
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Matej Mnoucek

Data-oriented Multi-agent
Assessment System for Real-time
Driving Simulators

Master’s thesis in Informatics

Supervisor: Odd Erik Gundersen

July 2020

Matej Mnoucek

Data-oriented multi-agent
assessment system for real-time
driving simulators

Master thesis, Spring 2020

Artificial Intelligence Group
Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical Engineering

i

Abstract

Interactive driving simulators are slowly becoming a technique used for education
and training of future drivers. However, these systems need to be operated by
human driving teachers who provide the actual educational value and feedback to
students. This limitation lowers the degree of autonomous operation of driving
simulators and puts additional requirements on their system design. In addition,
human resources are usually expensive. The situation is further complicated by
the fact that interactive simulations usually require a lot of computational power
and operate in real-time, therefore, any additional supplementary systems might
need to run in a resource constrained environment.

This document proposes a novel data-oriented multi-agent assessment system
designed for real-time driving simulators capable of providing feedback about
driving skills while also teaching students about the traffic domain. The system
is designed to operate with high efficiency and in real-time while providing the
output necessary to guide and educate a student driver. The correctness of the
implementation is validated by two experiments designed to emulate real world
traffic scenarios in order to obtain reliable system verification. Hence, the main
contributions of this work consist of the novel data-oriented assessment system
which contains 18 intelligent assessment agents that can be further enhanced,
replaced or new ones can be added as well.

ii

Preface

The following document contains a master thesis which was produced as the final
work required to acquire Master of Science degree in Informatics at the Norwe-
gian University of Science and Technology. The project was done in collaboration
with Way As company, which provided us with the necessary technical resources,
access to their systems and a driving simulator for testing purposes. Therefore,
special thanks goes to all Way AS employees for their endless helpfulness, effort
and patience. I would also like to thank Odd Erik Gundersen for his great su-
pervision, knowledge contributions and valuable feedback provided. In addition,
I am really grateful to Martin Kristoffer Hoel Sandberg for his enormous enthu-
siasm and support during our long evening discussions.

The thesis explores the field of Data-oriented design and real-time interactive
simulations combined with ontology-based multi-agent systems applied to the
domain of driving simulators. The aim is to provide a solution which bridges the
gap between a complex artificial intelligence-driven system and real-time opera-
tion constrained system.

Matej Mnoucek Trondheim, July 9, 2020

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Context . 2
1.3 Goals and Research Questions . 3
1.4 Research Method . 3
1.5 Contributions . 5
1.6 Thesis Structure . 6

2 Background Theory and Motivation 9
2.1 Background Theory . 9

2.1.1 Memory and Data Locality 9
2.1.2 Data-oriented Design . 10
2.1.3 Entity Component System 12
2.1.4 Intelligent Agents and Multi-agent Systems 13
2.1.5 Situation Awareness . 14
2.1.6 Ontologies and Knowledge Graphs 14
2.1.7 Model-Driven Development and Transformations 17
2.1.8 Temporal Representation and Reasoning 17
2.1.9 Description Logic and Reasoning 19
2.1.10 Fuzzy Logic . 19
2.1.11 Unity Real-time Development Platform 21
2.1.12 Lock-free and Wait-free Concurrency 21
2.1.13 Rust Programming Language 21
2.1.14 Text-To-Speech . 22

2.2 Structured Literature Review Protocol 23
2.2.1 Identification of Research 23
2.2.2 Selection of Primary Studies 26
2.2.3 Quality Assessment . 26
2.2.4 Data Extraction . 29

iv Contents

2.2.5 Data Synthesis . 41

2.3 Motivation . 42

3 System Design and Implementation 43

3.1 Dynamic Model of Simulated Environment 43

3.1.1 Traffic Situation Ontology 44

3.1.2 Data-oriented Knowledge Graph 46

3.1.3 Transformation and Code Generation 51

3.1.4 Interval Algebra . 52

3.1.5 Pattern Query Engine . 52

3.2 Assessment System Architecture 54

3.2.1 Entity Component System 54

3.2.2 Agent Platform . 56

3.3 Simulator Interface . 58

3.3.1 Unity Interface . 59

3.3.2 Road Network . 60

3.3.3 Environment Tagging . 63

3.3.4 Shared Memory . 63

3.4 Assessment System Agents . 65

3.4.1 Modules . 66

3.4.2 Components . 66

3.4.3 Low-level Detection Agents 67

3.4.4 High-level Assessment Agents 68

3.4.5 Incorrect Gear . 70

3.4.6 Speeding . 71

3.4.7 Overtake . 74

3.4.8 Car Yielding . 76

3.4.9 Pedestrian Yielding . 78

4 Experiments and Results 81

4.1 Experimental Plan . 81

4.2 Experimental Setup . 83

4.3 Experimental Results . 83

4.3.1 Quantitative Data . 84

4.3.2 Qualitative Data . 85

5 Evaluation and Conclusion 93

5.1 Discussion . 93

5.2 Limitations . 97

5.3 Future Work . 99

Contents v

6 Publications 101
6.1 General Research Paper . 101
6.2 Explanining Traffic Situations – Architecture of a Virtual Driving

Instructor . 101

Bibliography 113

Appendices 121

vi Contents

Acronyms

2D two-dimensional 33

ACL Agent Communication Language 14

ADAS Advanced Driver Assistance Systems 36, 39

AR Augmented reality 21

CPU Central Processing Unit 10

DL Description Logic 19, 38, 41

DoD Data-oriented design 10–12, 34, 42

DRAM Dynamic Random Access Memory ix, 10, 11

DSR Design Science Research ix, 3, 5

ECS Entity Component System ix, x, 12, 13, 29–31, 33, 34, 40, 42, 54–56

ECV Eventually Consistent Vector x, 55, 57

FOL First Order Logic 19

ITS Intelligent Tutoring Systems 35, 101

M2M Model-to-Model 17

M2T Model-to-Text 17

MDA Model-Driven Architecture 17

MDD Model-Driven Development 17

MLN Markov Logic Network 37

OoD Object-oriented design 34

viii Acronyms

OoP Object-oriented programming 10, 19, 33

OWL Ontology Web Language 16, 17, 19, 31, 34, 36, 38, 39, 41

PBIL Population-Based Incremental Learning 35

RDF Resource Description Framework 16, 31, 36

RPM Revolutions Per Minute 70

SA Situation Awareness 14

SC Situational Calculus 17

SG Serious Games 35

SLR Structured Literature Review xiii, 23, 24, 26, 27

SWRL Semantic Web Rule Language 31, 34, 36, 38

TR Temporal Reasoning 17

UAV Unmanned Aerial Vehicle 32

VANET Vehicular Ad-hoc NETwork 31

VR Virtual reality 21

XML Extensible Markup Language 16, 30

List of Figures

1.1 Driving simulator developed by Way AS. 2

1.2 DSR Knowledge Contribution Framework [1] 5

2.1 The continuously increasing gap between processor and DRAM
performance [2]. 11

2.2 Example ECS component memory layout of a computer game. The
names in parentheses represent individual entities, the colored dots
are components and the rectangles stand for individual systems [3]. 13

2.3 Model of situation awareness in dynamic decision making. 15

2.4 Core situation awareness ontology as proposed by Matheus et al. [4] 16

2.5 Interval relations in Allen’s Interval Algebra [5] 18

2.6 Examples of three different fuzzy sets defined on person height
variable [6]. 20

2.7 Examples of hedges demonstrated on the fuzzy sets from Fig-
ure 2.6 [6]. 21

3.1 Ontology for the description of traffic situations. Dashed arrows
define subclassing while filled arrows stand for normal relations.
Classes are represented by blue circles and properties by yellow
rectangles. 44

3.2 The memory layout of Node Index and Relation Index substructures. 49

3.3 The classification of Node Index arrays based on the actual type
of node values they represent. 50

3.4 The classification of Relation Index arrays based on the actual
type of relation values they represent. 50

3.5 An example sequence of several index records with various markers. 51

3.6 The layout of Knowledge Graph indices which determine the range
of available records/values and also make Knowledge Graph data
structure lock-free and wait-free. 51

x List of Figures

3.7 The code generation pipeline which converts Traffic Situation On-
tology into corresponding Rust and C# representations. The API
for accessing it is also generated. 52

3.8 The execution flow of a query in Pattern Query Engine. 54
3.9 The schema of the ECS architectural pattern adapted for the

multi-agent assessment system purposes. 56
3.10 The internal workings of ECV demonstrated on three data struc-

ture states. 57
3.11 Example agent Dependency graph which combines various Observ-

ing and Periodic agents. The number of milliseconds below each
Periodic agent name signifies the amount of elapsed time after
which they get periodically triggered. 58

3.12 Four different collision triggers of Ego which enable the perception
of simulated world elements. 60

3.13 Lane-based representation of a road (left) and a 3-way intersection
(right). 61

3.14 Visualisation of marked road lanes in one of the simulated worlds. 61
3.15 Visualisation of marked intersection lanes in one of the simulated

worlds. 62
3.16 Visualisation of the Lane marking tool interface. The points that

define the lane spline are marked red while the control points are
marked blue. 62

3.17 Visualisation of several tagged crosswalks. 64
3.18 Visualisation of a tagged intersection. 64
3.19 The distribution of shared memory regions over the different sim-

ulator nodes (computers). 65
3.20 Low-level agents also known as primary multi-agent system. The

blue agents are active agents while the orange agents are passive. . 68
3.21 High-level agents also known as secondary multi-agent system. . . . 69
3.22 The illustration of all Agents, Components and Modules involved

in incorrect gear assessment. The diagram was cropped out of Fig-
ure 3.21 which depicts all available high-level agents. 70

3.23 The illustration of all Agents, Components and Modules involved
in speeding assessment. The diagram was cropped out of Fig-
ure 3.21 which depicts all available high-level agents. 72

3.24 The illustration of all Agents, Components and Modules involved
in overtake assessment. The diagram was cropped out of Fig-
ure 3.21 which depicts all available high-level agents. 75

3.25 The illustration of all Agents, Components and Modules involved
in yielding to other cars assessment. The diagram was cropped
out of Figure 3.21 which depicts all available high-level agents. . . 77

List of Figures xi

3.26 The illustration of all Agents, Components and Modules involved
in yielding to pedestrians assessment. The diagram was cropped
out of Figure 3.21 which depicts all available high-level agents. . . 78

4.1 The distribution of answers for general opinions group of questions. 85
4.2 The distribution of answers for assessment of individual driving

skills group of questions. 86
4.3 Mean and standard deviation of all answers to each question from

general opinions group. The whiskers show the range of mean +/-
standard deviation. 87

4.4 Mean and standard deviation of all answers to each question from
assessment of individual driving skills group. The whiskers show
the range of mean +/- standard deviation. 88

xii List of Figures

List of Tables

2.1 SLR – Search terms and their corresponding groups used during
the in-depth literature search . 24

2.2 SLR – Inclusion criteria table . 26

2.3 SLR – Quality criteria table . 27

2.4 SLR - Results of quality criteria evaluation 28

3.1 The list of classes which form the traffic situation ontology. The
ontology is shown in Figure 3.1. 45

3.2 The list of relations the traffic situation ontology includes. The
ontology is shown in Figure 3.1. 46

3.3 A table listing all available tag components. 63

3.4 A table listing all Components used by agents of secondary multi-
agent system. 67

3.5 A table listing all agents of primary multi-agent system. 68

3.6 The list of all Agents involved in incorrect gear assessment. 70

3.7 The list of all text segments available for Text-To-Speech feedback
provided by Incorrect Gear Feedback Agent. 71

3.8 The list of all Agents involved in speeding assessment. 71

3.9 Fuzzy sets defined on Over Speed Limit fuzzy input variable. . . . 72

3.10 Fuzzy sets defined on Acceleration fuzzy input variable. 73

3.11 Fuzzy rules employed while reasoning about Speeding. 73

3.12 Fuzzy sets defined on Speeding fuzzy output variable. 74

3.13 The list of all text segments available for Text-To-Speech feedback
provided by Speeding Feedback Agent. 74

3.14 The list of all agents involved in overtake assessment. 75

3.15 The list of all text segments available for Text-To-Speech feedback
provided by Overtake Feedback Agent. 76

3.16 The list of all agents involved in yielding to other cars assessment. 77

xiv List of Tables

3.17 The list of all text segments available for Text-To-Speech feedback
provided by Car Yielding Feedback Agent. 78

3.18 The list of all agents involved in yielding to pedestrians assessment. 78
3.19 The list of all text segments available for Text-To-Speech feedback

provided by Pedestrian Yielding Feedback Agent. 79

4.1 The evaluation plan used for both of the performed experiments.
False positives and false negatives mentioned in Purpose column
are described from the correct negative feedback perspective. 82

4.2 Mean and standard deviation of all answers to each question from
general opinions group. The results are also visualised in Figure 4.3. 84

4.3 Mean and standard deviation of all answers to each question from
assessment of individual driving skills group. The results are also
visualised in Figure 4.4. 85

4.4 The questions that were part of the evaluation questionnaire (see sec-
tion 4.1). The table is divided in two groups. The first group (#)
represents general opinions questions whereas the second group
(@) gathers assessment of individual driving skills questions. . . . 91

6.1 Questions used for semi-structured interviews carried out during
Evaluation phase (see chapters 4 and 5). 121

6.2 Questionnaire used during Evaluation phase (see chapters 4 and 5). 122

Chapter 1

Introduction

This chapter provides an insight into the background and motivation behind this
kind of work. Besides, it contains specification of the main goal, defines research
questions to answer, provides description of the employed research methods, de-
scribes main contributions and concludes with a description of the document
structure.

1.1 Background and Motivation

Interactive driving simulators are slowly becoming a technique used for education
and training of future drivers. However, these systems need to be operated by
human driving teachers who provide the actual educational value and feedback to
students. This limitation lowers the degree of autonomous operation of driving
simulators and puts additional requirements on their system design. In addition,
human resources are usually expensive. The situation is further complicated by
the fact that interactive simulations usually require a lot of computational power
and operate in real-time, therefore, any additional supplementary systems might
need to run in a resource constrained environment.

For these reasons, the existence of an efficient system capable of real-time au-
tonomous driving skills assessment would push interactive driving simulators to
an entirely new level. It would allow separation of human teachers from the
simulator experience, therefore, making simulator-based learning independent,
cheaper, more consistent and more efficient. In addition, the research is con-
ducted in collaboration with Way As driving school company, which is deeply
interested in exploring the possibilities of the autonomous assessment as well.

2 Research Context

1.2 Research Context

The research was conducted at the Department of Computer Science at the
Norwegian University of Science and Technology and also in collaboration with
Way As, a driving school based in Trondheim. On top of normal driving educa-
tion, Way offers driving lessons in their custom designed and developed driving
simulator. The simulator consists of a physical car mounted on a moving plat-
form surrounded by 360˝ simulated environment projection. Moreover, the car
also houses several kinds of force feedback systems to ensure maximal realism and
immersion. The driving simulator software and hardware were freely available
for the whole period of collaboration enabling close cooperation and extensive
testing and verification of the artifacts produced as results of this research.

Figure 1.1: Driving simulator developed by Way AS.

During the time of the research work described in this thesis, there were in fact
three parallel research efforts going on at Way As. The first research effort was
focused on developing a proof of concept ad-hoc assessment system with minimal
effort. The plan was to embed the system in the current simulator software. The
second effort was concerned about building standalone, efficient and data-oriented
multi-agent assessment system which uses ontologies as simulated environment
abstraction. In addition, there was a focus on supporting a wide variety of tem-
poral and logic reasoning, developing a proper simulator interface and creating a

Introduction 3

good and scalable foundation for future development. This part of the research
was conducted by us and is described in this thesis. The last effort concentrated
on developing a virtual driving instructor capable of presenting the results pro-
duced by the assessment systems. The goal of the instructor system was to deliver
an appropriate feedback to driving students at appropriate times. This part of
research was conducted by Martin Kristoffer Hoel Sandberg as is described in his
master thesis [7].

1.3 Goals and Research Questions

The global aim of this thesis is to explore the possibilities of creating a real-time
data-oriented multi-agent assessment system. Therefore, this gives a rise to the
main research driving hypothesis:

Hypothesis Data-oriented multi-agent system for driving skills assessment in a
simulated environment can be designed to run in real-time while supporting
all functionality required for complete and timely driving skills evaluation.

The hypothesis enables us to set the overall project goal and pose several related
research questions:

Goal Design and develop a data-oriented multi-agent assessment system which
is capable of operating in real-time while providing the targeted driving skills
evaluation.

Research question 1 Which data-oriented design principles can be utilized for
the design of the assessment system?

Research question 2 How can the system reason about traffic situations?

Research question 3 How can the system utilize concurrency on multi-core
systems?

Research question 4 How can the system interface with a driving simulator in
order to extract the necessary data?

Research question 5 Is it possible for such system to deliver driving skills as-
sessment in real-time?

1.4 Research Method

The research documented in this thesis combines two different research strate-
gies, namely, Design Science Research (DSR) methodology as summarized and

4 Research Method

described by Vaishnavi and Kuechler [8] and experiments [9]. The former method-
ology encapsulates the process of assessment system design and implementation
whereas the latter deals with its functional verification and evaluation. The fun-
damental goal of the second employed strategy is to provide measurable and
detailed insight into how the designed system performs in real-life scenarios
(see chapter 4). Both methodologies combined are expected to deliver concise
and complete answers to the initially stated research questions. The research
was conducted in five major phases which mirror the standard process of Design
Science Research:

1. Awareness of Problem: The problem definition was supplied as a master
thesis proposal, therefore, this step was mostly neglected in the actual re-
search process. However, the main hypothesis, goal and research questions
were defined in this phase (section 1.3).

2. Suggestion: During the suggestion phase a tentative solution proposal
was made based on a configuration of several new and existing approaches
and techniques. In addition, traffic situation ontology/model was produced
as the first artifact (subsection 3.1.1).

3. Development: The development phase was concerned with the actual
implementation of the assesment system design proposed in the previous
phase. Hence, the first result was a system instantiation forming the pri-
mary output artifact (section 3.2). In addition to the assessment system,
18 demonstrative intelligent agents were developed in order to prove and
verify the capabilities of the system. The agents themselves constitute a
second instantiation produced during this phase (section 3.4).

4. Evaluation: The evaluation phase is when the second methodology i.e.
experiments gets involved. The experiments were carried out in order to de-
rive and verify answers to the initially posed research questions (chapter 4).
The evaluation itself was carried out through interaction with domain ex-
perts i.e. driving instructors in a form of interviews and questionnaires.
Two driving lesson scenarios and the produced real-time assessment were
inspected, tested and analyzed by the domain experts. Both quantitative
and qualitative evaluation methods were utilized to acquire the final eval-
uation results.

5. Conclusion: This phase is the finale of the whole research effort. The
results were consolidated, discussed and compared to expected outcomes
(chapter 5). Deviations from expected results and various findings made
during the research process were discussed and addressed.

Introduction 5

1.5 Contributions

According to Design Science Research Knowledge Contribution Framework pro-
posed by Gregor and Hevner [1], this research falls somewhere on the edge be-
tween Exaptation and Invention quadrants as it utilizes innovative adaptation
of known knowledge/solutions as well as inventing new knowledge/solutions for
new problems.

Figure 1.2: DSR Knowledge Contribution Framework [1]

The presented research includes several individual contributions. For a better
readability and clarity they were organized in the list below:

1. Temporal ontology suitable for real-time traffic situation knowl-
edge representation: As the assessment system requires to sense the
virtual environment and is constrained to running in real-time, there was
a need to create a suitable knowledge representation which satisfies both
requirements. In addition, the ontology is required to store its past states
as well as to allow reasoning over time. For that purpose, a new high
level ontology was developed which during compilation gets transformed
into an efficient low level data-oriented representation capable of usage in
a real-time system (section 3.1).

6 Thesis Structure

2. Pattern query engine capable of temporal queries on the ontol-
ogy in real-time: The ontology mentioned in the previous contribution
also needs to allow efficient data queries. To address this problem, custom
pattern query engine inspired by Description logic was designed and devel-
oped. The query engine allows agents to interact with the ontology and
efficiently query the knowledge of interest (subsection 3.1.5).

3. Road network marking tool for simulated environments designed
in Unity development platform. The simulated worlds, in which driv-
ing education takes place, usually host complex road networks. Road net-
works are one of the basic elements that the developed assessment system
needs to obtain information about. Hence, as a part of the implementation,
universal spline-based lane marking tool for easy road network annotation
was developed (subsection 3.3.2).

4. Wait-free shared memory interface facilitating assessment system
communication with the simulated environment. The nature of the
solution, requires real-time communication between the newly developed
assessment system and existing simulated environments i.e. there is a need
for efficient data exchange. For this reason, wait-free shared memory stor-
age solution for the real-time ontology was developed and utilized (subsec-
tion 3.3.4).

5. Scalable data-oriented multi-agent assessment system design. Be-
fore the assessment system was built, a system design proposal was cre-
ated. The proposal is domain and implementation independent, universal
and complete. Hence, it can be utilized in other domains too (section 3.2).

6. Assessment system instantiation including 18 intelligent agents
for basic traffic situation assessment. The final contribution is the
provided system and included agents implementation on its own. It is
capable of basic traffic situation assessment and real-time Text-To-Speech
feedback to a driver (chapter 3 and section 3.4).

1.6 Thesis Structure

This document is structured as follows:

Chapter 2 – Background Theory and Motivation: presents theoretical
knowledge relevant to the aim of this work and also describes and provides re-
sults of the conducted literature review. Finally, the chapter discusses additional
motivation for this work.

Introduction 7

Chapter 3 – System Design and Implementation: provides details about
the assessment system design and implementation process. Furthermore, the
chapter justifies the design decisions made and links the work to the relevant
previous research.

Chapter 4 – Experiments and Results: describes the experiments conducted
with domain experts and presents the results of them in a form of quantitative
and qualitative data.

Chapter 5 – Evaluation and Conclusion: discusses the achieved results
and confronts them with the initially posed hypothesis, goal and research ques-
tions. Furthermore, limitations of this work and potential future work proposals
are also mentioned.

Chapter 6 – Publications: lists publications produced as a part of this re-
search effort.

8 Thesis Structure

Chapter 2

Background Theory and
Motivation

In this chapter, we introduce the relevant background theory and present Struc-
tured Literature Review which was conducted to map out the existing research.
Moreover, the chapter also addresses motivation behind this kind of work.

2.1 Background Theory

The goal of the following section is to present domains of the most relevant
knowledge needed to frame and solve the problem of designing real-time multi-
agent assessment system in a data-oriented manner.

2.1.1 Memory and Data Locality

At first, in order to understand Data-oriented design, it is necessary to know
a bit about modern computers architecture, especially about data locality and
memory hierarchies [10].

There exist two principles that have been employed to make memory access
more efficient. The first assumption is called temporal locality and claims that
if a memory cell is accessed at some point in time, there is a high probability
that it will be accessed again soon. The second principle called spatial locality
concerns the location of data in memory. The assumption behind it claims that
memory cells neighbouring a cell which was just accessed are very likely to be
accessed as well.

10 Background Theory

Nextly, a modern computer contains several levels of memory. The fastest mem-
ory (registers) is located closest to CPU but also is the smallest of them all.
The main and largest memory is DRAM which usually has a great capacity but
takes a long time to access. In between there are up to several levels of cache
memories usually termed L1-L3 based on their location (L1 is the closest to CPU).

The memory hierarchy and locality principles guide the design of cache hier-
archy and their internal workings. Everytime a program tries to access DRAM
memory location the computer actually loads a whole piece of memory called
cache line (or cache block) and store it in the corresponding cache. Then, when
the program execution continues the loaded memory cell and also the neighbour-
ing ones are already available in the fast cache memory so its desirable to make
use of them. In case they really are available, the situation is called cache hit
and the program can immediately continue. Otherwise, cache miss occurs. The
program then has to wait until the needed data is available i.e loaded into cache.

The awareness of these principles and the resulting efficient cache utilization
is one of the core foundations of DoD.

2.1.2 Data-oriented Design

Data-oriented design is a practice of developing software in which software is seen
as a transformation of data from one form to another [11]. It also builds on the
fact that the transformations are not performed in vacuum but are processed by
hardware of some sort. The main concerns of this paradigm are building high
performance software, capable of real-time and parallel execution which is easy
to test and modify. Fundamentally, Data-oriented design (DoD) is guided by two
essential principles.

The first principle claims that data is not the actual problem domain. In other
words, DoD does not embed the problem domain into the code as other abstrac-
tion heavy paradigms commonly do. For example Object-oriented programming
(OoP) pretends that the computer and its data does not exist and abstracts
away from it. This approach often shadows the target platform characteristic
and, therefore, hinders software performance. Another frequent problem is that
OoP paradigm leads to piling up of unrelated data in classes and creates strong
coupling between both data and behavior which is hard to unwind.

The second principle promotes that data is more than just a structure and all
of its aspects should be considered. The important aspects to focus on contain
quantity of data, access frequency, probability of access and similar statistics.

Background Theory and Motivation 11

The values that emerge from these considerations help to guide efficient data
layout design and ensure good cache memory utilisation.

There is another phenomenon which DoD attempts to address. According to Pat-
terson et al. [2] the gap between processor and DRAM speed is increasing by 50%
each year which is one of the primary obstacles to improved computer system per-
formance. This problem can be partially mitigated by introducing deeper cache
memory hierarchies, hence, efficient cache memory management keeps growing
in importance. Figure 2.1 illustrates the problem.

Figure 2.1: The continuously increasing gap between processor and DRAM per-
formance [2].

One might think that a good portion of the issues with efficient data and mem-
ory handling should be addressed on the compiler level. However, according
to Proebsting and Scott [12], the improvements and advances in compiler tech-
nology double typical software performance only roughly every 18 years. Hence,
compilers are not able to compensate for the processor-memory performance gap.

There are several common techniques used in DoD which project the paradigm
goals into actual good design practices [13, 11]:

DBMS-like memory layout – exploit of the advantages of data layout com-
monly used by DBMS i.e. two dimensional tables. This approach also concerns
the creation of the layout from actual data and employs techniques such as nor-
malisation. The layout provides a simple data structure which is cache efficient
and can be easily iterated over.

12 Background Theory

Linear and continuous data structures – the use of simple and linear data
structures such as vectors or arrays because of their cache efficiency and the ease
of work parallelization.

Data packing and sorting – the assumption of sorting data by various statis-
tics e.g. how often or in which order it is commonly used.

Hot/cold splitting – separation of frequently accessed data from the data that
is rarely used.

Existential processing – avoiding checking/processing of data which does not
need an update or any other handling.

Components-based architecture – separation of large ”objects” or entities
into isolated problem domains i.e. composition over inheritance.

In addition, DoD in general allows better separation between data and opera-
tions performed on them which improves software modularity and allows easier
code refactoring. There already exist well-established architectural and design
patterns built with data-oriented principles in mind as can be seen in the follow-
ing chapter.

2.1.3 Entity Component System

One of the most common architectural patterns frequently used in Data-oriented
software design is Entity Component System (ECS). ECS enforces composition
over inheritance principle i.e. decomposition of ”objects” into separate and inde-
pendent components [14].

As the name suggests, ECS is build around three fundamental concepts: Com-
ponents, Entities and Systems. Components are sole containers for data that
represent some information. These could be for example a position in 3D world,
speed velocity or any other elemental piece of data. Entities are analogous to
objects in Object-oriented programming. They represent groupings of compo-
nents and, therefore, form higher level concepts. However, they are often very
lightweight and commonly represented as just a unique identifier which serves as
an index into component collections. Systems are the modules where logic resides.
They provide access to entities and perform operations on them by manipulating
their component data. Figure 2.2 illustrates the commonly employed memory
layout for entities and their components i.e. two dimensional column-wise array

Background Theory and Motivation 13

containing individual components.

Figure 2.2: Example ECS component memory layout of a computer game. The
names in parentheses represent individual entities, the colored dots are compo-
nents and the rectangles stand for individual systems [3].

2.1.4 Intelligent Agents and Multi-agent Systems

Wooldridge [15] defines an Intelligent agent as a computer system that is situated
in some environment, and is capable of autonomous actions in this environment
in order to meet its objectives. The autonomousness stands for agent’s constant
awareness of its objectives and his everlasting effort to complete them in the most
efficient and effective way [16]. The agent’s environment is often continuous, dy-
namic and non-deterministic which further hinders agent’s efforts [17]. The basic
agent data flow starts with perception of its environment and results in the pro-
duction of the desired data output. In order to produce the output, agents often
need to maintain some internal state which captures the history of their actions
and knowledge about their environment. Potentially, they also store some initial
knowledge about the domain of the problem being solved.

If we group several agents together, the system at hand becomes multi-agent.
The presence of more than one agent implies several new facts. Individual agents
start to influence each other. Also, even though the agents remain independent,
they might depend on some data produced by other agents. This fact usually
implies a need for some inter-agent communication via Agent Communication

14 Background Theory

Language (ACL) as there is a data sharing demand.

The way how agents coexist in terms of problem solving also matters. Agents
in multi-agent environment might either collaborate or compete with each other
based on what their goals are. The distinction can be seen as an effort to maxi-
mize shared utility of all agents (collaborative) or each agent’s individual utility
(competitive) [18]. This work is mainly concerned about collaborative multi-agent
systems.

2.1.5 Situation Awareness

The correct assessment of a particular traffic situation requires its perception
and deep comprehension i.e. high degree of situation awareness. Endsley [19]
defines a formal theoretical model of situation awareness in relation to human
decision making. The model is shown in Figure 2.3. It defines decision making
as a three step process. The first step deals with obtaining situation awareness,
then the actual decision takes place and finally the performance of taken actions
is evaluated. This thesis is essentially concerned only about the first step i.e.
to create a system which is able to obtain situation awareness and reason about
it. The situation awareness step is further divided into three sub steps so called
levels:

1. Perception of elements in current situation: The first step in achiev-
ing SA is to perceive the status, attributes, and dynamics of relevant ele-
ments in an environment within a volume of time and space.

2. Comprehension of current situation: The second step goes beyond
simply being aware of the elements that are present. It focuses on under-
standing the significance of these elements in a broader scale, relates them
together to discover patterns and builds comprehension of their meaning.

3. Projection of future status: The third step encapsulates the projection
of the status of elements in the near future.

2.1.6 Ontologies and Knowledge Graphs

The term Ontology was initially adopted from philosophical sciences [17]. Ontol-
ogy explains the nature and properties of individual concepts and captures the
relationships between them [16]. The main use case of ontology is to represent
and store domain knowledge in a consistent manner. Hence, ontological commit-
ment is enforced i.e. an agreement about what the concepts and relationships
between them mean in the real domain. Moreover, there often are additional

Background Theory and Motivation 15

Figure 2.3: Model of situation awareness in dynamic decision making.

agreements ensuring coherent and consistent use of the shared vocabulary (usu-
ally axioms and definitions). Moreover, these sets of objects and relationships
are often called the universe of discourse [16].

Ontologies often involve a processes called generalization or specialisation. Spe-
cialisation stands for making an ontology more specialized i.e. narrow down its
scope and increase the amount of detailed information it contains about the new
more narrow domain. Generalisation is the inverse of specialisation.

Typically, an ontology forms a hierarchical structure which describes domain
concepts, their properties and captures relationships between them [16]. The
main reason for the hierarchical organization is the similarity with how human
mind organizes things and it also allows easy modelling of generalization and
specialisation relationships. In fact, the goal of the hierarchy is to capture how
concepts are organized into predefined categories [17]. Categories can be subcat-
egories of other categories. This fact allows subcategories to inherit properties
or relationships of their parent categories which results into a formation of tax-
onomy.

Matheus et al. [4] proposed a definition of core ontology suitable for representing
various scenarios of situation awareness (see subsection 2.1.5). The paper also
proves the expressiveness of the proposed ontology and demonstrate its extensibil-

16 Background Theory

Figure 2.4: Core situation awareness ontology as proposed by Matheus et al. [4]

ity to domain-specific situations by readily extending its core language. Another
important feature is the possibility to represent values of attributes and relations
as changing over time and space. The core ontology is shown in Figure 2.4

Similarly to ontology definition, we can define Knowledge graphs which share
many properties with ontologies. The main difference between knowledge graphs
and ontologies is their structural aspect. As the name suggests, knowledge graphs
can be represented as various graph structures [20]. In contrast, ontologies mostly
form sole tree hierarchies.

The use of ontology or knowledge graphs in combination with multi-agent (sub-
section 2.1.4) environments allows the creation of a shared and consistent knowl-
edge base. The knowledge base can then be utilized for mutual communication
between agents.

One of the most widely-used languages for modelling ontologies is the Web On-
tology Language (OWL). It relies on RDF/XML format which can be easily
understood by computers.

Background Theory and Motivation 17

2.1.7 Model-Driven Development and Transformations

Model, modelling and Model-Driven Architecture (MDA) are the core building
blocks of Model-Driven Development (MDD). MDD itself is defined as a set of
development practices and approaches where models are used to reason about
a problem domain and design a solution in the solution domain [21]. Abstract
models serve as a representation of the domain of interest and allow developers
to easily convert the representation from one type into another (Model-to-Model
or M2M transformation) or alternatively to the final source code representation
(Model-to-Text, M2T transformation or code generation) [22]. These steps are
usually referred to as model transformations which form a cornerstone of MDA.
Nowadays, the transformations are usually performed automatically based on
predefined transformation rules. These rules may be implicit to the tools being
used, or may have been explicitly defined based on domain specific knowledge [21].

Another common term used in MDD is the term metamodel. Brown et al. [21] de-
scribe metamodels as models intrinsic to a modeling approach which basically
form a framework for the modelling process. An example of commonly used
metamodels is UML or an ontology defined in OWL [23]. Placing ontology as a
source model in model transformations is a particularly interesting approach for
this work as there is a need to derive an efficient implementation from high-level
abstract ontology model. Furthermore, the implementation is required in several
programming languages.

2.1.8 Temporal Representation and Reasoning

The representation of time and reasoning about it poses a problem which spans
a wide range of disciplines including artificial intelligence. Vila [24] defines Tem-
poral Reasoning (TR) as a formalization of the notion of time which provides
means to represent and reason about the temporal aspect of knowledge. TR
usually considers two main types of temporal primitives: instants or points and
periods or intervals and also deals with various relations between them. More-
over, TR tries to answer various questions which constitute the structure of time
such as: Is time discrete or dense or Is time bounded or unbounded? [25].

One of the earliest approaches to formalization of TR was presented by McCarthy
and Hayes [26] in 1969. The representation was called Situational Calculus. In
SC the world is represented as a set of states. State is a description of the rep-
resented world at a given instant of time. The world persist in a state until an
action is performed. Actions were modelled as simple state transitions. In order
to manage execution of actions, fluents were introduced. The domain of interest
is described by propositional fluents which represent the properties that hold in

18 Background Theory

particular situations. Propositional fluents map to either true or false. There
also exist situational fluents which represent changes by mapping situations to
other situations. Time is handled implicitly through the notion of situations.

Another approach was presented by Allen [27]. The theory proposes a formalism
based on the notion of interval. Interval is defined as the only temporal primitive
while completely excluding points or instants. In addition, 13 mutually exclusive
relations between intervals were proposed, namely: before, after, meets, met-by,
overlaps, overlapped-by, starts, starts-by, finishes, finished-by, during, contains
and equals. Figure 2.5 illustrates all the relations with a reference to global time-
line. In this framework time is modelled as a linear, continuous, infinite and
symmetric to past and future.

Figure 2.5: Interval relations in Allen’s Interval Algebra [5]

The last influential approach was developed by Kowalski and Sergot [28]. Their
theory called Event Calculus is based on the management of database updates
where a simple time ontology imposes an extra level of semantics. The core onto-
logical elements are events and relations. An event is considered to be anything
that creates or deletes relations. A relation is a standard relation bounded by time
in existence, therefore, implicitly defining a time period. For reasoning purposes,
the theory uses a logic based on Horn clauses extended with negation-by-failure.

Background Theory and Motivation 19

2.1.9 Description Logic and Reasoning

According to Krötzsch et al. [29] Description logic (DL) is a family of knowledge
representation languages which are widely used in ontological modelling.

Description logic similarly to ontologies concerns reasoning about categories i.e.
it makes easy to create definitions of categories and their properties [17]. The
basic building blocks of DL are: concepts, roles and individuals. Concepts are
similar to classes in OoP, roles represent relations between individuals and in-
dividuals are analogous to instances in OoP. In DL the paticular state of the
world is defined by so-called axioms which can be divided into three categories:
assertional (ABox) axioms, terminological (TBox) axioms and relational (RBox)
axioms [29]. DL is closely related to First order logic (FOL) and can in fact be
converted into FOL. Basically, concepts represent unary predicates, roles binary
predicates and individuals akin to constants.

ABox axioms hold knowledge about individuals. They can be further divided
into concept assertions and role assertions. Concept assertions relate individuals
to a particular concept i.e. connects an instance to its class. Role assertions de-
scribe relations between individuals. TBox axioms define relationships between
concepts and also can be categorized further. Concept equivalence and concept
inclusion expresses that two concepts are equivalent or subsumed by the parent
one respectively. RBox axioms suspectedly concern relations between individuals.
Similarly to TBox axioms, they also allow role equivalence and role subsumption.
In addition, role composition allows creation of new roles through combination of
existing ones and disjoint roles forbid an existence of conflicting roles. To provide
an analogy, TBox axioms are like a database schema and ABox axioms like the
data it contains [30].

In DL, the execution of inference procedures is called reasoning. The basic in-
ference tasks are subsumption i.e. checking if one category is a subset of another
and classification i.e. checking whether object belongs to a certain category [17].

Additionally, Description logic is one of the core pillars of OWL. As one might
notice, building blocks of OWL are very similar to DL: concepts map to classes
and roles to properties. Unsurprisingly, the OWL Description logic derivate is
formally known as OWL DL [29].

2.1.10 Fuzzy Logic

Fuzzy or multi-valued logic is determined as a set of mathematical principles for
knowledge representation based on degrees of membership rather than on crisp

20 Background Theory

memberships of classical binary logic [6]. The fundamental concept fuzzy logic
builds upon is a fuzzy set. The core fuzzy set theory assumption is that an
element belongs to a set with a certain degree of membership. A fuzzy set is
usually defined by a membership function of various shapes which determines the
degree of membership of individual elements. Examples of several fuzzy sets can
be seen in Figure 2.6.

Figure 2.6: Examples of three different fuzzy sets defined on person height vari-
able [6].

One of the basic concepts in fuzzy logic are linguistic variables also known as fuzzy
variables. For example the proposition ”wind is strong” assigns the linguistic
value strong to a variable named wind. Moreover, fuzzy variables carry with
them the concept of fuzzy set qualifiers, called hedges. Hedges are terms that
modify the shape (i.e. boundaries) of fuzzy sets [6]. A few examples of hedges
could be: very, somewhat, less, quite etc. Several examples of hedges applied to
fuzzy sets are shown in Figure 2.7.

As fuzzy sets inherit their base from set theory, standard set operation namely:
complement, containment, intersection and union can be applied to them as well.
This fact lies the foundation for fuzzy rules. Fuzzy rules form conditional state-
ments in the form: IF ... THEN ... and are usually used for capturing human
knowledge in fuzzy logic based systems. An example of a fuzzy rule could be ”IF
wind is strong AND water is warm THEN sailing is good”.

In order to reason about fuzzy sets and elicit knowledge from a fuzzy expert
system, fuzzy inference is used. Fuzzy inference can be defined as a process of
mapping from a given input to an output, using the theory of fuzzy sets [6]. There
are two commonly used types of fuzzy inference: Mamdani-style and Sugeno-style.

Background Theory and Motivation 21

Figure 2.7: Examples of hedges demonstrated on the fuzzy sets from Fig-
ure 2.6 [6].

However, both of them are quite similar and usually involve the following four
steps: Fuzzification, Rule evaluation, Aggregation of rule outputs and Defuzzifi-
cation.

2.1.11 Unity Real-time Development Platform

Unity is a development platform primarily focused on game development. The
software consists of a game engine and visual scene editor. For game logic pro-
gramming, C# scripting language is used. The platform has frequently been
used for projects beyond game development ranging from interactive simulations
environments or console games to immersive AR/VR experiences. The engine
also supports compilation to wide variety of target platforms [31].

2.1.12 Lock-free and Wait-free Concurrency

An algorithm which utilizes concurrency is considered wait-free if every access
by a non-faulty process is guaranteed a response regardless of whether the other
processes are slow, fast or have crashed [32] i.e. it ensures that the response arrives
in a finite number of steps [33]. Lock-free algorithms guarantee that at least one
of the responses arrives in a finite number of steps. Lock-free algorithms are also
dead-lock free but can suffer from starvation. Moreover, wait-free algorithms do
not suffer from starvation [34].

2.1.13 Rust Programming Language

The Rust language is a multi-paradigm strongly-typed system programming lan-
guage developed by Mozilla Research. It is characterized by several unique design

22 Background Theory

principles which provide the language with strong guarantees about isolation,
concurrency and memory safety. The result is that the language is essentially
free of memory errors as well as of data races [35]. Additionally, the language is
very performant and suitable for low-level and efficient software development [36].

The first principle is called ownership. In Rust the memory is managed by own-
ership system which allows compile time checks for possible illegal memory uses.
As a result, there is no need for explicit memory allocations or garbage collector.
Memory gets allocated when variables are first declared (the memory is then also
owned by the variable) and deallocated when the variables happen to go out of
their scope.

The second principle introduces references and borrowing which are both tightly
coupled with the ownership system. Borrowing refers to the use of references i.e.
passing by reference. There are two types of references: mutable and immutable
ones. The limitation is that there can be at most one mutable reference to a
given piece of memory at a given time and also no immutable references. This
fact in connection with the ownership system provides the compiler with enough
information for preventing race conditions and dangling references. Rust also
has a concept of lifetimes which describe for how long a particular reference lives
and is safe to use. Lifetimes are also checked during compile time and potential
violations result in failed compilation [37].

Moreover, there are more features which are worth mentioning e.g. an enforce-
ment of composition-over-inheritance principle by explicitly disallowing the use
of inheritance in the language or convenient zero-cost abstractions.

2.1.14 Text-To-Speech

Dutoit [38] defines Text-To-Speech system as a computer-based synthesizer sys-
tem that should be able to read any text aloud. A very general Text-To-Speech
synthesizer typicaly consists of two modules: Natural Language Processing and
Digital Signal Processing. Natural Language Processing module deals with pho-
netic transcription of the read text while preserving desired intonation and rhythm.
Digital Signal Processing module then transforms the symbolic representation it
receives into speech (i.e. corresponding spoken waveform).

According to Mache et al. [39], both modules can be further decomposed into
several stages. The first stage of Natural Language Processing module is called
Document structure detection and focuses on interpreting punctuation marks and
paragraph formatting. The goal of the next Text normalization stage is to handle

Background Theory and Motivation 23

abbreviations and acronyms. The last stage performs Linguistic analysis which
includes morphological analysis for proper word pronunciation and also syntactic
analysis to achieve good accenting and phrasing. The Digital Signal Processing
module composes of the two following stages. The first stage deals with Phonetic
analysis and the second one with Prosodic analysis.

When it comes to speech synthesis techniques, there are three main categories
of them [39]: Articulator synthesis which aims to computationally simulate the
neurophysiology and biometrics of speech production apparatus, Formant syn-
thesis in which individual speech segments are stored on a parametric basis and
Concatenative synthesis that builds on synthesizing sound by concatenating sam-
ples of prerecorded sounds called units. Recently, Text-To-Speech systems based
on neural networks have achieved great improvements in the produced speech
quality which extends their span to various new domains [40].

2.2 Structured Literature Review Protocol

In the following section, literature and research relevant to the aim of this work is
identified through Structured Literature Review (SLR). The chapter starts with
the identification of relevant sources, proceeds to search strategy description and
finally assesses the quality and usability of the found work. Based on the re-
sults, the well-suited techniques and knowledge is extracted and applied to the
assessment system design. The review was carried out during Suggestion phase
of Design Science Research methodology (see section 1.4).

2.2.1 Identification of Research

This subsection describes how we discover the correct areas of research and obtain
suitable keywords for the later in-depth search. At first there was an exploratory
literature search whose purpose was to clarify commonly used terms which appear
in connection with the research of our interest. The result of this activity is
captured in Table 2.1 with six groups of keywords relevant to our problem domain.
Each group represents one area of research we are interested in. The justification
and description of each individual group of search terms can be found below the
already mentioned Table 2.1.

24 Structured Literature Review Protocol

Group 1 Group 2 Group 3
Data oriented Multi agent Real time

Component based Agent based Interactive
Entity Agent RIS

Component Simulation
System

ECS

Group 4 Group 5 Group 6
Ontology Rule based Driver

Semantic graph Reasoning Traffic
Knowledge graph Logic Road

Stream Instructor
Tutor

Table 2.1: SLR – Search terms and their corresponding groups used during the
in-depth literature search

Group 1: The first group steers the focus towards the main concern of this
work which is Data-oriented design. Additionally, it also in-
cludes terms related to a popular Data-oriented solution which
is Entity Component System architectural pattern.

Group 2: The second group further narrows down the search space by
including multi-agent systems related literature as the core of
the designed system should be agent-based.

Group 3: The third group brings the constraints of real-time execution.
The system is required to work in real-time and cooperate with
an interactive simulated environment which provides it with
input data.

Group 4: This group concerns ontologies and knowledge graphs. There
is a need to create an accurate representation of the simulated
world which puts a lot of crucial requirements on the candidate
data structures. Ontology and knowledge graphs seem to be a
promising option for the world abstraction model.

Group 5: The data produced by the assessment system needs to be suit-
able for logic reasoning on several levels of complexity, there-
fore, the search should provide supplementary research about
logic and reasoning.

Group 6: Finally, the whole work is tightly tied to traffic and driving
domain and also concerns driving instructors and virtual tutors.
For that reason, the last group includes keywords relevant to
this area of research.

Background Theory and Motivation 25

The online digital sources listed below were used to search for the relevant lit-
erature and basically to conduct the whole structured literature review in general:

• ACM Digital Library

• Engineering Village

• Google Scholar

• IEEE Xplore Digital Library

• Science Direct

• Semantic Scholar

• Wiley Online Library

The in-depth search was conducted in two phases called primary and secondary
search as the primary phase revealed only very little relevant research on this
topic.

During the primary phase, the search query was constructed from all available
search terms of all groups. Basically, all the terms of each individual group were
connected by OR operator and groups were connected together by AND opera-
tor. The actual query looks as follows:

(Data oriented OR Component based OR Entity OR Component OR System OR
ECS) AND (Multi agent OR Agent based OR Agent) AND (Real time OR Inter-
active OR RIS OR Simulation) AND (Ontology OR Semantic graph OR Knowl-
edge graph) AND (Rule based OR Reasoning OR Logic OR Stream) AND (Driver
OR Traffic OR Road OR Instructor OR Tutor).

However, it turned out that the search query is too specific and does not provide
enough of the desired results. Hence, it was necessary to conduct several less
restricted searches which utilize only parts of the previously shown query. Using
just a few of the provided groups of search terms yielded the best results. The
list of used combinations is provided below:

• (Group 1) AND (Group 2) AND (Group 3)

• (Group 1) AND (Group 3) AND (Group 4)

• (Group 1) AND (Group 2) AND (Group 6)

26 Structured Literature Review Protocol

• (Group 2) AND (Group 4) AND (Group 5)

• (Group 4) AND (Group 5) AND (Group 6).

2.2.2 Selection of Primary Studies

The primary studies signify a subset of all the found literature which satisfies
certain criteria of relevance. Even though the search query filters out most of
the non-relevant literature, it is still not enough to guarantee the required level
of relevance.

The results of all searches were, therefore, subjected to inclusion criteria eval-
uation. Each found source must fulfill at least one of the provided inclusion
criteria otherwise it is discarded. Fulfilling more than one criteria is preferred
but not explicitly required. This process greatly reduced the amount of found
studies to a manageable subset. The Table 2.2 lists all of the used criteria.

ID Inclusion criteria

IC 1 The study’s main concern is Data-oriented design.

IC 2
The study’s main concern are multi-agent

or agent based systems operating in real-time.

IC 3 The study focuses on real-time simulated environments.

IC 4 The study concerns logic or reasoning.

IC 5 The study concerns ontologies, semantic graphs or knowledge graphs.

IC 6
The study concerns the domain of traffic

or car driving.

Table 2.2: SLR – Inclusion criteria table

2.2.3 Quality Assessment

Finally, the quality of the remaining studies was assessed in order to determine
preferred and dependable research. It was done so by raking each of the study
based on if and to which extent it fulfills each individual quality criteria. The
scoring is either 0 (not at all), 0.5 (to some degree) or 1 (clear fulfilment) points.
The used criteria are defined and described in Table 2.3. They are mostly of
general nature assessing the overall quality of each study from the academic
point of view.

Background Theory and Motivation 27

ID Quality criteria

QC 1
The study has a clear statement of the aim

of the research.

QC 2
The study is put into context with other studies

and research.

QC 3
The study conducts a set of documented experiments

and presents their findings.

QC 4 The study contains a discussion of the results.

Table 2.3: SLR – Quality criteria table

The result of quality assessment of all the studies is shown in Table 2.4. The table
scores each criteria individually and also shows the total score of each study. The
score in general serves more as an indicator of how well were the studies conducted
and is not directly scoring their results or findings.

28 Structured Literature Review Protocol

Study QC 1 QC 2 QC 3 QC 4 Score
Doniec2008 1 0.5 1 0.5 3
Bosse2008 1 0 0.5 1 2.5
Garcia2014 1 0 0 1 2

Gutierrez2014 1 1 0 1 3
Danielsson2015 1 0 0.5 1 2.5

Nguyen1997 1 1 0 0.5 2.5
Morignot2012 1 0.5 0.5 1 3

Toulni2015 1 1 0 0 2
Zhao2015 1 1 1 1 4

Hodson2018 1 0.5 0 0.5 2
Sharp1980 0.5 0.5 0 0.5 1.5
Weiss1998 1 0.5 0.5 0.5 2.5
Hall2014 1 0 0.5 0.5 2
Su2014 1 1 0.5 1 3.5

Lange2016 1 1 1 1 4
Fontana2017 1 1 1 1 4
Fuchs2008 1 1 0.5 0.5 3

Oulhaci2013 1 1 0 0.5 2.5
Sukthankar2002 1 0.5 1 1 3.5

Armand2014 1 1 1 1 4
ZhaoIchise2015 1 1 1 1 4

Mohammad2015 1 1 1 0.5 3.5
Fang2019 1 1 1 1 4

Bermejo2012 1 1 1 0.5 3.5
Buechel2017 1 1 0.5 1 3.5

Krol2013 1 0.5 1 1 3.5
Wang2016 0.5 0.5 0 0.5 1.5

Shoham1987 1 1 0 0 2
Demiryurek2009 1 1 1 0.5 3.5

Hulsen2011 1 1 0.5 0.5 3
Schmalstieg2019 0.5 0 0 0.5 1

Regele2008 1 0.5 0.5 1 3
Kallimanis2016 1 1 0 1 3

LangeWeller2016 1 1 1 1 4
Krotzsch2012 1 0.5 0 0.5 2

Table 2.4: SLR - Results of quality criteria evaluation

Background Theory and Motivation 29

2.2.4 Data Extraction

The final subset of studies was subjected to data extraction process. The ex-
tracted knowledge for each study is presented in a form of a short summary. The
summaries are ordered in the same way as the studies are in Table 2.4.

Doniec2008 – A Behavioral Multi-Agent Model for Road Traffic Sim-
ulation

The paper from Doniec et al. [41] describes a multi-agent approach to road traf-
fic simulation with a particular focus on intersections. The important detail is
that the agents are based on driver’s behavioral model i.e. reflect real-world be-
haviour of drivers such as overestimation or impatience. The first part of the
paper reviews existing approaches to traffic simulation problem. The review in-
cludes multi-agent system approach which is also the main focus of this paper.
The concern is the coordination of agents at intersections i.e. preventing them
from colliding with each other. The proposed solution consists of priority-based
rules which in fact mirror yielding rules at intersections. The rules were imple-
mented in ArchiSim simulation tool and validated via several experiments on real
intersections using real traffic data.

Bose2008 – A Component-based Ambient Agent Model for Assess-
ment of Driving Behaviour

Bosse et al. [42] proposes agent-based ambient model that addresses the assess-
ment of driving behaviour in order to enhance driver’s safety. The system con-
stantly checks the driver via sensors and if unusual behavior is detected it pulls
over and stops the car. The system agents are represented as components which
enhances modularity. The agents utilize predicates called state ontologies (as a
part of their internal processes) and First order logic reasoning to derive their
conclusions. The system contains several components/agents types with different
responsibilities such as inter-agent interaction or world information management.
The whole system was tested in LEADSTO simulation environment.

Garcia2014 – A Data-Driven Entity-Component Approach to Develop
Universally Accessible Games

The paper from Garcia and de Almeida Neris [43] presents an Entity Compo-
nent System (ECS) architecture applied to the domain of Universally-Accessible
games. In this paper, the main exploited advantage of ECS is its flexibility and
ease of change in order to support players with as many disabilities as possible.
Substantial part of the paper compares Object-oriented programming to ECS

30 Structured Literature Review Protocol

architectural pattern and highlights advantages of the latter. Furthermore, the
paper describes a data-driven addition to ECS i.e. a possibility to specify com-
ponent composition via XML files.

Gutierrez2014 – Agent-Based Framework for Advanced Driver Assis-
tance Systems in Urban Environments

In Gutierrez et al. [44] the authors propose a novel safety-focused agent-based
high level reasoning system for Advanced Driver Assistance Systems. The sys-
tem utilizes an ontology as a shared data communication platform which holds
the observed state of the world. In addition, manually created rule repository
contains the logic for executing actions. The individual agents are divided into
listeners (which build ontology) and reasoners (which execute rules from rule
repository). The system also takes into account image snapshots of the environ-
ment and driver’s gaze. The result is demonstrated on a set of several common
traffic scenarios such as parking or pedestrian avoidance.

Danielsson2015 – A High Performance Data-Driven, Entity-Component
Framework For Game Engines With Focus on Data-Oriented Design

Danielsson and Bohlin [45] contributed with a paper about Entity Component
System pattern and Data-oriented design which also partially describes imple-
mentation. The main goal is to exploit best of both worlds i.e. modularity and
modifiability of ECS and efficiency and speed of Data-oriented design. A simple
test case demonstrating cache efficiency is presented an evaluated.

Nguyen1997 – A Multi-Agent Architecture for Situation Awareness

The work of Nguyen [46] describes an architecture of a system which enhances
situation awareness of an aircraft crew in real-time. The architecture uses multi-
agent paradigm as a framework for implementation of individual independent
but cooperating agents. Each of them is an expert system on its own and has a
concern that it reasons about. At first, the paper outlines general characteristics
and advantages of intelligent agents. Secondly, specific data sources and actual
system agents are described. The output of the system is a complete surveillance
picture of the aircraft environment.

Morignot2012 – An Ontology-based Approach to Relax Traffic Reg-
ulation for Autonomous Vehicle Assistance

Morignot and Nashashibi [47] propose an ontology-based solution for relaxation

Background Theory and Motivation 31

of traffic rules in extreme traffic situations such as an overtake of a broken car.
The presented comprehensive ontology of traffic domain is implemented as OWL
ontology in PROTÉGÉ editor. The editor is also loaded with custom symbolic
inference rules for reasoning about the relaxations. The reasoning procedure is
based on Description logic. The problem of ontology changes over time is also
addressed. The limitations of the proposed approach are discussed too e.g. the
lack of uncertainty representation.

Toulni2015 – An ontology based approach to traffic management in
urban areas

The work of Toulni et al. [48] presents a solution for dynamic traffic manage-
ment. The system utilizes an ontology as the main fusion platform for data
extracted from VANET (Vehicular Ad-hoc NETwork) messages. The ontology
is implemented in OWL and covers vast number of common traffic domain con-
cepts and their properties e.g. a vehicle and its speed, position, type etc. All the
concepts are described in detail and discussed thoroughly.

Zhao2015 – An Ontology-Based Intelligent Speed Adaptation System
for Autonomous Cars

The Intelligent Speed Adaptation System developed by Zhao et al. [49] describes
another real-time ontology-based solution for the traffic domain. The system at
hand can be considered an implementation of Advanced Driver Assistance Sys-
tem or a system for autonomous vehicles. Real-time data streams are provided
by car sensors in RDF format and saved into several OWL ontologies. Then,
SPARQL queries are used to reason about ontology states. The ontology is of
three types: map, control and car ontology and all of them are contained within
a knowledge base. The inference rules for reasoning about ontology are specified
in Semantic Web Rule Language (SWRL). The system is verified by experiments
in a simulated world and also on real world data.

Hodson2018 – Application of ECS Game Patterns in Military Sim-
ulators

Hodson and Millar [50] present an application of Entity Component System
(ECS) architectural pattern to interactive military simulators. The first part
of the paper describes the actual comparison of games and interactive simulators
in terms of their main similarities and differences. The second part thoroughly
explains the main idea behind ECS and finally puts it in context of military sim-
ulators.

32 Structured Literature Review Protocol

Sharp1980 – Data-oriented Program Design

The paper from Sharp [51] brings an overview of Data-oriented design princi-
ples. It also presents data flow model of parallel computation based on these
principles. Firstly, the paper covers traditional program specification and devel-
opment methods which are mildly criticized. Secondly, an alternative method
based on data flow (instead of more traditional control flow) is introduced. Since
then the program is considered as a transformation which takes some given input
and produces the desired output. For a precise data flow specification, a custom
domain specific language describing data flow and dependencies is designed and
presented. A few examples of the language usage are presented e.g. parallel
merge sort description.

Weiss1998 – Design and implementation of a Real-time Multi-agent
system

The work of Weiss and Steger [52] shows an experimental distributed multi-
agent system (VEX) for real-time fault diagnosis. The proposed system combines
methods from AI and real-time systems fields. Each agent is a separate computer
system consisting of two components: reflexive component (handles the real-time
aspect, responds to stimuli etc.) and cognitive component (which is the actual
problem solving part). The system also utilizes a simulator in order to gather
expected states and values for comparison with the real world data. There is
also a knowledge model involved which encodes information about possible fault
causes. In case of discrepancies between simulator and real system output, the
knowledge model is consulted about possible fault causes. As the system is dis-
tributed, its implementation is based on message passing.

Barber2005 – Design, Runtime, and Analysis of Multi-Agent Systems

Barber et al. [53] offer a study about available analysis and design tools suitable
for multi-agent systems development. Several tools are presented and discussed
such as TPM which allows designers to compare available technologies based on
required agent competencies or Tracer tool whose purpose is to analyze run-time
agent data (i.e. agent comprehension or debugging). The use of tools is demon-
strated in Unmanned Aerial Vehicle (UAV) target tracking simulation.

Hall2014 – ECS Game Engine Design

In [54] the authors explore common game engine design approaches and also

Background Theory and Motivation 33

develop a custom modular solution based on existing Entity Component System
(ECS) frameworks. At first, the paper compares Object oriented Programming
(OoP) with ECS pattern. The weaknesses of OoP, especially the difficulty of
hierarchy changes and the problem of expandability, are discussed. In contrast,
composition over inheritance philosophy of ECS addressing these issues is pre-
sented. Additionally, disadvantages of ECS e.g. inter-system communication are
also outlined. The two covered ECS frameworks are Cupcake ECS and Artemis
ECS. Both of them are thoroughly analyzed and their main shortcomings are
pointed out. The best of both frameworks was taken and forged into a custom
developed ECS solution.

Su2014 – From a Link-Node-Based Network Representation Model
to a Lane-Based Network Representation Model: Two-Dimensional
Arrangements Approach

The paper from Su et al. [55] describes a road network representation based
on lane data and also proposes an approach capable of generating this kind of
representation from publicly available datasets. The lane based representation
allows more granular reasoning about a road network and is, therefore, very
well suited for simulated environments based on real locations. At first, the pa-
per outlines advantages and the needs for lane based representation. Then, it
compares lane based representation to more common link-node representation.
Several proposed ways of converting the latter into the former and their issues
are discussed. Nextly, a custom conversion solution based on 2D arrangements
is introduced. The solution does not work with generic 2D arrangements thus
three specific customizations are introduced. Then, each step of the conversion
process is explained in detail. Finally, the algorithm and its implementation is
verified and evaluated on two sample road networks.

Lange2016 – GraphPool: A High Performance Data Management for
3D Simulations

The work of Lange et al. [56] presents a novel approach for simulation state
management. The solution is called GraphPool and combines wait-free hash
maps with graph structures. Furthermore, it supports data queries similar to
those found in relational databases. Firstly, the solution is compared to stan-
dard relational databases and the most limiting factors of using the database
approach in simulations are outlined. The proposed solution works in-memory
and is schema-less which further helps it to prevail over relational databases.
Another advantage lies in the system’s ability to handle concurrent data access
in a wait-free manner. The system consists of three main components: Con-

34 Structured Literature Review Protocol

currency control management, Object-oriented data store and Relational query
engine. Moreover, each system component possesses its own local state that is
on demand synchronized with the global world state. The system data is stored
in hash maps as data packets (with individual keys for the whole packet and its
members) which resembles Data-oriented design principles. This whole structure
is aliased as GraphNode. GraphNodes are stored in the central GraphPool ob-
ject in a graph-like structure. The GraphNodes are timestamped and all their
past versions are stored for potential future state replay. The GraphPool also
utilizes caching in order to speed up future queries. Finally, the whole solution
is implemented in C++ and evaluated on spaceflight simulation case study. The
implementation outperformed its competitors by several orders of magnitude.

Fontana2017 – How Game Engines Can Inspire EDA Tools Develop-
ment: A use case for an open-source physical design library

In [14] Fontana et al. present application of Data-oriented design principles into
the field of electronic design tools. These tools, similarly to game engines, need
to be able to handle huge amounts of data while still remain fast and interactive.
The paper starts with common comparison of Object-oriented design (OoD) and
Data-oriented design (DoD). The main advantages of DoD are outlined and also
the way how it overcomes main shortcomings of OoD design are discussed. The
final solution utilizes Entity Component System architectural pattern which is
one of the feasible ways of implementing DoD. In the evaluation part two sys-
tem prototypes were implemented and tested. The results clearly showed faster
execution times and lower latency of DoD in the first test and comparable per-
formance in the second test. In addition, the custom ECS implementation was
extracted to an open-source library called Ophidian.

Fuchs2008 – Integration of Ontological Scene Representation and Logic-
Based Reasoning for Context-Aware Driver Assistance Systems

Fuchs et al. [57] focus on design and sharing information among cooperative
driver assistance systems. The paper first introduces an ontology context model
for driving scene description. The ontology was developed in OWL and covers
vast number of concepts from driving domain such as traffic signs, lanes or nearby
cars which gives it the ability to accurately describe the driving scene at hand.
However, there still might be uncertainties in the data inputs. Each concept or
relation contains meta information which specify information such as certainty,
source reliability, expected time-span etc. Spatial information is represented rel-
atively to the Ego car of interest. Traffic rules are introduced and described in
Semantic Web Rule Language (SWRL). Some of the rules were implemented as

Background Theory and Motivation 35

constraints, therefore, constraint satisfaction could be used to derive conclusions
about the current traffic situation. The workings of the system were successfully
demonstrated on an overtake scenario where the system assists and advises a real
driver.

Oulhaci2013 – Intelligent Tutoring Systems and Serious Game for Cri-
sis Management: A Multi-Agents Integration Architecture

Oulhaci et al. [58] present work about Serious Games (SG) an their usage to-
gether with Intelligent Tutoring Systems (ITS) in crisis management training.
At first, the study defines the concept of SG and evaluates existing work about
it. This part also introduces SIMFOR, a multi player game which allows various
stakeholders to practice a chosen crisis management skill. The game support
collective as well as individual decision making and evaluation. The goal of the
paper is to integrate several functionalities common in ITS into the SIMFOR
game. The focus is on three modules: Learner module (used for understanding
the learner and adaptation), Expert module (contains expert knowledge) and
Pedagogical module (selecting the most appropriate knowledge and schedule ex-
ercises). The proposed system implementation utilizes cooperative multi-agent
architecture to at first simulate human players (Belief Desire Intention agents)
and implement ITS functionalities and metrics (evaluation agents). The domain
knowledge of the system is stored in an ontology. Lastly, the system is demon-
strated on an emergency scenario defined by domain expert.

Sukthankar2002 – Multiple Adaptive Agents for Tactical Driving

Sukthankar et al. [59] explore the possibilities of using multi-agent systems for
reasoning about tactical driving (i.e. determining maneuvers and other short
term goals). The developed multi-agent system is called SAPIENT. Each rea-
soning agent in it is modelled as an independent entity which reasons about a
subset of sensor data coming from perception modules. Each agent votes for a
possible action to take, the votes are accumulated and the most voted action
is executed. The interactions between agents, their influence of final decision
and their other internal states parameters are automatically tuned by evolution-
ary optimization strategy called Population-Based Incremental Learning (PBIL)
which makes the agents able to learn automatically. The system was compared
with rule-based alternative and further evaluated in automated highway driving
test. Two scenarios were tested, namely overtake and safely taking a highway exit.

Armand2014 – Ontology-Based Context Awareness for Driving As-
sistance Systems

36 Structured Literature Review Protocol

The work of Armand et al. [60] focuses on enhancing driving space awareness
of the subject’s vehicle ADAS. The proposed solution uses sensors to track and
interpret spatio-temporal relationships between Ego and its environment in order
to predict behaviour of other nearby entities. The solution is based on OWL on-
tology which captures and stores the context information. The ontology concepts
are divided into two classes: Mobile entities (vehicles, bikes...) and Static entities
(traffic signs, roads, pedestrian crossings...). The ontology also stores Context pa-
rameters i.e. relations between Static and Mobile entities. The inference system
is rule based and the rules are specified by hand in SWRL language. For the
reasoning part Description logic and Pellet reasoner is employed. The correct be-
haviour of the system was evaluated in real-time on pedestrian detection scenario.

ZhaoIchise2015 – Ontology-based Decision Making on Uncontrolled
Intersections and Narrow Roads

In [61] Zhao et al. describe application of an ontology-based decision system
to the specific areas challenging for both autonomous vehicles and ADAS. As the
name suggests, the paper mainly focuses on two of them: narrow roads and un-
controlled intersections. The system gathers data from sensors which are saved as
RDF data streams and potentially accessed by SPARQL query engine. The em-
ployed OWL ontology is of three types: Map ontology (describes road network),
Control ontology (captures main vehicle’s current state and path) and Car on-
tology (defines all other cars involved in the situation at hand). The if-then
reasoning rules are defined in SWRL and on-demand processed by a reasoner.
The rules are almost exclusively specifying right of way or collision avoidance.
Two experiments were conducted: one in simulated environment and one on real
car in real traffic. The system has proven the ability to effectively command ve-
hicle’s path planning system in order to avoid collisions and successfully handle
the challenging traffic situations.

Mohammad2015 – Ontology-based framework for risk assessment in
road scenes using videos

The paper by Mohammad et al. [62] explores feasibility of real-time ontology
construction from a live video stream. Based on the inferred facts, the presented
system calculates potential risks in the current driving situation. As sole de-
tection of entities in a video stream is not sufficient for the complete situation
understanding, an ontology capturing the scene concepts and relations is em-
ployed. It consists of three main classes which all represents factors contributing
to the final risk. The classes are: Risk emerging from object/entity, Environ-

Background Theory and Motivation 37

mental risk and Road environmental risk. The final level of risk is inferred by
manually specified rules. SPARQL language was used for querying the ontology.
The evaluation of the system focused on risky situations involving pedestrians.
YouTube videos with pedestrians were used as a test data source. The evaluation
proved correct and accurate risk assessment.

Fang2019 – Ontology-based Reasoning Approach for Long-term Be-
havior Prediction of Road Users

The work of Fang et al. [63] focuses on long-term drivers behaviour prediction. It
employs an ontology which supplies conceptual situation description and Markov
Logic Network (MLN) for inferring likely behaviour of other road users, therefore,
addressing uncertainty. The proposed framework is made up of three modules:
Situation generator, Situation representation and Scenario generator. Situation
generator detects and generates relationships between Ego vehicle, other sur-
rounding objects and map objects. Situation representation infers the probability
of candidate intentions of each situation object. Ontology is used as a knowledge
representation method. Scenario generator is split into two modules: Behaviour
reasoner and Timing generator. Behaviour reasoner is used to infer occurrence
probability of candidate intentions in the next time step. MLN specifies the rules
which guide the inference process. Timing generator helps to assign probabilities
to other possible future states ahead. The framework was tested in real-time
under ideal conditions while driving through intersections.

Bermejo2012 – Ontology Based Road Traffic Management

Bermejo et al. [64] propose an integration of ontology into vehicle systems in
order to provide them with reasoning capabilities. The paper is focused on al-
lowing emergency vehicles to pass through traffic safely. The proposed ontology
structure is derived from A3ME ontology. It basically extends the base A3ME
ontology in terms of additional concepts as well as additional rules. During driv-
ing, the ontology is populated with sensor data in real-time. If a potential risk
event is detected, alarm is broadcasted to all other emergency vehicles on the
road. Drivers can then take advantage of suggestions provided on a screen inside
of a car. The evaluation was performed in a simulation and focused on safe over-
takes performed by emergency vehicles.

Buechel2017 – Ontology-Based Traffic Scene Modeling, Traffic Reg-
ulations Dependent Situational Awareness and Decision-Making for
Automated Vehicles

38 Structured Literature Review Protocol

The paper from Buechel et al. [65] presents a framework for traffic regulation
based decision-making. The focus of the framework is on autonomous vehicles.
For the description of traffic concepts and relations between them OWL2 on-
tology is used. The ontology contains comprehensive description of the scene
especially in terms of the road network. The reasoning part uses Description
logic encoded traffic rules specified in SWRL and utilizes Pellet reasoner. The
decisions are derived in real-time directly from the stored traffic rules and current
ontology state. The framework is built from individual modules which allow easy
potential adaptations to different sets of traffic regulations of different countries.
The solution is evaluated and validated on several scenarios: 4-way controlled in-
tersection, 4-way uncontrolled intersection, 4-way uncontrolled intersection with
tram tracks and police officer controlled intersection.

Krol2013 – Practical Performance Aspects of Using Real-Time Multi-
Agent Platform in Complex Systems

Krol and Nowakowski [66] investigate performance aspects of real-time multi-
agent systems. The paper focuses on multi-agent system implementation in Java
(JADE) which deals with vehicle control and complies to real-time specifica-
tions. The system is called CARS. Furthermore, the implementations addresses
concepts of multi-threading and distributed execution which implied custom im-
plementation of thread management and scheduling. The goal of the evaluation
part was to prove that the employed performance enhancement techniques speed
up the system. The implementation was tested in two synthetic benchmarks.
The main measured performance properties were thread and agent delays. How-
ever, the experiments showed weaknesses of the current implementation, mainly
due to JADE framework limitations.

Wang2016 – Study of Semantic Reasoning based on Ontology Descrip-
tion Logic

Jinhuan Wang and Baomin Li [67] conducted a study about feasibility of De-
scription logic (DL) reasoning about ontologies. Ontology and its construction
for an example fruit domain (Apple-Onto) serves as a basis for semantic reason-
ing discussions. At first, the paper describes OWL language and its reasoning
capabilities. Then, it defines several ontology construction principles which im-
prove the overall quality of developed ontologies. The notions of DL TBox and
ABox are explained and so is reasoning based on both concepts. The reasoning
performed on Apple-Onto confirmed the possibility of reasoning about several
facts e.g. classification of entities or ontology data consistency checking.

Background Theory and Motivation 39

Shoham1987 – Temporal Logics in AI: Semantical and Ontological
Considerations

Shoham [68] explores representation of temporality aspects within logic languages
and temporal reasoning in general. The work primarily focuses on two most in-
fluential formalisms proposed by Allen and McDermott called Interval calculus
and Temporal logic respectively. In both of them, several inconsistencies were
found. Both formalisms are, therefore, compared, their similarites are identified
and utilized as a basis for a new improved formalism. The new formalism is
termed Interval logic and proposes solutions to the identified issues.

Demiryurek2009 – Towards Modeling the Traffic Data on Road Net-
works

The work of Demiryurek et al. [69] concerns spatio-temporal networks and their
accurate modeling. The paper proposes a framework for modelling spatio-temporal
traffic networks which dynamically capture the times needed to travel through
individual segments based on traffic flow. The framework is based on real world
historical traffic data. The modelling approach consists of three steps: comput-
ing time-dependent travel times from historical data, labelling individual regions
based on their spatial characteristics and grouping similar traffic flows into re-
spective spatial characteristics. The purpose is to find the most representative
traffic flows within network regions. The framework was successfully validated
by conducting experiments with several different road networks. Furthermore, a
spatio-temporal road network model of Los Angeles county was generated and
open-sourced.

Hulsen2011 – Traffic Intersection Situation Description Ontology for
Advanced Driver Assistance

In [70] Hulsen et al. present an approach to generate complete traffic situation
description for Advanced Driver Assistance Systems (ADAS). The basis for situ-
ation description is an OWL ontology which is validated and further enhanced by
reasoning about traffic rules. The first part of the paper introduces theory and
related research necessary for a good understanding of the proposed approach.
As the paper focuses on intersections, the ontology covers only this part of the
traffic domain. The ontology, however, supports loading of additional parts as
modules, therefore, it is capable of dynamic expansion. The used rule set encodes
traffic regulations hence allows more precise Description logic based reasoning.
The ontology is queried by intelligent agents who extract desired information for
ADAS. The real-time aspect of the proposed system is beyond its current capa-

40 Structured Literature Review Protocol

bilities. A single reasoning query can take up to several seconds which does not
meet real-time criteria. The work is demonstrated on several examples which
focus on reasoning about intersections. Both controlled and uncontrolled inter-
sections are considered.

Schmalstieg2019 – Unified Patterns for Realtime Interactive Simula-
tion in Games and Digital Storytelling

The paper from Schmalstieg [71] discusses the use of several architectural and
software design patterns in interactive simulations and game engines. The pur-
pose of the study is to show that these design patterns share a common ground
and can be freely combined without introducing any overhead. The paper in-
troduces several concepts that gave rise to variety of common design patterns,
namely notifications, dataflow, publish/subscribe, Model View Controller and
Entity Component System (ECS). Each of them is discussed separately. In the
end, the paper proposes a combined pattern called Brokered ECS which is based
on ECS, publish/subscribe and dataflow. The Brokered ECS is suggested as an
ideal choice for simulations and games.

Regele2008 – Using Ontology-based Traffic Models for more efficient
Decision Making of Autonomous Vehicles

Regele [72] describes application of high-level world model to the domain of au-
tonomous driving systems. The ontology-based model consists of low-level part
dedicated to trajectory planning and high-level part which reasons about traffic
coordination. Both of the parts are handled by separate systems. The work pri-
marily focuses on reasoning about situations at intersections. The road network is
modelled as a graph-like structure of connected lanes. Nearby vehicles and other
objects related to lanes have their positions specified within them. Relations
between individual lanes make up the whole road network. The decision-making
process is rule based and the rules are specified in advance. The proposed system
was used within CyberCars2 project and was proven to be helpful for high-level
reasoning of autonomous cars.

Kallimanis2016 – Wait-Free Concurrent Graph Objects with Dynamic
Traversals

The paper from Kallimanis and Kanellou [73] proposes a wait-free concurrent
graph data structure model capable of atomic snapshots. The model is later
implemented as an adjacency matrix based graph structure named Dense. The
implemented structure supports complete and partial dynamic traversals and ad-

Background Theory and Motivation 41

dition or removal of edges or vertices. However, the number of vertices needs to
be known in advance (or at least their maximal count). The results is validated
by theoretical proof of correctness without supplying any empirical evidence.

LangeWeller2016 – Wait-Free Hash Maps in the Entity-Component-
System Pattern for Realtime Interactive Systems

In [74] Lange et al. introduce high-performance lock-free and wait-free hash map
data structure for real-time interactive systems (simulations, computer games
etc.). The intended use case for the hash map is storing components in Entity
Component System architectural pattern. The basic idea behind the wait-free
nature of the data structure is double buffering of the data it contains. Every
component stores two versions of itself: producer and consumer version. When a
System tries to write to a Component it receives a clone of the current producer
version. After applying modifications to it, the newly written producer version
is returned to the component and marked as a new producer and consumer ver-
sion as well. The old consumer versions are kept in memory until all reads from
them are finished, then they are discarded. The paper proposes different schemes
for storing versions of consumer component data based on responsibilities for
their deallocation. Two approaches are proposed: centralized (component is re-
sponsible) and decentralized (system which reads from it is responsible). The
different variants of the memory management are empirically evaluated in space-
craft simulation engine. All implementations, however, outperformed lock-based
approaches.

Krotzsch2012 – A Description Logic Primer

The paper from Krötzsch et al. [29] provides a formal introduction to Description
logic (DL) and reasoning. At first, the paper explains how DL provides means for
modelling the relationships between entities in a domain of interest. Nextly, the
basic building blocks of DL i.e. concepts, roles, constructors, ABox and TBox
axioms are introduced. The DL family SROIQ is further explained in detail.
Finally, a relation of DL to modern OWL is discussed.

2.2.5 Data Synthesis

The data extraction phase yielded considerable amount of research for the vast
majority of the fields of our interest. The following paragraphs summarize the
information found and put them in context with the goals of this work.

Data-oriented design was first introduced and discussed in the paper from Sharp

42 Motivation

[51] which is considered the cradle of DoD. The papers from Fontana et al. [14] and
Danielsson and Bohlin [45] put DoD into practice and even connect it with ECS
architectural pattern and the usage in performance-intensive applications. When
it comes to bare ECS, several papers are concerned about this topic (Hodson and
Millar [50], Hall [54], Schmalstieg [71], Lange et al. [74]). Most of these, utilize
the pattern in simulated environments, computer games or other real-time or
performance critical environments.

Multi-agent systems are also frequently used for data extraction and process-
ing in the traffic domain. Majority of the papers utilize collaborative multi-agent
systems (Doniec et al. [41], Bosse et al. [42], Gutierrez et al. [44], Nguyen [46], Bar-
ber et al. [53], Oulhaci et al. [58], Sukthankar et al. [59]) whose goal is usually
to assess and comprehend a traffic situation at hand. Ontologies and knowl-
edge graphs commonly appear together with multi-agent systems and serve as
knowledge base and/or communication and data exchange platform (Morignot
and Nashashibi [47], Toulni et al. [48], Zhao et al. [49], Fuchs et al. [57], Armand
et al. [60], Zhao et al. [61], Mohammad et al. [62], Fang et al. [63], Bermejo et al.
[64], Hulsen et al. [70], Regele [72]). Some of the papers use ontologies primarily
for road network representation (Su et al. [55], Buechel et al. [65], Demiryurek
et al. [69]).

Various details about Description Logic and reasoning are covered by Jinhuan
Wang and Baomin Li [67], Shoham [68] and Krötzsch et al. [29]. Finally, several
papers also specialize solely on the real-time aspect in context of the previously
mentioned terms (Weiss and Steger [52], Lange et al. [56], Krol and Nowakowski
[66], Kallimanis and Kanellou [73]).

2.3 Motivation

The Structured Literature Review described in section 2.2 identified new addi-
tional motivation for the research in context of this work. Based on the evidence
found in literature, there are no existing multi-agent frameworks that utilize
Data-oriented design principles or Entity Component System architectural pat-
tern. Moreover, almost none of the papers concerns real-time communication
with some existing simulation environment in order to exchange information.
These facts introduce a new dimension to our research, strenghten the motiva-
tion for this particular kind of research and enhance potential outcoming value
of this thesis.

Chapter 3

System Design and
Implementation

This chapter presents the design and architecture of the implemented solution.
The following text is split into four sections which describe the main building
blocks that make up the whole system. The first section talks about simulated
world abstraction, the second section about the design and architecture of the
assessment system, the third section is concerned about interfacing with the
existing simulator and the last section presents the developed intelligent agents for
testing and functionality demonstration. The work presented in this chapter maps
to Suggestion and Development phases of Design Science Research methodology
(see section 1.4).

3.1 Dynamic Model of Simulated Environment

The first important problem to investigate and solve was the representation of the
simulated environment in order to obtain Situation Awareness (2.1.5). Situation
Awareness is needed for the assessment system to enable correct reasoning about
traffic situations. Based on the comprehensive work done by Armand et al. [60],
Zhao et al. [61], Mohammad et al. [62], Fang et al. [63], Buechel et al. [65], Hulsen
et al. [70] and Toulni et al. [48], it was decided to employ a dynamic ontology
(see 2.1.6) evolving over time which serves as a sound abstraction of the simulated
world.

44 Dynamic Model of Simulated Environment

3.1.1 Traffic Situation Ontology

The proposed Traffic Situation Ontology combines several design decisions pro-
posed by various researchers. The idea of separating world entities into Static
Objects (i.e. objects that do not move) and Dynamic Objects (i.e. movable ob-
jects) was taken from the work of Fang et al. [63]. The employed approach for
relating cars to each other based on their relative position was originally proposed
by Hulsen et al. [70]. Assignment of dynamic properties with over time changing
values to ontology classes was inspired by Matheus et al. [4]. Finally, the road
network representation is based on the work of Morignot and Nashashibi [47].
The resulting ontology is shown in Figure 3.1. All of the ontology classes and
corresponding properties are listed in Table 3.1 and all of the relations between
them are described in Table 3.2. For the creation and iterative development of
the ontology, OWL (2.1.6) and Protégé editor v5.5.0 was used [75].

Figure 3.1: Ontology for the description of traffic situations. Dashed arrows
define subclassing while filled arrows stand for normal relations. Classes are
represented by blue circles and properties by yellow rectangles.

System Design and Implementation 45

The first ontology class, DynamicObject, contains three subclasses: Ego which
represents the car that is being driven, Car which represents all the other cars
that are part of the simulated world and Pedestrian class that represents all kinds
of pedestrians. Regarding StaticObject there are four different subclasses with
self-explanatory names: Crosswalk, Intersection, Lane, Road and RoadSign. In
addition, RoadSign is a superclass for five different types of road signs: NoEn-
trySign, PriorityRoadSign, SpeedLimitSign, StopSign and YieldSign.

Class Properties Parent Class
DynamicObject - -

Ego - DynamicObject

Car

carId: int,
carSpeed: float,

carPosition: Vector3,
carDirection: Vector3

DynamicObject

Pedestrian
pedestrianSpeed: float,

pedestrianPosition: Vector2,
pedestrianDirection: Vector2

DynamicObject

StaticObject - -

Crosswalk
crosswalkId: int,

crosswalkPosition: Vector3,
crosswalkPedestrianCount: int

StaticObject

Intersection
intersectionId: int,

intersectionPosition: Vector3
StaticObject

Lane
laneId: int,

laneName: string,
laneSpeedLimit: int

StaticObject

Road
roadId: int,

roadName: string
StaticObject

RoadSign - StaticObject
NoEntrySign - RoadSign

PriorityRoadSign - RoadSign
SpeedLimitSign signSpeedLimit: int RoadSign

StopSign - RoadSign
YieldSign - RoadSign

Table 3.1: The list of classes which form the traffic situation ontology. The
ontology is shown in Figure 3.1.

46 Dynamic Model of Simulated Environment

The purpose of different relations is quite transparent, therefore, their detailed
description is omitted. However, it is important to note that relations are always
directional. In addition, there is a group of relations that might be worth some
extra attention. It is the group concerning relations between Ego and Car (i.e.
all the other cars) which consists of four relations: isInFront, isOnRight, isBe-
hind, isOnLeft. These relations play an important role in the actual assessment
process (as described in later chapters).

Relation Properties From Class To Class
belongsTo - RoadSign Lane

connectsTo - Lane Lane
contains - Intersection Lane

has - Road Lane
isAt - Car, Ego Intersection

isBehind - Car Ego
isIn - Car, Ego Lane

isInFront - Car Ego
isOn - Car, Ego Road

isOnLeft - Car Ego
isOnRight - Car Ego
isPartOf - Lane Road

passesOver - Ego Crosswalk
walksOn - Pedestrian Lane

yieldsToCarIn ifDirection Lane Lane

Table 3.2: The list of relations the traffic situation ontology includes. The ontol-
ogy is shown in Figure 3.1.

3.1.2 Data-oriented Knowledge Graph

In order to represent the traffic situation ontology in data-oriented manner and
allow its dynamic and efficient updates during runtime, a custom data structure
called Knowledge Graph was designed (see subsection 2.1.6). The data struc-
ture is a graph-based structure which was built with four essential data-oriented
design practices in mind (for more details see subsection 2.1.2): DBMS-like mem-
ory layout, Linear and continuous data structures, Data packing and sorting and
Hot/cold splitting. Moreover, the data structure is capable of storing all of its
previous states which can be recalled on demand at any time. These properties
make the structure suitable for back in time reasoning about traffic situations.

System Design and Implementation 47

The most important part of the data structure is its index substructure which
exists in two versions: one for Knowledge Graph nodes called Node Index and
one for Knowledge Graph relations correspondingly called Relation Index. Both
indices are represented as linear arrays which contain metadata about the stored
nodes and relations. The indices are meant to separate metadata from the actual
data and speedup the lookup of records (Linear and continuous data structures
and Data packing and sorting principles). Moreover, their memory layout is cache
friendly as the records are ordered by their timestamps and the most common
operation performed on them is sequential lookup. The actual node/relation val-
ues are stored in separate heterogeneous linear arrays which are accessed through
the mentioned index substructures (Linear and continuous data structures and
Hot/cold splitting principles). The complete memory layout is shown in Fig-
ure 3.2. As the Figure illustrates, each Node Index record contains:

1. Timestamp: Timestamp of the moment when this record and correspond-
ing node value was saved to memory.

2. Value id: Index to another linear heterogeneous array which contains the
actual values of nodes.

3. Instance id: Identifier that allows the graph structure to hold more in-
stances of the same type (e.g. there might several Cars surrounding Ego)

4. Outgoing relations index: An array of indices to Relation Index array.
The indices point to relations which originate from the node that this Node
Index represents.

5. Incoming relations index: An array of indices to Relation Index array.
The indices point to relations which end in the node that this Node Index
represents.

6. Marker: A label that defines the type of this Node Index record. The
record can either signify addition of a new node (valid type) or also the
deletion/expiration of an existing one (removed type). Explanation of this
concept with an example is provided later in this subsection, see Figure 3.5.

Similarly, each Relation Index record contains:

48 Dynamic Model of Simulated Environment

1. Timestamp: Timestamp of the moment when this record and correspond-
ing relation value was saved to memory.

2. Value id: Index to another linear heterogeneous array which contains the
actual values of relations.

3. Instance id: Identifier that allows the graph structure to hold more in-
stances of the same type (e.g. there might several relations to Cars sur-
rounding Ego)

4. From node index: An index to Node Index array. The index points to a
node from which the relation, that this Relation Index represents, originate.

5. To node index: An index to Node Index array. The index points to a
node in which the relation, that this Relation Index represents, ends.

6. Marker: A label that defines the type of this Relation Index record. The
record can either signify addition of a new relation (valid type) or also the
deletion/expiration of an existing one (removed type). Explanation of this
concept with an example is provided later in this subsection, see Figure 3.5.

Both the Node Index and Relation Index arrays are enclosed in outer arrays
which classify them based on the type of nodes/relations they store (DBMS-
like memory layout principle). This distinction further speeds up the lookup of
nodes/relations because it allows immediate exclusion of the records of different
types. The memory layout for Node Index is illustrated in Figure 3.3 and for
Relation Index in Figure 3.4. The capacity of Node/Relation Index arrays as
well as the enclosing arrays is set beforehand i.e. cannot be increased during
runtime. The main reason for compile time fixed capacity are limitations imposed
by shared memory regions as further discussed in subsection 3.3.4.

The description of Node Index and Relation Index substructures has already
briefly touched the concept of labelling/marking individual index records. This
technique allows the data structure to hold all its previous states and also en-
ables efficient querying of them based on their timestamps. One might have
already noticed that the data are actually never deleted from Knowledge Graph
as they always needs to be available for potential queries. In fact, the amount of
data Knowledge Graph can store is limited only by its set capacity and available

System Design and Implementation 49

Figure 3.2: The memory layout of Node Index and Relation Index substructures.

memory. An example of how labelling works is demonstrated in Figure 3.5. An
explanation with several Node Index records follows below (the explanation ap-
plies to Relation Index records as well). The first Node Index record appears at
t “ 2. Its marker is set to valid which means addition of a new node to Knowl-
edge Graph. At t “ 4, there is a new record again which shadows the record from
t “ 2. Therefore, the record from t “ 4 takes over and is the active one since
t “ 4. However, at t “ 5 there is a new record again with removed marker. This
record marks the removal of the node from Knowledge Graph, hence the node
the record represents ceases to exist. Later at t “ 8, a new Node Index record
appears again. The record has valid marker, thus signifies an addition of a new
node to Knowledge Graph.

The next design concept which guarantees the lock-free and wait-free (for more
information see subsection 2.1.12) nature of Knowledge Graph, is the employed
Graph Indices substructure. As you can see in Figure 3.6, the Graph Indices

50 Dynamic Model of Simulated Environment

Figure 3.3: The classification of Node Index arrays based on the actual type of
node values they represent.

Figure 3.4: The classification of Relation Index arrays based on the actual type
of relation values they represent.

substructure in fact exist in two copies. The currently active Graph Indices sub-
structure is represented by current indices index (either 0 or 1) and determines
tails for all preallocated arrays within Knowledge Graph data structure. When
new data for Knowledge Graph arrives, they are written beyond the current tails
and the new tails are written to currently inactive Graph Indices. Finally, the
current indices index is atomically changed to its new value (either from 0 to 1 or
from 1 to 0) which activates the new tail values. This approach makes Knowledge
Graph safe to modify from one thread and safe to read from multiple threads at
the same time. Graph Indices also contain a timestamp which marks the moment
when they were written.

The basic operations Knowledge Graph supports are: addition of a new node, up-
date of an existing node, removal of an existing node, addition of a new relation,

System Design and Implementation 51

Figure 3.5: An example sequence of several index records with various markers.

Figure 3.6: The layout of Knowledge Graph indices which determine the range of
available records/values and also make Knowledge Graph data structure lock-free
and wait-free.

update of an existing relation, removal of an existing relation. The computational
complexity of all operations is Op1q. Furthermore, there is a possibility to access
the raw data directly or through iterators. However, the system uses more so-
phisticated solution based on Description logic (see subsection 2.1.9) described
later in subsection 3.1.5.

3.1.3 Transformation and Code Generation

In order to make Traffic Situation Ontology compatible with Knowledge Graph,
code generation practices were employed (see subsection 2.1.7). Code genera-
tion separates the ontology design from the actual implementation and therefore
permits its easy conversion to various programming languages. This aspect gets
particularly important as part of the assessment system resides in its own ap-
plication implemented in Rust (2.1.13) while another part lives inside of Unity
development platform (2.1.11). The custom code generation pipeline runs at
compile-time and is illustrated in Figure 3.7.

The first generated product are types representing Traffic Situation Ontology

52 Dynamic Model of Simulated Environment

classes and relations which are also compatible with Knowledge Graph. The type
representations are generated for Rust as well as C# language. Apart from the
type conversion, the pipeline also generates API for accessing Knowledge Graph
from Rust and C#.

Figure 3.7: The code generation pipeline which converts Traffic Situation Ontol-
ogy into corresponding Rust and C# representations. The API for accessing it
is also generated.

3.1.4 Interval Algebra

Reasoning about traffic situations requires a solution for handling the temporal
aspect of it. From all the approaches discovered during literature review (see
section 2.2) and presented in subsection 2.1.8, Allen’s Interval Algebra constitutes
the best fit. Therefore, it was chosen for the representation of time, time intervals
and relations between them in the whole assessment system. The details about
it can be found in already mentioned subsection 2.1.8. In addition, Figure 2.5
describes the basic relations between time intervals as defined by Allen [27].

3.1.5 Pattern Query Engine

The subsection 3.1.2 has already described a suitable ontology representation
and similarly the subsection 3.1.4 has defined a reasonable time representation.
The goal of this subsection is to bring these two aspects together while allowing
comprehensive and efficient reasoning i.e. queries to Knowledge Graph. The im-
plemented solution is based on Description logic (2.1.9) and inspired by the work
of several researchers, namely Hulsen et al. [70], Jinhuan Wang and Baomin Li
[67], Buechel et al. [65], Fuchs et al. [57] and Zhao et al. [49].

The reviewed work predominantly relies on existing reasoners designed for rea-
soning about OWL ontologies. Unfortunately, the reasoners are not compatible

System Design and Implementation 53

with the data-oriented Knowledge Graph structure. Therefore, the developed so-
lution employs a custom reasoning system named Pattern Query Engine which
allows searching for patterns in Knowledge Graph within time and space. As
mentioned before, the system utilizes Description logic but supports only a sub-
set of it. The set of reasoning capabilities include: ABox – Concept assertions,
Role assertions and Individual (non)equality, TBox – Concept equivalence but
no Concept inclusion, RBox – Role equivalence but no Role inclusion. The en-
gine also does not support constructors for Concepts and Roles. In contrast to
Description logic, the engine supports temporal reasoning and utilizes Allen’s In-
terval Algebra (subsection 3.1.4) for the representation of time.

Figure 3.8 presents an example of a pattern query. The left side of the figure
shows a hypothetical state of Knowledge Graph with Ego node and four Car
nodes connected by isBehind and isInFront relations. The query is defined as
follows (using an illustrative pseudo code): Node(typeOf(Ego)) with outgoing Re-
lation(typeOf(isBehind)) to Node(typeOf(Car)). After the execution of the query,
a result in the form of a tree structure is returned (see Figure 3.8). Even though
only two nodes and a relation between them were specified, the engine returned a
tree structure with three nodes as there are two possible patterns to match. For
the query execution, one also needs to provide a time interval within which the
query evaluates. Because of the fact that Knowledge Graph has different states
at different times, the query might be successful for some particular time interval
while being unsuccessful for some other interval (i.e. returning an empty result).
Moreover, due to the time interval relations defined by Interval Algebra, it is pos-
sible to combine queries in time e.g. search for pattern 1 within interval (0,10)
and if found search for pattern 2 within interval (10, 15) is a perfectly valid query.

The worst case computational complexity of a pattern query is Oppn1 ` n2...q `
pr1 ` r2...qq where each nx represents one node that is a part of the query and
each rx represents one relation which is also a part the query. The values of
both nx and rx represent the number of records of node/relation indices of the
corresponding types. Thanks to the separation of index record types, the actual
number of records tends to hold low in comparison with the total number of index
records. In addition, the underlying linear arrays make the lookup quite cache
efficient which further speeds up the query execution.

All of these features combined form a robust solution for reasoning about traffic
situations. Importantly, the whole solution has proven its capability to deliver
results in real-time which is particularly important for the correct and timely
operation of the assessment system (see chapter 5).

54 Assessment System Architecture

Figure 3.8: The execution flow of a query in Pattern Query Engine.

3.2 Assessment System Architecture

The core part of the solution is an assessment system application whose pur-
pose is to obtain sufficient level of Situation Awareness (2.1.5) and to reason
about various traffic situations. The system was designed and implemented as
multi-agent (2.1.4) and built around Knowledge Graph and Pattern Query En-
gine concepts described in previous subsections (3.1.2 and 3.1.5). In addition,
the solution was inspired by multi-agent systems presented by Doniec et al. [41],
Nguyen [46], Gutierrez et al. [44], Weiss and Steger [52] and Sukthankar et al. [59].

The multi-agent system described in this section is commonly referred to as
secondary multi-agent system as there also exist primary multi-agent system de-
scribed later in subsection 3.3.1. The agents of secondary multi-agent system are
often called high-level agents whereas the agents of primary multi-agent system
are low-level agents. In fact, each multi-agent system maps to a different level
of Situation Awareness model proposed by Endsley [19]. Primary multi-agent
system deals with achieving the first level of Situation Awareness (Perception
of elements in current situation) while Secondary multi-agent system gains the
second level of Situation Awareness (Comprehension of current situation). The
third level (Projection of future status) is not considered in this thesis.

3.2.1 Entity Component System

The assessment system architecture is based on Entity Component System archi-
tectural pattern (2.1.3) which enforces modularity and follows the composition
over inheritance principle. Furthermore, this pattern is highly compatible with
Data-oriented design principles (2.1.2). The foundation of the design was laid
by Bosse et al. [42] and Danielsson and Bohlin [45] and subsequently further ex-
tended in this work. In addition, the final ECS implementation was influenced

System Design and Implementation 55

by the work of Garcia and de Almeida Neris [43], Hodson and Millar [50] and
Hall [54].

In the actual system, Components are represented as various custom defined
structures of data stored in linear Component storage vectors. Intelligent agents
map to Entities which, therefore, are commonly referred to as Agent Entities.
The reasoning logic of each agent is encapsulated in Systems and hence can be
easily swapped with a different solution. Moreover, the system introduces the
notion of Modules. Modules are additional units containing source code which
can be used to enhance the functionality of the assessment system. An example
of a module could be a new reasoning engine or some data processing algorithms
packed in a library. Each Agent Entity has one or more Source Components and
exactly one Sink Component. The Source Components provide the Agent Entity
with the data necessary for it reasoning process. On the contrary, Sink Compo-
nent stores the result of the Agent Entity ’s reasoning process. The whole ECS
architecture is shown in Figure 3.9. The actual implementation of the provided
Agent Entities is presented and discussed in section 3.4.

As you may have seen in Figure 3.9, individual Component Storage vectors are
accessed through Read handles and Write handles. This is because of the reason
that the vectors are designed to be thread-safe, lock-free (see subsection 2.1.12)
and eventually consistent data structures. Their design was inspired by Lange
et al. [74] but is to a large extent based on the solution of Gjengset et al. [76].
Both of the mentioned papers use hash maps as the underlying data structure.
This work takes the eventually consistent double-buffered hash map designed
by Gjengset et al. [76] and adapts the approach to make it work with linear
vectors. We named the resulting data structure Eventually Consistent Vector or
ECV.

The internal workings of ECV are illustrated in Figure 3.10. The data structure
works with arbitrary number of Read handles i.e. readers and one Write Handle
i.e. writer. Multiple writers are possible if locking is introduced (unwanted and
not necessary for the purposes of the assessment system). As mentioned in the
previous paragraph, the data structure is essentially double-buffered i.e. exists
in two copies. One of the copies serves for reads and the second one for writes
as shown in the left third of Figure 3.10. Thus, the essential question is when
is it safe to swap the pointers pointing to each of the copies in order to publish
newly written data (the middle third of Figure 3.10). The work of Gjengset et al.
[76] introduces local epoch counters for each of the readers. Every time a reader
does an operation (a read) on the vector, it increments its local counter before
it starts the operation and also after it finishes the operation. Then, when the

56 Assessment System Architecture

Figure 3.9: The schema of the ECS architectural pattern adapted for the multi-
agent assessment system purposes.

writer (there is only one) wants to do the pointer swap, it first swaps the pointers
and then waits until it sees all the epoch counters either having an even value
(signifies inactive reader) or sees them increase by 1 (reader has finished its op-
eration). Finally, to keep the data consistent after a swap, the writer reapplies
the writes it did to the previous vector to its new vector (the right third of Fig-
ure 3.10).

3.2.2 Agent Platform

Agent Platform is a platform that utilizes the custom ECS solution described
in subsection 3.2.1 and hosts all Components and their corresponding storage vec-
tors, Agent Entities, Systems and Modules. Importantly, the platform takes care
of work distribution between multiple threads and execution scheduling which
helps to achieve real-time performance. Furthermore, it also provides an inter-

System Design and Implementation 57

Figure 3.10: The internal workings of ECV demonstrated on three data structure
states.

face for the driving simulator (see 1.2). The idea of real-time agent platform was
introduced in the work of Krol and Nowakowski [66].

All Components used by the multi-agent assessment system must be first ex-
plicitly registered in the platform. However, the platform also contains some
Implicit Components which form the bridge between the system and the driving
simulator. Implicit Components actually provide access to shared memory re-
gions described in subsection 3.3.4. Similarly, each included Agent Entity must
be registered beforehand too. In order to register an Agent Entity, its Source
Components, Sink Component and System must be specified. In addition, Agent
Entity can be registered as one of the two available types. The types are de-
scribed below:

1. Periodic: Agent Entity runs periodically after some set period of time
elapses. The period needs to be provided while registering the entity.

2. Observing: Agent Entity runs after all the other Agent Entities it observes

58 Simulator Interface

produce new data. The observed Agent Entities need to be provided while
registering the entity.

In a typical Agent Platform configuration, the first line of Agent Entities consists
of Periodic entities while the latter entities keep waiting for data produced by
other entities i.e. are of the Observing type. Therefore, Observing entities in fact
have a data dependency on the observed entities i.e. form a Dependency Graph
as described by Wang [77]. An example configuration including several Agent
Entities is illustrated in Figure 3.11. In Agent Platform, each of the registered
entities runs in its own thread and communicates with the platform and other
entities through message passing. The messages are just simple notifications, the
actual data is exchanged through Components and the underlying thread-safe
and lock-free vector based storages. The various kinds of implemented Agent
Entities are later described in section 3.4. Similarly to Agent Entities, individual
Modules also need to get registered in the platform beforehand in order to become
available.

Figure 3.11: Example agent Dependency graph which combines various Observing
and Periodic agents. The number of milliseconds below each Periodic agent name
signifies the amount of elapsed time after which they get periodically triggered.

3.3 Simulator Interface

For the purpose of data extraction from the driving simulator, a suitable interface
needs to be designed. The interface ideally has to be as generic as possible while
supporting extraction of all the data required by the assessment system. Also, the
sole pulling of data from the simulator is not a sufficient nor a complete solution.
A bridge which connects the assessment system to the simulator interface needs
to be built too.

System Design and Implementation 59

3.3.1 Unity Interface

The simulator and all available simulated worlds (basically various driving lessons)
were developed by Way AS on top of Unity real-time development platform
(see subsection 2.1.11). Therefore, the required interface needs to utilize the
platform as well while respecting its limitations and constraints. The goal of the
simulator interface is to obtain Situation Awareness by constructing an appro-
priate Knowledge Graph representation of the current traffic situation. Then, the
graph needs to be made available for the assessment system.

For the Knowledge Graph construction part a set of low-level agents so called
primary multi-agent system (subsection 2.1.4) was developed and hosted inside
of Unity (for more information see section 3.2). The whole multi-agent system
is represented by a single simulated world entity while its individual agents run
inside of coroutines provided by the platform. Each of the agents focuses on
detection of a different phenomenon. More details about the individual imple-
mented agents is provided in subsection 3.4.3.

In order to determine which simulated world elements of interest are part of
the current traffic situation, the platform’s collision engine was utilized. The
Ego car was encapsulated in four collision triggers which bring various world el-
ements into scope as they get closer, and remove them as they get further away.
Moreover, multiple triggers allow detection hysteresis i.e. one trigger is marked
as a trigger that detects the appearance of a simulated world element while an-
other trigger deals with the removal of the same element. This helps to remove
flickering of elements that are located close to trigger boundaries. However, the
rule this solution enforces is that the exit trigger needs to fully encapsulate the
corresponding enter trigger for the hysteresis to work correctly. The individual
triggers are described below and also visualized in Figure 3.12:

1. Outer trigger: The outermost (red) trigger. Deals only with the removal
of elements that are required to stay in scope the longest.

2. Inner trigger: The second biggest (violet) trigger. Usually utilized as the
entry trigger while being coupled with outer trigger.

3. Nearby trigger: The middle sized (gray) trigger. Often paired with the
previous trigger (inner trigger) while serving as the entry trigger.

60 Simulator Interface

4. Immediate trigger: A trigger (yellow) that exactly matches the shape of
the Ego car. Most commonly used for detecting close interactions of Ego
such as collisions with other cars or pedestrians.

One trigger pair forms data input/output for low-level agents of the secondary
multi-agent system. In general, the triggers can be paired freely based on the
data needs of each agent.

Figure 3.12: Four different collision triggers of Ego which enable the perception
of simulated world elements.

3.3.2 Road Network

One of the primary elements of interest is the road network. Its accurate repre-
sentation constitutes a complex problem in real world as well as in the simulated
environment. For the simulated world representation purposes, a custom road
network representation and appropriate lane marking tool were developed. The
network representation was based on the solution of Su et al. [55] and also in-
spired byBuechel et al. [65], Hulsen et al. [70] and Zhao et al. [49].

The employed representation is based on lanes i.e. every possible segment of
road network is represented solely as the lanes it contains. Figure 3.13 shows
how the representation looks like for a two lane road as well as for a 3-way in-
tersection. The intersection case is a bit more interesting as it contains lanes for

System Design and Implementation 61

all possible passes a car can make through the intersection. Some of the lanes
overlap, therefore, for a car it is possible to be in multiple lanes at the same
time. The resolution of the correct lane is performed by agent/agents of sec-
ondary multi-agent system. Other road network segments are represented in a
similar way. Example visualisations of already marked lanes from some of the
simulated worlds are shown in Figure 3.14 and Figure 3.15.

Figure 3.13: Lane-based representation of a road (left) and a 3-way intersection
(right).

Figure 3.14: Visualisation of marked road lanes in one of the simulated worlds.

62 Simulator Interface

Figure 3.15: Visualisation of marked intersection lanes in one of the simulated
worlds.

Figure 3.16: Visualisation of the Lane marking tool interface. The points that
define the lane spline are marked red while the control points are marked blue.

In order to speed up the lane marking process, a custom lane marking tool was
developed. The tool is spline-based i.e. the lane marking process essentially boils
down to just laying out splines. The lane splines are defined by spline points
and their shape can be further refined by manipulating their control points. The
lane color, width or depth can be easily customized from the tool’s interface.

System Design and Implementation 63

The interface for spline manipulation is shown in Figure 3.16. After the marking
is finished, the tool automatically generates geometry representing the marked
lanes and turns it into active collision trigger zones. These zones are then used
for the detection of Ego or other Car lanes.

3.3.3 Environment Tagging

Apart from lane marking, any object of the simulated world can be assigned
some additional metadata in a manual tagging process. The metadata can then
be utilized by secondary agents and propagated further to Knowledge Graph.
The metadata is assigned in a form of tag components which are represented as
C# scripts in Unity (2.1.11). The provided implementation supplies five basic
tag components which are listed in Table 3.3.

Tag Component Properties Internal State

LaneTag
id, name, speed limit,

parent road
-

RoadTag id, name -
IntersectionTag id, name, type, size cars at intersection

RoadSignTag
id, type, properties,

parent lane
-

CrosswalkTag id, name, parent lane pedestrians on crosswalk

Table 3.3: A table listing all available tag components.

The existing tag components can be modified and also new tags can be added
to enable annotation of a greater range of simulated world objects. Example
visualisations of tagged crosswalks and intersections are shown in Figure 3.17
and Figure 3.18 respectively.

3.3.4 Shared Memory

The simulator software uses a shared memory region for the distribution of the
global simulation state among all of its individual nodes (computers). The syn-
chronization of this region between nodes is carried out over custom low-level
Ethernet-based protocol. The global simulation state contains a lot of data which
is also useful for the assessment system such as ego speed, direction or current
gear. Therefore, the shared region forms the first contact point to interface with.

64 Simulator Interface

Figure 3.17: Visualisation of several tagged crosswalks.

Figure 3.18: Visualisation of a tagged intersection.

The second crucial data to exchange is the Knowledge Graph instance so far con-
sidered isolated inside of the simulator software (i.e. inside of Unity platform,
see subsection 2.1.11). Fortunately, the same shared memory region approach can
also be utilized for storing and distributing the whole Knowledge Graph structure.
This solution allows the simulator to maintain the same communication medium

System Design and Implementation 65

with the additional capability of delivering all necessary data to the assessment
system application as well. The application then simply reads the data from
both shared memory regions. The situation is illustrated in Figure 3.19. The
figure also shows the possibility of running the assessment system on a separate
node (computer). This feature was not used even though it is supported. The
assessment system runs on the master node.

Figure 3.19: The distribution of shared memory regions over the different simu-
lator nodes (computers).

3.4 Assessment System Agents

The assessment system implementation includes in total 18 intelligent agents for
the purpose of system functionality demonstration and testing. Primary multi-
agent system hosts 6 of the agents and secondary multi-agent system the re-
maining 12. The goal of both multi-agent systems (see section 3.2) and the
corresponding agents is to provide assessment of five basic driving skills, namely:

66 Assessment System Agents

the use of a correct gear (3.4.5), speeding (3.4.6), performing an overtake (3.4.7),
yielding to cars (3.4.8) at traffic light controlled intersections and yielding to
pedestrians (3.4.9) at crosswalks.

The assessment results produced by various agents are in real-time communicated
to the driver through the simulator audio interface (car speakers). Apart from
agents concerned with assessment, secondary multi-agent system also contains
feedback agents which decide and schedule feedback to be given. The feedback is
based on text templates or segments which are firstly augmented with produced
assessment data and then converted to audio via cloud-based Text-To-Speech (for
more information, see subsection 2.1.14) solution. In this work, free version of
Google Cloud Text-To-Speech service was used.

3.4.1 Modules

As described in subsection 3.2.1, the assessment system allows inclusion of various
modules in order to allow arbitrary extension of its capabilities or functionality.
For the five proposed driving skill assessments (3.4), two modules were needed
and hence implemented. The modules are listed below:

• Fuzzy logic module: A module which encapsulates and delivers generic
fuzzy logic reasoning engine (see subsection 2.1.10). The module was uti-
lized for the assessment of speeding (3.4.6).

• Text-To-Speech module: A module that allows conversion of text seg-
ments into spoken speech. Internally, the module makes requests to Google
Cloud Text-To-Speech service, downloads the results and finally performs
the audio playback. The module has been frequently utilized by most of
the feedback agents.

3.4.2 Components

The basis for data exchange in secondary multi-agent system are Components and
their storages (3.2.1). Table 3.4 lists all defined and used Components. The links
between various Components and individual agents are shown in Figure 3.21.
The first two Components listed in Table 3.4 are Implicit Components (3.2.2).

System Design and Implementation 67

Component Data Description

Knowledge Graph
Knowledge Graph

instance

Provides reference to
Knowledge Graph stored in

the shared memory.

Ego Data

position, direction,
speed, gear,

throttle, brake,
clutch...

Pulls data about Ego
from state shared memory.

Incorrect Gear gear state
Stores two basic

states of wrong gearing.

Incorrect Gear Feedback value
String value holding

the given feedback text.

Speeding
speeding state,

speed limit, ego speed
Stores speeding information

as a basis for feedback.

Speeding Feedback value
String value holding

the given feedback text.

Lane Change
from lane,

to lane
Stores data about

the previous and new lane.

Turn Signal turn signal state
Stores two basic

states of turn signaling.

Overtake
timestamp, duration,

turn signals
Stores overtake information

as a basis for feedback.

Overtake Feedback value
String value holding

the given feedback text.

Car Yielding timestamp, type
Stores yielding information

as a basis for feedback.

Car Yielding Feedback value
String value holding

the given feedback text.

Pedestrian Yielding timestamp, type
Stores yielding information

as a basis for feedback.
Pedestrian Yielding

Feedback
value

String value holding
the given feedback text.

Table 3.4: A table listing all Components used by agents of secondary multi-agent
system.

3.4.3 Low-level Detection Agents

As mentioned in section 3.4, there are 6 low-level agents forming the primary
multi-agent system. These agents are responsible for building Knowledge Graph
inside of the simulator software (3.3.1). A diagram showing all of them can be

68 Assessment System Agents

found in Figure 3.20. Moreover, their detailed description is provided in Table 3.5.
In fact, the implemented agents can be informally divided into two groups: ac-
tive and passive. Active agents run repeatedly during the whole time a simulated
world element is in scope. On the other hand, passive agents run only when an
element is detected or lost.

Figure 3.20: Low-level agents also known as primary multi-agent system. The
blue agents are active agents while the orange agents are passive.

Agent Name Entry/Exit Trigger Description

Car Detection Agent inner/outer Detects cars nearby Ego

Car Relations Agent -
Determines spatial relations

to nearby cars detected
by Car Detection Agent

Lane Detection Agent immediate Detects the current lane of Ego

Road Sign Detection Agent near/inner
Detects road signs
for the current lane

Intersection Detection Agent immediate/near
Detects when Ego enters

intersection

Crosswalk Detection Agent immediate/near
Detects when Ego

drives over crosswalk

Table 3.5: A table listing all agents of primary multi-agent system.

3.4.4 High-level Assessment Agents

All implemented high-level agents are shown in Figure 3.21 together with their
corresponding Components and Modules (for more information see subsection 3.2.1).

System Design and Implementation 69

Figure 3.21: High-level agents also known as secondary multi-agent system.

For the sake of clarity, the description of high-level agents was split into several
sections based on which driving skill assessment are the individual agents re-
sponsible for. In addition, each section contains a cropped version of Figure 3.21

70 Assessment System Agents

showing only the relevant agents. The sections follow below and one by one
describe approaches to assessments of five chosen driving skills.

3.4.5 Incorrect Gear

The first driving skill to assess is the correct use of gears. For this purpose,
two agents were developed as shown in Table 3.6 and Figure 3.22. Incorrect
Gear Agent reads data from Ego Data component and determines if the cur-
rent RPMs of Ego engine fall in the correct range. Based on this information,
the agent suggests shifting to either lower or higher gear. There exist two suit-
able RPM ranges: normal range from 1650 to 3400 RPMs and acceleration range
from 2000 to 3800 RPMs. The active RPMs range is based on the current throttle
amount which was normalized to 0-1 range. The threshold was set to 0.5.

Agent Name Agent Type Source Components Sink Component
Incorrect Gear

Agent
Periodic

(1000 ms)
Ego Data Incorrect Gear

Incorrect Gear
Feedback Agent

Observing Incorrect Gear
Incorrect Gear

Feedback

Table 3.6: The list of all Agents involved in incorrect gear assessment.

Figure 3.22: The illustration of all Agents, Components and Modules involved in
incorrect gear assessment. The diagram was cropped out of Figure 3.21 which
depicts all available high-level agents.

Incorrect Gear Feedback Agent takes care of delivering Incorrect Gear Feedback
at the right time. The agent reads data from Incorrect Gear component and
employs a simple rule for feedback scheduling. If there is 8 or more records (the
number is configurable) of Incorrect Gear data with the same value in a row, then

System Design and Implementation 71

feedback based on that value is enqueued. The agent randomly chooses from a
set of predefined text segments which are then send to Text-To-Speech module in
order to be played. The available text segments are listed in Table 3.7.

Assessment Result Feedback Text
#1 Too high gear You need to shift down!

#2 Too high gear Mind your current gear!

#3 Too high gear Your gear is too high!
#4 Too high gear You should shift down!

#5 Too high gear Shift down please!

#6 Too low gear You need to shift up!
#7 Too low gear Mind your current gear!

#8 Too low gear Your gear is too low!

#9 Too low gear You should shift up!

#10 Too low gear Shift up please!

Table 3.7: The list of all text segments available for Text-To-Speech feedback
provided by Incorrect Gear Feedback Agent.

3.4.6 Speeding

In the case of speeding assessment, fuzzy logic (see subsection 2.1.10) was utilized.
The assessment logic is encapsulated in two agents (Table 3.8 and Figure 3.23):
Speeding Agent and Speeding Feedback Agent. The former focuses on fuzzy logic
reasoning whereas the latter schedules and delivers feedback. Speeding Agent
reads from Ego Data in order to elicit information about the current speed and
acceleration of Ego. In addition, the agent also executes two pattern queries
(see subsection 3.1.5) which extract data from Knowledge Graph component.

Agent Name Agent Type Source Components Sink Component
Speeding

Agent
Periodic

(1000 ms)
Ego Data,

Knowledge Graph
Speeding

Speeding
Feedback Agent

Observing Speeding
Speeding
Feedback

Table 3.8: The list of all Agents involved in speeding assessment.

72 Assessment System Agents

Figure 3.23: The illustration of all Agents, Components and Modules involved in
speeding assessment. The diagram was cropped out of Figure 3.21 which depicts
all available high-level agents.

The first pattern query: Node(typeOf(Ego)) with outgoing Relation(typeOf(isIn))
to Node(typeOf(Lane)) determines Ego’s current lane while the second query:
Node(typeOf(SpeedLimitSign)) with outgoing Relation(typeOf(belongsTo)) to
Node(typeOf(Lane)) probes if there is any SpeedLimitSign belonging to the lane
Ego is currently in. Then all obtained information is fed to the Fuzzy Logic mod-
ule for reasoning. The result of Speeding Agent calculations is stored in Speeding
component.

The difference between Ego speed and the active speed limit is represented by
Over Speed Limit fuzzy input variable. Furthermore, the acceleration of Ego
comes in as Acceleration fuzzy variable. Their corresponding fuzzy sets are listed
in Tables 3.9 and 3.10. The output is captured in Speeding fuzzy output variable
as shown in Table 3.12. In addition, fuzzy rules used during the reasoning process
are described in Table 3.11. The final defuzzification is not executed all the way
i.e. the output value is still fuzzy which is desired for the purpose of speeding
assessment.

Fuzzy Set Membership Function Range (km{h)
Ok Reverse grade (0, 20)

Slightly Triangular (0, 15, 20)

Considerably Triangular (5, 20, 35)

Severely Grade (30, 100)

Table 3.9: Fuzzy sets defined on Over Speed Limit fuzzy input variable.

System Design and Implementation 73

Fuzzy Set Membership Function Range (m{s2)
Decelerating a lot Reverse grade (-10, -2)

Decelerating Triangular (-4, -2, 0)

Constant Triangular (-2, 0, 2)

Accelerating Triangular (0, 2, 4)

Accelerating a lot Grade (2, 10)

Table 3.10: Fuzzy sets defined on Acceleration fuzzy input variable.

Rule If (AND) Then

#1
Over Speed Limit is Ok

Acceleration is Decelerating
Speeding is Ok

#2
Over Speed Limit is Slightly
Acceleration is Decelerating

Speeding is Ok

#3
Over Speed Limit is Considerably

Acceleration is Decelerating
Speeding is Ok

#4
Over Speed Limit is Ok

Acceleration is Decelerating a lot
Speeding is Ok

#5
Over Speed Limit is Slightly

Acceleration is Decelerating a lot
Speeding is Ok

#6
Over Speed Limit is Considerably
Acceleration is Decelerating a lot

Speeding is Ok

#7
Over Speed Limit is Ok

Acceleration is Accelerating
Speeding is Ok

#8
Over Speed Limit is Slightly
Acceleration is Accelerating

Speeding is Considerably Above

#9
Over Speed Limit is Considerably

Acceleration is Accelerating
Speeding is Severe Speeding

#10
Over Speed Limit is Severely
Acceleration is Accelerating

Speeding is Severe Speeding

#11
Over Speed Limit is Ok
Acceleration is Constant

Speeding is Ok

#12
Over Speed Limit is Slightly

Acceleration is Constant
Speeding is Slightly Above

#13
Over Speed Limit is Considerably

Acceleration is Constant
Speeding is Considerably Above

#14
Over Speed Limit is Severely

Acceleration is Constant
Speeding is Severe Speeding

Table 3.11: Fuzzy rules employed while reasoning about Speeding.

74 Assessment System Agents

Fuzzy Set Membership Function Range
Ok Reverse grade (0, 5)

Slightly above Triangular (5, 10, 15)

Considerably above Triangular (15, 20, 25)

Severe speeding Grade (25, 100)

Table 3.12: Fuzzy sets defined on Speeding fuzzy output variable.

Speeding Feedback Agent works in a similar manner like Incorrect Gear Feedback
Agent does (subsection 3.4.5). If Speeding component contains 8 or more new
records about speeding (the number is configurable), the agent schedules feed-
back to play. The agent also utilizes a set of several text segments which are
being sent to Text-To-Speech module for reading (see Table 3.13). The feedback
is also stored in corresponding Speeding Feedback component.

Assessment Result Feedback Text
#1 Slightly above speed limit Mind your speed!

#2 Slightly above speed limit
You are slightly above

the speed limit!
#3 Slightly above speed limit Hey! Mind the speed limit.

#4 Considerably above speed limit You are speeding now!

#5 Considerably above speed limit You should lower your speed!

#6 Considerably above speed limit Please lower your speed!

#7 Severe speeding This is unacceptable speeding!

#8 Severe speeding Lower your speed immediately!

#9 Severe speeding Hey! You are severely speeding!

Table 3.13: The list of all text segments available for Text-To-Speech feedback
provided by Speeding Feedback Agent.

3.4.7 Overtake

The assessment of overtakes required four agents (Table 3.14), namely: Lane
Change Agent, Turn Signal Agent, Overtake Agent and Overtake Feedback Agent.
Lane Change Agent periodically reads Knowledge Graph component via the
following pattern query: Node(typeOf(Ego)) with outgoing Relation(typeOf(isIn))
to Node(typeOf(Lane)) and detects all lane changes that happen. The lane
changes are saved as Lane Change component records. Turn Signal Agent reads

System Design and Implementation 75

data about turn signaling from Ego Data component and produces Turn Signal
records every time an active turn signal is detected. Whenever a lane change is
detected observing Overtake Agent also runs.

Overtake Agent traces Lane Change component records to see if there were two
subsequent lane changes back and forth between two distinct lanes. If these lane
changes are found, the agent tries to look up relative locations of other cars from
Knowledge Graph component. If a pattern comprising of a sequence of is-
Behind, isOnLeft, isInFront relations to the same Car in this temporal order is
found, an overtake is registered and saved as Overtake component record.

Agent Name Agent Type Source Components Sink Component
Lane Change

Agent
Periodic

(1000 ms)
Knowledge Graph Lane Change

Turn Signal
Agent

Periodic
(1000 ms)

Ego Data Turn Signal

Overtake
Agent

Observing
Knowledge Graph,

Lane Change,
Turn Signal

Overtake

Overtake
Feedback Agent

Observing Overtake
Overtake
Feedback

Table 3.14: The list of all agents involved in overtake assessment.

Figure 3.24: The illustration of all Agents, Components and Modules involved in
overtake assessment. The diagram was cropped out of Figure 3.21 which depicts
all available high-level agents.

76 Assessment System Agents

The three corresponding pattern queries look as follows: Node(typeOf(Ego)) with
outgoing Relation(typeOf(isBehind)) to Node(typeOf(Car)), Node(typeOf(Ego))
with outgoing Relation(typeOf(isOnLeft)) to Node(typeOf(Car)), Node(typeOf(Ego))
with outgoing Relation(typeOf(isInFront)) to Node(typeOf(Car)). Finally, turn
signaling records in Turn Signal component storage are searched to see if turn
signals were used properly during the detected overtake.

In this case, the job of Overtake Feedback Agent is fairly simple. Each time
a new Overtake component record is saved, the agent runs and produces feed-
back. Similarly to previous agents, it utilizes Text-To-Speech module and the
feedback is based on predefined text segments. The text segments available to
Overtake Feedback Agent are listed in Table 3.15. The given feedback records are
saved as Overtake Feedback component.

Assessment Result Feedback Text
#1 No turn signals You performed an overtake without turn signals!

#2 No turn signals Remember turn signals while overtaking!

#3 No turn signals You did not signal while overtaking!

#4 Only left turn signal Nice overtake but you forgot to blink right!

#5 Only left turn signal You did not use right turn signal while overtaking!

#6 Only left turn signal
Hey! Don’t forget to signal left and

then right during an overtake!
#7 Only right turn signal Nice overtake but you forgot to blink left!

#8 Only right turn signal You did not left turn signal while overtaking!

#9 Only right turn signal
Hey! Don’t forget to signal left and

then right during an overtake!
#10 Both turn signals Perfect! Flawless overtake with both turn signals!

#11 Both turn signals Great overtake! Nothing to complain about!

#12 Both turn signals Good! This was a very well done overtake!

Table 3.15: The list of all text segments available for Text-To-Speech feedback
provided by Overtake Feedback Agent.

3.4.8 Car Yielding

As yielding to other cars is a complex subject to assess, the scope of the prob-
lem was narrowed down to yielding at traffic light controlled intersections only.
The assessment is performed by two agents (Table 3.16 and Figure 3.25): Car
Yielding Agent and Car Yielding Feedback Agent. The former simply searches
the Knowledge Graph component for patterns containing relations between

System Design and Implementation 77

Ego’s current lane and other lanes with other Cars that Ego is supposed to
yield to (two pattern queries in total: Node(typeOf(Ego)) with outgoing Re-
lation(typeOf(isIn)) to Node(typeOf(Lane)) and also Node(typeOf(Lane)) with
outgoing Relation(typeOf(yieldsToCarIn)) to Node(typeOf(Lane))). Addition-
aly, the Knowledge Graph component is probed for a pattern indicating that
Ego is currently entering an intersection (Node(typeOf(Ego)) with outgoing Re-
lation(typeOf(isAt)) to Node(typeOf(Intersection))).

If appropriate patterns are found, yielding violation is saved as Car Yielding
component record. Car Yielding Feedback Agent fires each time there is a new
car yielding violation. Similarly to other feedback agents, it delivers the feedback
as spoken speech derived from text segments (see Table 3.17). The feedback agent
produces Car Yielding Feedback records.

Agent Name Agent Type Source Components Sink Component
Car Yielding

Agent
Periodic
(200 ms)

Knowledge Graph,
Turn Signal

Car Yielding

Car Yielding
Feedback Agent

Observing Car Yielding
Car Yielding

Feedback

Table 3.16: The list of all agents involved in yielding to other cars assessment.

Figure 3.25: The illustration of all Agents, Components and Modules involved in
yielding to other cars assessment. The diagram was cropped out of Figure 3.21
which depicts all available high-level agents.

78 Assessment System Agents

Assessment Result Feedback Text
#1 Going on red light You passed an intersection on a red light!

#2 Going on red light Hey! Going on red light is strictly forbidden!
#3 Going on red light Pay attention to traffic lights! The light was red!

Table 3.17: The list of all text segments available for Text-To-Speech feedback
provided by Car Yielding Feedback Agent.

3.4.9 Pedestrian Yielding

Pedestrian yielding assessment is nearly identical to car yielding assessment de-
scribed in subsection 3.4.8. Practically, the only difference is the pattern the
first agent searches for. In this case, Pedestrian Yielding Agent looks for a
pattern in which Ego has passesOver relation to Crosswalk while the cross-
walk is still occupied by pedestrians (Node(typeOf(Ego)) with outgoing Rela-
tion(typeOf(passesOver)) to Node(typeOf(Crosswalk))).

Agent Name Agent Type Source Components Sink Component
Pedestrian Yielding

Agent
Periodic
(200 ms)

Knowledge Graph Pedestrian Yielding

Pedestrian Yielding
Feedback Agent

Observing Pedestrian Yielding
Pedestrian Yielding

Feedback

Table 3.18: The list of all agents involved in yielding to pedestrians assessment.

Figure 3.26: The illustration of all Agents, Components and Modules involved in
yielding to pedestrians assessment. The diagram was cropped out of Figure 3.21
which depicts all available high-level agents.

If this situation is detected, Pedestrian Yielding Feedback Agent automatically
triggers feedback. Further details and the utilized component types are described

System Design and Implementation 79

in Table 3.18 and Figure 3.26. The available feedback text segments are listed
in Table 3.19.

Assessment Result Feedback Text

#1 Unsafe crosswalk pass
You drove over a crosswalk

while people were still crossing!
#2 Unsafe crosswalk pass Hey! You almost hit people crossing the street!

#3 Unsafe crosswalk pass
Pay attention to pedestrians on crosswalks!

You have just put them in danger!

Table 3.19: The list of all text segments available for Text-To-Speech feedback
provided by Pedestrian Yielding Feedback Agent.

80 Assessment System Agents

Chapter 4

Experiments and Results

In this chapter, two experiments conducted to verify the correctness of the de-
signed and implemented solution are described. Firstly, the chapter details the
employed experimental plan and experimental setup. Then, the achieved results
are presented accordingly. The experiments were performed during Evaluation
phase of Design Science Research methodology (see section 1.4).

4.1 Experimental Plan

In order to evaluate the assessment system under conditions closest to a real-life
scenario, application-grounded evaluation strategy was employed. Application-
grounded evaluation relies on conducting experiments with domain experts within
a real application task [78]. Hence, two driving lessons in simulated environment
originally developed by Way As (section 1.2), namely: Overtake lesson and Traf-
fic light controlled intersections lesson were used and modified for the evaluation
purposes.

The simulator interface described in section 3.3 was embedded in both of the
lessons to enable communication with the rest of the assessment system. Road
network lanes marking (subsection 3.3.2) and tagging of relevant simulated world
elements (subsection 3.3.3) also took place. All agents described in section 3.4
were utilized in order to test the system under load and also provide rich assess-
ment capabilities. Therefore, the assessment of five driving skills was available:
the use of correct gears, speeding, overtakes, yielding at traffic light controlled
intersections and yielding for pedestrians at crosswalks. The results of each skill
assessment were provided as spoken speech supplied in real-time by feedback
agents (3.4.4) during the actual driving session.

82 Experimental Plan

Each lesson constitutes one experiment, therefore two experiments were per-
formed in total. For the evaluation of both experiments, adequate domain experts
i.e. driving teachers were chosen. However, the set of available driving teachers
was limited to 8 employees of Way As only, as the intellectual property of the
company cannot be disclosed to other driving schools. No actual driving school
students were involved in the experiments.

The execution process was the same for both experiments. Each experiment
follows the same evaluation plan to ensure consistency and allow production of
comparable results. A domain expert drives through both of the simulator lessons
(one at a time) while following the standard lesson outline. As shown in Table 4.1
each lesson/experiment is split up into three 5 minutes long parts each of which
has a different purpose. The purposes and corresponding instructions for domain
experts are further detailed in Table 4.1. Before the start of every evaluation
session, domain experts were made familiar with the plan and also given all the
necessary instructions. Furthermore, during each lesson/experiment, they were
guided by the same evaluation supervisor who was making sure they did not
misunderstand any instructions, providing potential guidance, and also keeping
track of the elapsed time. During each lesson session with a domain expert a
log of the assessment system operation was produced. All logs are available for
download in Appendix C (6.2).

Part Length Instructions Purpose

#1 5 min
Drive as correctly as possible
while following traffic rules to
the highest possible extent.

Tests if the system produces
only adequate positive or

no feedback at all.
(no false positives)

#2 5 min
Perform the most common

mistakes that students
often do.

Tests if the system correctly
delivers appropriate

negative feedback.
(no false negatives)

#3 5 min
Try to confuse the system
and intentionally force it

to produce incorrect assessment.

To stress the system
and discover potential
flaws or weak spots.

Table 4.1: The evaluation plan used for both of the performed experiments. False
positives and false negatives mentioned in Purpose column are described from
the correct negative feedback perspective.

Experiments and Results 83

After both lesson/experiment sessions were finished, aggregated evaluation was
performed. At first, a semi-structured interview took place. The goal of the
interview is to elicit as much of qualitative data from domain experts as possible
while also making them reflect on their recent experience. Primarily, the data
collection focus was on domain expert opinions about correctness, timing and
completeness of the produced feedback. However, questions concerning several
other aspects such as their initial expectations, support of such system future
development or opinions about the usefulness of this educational approach are
also included. The actual interview questions can be found in Appendix A (6.2).

Finally, the domain experts were confronted with a questionnaire. The pur-
pose of the questionnaire is to accompany the qualitative data collected during
interviews with additional quantitative data. Therefore, the questionnaire con-
sists of Likert scale (Joshi et al. [79]) based questions only. Their range was
from 1 (the worst) to 7 (the best). The data are then used to perform statisti-
cal analysis of the domain experts evaluation. The questionnaire template can
be found in Appendix B (6.2), however, the used questions are also presented
in subsection 4.3.1.

4.2 Experimental Setup

The experiments, interviews and filling in of questionnaires all took place at
Way As offices in Trondheim (section 1.2). For the evaluation performed by one
domain expert, 1.5 hours of time was allocated beforehand. However, there was
an option for potential extension if necessary. At first, each domain expert drove
through Overtake lesson and then through Traffic light controlled intersections
lesson (each of the lessons took 15 minutes as described in Table 4.1). Unfortu-
nately, some of the domain experts experienced problems with motion sickness
caused by the driving simulator. Therefore, short pauses needed to be introduced
in between each lesson part (individual lesson parts are described in Table 4.1).
After both lessons were finished, an interview took place in a calm and sepa-
rate room hosting two participants only (the evaluation supervisor and domain
expert). Afterwards, domain experts were asked to fill in a questionnaire.

4.3 Experimental Results

This section presents results obtained from experiments. For the sake of clarity,
the section is divided in two subsections. First subsection presents the analysis
of quantitative data collected from questionnaires whereas the second subsection
examines qualitative data gathered during interviews. Both subsections are also

84 Experimental Results

further divided based on the content of used questions. The questions naturally
form two groups. The first group aggregates questions concerned about general
opinions while the second group of questions is focused on the assessment of
individual driving skills.

4.3.1 Quantitative Data

For the quantitative analysis of questionnaire data, two main approaches were
taken. In the first approach, the total number of answers to each individual step
of Likert scale [79] for each question was aggregated and plotted as a bar chart.
The chart for general opinions group of questions is shown in Figure 4.1 while the
chart for assessment of individual driving skills group is presented in Figure 4.2.
The Figures essentially illustrate how the distribution of answers looks like. The
questions that the Figures refer to are listed in Table 4.4.

In the second approach, the mean of all answers to each question was calcu-
lated which we also commonly refer to as super domain expert. Then, standard
deviation was calculated too in order to determine how far the individual answers
are from each other as well as how far they are from super domain expert. Simi-
larly, the results for general opinions group of questions are shown in Table 4.2
and Figure 4.3 while the results for assessment of individual driving skills group
are presented in Table 4.3 and Figure 4.4. The questions that the data refer to
are again listed in Table 4.4.

Mean (1-7) Standard deviation
Question 1 3.5 0.926

Question 2 3.375 1.188

Question 3 4 1.512

Question 4 3.625 1.188
Question 5 4.625 1.408

Question 6 2.375 1.061

Question 7 5.75 0.463

Question 8 5.875 0.354

Question 9 4.25 1.488

Table 4.2: Mean and standard deviation of all answers to each question from
general opinions group. The results are also visualised in Figure 4.3.

Finally, it is important to note that the analyzed data set contains only 8 records
as there were only 8 domain experts available. In order to derive some reliable

Experiments and Results 85

conclusions from the data set, one would need to collect greater amount of records.

Mean (1-7) Standard deviation
Question 1 3.5 1.4142

Question 2 4.375 1.061

Question 3 3.375 1.303

Question 4 3.75 0.707

Question 5 4.125 1.246

Table 4.3: Mean and standard deviation of all answers to each question from
assessment of individual driving skills group. The results are also visualised
in Figure 4.4.

Figure 4.1: The distribution of answers for general opinions group of questions.

4.3.2 Qualitative Data

For the qualitative analysis of data collected during interviews, opinion counting
method was used [9]. Essentially, all transcribed interviews were reviewed in
order to discover opinions and comments that are either interesting on their own
or shared between at least two domain experts. Similarly to quantitative data
analysis (subsection 4.3.1), the data was split up into two groups: general opinions
and assessment of individual driving skills. Furthermore, during the opinion
counting process, we identified 9 topics that domain experts commonly talked
about. Thus, general opinions group was further divided into 10 subsections (the

86 Experimental Results

Figure 4.2: The distribution of answers for assessment of individual driving skills
group of questions.

last subsection covers the interesting comments mentioned during interviews). At
first, the results for general opinions group are presented below. The fractions
in parentheses represent the portion of domain experts that shared the same
opinion.

Additional value for driving education

Half of the domain experts (4/8) thinks that this kind of a system will provide
entertainment and fun experience to students. Smaller portion (2/8) sees the
system as a valuable addition to driving students education and would rate the
experience as positive.

Prior expectations

More than one third (3/8) of experts would rate the performance of the system
either the same as expected or slightly worse than expected. On the other hand,
smaller portion (2/8) would rate the system performance as better than expected.

Feedback content

When it comes to feedback content, majority of the domain experts (5/8) claimed
that it was easy to understand the mistake made based on the feedback. Half of

Experiments and Results 87

Figure 4.3: Mean and standard deviation of all answers to each question from
general opinions group. The whiskers show the range of mean +/- standard
deviation.

them (4/8) either stated that it was clear how to avoid the mistake in the future,
that the voice was clear and understandable, that there should be feedback which
only provides information and does not talk about mistakes, or that there should
be more positive and praising feedback in general. Half of the experts (4/8)
also mentioned and asked about the possibility of having a conversation with
the feedback system. Minority of experts (3/8) would welcome more information
about how to avoid the mistake in the future. Finally, two people (2/8) mentioned
that there should be more feedback given overall.

Feedback timing

For the majority of the domain experts (5/8), the timing of the feedback was
good. Nearly half of them (3/8) mentioned that the priority of feedback was
sometimes good and sometimes not ideal (depending on the situation). Two of
the experts (2/8) also mentioned that it might be even counter productive or
distracting if feedback is given at a bad time.

Feedback type

Most of the experts (5/8) think that audio/spoken speech is a good way of pro-
viding feedback. However, minority (3/8) of them also finds visualisations in
the simulated environment helpful. Moreover, another minority of experts (3/8)

88 Experimental Results

Figure 4.4: Mean and standard deviation of all answers to each question from
assessment of individual driving skills group. The whiskers show the range of
mean +/- standard deviation.

thinks that visualisations in the environment are helpful but only for new in-
experienced students, not later in the educational process. Two of the domain
experts (2/8) would like to see the system taking over student’s control in a case
of emergency.

Students’ thinking process and self-reflection

All of the domain experts (8/8) think that the system needs to be able to focus
on students’ decisions and enforce thinking processes i.e. make students self-
reflect and reason about their behaviour. Two of the experts (2/8) noted that
the system needs to encourage students to develop understanding of their decision
consequences.

Situation awareness and risk assessment

Most of the people (6/8) mentioned that the system needs to increase the scope
of its situation awareness (see subsection 2.1.5) i.e. consider more things while
providing assessment information. Two people (2/8) also noted that a proper risk
assessment was missing. Furthermore, two people (2/8) think that aggressive way
of driving should be taken into account.

Experiments and Results 89

Student skill level and feedback adaptation

Majority of the domain experts (5/8) would welcome a feedback that progres-
sively adapts to the current student skill level.

Human factor of driving teachers

Half of the people (4/8) considers the provided feedback close to how a real
teacher would give feedback to students. On the other hand, a small portion of
experts (2/8) thinks that the system is missing the human aspect of a real teacher
a bit.

Interesting points and remarks

Even though often mentioned just by a single domain expert, some of the notes
constitute a lot of good ideas. The following enumeration is a collection of the
most interesting ones:

• Mirror look assessments were missing.

• Sometimes traffic rules need to be relaxed.

• Assessment of unclear situations is needed but hard to do.

• Students might not take the education in simulator seriously.

• There should exist a potential feedback aggregation.

• Briefing and debriefing before and after a lesson.

Secondly, the results for assessment of individual driving skills group are pre-
sented below:

The use of correct gears

Half of the domain experts (4/8) complained about being forced to shift down to
the first gear while driving.

Speeding

Some of the experts (2/8) wanted to have too low speed assessment as well.
Furthermore, two of them (2/8) also think that speeding assessment should in
general allow some small margin (as real speedometers usually overestimate a
bit).

90 Experimental Results

Overtakes

Nearly half of the people (3/8) would welcome safe distance to other cars as-
sessment during overtakes. Also, two domain experts (2/8) mentioned that the
duration of turn signalling while overtaking is an important aspect to assess as
well.

Yielding at traffic light controlled intersection

More than one third of domain experts (3/8) thinks that correct positioning
at intersections or turn signaling at intersections are really important things to
include in the assessment. A bit smaller portion of them (2/8) claimed having
problems with incorrect assessment if traffic lights changed to red while they were
driving through an intersection. Some of the experts (2/8) also pointed out that
the correct distance to an intersection should be considered.

Yielding for pedestrians at crosswalks

Two of the experts (2/8) consider this assessment to be really good. However, an-
other two of them (2/8) pointed out that the speed while approaching crosswalks
needs to be taken into account as well.

Experiments and Results 91

#/@ Question Likert Scale (1-7)

#1
How would you rate your general experience

with the assessment system?

Very dissatisfied
ă-ą

Very satisfied

#2 How informative was the feedback overall?
Very non-informative

ă-ą
Very informative

#3 How good was the timing of the feedback?
Completely off

ă-ą
Very good

#4 How good was the feedback in terms of accuracy?
Completely off

ă-ą
Very good

#5 Was it easy to understand the voice?
Very hard and unclear

ă-ą
Very easy and clear

#6 How ”human” was the feedback?

Very ”non-human” and quite far
from a real teacher behaviour

ă-ą
Very ”human” and close
to a real driving teacher

#7
Do you believe that a system like this has potential

and can be a helpful tool for simulator-based
driving education?

Strongly disagree
ă-ą

Strongly agree

#8
Do you think that a system like this should be

worked on and developed further?

Strongly disagree
ă-ą

Strongly agree

#9
Were there any issues with the system

during your evaluation?

A lot
ă-ą
None

@1
How good was the assessment of

correct/incorrect gear?

Very bad
ă-ą

Very good

@2 How good was the assessment of speeding?
Very bad
ă-ą

Very good

@3 How good was the assessment of overtakes?
Very bad
ă-ą

Very good

@4
How good was the assessment of yielding
at traffic light controlled intersections?

Very bad
ă-ą

Very good

@5
How good was the assessment of yielding

to pedestrians at crosswalks?

Very bad
ă-ą

Very good

Table 4.4: The questions that were part of the evaluation questionnaire (see sec-
tion 4.1). The table is divided in two groups. The first group (#) represents
general opinions questions whereas the second group (@) gathers assessment of
individual driving skills questions.

92 Experimental Results

Chapter 5

Evaluation and Conclusion

This chapter covers the evaluation of artifacts produced during Suggestion and
Development phases of Design Science Research methodology (see section 1.4).
Furthermore, the results obtained from experiments (chapter 4) are also consid-
ered and evaluated accordingly. Then, the discussion of discovered limitations
is presented. Finally, the opportunities for potential future work are outlined.
The content of this chapter maps to Evaluation and Conclusion phases of Design
Science Research.

5.1 Discussion

In this section, we revisit hypothesis, goal and research questions originally pre-
sented in section 1.3 in order to relate them to the actual research outcomes and
the experiment results described in section 4.3. At first, we address the research
questions one at a time. All of the questions were answered successfully.

Research question 1 Which data-oriented design principles can be utilized for
the design of the assessment system?

As described in subsection 3.1.2, for Knowledge Graph data structure the main
utilized Data-oriented design principles are: DBMS-like memory layout, Linear
and continuous data structures, Data packing and sorting and Hot/cold splitting.
In addition, Component storages which constitute Agent Platform’s (3.2.2) one
and only data storage option make use of DBMS-like memory layout and Lin-
ear and continuous data structures principles too. The design principles are in
detail explained in subsection 2.1.2. Moreover, the assessment system utilizes
Entity Component System architectural pattern (2.1.3) which builds on top of

94 Discussion

Components-based architecture principle. Finally, Observing agents running on
Agent Platform employ Existential processing design principle.

Research question 2 How can the system reason about traffic situations?

In order to enable reasoning about complex traffic situations, dynamic ontology-
driven approach was used (see section 3.1). The ontology serves as an abstraction
of simulated world and allows capturing of not only of the current world state
but also of all the previous states the world has ever had. The ontology is imple-
mented as Knowledge Graph (3.1.2) which allows fast processing and traversing
at runtime. On the top of Knowledge Graph, Pattern Query Engine (3.1.5) was
built and utilized as a reasoning engine. Pattern Query Engine implements De-
scription logic based reasoning combined with temporal reasoning capabilities
provided by Allen’s Interval Algebra (2.1.8).

Research question 3 How can the system utilize concurrency on multi-core
systems?

The concurrency was utilized by multi-agent systems on per agent basis. Each
agent of secondary multi-agent system (3.2 and 3.2.2) runs in its own thread and
therefore in parallel with all other agents of the same multi-agent system. This
solution guarantees that potential slow execution of one agent’s reasoning process
cannot negatively influence the performance of the other agents. In addition,
parallel execution offers significant speedups and is one of the main principles
allowing the assessment system to deliver results in real-time. The agents which
are part of primary multi-agent system (3.2 and 3.3.1) are running on Unity
development platform (2.1.11) inside of coroutines, therefore their utilization of
concurrency is being handled internally by the platform.

Research question 4 How can the system interface with a driving simulator in
order to extract the necessary data?

For simulator data extraction and proper interfacing with the assessment sys-
tem, several techniques were designed and applied. At first, the simulated world
elements and road network needed to be sufficiently annotated with metadata.
Therefore, lane marking and environment tagging processes described in subsec-
tion 3.3.2 and subsection 3.3.3 were employed. Then, primary multi-agent system
was used for Knowledge Graph construction and its later exposure to the assess-
ment system. Finally, shared memory regions were utilized to allow sharing and
exchange of data between different processes i.e. the simulator and the assess-
ment system. Further details are provided in subsection 3.3.4. This collection of
solutions makes interfacing with the simulator possible.

Evaluation and Conclusion 95

Research question 5 Is it possible for such system to deliver driving skills as-
sessment in real-time?

In order to achieve real-time driving skill assessment delivery, two main things
were necessary: timely evaluation of the skill assessment and an appropriate
way of presenting the result in real-time. The first part was ensured by the
assessment system design (3.2), as it is designed to work and provide results in
real-time. For the second part, feedback agents (subsection 3.4.4) and Text-To-
Speech (subsection 2.1.14) module (subsection 3.4.1) were utilized. Their purpose
is to deliver feedback to a driver at the correct moment, potentially immediately
(real-time) if desired.

Goal Design and develop a data-oriented multi-agent assessment system which
is capable of operating in real-time while providing the targeted driving skills
evaluation.

In order to draw a reliable conclusion about the achievement of the main goal of
this research, more evidence was needed. The additional evidence was provided
by experiments conducted with domain experts as described in chapter 4. When
it comes to the collected quantitative data (subsection 4.3.1), the Tables 4.2
and 4.3 seem to contain data of the highest informational value (Table 4.4 lists
the questions the charts refer to).

When it comes to individual opinions group, answers to Question 1 (general
experience) and Question 2 (informative aspect of the feedback) were quite sim-
ilar. The mean of all answers (also known as super domain expert) was close to
the middle value of Likert scale {3.5} and standard deviation was close to {1}.
Mean of answers to Question 3 (timing of feedback) scored a little bit higher
{4} but there also was higher standard deviation {1.5} i.e. the domain experts’
opinions about the timing were more dissimilar. The situation around Question
4 (accuracy of feedback) is also very similar to Question 1 and Question 2. The
mean of answers to Question 5 (how easy it was to understand the voice) was
the third highest in this question group {4.625} while the standard deviation was
still holding around {1.4}, therefore we can claim that that domain experts tend
to consider the feedback easy to understand. In contrast, the mean of Question
6 (how human the assessment system feels) scored the lowest in this question
group {2.375} with standard deviation around {1}, therefore the domain experts
in general do not consider the system human enough. However, answers to Ques-
tion 7 and Question 8 scored the highest mean {5.75 and 5.875} and lowest
standard deviation in this group sitting below {0.5}. Based on these results, we
can assume that the domain experts see the potential of this work and support
the future development of such assessment system. The last question Question 9

96 Discussion

(issues with the system) answers had mean of {4.25} and standard deviation close
to {1.5}. However, it is important to note that the majority of domain experts
considers missing functionality an issue, therefore the informational value of this
question result is really low.

Assessment of individual driving skills question group contains even less diversity
than individual opinions group. Most of the question means were around {3.75}
with standard deviation close to {1.2}. There are just two notable exceptions.
Question 2 (speeding) scored the highest mean {4.375} which means that the
assessment of speeding is considered to be the best among all other assessments.
The second exception appeared in connection with Question 4 (yielding at traffic
light controlled intersections), which had the lowest standard deviation {0.7} i.e.
the domain experts agreed the most on answers to this question.

The size of the data set used for quantitative data analysis made the derivation
of statistically significant conclusions very difficult. Therefore, during qualitative
data analysis (subsection 4.3.2) we put more strictness and emphasis on the num-
ber of people that share the same opinion during interviews. For that reason, we
set a limit based on which are the discovered opinions considered either signif-
icant or not. The limit was set to at least half or more of the domain experts.
The data is presented in descending order starting from the opinion that was
mentioned the most.

Most of the domain experts (5/8) consider audio feedback a good way of pro-
viding feedback which supports the decision made in favor of Text-To-Speech
(2.1.14) feedback system. The same amount of domain experts (5/8) also thinks
that feedback was delivered at appropriate moments. This information highlights
the timely evaluation of individual assessments as well as the correct feedback
timing. Half of the domain experts (4/8) thinks that the feedback provided clear
information about how to avoid the described mistake in the future and also
considers the feedback content to be clear and understandable in general. This
evidence emphasizes the correct assessment result and its appropriate presenta-
tion. Half of the domain experts (4/8) also believe the assessment system and
provided feedback makes the assessment system valuable for driving education.
This information to some extent confirms the results obtained during quantita-
tive analysis (Question 7 and 8). On the other hand, half of the domain experts
(4/8) also thinks that the system provides feedback feedback in a similar way like
a real teacher would give feedback to students which contradicts the results of
quantitative analysis (Question 6).

The qualitative data analysis uncovered some patterns that we can to a large

Evaluation and Conclusion 97

extent rely on while concluding about the main goal of this research. The quan-
titative data are harder to trust and therefore were utilized only as a data source
describing tendencies rather than providing final conclusions. However, based on
data from both data sources, the system seems to be considered a good founda-
tion with a lot of potential for future improvement. To sum up, we see the main
goal as achieved while providing a further discussion about limitations and future
work in sections 5.2 and 5.3.

Hypothesis Data-oriented multi-agent system for driving skills assessment in a
simulated environment can be designed to run in real-time while supporting
all functionality required for complete and timely driving skills evaluation.

As all of the research questions were answered and also the main goal of this
research is considered accomplished, therefore, we conclude that it is possible
to design and implement data-oriented multi-agent system for driving skills as-
sessment which will run in real-time while providing the desired complete and
timely driving skills evaluation. To sum up, the hypothesis is considered to be
well-supported by evidence and therefore assumed to hold true.

5.2 Limitations

As briefly mentioned in section 5.1, this section presents the limitations of the
provided solution and the conducted research in general. When it comes to gen-
eral limitations, one of the main hinders of a proper evaluation of this work
(especially in a quantitative way) was the size of the obtained data set. Only 8
domain experts participated in the experiments (the reason for it is mentioned
in section 4.1). Therefore, in order to derive more reliable conclusions, there needs
to be more testing performed with more domain experts involved. Furthermore,
there is a possibility of conducting experiments with driving education students
as well to make the data collection process not limited to domain experts only.
Additionally, only two driving lessons (out of 12 available) were modified and
used for evaluation. More lessons would enable domain experts to experience the
assessment system in a wider variety of traffic situations which will allow forming
of better opinions about how well the individual assessments actually work. Fi-
nally, the system does not support the assessment of the third level of situation
awareness (see subsection 2.1.5) i.e. is not able to predict future outcomes of
traffic situations.

When it comes to limitations related to the system design and implementation,
there are several identified limitations pertaining Knowledge Graph (3.1.2), Pat-
tern Query Engine (3.1.5), Agent platform (3.2.2), Unity interface (3.3.1) and

98 Limitations

also the implemented intelligent agents (3.4). Knowledge Graph has never been a
subject to any kind of benchmarks for testing its real performance and efficiency.
The fixed capacity of Knowledge Graph was necessary to make it compatible with
shared memory regions (subsection 3.3.4) but might be a disadvantage in general
for other use cases. The fixed capacity should be at least optional. During the
implementation it also became apparent that the most common lookup which is
performed on Knowledge Graph is iterating through timestamps. Hence, it might
be worth moving timestamps to their own index structure which should speed up
their frequent traversals.

Pattern Query Engine (subsection 3.1.5) suffers from incomplete support of De-
scription logic and quite high computational complexity (as also described in sub-
section 3.1.5). In addition, the engine would benefit from its own query language
as right now the queries are described directly in source code by creating in-
stances of pattern structures. The use of markers in Knowledge Graph turned
out to be sometimes problematic for Pattern Query Engine. As lookups per-
formed on Knowledge Graph always start from the newest possible record, there
might be issues with looking up elements in intervals during which the element
changed state (i.e. was removed or updated). The lookup will always return the
first found record even though in the rest of the interval the element might have
been in a completely different state (for more information see subsection 3.1.5).

The Component Storages of Agent platform are assumed to be fast linear data
structures (as described in subsection 3.2.2), however, no benchmarking was per-
formed. Moreover, agents running on the platform have their reasoning logic en-
capsulated in Systems but still implemented in Rust (2.1.13) source code. There
is a potential of abstracting the definitions of their logic into a higher level rep-
resentation which would make it easier to create and modify.

The designed and implemented Unity interface (3.3) is so far compatible only
with the simulator developed at Way As (1.1), however, general application of
this work would require a more generic interface. The lane marking tool (3.3.2)
and the corresponding lane marking process can easily get tedious and take a long
time. As the simulator already contains an internal road network representation,
there is a possibility of automatic generation of the marked lanes.

The implemented low-level and high-level intelligent agents (see subsection 3.4.3
and subsection 3.4.4) can be improved especially in terms of the scope of their
detection or assessment. Also, in order to cover a wider variety of possible driv-
ing skill assessments, new agents should be developed as the current assessment
capabilities are limited.

Evaluation and Conclusion 99

As we have low trust in quantitative data (4.3.1) obtained from experiments,
we probe only the collected qualitative data (4.3.2) for limitations. Therefore
based on the that data, all (8/8) of the domain experts think that the system
needs to be able to focus more on students’ decisions and enforce their thinking
processes. Additionally, most of the domain experts (6/8) mentioned that the
system needs to increase the scope of its situation awareness. Moreover, half of
the domain experts (4/8) thinks either that there should exist feedback which
only provides information and does not talk about mistakes or that there should
be more positive and praising feedback in general. Finally, half of the experts
(4/8) asked about the possibility of having a conversation with the assessment
system. All the mentioned concepts or improvements are currently not available
and therefore considered limitations of the system.

5.3 Future Work

The potential future work is closely tied to the limitations discussed in section 5.2.
Basically, any of the proposed limitations constitute an opportunity for extensive
future work. In addition, Interesting points and remarks group from sub-
section 4.3.2 lists some proposals for future work made by domain experts them-
selves.

100 Future Work

Chapter 6

Publications

This chapter presents additional work that has been or will be published in a
form of research papers.

6.1 General Research Paper

There is currently an ongoing work on a research paper which will reflect the
work presented in this thesis.

6.2 Explanining Traffic Situations – Architecture
of a Virtual Driving Instructor

The foundation of traffic situation ontology (3.1.1) and the approach to agent
scheduling (3.2.2) presented in this thesis have served as a contribution to a
research paper about Intelligent Tutoring Systems. The paper titled Explanining
Traffic Situations – Architecture of a Virtual Driving Instructor was published
and presented at 16th International Conference, ITS 2020 which took place at
Athens, Greece, June 8–12, 2020.

102Explanining Traffic Situations – Architecture of a Virtual Driving Instructor

Publications 103

104Explanining Traffic Situations – Architecture of a Virtual Driving Instructor

Publications 105

106Explanining Traffic Situations – Architecture of a Virtual Driving Instructor

Publications 107

108Explanining Traffic Situations – Architecture of a Virtual Driving Instructor

Publications 109

110Explanining Traffic Situations – Architecture of a Virtual Driving Instructor

Publications 111

112Explanining Traffic Situations – Architecture of a Virtual Driving Instructor

Bibliography

[1] S. Gregor and A. Hevner, “Positioning and presenting design science research
for maximum impact,” MIS Quarterly, vol. 37, pp. 337–356, 06 2013.

[2] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, I. Thomas, and K. Yelick, “A case for intelligent ram: Iram,”
03 1997.

[3] M. West, “Evolve your hierarchy,” January 2007. [Online]. Available:
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/

[4] C. Matheus, M. Kokar, and K. Baclawski, “A core ontology for situation
awareness,” 02 2003, pp. 545– 552.

[5] P. E. Santos, G. Ligozat, and M. Safi-Samghabad, “An occlusion calculus
based on an interval algebra,” in 2015 Brazilian Conference on Intelligent
Systems (BRACIS), 2015, pp. 128–133.

[6] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems,
1st ed. USA: Addison-Wesley Longman Publishing Co., Inc., 2001.

[7] M. K. H. Sandberg, “Design and implementation of the architecture of a
virtual driving instructor,” Master’s thesis, Norwegian University of Science
and Technology, NTNU, 7 2020.

[8] V. Vaishnavi and B. Kuechler, “Design science research in information sys-
tems,” Association for Information Systems, 01 2004.

[9] B. Oates, Researching Information Systems and Computing. SAGE Publi-
cations, 2006.

[10] D. A. Patterson and J. L. Hennessy, Computer Organization and Design,
Fifth Edition: The Hardware/Software Interface, 5th ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2013.

http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/

114 Bibliography

[11] R. Fabian, Data-oriented design: software engineering for limited resources
and short schedules. Richard Fabian, 2018.

[12] K. Scott, “On proebsting”s law,” USA, Tech. Rep., 2001.

[13] R. Nystrom, Game Programming Patterns. Genever Benning, 2014.
[Online]. Available: https://gameprogrammingpatterns.com/

[14] T. Fontana, R. Netto, V. Livramento, C. Guth, S. Almeida, L. Pilla, and
J. L. Güntzel, “How game engines can inspire eda tools development: A use
case for an open-source physical design library,” in Proceedings of the 2017
ACM on International Symposium on Physical Design, ser. ISPD ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p. 25–31.
[Online]. Available: https://doi.org/10.1145/3036669.3038248

[15] M. Wooldridge, An Introduction to MultiAgent Systems, 2nd ed. Wiley
Publishing, 2009.

[16] M. Hadzic, E. Chang, and P. Wongthongtham, Ontology-Based Multi-Agent
Systems. Springer Publishing Company, Incorporated, 2014.

[17] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.
Prentice Hall, 2010.

[18] P. Hoen, K. Tuyls, L. Panait, S. Luke, and J. Poutré, “An overview of
cooperative and competitive multiagent learning.” 01 2005, pp. 1–46.

[19] M. Endsley, “Endsley, m.r.: Toward a theory of situation awareness in dy-
namic systems. human factors journal 37(1), 32-64,” Human Factors: The
Journal of the Human Factors and Ergonomics Society, vol. 37, pp. 32–64,
03 1995.

[20] D. Fensel, U. Simsek, K. Angele, E. Huaman, K. Elias, O. Panasiuk, I. Toma,
J. Umbrich, and A. Wahler, Knowledge Graphs - Methodology, Tools and
Selected Use Cases, D. Fensel, Ed. Springer, 2020.

[21] A. W. Brown, J. Conallen, and D. Tropeano, Introduction: Models,
Modeling, and Model-Driven Architecture (MDA). Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 1–16. [Online]. Available: https:
//doi.org/10.1007/3-540-28554-7 1

[22] A. Metzger, A Systematic Look at Model Transformations. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 19–33. [Online].
Available: https://doi.org/10.1007/3-540-28554-7 2

https://gameprogrammingpatterns.com/
https://doi.org/10.1145/3036669.3038248
https://doi.org/10.1007/3-540-28554-7_1
https://doi.org/10.1007/3-540-28554-7_1
https://doi.org/10.1007/3-540-28554-7_2

Bibliography 115

[23] K. Geihs, P. Baer, R. Reichle, and J. Wollenhaupt, “Ontology-based auto-
matic model transformations,” 01 2008, pp. 387–391.

[24] L. Vila, “A survey on temporal reasoning in artificial intelligence,” AI Com-
mun., vol. 7, no. 1, p. 4–28, Mar. 1994.

[25] A. K. Pani and G. P. Bhattacharjee, “Temporal representation
and reasoning in artificial intelligence: A review,” Math. Comput.
Model., vol. 34, no. 1–2, p. 55–80, Jul. 2001. [Online]. Available:
https://doi.org/10.1016/S0895-7177(01)00049-8

[26] J. McCarthy and P. Hayes, “Some philosophical problems from the stand-
point of artificial intelligence,” in Machine Intelligence 4, B. Meltzer and
D. Michie, Eds. Edinburgh University Press, 1969, pp. 463–502.

[27] J. F. Allen, “Towards a general theory of action and time,” Artificial
Intelligence, vol. 23, no. 2, pp. 123 – 154, 1984. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0004370284900080

[28] R. Kowalski and M. Sergot, A Logic-Based Calculus of Events. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1989, pp. 23–55. [Online]. Available:
https://doi.org/10.1007/978-3-642-83397-7 2

[29] M. Krötzsch, F. Simancik, and I. Horrocks, “A description logic
primer,” CoRR, vol. abs/1201.4089, 2012. [Online]. Available: http:
//arxiv.org/abs/1201.4089

[30] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, Eds., The Description Logic Handbook, 2nd ed. Cambridge, UK:
Cambridge University Press, 2007.

[31] A. Juliani, V. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and
D. Lange, “Unity: A general platform for intelligent agents,” CoRR, vol.
abs/1809.02627, 2018. [Online]. Available: http://arxiv.org/abs/1809.02627

[32] P. Jayanti, T. D. Chandra, and S. Toueg, “Fault-tolerant wait-free shared
objects,” J. ACM, vol. 45, no. 3, p. 451–500, May 1998. [Online]. Available:
https://doi.org/10.1145/278298.278305

[33] M. Herlihy and N. Shavit, “On the nature of progress,” in Principles of
Distributed Systems, A. Fernàndez Anta, G. Lipari, and M. Roy, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 313–328.

[34] S. Peri, C. K. Reddy, and M. Sa, “An efficient practical concurrent wait-
free unbounded graph,” in 2019 IEEE 21st International Conference on

https://doi.org/10.1016/S0895-7177(01)00049-8
http://www.sciencedirect.com/science/article/pii/0004370284900080
https://doi.org/10.1007/978-3-642-83397-7_2
http://arxiv.org/abs/1201.4089
http://arxiv.org/abs/1201.4089
http://arxiv.org/abs/1809.02627
https://doi.org/10.1145/278298.278305

116 Bibliography

High Performance Computing and Communications; IEEE 17th Interna-
tional Conference on Smart City; IEEE 5th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), Aug 2019, pp. 2487–
2494.

[35] N. D. Matsakis and F. S. Klock, “The rust language,” Ada Lett.,
vol. 34, no. 3, p. 103–104, Oct. 2014. [Online]. Available: https:
//doi.org/10.1145/2692956.2663188

[36] S. Klabnik and C. Nichols, The Rust Programming Language. USA: No
Starch Press, 2018.

[37] A. Antelmi, G. Cordasco, M. D’Auria, D. De Vinco, A. Negro, and C. Spag-
nuolo, “On evaluating rust as a programming language for the future of
massive agent-based simulations,” in Methods and Applications for Model-
ing and Simulation of Complex Systems, G. Tan, A. Lehmann, Y. M. Teo,
and W. Cai, Eds. Singapore: Springer Singapore, 2019, pp. 15–28.

[38] T. Dutoit, “High-quality text-to-speech synthesis : an overview,” Journal of
Electrical & Electronics Engineering, 1997.

[39] S. Mache, M. Baheti, C. Mahender, and A. Professor, “Review on text-to-
speech synthesizer,” International Journal of Advanced Research in Com-
puter and Communication Engineering, vol. 4, pp. 54–59, 09 2015.

[40] H. Tachibana, K. Uenoyama, and S. Aihara, “Efficiently trainable text-to-
speech system based on deep convolutional networks with guided attention,”
2017.

[41] A. Doniec, R. Mandiau, S. Piechowiak, and S. Espié, “A behavioral
multi-agent model for road traffic simulation,” Eng. Appl. Artif.
Intell., vol. 21, no. 8, p. 1443–1454, Dec. 2008. [Online]. Available:
https://doi.org/10.1016/j.engappai.2008.04.002

[42] T. Bosse, M. Hoogendoorn, M. Klein, and J. Treur, “A component-based
ambient agent model for assessment of driving behaviour,” 06 2008, pp.
229–243.

[43] F. E. Garcia and V. P. de Almeida Neris, “A data-driven entity-component
approach to develop universally accessible games,” 2014, pp. 229–243.

[44] G. Gutierrez, J. A. Iglesias, F. J. Ordoñez, A. Ledezma, and A. Sanchis,
“Agent-based framework for advanced driver assistance systems in urban en-
vironments,” in 17th International Conference on Information Fusion (FU-
SION), July 2014, pp. 1–8.

https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1016/j.engappai.2008.04.002

Bibliography 117

[45] M. Danielsson and G. P. Bohlin, “A high performance data-driven, entity-
component framework for game engines with focus on data-oriented design,”
2015.

[46] T. Nguyen, “A multi-agent architecture for situation awareness,” in Proceed-
ings of 1st International Conference on Conventional and Knowledge Based
Intelligent Electronic Systems. KES ’97, vol. 2, May 1997, pp. 502–507 vol.2.

[47] P. Morignot and F. Nashashibi, “An ontology-based approach to relax traffic
regulation for autonomous vehicle assistance,” 12 2012.

[48] H. Toulni, B. Nsiri, M. Boulmalf, and T. Sadiki, “An ontology based ap-
proach to traffic management in urban areas,” 2015.

[49] L. Zhao, R. Ichise, S. Mita, and Y. Sasaki, “An ontology-based intelligent
speed adaptation system for autonomous cars,” in Semantic Technology,
T. Supnithi, T. Yamaguchi, J. Z. Pan, V. Wuwongse, and M. Buranarach,
Eds. Cham: Springer International Publishing, 2015, pp. 397–413.

[50] D. D. Hodson and J. R. Millar, “Application of ecs game patterns in mili-
tary simulators,” Proceedings of the International Conference on Scientific
Computing (CSC), 2018.

[51] J. A. Sharp, “Data oriented program design,” SIGPLAN Not.,
vol. 15, no. 9, p. 44–57, Sep. 1980. [Online]. Available: https:
//doi.org/10.1145/947706.947713

[52] R. Weiss and C. Steger, “Design and implementation of a real-time multi-
agent system,” in MELECON ’98. 9th Mediterranean Electrotechnical Con-
ference. Proceedings (Cat. No.98CH36056), vol. 2, May 1998, pp. 1269–1273
vol.2.

[53] K. Barber, N. Gujral, J. Ahn, D. DeAngelis, K. Fullam, D. Han, D. Lam,
and J. Park, “Design, runtime, and analysis of multi-agent systems,” 01
2005, pp. 157–158.

[54] D. Hall, “Ecs game engine design,” 06 2014.

[55] X. Su, H. Cai, B. Luong, and S. Ukkusuri, “From a link-node-based net-
work representation model to a lane-based network representation model:
Two-dimensional arrangements approach,” Journal of Computing in Civil
Engineering, vol. 29, p. 04014045, 10 2014.

[56] P. Lange, R. Weller, and G. Zachmann, “Graphpool: A high performance
data management for 3d simulations,” 05 2016, pp. 23–33.

https://doi.org/10.1145/947706.947713
https://doi.org/10.1145/947706.947713

118 Bibliography

[57] S. Fuchs, S. Rass, and K. Kyamakya, “Integration of ontological scene repre-
sentation and logic-based reasoning for context-aware driver assistance sys-
tems,” ECEASST, vol. 11, 01 2008.

[58] M. A. Oulhaci, E. Tranvouez, B. Espinasse, and S. Fournier, “Intelligent
tutoring systems and serious game for crisis management: A multi-agents
integration architecture,” in 2013 Workshops on Enabling Technologies: In-
frastructure for Collaborative Enterprises, June 2013, pp. 253–258.

[59] R. Sukthankar, S. Baluja, and J. Hancock, “Multiple adaptive agents for
tactical driving,” Applied Intelligence, vol. 9, 07 2002.

[60] A. Armand, D. Filliat, and J. Ibanez-Guzman, “Ontology-based context
awareness for driving assistance systems,” 06 2014, pp. 227–233.

[61] L. Zhao, R. Ichise, T. Yoshikawa, T. Naito, T. Kakinami, and Y. Sasaki,
“Ontology-based decision making on uncontrolled intersections and narrow
roads,” 06 2015.

[62] M. A. Mohammad, I. Kaloskampis, Y. Hicks, and R. Setchi, “Ontology-
based framework for risk assessment in road scenes using videos,” Procedia
Computer Science, vol. 60, pp. 1532 – 1541, 2015, knowledge-Based and
Intelligent Information and Engineering Systems 19th Annual Conference,
KES-2015, Singapore, September 2015 Proceedings. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915024278

[63] F. Fang, S. Yamaguchi, and A. Khiat, “Ontology-based reasoning approach
for long-term behavior prediction of road users,” 10 2019, pp. 2068–2073.

[64] A. Bermejo, J. Villadangos, J. Astrain, and A. Cordoba, “Ontology based
road traffic management,” vol. 1-2, 09 2012.

[65] M. Buechel, G. Hinz, F. Ruehl, H. Schroth, C. Gyoeri, and A. Knoll,
“Ontology-based traffic scene modeling, traffic regulations dependent sit-
uational awareness and decision-making for automated vehicles,” in 2017
IEEE Intelligent Vehicles Symposium (IV), June 2017, pp. 1471–1476.

[66] D. Krol and F. Nowakowski, “Practical performance aspects of using real-
time multi-agent platform in complex systems,” in 2013 IEEE International
Conference on Systems, Man, and Cybernetics, Oct 2013, pp. 1121–1126.

[67] Jinhuan Wang and Baomin Li, “Study of semantic reasoning based on on-
tology description logic,” in 2016 IEEE Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IMCEC),
Oct 2016, pp. 1869–1872.

http://www.sciencedirect.com/science/article/pii/S1877050915024278

Bibliography 119

[68] Y. Shoham, “Temporal logics in ai: Semantical and ontological
considerations,” Artificial Intelligence, vol. 33, no. 1, pp. 89 – 104,
1987. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/000437028790052X

[69] U. Demiryurek, B. Pan, F. Banaei-Kashani, and C. Shahabi, “Towards
modeling the traffic data on road networks,” in Proceedings of
the Second International Workshop on Computational Transportation
Science, ser. IWCTS ’09. New York, NY, USA: Association for
Computing Machinery, 2009, p. 13–18. [Online]. Available: https:
//doi.org/10.1145/1645373.1645376

[70] M. Hulsen, J. M. Zöllner, and C. Weiss, “Traffic intersection situation de-
scription ontology for advanced driver assistance,” in 2011 IEEE Intelligent
Vehicles Symposium (IV), June 2011, pp. 993–999.

[71] D. Schmalstieg, “Unified patterns for realtime interactive simulation in
games and digital storytelling,” IEEE Computer Graphics and Applications,
vol. 39, no. 1, pp. 100–106, Jan 2019.

[72] R. Regele, “Using ontology-based traffic models for more efficient decision
making of autonomous vehicles,” in Fourth International Conference on Au-
tonomic and Autonomous Systems (ICAS’08), March 2008, pp. 94–99.

[73] N. D. Kallimanis and E. Kanellou, “Wait-Free Concurrent Graph
Objects with Dynamic Traversals,” in 19th International Conference
on Principles of Distributed Systems (OPODIS 2015), ser. Leibniz
International Proceedings in Informatics (LIPIcs), E. Anceaume, C. Cachin,
and M. Potop-Butucaru, Eds., vol. 46. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp. 1–17. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2016/6616

[74] P. Lange, R. Weller, and G. Zachmann, “Wait-free hash maps in the entity-
component-system pattern for realtime interactive systems,” in 2016 IEEE
9th Workshop on Software Engineering and Architectures for Realtime In-
teractive Systems (SEARIS), March 2016, pp. 1–8.

[75] M. Musen, “The protégé project,” AI Matters, vol. 1, pp. 4–12, 06 2015.

[76] J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo, M. Ek, E. Kohler,
M. F. Kaashoek, and R. Morris, “Noria: dynamic, partially-stateful data-
flow for high-performance web applications,” in 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). Carlsbad,
CA: USENIX Association, Oct. 2018, pp. 213–231. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/gjengset

http://www.sciencedirect.com/science/article/pii/000437028790052X
http://www.sciencedirect.com/science/article/pii/000437028790052X
https://doi.org/10.1145/1645373.1645376
https://doi.org/10.1145/1645373.1645376
http://drops.dagstuhl.de/opus/volltexte/2016/6616
https://www.usenix.org/conference/osdi18/presentation/gjengset

120 Bibliography

[77] J. Wang, “Scheduling of periodic tasks with data dependency on multipro-
cessors,” Advanced Materials Research, vol. 756-759, 05 2014.

[78] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable
machine learning,” 2017.

[79] A. Joshi, S. Kale, S. Chandel, and D. Pal, “Likert scale: Explored and
explained,” British Journal of Applied Science & Technology, vol. 7, pp.
396–403, 01 2015.

Appendices

Appendix A: Interview questions

Question

#1
How was the experience in general? Was it positive or negative?

Did you enjoy it?

#2
How does the system perform in comparison with your expectations?

Was it worse or better? Why?

#3

What do you think about the feedback content?
Was it easy to understand what mistake you made?

Was it clear how to avoid the mistake the next time?
Was there any information missing? Would you change something?

#4
How do you feel about the feedback timing? Was it appropriate?

Was it accurate? Why? Why not?

#5
Did you mind the feedback was audio only?

Would you like to see other kinds/forms of feedback?
Do you think they will be beneficial? What kind of forms?

#6

What was the assessment quality of each phenomenon? How good was:
Incorrect gear, Speeding, Overtake, Yielding at traffic light controlled intersections,

Yielding for pedestrians assessment? What was good about them?
What was bad about them? Any other remarks, findings, opinions?

#7
How close do you think the system performs in comparison with human teachers?
What was nearly or completely identical? What was not really human-like? Why?

#8
What do you think needs/can be done to improve the system?

What on the other hand should stay the same? Why?

#9
Do you believe that a system like this should be worked on and developed further?

Why yes, why not? Do you see any obvious deal-breakers already?
#10 Anything else we have not covered and you would like to address/mention?

Table 6.1: Questions used for semi-structured interviews carried out during Eval-
uation phase (see chapters 4 and 5).

122

Appendix B: Questionnaire

Question Likert Scale (1-7)

#1
How would you rate your general experience

with the assessment system?

Very dissatisfied
ă-ą

Very satisfied

#2 How informative was the feedback overall?
Very non-informative

ă-ą
Very informative

#3 How good was the timing of the feedback?
Completely off

ă-ą
Very good

#4 How good was the feedback in terms of accuracy?
Completely off

ă-ą
Very good

#5 Was it easy to understand the voice?
Very hard and unclear

ă-ą
Very easy and clear

#6 How ”human” was the feedback?

Very ”non-human” and quite far
from a real teacher behaviour

ă-ą
Very ”human” and close
to a real driving teacher

#7
How good was the assessment of

correct/incorrect gear?

Very bad
ă-ą

Very good

#8 How good was the assessment of speeding?
Very bad
ă-ą

Very good

#9 How good was the assessment of overtakes?
Very bad
ă-ą

Very good

#10
How good was the assessment of yielding
at traffic light controlled intersections?

Very bad
ă-ą

Very good

#11
How good was the assessment of yielding

to pedestrians at crosswalks?

Very bad
ă-ą

Very good

#12
Do you believe that a system like this has potential

and can be a helpful tool for simulator-based
driving education?

Strongly disagree
ă-ą

Strongly agree

#13
Do you think that a system like this should be

worked on and developed further?

Strongly disagree
ă-ą

Strongly agree

#14
Were there any issues with the system

during your evaluation?

A lot
ă-ą
None

Table 6.2: Questionnaire used during Evaluation phase (see chapters 4 and 5).

Appendices 123

Appendix C: Assessment system logs

The assessment system presented in this thesis is capable of logging its activity.
Therefore, each of the evaluation runs with domain experts (see chapter 4) gen-
erated logs capturing the system operations. The logs were anonymized which
makes it possible to publicly share them. The logs are available at the following
link: Assessment system logs. For each lesson session performed during evalua-
tion, one log file was generated. The log files are correspondingly named either
overtake if they come from Overtake lesson and intersection if from Traffic light
controlled intersections lesson. Moreover, each file is indexed so it is easy to pair
logs which belong to the same domain expert.

https://drive.google.com/drive/folders/1tX8wliph7fYc0f-Wm8OGIzgYnQ1wgHes

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Matej Mnoucek

Data-oriented Multi-agent
Assessment System for Real-time
Driving Simulators

Master’s thesis in Informatics

Supervisor: Odd Erik Gundersen

July 2020

	Introduction
	Background and Motivation
	Research Context
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory and Motivation
	Background Theory
	Memory and Data Locality
	Data-oriented Design
	Entity Component System
	Intelligent Agents and Multi-agent Systems
	Situation Awareness
	Ontologies and Knowledge Graphs
	Model-Driven Development and Transformations
	Temporal Representation and Reasoning
	Description Logic and Reasoning
	Fuzzy Logic
	Unity Real-time Development Platform
	Lock-free and Wait-free Concurrency
	Rust Programming Language
	Text-To-Speech

	Structured Literature Review Protocol
	Identification of Research
	Selection of Primary Studies
	Quality Assessment
	Data Extraction
	Data Synthesis

	Motivation

	System Design and Implementation
	Dynamic Model of Simulated Environment
	Traffic Situation Ontology
	Data-oriented Knowledge Graph
	Transformation and Code Generation
	Interval Algebra
	Pattern Query Engine

	Assessment System Architecture
	Entity Component System
	Agent Platform

	Simulator Interface
	Unity Interface
	Road Network
	Environment Tagging
	Shared Memory

	Assessment System Agents
	Modules
	Components
	Low-level Detection Agents
	High-level Assessment Agents
	Incorrect Gear
	Speeding
	Overtake
	Car Yielding
	Pedestrian Yielding

	Experiments and Results
	Experimental Plan
	Experimental Setup
	Experimental Results
	Quantitative Data
	Qualitative Data

	Evaluation and Conclusion
	Discussion
	Limitations
	Future Work

	Publications
	General Research Paper
	Explanining Traffic Situations – Architecture of a Virtual Driving Instructor

	Bibliography
	Appendices

