edges from the labeled graph, that suffice the above property, are added
until the process runs out of frontier edges. The edges can be chosen in any order.
Figures 2.2c, 2.2d, 2.2e and 2.2f show an example of this part of the expansion.
Then, in step two, a single interior edge is selected from the set of possible interior
edges. This edge may fall into one of three categories: (1) it connects two vertices
in distinct trees, (2) it connects two vertices in the same tree that do not share
any edges on their walks to the root vertex, and (3) it connects two vertices in the
same tree that share some sub-path on their walks to the root vertex. For cases
(1) and (2), this interior edge forms an augmenting walk in the aforementioned
way, and the search procedure can return this augmenting walk. In case (3) it
does not form an augmenting walk, as, due to the restrictions set for the added
edges, the shared edge closest to the root vertex will be a free edge. Thus (iii)
would not hold for the constructed walk. Figure 2.2g shows an example of an
interior edge, dashed in the figure, added to the forest. This edge is in category
(1) and Figure 2.2h shows the resulting augmenting walk in the labeled graph.

To handle case (3) and be able to guarantee that the search procedure finds
an augmenting walk when possible, the concept of a blossom is introduced. A
blossom is a structure in the graph, consisting of a cycle and possibly a path
outside of this cycle. The usage of the concept here is similar to how Edmonds
used the concept in his blossom algorithm, where for an arbitrary augmenting
walk one can always find a walk through the blossom that fits into the augmenting
walk without breaking (ii) and (iii). That is, an entire blossom can be treated as
a single wildcard vertex that no matter the symbols around it can be expanded
in such a way that a valid augmenting walk can be created.

In the Iwata—Yokoi algorithm, a blossom is created every time an interior edge

11
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that falls into category (3) is selected in the second step of the procedure. The
blossom consists of the cycle created by the interior edge and the distinct initial
parts of the walks to the root vertex from the adjacent vertices of the interior
edge. Additionally, labeled edges are added to blossom from the start of the
common sub-path to the root vertex until a free edge is found. So, depending
on how this common sub-path looks, anywhere from zero to all but one of its
edges might be added to the blossom. When a blossom is created, the vertices
in the blossom are contracted into a single vertex in the graph with a special
label, and the search procedure jumps back to step 1. The contraction creates
copies of the edges connecting vertices in the blossom to the rest of the graph,
now connecting the blossom vertex to the rest of the graph. Figure 2.3 shows
an example of the creation of a blossom, where the underlying labeled graph is
shown in Figure 2.3a. Figure 2.3b shows the search procedure after selecting an
interior edge in category (3), dashed in the figure. In Figure 2.3¢c, the edges of
the resulting blossom are shown as dashed, with Figure 2.3d showing the state
of the forest after the creation of the blossom.

If the second step returns an augmenting walk containing one or more blos-
soms, each blossom can be expanded by first trying to take the direct route out
of the blossom, that is, going straight towards the root vertex. If the symbol
preceding the entry to the blossom does not allow for this, the requirements set
earlier for frontier edges guarantees that walking around the cycle in the blossom
does not result in consecutive appearances of symbols in the walk. Since the only
part of the blossom that may be used twice is the edges in the common sub-path,
(i) must hold in all such situations as these edges are all labeled. Figure 2.4
shows two examples of expansion of a blossom in an augmenting walk. In Figure
2.4a, the symbol on the augmenting walk preceding the blossom is s. Since it
is possible to go directly up the blossom without breaking (ii), this direction is
chosen. In the case of Figure 2.4b, the preceding symbol, u, makes it impossible
to go directly up the blossom and the long way around is taken instead.

Using this blossom concept, Iwata and Yokoi showed that either an augment-
ing walk is found in the search procedure or there are none in the labeled graph.
There are a couple of important properties of this returned augmenting walk
that will be needed for the later discussion. First, the returned augmenting walk
consists of at most two visits to each vertex; as such, it has a length of less than
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Figure 2.4: Example of a blossom expansion. The interior edge that created the
blossom is dashed.

2|V|]. Second, due to the chosen expansion method for blossoms, all self-loops
that appear in the augmenting walk are necessary to maintain (ii).

2.3.2 The Augmentation Procedure

The augmentation procedure takes the augmenting walk outputted by the search
procedure and tries to simplify the augmenting walk such that it becomes pair-
wise edge-disjoint with the T-paths. It does this by performing a set of operations
that can modify both the augmenting walk and the T-paths. These operations
aim at reducing the overlap between the edges used in the augmenting walk and
the T-paths. By guaranteeing that each operation results in a decrease in this
overlap, while maintaining the properties of the augmenting walk and T-paths,
the procedure will in the end result in the augmenting walk having no overlap
with the T-paths.

When talking about overlaps between the augmenting walk and the T-paths,
the overlaps are not generally considered as overlaps of single edges, but rather as
sequences of overlapping edges, that is, a so-called concept of P-segments is used.
A P-segment is defined as a continuous part of the augmenting walk consisting
entirely of edges from a single T-path, with the preceding and succeeding edges
in the augmenting walk not belonging to the T-path. While a P-segment is any
such overlap, an overlap is called a Pj-segment if it is an overlap of the j-th
T-path. Given this definition of P-segments, the augmentation procedure aims
to continuously reduce the number of P-segments in the augmenting walk. That
is, the number of P-segments has to decrease every iteration of the procedure,
while the number of overlapping edges does not matter in itself. The number of
P-segments in the augmenting walk may be denoted by p(Q). A P-segment is
called st-directed if it belongs to a T-path which has end-vertices labeled s and ¢,
and the edges in the P-segment are used in the direction going from s to ¢ on the
T-path. This is a general concept, where the labels of the terminals of a T-path
are normally assumed to be s and . Similarly, given an st-directed Pj-segment,
a Pj-segment is called ts-directed if it uses the edges of the T-path in the opposite
direction.
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Figure 2.5: Examples of shortcut types 3 and 4

The augmentation procedure performs two different operations, a shortcut op-
eration and a partial symmetric difference operation, depending on the current
state of the augmenting walk. For both of the operations, only the P;-segments of
the T-path of first P-segment in the augmenting walk is considered. Thus, when
talking about these operations and Pj-segments, P; refers to this T-path. In a
single iteration of the augmentation procedure the shortcut operation is always
performed if the augmenting walk allows for it, with the partial symmetric dif-
ference operation performed only when it is not possible to perform the shortcut
operation. This is due to the shortcut operation establishing certain properties
for the interaction between the augmenting walk and the T-path when there are
no more shortcuts possible. These properties are required in order to prove that
the partial symmetric difference operation results in an augmenting walk and
valid T-paths.

The shortcut operation tries to find two Pj-segments such that replacing the
part of the augmenting walk between the start of the first and end of the second
with the part of the T-path between the two results in the augmenting walk
staying valid. In some cases, the start and end of the P;-segments may be the
same vertex; in such cases, a self-loop on the given vertex may be inserted, but
only when it is necessary to suffice (ii). Iwata and Yokoi classify four types of
possible shortcuts, classified based on the order of the Pj-segments in both the
augmenting walk and the T-path. This thesis will require knowledge of two of
these, namely type 3 and 4. Type 3 shortcuts are shortcuts between an st-directed
and a ts-directed Pj-segment, where the st-directed Pj-segment appears before
the ts-directed one in the augmenting walk and has its initial vertex being either
the same vertex as the end vertex of the t¢s-directed Pj-segment or appearing on
the s-side of this vertex. Additionally, the symbol succeeding the ts-directed P;-
segment must not be a t. Refer to Figure 2.5a for an example of such a situation.
A type 4 shortcut requires the same set of one st-directed and one ts-directed
Pj-segment. In this type, the end vertex of the ts-directed Pj-segment is either
the same as the initial vertex of the st-directed one or appears s-side of this
vertex. Additionally, the symbol preceding the st-directed Pj-segment must not
be t. Refer to Figure 2.5b for an example of a type 4 shortcut situation. If the
reader is interested in the remaining types of shortcuts, refer to Iwata and Yokoi’s
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Figure 2.6: Example of the shortcut operation

paper.

In their paper, Iwata and Yokoi outline a five step process for finding possible
shortcuts. Step 0 builds data structures of information about the augmenting
walk and its Pj-segments. The step consists of an iteration over the edges in the
augmenting walk, setting pg; or pss to x for a given edge if the edge belongs to the
x-th Pj-segment and it is, respectively, st-directed or ts-directed. Additionally,
for each Pj-segment found, enter(z) and leave(z) is set if, respectively, the pre-
ceding and succeeding symbols in the augmenting walk are neither s nor t. The
remaining four steps each find shortcuts of their respective type. Since they are
not needed, steps 1 and 2 are not explained here. The only required knowledge
about these steps is that if they do not find a shortcut, then the values of pg; and
pts decrease walking the T-path from, respectively, s and t. Additionally, they
guarantee that Pj-segments with the same direction are vertex-disjoint.

Step 3 finds shortcuts of type 3 by iterating over the edges and self-loops on
the T-path from s to ¢t. Each time an edge with pg; set is found pj, is updated
to this value. Finding an edge for which p;s is greater than pj, and leave is
set, a shortcut with the two Pj-segments is returned. The step also contains
a second iteration, with the roles of st and ts reversed, iterating over the T-
path in the opposite order. In a similar fashion, step 4 finds shortcuts of type
4. It also performs this double iteration over the T-path, with the roles of st
and ts reversed in the second iteration. Differentiating from step 3, step 4 keeps
track of the last seen ts-directed Pj-segment, pj,, comparing found st-directed P;-
segments to this pj, value, checking if they have a lower pg; value. Additionally,
enter is used instead of leave.

A simple example of the execution of the shortcut operation can be seen in
Figure 2.6. There, in Figure 2.6a, an augmenting walk with two P-segments
belonging to the same T-path can be seen. The setup shows an example of the
simplest type of shortcut, type 1, where the two Pj-segments are equally directed
and appear in the same order in both the augmenting walk and the T-path. In
such a case, the augmenting walk can be simplified as shown in Figure 2.6b, where
the part of the augmenting walk between the two Pj-segments has been changed
to the part of the T-path between the two. Note that while there are now three
edges that overlap between the augmenting walk and T-paths, as opposed to
the earlier two, the number of P-segments has decreased by 1. Iwata and Yokoi
showed that the shortcut operation always reduces the number of P-segments by
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Figure 2.7: Example of the partial symmetric difference operation

at least 1, more if there were other P-segments in the augmenting walk between
the two.

In the example of Figure 2.6 the length of the augmenting walk decreases.
This is not always the case, and the length of the augmenting walk may increase
by almost the entire length of the T-path. Additionally, while not shown in the
figure, the new edges inserted into the augmenting walk may already be in use
in the augmenting walk. If this is the case, to make sure that (iii) is kept intact,
one of the occurrences and the edges between the two occurrences are removed
from the augmenting walk.

The partial symmetric difference operation performs a special interchange of
the edges in the T-path and the augmenting walk. The new T-path is formed by
concatenating the edges in the T-path before the Pj-segment with the edges of the
augmenting walk before the Pj-segment. In a similar fashion, the new augmenting
walk is formed by concatenation of the edges after the P;j-segment in the T-path
and the edges after the Pj-segment in the augmenting walk. An example of this
procedure is shown in Figure 2.7, wherein Figure 2.7a an augmenting walk with a
single P-segment is shown. While there is no direction shown in the figure, there
is an assumption here that the augmenting walk is considered to go from u to r.
Given this, the result of the partial symmetric difference operation can be seen
in Figure 2.7b. While the length of both the T-path and the augmenting walk
decreased in the example of Figure 2.7, this is not always the case. The combined
length of the two will always decrease, while the interchange of edges may result
in the length of one of them increasing.

The shortcut operation reduces the number of Pj-segments in the augmenting
walk. Nonetheless, there is no guarantee that there is only one Pj-segment in the
augmenting walk when the partial symmetric difference operation is performed.
This, as there are some combinations of Pj-segments where the symbols on the
augmenting walk do not allow for shortcuts. Thus, there may be Pj-segments
both on the s-side and ¢-side of the Pj-segment removed in the partial symmetric
difference operation. For the ones on the s-side, the shortcut operation guarantees
that the possible change in symbols on the T-path does not result in (ii) being
invalidated. On the t-side, on the other hand, the edges of the T-path are now
free edges, and (iii) may be broken from dual usage of these free edges. As such, a
second operation, the uncrossing operation, is performed at the end of the partial
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Figure 2.8: Example of the partial symmetric difference operation with uncrossing

symmetric difference operation.

The uncrossing operation removes all dual usages of the now free, previously
labeled, edges in the augmenting walk. The shortcut operation guarantees that
these dual usages are both equally directed. Since one of the usages did not
appear in the augmenting walk before the partial symmetric difference operation,
simply removing them in the way that was done in the shortcut operation would
risk invalidating (ii). Instead Iwata and Yokoi found that the guarantees of the
shortcut operation allow the two usages to both be removed when the edges
between them are flipped (used in the opposite direction and order).

Figure 2.8 shows an example situation where the uncrossing operation must be
performed as part of the partial symmetric difference operation. Figure 2.8a con-
tains the initial situation with an augmenting walk containing three P-segments,
two belonging to the same T-path. It is not possible to perform a shortcut op-
eration here, as that would result in the augmenting walk having a repetition of
symbols. Thus, the partial symmetric difference operation is performed. Figure
2.8b shows the result of performing the interchange of the edges. There, the edge
of what was the third P-segment is used twice. While it may not be immediately
obvious from the figure, the edge is used twice in the same direction. Performing
the uncrossing operation results in the situation of Figure 2.8c, where the two
usages of the free edge are removed.

The partial symmetric difference operation has several interesting properties.
First, it can be seen that the operation deletes the edges of a P-segment, reducing
the number of P-segments by at least one. Especially, it can be shown that the
new edges in the augmenting walk can not form any P-segments. By this, it also
follows that the number of overlapping edges decreases. Moreover, the T-path
changed in the operation will remain a valid T-path since the edges gained from
the augmenting walk where all free edges prior to the operation.

In many ways, the shortcut operation and partial symmetric difference oper-
ation can be considered as two operations that in combination push the occur-
rences of P-segments in the augmenting walk backwards. The shortcut operation
declutters the internals of the augmenting walk, allowing the partial symmetric
difference operation to push the boundary of where the P-segments may occur in
the augmenting walk.
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2.3.3 Time Complexity

While the exact time complexity of the Iwata—Yokoi algorithm is not important
for the discussion here, the time complexities of the sub-procedures are needed
to show that the later modifications to the algorithm do not result in an increase
in time complexity. We thus give a short introduction to the time complexity of
the algorithm.

As previously mentioned, the Iwata—Yokoi algorithm consists of a set of iter-
ations, each finding one additional T-path. As such, there can be a maximum of
|E| iterations. Each iteration consists of one application of the search procedure,
which Iwata and Yokoi showed to have a time complexity of O (VE). Additionally,
the augmentation procedure consists of iterations where either the shortcut op-
eration or the partial symmetric difference operation is performed. Each of these
operations was shown to have a time complexity of O (E). Since both operations
reduce the number of P-segments by at least one, and the number of P-segments
after the search procedure can not be larger than O (V), due to the limits on the
length of the augmenting walk, Iwata and Yokoi showed that there are at most
O (V) iterations in the augmentation procedure. As such, the time complexity of
the augmentation procedure was shown to be O(VE). In conclusion, this gives
the Iwata—Yokoi algorithm a time complexity of O (VE?).

2.3.4 Improvements From the Preliminary Project

As part of the preliminary project for this thesis, possible improvements, in re-
gards to time complexity, were found for the Iwata—Yokoi algorithm. These
improvements resulted in a reduction in the time complexity of the algorithm to
O(V2E+E?). As the changed algorithm does not greatly differ from the Iwata—
Yokoi algorithm, the later discussed modifications to the Iwata—Yokoi algorithm
should be shown to also work properly for these improvements without reduc-
ing the improvements to the time complexity. Thus, the changes will be briefly
covered here.

The improvements suggested are twofold. For the search procedure a change
in data structures was suggested. An edge should refer to the position of its
adjacent vertices in an array rather than the vertices itself. Using this, it was
shown that blossom creation had a time complexity of O (V) rather than the O (E)
time complexity of a standard contraction in the graph. This, as blossom creation,
and thus the contraction of the graph, could be done without modifications to
the edges by simply replacing the vertices of the blossom in the vertex array.
This resulted in the search procedure having a time complexity of O (V?+ E).

For the augmentation procedure the time complexity is mainly bound by
the size of the augmenting walk. As previously mentioned, the length of the
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augmenting walk may increase from both the shortcut operation and the partial
symmetric difference operation. This results in the length of the augmenting
walk not being bound by O(V), but rather by O(E). Since the augmenting
walk initially has at most two visits to each vertex, it was showed that both
operations result in at most one additional visit to any vertex. Thus, exploiting
the properties of the augmenting walk, a procedure, SIMPLIFY, was designed to
remove at least one visit from each vertex that was visited thrice. This resulting
in the augmenting walk having a length of O (V), and the augmentation procedure
having a time complexity of O (V?).
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Chapter 3

Redundant Self-Loops

In their paper, Iwata and Yokoi make an assumption regarding so-called redun-
dant self-loops, that is, self-loops in the augmenting walk that can be deleted
without resulting in the appearance of consecutive symbols on the augmenting
walk. The authors make the assumption that without loss of generality one can
assume the augmenting walk to have no such self-loops. The usage of this as-
sumption seems to mainly be related to the definition of a P-segment. This, as
with the assumption it is guaranteed that a P-segment is either a single self-loop
or a sub-path of a T-path. For this guarantee, the given reliance on no redundant
self-loops is stronger than necessary. This, as a self-loop may be redundant even
when it does not appear directly before or after an edge of the same T-path in
the augmenting walk. As will be seen shortly, the algorithm will in some cases
be able to break the assumption above and produce what we will call a stan-
dalone redundant self-loop, that is, a redundant self-loop that forms a P-segment
containing only itself.

We have not been able to prove or disprove the occurrence of non-standalone
self-loops. It seems likely that the occurrence of these is not possible in the
standard operational space of the Iwata—Yokoi algorithm where the interactions
between the different operations seem to mitigate any such possibilities. It is,
however, possible for the operations of the algorithm, with valid situations that
have been crafted directly instead of being a product of the algorithm itself, to
produce such non-standalone redundant self-loops. Thus, while it may possible
to prove the non-existence through an intricate proof of the interactions between
the operations, such a proof gives little worth. As for any minor change to the
algorithm, such as all the changes in this thesis, the proof has to be repeated
with appropriate changes.

While proving the non-existence of non-standalone self-loops may make it
possible to ignore redundant self-loops all together, there is no guarantee that
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Figure 3.1: Example of a situation where the shortcut operation can result in the
augmenting walk having a redundant self-loop.

Iwata and Yokoi have not relied on the property in other parts of the paper.
Given this and the resulting simplifications to the later modifications, we will
rather present a procedure to eliminate redundant self-loops in the augmenting
walk. This is especially rooted in the fact that the later presented modifications
increase the chance of redundant self-loops occurring. In the later introduced
procedure it will be assumed that the redundant self-loops can both be standalone
and non-standalone.

Before introducing a procedure that removes any redundant self-loops in the
augmenting walk, two examples of situations in which redundant self-loops are
created will be shown, one for the shortcut operation and one for the partial
symmetric difference operation. It can be verified that the augmenting walks of
the examples can be created by the search procedure, depending on the order in
which the edges are chosen. For the search procedure, it follows directly from
the argumentation and proofs of Iwata and Yokoi that the procedure will not
result in any redundant self-loops. This, due to how the blossom expansion is
performed and the criteria chosen for the validity of self-loops as interior edges
in the forest expansion.

In the shortcut operation a new self-loop may be added to the augmenting
walk, but only when it is absolutely needed, that is, the self-loop is not added
to the augmenting walk unless the symbols on the augmenting walk require it.
As such, this self-loop is never redundant. The shortcut operation may still
result in the augmenting walk containing redundant self-loops, as the symbols
on the walk may change, and thus already existing self-loops may turn from
non-redundant to redundant. Figure 3.1 shows an example of such a situation.
There, in Figure 3.1a, the augmenting walk has the symbols streruvr. The self-
loop (uv) is surrounded by r’s, meaning it is non-redundant. After application
of the shortcut operation, as seen in Figure 3.1b, the symbols are srtuvr. This
means that the self-loop has become redundant and can be removed as seen in
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Figure 3.2: Example of a situation where the partial symmetric difference oper-
ation results in redundant self-loops in the augmenting walk.

Figure 3.1c. Then, the symbols on the augmenting walk are sr¢r which suffice
(ii).

Since the partial symmetric difference operation will not be run unless there
are no shortcuts available, any situations in which the partial symmetric difference
operation produce redundant self-loops will necessarily be more complex than for
the shortcut operation. An example of this can be seen in Figure 3.2. There,
in Figure 3.2a, an augmenting walk containing five P-segments, of which two
are non-redundant self-loops, can be seen. We will assume that the symbols
on the self-loop on the T-path from r to t are tr when going from u to s in
the augmenting walk, as otherwise a shortcut is possible. This is a possible
situation, as the order of the symbols on self-loops is determined prior to the
search procedure and can take any of the two possible orders. If this is the case,
the symbols on the augmenting walk will be ustuvtstrsrs. This means that a
shortcut operation can not be performed on the two Pj-segments of the T-path
going from s to t. As such, Figures 3.2b and 3.2c show the execution of the
partial symmetric difference operation on the given augmenting walk. Both of
the self-loops in the original augmenting walk are kept in the new augmenting
walk. Since the symbols of the new augmenting walk are tvutrsrs, the self-loop
on the T-path from u to v is non-redundant while the other self-loop is redundant.
Removing the redundant self-loop results in the symbols on the augmenting walk
becoming tvusrs. The remaining self-loop is now also redundant and can be
removed.

The example from the partial symmetric difference operation shows an impor-
tant situation that must be handled when removing redundant self-loops, that is,
the augmenting walk may contain more than one redundant self-loop, and remov-
ing one redundant self-loop may result in another self-loop becoming redundant.
While it seems unlikely that the shortcut operation may result in this occurring
in the standard Iwata—Yokoi algorithm, some of the changes suggested later in
this thesis, for example one of the ways to handle cycles in the T-paths, may also
result in the occurrence of more than one successive self-loop. If there are more
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than one successive self-loop in the augmenting walk, the shortcut operation may
result in one or more of these becoming redundant.

We will now present a procedure, REMOVE-REDUNDANT-SELF-LOOPS, which
through simple iteration of the augmenting walk removes redundant self-loops.
Since a self-loop is redundant only when the symbols preceding and succeeding
it are not equal, the procedure creates a list of the symbols on the augmenting
walk to allow for constant time referencing. The procedure then creates a new
augmenting walk through iteration over the old augmenting walk. All edges that
are not redundant self-loops are added to the new augmenting walk. A self-loop
is in this case classified as redundant if the last symbol in the new augmenting
walk is not equal to the next symbol in the old augmenting walk. This, as will be
shown later, guarantees that the new walk suffice (ii). It is worth noting that there
may still be redundant self-loops in the resulting augmenting walk. This, as for
a situation with several consecutive self-loops, with only the last being classified
as redundant, the chosen one-pass strategy of the procedure does not allow the
changes from the removal of the last self-loop to propagate to the previous self-
loops. Thus, a procedure REMOVE-ALL-REDUNDANT-SELF-LOOPS is created.
This procedure calls the REMOVE-REDUNDANT-SELF-LOOPS procedure until no
redundant self-loops are deleted in a single application.

REMOVE-REDUNDANT-SELF-LOOPS(Q)

1 y=vyQ

2 p=rll]

3 pn=2

4 deleted = FALSE

5 Q' = empty path

6 for e in Q.edges

7 if e.labeled

8 Pn += 2

9 if e.src# e.dst or p==y[py)
10 add e to Q'
11 if e.labeled
12 p = e.dst-symbol
13 else deleted = TRUE

14 return Q', deleted

We will now show and prove the validity and time complexity of the REMOVE-
REDUNDANT-SELF-LOOPS procedure.

Lemma 3.1 REMOVE-REDUNDANT-SELF-LOOPS returns an augmenting walk.
The resulting augmenting walk may only differ from the input augmenting walk
by one or more deleted self-loops.
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Proof: An edge is never removed after being added to Q’. Thus, for the dif-
ference between Q and Q' to only be the deletion of self-loops, it must be shown
that all normal edges are added to Q' and all edges in Q' are added in their
original order. The only time an edge is added to Q' is on line 10. For line 10 to
occur, at least one of the conditions on line 9 must be valid. Any non-self-loop
edge suffice the first condition, and thus line 10 runs for all non-self-loop edges.
Moreover, since the loop of line 6 walks Q from start to finish, the edges in Q'
must follow the same order as in Q. Thus, the only difference between Q and Q'
may be missing self-loops.

Since only self-loops may be deleted, it follows that Q' is a walk. Additionally,
since no new edges are added, the properties (i) and (iii) of augmenting walks
must be fulfilled. For an edge, e, if both of the conditions on line 9 are false,
then e is a self-loop and the symbol of the next labeled edge in Q is different
from the last symbol in Q'. Thus deleting such e does not break property (ii) of
an augmenting walk. Especially, even though the check on line 9 checks whether
or not each edge can be removed with no regards to the removal of later edges
in Q, (ii) must hold since an edge is only removed if it is guaranteed that Q’
concatenated with the remainder of Q suffice (ii). ]

Lemma 3.2 REMOVE-REDUNDANT-SELF-LOOPS either removes at least one re-
dundant self-loop and returns TRUE for “deleted” or there are no redundant self-
loops in the augmenting walk, the augmenting walk is not change and FALSE is
returned for “deleted”.

Proof: Assume that Q has at least one redundant self-loop. Then, when e is
the first redundant self-loop of Q, neither of the conditions on line 9 may hold. e
is of course a self-loop, and since e is a redundant self-loop the symbol preceding
e, p, must differ from the symbol succeeding e, y[pn]. Thus, line 10 is never ran
and e is not added to the new augmenting walk. Moreover, since none of the
conditions on line 9 hold, line 13 must be run and deleted will be set to TRUE.
Assume the opposite, namely that Q has no redundant self-loops. Then, at
least one of the conditions on line 9 must hold for all edges e, as either e is not
a self-loop, or e is a non-redundant self-loop and thus the symbol before e, p, is
equal to the symbol after e, y[p,]. Thus, line 13 will never be run and deleted will
always remain FALSE. It follows directly from Lemma 3.1 that the augmenting
walk does not change. [ |

Lemma 3.3 REMOVE-REDUNDANT-SELF-LOOPS has a time complexity of O (Q)

Proof: Line 1 is a simple iteration over the augmenting walk and can be per-
formed in O(Q). Lines 2 through 5 and 14 can be performed in constant time.
The loop on line 6 is an iteration over the augmenting walk and thus consists of
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O (Q) iterations. Each of the operations on lines 7 through 13 can be performed
in constant time. Thus, the loop of line 6 has a time complexity of O(Q). It
follows that the whole procedure has a time complexity of O(Q). |

The REMOVE-ALL-REDUNDANT-SELF-LOOPS procedure will now be presented
with proofs for the validity and time complexity. As previously mentioned, this
procedure simply applies the REMOVE-REDUNDANT-SELF-LOOPS procedure un-
til no self-loops have been deleted in a single application.

REMOVE-ALL-REDUNDANT-SELF-LOOPS(Q)

1 deleted = TRUE

2 while deleted

3 Q, deleted = REMOVE-REDUNDANT-SELF-LOOPS(Q)
4 return Q

Lemma 3.4 Let Q and Q' be the augmenting walk, respectively, before and after
the application of the REMOVE-ALL-REDUNDANT-SELF-LOOPS procedure. Then,
the number of applications performed of the REMOVE-REDUNDANT-SELF-LOOPS
procedure is smaller than or equal to u(Q)— u(Q) +2.

Proof: Assume that there are no redundant self-loops in the augmenting walk,
then there is only one application of the procedure, and there is no change in the
number of P-segments. Since the number of applications is less than the constant
2, this case holds.

Now assume that there is at least one redundant self-loop in the augmenting
walk. Then, there are three possible classifications for the self-loops that will be
removed from the augmenting walk. The self-loops may all be standalone, a mix
of standalone and non-standalone or non-standalone. In all of these cases, Lemma,
3.2 guarantees that the number of applications of the REMOVE-REDUNDANT-
SELF-LOOPS procedure will at most be an equal amount of times to the number
of self-loops removed.

For the case of only standalone self-loops, an entire P-segment is removed
for each removed self-loop. Thus, the number of applications can not be higher
than pp(Q)— up(Q') +1, with the 1 being a result of having to perform an extra
application in the end to check that there are no remaining redundant self-loops.

For the case of only non-standalone self-loops, one can see that (1) removing
a non-standalone self-loop does not change whether or not the previous or next
self-loop is redundant and (2) all non-standalone self-loops are redundant and
can be removed in a single application of the procedure. For (1) it suffices to
see that a non-standalone self-loop is either followed by or preceded by an edge
from the same T-path with the same symbols in the same order as the self-loop.
This follows directly from the definition of an augmenting walk. Thus, removing
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the non-standalone self-loop does not change the symbols before or after any
other self-loop. For (2) one can see that due to the edge preceding or succeeding
the self-loop having the same symbols as the self-loop, the symbol before and
after a non-standalone self-loop can never be the same. Thus, they will always
be removed by the procedure. A total of 2 applications are thus needed. This
is equal to the constant above. Especially, the number of P-segments does not
change when removing a non-standalone self-loop, since, by definition, at least
one edge remains in each of the P-segments.

For the last case, removing a redundant self-loop reduces the number of P-
segments by either (a) 2, (b) 1 or (c) 0. Case (a) occurs when a standalone
self-loop is removed and there is a self-loop directly preceding or succeeding it
that goes from being a standalone self-loop to a non-standalone self-loop. Thus,
the P-segment of the deleted self-loop is removed and the P-segment of the other
self-loop is combined with another P-segment and thus a reduction by 2 in the
number of P-segments is achieved. Case (b) may occur if a standalone self-loop is
deleted and case (a) is not valid. Then, a P-segment is simply removed from the
augmenting walk. Case (c) occurs when a non-standalone self-loop is removed, as
then only an edge from a P-segment is removed, not an entire P-segment. Using
this, it follows that the number of P-segments must be reduced in each iteration,
unless only non-standalone self-loops are removed. Using (1) from above, this
can only happen if there are no more standalone self-loops that will be removed.
By (2) this can only happen once, as all such self-loops are removed in the same
application. Thus, for all but a maximum of two applications of the procedure,
the number of P-segments is reduced by at least one and it follows that the
number of applications is at most this reduction in P-segments plus two. |

Theorem 3.5 Applying the REMOVE-ALL-REDUNDANT-SELF-LOOPS procedure
at the end of each iteration of the augmentation procedure does not increase the
time complexity of the algorithm, and results in a valid augmenting walk with no
redundant self-loops.

Proof: By Lemma 3.1 it follows that the augmenting walk returned from the
REMOVE-REDUNDANT-SELF-LOOPS procedure is valid. Since this is the only
change made to the augmenting walk in the procedure, the resulting augmenting
walk must be valid. By Lemma 3.2 and the fact that the procedure is applied
until deleted is false, there can not be any redundant self-loops in the resultant
augmenting walk, as otherwise deleted would be true.

As for the time complexity of the augmentation procedure, the augmenta-
tion procedure consists of a number of iterations where each iteration must be
performed in O (E) operations. The number of iterations is bound by the num-
ber of P-segments in the augmenting walk. By Lemma 3.4, it follows that there
is a constant number of applications of the REMOVE-REDUNDANT-SELF-LOOPS
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procedure, in addition to a number of applications bound by the reduction in
the number of P-segments. By Lemma 3.3, the time complexity of each ap-
plication of the procedure is O(Q). Since Q is bound by O(E), the constant
number of applications disappear in the time complexity of one iteration of the
augmentation procedure. For the non-constant number of applications, the max-
imum number of iterations of the augmentation procedure decreases by an equal
or larger amount. Thus, since the time complexity of one application of the
REMOVE-REDUNDANT-SELF-LOOPS procedure is the same as for one iteration of
the augmentation procedure, the time complexity does not increase. |

We note that the improvements made to the algorithm in the preliminary
project do not either see an increase in time complexity. While each iteration of
the augmentation procedure has a time complexity of O (V) in the improvement,
the augmenting walk is also bound by O (V). Thus, the REMOVE-REDUNDANT-
SELF-LOOPS procedure is bound by O (V), and the same logic as in the proof of
Theorem 3.5 can be employed.
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Chapter 4

The Shortcut Operation

In their paper, Iwata and Yokoi outlined a procedure for finding possible shortcuts
in O(E) time complexity. We have found that some parts of the procedure may
find a shortcut of a given type, even when the pair of Pj-segments does not
constitute to a shortcut of this type. In fact, the procedure seems to find shortcuts
in the augmenting walk where there are no possible shortcuts. This chapter will
show examples of situations where the procedure finds these invalid shortcuts.
The shortcut-finding procedure will be modified so as to mitigate this problem.
Additionally, Section 4.3 introduces a non-required modification to the shortcut-
finding procedure. This modification is meantto simplify the handling of self-
loops in implementations of the algorithm.

4.1 Sample situations

An example of a problematic situation with the shortcut operation can be seen
in Figure 4.1, where a situation with three T-paths and an augmenting walk
is depicted. We will denote the T-paths described by s—6—-r, t—5-8—r and
r—-7-5-4-9—-t as Py, P, and P3, respectively. Note that the augmenting walk
is described by s—7-5-4-9-6—-6—-4—-5-8—t, where the 7-5-4-9 part is a
P3-segment, the 6—6 part is a Pj-segment, the 4—5 part is a P3-segment and the
5—8 part is a Pp-segment. One can also, using Figure 4.1, easily verify that the
three T-paths and the augmenting walk are all valid, with the augmenting walk
having the following symbols srertresrertrt.

When applying the augmentation procedure to the given augmenting walk,
the first P-segment to be considered is the P3-segment 7—5-4-9. It can be
checked that no shortcut operation can be performed here, as that would require
a shortcut operation to be performed with the only other Ps-segment, 4 —5.
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Figure 4.1: An example of a situation where the algorithm for finding shortcuts
in the Iwata-Yokoi algorithm fails.

Performing a shortcut with the P3-segments would result in changing the part
of the augmenting walk, 7-5-4-9-6-6—-4-5, to the part of P3 going from
vertex 7 to vertex 5. That is, replacing it with the edge 7—5. This would result
in the invalid augmenting walk s—7—-5—-8—t, which has two consecutive t’s in
its symbols, srttrt. As such, it is not possible to perform the shortcut operation
on the augmenting walk.

Given this, one would expect the 5 step shortcut-finding procedure to find no
possible shortcuts in the augmenting walk. As will be seen shortly, this is not
the case. Going through step 0 of the procedure, the following values are set for
pst and pys.

psi(7—5) = psi(5-4) = p(4-9) = 1 (4.1)
pis(5—4)=2

For all other edges psr and p;s are both not set. Additionally, for the two
Pj-segments the following values are found for enter and leave.

enter(1)=1  leave(l) =1 (4.3)
enter)#1  leave(2) #1 (4.4)

Going through steps 1 through 3 no possible shortcuts are found, as expected.
However, in step 4, following the exact process outlined, a possible shortcut is
returned. Table 4.1 show the process in step 4 with all values and computations
at each edge, e, (safely ignoring self-loops) as we walk P3 from r to t as outlined
in the step. When reaching edge 5-4, pj, is set to 2 and as this edge also has
Pst =1<2=pss* and enter(1) = 1, a possible shortcut has been found. However,
Iwata and Yokoi have not specified whether pj, should be updated before or
after the checks for possible shortcuts. For the former, it will result in an invalid
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e p:s pst(e) | enter(pg(e)) =1 | psi(e) < pys*
c—=7 - - - -
7-5 - 1 YES -
5-14 2 1 YES ?
4-9 2 1 YES YES
9-b 2 - - -

Table 4.1: Table of data in step 4 in the shortcut-finding procedure

shortcut being found for this edge. For the latter, one can show that in other
situations the procedure may miss possible shortcuts. Nonetheless, for the next
edge, 4-9, the same conditions hold, with ps; =1 <2 = pj}, and enter(1) = 1. Thus,
no matter the order in which the check was meant to be performed, the procedure
finds an invalid shortcut with the two Ps-segments. As already seen, this shortcut
returned by the shortcut-finding procedure results in an invalid augmenting walk.

While the above example only shows a fault in step 4 when walking a Pj-
segment from s- to t-side, it is trivial to show that the procedure inhibits the
same fault for the other part of step 4, that is, walking from ¢- to s-side with
the roles of p;s and pg; changed. In fact, if we considered Ps in reverse order,
t—-9-4-5-7-r, with the other T-paths and the augmenting walk as is, the
invalid shortcut would be found in this part of step 4 instead.

Notice that if the symbols on the augmenting walk allowed the shortcut to be
valid, the found invalid shortcut would actually be of type 3. This, as the initial
vertex of the st-directed Pj-segment appears on the s-side of the end vertex of
the ts-directed Pj-segment in the T-path. Given that step 4 is only supposed to
find shortcuts of type 4, this is another point that has to be considered in the
modifications to the shortcut-finding procedure.

In a similar fashion to the one laid out in detail above, it is possible to con-
struct a case in which step 3 of the shortcut-finding procedure finds an invalid
shortcut due to a similar weakness. Invalid shortcuts found by step 3 would in
the same way as above be of another type, namely type 4, if the symbols on the
augmenting walk allowed the shortcut to be valid. It seems like steps 3 and 4
exhibits the same weakness, as the checks for shortcuts only considers if an edge
belongs to the given Pj-segment, rather than where in the P;-segment the edge
appears. Since the shortcut types are defined based on where the Pj-segments
start and end in the T-path, this is not enough for the cases where the two
Pj-segments partially overlap.

An example of a situation in which step 3 of the procedure finds an invalid
shortcut can be seen in Figure 4.1c. This situation is similar to the one earlier
discussed for step 4 with P, changed to t—8—r and the augmenting walk being
t-5-4-6-6-9-4-5-7—s5. It can again be checked that the given augmenting
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Figure 4.2: A possible forest expansion in the search procedure

walk is valid, having the symbols tresrertrtrs, and that no possible shortcuts
exist for the P3-segments. However, going through step 3 a shortcut is returned
either on the edge 5-4 or the edge 4—-9, again depending on the order in which
p;; is updated and the checks for shortcuts are performed.

As with the previously discussed non-standalone redundant self-loops, it is
interesting to consider if these situations may actually occur in the Iwata—Yokoi
algorithm before deciding on handling them. If it can be shown that no such
cases can occur, then it is not necessary to modify the algorithm to mitigate the
shown problems. This is not the case for the shortcut-finding procedure, where
for some labeled graphs the search procedure can only find augmenting walks
for which either step 3 or 4 returns an invalid shortcut. The situation shown in
Figure 4.1 form one such example.

Figure 4.2 shows one possible forest expansion for the labeled graph shown in
Figure 4.1a. First, after all the frontier edges have been exhausted in Figure 4.2a,
the only interior edge, the self-loop of P; on vertex 6, is used to create blossom
B; in Figure 4.2b. This allows for the edge 4 —6 to become a valid interior edge,
which is used in Figure 4.2c, creating a blossom B; consisting of all but one non-
terminal. Finally, this results in the edge 5—8 becoming a valid interior edge. In
Figure 4.2d, this edge is used to produce a compacted augmenting walk. While
Figure 4.2 does not show the expansion of blossoms B; and By, it can be shown
that the augmenting walk must walk the long way around the blossoms, and thus
produce the augmenting walk shown in Figure 4.1b.
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The example discussed above shows one possible forest expansion in the la-
beled graph. It is possible to show that there are a total of six possible distinct
forests that can be created depending on which edges are used as frontier edges.
The forests are a result of the choice between edges 7—5 and 8—5, as well as which
two of three edges connecting vertices 4, 6 and 9 are used. All of these forests
inhibit the same property, as was mentioned for the expansion showed in Figure
4.2, where given the selection of the frontier edges only one valid interior edge
can be found at each step of the search procedure. Thus, a total of six different
expansions can be found, producing four distinct augmenting walks. These four
augmenting walks form pairs of reversed walks. Two of these, the one shown
for step 4 and its reverse, always result in invalid shortcuts being found, while
the remaining two only results in invalid shortcuts if the update of p}, and pj,
happens before the check for a shortcut.

As seen, it is non-trivial to design a way to mitigate the occurrence of situ-
ations in which an invalid shortcut operation may be found. If the updating of
pis (pi)) occurs before the checks in steps 3 and 4, then for the labeled graph
discussed above there is no way to mitigate this problem locally in the search
procedure. This would mean that such a mitigation would need to be on a more
global level in the algorithm.

4.2 Changing the Shortcut-Finding Pro-
cedure

We will now look at what changes need to be made to mitigate these issues in the
shortcut-finding procedure. The changes aim to modify the shortcut operation
the least. This, as there does not seem to be any better strategies than the ones
already employed by Iwata and Yokoi, and there is no reason to change the parts
that are already working unless they can be simplified or optimized. For all the
changes discussed below, only the changes made going from s- to t-side are given.
The changes going from t- to s-side are exactly the same, only with the roles of
st and ts interchanged.

As was previously mentioned, both of the problematic steps in the procedure
seemed to find invalid shortcuts only when the invalid shortcut was of another
type than what the step was supposed to find. That is, it seems like the invalid
shortcuts are a result of the steps not considering what part of the Pj-segment a
given edge belonged to when comparing pj;, and pj, to the equivalent values of the
given edge. Shortcuts of type 3 and 4 require a certain order of the appearance
of the initial vertex of the first Pj-segment and the last vertex of the second Pj-
segment in the T-path. For type 3 and 4, this order is roughly opposite and thus
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step 3 finding type 4 shortcuts and step 4 finding type 3 shortcuts indicate that
this order has to be checked.

The first change that will be made, is in step 0. In this step, there is already a
process for setting enter(x) and leave(x) based on the preceding and succeeding
symbol on the augmenting walk for the x-th P;-segment. In a similar fashion, set
first(x) and last(x) to respectively the first and last edge in the x-th P;-segment.
This change introduces a data structure that makes it possible to later find the
start and end of a Pj-segment. It is possible to do this without the help of this
data structure, , depending on which direction the T-path is walked, the first
edge of a Pj-segment seen is either the first or the last edge of the P;-segment.
However, since step 0 already builds data structures that contain content for
each Pj-segment, having first and last does not result in any change in time
complexity and only adds a slight memory and computational cost. Especially,
it somewhat simplifies the later checks.

To mitigate the issues in step 3, the following changes can be made to the
step. First, make sure that the update of pj, is performed before the check for
a shortcut. Second, add the check last(p;s(e)) = €/, that is, for a given edge
¢’ the check becomes pys(€)) > pi,, leave(p;s(e))) =1 and last(pss(€)) =e'. The
reason for the specification of the order in which the update and check should be
performed, is that if the same edge is used by both an st-directed and a ts-directed
Pj-segment, then if the edge is the first in the st-directed P;-segment and the last
in the ts-directed Pj-segment, the start and end of the two Pj-segments overlap
and thus there can be a shortcut of type 3. To be pedantic, one could update p3,
only when an edge, e, with first(ps:(e)) = e is visited. However, going from s-
to t-side the first edge found in an st-directed Pj-segment will always have this
property, making the check redundant.

Theorem 4.1 The updated step 3 in the shortcut-finding procedure finds only
shortcuts of type 8 and finds all such shortcuts.

Proof: This proof will only show the part of step 3 where the iteration is from
s- to t-side. The proof in the other direction is exactly the same except for all
references to s and t being interchanged.

First, assume that a shortcut was found by step 3, it must then be shown
that the shortcut is of type 3, that is, the three conditions for a shortcut of type
3 are sufficed. Thus, the two returned Pj-segments must be directed in opposite
directions and it must hold that (1) the st-directed Pj-segment appears on the
augmenting walk before the ts-directed one, (2) the first vertex of the st-directed
Pj-segment appears s-side of the last vertex in the ts-directed one or they are
equal, and (3) the first symbol after the ¢s-directed Pj-segment is not ¢.

Since the step returns one Pj-segment for which pg, is set and one for which
Pis is set, the two Pj-segments must be oppositely directed. Given this (1) must
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hold, as if a shortcut was found then pys(e’) > Pas» so the ts-directed Pj-segment
must by the definition of the values for p;s and pj, appear after the st-directed
one in the augmenting walk. Similarly, leave(p;s(e')) is set to 1, so the next
symbol after the ts-directed Pj-segment is not ¢, and (3) holds.

The first vertex of the st-directed Pj-segment is the adjacent vertex on the s-
side of the first edge in the Pj-segment. Similarly, for the ts-directed Pj-segment,
the last vertex of the Pj-segment is the adjacent vertex on the s-side of the last
edge in the Pj-segment. Thus, for (2) to hold, the first edge of the st-directed
Pj-segment must either appear on the s-side of the last edge in the ¢s-directed P;-
segment, or the two edges must be equal. Since there are no cycles in a T-path,
the first edge seen of the st-directed Pj-segment and the ¢s-directed Pj-segment,
must, respectively, be the first and last edge of the Pj-segments. Thus, since
ps; is set to the value of the st-directed Pj-segment of the given edge e’ before
checking the edge, and ps(e') > py3;, the first edge of the st-directed Pj-segment
must either be €' or appear s-side of ¢ and thus (2) hold. Thus, for any shortcut
returned, all the properties for a shortcut of type 3 hold, and it must be a valid
shortcut of type 3.

For the opposite, assume that there exists at least one shortcut of type 3
in the augmenting walk. Then, there exists a pair of Pj-segments, where one
is st-directed and the other is ¢s-directed, the st-directed Pj-segment is the one
that appears closest to the ts-directed one on its s-side, and (1), (2) and (3) from
above hold. Since (2) holds, then, following the same logic as above, the first
edge seen of the st-directed Pj-segment must appear before or at the same time
as the first edge seen of the ts-directed Pj-segment when walking from s- to ¢-side.
Thus, p;, must be updated to the value of the st-directed Pj-segment before any
of the edges of the ts-directed Pj-segment are checked. Thus, by (2) ps(e’) > py;
for all edges in the ts-directed Pj-segment and due to (3) it must also hold for
each edge in the Pj-segment that leave(p;s(e’)) = 1. Since last(pys(e’)) = €’ holds
for exactly one edge in the P;-segment and all the other required checks hold for
this edge, a shortcut will be returned. Thus, if there exist any shortcuts of type
3, one will be found by step 3. [ ]

To mitigate the issues in step 4, a similar approach to the one used for step
3 can be taken. As for pj, in step 3, pj, should be updated before the check
is performed. For the check, the additional condition of first(ps:(e) =€ is
added. Resulting in the entire check becoming py:(e') < p},, enter(ps:(€') =1 and
first(ps:(€)) =e'. Again, to be pedantic one could check leave(p;s(e)) = e before
updating pj;,, but this does not change anything for the same reasons as in step
3.

Theorem 4.2 The updated step 4 in the shortcut procedure finds only shortcuts
of type 4 and finds all such shortcuts.
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Proof: As in the proof of Theorem 4.1, this proof will only show the part of
step 4 where the iteration is from s- to t-side. For the other direction, simply
interchange all references to s and t.

First, assume that a shortcut was found by step 4, it must then be shown that
the shortcut is of type 4, that is, the three conditions for a shortcut of type 4 must
be sufficed. Thus, the two returned Pj-segments must be oppositely directed and
it must hold that (1) the st-directed Pj-segment appears on the augmenting walk
before the ts-directed one, (2) the last vertex of the ts-directed Pj-segment is
either equal to or appear s-side of the first vertex of the st-directed Pj-segment
and (3) the preceding symbol of the st-directed Pj-segment is not .

Since step 4 returns one Pj-segment with ps, set and one with p; set, the
two Pj-segments must be oppositely directed. Since pg(e') < pj, holds for all
returned shortcuts, (1) must hold. Moreover, since enter(ps:(e')) =1 for all re-
turned shortcuts, (3) must hold.

By the same logic as in the proof of Theorem 4.1, the first vertex of the st-
directed Pj-segment lies directly s-side of the first edge in the Pj-segment, and
this is the first edge of the P;-segment reached when walking from s- to t-side.
Similarly, the last vertex in the ts-directed Pj-segment must appear directly s-
side of the last edge in the P;-segment, and this is the first edge of the P;-segment
reached when walking from s- to t-side. When reaching the edge, €', for which
the given shortcut was found, at least one edge from the ts-directed Pj-segment
has been visited. Thus, by the above logic, we must already have passed the last
vertex in the ts-directed Pj-segment or it is the s-side vertex of e’. Then, since
first(ps:(e) = €, the first vertex of the st-directed Pj-segment must be either
the same as the last vertex of the ts-directed Pj-segment or t-side of this vertex.
Thus, (2) must also hold, and the given shortcut is of type 4.

For the opposite, assume that there exists at least one shortcut of type 4.
Then, there exists a pair of Pj-segments where one is st-directed and the other
ts-directed, and the ts-directed Pj-segment is the one that appears closest to the
st-directed one on its t-side. Additionally, (1), (2) and (3) hold for this pair of
Pj-segments. Let e’ be the first edge in the st-directed Pj-segment, then, by (2),
e’ is either the last edge in the ts-directed Pj-segment or the last edge appears
s-side of €’. Thus pj; will be set to the ts-directed Pj-segment before the check
for a shortcut on e’. Due to (1), it then follows that ps:(€') < pj, is true, and, due
to (3), it must be true that enter(ps:(e')) = 1. Especially, by the definition of ¢’
it must be true that first(ps:(e')) = e'. Thus, when €' is reached in step 4, the
given shortcut is found, and step 4 must find a shortcut of type 4 if at least one
such shortcut exists. |
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4.3 Shortcuts and Self-loops

In this section we will introduce changes to the shortcut-finding operation in
regards to self-loops. These changes are not needed, and the shortcut-finding
operation should work perfectly fine with only the changes described in Section
4.2. The changes described here are not meant to handle any edge case, but
rather meant to simplify and optimize the handling of self-loops in the entire
algorithm.

As has been described earlier, P-segments can be divided into two categories,
that is, P-segments that are equal to a sub-path of a T-path and P-segments that
are a single self-loop on a vertex of a T-path. The self-loops are special edges in
the labeled graph that must be created and removed whenever edges are added
to or removed from a T-path. Since all possible changes to a T-path require
some form of iteration over the T-path, keeping and updating references to these
self-loops in the T-path does not result in an increase in time complexity. As
was touched on in the preliminary project, updating the labeled graph is, on the
other hand, hard since it requires a data structure that supports constant time
access and deletion of arbitrary elements (edges). As such, the self-loops, at the
very least; have to be reconstructed in the labeled graph between each iteration
of the algorithm. Or, as is the solution of Iwata and Yokoi, the whole labeled
graph is reconstructed between each iteration of the algorithm. In either case,
the need for keeping and updating references to self-loops of a T-path depends
on the need for such information during the augmentation procedure. This, as
the search procedure does not change the T-paths and is only concerned with
the edges in the labeled graph, not the T-paths themselves. Thus, the search
procedure works properly with the initial state from the reconstructed labeled
graph, not requiring a T-path to know about its self-loops. Three situations can
be identified, in the augmentation procedure, in which a T-path may need to
know about its self-loops.

The first case is in the shortcut operation where a self-loop on a given vertex
of the selected T-path may need to be inserted into the augmenting walk. In this
case there is no concern about if the self-loop is already used in the augmenting
walk, since duplicate use of the self-loop in this situation can not occur as a result
of the algorithm’s design. Based on this, a new self-loop of the T-path on the
specific vertex could be created, instead of having to find the self-loop in the
T-path. This, as the previously created self-loop is no longer in use.

The second case is in the partial symmetric difference operation where all
self-loops of the T-path that appear in the augmenting walk on vertices visited
by the now removed part of the T-path must be removed from the augmenting
walk. Here, one could work around the need for a list of the self-loops removed
by keeping track of the vertices that were visited in the removed part of the T-
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path. Since a T-path does not have any cycles, any self-loops in the augmenting
walk on any of those visited vertices that belonged to the given T-path can be
removed. This operation is within the time complexity of the algorithm, since it
is bound by the number of vertices, the length of the T-path and the length of
the augmenting walk, all of which are within the time complexity of the partial
symmetric difference operation, O (E).

This leaves the third and hardest case, that is, the need for the knowledge
of the self-loops in the shortcut-finding procedure. Here, each iteration of the
T-path requires a combined iteration of the edges and self-loops of the T-path
so that each edge and self-loop is considered in the same order they appear in
on the T-path. As such, this operation requires all the cases above to use the
correct self-loops, as well as any changes to the T-path to correctly update the
references to the self-loops. Here, we will suggest an alternative approach to
self-loops in the shortcut-finding operation so that it does not depend on a T-
path having knowledge about its own self-loops, and thus removing the need to
keep and update references to the self-loops in the T-paths. Do note that the
suggested changes will build on the assumption that each self-loop knows about
which T-path it belongs to. This assumptions is anyways required in the standard
Iwata—Yokoi algorithm.

To be able to remove the need for knowledge about a T-paths self-loops in the
shortcut-finding procedure, certain properties regarding self-loops and shortcuts
must be shown. The following theorem is essential in this regard.

Theorem 4.3 Assume an augmenting walk has no redundant self-loops. Then, if
there exists a pair of two self-loops in the augmenting walk from the same T-path,
they form a wvalid shortcut.

Proof: If a self-loop is not redundant in the augmenting walk, then the symbols
on the self-loop are different from those directly preceding and succeeding the self-
loop in the augmenting walk. This, as the self-loop is non-redundant only when
the directly preceding and succeeding symbols are equal. Replacing the part of
the augmenting walk between the first self-loop and the second self-loop with the
part of the T-path between the vertices of these self-loops can therefore not break
property (ii) since the symbols preceding and succeeding this new Pj-segment in
the augmenting walk are different from the symbols of the T-path. Since the
shortcut operation guarantees for (i) and (iii) to hold, a shortcut must exist as it
is possible to perform the shortcut operation and have a valid augmenting walk. B

Using the results of Theorem 4.3, one can design a simple procedure that

finds any shortcut between pairs of self-loops. The procedure FIND-SELF-LOOPS-
SHORTCUT, below, is an example of such a procedure. There the augmenting
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walk is simply iterated, keeping track of the last seen self-loop of the given T-
path. Then, either another self-loop on the T-path is seen and a valid shortcut is
returned or there are either zero or one self-loops of the T-path in the augmenting
walk. If there is only one such self-loop in the augmenting walk, it is returned.

FIND-SELF-LOOPS-SHORTCUT(Q, Pj)
1 [ = NIL

2 for e in Q.edges

3 if ee Pj and e.src==e.dst

4 if [ == NIL

5 l=e

6 else return /, e

7 return [

Corollary 4.4 For an augmenting walk with no redundant self-loops, FIND-
SELF-LOOPS-SHORTCUT either finds a valid shortcut between two self-loops of
the given T-path or there are less than two self-loops from the T-path in the
augmenting walk. The procedure does not increase the time complexity of the
shortcut operation.

Since the FIND-SELF-LOOPS-SHORTCUT procedure requires a single iteration
over the augmenting walk, the procedure does not increase the time complexity
of the shortcut operation. It does, however, add additional computational costs
to the shortcut operation. Thus, we note that the FIND-SELF-LOOPS-SHORTCUT
procedure can be combined with step 0 in the shortcut operation to reduce the
number of iterations required. This, as the procedure does not require any of the
data that is initialized in step 0. The procedure will still add a minuscule number
of operations, but this increase should be unnoticeable.

Given that FIND-SELF-LOOPS-SHORTCUT or a similar approach in step 0 has
been run and did not return a shortcut, the procedure returned either a single
self-loop or nothing at all. In the latter case, there are no more self-loops of the
given T-path in the augmenting walk and thus the remaining part of the shortcut-
finding procedure does not need to consider self-loops of the T-path. For the case
where a single self-loop of the T-path remains in the augmenting walk, there
may exist possible shortcuts between the self-loop and other Pj-segments. As
such, the self-loop must be considered in the remaining part of the shortcut-
finding procedure. There are two possible ways to handle this self-loop without
requiring the T-path to know about its self-loops. Both exploit the fact that
since the T-path is a path, and thus does not contain any cycles, iterating over
the T-path the self-loop can be inserted when its vertex is reached.

The first option is to design an additional procedure to be run between step
0 and 1. This procedure walks the T-path from s- to t-side, checking whether
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or not the seen Pj-segments can form shortcuts with the self-loop. For such a
procedure, one could exploit the non-redundant property of the self-loop to make
the procedure require only a single iteration of the T-path while at the same time
detecting any possible shortcuts between the self-loop and the other P;-segments.
This would require the procedure to perform a combination of the checks in steps
1 through 4 of the standard shortcut-finding procedure with some simplifications,
that is, in the same way Theorem 4.3 was proven the checks for enter and leave
of the self-loop Pj-segment can be ignored. Thus, the procedure is simply a
combination of the checks provided by Iwata and Yokoi, and presenting such a
procedure does not provide anything new to the discussion and will be forgone.

The other option is to simply perform steps 1 through 4 as normal, inserting
the self-loop at the appropriate place in the T-path and treating it as Iwata
and Yokoi do in their original shortcut-finding procedure. This approach can be
thought of as simply performing the remaining algorithm as normal, skipping all
self-loops that are not used in the augmenting walk when the T-path is iterated.

The previously described way of handling self-loops in the shortcut-finding
procedure may require additional iterations over the augmenting walk and/or
the T-path. While these iterations do not increase the time complexity, as the
procedure already iterates both the augmenting walk and the T-path, the point
of these modifications was to simplify the handling of self-loops in the algorithm
as to reduce the need for updates, that is, as a possible way to make the algorithm
more efficient. Adding more operations one place in the algorithm to reduce the
number of operations in another place does not necessarily result in a more effi-
cient algorithm. For the modifications above, it can show that they result in a
reduction in the number of edges considered in the shortcut-finding procedure.
They should thus, in theory, result in fewer operations even just inside the pro-
cedure. What is important here is that for a T-path the number of self-loops
is one less than the number of standard edges in the T-path. Thus, removing
the self-loops from the T-path should result in roughly half as many operations
needed per iteration of the T-path. Since steps 1 through 4 total eight iterations
over the T-path, the modifications of the shortcut-finding procedure should result
in a reduction in the number of operations if the modifications require less than
four iterations over the T-path and its self-loops. This, as the number of edges
considered in steps 1 through 4 now equal roughly four iterations of the T-path
with its self-loops. The FIND-SELF-LOOPS-SHORTCUT procedure, when incorpo-
rated into step 0, should at most require as many operations as one iteration over
the T-path, as it consists of a simple check each time an edge from the T-path is
found. Additionally, creating the new T-path for iteration, including the single
self-loop, should at most require one simple iteration over the T-path. Thus, it
seems like the modifications should result in fewer computations even just inside
the procedure.
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Chapter 5

The Partial Symmetric
Difference Operation

In their paper Iwata and Yokoi prove Lemma 3.4. The Lemma states that the
partial symmetric difference operation results in a valid set of T-paths and a valid
augmenting walk in the new labeled graph. Their multi-page proof focuses on
the lack of consecutive symbols in the new walk, as is a required property of an
augmenting walk. It does, however, not give a decisive proof for property (iii),
that is, the property that a labeled edge may be used twice in an augmenting
walk, but only once in each direction. It seems natural that this should hold
for the partial symmetric difference operation, as first new edges are added to
the augmenting walk that are otherwise only used once in the augmenting walk,
before the uncrossing operation removes any duplicate usage of these edges from
the augmenting walk. However, in some specific cases it is possible, due to the
uncrossing operation changing the direction of subsequences of the augmenting
walk, for a labeled edge of another T-path to be used twice in the same direction.
This results in the modified walk not being an augmenting walk. This may occur
due to a labeled edge being used twice in the augmenting walk prior to the partial
symmetric difference operation, with the uncrossing operation only flipping one
of occurrence of the labeled edge. The shortcut operation guarantees that this
may not occur for labeled edges from the T-path that the partial symmetric dif-
ference operation is performed against. Otherwise, there would be an st-directed
Pj-segment on the t-side of the Pj-segment removed by the partial symmetric
difference operation and the shortcut operation could be performed on these two
Pj-segments.

An example of the discussed problem can be seen in Figure 5.1. The figure con-
tains a graph with four valid T-paths and an augmenting walk. While the labels
for the edges are not shown, one can verify that the augmenting walk in Figure
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Figure 5.1: Example situation where the partial symmetric difference operation
produces an invalid augmenting walk.

5.1a is valid. The symbols on the augmenting walk are tstuvuvuvtstrvuvuv,
and all edges, except one labeled edge, are used once. The labeled edge used
twice is used once in each direction. The figure shows the execution of a stan-
dard partial symmetric difference operation. First, the edges of the augmenting
walk and the T-path are interchanged. The state after this part of the operation
is shown in Figure 5.1b. At this stage of the operation there is never a guarantee
that the walk is an augmenting walk. This is the reason for the uncrossing oper-
ation. Thus, the uncrossing operation is applied to the walk. The resulting walk
is shown in Figure 5.1c. This walk suffices property (ii) of an augmenting walk,
as the symbols on the walk are tvuvuvutrvuvuv. However, one of the labeled
edges is used twice in the same direction, meaning that (iii) does not hold.

It is already known that the partial symmetric difference operation does not
work properly for all augmenting walks, which is why the shortcut operation is
used in the Iwata—Yokoi algorithm. As such, for the situation of Figure 5.1 to
be a real problem in the Iwata—Yokoi algorithm, it must be shown that there is
no possible shortcut operation for the T-path of the first P-segment. There are
two Pj-segments in the augmenting walk. The first is an st-directed one and the
second is a ts-directed one. Since the ts-directed one appears on the t-side of the
st-directed one, any shortcut must be of type 3. However, type 3 shortcuts require
the succeeding symbol on the augmenting walk of the ts-directed Pj-segment to
not be ¢. In the given augmenting walk it is a ¢ and thus there can not be a
shortcut of type 3. This means that no shortcuts exist for this T-path, and, as
such, this is a valid situation for the partial symmetric difference operation in the
Iwata—Yokoi algorithm.

As with the case of the shortcut operation, one may wonder if this is something
that may actually occur. Especially, considering that unlike in the case used for
the shortcut operation, there exists many other, mostly simpler, augmenting
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Figure 5.2: Example of the modification to the partial symmetric difference op-
eration.

walks in the given labeled graph. Most of the possible augmenting walks do not
inhibit the shown problem. Nonetheless, the augmenting walk shown in Figure 5.1
can be produced by the search procedure in several different ways. As such, the
partial symmetric difference operation should be changed in such a way that the
problem described above can no longer occur. Additionally, there is no guarantee
that there does not exist a labeled graph where all augmenting walks inhibit this
problem.

Solving the problem is rather trivial, as by Iwata and Yokoi’s proof of Lemma
3.4 it is already shown that (ii) holds for the walk after the uncrossing operation.
Thus, one can apply a similar strategy to the one described by Iwata and Yokoi to
mitigate breaking (iii) in a similar fashion in the shortcut operation. The strategy
used in the shortcut operation is to simply iterate the augmenting walk, checking
if an edge inserted by the shortcut operation is used twice in the same direction.
In such a case, the first occurrence of the edge and the edges between the two
occurrences are removed from the augmenting walk. Since the two occurrences
have the same symbols and (ii) holding before the removal of the edges, it is
guaranteed that (ii) will hold afterwards. The only difference from the case of
the shortcut operation is that the set of edges one has to check for duplicate visits
is considerably larger. However, since both cases require a full iteration of the
walk, the execution of this procedure will be no different than for the one used
by Iwata and Yokoi in the shortcut operation. Thus, one can simply employ this
strategy after the uncrossing step of the partial symmetric difference operation.
Figure 5.2 shows the result of employing this strategy to the case of Figure 5.1.

Theorem 5.1 Remowving all duplicate usages of the same labeled edge in the
same direction after the uncrossing operation by replacing the two occurrences

43



and all edges between the two by one occurrence, results in the partial symmetric
difference operation producing an augmenting walk.

Proof: By Iwata and Yokoi’s proof of Lemma 3.4, (ii) holds for the walk after
the uncrossing operation. As Iwata and Yokoi mention, (i) also holds for the
walk, as the initial part of the augmenting walk is exchanged for the last part of
the T-path, and thus since (i) holds for T-paths, the interchange of edges does
not break (i). For (iii), the uncrossing operation removes all duplicate usages of
these newly added edges. Thus, the only way in which (iii) can be broken is if
the usage of edges that existed in augmenting walk prior to the partial symmetric
difference operation is now in a different direction. For free edges this does not
matter, as the edges are used only once and thus the direction does not matter for
the validity of (iii). For labeled edges, (iii) holds after duplicate occurrences have
been removed. The outlined removal process removes a cycle in the walk. Since
only internal vertices will be removed, (i) will not be broken by the operation.
Since (ii) holds prior to the removal, the symbol preceding the first occurrence is
different from the first symbol on the edge and the symbol succeeding the second
occurrence is different from the second symbol on the edge. Thus, (ii) must also
hold after the two occurrences and the edges between them have been replaced
with a single occurrence, as this occurrence does not have the same symbols as
the preceding nor succeeding symbols on the walk. Thus, (i), (ii) and (iii) all
hold after the partial symmetric difference operation and the walk must be an
augmenting walk. [ |

Corollary 5.2 The outlined operation does not change the time complexity of
the partial symmetric difference operation.

Proof: It follows from the description of the operation that it can be performed
in a single iteration over the augmenting walk, with each step using a constant
number of operations. As such, the operation should have a time complexity of
O (Q). As the partial symmetric difference operation has a time complexity of
O (E), including an iteration over the augmenting walk in the uncrossing operation
stage, the time complexity of the partial symmetric difference operation can not
increase by the outlined operation. |
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Chapter 6

Cycles in T-Paths

In their paper Iwata and Yokoi assume that all T-paths are of length O (V), as one
would expect from the standard definition of a path. Since the length of a T-path
may grow when it is involved in a partial symmetric difference operation, it is
not guaranteed that this is the case. Especially, considering that the length of an
augmenting walk is not bound by |V], it seems unlikely that this is the case due
to how the partial symmetric difference operation works. In fact, it is possible
to show that in some cases a T-path may grow to a length of more than |V].
An example of such a case can be seen in Figure 6.1. There, a multigraph with
seven vertices, of which two are terminals, is given. In Figure 6.1b, we can see
a possible situation of a labeled graph with a single T-path and an augmenting
walk. Performing the augmentation procedure two T-paths are found, as seen
in Figure 6.1c. This is a valid set of T-paths, except for the fact that one of
the T-paths contains 8 edges. Since the graph has only 7 vertices, this results in
the T-path having at least one cycle. The case in the figure may naturally arise
if a depth-first exploration strategy is used when selecting edges in the search
procedure.

For the case of Figure 6.1, the increase in length does not result in the length
exceeding O (V). This is mainly due to the simplicity of the graph used in the
example. Consider instead a very large dense multigraph where more than |V|
T-paths may be found. A possible scenario that can occur is that in each of the
first | V| iterations of the Iwata—Yokoi algorithm an augmenting walk of length |V|
is found. If these augmenting walks contain a single P;-segment in their second
to last edge, with the edge of the Pj-segment being the second to last edge in Py,
then each iteration this would result in an increase in the length of the T-path
by |V|-2 edges. After |V| iterations, this would result in a T-path with a length
of approximately |V[>—2|V|, which is not O (V). Based on this, it seems like it
may be enough to simply reduce the length of the T-paths between each iteration
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Figure 6.1: Example situation where cycles may occur on a T-path, and the
length of a T-path may increase beyond the number of vertices.

of the algorithm. However, the length of a T-path may easily increase by more
than |V| -2 in each iteration of the Iwata—Yokoi algorithm. This is due to how
the partial symmetric difference operation works. An augmenting walk may both
give and take edges from the T-paths it interacts with. Thus, it can pick up edges
from one T-path and deposit them into another. If this process was to repeat as
many times as possible in a single application of the augmentation procedure, it
could result in a T-path with a length of similar magnitude to that of the number
of P-segments in the augmenting walk times |V|. Since the number of P-segments
is bound by O (V), this would result in the length of a T-path possibly reaching
V|2 in a single iteration.

All of this does not matter for the time complexity of the standard Iwata—
Yokoi algorithm, as the only place where the length of a T-path affects the time
complexity of the algorithm is in the augmentation procedure. There, the part
of the time complexity that relies on the length of a T-path is also dependent on
the length of the augmenting walk. Due to the edge-disjoint property of the T-
paths, the combined length of all the T-paths may not exceed |E|. Thus, since the
length of an augmenting walk is O (E), this increase in length does not increase
the time complexity. For the improvements from the preliminary project, the
length of the augmenting walk is bound by O (V). Thus, if the length of any
T-path is not bound by O (V), the improvements do not result in an improved
time complexity. Especially, the approach for reducing the size of the augmenting
walk used in these improvements does not work properly when there are cycles
in the T-paths.

While having T-paths of length O (E) would not result in any problems in
regards to time complexity, ignoring the problem is not a viable solution. The
algorithm is defined and proven with regards to the T-paths being without cycles,
that is, being paths. As such, operations and definitions will not work properly
with cycles in the T-paths.

The main problem with cycles is in regards to P-segments. The definition
given by Iwata and Yokoi for a P-segment is that it is a sub-path of the augment-
ing walk that only contains edges that are either in a given T-path or self-loops of
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Figure 6.2: Example of a problematic situations with cycles in T-paths

the T-path. Additionally, the preceding and succeeding edges in the augmenting
walk must not be edges or self-loops of the T-path. As such, with the reliance on
having no redundant self-loops, a P-segment is either a sub-path of the T-path
or a self-loop. This property does not hold for T-paths with cycles. Then, as
can be seen in Figure 6.2, one can have P-segments that consist of edges in the
T-path, but does not form a sub-path of the T-path.

For a P-segment that is neither a sub-path nor a single self-loop of a T-
path, there is no guarantee that the partial symmetric difference operation and
the shortcut operation will work properly. For example, performing the partial
symmetric difference operation in the labeled graph of Figure 6.2a will not give the
expected result. Following the exact definition of the partial symmetric difference
operation will result in the T-path and augmenting walk shown in Figure 6.2b.
While there are modifications to both the augmenting walk and the T-path,
the number of P-segments has not decreased and the resulting walk is not an
augmenting walk, breaking property (ii) due to its symbols being sst.

Since P-segments which are not sub-paths of the T-path cause problems, it
may seem reasonable to define a P-segment to be either a consecutive part of the
augmenting walk that is also a sub-path of the T-pathor a self-loop of the T-path.
This definition would most likely work better with the partial symmetric differ-
ence operation. On the other hand, this definition does not work properly with
the shortcut operation. Using the labeled graph in Figure 6.2a as an example,
employing the shortcut operation a shortcut between the now two P-segments
will be found. This, despite the fact that the shortcut is not valid. The result
of the shortcut operation can be seen in Figure 6.2c, where the resulting walk
is not an augmenting walk, breaking (ii) as earlier with the symbols sstt. The
reason why a shortcut is found is that the shortcut operation, in step 1, checks for
adjacent st-directed (and ts-directed) Pj-segments, as this would in a non-cyclic
case indicate a shortcut of type 1. It may be possible to change the operation
to ignore this specific case. Nonetheless, there are other problems in regards to
time complexity with this definition of a P-segment. Finding all P-segments on
an augmenting walk is no longer as simple as just iterating the augmenting walk.
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All operations are defined based on the location of their vertices in the T-
paths. This is in general problematic for cycles, where a vertex can appear more
than once in a T-path. The problem should be easy enough to work around, as
each edge is used at most once in a T-path, and thus the edges decide which
occurrence of the vertex should be used. Nevertheless, the combination of all
these problems, as well as the need to prove the entire algorithm anew, make
it preferable to handle the situation by simply removing any cycles in the T-
paths. Two viable solutions for removing cycles in the T-paths will be presented
in the following sections. They differ in the time at which they remove the
cycles, removing cycles either immediately after they appear or at the end of an
application of the augmentation procedure. As such, they differ in complexity,
with the immediate removal being more complex, but requiring no changes to
the algorithm other than a procedure call.

6.1 Immediate Cycle Removal

The most obvious solution to the cycle problem would be to simply remove any
possible cycles from the T-path directly after an invocation of the partial sym-
metric difference operation. This way the T-paths will always be guaranteed to
be without cycles. Removing the cycles can not be done with a standard cycle
removal algorithm, as the cycles may contain a number of P;j-segments. If a cycle
was removed without handling these Pj-segments, the result could be consecu-
tive appearances of symbols in the walk, breaking property (ii) of an augmenting
walk. Additionally, this could result in double usage of free edges, breaking prop-
erty (iii) of an augmenting walk. Thus, an un-cycling procedure must be created
so that each possible situation with Pj-segments in the cycle is properly handled.
Figure 6.3 shows an example of a situation, where after the partial symmetric
difference operation the T-path contains a cycle. In this case a single edge from
the cycle is used in the augmenting walk. For this specific case, removing the
cycle without consideration to the Pj-segment does not result in an invalid aug-
menting walk. This is only the case for this simple class of cases. For the other
four nontrivial classes, which will be introduced later, modifications have to be
made to the augmenting walk.

To be able to design a procedure that removes cycles from a T-path, a defini-
tion of when a Pj-segment is in a cycle must be decided on. We will define this as
a Pj-segment that contains either one or more edges in the cycle or one or more
self-loops on the given T-path on a vertex in the cycle. For the self-loops this is
required minimum, as the self-loops will be removed from the labeled graph when
the edges of the cycle are removed from the T-path. For the edges on the cycle,
one may consider restricting the definition to only include Pj-segments where all
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Figure 6.3: Example of a simple case with one Pj-segment in the resulting cycle.

the edges are in the cycle. This, as for any other P;-segments at least one of the
edges remain labeled after the removal of the cycle and thus (ii) would not be
broken. Regardless, the labeled edges in the cycle may be used twice, and thus
(iii) will not hold with this definition.

Given the above definition, the cases can be divided into five classes when the
cycle on the T-path contains at least one Pj-segment. In addition, there is the
trivial case of no Pj-segments in the cycle. The trivial case can mostly be ignored,
as it does not require any changes to the augmenting walk. The trivial case and
these five classes are given below, with general examples shown in Figure 6.4.
When the descriptions refer to the first and last P;-segments, the Pj-segments
are considered by their appearance in the augmenting walk.

Type 0 There are no Pj-segments in the cycle.
Type 1 There is exactly one Pj-segment in the cycle.

(a) The symbols preceding and succeeding this Pj-segment are different.
e symbols preceding and succeeding this P;-segment are equal.
b) Th bol di d ding this P; t 1
Type 2 There are two or more Pj-segments in the cycle.
a e symbols preceding and succeeding, respectively, the first and las
Th bol di d di ively, the first and last

Pj-segment are different.

(b) The symbols preceding and succeeding, respectively, the first and last
Pj-segment are equal and neither s nor 2.

(c) The first and last Pj-segment are directed in the opposite direction
of each other and the symbols, respectively, preceding and succeeding
them are equal and either s or .

For these classes of cycles, one may wonder if the classes contain all possible
cases. For both the cases of none and one Pj-segment in the cycle, it can easily
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Figure 6.4: General examples of the five nontrivial classes of cycles on a T-path

be identified that all possible cases have been covered. For two or more Pj-
segments in the cycle, this is not as easy. Type 2a covers all cases where the
symbol preceding and succeeding, respectively, the first and last P;-segment are
different. Thus types 2b and 2c must cover the cases where the symbols are equal.
Since type 2b covers the cases where the symbols are equal and neither s nor ¢,
type 2c must cover the remaining cases. Type 2c¢ does in fact do this, as having
the first and last Pj-segment in the cycle as oppositely directed is the only option
in this case. If the two Pj-segments were equally directed with the preceding
and succeeding symbols being equal and either s or ¢, then the augmenting walk
would not suffice (ii). As such, these classes contain all possible cases.

The examples shown in Figures 6.4c, 6.4d and 6.4e are simplifications of the
possible situations, as there can possibly be more than two Pj-segments in the
cycle. Additionally, any of the Pj-segments in any of the five non-trivial classes
may be self-loops. In reality, there can not be a self-loop in type 1a, as it would be
a redundant self-loop, of which there is assumed to be none. Additionally, while
not depicted in Figure 6.4, it is possible for there to be Pj-segments that overlap
partially with the cycle and partially with the remaining parts of the T-path, as
can be seen in Figure 6.7. While the properties of an augmenting walk limits the
number of such Pj-segments to four, we will now show that under the assumption
that neither the T-path nor the first free edges of the augmenting walk have any
cycles in them before the partial symmetric difference operation, there can only
be a maximum of two such Pj-segments in any given cycle. We will later design
the un-cycling procedure in such a way that this property will always hold true.

Lemma 6.1 Given a T-path with no cycles and an augmenting walk with no
cycles in its initial free edges, any cycle created by the partial symmetric difference
operation must contain both edges that were in the T-path before the operation
and edges that were in the augmenting walk before the operation.

Proof: Assume a cycle exists for which this is not true, then it must consist of
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either only free edges from the augmenting walk or only edges from the T-path.
In either case, since the order of the edges from neither the augmenting walk nor
the T-path change, this would mean that there must have been a cycle in either
the T-path or the initial free edges of the augmenting walk. Thus, such a cycle
can not exist. ]

Lemma 6.2 Given a T-path with no cycles and an augmenting walk with no
cycles in its initial free edges, after applying the partial symmetric difference
operation there may only be a mazimum of two Pj-segments in any cycle that
are part of both the cycle and the other edges of the T-path. These Pj-segments
will only use the edges of the T-path that belonged to the T-path before the partial
symmetric difference operation.

Proof: The partial symmetric difference operation modifies the T-path in such
a way that it does not mix the edges that prior to the operation belonged to the
T-path with those that prior to the operation belonged to the augmenting walk.
Using this and Lemma 6.1, the T-path can be divided into two parts, one with
the edges that belonged to the T-path prior to the operation and one with the
edges from the augmenting walk. The point of division will be at a location in
the T-path that is inside the cycle.

Since the edges that belonged to the augmenting walk were free, there can
not be any Pj-segments using them right after the partial symmetric difference
operation. Thus, there can only be Pj-segments on the part of the new T-path
that belonged to the T-path prior to the partial symmetric difference operation.
Given that the previously discussed division of the T-path into its two parts is
performed somewhere on the cycle, this means that only one side of the cycle can
have Pj-segments, and thus it follows that there can only be two Pj-segments
that are both part of the cycle and the rest of the T-path. Additionally, by the
above logic, these must use the edges of the T-path that belonged to the T-path
prior to the partial symmetric difference operation. |

Each of the previously discussed classes must be handled differently. We
will for the moment assume that there are no Pj-segments in the cycle that are
both part of the cycle and the remainder of the T-path. While these cases must
be addressed at some point, they should be handled differently and will thus be
discussed later. What follows is a description of the way that each of the different
classes should be handled. Figure 6.5 shows the application of these procedures
to each of the cases shown in Figure 6.4.

Type 0 Remove the cycle from the T-path.

Type 1 (a) Remove the cycle from the T-path. If the Pj-segment is a self-loop,
remove it from the augmenting walk.
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(a) Type la b) Type 1b c) Type 2a d) Type 2b e) Type 2¢c

Figure 6.5: Results of handling the different nontrivial classes of cycles on a
T-path

Type 2

(b)

(a)

Remove the cycle from the T-path, and replace the Pj-segment in the
augmenting walk by the edges in the cycle between the first vertex of
the Pj-segment and the connecting vertex of the cycle, the self-loop of
the T-path on the connecting vertex and then the edges in the cycle
between the connecting vertex of the cycle and the last vertex of the
Pj-segment.

Remove the cycle from the T-path, and replace the part of the aug-
menting walk between the start of the first Pj-segment to the end of
the last Pj-segment by the part of the cycle between the first vertex
of the first Pj-segment and the last vertex of the last Pj-segment.

Remove the cycle from the T-path, and replace the part of the aug-
menting walk from the start of the first Pj-segment to the end of the
last Pj-segment by the edges in the cycle between the first vertex of
the first Pj-segment to the connecting vertex of the cycle, the self-loop
of the T-path on the connecting vertex, and then the edges in the cycle
between the connecting vertex of the cycle and the last vertex of the
last Pj-segment.

Assuming that the first Pj-segment is st-directed (change st-directed
and ts-directed otherwise), find the last st-directed Pj-segment in the
cycle. If the Pj-segment is not the same as the first one, then replace
the part of the augmenting walk between the first vertex of the first
and the last vertex of the second by the part of the cycle between
them. Now find the first fs-directed Pj-segment in the cycle. If the
Pj-segment is not the same as the last one in the cycle, then replace the
part of the augmenting walk between the first vertex of the first and
the last vertex of the second by the part of the cycle between them. If
the two segments created by this process overlap, then replace the first
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by the edges between the first vertex of the first and the first vertex of
the second, and the second by the edges between the last vertex of the
first and the last vertex of the second. Then, also flip the edges on the
part of the augmenting walk between the two. If after all of this any of
the two segments is a self-loop, simply remove it from the augmenting
walk. Finally, remove the cycle from the T-path. If some of the edges
in the augmenting walk, outside of the cycle, were flipped and are now
used twice in the same direction, replace the two appearances and the
part of the augmenting walk between the two by one appearance (as
done in Chapter 5 for the partial symmetric difference operation).

The ways chosen to handle the different classes of cycles aim at modifying
the augmenting walk the least and in the simplest possible way. For types la,
1b, 2a and 2b, this is done by using parts of the cycle between the first entry
and last exit from the cycle, inserting a self-loop of the T-path when required
to guarantee (ii) holding in the resulting walk. This strategy does not work in
case 2c¢, where the symbols do not allow for the usage of a self-loop on the T-
path to guarantee this property. Instead a more intricate procedure is employed,
exploiting the guarantees for symbols preceding and succeeding P;-segments. We
will now present a formal proof of the validity of these procedures.

Theorem 6.3 Given an augmenting walk and a cycle on a T-path without any
Pj-segments that are both part of the cycle and the remainder of the T-path,
performing the actions above will result in a T-path with one or more removed
cycles and an augmenting walk.

Proof: It is easy to see that the T-path has one or more cycles removed, as the
given cycle is removed as part of the procedure for all the different types. Here,
at least one cycle is removed, more if there are overlapping cycles. Following, it
will be shown on a case by case basis that the resulting walk is an augmenting
walk.

For type 0, the augmenting walk does not use any edges in the cycle, and
thus there are no changes to the walk nor its edges. As such, the resulting walk
remains an augmenting walk.

For type la, the only possible change to the augmenting walk is the removal
of a self-loop, so condition (i) still holds. Each of the labeled edges in the cycle is
turned into free edges, but, since there is only one Pj-segment in the cycle, these
edges are used at most once and thus (iii) still holds. Additionally, the symbols
from the Pj-segment will disappear. Since the symbols preceding and succeeding
the Pj-segment are different, the removal will not result in the consecutive ap-
pearance of symbols on the walk and (ii) holds. Thus, the resulting walk is an
augmenting walk.
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For type 1b, the edges of the Pj-segment are changed to the other edges of
the cycle and a self-loop of the new T-path. None of the edges in the cycle is used
in other places in the augmenting walk, as then there would be more than one
Pj-segment in the cycle. Thus, the edges in the cycle are used only once. Addi-
tionally, the self-loop is on a vertex in the cycle and thus, by the above definition
of a Pj-segment in a cycle, it is either not used beforehand or is the Pj-segment
in the cycle. This means that it is used only once in the resulting augmenting
walk. So, (iii) still holds. The symbol preceding and succeeding the Pj-segment
can be neither s nor ¢, as the Pj-segment uses both of these symbols. So, the
symbols from the introduced self-loop do not cause any consecutive appearance
of symbols on the augmenting walk and separate the equal symbols that would
otherwise result in consecutive appearances of a symbol. Thus, (ii) holds. Since
some of the internal edges in the augmenting walk are replaced with some of the
internal edges in the T-path, (i) holds, as none of the internal edges of the T-path
can be adjacent to terminals.

For type 2a, the part of the augmenting walk that includes any Pj-segments
in the cycle is replaced with parts of the cycle. Since this part has no symbols
and the symbols preceding and succeeding the cycle are distinct, this results in
no consecutive appearances of symbols, and thus (ii) holds. Similarly to la, all
usages of edges in the cycle are replaced with a single usage of some of the edges,
thus (iii) also holds. Finally, as in the case of type 1b, the internal edges of the
augmenting walk are replaced with internal edges of the T-path, and thus (i)
holds.

Type 2b replaces the part of the augmenting walk that contains the P;-
segments in the cycle with parts of the cycle and a self-loop. By the same logic
as for type 1b, these parts of the cycle are only used once, and if the self-loop
is already used, it will be removed in the operation and then used again. Thus,
condition (iii) holds. Similarly to the earlier cases, internal edges of the aug-
menting walk are replaced with internal edges of the T-path, and thus (i) holds.
Since neither the symbol preceding nor the one succeeding the new part of the
augmenting walk is s or ¢, the self-loop can not result in any consecutive symbols,
and (ii) holds.

Type 2c is a bit more complicated than the others. This proof assumes that
the first Pj-segment is st-directed and the last is ts-directed. For the opposite
case, the proof can be repeated in its exact form with only references to s and
t interchanged. This assumption also means that the symbol preceding the first
Pj-segment and the one succeeding the last Pj-segment is ¢.

The logic in type 2c follows from the observation that since the last symbol
in an st-directed Pj-segment is ¢, the succeeding symbol in the augmenting walk
must be something different from ¢. Thus, replacing part of the augmenting walk
from the start of the first st-directed Pj-segment to the end of the last st-directed
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Figure 6.6: Handling type 2c

Pj-segment in the cycle with the parts of the cycle between the entrance of the
first and exit of the last, will result in a valid string of symbols when removing the
cycle from the T-path. This, as the symbol in the augmenting walk preceding
the first st-directed Pj-segment is ¢, and since the cycle consists of free edges
after being removed from the T-path, the succeeding symbol in the resulting
walk must be the symbol succeeding the last st-directed Pj-segment, that is
not a t. Especially, since all st-directed Pj-segments in the cycle are removed
by this operation, the succeeding symbol cannot belong to a Pj-segment in the
cycle. Thus, the succeeding symbol must exist after removing the cycle from
the T-path. By the same logic, the case of replacing the remaining ts-directed
Pj-segments in the cycle by parts of the cycle must result in a valid combination
of symbols on the augmenting walk. For these, the symbol before the first ts-
directed Pj-segment is not ¢ and the one after the last is ¢. Thus, removing all
symbols between does not break (ii). To help illustrate this see Figure 6.6.
After these combinations of Pj-segments, exactly two Pj-segments will remain
in the cycle. These two Pj-segments are separated by a sub-walk of the augment-
ing walk which contains at least one symbol (more accurately a multiple of two
symbols), whose first and last symbols are neither ¢. There is, however, no guar-
antee that the two Pj-segments do not overlap. Which after removal of the cycle
from the T-path would result in (iii) not being satisfied. If this is the case, then
the procedure change which vertices the two Pj-segments should start and end
in. Due to the Pj-segments being on a cycle there are two ways to travel between
the two vertices each Pj-segment connects. Thus, it is guaranteed that there is
at least one way to create the Pj-segments, either before or after the change of
start and end vertices, where the two created Pj-segments do not overlap. Since
the sub-walk of the augmenting walk has ¢ as neither its first nor last symbol,
this can be done and still guarantee no consecutive appearances of symbols on
the resulting walk after removal of the cycle from the T-path. Especially, this
is due to the possibility of flipping the order and direction of usage of the edges
in the augmenting walk. Finally, removing any of the Pj-segments if they are
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self-loops does not change anything after removing the cycle from the T-path.
Due to there being no overlap between the two Pj-segments, each edge in the
cycle is used at most once. Since no other edges are added to the augmenting
walk and all self-loops on the cycle are removed, the only way that (iii) can not
hold is if two labeled edges are now used in the same direction. This may be
the case when the edges in the sub-walk are flipped. In that case, the procedure
employs the same strategy as introduced for the partial symmetric difference op-
eration. This procedure was shown to reduce the number of usages in the same
direction of a labeled edge from two to one, and thus after this procedure (iii)
holds. As for (i), only internal edges of the T-path have been inserted into the
augmenting walk, and thus (i) holds for the resulting walk. Finally, for (ii) it
was shown that for this combination of Pj-segments, including the fix for the
overlap, the first Pj-segment was preceded by ¢ and succeeded by a symbol dif-
ferent from ¢, with the second Pj-segment preceded by a symbol different from
t and succeeded by t. Since the sub-walk of the augmenting walk between the
two Pj-segments has at least one symbol, this means that the after removing
the cycle from the T-path, the symbols on the resulting walk are ...tf...7t....
Where the dots represent zero or more symbols already on the augmenting walk
that are guaranteed to not break (ii). This sequence of symbols can not contain
consecutive appearances of symbols, and thus (ii) holds for the resulting walk. B

Earlier, in Chapter 3, a procedure for removing redundant self-loops from
the T-path was presented. As this procedure can be run after the un-cycling
procedure, the un-cycling procedure does not need to guarantee no redundant
self-loops in the augmenting walk. Nevertheless, it is interesting to see if the
procedure may result in redundant self-loops. For the types 1b and 2b, the
procedure creates a single self-loop. This newly created self-loop is not redundant,
as both cases guarantee that the preceding and succeeding symbols of the self-loop
are equal. As the solutions for the other cases do not create any self-loops, the un-
cycling procedure can not insert any new redundant self-loops. It may, however,
result in already existing self-loops becoming redundant. In all of the cases this
may happen if the last labeled edge before the cycle or the first labeled edge
after the cycle is a self-loop. As then the symbols either preceding or succeeding
these self-loops may change. This may additionally happen in type 2c if there
is a self-loop in the part of the augmenting walk between the two visits to the
cycle. As a result, after any of these case the augmenting walk may contain up
to several consecutive redundant self-loops.

Now that the un-cycling operations are known to produce valid states for
the Iwata—Yokoi algorithm, it must be shown that using these operations do
not increase the number of P-segments in the augmenting walk. This, as the
augmentation procedure relies on reducing the number of P-segments to 0. An
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increase in P-segments may result in the augmentation procedure never finishing,
or the time complexity of the algorithm increasing.

Theorem 6.4 Given an augmenting walk and a cycle on a T-path without any
Pj-segments that are both part of the cycle and the remainder of the T-path,
performing the actions above will result in the number of P-segments in the aug-
menting walk staying constant for types 0 and 1b and decreasing for the remaining

types.

Proof: For type 0, no changes are made to the augmenting walk nor its edges,
and thus the number of P-segments stays constant. For type 1b, a single P;-
segment is replaced by a self-loop. Each is counted as exactly one P-segment,
and thus the number of P-segments in the augmenting walk stays constant. For
types la and 2a, one or more Pj-segments are replaced by edges in the cycle.
Since these edges are free after the cycle is removed from the T-path, one or
more P-segment(s) are removed and no new are added. Thus, the number of
P-segments in the augmenting walk decreases by one in case of type la and two
or more in case of type 2a. For type 2b, two or more Pj-segments are replaced
by cycle edges and a self-loop. Thus, by removing two or more Pj-segments and
adding just a single Pj-segment, the number of P-segments in the augmenting
walk decreases. For type 2c¢, two or more Pj-segments are replaced by cycle edges
and the content between them in the augmenting walk. The content between
them is already counted for in the augmenting walk, so no new P-segments are
added and two or more are removed. This results in a decrease of P-segments in
the augmenting walk. [ |

Theorems 6.3 and 6.4 both assume that there are no Pj-segments that are
partially in the cycle and partially outside. In some cases this is not a valid
assumption, and the un-cycling procedure must thus be able to handle these as
well. These can not be handled exactly like the other Pj-segments, as some of
their edges remain labeled after the removal of the cycle. Thus, blindly applying
the previous rules will not always result in an augmenting walk. The partially
overlapping Pj-segments can be split two parts, one that is only in the cycle and
one that is not in the cycle. Using this, the same rules as above can be applied.
Figure 6.7 shows an example of a simple case with such a Pj-segment. In this
situation, splitting the Pj-segment would result in one Pj-segment consisting of
the edge between vertices 1 and 2 and another Pj-segment consisting of the edge
between vertices 2 and 3. This would be equivalent to having a type 1 case, since
the symbol preceding the Pj-segment in the cycle is ¢ and the one succeeding
this Pj-segment can not be ¢. Thus, the procedure for type 1 cases is applied,
resulting in the augmenting walk and labeled graph shown in Figure 6.7b. Note
that while the term split is used here, it is only used in a loose sense. There are
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Figure 6.7: Example of a Pj-segment that partially overlaps with a cycle

no actual changes made to the augmenting walk, but rather the use of split here
is in regards to the definition of a Pj-segment for this specific procedure.

Theorem 6.5 Given an augmenting walk and a cycle on a T-path, performing
the actions above while considering any Pj-segments that partially overlap the
cycle using the splitting method will result in a T-path and an augmenting walk.

Proof: Theorem 6.3 showed that this is valid when no Pj-segments partially
overlap the cycle. So, assume that is at least one such partially overlapping P;-
segment in the augmenting walk. For the T-path there is no differences in whether
or not there exists a partially overlapping Pj-segment, as the same changes are
made to the T-path, and thus the properties for a T-path must hold. For the
augmenting walk none of the properties directly care about which T-path a cer-
tain edge belongs to as long as the symbols on edge allow for property (ii) to
be true. When considering the partially overlapping Pj-segment as two distinct
Pj-segments, there is thus no difference between this and the case where the P;-
segment outside the cycle belongs to another T-path between s and ¢. Thus, it
must follow from Theorem 6.3 that the operations result in an augmenting walk.
]

In Theorem 6.5, it was seen that considering each of the partially overlap-
ping Pj-segments as two distinct Pj-segments results in a situation that is from
the perspective of validity equivalent to there being no partially overlapping P;-
segments. However, removing only one of the two Pj-segments that represent one
of these partially overlapping Pj-segments, will not result in a reduction in the
number P-segments. Thus, it must be shown that the operations still result in a
reduction in the number of P-segments or the number staying constant.

Theorem 6.6 Given an augmenting walk and a cycle on a T-path where the
cycle is produced by the partial symmetric difference operation on a cycle-free T-
path and an augmenting walk without cycles in its initial free edges, performing
the actions above while considering any Pj-segments that partially overlap the
cycle using the splitting method will result in the number of P-segments in the
augmenting walk either decreasing or staying constant.
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Proof: Theorem 6.4 showed that the statement holds true when there are no
partially overlapping Pj-segments in the augmenting walk. Thus, only cases
where there is at least one partially overlapping P;-segment need to be considered
here. Since type 0 does not contain any Pj-segments in the cycle, it does not need
to be considered.

For type la, all Pj-segments in the cycle are removed, while no others are
added. Thus, when there is one partially overlapping Pj-segment, the number
of P-segments must stay constant. Similarly, types 2a and 2c replace the P;-
segments on the cycle by cycle edges and thus add no new Pj-segments. As such,
these cases result in the number of P-segments staying constant or being reduced.

For type 1b, a single Pj-segment is replaced by another P;-segment. This
would mean that a partially overlapping Pj-segment would result in an increase
in the number of Pj-segments. However, it is not possible for there to be any
partially overlapping Pj-segments in type 1b. This, as by (ii), all partially over-
lapping Pj-segments have either the symbol preceding the cycle part of the P;-
segment be equal to the last symbol in the cycle part or the symbol succeeding the
cycle part of the Pj-segment be equal to the first symbol in the cycle part. Thus,
the symbol preceding the cycle part can not be equal to the symbol succeeding
the cycle part, and thus type 1b suffices the statement above.

For type 2b, a single Pj-segment is created while two or more on the cycle
are removed. For the cases where there are three or more P;-segments in the
cycle, Lemma 6.2 guarantee that there can not be an increase in the number of
P-segments. This, as only a maximum of two of the Pj-segments can be partially
overlapping Pj-segments, and thus at least one of the three or more Pj-segments
is fully removed. For the remaining part of type 2b, where there are only two
Pj-segments in the cycle, there are two possibilities, either both are partially over-
lapping Pj-segments or one is. For the latter case, the non partially overlapping
Pj-segment is fully removed, and a single P;-segment is created. Thus, the num-
ber of Pj-segments at worst stays constant. For the case in which there are two
partially overlapping P;-segments the first must be ¢s-directed and the second st-
directed, as they share edges and thus must be oppositely directed. Additionally,
if the first was st-directed and the second ts-directed, then the symbols preceding
and succeeding the first and second Pj-segments in the cycle would both be ¢ and
thus the case would be of type 2c. This means that the part outside of the cycle
of both Pj-segments will appear on the augmenting walk between the two parts
of the Pj-segments on the cycle. Thus, the handling of type 2b will remove both
parts of the partially overlapping Pj-segments and there will be a reduction in
the number of P-segments by one. |

It should be noted that while the proof of Theorem 6.6 only shows that the
number of P-segments stays constant, it is possible to show that for types 2a, 2b
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and 2c¢ the procedure always results in a reduction. Meaning that for all these
cases, the number of remaining iterations is reduced.

In a simple cycle removal algorithm, where memory usage is not of concern, a
walk W can have all its cycles removed in time complexity O (W + V) and space
complexity O (V). This can be done creating a new path through iteration of the
walk, checking if each vertex reached has already appeared in W. If a vertex has
been visited before, the part of the new walk succeeding the last visit is removed.

The concept of such a simple cycle removal algorithm could be employed to
this more complex cycle removal problem. However, this would result in either
having to perform changes to the augmenting walk every time a cycle is removed
or needing lots of bookkeeping to keep track of changes to the augmenting walk to
coalesce them into one large change. Neither of these options can easily be used
to achieve the required time complexity. Using the assumptions discussed early
on in this section, it is possible to greatly reduce the amount of work required to
remove all possible cycles in the T-path.

Theorem 6.7 Given that there are no cycles in the T-path and no cycles in
the free edges of the augmenting walk, all cycles in the T-path after the partial
symmetric difference operation will be removed if the cycle for which its first edge
appears first on the T-path is removed.

Proof: Under the given conditions Lemmas 6.1 and 6.2 can be used. These say
that any cycle in the T-path has two parts, one consisting of prior edges of the
T-path and one consisting of edges from the augmenting walk. Since there is no
mixing of the edges from the T-path and the augmenting walk, all cycles share
at least two edges, one from the prior T-path and one from the augmenting walk,
that is, all cycles contain the merging point of the edges from the prior T-path
and the augmenting walk. As such, all cycles in the T-path at least partially
overlap.

When walking the T-path in any of the directions, all the cycles must have
started before the discussed merging point, and can not have ended before after
the merging point. The assumptions of the theorem guarantee that there is at
most one visit to each vertex on each side of the merging point. Thus, the removal
of the cycle starting the earliest on one side of the merging point must remove
the visits to all vertices visited on both sides of the merging point, from this side
of the merging point. If this was not true, then there would be a cycle starting
earlier in the T-path, since it must have one visit to its connecting vertex on each
side of the merging point. Thus, the resulting T-path has at most one visit to
each vertex and there can not be any cycles in the T-path. [ |

To be able to have a procedure use the results discussed in this section, there
must be a guarantee that the earlier assumptions about the lack of cycles in
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the T-paths and in the initial free edges of the augmenting walk hold. For the
augmenting walk, a simple cycle removal algorithm on the sub-walk consisting
of its initial free edges can guarantee this property. The partial symmetric dif-
ference operation is the only operation that makes any changes to the T-paths.
Thus, earlier assumptions hold if the T-paths do not have any cycles before the
start of the augmentation procedure. This, as the given procedure immediately
removes any new cycles in the T-paths after the partial symmetric difference op-
eration. Since the T-paths are not changed outside the augmentation procedure,
a simple cycle removal algorithm applied to the augmenting walk at the end the
augmentation procedure will guarantee all new T-paths to be without cycles.
Below, the pseudocode of the two procedures MODIFY-AUGMENTING-WALK
and REMOVE-CYCLES-FROM-T-PATH is given. The MODIFY-AUGMENTING-
WALK procedure modifies the augmenting walk in the way described for the
aforementioned different types of cycles in the T-paths. REMOVE-CYCLES-FROM-
T-PATH performs the entire removal procedure for the cycles in a T-path, using
the MODIFY-AUGMENTING-WALK procedure to modify the augmenting walk.

REMOVE-CYCLES-FROM-T-PATH(Q, P})
1 cycle-start = cycle-end = |Pj|
2 for i,v in ENUMERATE(P}.vertices)
3 if v.visited # NIL and cycle-start = v.visited
4 cycle-start = v.visited
5 cycle-end = i
6 else if v.visited== NIL
7 v.visited = i
8 for vin (Pj[l s cycle-start—1] + Pjlcycle-end+1 :end]).vertices
9 v.visited = NIL
10 cycle-segments = [ ]
11 for p; in Q.Pj-segments

12 p;. = FILTER(e in pj.edges, e.src.visited # NIL and e.dst.visited # NIL)
13 if ] p;.| >0
14 add p;. to cycle-segments

15 MODIFY-AUGMENTING-WALK(Q, P;, cycle-segments)
16 P; = Pj[1: cycle-start— 1]+ Pj[cycle-end: end]

The REMOVE-CYCLES-FROM-T-PATH procedure iterates over the T-path,
finding the cycle that starts the earliest in the T-path. This is done using a
simple numbering scheme, numbering each vertex by the number of preceding
vertices in the T-path. This way, when reaching a vertex with this number set,
one can easily determine if the cycle found occurs before any previously found
cycles. Next, the procedure removes the numbering of all but the vertices in the
selected cycle. The remaining numbers can then be used to select Pj-segments
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that are in the given cycle and filtering these to only contain edges that are
classified as in the cycle. Finally, the MODIFY- AUGMENTING-WALK procedure is
used to modify the augmenting walk before removing the cycle from the T-path.

MODIFY-AUGMENTING- WALK(Q, Pj,segments)
1 s1 = segments[1]
2 s2 = segments[end|
3 if |segments| ==1

35

if sl.previous-symbol== sl.succeeding-symbol
replace Q[sl.start: sl.end|] by the other part of the cycle with an
inserted self-loop at the connecting vertex
else if sl is a self-loop
remove Q[sl.start: sl.end]

else if |segments| > 1

if s1.previous-symbol # s2.succeeding-symbol
replace Q[sl.end: s2.start] by P; between sl.end and s2.start
if s1 is a self-loop
remove Q[sl.start: sl.end]
if s2 is a self-loop
remove Q[s2.start: s2.end]
else if sl.previous-symbol != s and sl.previous-symbol |= t
replace Q[sl.start: s2.end] by the other part of the cycle with an
inserted self-loop at the connecting vertex
else
sln = sl
$2p = 2
for s in segments
if s.direction == sl.direction

sln=s

$2p = s2
else if s2p ==s2

22p=s

if Pj[sl.start: sln.end| and P;j[s2p.start: s2.end] overlap
reverse Q[sln.end: s2p.start]
replace Q[s2p.start: s2.end] by P; between Sln.end and s2.end
replace Q[sl.start: sln.end] by P; between Sl.start and s2p.start
REMOVE-DUPLICATE-USAGES-IN-SAME-DIRECTION(Q)

else
replace Q[s2p.start: s2.end] by P; between S2p.start and s2.end
replace Q[sl.start: sln.end] by P; between Sl.start and sln.end

The MODIFY-AUGMENTING-WALK procedure simply performs the modifica-

tion actions to the augmenting walk for each of the possible classes of cycles
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outlined earlier. Thus, we will not cover the workings of the pseudocode in detail
here. In the pseudocode, sN is used to denote a Pj-segment. Note that for an
SN, sN.direction is the direction of the Pj-segment in the augmenting walk. Also
note that sN.start and sN.end denote the first and last vertex in the P;-segment.

It remains to be shown that the suggested changes can be used in the Iwata—
Yokoi algorithm without resulting in an increase in time complexity. The remain-
der of this section will focus on this.

Lemma 6.8 The procedure MODIFY-AUGMENTING-WALK has a time complexity
of O(Q+Pj).

Proof: Any replace operation can be performed in O(Q+Pj), as a replace
operation consists of iterating over the T-path to find which edges to add to the
augmenting walk and creating a new augmenting walk from edges already in the
augmenting walk and edges from T-path. These operations thus have time com-
plexities of, respectively, O (Pj) and O(Q+ P;). Since the number of Pj-segments
on the augmenting walk can not be greater than the length of the augmenting
walk, the loop of lines 22 through 27 has a time complexity of O (Q), due to each
iteration consisting of a small number of constant time operations. All condi-
tional checks, except for line 28, are simple comparisons of values, and thus can
be performed in constant time. For the conditional check of line 28, the overlap
is a simple check of two lines overlapping. Overlap of two lines can be performed
by iteration in O (P;) time, due to each line being bound by O (P;). Assuming the
numbering from REMOVE-CYCLES-FROM-T-PATH exists, the check is equivalent
to the overlap of two number ranges and can be performed in constant time.
Additionally, it was previously shown that the REMOVE-DUPLICATE-USAGES-
IN-SAME-DIRECTION procedure has a time complexity of O(Q). Thus, it follows
that the whole procedure has a combined time complexity of O(Q+P;). [ ]

Lemma 6.9 The procedure REMOVE-CYCLES-FROM-T-PATH has a time com-
plexity of O(Q+ Pj).

Proof: Lines 2 through 7 is a single loop over the T-path with a constant num-
ber of simple operations in each iteration. It thus has a time complexity of O (P j).
The same goes for the loop of lines 8 and 9. In each iteration of the loop of line
11, another loop, line 12, is performed. Since line 11, is an iteration over the
Pj-segments in the augmenting walk, the total number of iterations on line 12
across all Pj-segments considered is bound by the length of the augmenting walk.
Thus, line 12 has a time complexity of O(Q) in the whole procedure. Finding all
the Pj-segments in an augmenting walk was shown by Iwata and Yokoi to have a
O (Q) time complexity, and thus the loop of lines 11 through 14 must have a time
complexity of O(Q). By Lemma 6.8, line 15 has a time complexity of O (Q+ Pj).
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Finally, line 16 is a simple copy instruction on some of the edges in the T-path
and must therefore have a time complexity of (’)(Pj). This gives the procedure
as a whole a combined time complexity of O(Q+ P;). [ ]

Given this guarantee on the time complexity of the un-cycling procedure, the
augmentation procedure can be modified to use the un-cycling procedure. Below,
a modified version, AUGMENT*, of the standard AUGMENT procedure from the
Iwata—Yokoi algorithm is shown with the changes needed to handle cycles in T-
paths. All the changes have been discussed and proven above, so only a proof
for the time complexity of the Iwata—Yokoi algorithm with AUGMENT* is given
here.

AUGMENT*(Q, P)

1 while up(Q) >0

2 if Q contains a possible shortcut operation

3 perform the shortcut operation

4 else

5 un-cycle the first free edges of Q

6 perform the partial symmetric difference operation
7 call REMOVE-CYCLES-FROM-T-PATH

8 UN-CYCLE(Q)

9 add Q to P

Theorem 6.10 Exchanging AUGMENT by AUGMENT * does not increase the time
complexity of the Twata—Yokoi algorithm.

Proof: The AUGMENT* procedure adds an un-cycling of the first free edges of
the augmenting walk and a call to REMOVE-CYCLES-FROM-T-PATH every time
the partial symmetric difference operation is performed. The un-cycling was
shown earlier to have a time complexity of O(V +Q), which is bound by O (E)
since one can assume that |V| is bound by O (E) (for the case of the edge-disjoint
T-paths problem, as otherwise vertices could simply be removed). Lemma 6.9
showed that the time complexity of the REMOVE-CYCLES-FROM-T-PATH proce-
dureis O(Q+P j), which is again equivalent to O (E). Since the partial symmetric
difference operation has a time complexity of O (E), these other operations do not
change the time complexity of the augmentation procedure. Finally, the last un-
cycling of the augmenting walk is, by the above logic, of time complexity O (E),
and thus does not increase the O (VE) time complexity of AUGMENT. Since the
time complexity of AUGMENT is not change, the time complexity of the Iwata—
Yokoi algorithm does not change. [ ]
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6.2 Delayed Cycle Removal

As seen in Section 6.1, removing the cycles in a T-path immediately after they
occur requires a non-trivial procedure. Another possible solution is simply to wait
until after the augmentation procedure. Then, by the definition of the algorithm,
the augmenting walk does not have any P-segments and thus the cycles in the
T-paths can be removed without consideration to the augmenting walk. This
means that a simple un-cycling procedure can be used. As previously mentioned,
cycles in the T-paths may result in a number of different problems, as such it
must be shown that the augmentation procedure works properly with cycles in
the T-paths as long as there are no cycles in the T-paths before starting the
augmentation procedure. Theorem 6.11 is the main observation that allows for
proving this.

Theorem 6.11 Given a T-path that contained no cycles before the augmentation
procedure, the part of the T-path containing Pj-segments will at any stage during
the augmentation procedure be a sub-path of the original T-path.

Proof: This property must hold at the start of the augmentation procedure,
as then the T-paths and augmenting walk have not changed and thus the T-
paths and the P-segments are equivalent to before the augmentation procedure.
As such, it must be shown that for both the shortcut operation and the partial
symmetric difference operation, the operation does not change the T-paths and
the augmenting walk in such a way that the property no longer holds. Note that
as long as the property holds, the sub-path containing Pj-segments is cycle-free.
If only the cycle-free sub-path of the T-path is considered when finding where
a vertex is on the T-path, all operations must function as proven by Iwata and
Yokoi.

Assume the property holds before the shortcut operation is performed. Then
in the shortcut operation two Pj-segments are replaced with a new Pj-segment
in the augmenting walk. This new Pj-segment goes from the start of the first
removed Pj-segment to the end of the second removed Pj-segment, using the
part of the T-path between these two vertices. Since the new Pj-segment only
uses the edges of the removed Pj-segments and the edges on the T-path between
the two, the Pj-segment must be a sub-path of the original T-path. Otherwise,
the edges between the two removed Pj-segments were not in the original T-path
and thus the property did not hold. The shortcut operation may delete several
of the occurrences of Pj-segments in the augmenting walk if they are now used
twice in the same direction due to the new Pj-segment. This operation does not
change the T-path, and may only remove Pj-segments from the augmenting walk.
Thus, the sub-path of the T-path containing Pj-segments either stays the same
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or shrinks. As such, it must still be a sub-path of the original T-path. Given
this, the property holds also after applying the shortcut operation.

Now assume the property holds before the start of the partial symmetric
difference operation. The partial symmetric difference operation changes the T-
path by removing some of the edges in one of its ends and replacing them with
free edges from the augmenting walk. The edges that are removed from the T-
path may have contained Pj-segments; however, since the edges are no longer
in the T-path, they are no longer Pj-segments. Thus, the sub-path of the T-
path containing Pj-segments will shrink. The new edges in the T-path were free
edges, and thus no longer appear in the augmenting walk. As such they can
not contain any Pj-segments, and the sub-path of the T-path that contains P;-
segments will not cover any of these new edges. Thus, since no new Pj-segments
are added, and, especially, the new edges of the T-path does not contain any P;-
segments, the sub-path in the T-path containing P;-segments must be a sub-path
of the prior sub-path. If follows from this that the new sub-path is also a sub-
path of the original T-path. Additionally, Pj-segments may be removed or have
their direction or order of appearance changed during the uncrossing operation.
Removal, as earlier shown, results in the sub-path either staying the same or
shrinking. For the change of direction and order of usage of edges, the edges used
do not change. Thus, the sub-path of the T-path containing Pj-segments stays
constant, and the property must also hold after the partial symmetric difference
operation.

Since the property holds at the start of the augmentation procedure, and the
two operations performed in the augmentation procedure do not break the prop-
erty when performed, the property must hold at each step of the augmentation
procedure. [ ]

It follows directly from Theorem 6.11 that the delayed cycle removal strategy
should work as well as any other strategy, as long as only the non-changed part
of the T-path is considered when finding the position of a vertex in the T-path.
This, as the theorem guarantees that all operations will only need to work on a
non-cyclic part of the T-path, and thus if the operations do not work, then there
must be something wrong with the operations. In that case, the problem with
the operations would affect all other solutions to the cycle problem, including the
earlier shown immediate cycle removal strategy.

It should be noted that employing this delayed cycle removal strategy requires
that any modifications to any of the operations in the algorithm are made such
that the modified operations do not break the premise of Theorem 6.11. In
general, one can assume this to be true for all minor modifications, such as
the ones in the previous chapters, where there are no new edges of the T-path
added to the augmenting walk. This, as was used extensively in the proof of the

66



theorem, is due to the fact that removing or changing the order/direction of edges
that form Pj-segments in the augmenting walk, do not result in changes to the
sub-path. Only operations that change the T-path and/or insert new edges into
the augmenting walk can break the premise of the theorem. For more extensive
changes and /or new operations one should in general repeat the proof of Theorem
6.11 for the affected parts of the algorithm.

We will now present a modified version of the augmentation procedure. The
modified version, AUGMENT®, is based on the AUGMENT procedure in the stan-
dard Iwata—Yokoi algorithm. The algorithm assumes that each time a shortcut
or partial symmetric difference operation is performed, the aforementioned sub-
path of the given T-path is used to find the location of a vertex in the T-path.
Keeping track of this sub-path for each T-path should be doable without any
increase in time complexity. This can be done by simply starting each augmenta-
tion procedure with it set to the entire T-path and reducing the size each time the
partial symmetric difference operation is performed on the T-path. This would
generally not result in the sub-path being tight around the P;-segments, however,
it guarantees the sub-path to be a sub-path of the original T-path, and thus free
of cycles. The sub-path can be reset during the un-cycling of the T-paths.

AUGMENT*(Q, P)
P* = empty list
while up(Q)>0
if Q contains a possible shortcut operation
perform the shortcut operation
else
perform the partial symmetric difference operation
add the changed T-path to P*
UN-CYCLE(Q)
for P; in P*
UN-CYCLE(Pj)
add Q to P

—
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In regards to the chosen un-cycling strategy, several different strategies can
work within the time complexity of the augmentation procedure. There may be
larger differences in the performance of the different strategies, especially consid-
ering that the different approaches result in the final un-cycling of the T-paths
having different time complexities. In the AUGMENT* procedure a very simple
approach is taken, consisting of adding each modified T-path to a list without
consideration to duplicates. Then in the end, the list is iterated and each T-path
is un-cycled. Due to possible duplicates in the list, each T-path can be attempted
un-cycled several times. This is not needed and a non-duplicate approach might
be better. The improvements of a non-duplicate approach are highly dependent
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on how often the partial symmetric difference operation is applied to a single
T-path. Since, the shortcut operation reduces the number of Pj-segments in
the augmenting walk, the partial symmetric difference operation is in most cases
likely called once or twice for each T-path. Thus, the simple approach is chosen
here.

Corollary 6.12 Given a set of n T-paths without cycles and an augmenting
walk, the AUGMENT* procedure produces a set of n+1 T-paths without cycles.

Proof: It follows from Theorem 6.11 and the previous discussion that the oper-
ations should work as well here as in the standard case where there are no cycles.
This means that a set of n+1 T-paths is produced at the end of the algorithm.
Additionally, both the augmenting walk and all changed T-paths have their cy-
cles removed in the end, and thus the new T-paths must be without cycles. B

Given Corollary 6.12 and the fact that the search procedure does not change
T-paths, it must follow that the Iwata—Yokoi algorithm works properly with the
AUGMENT* operation. However, while touched on earlier, it remains to show
that the time complexity does not increase as a result of the modifications made
to the augmentation procedure.

Theorem 6.13 AUGMENT™* does not increase the time complexity of the Twata—
Yokoi algorithm.

Proof: The AUGMENT* procedure differs from the standard augmentation pro-
cedure by adding T-paths to a list and at the end performing an un-cycling op-
eration for each T-path in the list. Adding the T-paths to the list is a constant
time operation. Furthermore, the number of T-paths in the list is limited by
the number of Pj-segments in the augmenting walk, that is, bound by O (V). It
was earlier showed that the un-cycling can be performed in O(V +P;). A single
T-path can be in P* several times; however, each time following the first there
are no cycles in the T-path and its length is less than |V|. Thus, the un-cycling
of already un-cycled T-paths has a combined time complexity of O (V?). For the
first time un-cycling of each T-path, the combined length of all the T-paths can
at most be |E| due to the edge-disjoint property of the T-paths. Thus, all the first
time un-cyclings have a combined time complexity of O (V?+ E). This, as there
is at most V of these and P; sum to E across them. This gives the un-cycling a
total time complexity of O (V?+E), which for the edge-disjoint T-paths problem
is bound by O(VE). O(VE) is the time complexity of the augmentation proce-
dure and thus the complexity of the algorithm as a whole does not increase. B
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The time complexity guarantee of Theorem 6.13 is only valid for the stan-
dard Iwata—Yokoi algorithm. For the improvements suggested in the preliminary
project, using the AUGMENT* procedure would result in an increased time com-
plexity. Additionally, the preliminary project made changes to the augmentation
procedure that change the augmenting walk. The changes revolve around the
introduction of a procedure, SIMPLIFY, that takes an augmenting walk with at
most three visits to each vertex and reduces the number of visits to at most two.
It does this by identifying cycles in the augmenting walk that can be removed
while still keeping property (ii) intact. Since the procedure only removes edges
from the augmenting walk, the procedure can not break the premise of Theorem
6.11. Thus the procedure itself can still be used in the delayed cycle removal
strategy. The problem lies in the reliance on the augmenting walk visiting each
vertex a maximum of three times.

To guarantee that there were always three or fewer visits to each vertex in
the augmenting walk, the modifications of the preliminary project relied on the
T-paths being without cycles. This meant that both the shortcut operation and
the partial symmetric difference operation would to the augmenting walk add at
most one visit to each vertex, with the SIMPLIFY procedure reducing this to two
after each operation. For the delayed cycle removal strategy this is no longer
the case. For the shortcut operation, Theorem 6.11 still guarantee this for the
augmenting walk, as it adds edges from a cycle-free sub-path of the T-path. For
the partial symmetric difference operation this is not the case, where the cycles
in the T-path may result in the augmenting walk having more than three visits
to a single vertex. Thus, modification to the improvements is required to achieve
the time complexity using the delayed cycle removal approach.

Lemma 6.14 Assume that all T-paths are cycle free before the augmentation
procedure. In a single application of the augmentation procedure, the length of
any T-path can only increase by at most twice the mazximum possible length the
augmenting walk may take in that application.

Proof: The only situation in which the length of a T-path may change in the
augmentation procedure is when the partial symmetric difference operation is
applied to a Pj-segment of this T-path. Any such change is a result of one end of
the T-path being changed for one part of the augmenting walk. As such, if the
same end of a T-path is changed twice, then by Theorem 6.11 the edges added in
the first change are all removed in the second change. This, as between the two
changes no Pj-segment may have been created on the edges that were added in
the first change. This means that any T-path may at the end of an application
of the augmentation procedure contain, at most, edges from two changes. Thus,
since each change may at most give the T-path all but one edge from the aug-
menting walk while only removing one edge from the T-path, two such changes
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may give the T-path up to four edges less than twice the maximum number of
possible edges in the augmenting walk. [ |

Using the result of Lemma 6.14, one can see that the length of any T-path
is bound by the length of the augmenting walk when performing delayed cycle
removal. Thus, it suffices to show that the length of the augmenting walk can be
bound by O(V), and it must follow that the T-paths are also bound by O (V).
We will use the SIMPLIFY procedure from the preliminary project in the modified
augmentation procedure, although we can no longer rely on the T-path having
at most three visits to each vertex. Thus, we note that it was shown that the
procedure would reduce the number of visits to each vertex visited three or more
times, by at least one. Allowing the procedure to be applied repeatedly to an
augmenting walk in order to reduce the number of visits until there is at most two
visits to each vertex. Before discussing the modifications to the augmentation
procedure, two lemmas regarding the growth of the T-paths and the augmenting
walk, will be shown. These are later needed to show the validity of the chosen
modifications.

Lemma 6.15 Assume that the augmenting walk has at most X visits to any ver-
tex at all times before the partial symmetric difference operation is performed.
Additionally, assume that all T-paths are cycle free before the start of the aug-
mentation procedure. Then, all T-paths will at all points during the execution of
the augmentation procedure, have at most have 2X + 1 wvisits to any vertex.

Proof: Using the same logic as in Lemma 6.14, it follows that any change to a
T-path removes any previously added edges during the augmentation procedure.
As such, any T-path consists of at most one set of edges from a single state of
the augmenting walk, the original edges of the T-path and another set of edges
from a single state of the augmenting walk. For the edges from the augmenting
walk it is guaranteed that each set visits any vertex at most X times. This means
that the two sets combined visit each vertex at most 2X times. Additionally, the
edges from the original T-path are without cycles and thus visit each vertex at
most once. This restricts the number of visits to a single vertex to at most 2X+1.
|

Lemma 6.16 Assume that the augmenting walk has at most X wvisits to any
vertex at all times before the partial symmetric difference operation is performed
during an augmentation procedure. Additionally, assume that all T-paths are
cycle free before the start of the augmentation procedure. Then, after the partial
symmetric difference operation the augmenting walk will have at most 2X+1 visits
to any vertex.
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Proof: The partial symmetric difference operation gives the augmenting walk
all edges of the T-path on one side of the given Pj-segment. By Lemma 6.15,
especially its proof, it follows that the edges added to the augmenting walk from
the T-path consist of at most X +1 visits to any vertex. As such the number of
visits to any vertex in the resulting augmenting walk must be at most 2X+1. B

By Lemmas 6.15 and 6.16 it suffices to find a way to reduce the number of
visits to each vertex in the augmenting walk from 2X+1 to X in order to limit the
length of an augmenting walk to O (V). Especially, by Theorem 6.11 the shortcut
operation increases the number of visits by at most one, that is, it requires no
changes from the original improvements made in the preliminary project. As
previously mentioned, the SIMPLIFY method from the preliminary project can be
used for this.

Iwata and Yokoi showed that augmenting walk returned from the search pro-
cedure had at most two visits to each vertex. As such, we will set X to two.
Then, Lemma 6.15 guarantees that after the partial symmetric difference opera-
tion the number of visits to each vertex is at most five. Performing the SIMPLIFY
procedure three times (or less if each vertex has at most two visits after an appli-
cation), the number of visits will be reduced to two. Based on this, the following
combination of the augmentation procedure from the preliminary project, the
AUGMENT* procedure and the modifications discussed above, is suggested as the
AUGMENT** procedure. As for the AUGMENT* procedure, it is assumed that
when the shortcut operation and the partial symmetric difference operation are
performed, only the unmodified sub-path of the T-path will be used to search for
vertices.

AUGMENT**(Q, P)
P* = empty list
while up(Q)>0
if Q contains a possible shortcut operation
perform the shortcut operation
SIMPLIFY(Q)
else
perform the partial symmetric difference operation
add the changed T-path to P*
while Q contains more than two visits to a vertex
SIMPLIFY(Q)
11 UN-CycCLE(Q)
12 for Pj in P*
13 UN-CYCLE(Pj)
14 add Q to P
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Corollary 6.17 Given a set of n T-paths without cycles and an augmenting
walk, the AUGMENT** procedure produces a set of n+1 T-paths without cycles.

Proof: It follows from Corollary 6.12 that the delayed cycle removal changes
made to the augmentation procedure work properly. Additionally, it follows from
the above discussion that the SIMPLIFY method does not break the premise of
Theorem 6.11. Especially, it was proven in the priliminary project that the SiM-
PLIFY procedure resulted in the resultant walk being an augmenting walk. Based
on this, the procedure will always have an augmenting walk and reduce the num-
ber of Pj-segments to zero. Thus, the procedure will produce n+1 T-paths. By
the proof of Corollary 6.12, the T-paths will have any cycles removed and thus
all will be cycle free. [ |

Theorem 6.18 The AUGMENT** procedure has a time complezity of O (V?).

Proof: By Theorem 6.11 and Lemmas 6.15 and 6.16, it follows that the length of
the T-paths and augmenting walk are bound by O (V), as the SIMPLIFY procedure
is used to reduce their lengths between operations. Since the SIMPLIFY procedure
does not increase the number of Pj-segments in the augmenting walk, the number
of iterations is the same as in the standard Iwata—Yokoi algorithm, that is O (V).
It was shown in the preliminary project that all calls to the shortcut operation, the
partial symmetric difference operation and the SIMPLIFY procedure are bound by
O (V) when the T-paths and augmenting walk have lengths bound by O (V). Thus,
it suffices to show that there is a constant number of calls to these procedures in
a single iteration of the loop on line 2. Lines 4, 5 and 7 contain single calls to
the procedures, while line 10 contains calls to the SIMPLIFY procedure in a loop.
From Lemma 6.16, it follows that the number of visits to the augmenting walk is
at most five at the start of this loop, and thus the number of calls is restricted
to at most three. This means that the loop on lines 2 through 10 has a time
complexity of O(V?2).

Lines 11 through 13 consists of a number of un-cyclings. For a walk, W,
the un-cycling can be performed in O(V+W). Since all the T-paths and the
augmenting walk are bound by O(V), this means that each un-cycling can be
performed in O (V). The number of un-cycling operations required is bound by
the number of Pj-segments in the initial augmenting walk, O (V), resulting in
lines 11 through 13 have a time complexity of O(V?). As such, the whole AUG-
MENT** procedure has a time complexity of O (V?). [ |

Since the augmentation procedure originally used in the improvements has a
time complexity of O(V?), AUGMENT** may be used instead without changes
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to the time complexity. As such, the improvements from the preliminary project
may be employed together with the delayed cycle removal strategy.

6.3 Cycle Removal Efficiency

Having introduced two distinct methods for handling cycles in the T-paths, one
may wonder which of the two strategies is the most effective. The answer is not
straight forward and most likely depends on the specific class of graphs, that is,
how likely are cycles to occur and especially cycles with Pj-segments.

The delayed cycle removal method is a much simpler method with each un-
cycling requiring fewer checks than the immediate cycle removal procedure. Thus,
one can expect that the delayed removal approach may result in fewer operations.
Especially, considering that one in practice only needs to perform the un-cycling
procedure once for each changed T-path, rather than once each time the T-path
is changed. On the other hand, the immediate removal approach may reduce the
number of Pj-segments in the augmenting walk when removing a cycle, and, as
such, reduce the number of iterations required in the augmentation procedure.
Additionally, the immediate removal of cycles immediately reduces the length of
the T-paths and possibly the augmenting walk, which generally results in the
other operations in the augmentation procedure requiring fewer operations per
application. Note that the delayed cycle removal, with the improvements from
the preliminary project, will also keep the T-paths and the augmenting walk
short.

Additionally, it is worth noting that for the delayed removal approach it is
possible to perform the un-cycling of the T-paths in parallel. This, as the T-paths
are edge-disjoint, and thus are completely separated from each other. This is not
possible in the case of the immediate removal approach, where at any point only
one T-path may contain cycles. Thus, for a parallel computing approach, the
delayed removal approach is highly preferred.
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Chapter 7

Concluding Remarks and
Future Work

Throughout this thesis a handful of mis- and/or unhandled edge cases have been
presented. The existence of these edge cases results in the incorrectness of the
algorithm, that is, the Iwata—Yokoi algorithm, as presented by Iwata and Yokoi
in their paper, is not fully correct. Regardless, no problems were found with the
underlying concepts of the algorithm. The problems, in regards to correctness,
is these edge cases that can be handled by performing minor modifications or
expansions to sub-procedures. This means that the underlying concepts of the
Iwata—Yokoi algorithm seem to be correct, with only a few edge cases being
missed. This is in itself not unlikely for complex algorithms such as this one. It
is also a general result of the standard approach to proving correctness, which is
human proofs. While well-written human proofs can generally be assumed to be
true, there is always a slight chance that some small edge case has been missed
or some seemingly insignificant assumption does not fully hold.

A more appropriate question to discuss is if the Iwata—Yokoi algorithm with
the modifications suggested in this thesis is correct. In the same way that one
generally assumes that algorithms with appropriate proven theorems are correct,
there is nothing indicating that the modified version of the algorithm is not
correct. During the work on this thesis several attempts have been made at
finding other unhandled edge cases, but with the cases of Chapters 3 through
6 covered there seems to be no remaining unhandled edge cases. As such, one
can in the same way as other algorithms are assumed to be correct, given their
proofs, assume that the Iwata—Yokoi algorithm with the given modifications is
correct.

To be pedantic one could perform a formal proof of the algorithm. This
approach, which describes the algorithm and its theorems using a formal lan-
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guage, aims at showing the correctness through sequences of sentences in a for-
mal language. A formal proof derives the stated properties and theorems from
the description of the algorithm through these sequences of sentences. Due to
its rigorous nature, deriving a formal proof is laborious and often requires ex-
tensive work. Due to the complexity of the Iwata—Yokoi algorithm, along with
the theorems being tightly knit, we deem performing a formal proof as of little
value. This is mainly due to the large amount of work required, even with a
computer-assisted proof, in relation to the relatively small gain in certainty on
the correctness.

Another approach that can be taken to better guarantee the correctness of
the algorithm, and that ties well with the continuation of the project, is checking
the algorithm using an implementation. By implementing the algorithm, it can
be run over a large number of automatically generated inputs while checking the
corresponding outputs for correctness. For the edge-disjoint T-paths problem,
most of the properties of the output set can easily be checked, as the check for if
the output is T-paths and if they are edge-disjoint are both easily verifiable. For
the maximum-cardinality property of the set, this is not as easy, as checking if an
outputted set has maximum cardinality requires the usage of Mader’s theorem.
Mader’s theorem’s brute force approach makes it very time consuming to check
more than a small number of simple cases. Thus, a stopgap solution of comparing
the size of the result of implementations of two distinct algorithms can be used.
This approach, while not perfect, will either result in finding mistakes in one
of the implementations (or both) or guarantee that if there are any mistakes
in the implementations, they result in the same, wrong, results for two distinct
algorithms. The latter is less likely than mistakes in one algorithm, and thus
should provide a better guarantee for the correctness of the algorithms. This is
also the way that one of the edge cases described in this thesis was found. Since
the thesis was originally supposed to start performing empirical evaluation of
the algorithms, this method was used when checking if the algorithms had been
correctly implemented. This lead to finding a case in which cycles appeared in
the T-paths.

Looking forward, there is still a lot of work required in order to establish
a fully practical approach to the topic. Figure 7.1 shows the same timeline as
in the introduction, where the preliminary project and this thesis have laid the
foundation for implementation, evaluation and comparison of the different algo-
rithms. The next step is to continue implementing the different algorithms, using
these implementations to perform evaluation and comparison of the algorithms.
Especially, one should try to implement the different variants of the Iwata—Yokoi
algorithm suggested in this thesis and the preliminary project, measuring which
of the variations result in increased efficiency and, if any, which results in the
greatest increase in efficiency.
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Figure 7.1: Project timeline for a practical approach to the T-paths problems
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